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Abstract. Much recent work has developed efficient protocols for thresh-
old signatures, where n parties share a signing key and some threshold t
of those parties must interact to produce a signature. Yet efficient thresh-
old signatures with post-quantum security have been elusive, with the
state-of-the-art being a two-round scheme by Damg̊ard et al. based on
lattices that support only the full threshold case (i.e., t = n).

We show here a two-round threshold signature scheme based on stan-
dard lattice assumptions that support arbitrary thresholds t ≤ n. Esti-
mates of our scheme’s performance at the 128-bit security level with a
trusted setup show that in the 3-out-of-5 case, we obtain signatures of
size 11.5 KB and public keys of size 13.6 KB, with an execution of the
signing protocol using roughly 1.5 MB of communication per party. We
achieve improved parameters if only a small bounded number of signa-
tures are ever issued with the same key.

As an essential building block and independent contribution, we con-
struct a maliciously secure threshold (linearly) homomorphic encryption
scheme that supports arbitrary thresholds t ≤ n.

Keywords: Lattice-Based Cryptography · Threshold Signatures · Threshold
Homomorphic Encryption · Zero-Knowledge Proofs · Active Security

1 Introduction

In a t-out-of-n threshold signature scheme, a signing key is shared among n
parties such that any t of those parties can jointly issue a signature. In con-
trast, an adversary corrupting strictly fewer than t of those parties cannot forge
a signature. The past few years have witnessed remarkable progress in devel-
oping efficient protocols for threshold signatures. These efforts have been mo-
tivated largely by applications to cryptocurrency, with most attention having
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been focused on threshold versions of the ECDSA [GGN16,GG18,LN18,DKLs19,
DOK+20,CGG+20,CCL+20,DJN+20] and Schnorr-like schemes [KG20,Lin22,
CGRS23,CKM23]. Based in part on this level of interest, NIST has announced
their intention [BP23] to standardize threshold cryptosystems.

Efficient threshold signatures based on post-quantum hardness assumptions–
and specifically lattice assumptions–have been elusive. While generic construc-
tions are possible, they have drawbacks and/or are not particularly efficient. (We
survey existing constructions in Section 1.3.) The state-of-the-art is a recent con-
struction by Damg̊ard et al. [DOTT21] based on standard lattice assumptions
that have a two-round signing protocol. Unfortunately, their solution only works
for the full-threshold (i.e., t = n) setting and does not extend to the case of
general thresholds t ≤ n. (We discuss the challenges in adapting their technique
to the case of general thresholds in Section 1.2.)

1.1 Our Contributions

We show a practical t-out-of-n threshold signature scheme based on standard
lattice assumptions (Ring-LWE/SIS) that supports arbitrary thresholds t ≤ n.
As in the scheme of Damg̊ard et al., our scheme features a two-round online
signing protocol and allows for distributed key generation. Estimates of our
scheme’s performance at the 128-bit security level with a trusted setup show
that in the 3-out-of-5 case, we obtain signatures of size 11.5 KB and public keys
of size 13.6 KB, where execution of the signing protocol uses roughly 1.5 MB
of communication per party. We can also improve the signature size by roughly
a factor of 7.2× in settings where the number of signatures generated using a
single key is bounded in advance; we refer to Section 6 for further details.

Our instantiations are competitive with the trivial solution of concatenating
n public keys and t signatures while offering several advantages in practice, e.g.,
the anonymity of the signing threshold towards the public. Our constructions are
also more in line with the formal definition of a threshold signature scheme where
there exists one public key and one signature for the threshold rather than a set;
therefore, the verification algorithm for the base scheme can be used without
knowing whether a single user or multiple users generated the signature.

Our scheme is based on a general framework for constructing threshold sig-
natures from a (linearly) homomorphic encryption scheme with threshold de-
cryption. Although the particular instantiation we propose is based on a variant
of the Dilithium signature scheme, our framework is general enough to be in-
stantiated using other schemes in the future.

As an essential building block of independent interest, we show the first
actively secure t-out-of-n threshold key-generation and decryption protocols for a
lattice-based (linearly) homomorphic encryption scheme. Our construction relies
on the BGV homomorphic encryption scheme combined with (verifiable) Shamir
secret sharing and recent lattice-based non-interactive zero-knowledge proofs.
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1.2 Technical Overview

We begin with a high-level overview of the approach used by Damg̊ard et
al. [DOTT21] to construct n-out-of-n lattice-based threshold signatures and ex-
plain why their scheme does not generalize easily to the t-out-of-n case. We
then describe the key ideas underlying our scheme. Several technical details are
omitted because this is intended only to provide intuition.

We describe a three-message identification scheme based on lattices inspired
by the Schnorr identification scheme in the discrete-logarithm setting. Fix a ring
Rq. The prover’s private key is a (short) vector s ∈ Rℓ+k

q , and its public key

consists of a matrix Ā := [A | I ] ∈ R
k×(ℓ+k)
q (where A is uniform) and the

vector y := Ās. Execution of the protocol proceeds as follows:

1. The prover samples a (short) vector r ∈ Rℓ+k
q and sends w := Ār.

2. The verifier responds with a (short) challenge c ∈ Rq.

3. The prover responds with (short) vector z := c · s+ r.

4. The verifier accepts iff z is “short” and Āz = c · y +w.

Although this protocol can be shown to be sound, in general, it is not honest-
verifier zero knowledge (HVZK). One way to address this is by allowing the
prover to abort [Lyu12]. Specifically, step 3 is modified so the prover only re-
sponds if a certain condition holds and aborts (and returns to step 1) otherwise.
It can be shown that an execution of such a modified protocol is HVZK condi-
tioned on the event that an abort does not occur. While this is insufficient to prove
the security of the above as an interactive protocol (since information may be
leaked in executions where the prover aborts), it suffices when the Fiat-Shamir
transform is applied to the above protocol1 to derive a signature scheme (since
the prover/signer will then never release transcripts from aborted executions).
We refer to the latter approach as Fiat-Shamir with aborts (FSwA).

Another way to make the protocol HVZK, without introducing the possibility
of aborts, is to increase parameters [GKPV10]. When coupled with the Fiat-
Shamir transform, this results in larger signatures than the FSwA approach but
can lead to better computational efficiency. It can also benefit the threshold
setting, where the FSwA approach creates difficulties.

Damg̊ard et al. propose a way to distribute the FSwA version of the above
scheme based on the following idea: say there are n signers, and the ith signer
holds (short) vector si where s =

∑
i∈[n] si is the private key. Then, the n signers

can run a distributed, two-round signing protocol as follows:

1. The ith signer chooses a (short) vector ri ∈ Rℓ+k
q and sends wi := Āri.

2. Each signer computes w :=
∑

i∈[n] wi followed by c := H(w). The ith signer
then sends zi := c · si + ri.

3. Each signer then computes z :=
∑

i∈[n] zi and outputs the signature (c, z).

1 Applying the Fiat-Shamir transform means that the challenge c is computed as a
hash of the initial message w and possibly other information.
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We stress that the above does not work directly since it does not consider the
possibility that one or more of the honest signers will need to abort. Moreover,
incorporating aborts in the trivial way (namely, by restarting the protocol if any
of the signers abort) may not be secure since the initial message wi of the ith
signer is revealed even if that signer later aborts and, as we have noted above,
aborted executions of the underlying identification protocol are not HVZK. To
address this, Damg̊ard et al. modify the above so that each signer sends a (trap-
door) homomorphic commitment towi in the first round; thus,wi is not revealed
if the ith signer aborts. We omit further details, as they are not necessary to
understand the difficulties in extending this approach to the t-out-of-n case.

A natural way to try to extend the approach of Damg̊ard et al. to the case
of general thresholds is to share the master secret s among the n parties in a
t-out-of-n fashion using, e.g., Shamir secret sharing. (Shamir’s scheme can be
generalized to many commutative rings with identity [ACD+19].) The problem
with this idea, however, is that we need both the master secret s and each party’s
share si to be short, and it is not clear whether this can be achieved when using
t-out-of-n secret sharing. (In contrast, this is easy to achieve in the n-out-of-n
case since the sum of n short vectors is still short.) Note that the {si} need to
be short regardless of whether one uses the FSwA approach or the approach
of increasing parameters to prevent aborts: in the former case, if any si is too
large, the corresponding signer will abort too often; in the latter case, achieving
HVZK with a large si would require parameters that are too large to be secure.

Instead, we adopt an approach that relies on a threshold (linearly) homomor-
phic encryption scheme with non-interactive decryption. We describe the idea
based on a generic such scheme and show in Section 3 an instantiation based on
standard lattice assumptions obtained by adapting the BGV scheme [BGV12].
We build on a version of the three-message identification protocol described
above that uses larger parameters and does not require aborts. The master pri-
vate key s and public key (Ā,y := Ās) of the signature scheme will be as
before. Now, however, instead of sharing s itself, the signers will all hold en-
cryption ctxs = Enc(s) of s (with respect to some known public key) and share
the corresponding decryption key k in a t-out-of-n fashion. Any set U ⊆ [n] of t
parties can now generate a signature (in the semi-honest setting) as follows:

1. For i ∈ U , the ith signer chooses a (short) vector ri ∈ Rℓ+k
q and sends

wi := Āri. It also sends ctxri
, an encryption of ri.

2. Each signer in U locally computes w :=
∑

i∈U wi, c = H(w), and an “en-
crypted (partial) signature” ctxz := c·ctxs+

∑
i∈U ctxri

. The ith signer sends
its threshold decryption share of ctxz.

3. Given decryption shares from all parties in U , each signer can decrypt ctxz
and output the signature (c, z).

The key insight is that while we cannot use t-out-of-n secret sharing for the
signing key due to the required size bounds, we can use it for the threshold
decryption key since decryption shares can be large.
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While the above is secure for semi-honest adversaries, see Section 4, addi-
tional work is needed to handle malicious adversaries while achieving a two-round
online signing protocol. We refer to Section 5 for further details.

1.3 Related Work

Lattice-based threshold signature schemes. Bendlin et al. [BKP13] show a
threshold version of the (hash-and-sign based) GPV signature scheme [GPV08].
Their protocol uses generic secure multiparty computation to distributively com-
pute the most expensive part of the scheme (namely, Gaussian sampling [Pei10]),
and it seems unlikely to yield a practical solution; moreover, their scheme re-
quires t − 1 < n/2. Cozzo and Smart [CS19] explored the use of generic se-
cure multiparty computation to construct threshold versions of several signa-
ture schemes submitted to the NIST post-quantum standardization process but
concluded that this approach is unlikely to yield practical protocols.

Boneh et al. [BGG+18] show a “universal thresholdizer” that can be used
to create a threshold version of any signature scheme. The basic idea behind
their framework is to encrypt the master private key of the underlying signature
scheme using a threshold fully homomorphic encryption (FHE) scheme, evaluate
the underlying scheme homomorphically, and then use threshold decryption to
recover the signature. In general, because their approach relies on FHE to evalu-
ate the circuit for the signing algorithm, this will not lead to an efficient protocol.
Agrawal et al. [ASY22] adapted this approach to the specific signature scheme
Dilithium-G [DKL+18] and showed how to tolerate adaptive corruptions; their
solution still relies on FHE. Our approach is similar in spirit to these approaches
but specialized and optimized for a particular underlying signature scheme. In
particular, by moving as many steps as possible outside the homomorphic eval-
uation, we can base our protocol on threshold linearly homomorphic—rather
than fully homomorphic—encryption; besides the efficiency advantages this con-
fers, this also allows us to distribute key generation (something not achieved
in [ASY22,BGG+18]).

We have already mentioned the recent work of Damg̊ard et al. [DOTT21]
showing an efficient n-out-of-n threshold scheme based on lattices and explained
why it does not readily extend to give a t-out-of-n scheme. For completeness,
we remark that there has also recently been extensive work on lattice-based
multisignatures [FH20,DOTT21,BTT22,FSZ22,Che23] which are related to —
but distinct from — n-out-of-n threshold signatures. The schemes of Boschini
et al. [BTT22] and Chen [Che23] can be turned into an n-out-of-n threshold
signature scheme and they also show how to reduce the number of rounds for
signing using pre-processing. Unfortunately, as with the scheme by Damg̊ard et
al., it seems difficult to adapt their scheme to support arbitrary thresholds.

Threshold homomorphic encryption. The threshold homomorphic encryp-
tion scheme we construct is based on the work of Aranha et al. [ABGS23], which
shows how to achieve malicious security for the Bendlin-Damg̊ard scheme [BD10].
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Although the Bendlin-Damg̊ard scheme supports arbitrary thresholds, the sub-
sequent work of Aranha et al. only supports the full threshold case.

The threshold FHE scheme of Boneh et al. [BGG+18] lacks an efficient mech-
anism for proving the correctness of partial decryptions. Recent work by Boud-
goust and Scholl [BS23] is similar in spirit to our threshold encryption scheme
but has the same drawback; moreover, their encryption scheme only achieves
one-way security. (Note that natural approaches for bootstrapping one-wayness
to CPA security ruin the homomorphic property of the scheme and/or make it
more difficult to give zero-knowledge proofs of correct encryption.)

Rotaru et al. [RST+22] give an actively secure distributed key-generation
protocol for lattice-based encryption, but only for the full threshold case. Viand
et al. [VKH23] construct a threshold fully homomorphic encryption scheme us-
ing generic zero-knowledge proofs. Gentry et al. [GHL22] build verifiable secret
sharing for LWE encryption schemes. Still, the zero-knowledge proofs in their
construction rely on discrete-logarithm assumptions, so they are not quantum-
resilient.

2 Background

Notation. We use boldface lowercase and uppercase letters to denote vectors
and matrices of ring elements, respectively. For two vectors x and y of the
same dimension, ⟨x,y⟩ denotes their inner product. We let [n] = {1, . . . , n}. We
use “←” to denote probabilistic assignment from a distribution or randomized
algorithm and use “:=” for deterministic assignment.

Polynomial rings. Let N be a power of 2, and let q = 1 mod 2N be prime.
Define the rings R = Z[X]/⟨XN + 1⟩ and Rq = Zq[X]/⟨XN + 1⟩. For f(X) =∑N−1

i=0 αiX
i ∈ Rq, we compute norms of f by viewing each αi ∈ Zq as an integer

in the range
{
− q−1

2 , . . . , q−1
2

}
and then viewing f as a vector over Z; thus,

∥f∥1 =

N−1∑
i=0

|αi|, ∥f∥2 =

(
N−1∑
i=0

α2
i

)1/2

, ∥f∥∞ = max
i∈{0,...,N−1}

{|αi|},

with αi ∈
{
− q−1

2 , . . . , q−1
2

}
. We define the norm of a vector f ∈ Rk

q to be the
largest norm of any of its elements, e.g., ∥f∥1 = max

i∈{1,...,k}
{∥fi∥1}. All vectors

are column vectors by default; thus, a row vector is written as the transpose
of a column vector. We use the standard definition of the discrete Gaussian
distribution Dv,σ̄ over the integer lattice Λ = Zk, with center v ∈ Rk and
standard deviation σ̄. If v = 0, we omit the first subscript.

2.1 Shamir Secret Sharing over Rℓ
q

We describe a natural extension of Shamir secret sharing [Sha79] over Rq. In
Shamir’s original scheme, a secret s ∈ Zq is split into n shares so that at least t
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shares are needed to recover s. This is done via an algorithm Share that samples
t − 1 uniform elements a1, . . . , at−1 ∈ Zq, defines the polynomial P (X) = s +
a1X + a2X

2 + · · ·+ at−1X
t−1 ∈ Zq[X] such that P (0) = s, and computes share

P (xi) for party Pi, where x1, . . . , xn ∈ Z∗
q are distinct. Any subset U of t parties

can reconstruct s using an algorithm Rec that computes the Lagrange coefficients
λi,U =

∏
j∈U\{i}

xj

xj−xi
and then computes s =

∑
i∈U λi,U · P (xi). No group of

fewer than t participants learns anything about s.

We can extend Shamir’s secret-sharing scheme to secrets in Rq by sampling
each P (X) coefficient from Rq instead of Zq. However, we need to be careful
with the set of evaluation points {xi}i∈[n]. We say {xi}i∈[n] is an exceptional set
if all pairwise differences are invertible. Shamir’s scheme can be used as long as
Rq contains an exceptional set of size n [ACD+19]. Note that Z∗

q ⊂ Rq is an
exceptional set in Rq, and in particular, when n < q we can simply set xi = i.
We can share secrets in Rℓ

q by running this scheme ℓ times independently in
parallel.

2.2 Hardness Assumptions

We want security against probabilistic polynomial time (PPT) adversaries and
say that a problem is ϵX hard for an adversary A if A has the advantage (that
is, likelihood or probability) ϵX of breaking (i.e., finding or distinguishing) an
instance of problem X. We implicitly also consider the time it takes to achieve
this probability, which will always be some polynomial in the input size.

Informally, the Ring Short Integer Solution problem R-SISk,N,q,β over an N -
dimensional polynomial ring Rq (in the ℓ2 norm) is to find a set of short ring
elements {yi}i∈[k] satisfying a1y1+ · · ·+aℓyℓ = 0, where each ai ∈ Rq is uniform.

Definition 1. A solves the R-SISk,N,q,β problem with advantage ϵR-SIS if

Pr

[
{ai}i∈[k] ← Rq;
{yi}i∈[k] ← A({ai})

:
∀i : ∥yi∥∞ ≤ β ∧ yi ̸= 0
∧
∑
i∈[k]

aiyi = 0 mod q

]
= ϵR-SIS.

The Decision Ring Learning With Errors problem R-LWEk,N,q,χ is to distin-
guish k instances of ais + ei from uniform (given {ai}i∈[k]), where s and the
{ei}i∈[k] are sampled from distribution χ.

Definition 2. Let χ be a distribution over Rq. A solves the R-LWEk,N,q,χ prob-
lem with advantage ϵR-LWE if∣∣Pr[{ai}i∈[k] ← Rq; s, {ei}i∈[k] ← χ : A({ai}, {ais+ ei}) = 1]

− Pr[{ai}i∈[k], {ui}i∈[k] ← Rq : A({ai}, {ui}) = 1]
∣∣ = ϵR-LWE.

For both of these problems, we sometimes leave parameters implicit.
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2.3 Threshold Signatures

A threshold signature scheme T S (adapting [Lin17, Section 4] and [DOTT21,
Definition 5]) consists of the following algorithms:

– KGenT S is an interactive protocol run by n users that takes as input n and
a threshold t. Each user either aborts or outputs a secret key share skj , a
public key pk, and (shared) auxiliary data aux.

– SignT S is an interactive protocol run by a set of t users U . Each party begins
holding their secret key share, auxiliary data, and a message µ. Each user
either aborts or outputs a signature σ.

– VrfyT S takes as input the public key pk, a message µ, and a signature σ, and
outputs 1 iff the signature is valid.

Correctness is defined in the natural way. We can consider unforgeability
against either a passive or an active adversary. In either case, we consider a static
corruption model in which the adversary A starts by corrupting a set C ⊂ [n] of
up to t− 1 users. Let H = [n] \ C denote the honest users. In the passive setting,
the attacker is given the view of the corrupted parties from the execution of the
key-generation protocol; in the malicious setting, the attacker runs an execution
of the key-generation protocol with the honest parties in which the corrupted
parties can behave arbitrarily. Following key generation, A can repeatedly make
signing queries in which it specifies a message µ and a set of t users U , and
thereby initiate and execution of the signing protocol with those users holding
message µ. Let CU = U ∩C, and HU = U ∩H. In the passive case, A is given the
view of the parties in CU following an honest execution; in the malicious case, A
runs an execution of the signing protocol with the parties in HU in which parties
in CU can behave arbitrarily.

At the end of the experiment, A outputs a message/signature pair (µ∗, σ∗).
The adversary succeeds if µ∗ was never used in one of A’s signing queries, and
σ∗ is a valid signature (concerning the common public key output by2 the hon-
est parties in the key-generation protocol). We let Advts-uf-cma

T S (A) denote the
probability with which adversary A succeeds when attacking T S.

2.4 Homomorphic Trapdoor Commitment Schemes

Let cpp denote fixed parameters that include sets Sµ and Sρ, as well as a distri-
bution Dρ over Sρ. (We let cpp be implicit input to all algorithms.) Following the
definition in [DOTT21], a trapdoor commitment scheme is a tuple of probabilis-
tic polynomial-time algorithms (CGen,Com,Open,TCGen,TCom,Eqv) where

– CGen outputs a commitment key ck.
– Com takes as input a message µ ∈ Sµ, samples randomness ρ ∈ Sρ according

to Dρ, and outputs a commitment com.

2 In particular, if all honest parties abort the key-generation protocol (in the malicious
setting) then there is no public key, and by definition, A cannot succeed.

8



– Open takes as input a commitment com, message µ ∈ Sµ, and randomness
ρ ∈ Sρ, and outputs 1 iff the opening is valid.

– TCGen outputs a trapdoor commitment key ck along with a trapdoor td.
– TCom takes as input a trapdoor td and outputs a commitment com.
– Eqv takes as input a trapdoor td, a commitment com, and a message µ, and

outputs randomness ρ ∈ Sρ.

The trapdoor commitment scheme is secure if it satisfies the following:

Correctness: The scheme is correct if for any µ ∈ Sµ

Pr

[
ck ← CGen;

ρ← Dρ; com← Com(µ; ρ)
: Open(com, µ, ρ) = 1

]
= 1.

Hiding: The scheme is ϵ-hiding if for µ0, µ1 ∈ Sµ and any PPT adversary A:

Pr

[
ck← CGen; b← {0, 1}; ρ← Dρ;

(µ0, µ1)← A(cpp, ck); com← Com(µb; ρ)
: A(com) = b

]
≤ 1

2
+ ϵhiding.

Binding: The scheme is ϵ-binding if for µ0, µ1 ∈ Sµ and any adversary A:

Pr

 ck← CGen;
(com, µ0, ρ0, µ1, ρ1)← A(ck)

:
µ0 ̸= µ1

∧ Open(com, µ0, ρ0) = 1
∧ Open(com, µ1, ρ1) = 1

 ≤ ϵbinding.

Equivocality: The scheme is equivocal if for any µ ∈ Sµ, the statistical differ-
ence between the following distributions is at most ϵequivocal:{

ck← CGen;
ρ← Dρ; com← Com(µ; ρ)

: (cpp, ck, µ, com, ρ)

}
{

(ck, td)← TCGen;
com← TCom(td); ρ← Eqv(td, com, µ)

: (cpp, ck, µ, com, ρ)

}
.

A trapdoor commitment scheme over polynomial rings can be constructed
from standard assumption based on R-SIS and R-LWE [DOTT21,GPV08,MP12].

2.5 Non-interactive Zero-knowledge Proofs of Knowledge

We use standard definitions of non-interactive zero-knowledge proofs of knowl-
edge (NIZKPoKs) [DDO+01]. An NIZKPoK for an NP language L with associ-
ated relation RL is a tuple of poly-time algorithms (Setup,Prove,Vrfy) where:

– Setup outputs a common reference string crs.
– SetupTD outputs a common reference string crs and a trapdoor td.
– Prove, on input crs and (x,w) ∈ RL, outputs a proof π.
– Vrfy, on input crs, x, π, outputs a result b ∈ {0, 1}.
– Extract, on input crs, td, x, π∗, outputs a witness w∗.
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A NIZKPoK is secure if the following properties hold:

Correctness: We require that for all (x,w) ∈ RL we have

Pr

[
crs← Setup

π ← Prove(crs, x, w)
: Vrfy(crs, x, π) = 1

]
= 1.

Knowledge-Extraction: For any PPT prover running Prove we have an ex-
tractor running Extract such that

Pr

 (crs, td)← SetupTD;
π∗ ← Prove(crs, x, w);

w∗ ← Extract(crs, td, x, π∗);
:
Vrfy(crs, x, π∗) = 1
∧ (x,w∗) ∈ RL

 ≥ 1− ϵextract,

except for a small failure probability ϵextract.
Computational Zero-Knowledge: There exists simulator algorithm Sim such

that for all PPT adversaries A the following distributions are computation-
ally indistinguishable except with advantage ϵHVZK:{

crs← Setup; x,w ← A(crs);
π ← Prove(crs, x, w)

: (crs, x, π)

}
{
(crs, td)← SetupTD; x,w ← A(crs);

π ← Sim(crs, td, x)
: (crs, x, π)

}
where both Prove and Sim output ⊥ if (x,w) /∈ RL.

3 Threshold Homomorphic Encryption

Our threshold signature scheme relies on an underlying threshold homomorphic
encryption scheme satisfying several properties. We define the required proper-
ties formally and then show how to instantiate a scheme with those properties
based on the BGV encryption scheme [BGV12].

3.1 Definitions

A homomorphic encryption scheme E consists of the following algorithms:

– KGenE is a probabilistic algorithm that takes as input a depth bound d and
outputs a public encryption key pk and a decryption key sk.

– Enc is a probabilistic algorithm that takes as input a public key pk and a
plaintext ptx, and outputs a ciphertext ctx.

– Eval takes as input a circuit F of depth at most d and a list of ciphertexts
ctx1, . . . , ctxk, and outputs either a new ciphertext ctx∗ or ⊥.

– Dec is a deterministic algorithm that takes as input a decryption key sk and
ciphertext ctx∗, and outputs either a plaintext ptx or ⊥.
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Notationally, we allow algorithms to take as input a set of plaintexts, cipher-
texts, or keys to denote that the algorithms are applied on each input one by
one. E is said to be secure if the following holds:

Correctness: A homomorphic encryption scheme is correct with respect to sk
if the following holds for all circuits F of depth at most d:

Pr

 (pk, sk)← KGenE(d)
{ctxi}i∈[k] ← Enc(pk, {ptxi}i∈[k])

ctx∗ ← Eval(F, {ctxi}i∈[k])
: Dec(sk, ctx∗) = F ({ptxi}i∈[k])

 = 1.

Ciphertext Indistinguishability: A homomorphic encryption scheme is said
to be IND-CPA secure if:

Pr

 (pk, sk)← KGenE(d)
{ptx0, ptx1} ← A(pk); b← {0, 1}
ctx← Enc(pk, ptxb); b

′ ← A(ctx)
: b′ = b

 ≤ 1

2
+ ϵIND-CPA.

We now extend these notions to accommodate distributed key generation
and threshold decryption:

– DKGen is an interactive protocol run by n users, on common input a thresh-
old t and a depth bound d. All honest users abort with output ⊥, or all
outputs a public encryption key pk and a decryption key share skj .

– TDec is an interactive protocol run by a set of t users U in which each user
takes as input a ciphertext ctx∗ and a decryption key share skj , where each
party outputs either a partial decryption share dsj or ⊥.

– Comb is a deterministic algorithm that takes as input a ciphertext ctx∗ and
decryption shares {dsj}j∈U for |U| = t and outputs either ptx or ⊥.

We also assume the existence of an algorithm Recover that takes as input the
public key pk, the threshold t, and a set of decryption key shares {skj}j∈U with
|U| ≥ t and outputs either a secret key sk or ⊥. (This algorithm is never run in
the real world but is used in some of our definitions.)

The following definition follows immediately from the non-threshold setting:

Threshold Correctness: A threshold homomorphic encryption scheme is cor-
rect if the following holds for all circuits F of depth at most d:

Pr


(pk, {skj}j∈[n])← DKGen(t, n, d)
sk← Recover(pk, t, {skj}j∈[n])
{ctxi}i∈[k] ← Enc(pk, {ptxi}i∈[k])

ctx∗ ← Eval(F, {ctxi}i∈[k])

:
Dec(sk, ctx∗) = F ({ptxi}i∈[k]) =
Comb(TDec({skj}j∈U , ctx

∗,U))

 ≥ 1− ϵcorr.

We then define the two key notions of security: key generation security and
threshold security, adapted from [DDE+23]:

Key Generation Security A threshold homomorphic encryption scheme is
said to have secure key generation if it securely implements functionality
FDKGen from Figure 1.

Threshold Security A threshold homomorphic encryption scheme is said to
be secure if it securely implements functionality FTDec in Figure 2.
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FDKGen

Execute pk, sk← KGenE(d).

Receive set of shares skj for each corrupted party j ∈ C.
Construct a complete set of key shares ski for i ∈ H based on

skj such that every subset of skj of size t is equal to sk.

Send pk to all players, and ski to player i.

Fig. 1. Functionality FDKGen.

FTDec

Receive a set of users U where |U| ≥ t and a set of key shares

pk, skj and ciphertext ctx for each party j in U .

Send ⊥ to every party if not all pk are the same and abort.

Send ⊥ to every party if not all ctx are the same and abort.

Send ⊥ to every party if ⊥ = Recover(pk, t, {skj}j∈U ) and abort.

Compute sk := Recover(pk, t, {skj}j∈U )

Compute ptx := Dec(sk, ctx).

Send ptx to the adversary.

Fig. 2. Functionality FTDec.

3.2 The BGV Scheme

Our scheme will be based on the BGV encryption scheme [BGV12], augmented
with maliciously secure key-generation and threshold decryption protocols. We
begin by reviewing the BGV encryption scheme. Let p ≪ q be prime numbers,
let Rq and Rp be as in Section 2 for some fixed dimension N , and let DKGen and
DEnc be distributions over Rq such that elements in their support have ℓ∞-norm
bounded by BKGen and BEnc, respectively. The BGV encryption scheme consists
of the following algorithms:

– KGenBGV: Sample a uniform element a ∈ Rq along with s, e ← DKGen, and
output public key pk := (a, b) = (a, as+ pe) and secret key sk := s.

– EncBGV: On input a public key pk = (a, b) and a message m ∈ Rp, sample
r, e′, e′′ ← DEnc and output the ciphertext (u, v) = (ar + pe′, br + pe′′ +m).

– DecBGV: On input a secret key sk = s and a ciphertext (u, v), output the
message ptx := (v − su mod q) mod p.

The scheme is correct if and only if ∥v − su∥∞ ≤ BDec < q/2 and secure
against chosen plaintext attacks if the R-LWEN,q,β problem is hard for β depend-
ing on the choice of BKGen, BEnc, N, q, p. Denote β := β(BKGen, BEnc, N, q, p).
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3.3 Zero-Knowledge Proofs: From Passive to Active Security

The security against malicious adversaries in our protocol relies on commit-
ments3 and non-interactive zero-knowledge proofs of knowledge, which we for-
mally define in Sections 2.4 and 2.5. These proofs are explicit for distributed
key generation, encryption, and threshold decryption. We describe the required
relations for each algorithm:

– The proof πski proves knowledge of a short key s′i and a short error e′i cor-
responding to some bi and correct t-out-of-n secret sharing of these secrets.
Furthermore, it proves that the short secrets are correct t-out-of-n secret
shared. For publicly fixed a,BDKGen and p and public bi, {b̄i,j} and com-
mitments to s′i, e

′
i, {s̄i,j , ēi,j}j∈[n] the relation Rsk shows: (1) The secrets

s′i, e
′
i have norm smaller than BDKGen, (2) bi is correctly computed with re-

spect to private s′i and e′i, (3) {s̄i,j}j∈[n] are correct t-out-of-n shares of s′i
(4) {ēi,j}j∈[n] are correct t-out-of-n shares of e′i (5) {bi,j}j∈[n] is correctly
computed with respect to s̄i.j and ēi,j . We define the relation Rsk:

Rsk :=


(x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x := (bj , {b̄i,j}, coms′j
, come′j

, {coms̄i,j}i∈[n], {comēi,j}i∈[n]) ∧
w := (s′j , ρs′j , e

′
j , ρe′j , {s̄i,j}i∈[n], {ρi,j}i∈[n], {ēi,j}i∈[n], {ρ̄i,j}i∈[n]) :∥∥s′j , e′j∥∥ ≤ BDKGen ∧ bj = as′j + pe′j ∧ ∀i b̄i,j = as̄i,j + pēi,j ∧

bj = Rec({b̄i,j}) ∧ s′j = Rec({s̄i,j}) ∧ e′j = Rec({ēi,j})
∧ Open(coms′j

, s′j , ρs′j ) ∧ Open(comej , ej , ρej ) ∧
∀i Open(coms̄i,j , s̄i,j , ρs̄i,j ) ∧ ∀i Open(comēi,j , ēi,j , ρēi,j )


.

– The proof πctx in encryption proves that the given ciphertext ctx = (u, v)
corresponds to a plaintext m of the specific norm and is correctly gener-
ated using the encryption algorithm. For publicly fixed a, b, BEnc and p and
public commitments to secret m, r, e′, e′′, the relation REnc shows: (1) The
secrets r, e′, e′′ have norm smaller than BEnc, (2) The message m has a norm
smaller than p, (3) u is computed correctly with respect to a, r, e, p, (4) v is
computed correctly with respect to b, r, p, e′′,m. We define the relation REnc:

REnc :=

(x,w)

∣∣∣∣∣∣∣∣∣∣
x := (ctx, comr, come′ , come′′ , comm) ∧ w := (r, e′, e′′,m, ρr, ρe′ , ρe′′ , ρm) :

∥r, e′, e′′∥∞ ≤ BEnc ∧ u = ar + pe′ ∧ v = br + pe′′ +m ∧
Open(comr, r, ρr) ∧ Open(come′ , e

′, ρe′) ∧
Open(come′′ , e

′′, ρe′′) ∧ Open(comm,m, ρm) ∧ ∥m∥ ≤ p

 .

3 Here, we use the standard definition of commitments without trapdoors. This in-
volves algorithms Setup,Com,Open satisfying hiding and binding.
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– The proof πdsi of valid threshold decryption proves that the correct secret
key share ski = si was used to generate the public decryption share dsi for a
given ciphertext ctx = (u, v). For publicly fixed a, b, λi, p, BTDec := 2secBDec

and public commitments to secret si, Ei the relation Rds shows: (1) The
secret error Ei has norm smaller than BTDec, (2) dsi is correctly computed
with respect to λi, si, u, p, Ei. We define the relation Rds:

Rds :=

(x,w)

∣∣∣∣∣∣∣∣
x := (dsj , ctx, comskj , comEj

) ∧ w := (skj , ρskj , Ej , ρEj
) :

∥Ej∥∞ ≤ BTDec ∧ dsj = λjsju+ pEj ∧
Open(comskj , skj , ρskj ) ∧ Open(comEj

, Ej , ρEj
)

 .

NIZK proofs for these relations can be instantiated using the BDLOP com-
mitment scheme [BDL+18] together with its zero-knowledge proofs of open-
ing and linear relation combined with a proof of shortness by Lyubashevsky et
al. [BLNS21,LNP22].

To achieve concurrent security for distributed key generation and threshold
decryption, we need zero-knowledge proofs that are straight-line extractable.
We can extend the proof systems for proving linear relations or of bounded
values using the generic but efficient transform by Katsumata [Kat21] to go from
rewindable proof systems to proofs that achieve straight-line extractability.

3.4 Distributed Key Generation for BGV

We propose a new t-out-of-n distributed key generation protocol using Shamir
secret sharing secure against a malicious adversary corrupting |C| ≤ t−1 parties.

The intuition is that our protocol is similar to publicly verifiable secret shar-
ing (PVSS) based on discrete logarithms. To t-out-of-n secret share a decryption
key s between n parties, each party individually t-out-of-n secret shares their
individual si and ei and derives the final sharing of s based on shares received
by other parties. Unlike traditional PVSS however, we rely on commitments
and zero-knowledge proofs in a commit-then-prove fashion to verify each share
is correctly computed. We describe the protocol depicted in Figure 3 from the
viewpoint of party Pi for some i ∈ [n]:

1. Pi samples an element ai uniformly from Rq and computes the hash hai :=
H0(ai) as a commitment and broadcasts the hash. After receiving haj from
all j ̸= i, it broadcasts ai. After receiving aj from all j ̸= i, it verifies aj
using haj

, and aborts with output j if haj
̸= H0(aj). Otherwise, it defines

a :=
∑

aj as a part of the public key.

2. Pi samples decryption key share s′i and noise share e′i from a distribution
DKGen. Pi then sets the key bi := as′i + pe′i. Pi commits to bi as the hash
hbi := H1(bi), broadcasts it, and receives hbj from all j ̸= i.
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DKGen(t, n, d)

ai ← Rq, hai := H0(ai)

hai

{haj}j ̸=i

ai

{aj}j ̸=i

if any haj ̸= H0(aj) : abort (j)

a :=
∑
j∈[n]

aj , s′i, e
′
i ← DKGen,

bi = as′i + pe′i hbi := H1(bi)

hbi

{hbj}j ̸=i

ρs′i , ρe′i , ρs̄i,j , ρēi,j ← Sρ

{s̄i,j}j∈[n] ← Sharet,n(s′i), {ēi,j}j∈[n] ← Sharet,n(e′i)

b̄i,j := as̄i,j + pēi,j

coms̄i,j := Com(s̄i,j ; ρs̄i,j ), comēi,j := Com(ēi,j ; ρēi,j )

Compute πskj according to Section 3.3

(coms′i
, come′i

, {coms̄i,j , comēi,j}i∈[n],

bi, {b̄i,j}j∈[n], [s̄i,j , ρs̄i,j ]j)

{(coms′j
, come′j

, {coms̄j,k , comēj,k}k∈[n],

bj , {b̄j,k}k∈[n], [s̄j,i, ρs̄j,i ]j)}j ̸=i

if any hbj ̸= H1(bj) : abort (j)

if any bj ̸= Rect,n({b̄j,k}k∈[n]) : abort (j)

if any 0 = Open(coms̄j,i , s̄j,i, ρs̄j,i) : abort (j)

if any πskj is invalid : abort (j)

b :=
∑
j∈[n]

bj , si :=
∑
j∈[n]

s̄j,i,

ρsi :=
∑
j∈[n]

ρs̄j,i , comskj :=
∑
j∈[n]

coms̄j,i

return pk := (a, b, {comskj}), ski := (si, ρi)

Fig. 3. Actively secure key generation protocol for signer Si. The elements in square
brackets with subscript j denote they are sent to Pj through private channels.
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3. Pi commits to s′i as coms′i
using randomness ρs′i and to e′i as come′i

using
randomness ρe′i . Pi then secret shares s′i and e′i using t-out-of-n secret shar-

ing and computes b̄i,j := as̄i,j + pēi,j for all j ∈ [n].

4. Pi also commits to all individual key shares as coms̄i,j := Com(s̄i,j ; ρs̄i,j ) and
comēi,j := Com(ēi,j ; ρēi,j ) for all j ∈ [n].

5. Pi then computes a proof πskj according to the relation Rsk and broadcasts
the proof πskj and all coms′i

, come′i
, {coms̄i,j}, {comēi,j} together with bi and

{b̄i,j}j∈[n] for all j ∈ [n].

6. For each j, Pi sends s̄i,j and ρs̄i,j to party Pj over a secure channel.

7. Upon receiving bj , hbj , πskj , {b̄j,k}, s̄j,i and all the commitments from all

j ̸= i, Pi verifies that all hbj = H1(bj) and bj = Rect,n({b̄j,k}k∈[n]) where
Rec is the reconstruction algorithm for the secret sharing in Section 2.1, and
aborts with output j otherwise.

8. Pi then verifies all proofs πskj , checks that Open(comj,i, s̄j,i, ρj,i) is valid,
and aborts with output j if any of them fails.

9. Otherwise Pi computes b :=
∑

bj , si =
∑

s̄j,i, ρsi =
∑

ρsj,i , comskj :=∑
coms̄j,i for all j ∈ [n]. Pi outputs pk = (a, b, {comskj}) and ski = (si, ρsi).

Using a simulation argument, we now prove that the distributed key genera-
tion is secure against a static active adversary A corrupting at most |C| ≤ t− 1
parties. We show that the protocol securely implements the functionality FDKGen

and that the difference in distribution between the communication in the pro-
tocol and the simulation reduces to the security of the underlying proofs and
hardness assumptions. We assume a rushing adversary where honest users al-
ways publish their messages first.

Theorem 1 (Key Generation Security). Let the R-LWEN,q,β be ϵR-LWE-hard
for β = β(BDKGen, N, q, p). For i = 0, 1 let QHi

denote the number of queries
made to the random oracle Hi and let ℓi be the bit-length of the oracle output.
Let Com be ϵhiding hiding. Finally, let proof system Πsk for the relation Rsk be
ϵHVZKsk

and ϵextractsk secure. Then, the scheme implements FDKGen with computa-
tional security in the programmable random oracle model against a static active
adversary A corrupting at most t− 1 parties, and the advantage of A is:

ϵDKGen ≤ ϵHVZKsk
+ 2 · (|H|+ 1) · ϵhiding + |C| · ϵextractsk + ϵR-LWE +

QH0

2ℓ0
+

QH1

2ℓ1
.

Proof. We define the simulator SimDKGen interacting with A and controlling the
honest parties as follows:

1. Simulator receives a set of corrupted parties C with |C| < t.
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2. Simulator receives a BGV public key (a, b), and chooses i′ ∈ H. For i ̸= i′ ∈
H, the simulator executes honest parties like the protocol execution.

3. Simulator samples hai′ ← {0, 1}
ℓ0 and sends out hai

for i ∈ H. After re-
ceiving haj

for j ∈ C from the adversary, simulator searches for aj such that
haj = H0(aj). Then simulator sets ai′ :=

∑
i̸=i′∈[n]

ai and programs H0 such

that H0(ai′) = hai′ . If programming fails, the simulator aborts. Otherwise,
it sends ai for i ∈ H.

4. After receiving aj for j ∈ C from the adversary, if haj
̸= H0(aj) for any j,

simulator aborts with output j. Simulator then samples hbi′ ← {0, 1}
ℓ1 and

sends out hbi for i ∈ H. After receiving hbj for j ∈ C from the adversary,
simulator searches for bj such that hbj = H1(bj). Simulator then derives
bi′ :=

∑
i ̸=i′∈[n]

bi and programs H1 such that H1(bi′) = hbi′ . If programming

fails, the simulator aborts. Otherwise it t-out-of-n secret shares bi′ to obtain
b̄i′,j for j ∈ [n]. For each j ∈ C, the simulator derives random s̄i,j and ēi,j
such that as̄i,j + pēi,j .

5. Simulator commits to each s̄i,j ,ēi,j using randomness ρs̄i,j ,ρēi,j for j ∈ C.
For i in H \ {i′} and commitment to s′i′ , e

′
i′ , the simulator samples random

commitments from the commitment space. Then, calls the simulator Simsk

to obtain a proof πski′ . Sends bi, hbi ,{b̄i,j}j∈[n], {s̄i, j, ρs̄i,j}j∈C for i ∈ H to
the adversary.

6. After receiving the corresponding information, the simulator does the final
checks as in the protocol. The simulator calls the extractor Extractsk to ex-
tract s′j from πskj for j ∈ C and aborts if any of them fails. Otherwise secret
shares s′j according to protocol to derive {s̄j,i}i∈[n] and derive sj for j ∈ C.
The simulator finally outputs (a, b) as the public key.

Correctness of the simulator is immediate as the final public key a, b is re-
trieved from BGV as output, and since there are n > t shares total for s′j ,
j ∈ C it is possible to reconstruct and re-share s′j to obtain sj . The security of
the protocol follows by showing the output of the simulator is computationally
indistinguishable from the actual protocol execution. We show this through a
series of hybrid experiments.

G0: The first experiment corresponds to the real world:

1. A sends a set of corrupted parties C.
2. For i ∈ [n]\C = H, compute ai, hai

according to the protocol, send {hai
}i∈H

to A. Receive {haj
}j∈C from A. Send {ai}i∈H to A.

3. Receive {aj}j∈C from A, if haj
̸= H0(aj) abort. Otherwise, compute a ac-

cording to the protocol.
4. Sample s′i, e

′
i, ρs′i and ρe′i , and compute bi, hbi according to the protocol.

Send {hbi}i∈H to A.
5. Receive {hbj}j∈C from A. Sample ρs̄i,j , ρēi,j and compute s̄i,j , ēi,j , b̄i,j ,

coms′i
, come′i

, coms̄i,j , comēi,j , πski according to the protocol. Send {s̄i,j , ρs̄i,j ,
coms′i

, come′i
, πski , bi}i∈H,j∈C , {b̄i,j , coms̄i,j , comēi,j}i∈H,j∈[n] to A.
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6. Receive {s̄j,i, ρs̄j,i , coms′j
, come′j

, πskj , bj}j∈C,i∈H, {b̄j,u, coms̄j,i , comēj,i}j∈C,i∈[n].

If any hbj ̸= H0(bj), bj ̸= Rect,n({b̄j,k}k∈[n]), 0 = Open(comj,i, s̄j,i, ρs̄j,i) or
πskj is invalid, abort. Otherwise compute b, si, ρsi and comskj according to
the protocol.

The output is then C, (a, b, {si}i∈H) and the output of A.

G1: We now change one proof. Fix an index i′ ∈ H, in step 5 of the experiment,
πski is now computed by the simulator Simsk of Πsk. The rest of the experiment
remains the same. G1 is then indistinguishable from G0 by the zero-knowledge
property of Πsk and the distinguishing advantage of A is ϵHVZKsk

.

G2: For i′ we now replace the unopened commitments. For commitments that
has opening sent to A i.e. coms̄i′,j , the commitments are computed as in G1.
Other commitments in step 5 are randomly sampled from the commitment space,
and the rest of the experiment remains the same. G2 is then indistinguishable
from G1 by the hiding property of the commitment scheme. For i′ the com-
mitments to s′i′ , e

′
i′ , {coms̄i′,i , comēi′,i}i∈H are never opened, which bounds A’s

distinguishing advantage to 2 · (|H|+ 1) · ϵhiding by a cumulative bound.

G3: We now derive the keys of A. In step 6, call Extractsk to extract s′j from
πskj for j ∈ C and abort if any of them fails. Otherwise secret share s′j according
to protocol to derive {s̄j,i}i∈[n] and derive sj for j ∈ C. The rest of the experi-
ment remains the same. G3 is then indistinguishable from G2 by the knowledge
extraction property of Πsk. The distinguishing advantage of A is the cumulative
bound on independent extraction failure properties, which is |C| · ϵextractsk .

G4: For i′ we now replace the public key share bi′ . Sample a random bi′ and
t-out-of-n secret share it into {b̄i,k}k∈[n]. Then derive s̄i,k,ēi.k from b̄i,k. The rest
of the experiment remains the same.

By the R-LWE assumption, bi′ is computationally indistinguishable from bi′ =
asi′ + pei′ . Since bi′ is t-out-of-n secret shared, each b̄i′,j is uniform in Rq. This
is statistically indistinguishable from the real execution where s′i′ and e′i′ are
t-out-of-n shared therefore s̄i′,j , ēi,j and consequently b̄i′ = as′i′ +pe′i′ is uniform
in Rq. G4 is then indistinguishable from G3 by R-LWE assumption and A’s
distinguishing advantage can be bounded by ϵR-LWE.

G5: We now derive bi′ a posteriori. Before step 1, receive a BGV key pair (a, b).
In step 3, sample a random hbi′ ← {0, 1}

ℓ1 . After receiving hbj for j ∈ C from
the adversary find bj such that hbj = H1(bj). Then derives bi′ :=

∑
i ̸=i′∈[n]

bi and

program H1 such that H1(bi′) = hbi′ . If programming fails, abort. The rest of
the experiment is the same as before.

The distribution of hbi′ is statistically indistinguishable from the output of
H1 by the random oracle model. By the R-LWE assumption, b is indistinguish-
able from uniform b is indistinguishable from uniform. G5 and G6 is then indis-
tinguishable as long as the programming does not fail. The advantage of A is
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the probability of programming failing, which by a standard argument can be

bounded by
QH1

2ℓ1
.

G6: Finally we repeat the same process for ai, in step 2 sample a random hai′ ←
{0, 1}ℓ0 . After receiving haj

for j ∈ C from A find aj such that haj
= H0(aj).

Then derives ai′ :=
∑

i̸=i′∈[n]

ai and program H0 such that H0(ai′) = hai′ . If

programming fails, abort. The rest of the experiment is the same as before.
Each ai and obtained a are uniformly random in Rq thus the derived ai′ is also
statistically indistinguishable from uniform. Using a similar argument to G5, G5

and G6 are indistinguishable and the advantage of A is
QH0

2ℓ0
.

We now see that G6 is indistinguishable from the ideal world with SimDKGen

simulating the behavior of the honest parties. This concludes the proof. ⊓⊔

3.5 Encryption, Evaluation, and Aborting Decryption

For completeness, here we describe the BGV threshold homomorphic encryption
algorithms Enc, Eval and Dec corresponding to a public circuit F of max depth
d in the abstract definition above.

Enc On input pk = (a, b) and ptx = m, it runs ctx := EncBGV(pk, ptx) as described
above while committing to r, e′, e′′,m using randomnesses ρr, ρe′ , ρe′′ , ρm and
computes proof πctx according to relationREnc. Enc outputs ctx

∗ = (ctx, πctx).
Eval On input a function F of depth at most d and set of ciphertexts {ctx∗i =

(ctxi, πctxi)}i∈[k], it outputs ctx
∗ := F ({ctxi}i∈[k]) if πctxi verifies for all i, and

otherwise outputs ⊥. Since F is public and does not require an evaluation
key, ctx∗ can be verified by simply checking if ctx∗ is equal to F ({ctxi}i∈[k]).

Dec On input sk and ctx∗ = (ctx, πctx) it outputs ⊥ if πctx does not verify and
ptx := DecBGV(sk, ctx) otherwise.

Note that although we use EncBGV for Enc, the standard IND-CPA security of
BGV is not directly applicable as an adversary A that was part of the distributed
key generation has information about sk and can derive it’s partial decryption
shares. We briefly show that IND-CPA still holds in the distributed setting.

Lemma 1. Let DKGen described in Section 3.4 be ϵDKGen-secure, proof system
Πctx for the relation Rctx be ϵHVZKctx-secure, and BGV encryption scheme be
ϵIND-CPA secure. Then, for a static active adversary A corrupting at most t− 1
parties during DKGen, Enc is distributed IND-CPA secure.

Proof. We show this by defining a challenger B against IND-CPA security of
BGV, which interacts with an encryption oracle for BGV and uses A as a sub-
routine to answer IND-CPA queries. Whenever B receives a public key (a, b)
for BGV, it initiates SimDKGen with A where the received (a, b) is used in the
simulator. When A provides two challenge plaintexts ptx0 and ptx1, B submits
these as challenges to BGV oracle and obtains ctx. B then calls the simulator
for Πctx and obtains πctx, then sends ctx∗ = (ctx, πctx) to A. When A outputs
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its answer, B forwards the answer to the oracle as its response to the IND-CPA
game.

Since DKGen is secure, the public key A generates is the same (a, b) as B
received from the oracle as a challenge. Since the proof system also has HVZK
property, the simulated πctx is indistinguishable from a real one. Hence, ctx,
therefore ctx∗ received by A is indistinguishable from ctx∗ received as part of
the protocol execution. Then, a correct answer given byA is also a correct answer
for B for the encryption oracle. ⊓⊔

3.6 Threshold Decryption for BGV

We first define the actively secure threshold decryption algorithm TDec and the
decryption share combination algorithm Comb depicted in Figure 4, and then
prove it secure.

TDec(ctx∗ = (u, v), ski = (si, ρski),U)

if ctx∗ = ⊥ : return ⊥
mi := λisiu,Ei ← Rq

di ← mi + pEi, ρEi ← {0, 1}
∗

comEi := Com(Ei; ρEi)

Compute πdsi according to Section 3.3

return dsi := (di, πdsi , comEi , comski = Com(si; ρski))

Comb(ctx∗, {dsj = (dj , πdsj , comEj , comskj )}j∈U )

if any πdsj is invalid : abort (j)

ptx := v −
∑
j∈U

dj mod p

return ptx

Fig. 4. Threshold decryption & share combination algorithms for party Si.

TDec On input a ciphertext ctx∗ = (ctx, πctx) = ((u, v), πctx) = produced by Enc
or Eval, a decryption key share ski = (si, ρski), and a set of users U of size
t, if ctx = ⊥ or πctx does not verify it outputs ⊥. Otherwise it computes
mi := λisiu where λi is the Lagrange coefficient for party i with respect to
U , samples uniform noise Ei ← Rq such that ∥Ei∥∞ ≤ 2secBDec for statistical
security parameter sec and noise-bound BDec, then computes di := mi+pEi.
Pi then computes (πdsi , comski , comEi

) where comEi
:= Com(Ei; ρEi

) is a
commitment to Ei and πdsi is a proof of the relation Rds with respect to si
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and Ei. Pi finally outputs dsi := (di, πdsi , comEi
, comski).

Comb On input a ciphertext ctx∗ = (ctx, πctx) = ((u, v), πctx) = produced by Enc
or Eval and partial decryption shares {dsj = (dj , πdsj , comEj

, comskj )}j∈U , it
verifies all πdsj and aborts with output ⊥ if any of them fails. Otherwise it
outputs ptx := (v −

∑
j∈U dj) mod p.

Since ∥Ej∥∞ ≤ 2secBDec for j ∈ U , we have
∥∥∥∑j∈U Ej

∥∥∥
∞
≤ t · 2sec · BDec.

Then the requirement
∥∥∥v −∑j∈U dj

∥∥∥
∞
≤ (1 + 2sec)BDec < ⌊q/2⌋ implies that

(
∑

j∈U λjsj)u mod q = su mod q, and it follows that the threshold decryption
is correct as long as the underlying BGV scheme is correct.

Using a simulation argument, we show that the threshold decryption is secure
against an active adversary A.

Theorem 2 (Threshold Decryption Security). Let the R-LWEN,q,β be ϵR-LWE-
hard for β = β(BTDec, N, q, p), Let Com be ϵhiding hiding, and let proof system
Πds for the relation Rds be ϵHVZKds

secure. Then, the threshold decryption algo-
rithm implements FTDec with computational security in the FDKGen-hybrid model
against a static active adversary A corrupting at most |C| ≤ t − 1 parties, and
the advantage of A is:

ϵTDec := AdvTDec(A) ≤ |HU | · (ϵR-LWE + 2 · ϵhiding + ϵHVZKds
).

Proof. We define the simulator SimTDec as follows:

1. It runs FDKGen to obtain pk, sk, {skj = (sj , ρj)}, and chooses i′ ∈ HU .
2. When ctx = (u, v) arrives, the simulator decrypts m = DecBGV(sk, ctx). It

then samples a random Ej for j ∈ CU such that ∥Ei∥∞ ≤ 2secBDec, and
computes dj := λjusj + pEj for j ∈ CU . The simulator samples random
di for i ̸= i′ ∈ HU then computes the partial decryption share for i′ as
di′ := v −m −

∑
j∈U,j ̸=i′

dj mod q. Simulator then calls Simds to obtain the

proof {πdsi}i∈HU and sends {dsi}i∈HU to the adversary.
3. Simulator verifies the same share as the protocol and aborts with j if the

proof does not match the decryption share. Otherwise, it outputs m as the
decryption result.

Correctness of the simulator follows from the correct decryption for BGV
and the appropriate noise bounds chosen for t − 1 shares. The security of the
protocol follows by showing the output of the simulator is computationally indis-
tinguishable from the actual protocol execution, which we again show through
a set of hybrid experiments.

G0: The first experiment corresponds to the real world:

1. A sends a set of corrupted parties that participate in the decryption CU .
2. Receive pk, sk, {skj}U , ctx∗.
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3. For i ∈ HU , sample Ei, ρEi
and compute mi, di, cmtski ,comEi

,πdsi according
to protocol. Send {dsi = (di, πdsi , comEi

, comski)}i∈HU to A.
4. Receive {dsj}j∈CU from A. If any πdsj is invalid abort. Otherwise, compute

ptx according to the protocol.

The output is ptx and the output of A.

G1: We now change how proofs are calculated. In step 2 of the experiment,
πdsi is now computed by the simulator Simds of Πds. The rest of the experiment
remains the same. G1 is then indistinguishable from G0 by the zero-knowledge
property of Πds and the distinguishing advantage of A is |HU | · ϵHVZKds

by a
cumulative bound.

G2: We now replace the unopened commitments, which are only used for πdsi .
The commitments for the honest parties are now sampled from the commitment
space, and the rest of the experiment remains the same. G2 is then indistin-
guishable from G1 by the hiding property of the commitment scheme, which
bounds A distinguishing advantage to 2 · |HU | · ϵhiding by a cumulative bound.

G3: Finally, we replace how partial decryptions are computed. In step 2, decrypt
m = DecBGV(sk, ctx), then sample a random Ej for j ∈ CU such that ∥Ei∥∞ ≤
2secBDec, and compute dj := λjusj + pEj for j ∈ CU . Fix an index i′ ∈ HU ,
sample random di for i ̸= i′ ∈ HU then compute the partial decryption share for
i′ as di′ := v −m−

∑
j∈U,j ̸=i′

dj mod q. The rest of the experiment is the same.

In G2 each partial decryption share is calculated as di := λiusi+ pEi. While
the threshold decryption shares is not an R-LWE sample as defined in Section 2.2,
since each λj is in Zq and invertible, and u having uniform coefficients, this
implies that λjus + pE also is a R-LWE sample4. G3 is then indistinguishable
from G2 by the R-LWE assumption and the advantage of A is the cumulative
bound on distinguishing {di}i∈HU , which is |HU | · ϵR-LWE.

We now see that G3 is indistinguishable from the ideal world with SimTDec

simulating the behavior of the honest parties. This concludes the proof. ⊓⊔

4 Passively Secure t-out-of-n Threshold Signatures

We demonstrate a simple, passively secure version of our t-out-of-n thresh-
old signature protocol T S. For figure depictions of semi-honest protocols, see
Figures 5 and 6. For brevity, we omit the exact bounds and parameters for
the underlying lattice problems as this section serves mainly as a warm-up.
E = (DKGen,Enc,Eval,Dec,TDec,Comb) is a threshold homomorphic encryp-
tion scheme (cf. Section 3).

4 We can see this since for uniform a, short s and e in Rq, and fixed invertible p, p′

and λ in Zq, we have that λas + pe ≈ as + λ−1pe ≈ as + p′e ≈ as + e from R-LWE.
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4.1 Dilithium without Aborts

We use a slightly adjusted ring version of Dilithium, also denoted a ”Lyubashevsky-
type signature”, without rejection sampling extending [ASY22] as the underly-
ing signature scheme. The scheme in discussion is also similar in nature to Rac-
coon [dPEK+23], a recent submission to NIST’s additional digital signature can-
didates [NIS22]. We define the challenge set Cν = {c ∈ Rq : ∥c∥∞ = 1, ∥c∥1 = ν} ⊂
Rq to be the set of polynomials with coefficients in {−1, 0, 1} and exactly ν non-
zero coefficients. We also let C̄ν = {c− c′ : c, c′ ∈ Cν , c ̸= c′}.

KGenD Samples a uniform a ∈ Rq , then set a :=
[
a 1
]
. Samples bounded uni-

form short secret key s1, s2 with ∥s1∥∞ = ∥s2∥∞ ≤ η then set s :=
[
s1 s2

]
.

Finally, computes y := ⟨a, s⟩ and outputs sk = s and pk = (a, y).

SignD Takes as input (sk, pk, µ), samples r1, r2 ← D and set r :=
[
r1 r2

]
. Com-

putes w := ⟨a, r⟩ and derive the challenge c := H(w, pk, µ) ∈ Cν . Outputs
the signature (c, z) where z := cs+ r.

VrfyD Takes as input (pk, (z, c), µ) and checks that ∥z∥2 ≤ B = (σ + ην)
√
2N

and c = H0(⟨a, z⟩ − cy, pk, µ) and then outputs 1, otherwise outputs 0.

Agrawal et al. [ASY22, Section 4] prove correctness and security of this
scheme. In particular, they show:

Lemma 2. Let β = 2B+2ην
√
2N and σ ≥ ην

√
2NQ, where Q is the maximum

number of signing queries an adversary can make, and let the hash function be
modeled as a random oracle. If the R-SISN,q,β problem is hard, then the signature
scheme above is uf-cma-secure.

4.2 Threshold Key Generation and Signing Protocols

We describe the underlying protocols of T S from the viewpoint of a single
signer Si with i ∈ [n] (for DKGen) and i ∈ U ⊂ [n], |U| = t (for Sign).

The key generation KGenT S goes as follows:

1. The parties begin by invoking the passively secure distributed key genera-
tion protocol DKGen of the underlying threshold homomorphic encryption
scheme with inputs t,n and depth d where d defines the set of all circuits
consisting of one multiplication with an element from Cν and t additions and
all circuits consisting of n additions. As a result, Si learns the public encryp-
tion key pkE and its decryption key share ski. Each party Sj then chooses a
uniform ring element aj ∈ Rq and broadcasts.

2. The parties define a :=
∑

j∈[n] aj and a :=
[
a 1
]
. Then Si samples short

si,1, si,2 and sets si =
[
si,1 si,2

]
yi := ⟨a, si⟩. It computes the ciphertext

ctxsi := Enc(pkE , si) and broadcasts that ciphertext along with yi.
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KGenT S

DKGen(t, n, d)

return ski, pkE

ai ← Rq

ai

{aj}j ̸=i

a :=
∑
j∈[n]

aj , a :=
[
a 1

]
si,1, si,2 ← D, si :=

[
si,1 si,2

]
yi := ⟨a, si⟩, ctxsi ← Enc(pkE , si)

yi, ctxsi

{(yj , ctxsj )}j ̸=i

y :=
∑
j∈[n]

yj , ctxs :=
∑
j∈[n]

ctxsj

return pk := (a, y), ski, aux := (pkE , ctxs)

Fig. 5. Passively secure key-generation protocol for signer Si.

3. The parties compute ctx :=
∑

ctxsj = Enc(pkE , s) and y :=
∑

yj = ⟨a, s⟩,
where s =

∑
sj , and define the public verification key to be pk := (a,y).

The secret key of Si consists of its decryption key share ski, and the auxiliary
information aux := (pkE , ctxs). The signing share si is deleted.

The signing protocol SignT S goes as follows:

1. To sign a message µ, party Si first samples a short ring elements ri,1,ri,2 and
defines vector ri :=

[
ri,1 ri,2

]
. Signer Si then computes wi := ⟨ai, ri⟩ and

generates the ciphertext ctxri
:= Enc(pkE , ri) and broadcasts that cipher-

text and wi to the other signers in U .

2. Next, the signers compute w :=
∑

j∈U wj and c := H(w, pk, µ) ∈ Cν , followed
by the ciphertext ctxz := c · ctxs +

∑
j∈U ctxrj

. Party Si then computes a
decryption share dsi := TDec(ski, ctxz,U) and sends it to the other signers.
The signers then decrypt ctxz to obtain z, and output the signature (c, z).

VrfyT S : A signature (c, z) on a message µ is valid with respect to the public
key pk = (a, y) if (1) z is short and (2) H(⟨a, z⟩ − cy, pk, µ) = c.

For a signature (c, z) output by the signing protocol on a message µ and a set
of users |U| ≥ t, we have z = c · s+

∑
j∈U rj by the linearity of the encryption
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SignT S(ski, aux,U , µ)

ri,1 ri,2 ← Dr, ri :=
[
ri,1 ri,2

]
wi := ⟨a, ri⟩, ctxri := Enc(pkE , ri)

wi, ctxri

{(wj , ctxrj )}j∈U\{i}

w :=
∑
j∈U

wj , c := H(w, pk, µ)

ctxz := c · ctxs +
∑
j∈U

ctxrj

dsi := TDec(ctxz, ski,U)

dsi

{dsj}j∈U\{i}

z := Comb(ctxz, {dsj}j∈U )

return σ := (c,z)

Fig. 6. Passively secure t-out-of-n threshold signing protocol for signer Si.

scheme (assuming parameters are set so that decryption errors never occurs).
Since c ∈ Cν and s, {rj} are short, then z is short as well. Moreover, we have

⟨a, z⟩ − cy = ⟨a,

cs+
∑
j∈U

rj

⟩ − cy = c⟨a, s⟩+ ⟨a,
∑
j∈U

rj⟩ − c⟨a, s⟩ = w;

thus, H(⟨a, z⟩ − cy, pk, µ) = c and verification succeeds.

4.3 Proof of Security

Theorem 3 (Informal). The threshold signature scheme T S is threshold ex-
istentially unforgeable under chosen message attacks (ts-uf-cma) in the random
oracle model (ROM) if the underlying signature scheme is existentially unforge-
able under chosen message attacks in the ROM, the threshold homomorphic en-
cryption scheme E is key generation secure, threshold secure and secure against
chosen-plaintext attacks, and the R-LWE assumption is secure.

Proof. We prove the security of the scheme via a sequence of hybrid experiments.
Starting from the threshold unforgeability experiment, we gradually define a sim-
ulator B interacting with the passive adversary A. B has access to a challenger
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D to the unforgeability of Dilithium scheme without aborts as described in Sec-
tion 4.1 and can query the challenger for a signature σ = (c, z) on input of a
message µ or the public key pk = (a, y). We show that if A can forge a signature,
it can be used by B as an answer to D.

G0. The first experiment corresponds to a passive adversary A corrupting par-
ties in C ⊂ [n] such that |C| < t and attacking the threshold signature scheme
T S in the real world. Consider the view of A during this experiment. During
key generation, A’s view is generated as follows:

1. DKGen is run with t, n, d, and A is given the collective view viewC of the
parties in C that, in particular, includes a public key pkE and key shares
{skj}j∈C . This process defines secret key shares {skj}j∈H (not given to A).

2. For j ∈ [n], sample aj ← Rq and give {aj}i∈[n] to A. Set a = [
∑

j∈[n] aj 1].

3. For j ∈ [n], sample sj,1, sj,2 ← D and compute sj := [sj,1 sj2 ], yj :=
⟨a, sj⟩, and ctxsj := Enc(pkE , sj); give {sj}j∈C , {(yj , ctxsj )}j∈H to A. Set
y :=

∑
j∈[n] yi and ctxs :=

∑
j∈[n] ctxsj .

A repeatedly invokes the signing protocol (possibly concurrently) by speci-
fying a message µ and a set of parties U . Whenever A queries the random oracle
on (w, pk, µ) then B forwards the query to D, records the response in a table
HT , and forwards the response to A. Letting HU = U ∩H and CU = U ∩ C, the
view of A is generated as follows:

1. For j ∈ U , sample rj,1, rj2 ← Dr and compute rj := [rj,1 rj,2], wj := ⟨a, rj⟩
and ctxrj

:= Enc(pkE , rj). Then A is given {rj}j∈CU and {(wj , ctxrj
)}j∈U .

Set w :=
∑

j∈U wj , c := H(w, pk, µ), and compute ctxz := c·ctxs+
∑

j∈U ctxrj .

2. For j ∈ U , set dsj := TDec(skj , ctxz,U) and give {dsj}j∈U to A.

At the end of the experiment, A outputs a message/signature pair (µ∗, σ∗ :=
(c∗, z∗)). If µ∗ was never previously queried and the signature is valid with
respect to y, then A succeeds. We have that

Pr[G0] = Advts-uf-cma
T S (A).

G1: In this game B uses simulators for the distributed key generation and thresh-
old decryption, and replaces public encryption key, distributed decryption keys
as well as partial decryptions with simulated shares.

The experiment is the same as G0 except that in step 1 of KGenT S , B runs
pkE , {skj}j∈C ← SimDKGen so that the output viewC consists of U , {skj}j∈C and
pkE , which is given to A.

Then the final step uses simulated decryption instead of shares from honest
parties. Specifically, in step 2 of the signing protocol SignT S , B computes {dsi}HU

using SimTDec based on {ski}i∈CU , ctxz, and gives {dsi}i∈U to A.
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By key generation security of E , the view of each corrupted party should be
computationally indistinguishable from actual protocol for all but a negligible
probability ϵDKGen. Similarly, since the distributed key generation of E imple-
ments the functionality FDKGen securely, the view of corrupted parties during
threshold decryption is computationally indistinguishable from actual protocol
outside a negligible probability ϵTDec. Then G0 and G1 are computationally
indistinguishable as long as key generation and threshold security of E holds:

|Pr[G1]− Pr[G0]| ≤ ϵDKGen + ϵTDec.

G2: This experiment is identical toG1 except how the ciphertexts are computed.
Note that the decryption procedure is independent of the encrypted randomness
ri. During key generation, B computes ctxsi := Enc(pkE , 0) for i ∈ H, and in
step 1 of SignT S B computes ctxri

:= Enc(pkE , 0) for i ∈ HU . The rest of the
execution is the same as G1.

If A can distinguish between G2 and G1, then it is possible to use A to
break IND-CPA security of E . When interacting with the challenger to IND-
CPA of E , B submits (0, si) for i ∈ H during key generation and (0, ri) for
i ∈ HU during signing to the challenger to obtain ctxsi and ctxri

respectively.
If A behaves noticeably different in any of these stages, B forwards 0 to the
challenger, indicating the plaintext was 0.

If the IND-CPA challenger has originally given ciphertexts corresponding to
si and ri to B, then G2 is exactly the same as G1, therefore there is no reason
for A to have noticeable behavior difference. If the challenger has encrypted 0
at one stage however, B can use A to have noticeable advantage in IND-CPA
game of E . Thus we conclude that G1 and G2 are indistinguishable as long as
IND-CPA security of E holds:

|Pr[G2]− Pr[G1]| ≤ ϵIND-CPA.

G3: In this experiment, B removes the dependence on the signing key s.
B first changes the key generation step for one honest party. At the start of

key generation, B receives the public key (a, y) from D where D is initialized
with the parameters for the combined signature (We detail these in the active
version of the proof). Let i′ be some index in H and HU . During step 2 of key
generation, for every j ∈ [n], j ̸= i′, aj is sampled in the same way as earlier. ai′

is then fixed as ai′ := a−
∑

j∈[n],j ̸=i′ aj . During step 3, everything is computed
in the same was as in G2 except for yi′ where si′,1 and si′,2 are never sampled
and yi′ := y −

∑
j∈[n],j ̸=i′ yj .

Whenever µ is to be signed, B queries D to obtain a signature (c, z). During
the first step of signing for i ∈ CU , sample ri,1, ri,2 ← Dr and set ri := [ri,1 ri,2]
and wi := ⟨a, ri⟩ as before. Letting i′ denote some index in HU , sample wi ←
Rq uniformly for i ∈ HU \ {i′}, and set wi′ := w −

∑
i∈U\{i′} wi, where w is

computed from (c, z) as w := ⟨a, z⟩ − cy. B encrypts the received z to obtain
ctxz = Enc(pkE , z). The rest of the experiment is as before.
D is initialized with the parameters for the combined signature. Hence a

is uniform in Rq and y = ⟨a, s′⟩ for an unknown s′ with ∥s′∥ ≤ tB. Since
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{ai}i∈[n]\{i′} is sampled honestly from a uniform distribution, then ai′ := a −∑
i∈[n]\{i′} ai is also uniform in Rk×ℓ

q . Consequently yi′ := y −
∑

i∈[n]\{i′} yi =

⟨a, s′i′⟩ by the linearity of the operations for an unknown s′i′ with ∥s′i′∥ ≤ B,
which is the same distribution for the honest si′ .

w is obtained fromD, which is ar′1+r′2 for unknown r′1, r
′
2 and hence an R-LWE

sample from combined parameters. Since {wj}j∈CU are computed according to
the protocol, then {wi}i∈HU is computationally indistinguishable from uniform
by the same R-LWE assumption. If A can distinguish between G2 and G3 then
since a, ai′ , y, yi′ are distributed in the same way as in G2, A can also distinguish
{wi}i∈HU in games G2 and G3.

If A can distinguish wi then it can be used to solve R-LWE. After B initializes
the challenger for R-LWE for parameters of combined r , B obtains (a′, u′) and
sets a := a′ and w := u′. B computes wi for i ̸= i′ ∈ U according to the
protocol and derives wi′ := w −

∑
i∈U\{i′} and sends {wi}i∈U to A. If A acts

with noticeable difference, B answer the challenger that u was uniform.
If the challenger returned an R-LWE sample for u, the derived wi′ will have the

same distribution as an honestly computed wi′ in G2 therefore there is no reason
for A to have a noticeable behavior difference. If the challenger sent a uniform
u however, wi′ should be computationally indistinguishable from uniform by
R-LWE assumption hence if A can act with noticeable difference then R-LWE
assumption should not hold and B can answer challenger’s query with noticeable
advantage using A. Thus we conclude that G2 and G3 are indistinguishable as
long as R-LWE holds:

|Pr[G3]− Pr[G2]| ≤ ϵR-LWE.

We remark that the combined signature in G3 now has the same distribu-
tion for (a, y, c, z) as the underlying signature for combined parameters, since
(a, y, c, z) are received from D. If A is able to produce a forgery (µ∗, σ∗) now, this
forgery is also against the underlying signature scheme, and hence, the adversary
can be used to break the uf-cma security. Whenever A submits a forgery (µ∗, σ∗),
B can submit the said forgery to D, which would have noticeable probability of
winning as long as A has noticeable advantage. Thus we have:

Pr[G3] = Advuf-cma(A).

This concludes the proof. ⊓⊔

Since we remove the reliance on aborts, each signature may leak information
about the secret key as discussed by Lyubashesvky [Lyu12]. Exact parameters
rely on either limiting the number of signatures issued or on noise drowning.
Parameters for active security are analyzed in detail in Section 6.

The actively secure version of our protocol is more involved since we assume
a rushing and active adversary, and hence, we need parties to commit to specific
values, provide zero-knowledge proofs, and conduct consistency checks to ensure
the privacy and correctness of the protocol.
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5 Actively Secure t-out-of-n Threshold Signatures

We now describe our main contribution to this paper: the actively secure thresh-
old signature scheme. We bootstrap the passively secure protocol described in
Section 4 to a protocol secure against a rushing and active adversary that may
behave arbitrarily. The key generation and signing protocols are depicted in
Figure 7 and Figure 8, respectively. We extend the previous section by giving
concrete bounds and dimensions for the protocol, discussing the communication
efficiency in each round, and giving a detailed security proof.

We start by modifying the underlying signature protocol. Instead of using w
directly as part of the oracle input for challenge derivation, we use a commitment
com to w instead. This is the same approach taken by Damg̊ard et al. [DOTT21]
on Dilithium-G [DKL+18] and does not have any important security implications
on the signatures as long as the underlying commitment scheme is secure.

5.1 Extended Zero-Knowledge Proofs

Our distributed KGenT S and SignT S routines need two zero-knowledge proofs
that extend the relations given about the encryption scheme above. We give the
exact relations each proof has to prove below:

The proof πsi during KGenT S proves that the short si was both used to compute
the public key share yi and was encrypted in ctxsi . For a publicly fixed a,
Bs and public yi, pkE , and the commitment to the secret si, the relation Rs

shows:(1) The secret si has norm smaller than Bs (2) si is the same si used
for the calculation of yi (3) ctxsi is the encryption of the si using pkE .

Rs :=

{
(x,w)

∣∣∣∣ x := (a, yi, pkE , ctxsi , Bs) ∧ w := (si) ∧
∥si∥ ≤ Bs ∧ yi = ⟨a, si⟩ ∧ ctxsi = Enc(pkE , si)

}
.

The proof πri during SignT S proves that a bounded signature randomness ri
was both committed to in comi and encrypted in ctxri

. For publicly fixed a,
Br and public comi,pkE ,ctxri

for secret wi,ri, ρi the relation Rr shows: (1)
The randomness ri has a norm smaller than Br (2) ri is the same ri used
for wi and therefore the commitment comi using randomness ρi (3) ctxri

is
the encryption of the ri using pkE .

Rr :=

(x,w)

∣∣∣∣∣∣
x = (a, comi, pkE , ctxri

, Br) ∧ w = (wi, ri, ρi)
∧ ∥ri∥ ≤ Br ∧ ctxri

= Enc(pkE , ri)
∧ wi = ⟨a, ri⟩ ∧ comi = Comck(wi, ρi)

 .

In both relations, (3) is the proof of of knowledge of plaintext, which is done as
part of E . The rest of the proofs can be instantiated similar to the proofs for E
discussed in Section 3.3.
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5.2 Key Generation and Signing Protocols

We retain our notation and viewpoint from the passive protocol, in addition
to introducing homomorphic commitments and non-interactive zero-knowledge
proofs. Note that we change the signatures slightly so that the challenge is com-
puted as the hash of the sum of commitments to the values wj instead of the
values themselves, and openings are published afterward as a part of the signa-
ture.

KGenT S

DKGen(t, n, d)

return ski = skE,i, pkE , auxE

ai ← Rq, hai := H0(ai)

hai

{haj}j ̸=i

ai

{aj}j ̸=i

if any haj ̸= H0(aj) : abort (j)

a :=
∑
j∈[n]

aj , a := [a 1]

si,1, si,2 ← Ds, si := [si,1 si,2]

yi = ⟨a, si⟩, hyi := H1(yi)

hyi

{hyj}j ̸=i

ctxsi := Enc(pkE , si)

Compute πsi according Section 5.1

(yi, ctxsi , πsi)

{(yj , ctxsj , πsj )}j ̸=i

if any hyj ̸= H1(yj) : abort (j)

if any πsj is invalid : abort (j)

y :=
∑
j∈[n]

yj , ctxs :=
∑
j∈[n]

ctxsj

return pk := (a, y), ski, aux := (auxE , pkE , ctxs)

Fig. 7. Actively secure key generation protocol for signer Si.

KGenT S works as follows:
1. Si starts by invoking the distributed key generation DKGen of the un-

derlying encryption scheme E with inputs t,n, and d as in the passive
case and obtains the public encryption key pkE , its threshold decryption
key share ski and any auxiliary information associated with E .
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2. Si samples a uniform ai from Rq, computes hai
= H0(ai) as a commit-

ment and broadcasts hai
. After receiving haj

for all j ̸= i, it broadcasts
ai. After receiving aj for all j ̸= i, it verifies haj , and aborts with output
j if haj ̸= H0(aj). Otherwise define a =

∑
aj and a = [a 1] for j ∈ [n].

3. Si then samples short signing key pieces si,1, si,2 sets si := [si,1 si,2], yi :=
⟨a, si⟩, hash hyi

:= H1(yi) as a commitment to yi, and broadcasts hyi
.

Upon receiving hyj for all j ̸= i, Si encrypts si as ctxsi := Enc(pkE , si)
and computes πsi according to Rs, then broadcasts (yi, ctxsi , πsi).

4. Finally, upon receiving ctxsj , πsj and yj from each j ̸= i, Si verifies that
hyj

= H1(yj) and that πsj is valid with respect to ctxsj and yj , and
aborts with output j if any of them fails. If all checks succeed, it de-
fines the public key pk = (a, y), secret key ski, and auxiliary information
aux = (auxE , pkE , ctxs) where y :=

∑
yj = ⟨a, s⟩, ctxs :=

∑
ctxsj .

SignT S works as follows:

1. Let Si be one out of t signers in the set U . Upon receiving the message
µ to be signed, Si samples per signatures randomness ri,1, ri,2 ← Dr

and commitment randomness ρi ← χ, derives per message commitment
key ck = H2(pk, µ) and computes ri := [ri,1 ri,2], wi := ⟨a, ri⟩ and
commitment comi := Comck(wi, ρi). Si then encrypts the randomness ri
with the encryption key pkE as ctxri

:= Enc(pkE , ri), and computes πri

according to Rr. Si then sends ctxri , comi and πri to all j ∈ U \ {i}.

2. Upon receiving ctxrj
, comj and πrj

for each j ∈ U \ {i}, Si aborts with
output j if πrj

does not verify with respect to ctxrj
and comj . Other-

wise it computes com :=
∑

comj for all j ∈ U and derives the challenge
c := H3(com, pk, µ). It then computes the encryption of the signature as
ctxz := c · ctxs +

∑
j∈U ctxrj (that is, computing Eval on the ciphertexts

where F is the function taking an element from Cν , multiplying it with
ctxs, and adding t ciphertexts ctxrj

to the result) and decrypts its share
as dsi := TDec(ctxz, ski,U) and sends the partial decryption dsi along
with, opening wi, and commitment randomness ρi to the signers in U .

3. Upon receiving dsj , wj , and ρj for all j ∈ U \ {i}, Si aborts with out-
put j if Open(comj , wj , ρj) = 0 for any j. Then tries to combine the
decryptions as z := Comb(ctxz, {dsj}j∈U ) and aborts with output j if
z = ⊥ and Comb aborts with output j. Si finally outputs the signature
σ := (c, z, ρ) where ρ :=

∑
ρj for all j ∈ U .

VrfyT S : Upon receiving σ := (c, z, ρ) and µ, the verifier checks that ∥z∥ ≤ Bz

and ∥ρ∥ ≤ Bρ, computes w∗ := ⟨a, z⟩−c∗y, derives c∗ := H3(Com(w∗; ρ), pk, µ),
then finally outputs 1 if and only if checks hold and c = c∗, and 0 otherwise.
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SignT S(pk, ski, aux,U , µ)

ck := H2(pk, µ), ri,1, ri,2 ← Dr, , ri := [ri,1 ri,2]

ρi ← χ,wi := ⟨a, ri⟩
comi := Comck(wi, ρi), ctxri ← Enc(pkE , ri)

Compute πri according to Section 5.1 (ctxri , comi, πri)

{(ctxrj , comj , πrj )}j∈U\{i}

if any πrj is invalid : abort (j)

com :=
∑
j∈U

comj , c := H3(com, pk, µ)

ctxz := c · ctxs +
∑
j∈U

ctxrj

dsi := TDec(ctxz, ski,U)

(wi, ρi, dsi)

{(wj , ρj , dsj)}j∈U\{i}

if any Open(comj , wj , ρj) = 0: abort (j)

z := Comb(ctxz, {dsj}j∈U )

if z = ⊥ with abort (j) : abort (j)

ρ :=
∑
j∈U

ρj

return σ := (c,z, ρ)

Fig. 8. Actively secure 2-round t-out-of-n threshold signature protocol for signer Si.

5.3 Correctness, Bounds, and Sizes

We proved the correctness of the passively secure signature scheme in Section 4.2,
and as the commitment scheme and the zero-knowledge schemes are complete,
then it follows that the actively secure signature scheme is correct. Furthermore,
the bounds in the protocol depend on the distributions we sample from. If we
sum t samples from a uniform distribution over the values [−B,B], then the sum
will be in the interval [−tB, tB]. However, if we sample from a discrete Gaussian
distribution of standard deviation σ, then each sample is with a high probability
of 2-norm less than 2σ

√
2N for an integer vector of length 2N , and the sum is

bounded by 2σ
√
2tN . Hence, the bounds Bz and Bρ must be decided based on

the distribution of choice, and the concrete choice of parameters and distribution
impacts the security and efficiency overall.

When rejection sampling is removed, the signatures might leak information
about the secret key, but this can be prevented by increasing the size of the
per-signature randomness r or by limiting the number of signatures performed
by the same key. We get optimal parameters if the key is used only once, as
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the key has high entropy and only leaks a few bits of information per signature.
A recent analysis by Agrawal et al. [ASY22] using Rényi divergence shows that
leakage scales with

√
Q where Q is the number of signatures, and hence, we can

keep the bounds on r small when limiting the number of signatures.

Looking at the key generation, each signer first executes the interactive key
generation for the underlying encryption scheme, which has communication size
|DKGen|. Each signer then sends two hashes of size ℓ0 and ℓ1 bits respectively
each and a ring element of size N log2 q bits. Each partial signing public key is of
size N log2 q bits. It also sends the ciphertext and a zero-knowledge proof which
we denote the sizes by |ctx| and |πs| bits, respectively.

In the signature protocol, each party sends a ciphertext and a commitment
of size |ctx| and |com|, respectively, in addition to a zero-knowledge proof of size
|πr|. They furthermore send values wi of size N log2 q, opening randomness ρi
of size |ρ| and partial decryptions dsi of size N log2 q.

5.4 Security Proof

Similar to the case with a passive adversary, we now prove the security of our
protocol by constructing an algorithm B interacting with an active adversary A.
Unlike the passive case however, we assume a rushing adversary where honest
users always publish their messages first. If decryption shares are published by
honest parties, then we say that the message is signed.

Theorem 4. Let R-LWEN,B be ϵR-LWE-hard. Let QS, QH denote the number of
signing queries and total number of queries made to H0, H1, H2, and H3 respec-
tively. Let ℓ0, ℓ1 be the bit-length of the output of H0 and H1. Let E be ϵIND-CPA,
ϵDKGen and ϵTDec secure. Finally, let proof system Πx for the relation Rx be
ϵHVZKx and ϵextractx secure. Then, the actively secure t-out-of-n threshold signa-
ture scheme T S, described in Section 5 and depicted in Figure 8, is ts-uf-cma
secure when H0 and H1 are modeled as programmable random oracles and H2

and H3 are modeled as random oracles. The advantage of adversary A is:

Advts-uf-cma
T S (A) ≤ e(QH +QS + 1)

(
|H| · ϵHVZKs + |HU | · ϵHVZKr + |C| · ϵextracts

+ |CU | · ϵHVZKr + ϵDKGen + ϵTDec

+
|C|(QH +QS)

2ℓ0
+
|C|(QH +QS)

2ℓ1
+ (QH +QS) · ϵtd

+ 2 · ϵIND-CPA + ϵR-LWE + Advuf-cma(A)
)
.

Proof. We prove this through a series of hybrids written out in full detail. The
simulator B again has access to the challenger D and we show that a forgery
by A can be used by B to answer D. This time, however, D targets a variant
of the signature scheme described in Section 4.1 where c is derived using the
commitment to w. Hence when queried for a message, D outputs σ = (c, z, ρ).
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G0: The first game corresponds to the real world. Specifically, B follows the
protocol according to the description, and A interacts with B arbitrarily. The
oracles H0,H1, H2, H3 are simulated using tables HT 0, HT 1, HT 2, and HT 3.
Since we assume a rushing adversary, B sends its messages first.

When A outputs a forgery (σ∗ = (c∗, z∗, ρ∗), µ∗), B aborts if µ∗ ∈ M.
If not, B derives the message-dependent commitment key ck∗ := H2(pk, µ

∗),
computes w∗ := ⟨a, z∗⟩−c∗y and com∗ := comck∗(w

∗; ρ∗). Then, if the challenge
c∗ ̸= H3(com

∗, pk, µ∗), B aborts. Otherwise B halts with the output (σ∗, µ∗) and
A is successful.

If the real world is indistinguishable from the programmable random oracle
model, then the random oracle simulation is perfect, B’s behavior is exactly the
same as in the unforgeability experiment, and we get that

Pr[G0] = Advts-uf-cma
T S (A).

G1: In this game B changes how non-interactive zero-knowledge proofs are an-
swered for honest parties. B executes the protocol the same as G0, but in-
stead of honestly generating πsi for i ∈ H, πri

for i ∈ HU , B uses the cor-
responding honest-verifier zero-knowledge simulators, Sims and Simr for rela-
tions Rs and Rr respectively where πsi := Sim(a, yi, pkE , ctxsi , Bs) and πri

:=
Sim(a, comi, pkE , ctxri , Br). B follows the remaining parts of the protocol hon-
estly. G0 and G1 is indistinguishable by HVZK of the underlying NIZKs:

Pr[G1]− Pr[G0] ≤ |H| · ϵHVZKs + |HU | · ϵHVZKr .

G2: G2 is the same as G1 except B uses the extractability properties of the
NIZKs to learn the signing key shares and the signature randomness encrypted
by parties in C. During key generation, after receiving πsj for j ∈ C, B calls the
extractor sj := Extracts(πsj ;a, yj , pkE , ctxsj , Bs). Similarly, during signing after
receiving πri

, B computes ri := Extractr(πri
;a, comi, pkE , ctxri

, Br). If any of
the extractions fails, B aborts.

By assumption the extractor Extractx for Rx is efficiently computable. If B
does not abort due to a failed extraction, G2 and G3 is indistinguishable for A.
Thus we bound A’s advantage in G3 by the sum of independent probabilities of
extraction failures:

Pr[G2]− Pr[G1] ≤ |C| · ϵextracts + |CU | · ϵextractr .

G3: In this hybrid B simulates the distributed decryption shares and signing
keys instead of computing them similar to G1 in the passive case. During key
generation, B uses the simulator SimDKGen for E to interact with A to obtain
key shares {skj}j∈C , then proceeds with the rest of the protocol until the second
round of signing. During the second round of signing after computing ctxz, B
knows the plaintext z = Dec(sk, ctxz) since it already have extracted all sj and
rj for j ∈ CU and invokes the distributed decryption simulator SimTDec of E
to obtain {dsi}i∈HU from SimTDec using {skj}j∈C , z,U , and sends them as their
decryption shares instead. The rest of the signing proceeds as G2.
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Since rj and sj for j ∈ CU are extracted in G2, B can compute z =
c
∑

i∈U si +
∑

i∈U ri, which is the combined signature. Similar to the G1 in the
passive case, we can now reduce to the security of E during key generation and
threshold decryption since DKGen and TDec are secure against a static active
adversary corrupting up to t− 1 parties:

|Pr[G3]− Pr[G2]| ≤ ϵDKGen + ϵTDec.

G4: G4 is exactly the same as G3 except B embeds a trapdoor to the commit-
ment key ck with high probability. Then the forgery by A must be with respect
to an honestly generated commitment key ck.
B initially generates only a single commitment key ck ← Sck. B keeps a

trapdoor table T DT similarly to other random oracles throughout the protocol.
When there is a query for H2 for a new message-public key pair, with probability
ϕ, B samples a trapdoor (ck, td) by invoking TCGen, updates the corresponding
entry in T DT to td and updates the corresponding entry inHT 2 to ck. Otherwise
B uses a freshly sampled ck← Sck.

When A queries H2, B sets the flag bad and aborts if T DT [pk, µ] = ⊥. Other-
wise, B obtains the trapdoor td. Then, for j ∈ HU , B samples rj,1, rj,2 and com-
putes rj ,wj according to SignT S . Furthermore, B samples commitments comj by
invoking TCom on input td. The rest of the first round continues as it is in G3.
When B has received messages from all users it checks if the proofs for rj verify
and computes the challenge, and derives randomness ρj ← Eqvck(td, comj , wj)
for each j ∈ HU . It then continues with the rest as before. When A sends a
forgery (σ∗ := (c∗, z∗, ρ∗), µ∗), then B repeats the steps of G3. At the final step,
if T DT [pk, µ∗] ̸= ⊥, B aborts.

If B does not abort, then ck∗ = H2(pk, µ
∗) and the simulated πrj

must verify
for each honest part j ∈ HU . This follows from the fact that the simulation is
only successful if the oracle uses the trapdoor commitment for all but one query
to H2 and uses the predefined ck for the one associated with forgery, i.e., bad is
not set. Based on the security of the trapdoor commitment scheme defined in
Section 2.4:

Pr[G4] ≥ ϕQH+QS · (1− ϕ) · Pr[G3]− (QH +QS) · ϵtd.

By setting ϕ = (QH +QS)/(QH +QS + 1) we get

Pr[G4] ≥
Pr[G3]

e(QH +QS + 1)
− (QH +QS) · ϵtd,

where (1/(1 + 1/(QH +QS)))
QH+QS ≥ 1/e when QH +QS ≥ 0.

G5: In this hybrid B changes how ciphertexts are computed similar to G2 in
the passive case. B fixes some index i′ ∈ H which is also in HU . B computes
ctxsi′ := Enc(pkE , 0) during key generation and ctxri′ := Enc(pkE , 0) during
signing. The rest of the game is as it is in G4.
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Note that since the decryption shares are simulated starting from G3, any
inconsistency between ctxz and z is handled by the simulator. Hence, the only
difference between G4 and G5 is A’s view on ctxsi′ and ctxri′ . Following the
same argument in G2 in the passive case, we have:

|Pr[G5]− Pr[G4]| ≤ 2 · ϵIND-CPA.

G6: In this hybrid B changes how hai′ and hyi′ are computed. B first samples
random hai′ ∈ {0, 1}

ℓ0 on the first round and sends it as the commitment to ai′ .
After receiving haj

for all j ∈ C, B extracts aj from recorded entries in HT 0.
Then samples a random a← Rq, derives ai′ = a−

∑
j∈[n]\{i′}

aj and programs H0

so that H0(ai′) = hai′ . B then sends a random hyi′ ∈ {0, 1}
ℓ1 as the commitment

yi′ then programs H1 such that H1(yi′) = hyi′ . If programming fails, B aborts.
Furthermore, ai in G5 are sampled uniformly from Rq, hence a :=

∑
i ai is

statistically indistinguishable from uniform in Rq. Since a is sampled from uni-
form in G6, the two are statistically indistinguishable. Consequently, the derived
ai′ is also statistically indistinguishable from uniform which means it is indistin-
guishable from ai′ in G5. Then the only difference in A′s view is on how hai′ and
hyi′ are computed. By the oracle assumption, the distributions is indistinguish-
able between these two games, hence from the view of the adversary A, G5 and
G6 are indistinguishable as long as B does not abort during programming. Thus
we can bound the advantage of A in distinguishing G5 and G6 by cumulative
failure probability of independent programming for H0 and H1:

|Pr[G6]− Pr[G5]| ≤
|C|(QH +QS)

2ℓ0
+
|C|(QH +QS)

2ℓ1
.

G7: Now, B removes its reliance on the secret key s for signing similar to G3

in the passive case. During key generation, B initializes the signing challenger D
with the parameters of the combined signature and queries the oracle to obtain
public keys (a, y), then replaces a in G6 with the received a. Instead of honestly
computing yi′ , B derives yi′ = y −

∑
j∈[n]\{i′}

yj and continues the rest of key

generation as in G6.
For i ∈ HU \ {i′}, signing starts as G6. When a signing query for µ comes,

B commits to a random wi′ as part of the first message then forwards µ to D
to obtain (c, z, ρ). B then computes w := ⟨a, z⟩ − cy and uses z for simulation
to obtain dsi. For j ∈ U \ {i′}, wj is computed the same. B then derives wi′ =
w−

∑
j∈U\{i′} wj and equivocates the commitment to get the randomness ρi′ :=

Eqv(td, comi′ , wi′) using trapdoor td. Otherwise signing proceeds as G6.
The second round of communication in the key generation is identical to

experiment G6 outside a. Since a received from D is honestly computed, a is
uniform and the distribution of a in these games is the same. Similarly, since y
received from D is a valid R-LWE instance, the distribution of yi′ in G7 is same
as G6 by linearity of operations the derived yi′ = ⟨a, s′i′⟩ for an unknown s′i′ .
B now has to fix the signature and its shares in a way that is consistent

with the first round of communication in signing. Since D uses the variant that
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derives c based on a commitment to w, it is possible to obtain consistent (c, z)
such that w := ⟨a, z⟩ − cy. The remaining difference in A’s view is the wi′

which is indistinguishable from uniform the way it is computed. Using the same
argument in G3 of passive, an adversary distinguishing between wi′ in G6 and
G7 can be used as a distinguisher for R-LWE. We then have:

|Pr[G7]− Pr[G6]| ≤ ϵR-LWE.

Now the signatures are independent of all secret key material a forgery against
the T S scheme is then a forgery against the underlying signature scheme. If A
outputs a forgery (c∗, z∗, ρ∗), µ∗, B can submit the same forgery to D as a valid
forgery for the underlying signature. Hence if A can output a forgery at the end
of G7, it can be used to break the uf-cma security of the underlying scheme, the
advantage if A can then be bounded as:

|Pr[G7]| ≤ Advuf-cma(A).

This concludes the proof. ⊓⊔

6 Example Uses Cases and Performance

To estimate the practicality of our actively secure scheme we give example pa-
rameters for (3, 5)-threshold signatures in three different settings: (1) where a
signature is only produced once (σ1), (2) where a signature is produced at most
β times (σβ), for some moderate β, and (3) where a signature is produced essen-
tially an unlimited number of times (σ∞). This has been an ongoing discussion
at the NIST emailing lists 5 and in a recent note about SPHINCS+ [Kö22], show-
ing interests in schemes with a limited number of signatures. Following NIST
recommendations, the third parameter set should allow for up to 264 signatures.

For simplicity, we let the distribution D be the uniform ternary distribution
in each of the three cases. This can naturally be extended to higher module
dimensions and use module variants of these problems6 for more flexibility, and
there are several flavors of secret and noise distributions offering other trade-
offs between security and compactness. We use the BGV scheme described in
Section 3 for the underlying additive homomorphic encryption scheme, and the
homomorphic trapdoor commitment scheme by Damg̊ard et al. [DOTT21] to
commit to the shares in the first round of the signing protocol. Finally, one
would have to use the Katsumata transform [Kat21] to achieve straight-line
extractability in the protocol, which adds essentially two ring elements per proof,
a small overhead compared to the total amount of communication.

We emphasize that these are rough estimates, and a more careful analysis
is needed before this scheme is ready for real-world use. The main point of
this exercise is to showcase that we can achieve small signatures and public

5 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LUczQNCw7HA.
6 See [LS15] for more details about the hardness of problems over module lattices
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Comm. σ1 y1 Π1 σβ yβ Πβ

Size 1.6 KB 2.6 KB ≈ 750 KB 4.4 KB 6.4 KB ≈ 750 KB

Comm. σ∞ y∞ Π∞ σtriv ytriv Πtriv

Size 11.5 KB 13.6 KB ≈ 1.5 MB 7.3 KB 6.6 KB 2.4 KB

Table 1. Estimated sizes of (3, 5)-threshold signatures σ, public keys y and per party
communication in the interactive signing protocol Π for settings: 1) where the a sig-
nature σ1 is only produced once, 2) where a signature σβ is produced at most β = 365
times, and 3) where a signature σ∞ can be produced essentially an unlimited number
of times. These parameters achieve at least 128 bits of R-SIS and R-LWE security. We
compare to the trivial case where a public key ytriv consists of five Dilithium NIST level
II [LDK+20] public keys of roughly 1.3 KB each and σtriv consists of three signatures
of roughly 2.4 KB each. We note that in an optimistic setting, we can reduce the com-
munication by more than 50% when all signers are honest; see Section 7 for details.

keys using our techniques, while also acknowledging that the total amount of
communication in the protocol is quite large. Furthermore, in this section, we
assume a trusted setup and only focus on the signing protocol, not the key
generation. We summarize the results in Table 1.

6.1 One-Time Signatures

The simplest case is when each key is only used to create a single signature before
it is discarded and never used again. One such setting is Bitcoin transactions,
where some funds are tied to a specific public key. When a new transaction is
performed the remaining funds are sent to a new address tied to a different public
key owned by the same user(s). The setup can be done in advance independent of
the blockchain and future transactions, and one key is used for each transaction.
This leads to smaller keys and signatures to minimize on-chain data.

With no rejection sampling, publishing a single signature leaks minimal in-
formation about the secret key. Agrawal et al. [ASY22] show that the leakage in
each signature grows linearly in the square root of the number of signatures pro-
duced, but since we only output a single signature we can keep the parameters
identical to when rejection sampling is performed.

All signing key shares are ternary, which means that even secrets of absolute
norm 1 should ensure that the R-SIS and R-LWE problems are hard. The R-SIS
problem is hard when the logarithm of the ℓ2 norm of the secret is less than
2
√
N log2 q log2 δ, see [MR09], and we get more roughly 128 bits of security

when δ ≈ 1.005, and better when it is smaller. The ring dimension N must be
a power of two, so we set N = 1024. Then we let elements of r be sampled
from a Gaussian distribution Dr with standard deviation σr = ν ·

√
N , which is

a common choice of parameters, see e.g. [LNS21]. Then, with high probability,
the ℓ∞ norm of r are bounded by Br = 4 · σr. Each signer needs to prove in
zero-knowledge that these bounds are satisfied to ensure protocol correctness.
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The most efficient exact zero-knowledge proofs used today are the proof
systems by Lyubashevsky et al [BLNS21,LNP22], allowing us to prove the exact
maximum norm of the secret values r. The latter proof system is improved by
Aranha et al. [ABGS23] and extended by Hough et al. [HSS23] to large values
using bit decomposition. We let the ℓ2 norm of z be Bz = 2 · t ·Br ·

√
N in our

signature scheme. We finally set ν = 14 (so that |C̄| > 2128) to get σr ≈ 28.8,
Bz ≈ 218.4 and q ≈ 220. This leads to more than 128 bits of R-SIS security
when inserting the parameters into the equation above and more than 128 bits
of R-LWE security according to the LWE-estimator [APS15] when only revealing
one signature per key.

The absolute norm of each coefficient in z is bounded by 4 · t · σr, and this
leads to a signature size of z of at most N log2(4 · t ·σr) bits, which is roughly 1.6
KB with the given parameters. The public verification key y is of size N log2 q
bits (we assume that a can be generated by a random oracle from a short seed,
as done by Dilithium [DKL+18]), which result in a key of size 2.6 KB. We ignore
the cost of ρ by assuming that each ρj can be generated from a short seed, and
that sending t such seeds (instead of sum ρ) is small compared to z.

What remains is to estimate the size of the commitments, ciphertexts, and
NIZKs being sent in the signing protocol. Similar to Damg̊ard et al. [DOTT21] we
use the commitment scheme by Baum et al. [BDL+18], and instantiate this with
module dimension one to match our security assumptions. Then the randomness
consists of three short elements in Rq and a commitment consists of two uniform
elements in Rq. We conclude that comi is of size 7.7 KB.

For the encryption scheme, we need q to be the plaintext modulus and need
to choose a larger modulus Q for the ciphertexts. We also increase the dimension
to N ′ = 4096 to achieve proper security. We still use ternary secrets and noise
values, and follow the analysis from Aranha et al. [ABGS23, Appendix F] which
gives us the correctness requirement BDec + BTDec < Q/2, where BDec is the
noise-bound in the ciphertext ctxz when the encrypted per-signature randomness
shares are combined with the challenge and the encrypted signing key, and BTDec,
is the bound of the noise added during the distributed decryption procedure.
We use a zero-knowledge proof to prove that the randomness used to generate
the BGV ciphertexts is bounded, and we can again use the exact proofs by
Lyubashevsky et al. [BLNS21,LNP22] to achieve this. Then the noise in ctxz is
bounded by BDec = q · (ν + t) · (2 ·N ′ +1) ≈ 237. Furthermore, BTDec = q · t ·BE

where E is the noise added to the partial decryptions and BE is the bound we can
prove in a zero-knowledge proof to ensure that E is bounded (and that we do not
get any decryption error when we use Comb to extract the signature). It follows
that BE = ||E||∞ = BDec · 2sec and some statistical security parameter sec. A
common choice is sec = 40. This leads to BE ≈ 277. Then we get BTDec ≈ 299

and can set Q ≈ 2100, which gives more than 128 bits of R-SIS and R-LWE
security. We conclude that ctxr is of size 2 ·N ′ log2 Q bits, that is, 103 KB, and
that decryption shares ds are N ′ log2 Q bits, or 52 KB.

The ciphertext ctxr consists of three noise values that are bounded with
respect to Br, so the proof πr is of size ≈ 200 KB using exact proofs [LNP22].
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The decryption proof πds consists of a commitment, a proof of linearity (see
Aranha et al. [ABGS23, Appendix B.1]) and a proof of boundedness (see Hough
et al. [HSS23] or [LNP22]). The commitment over RQ is of size as a ciphertext
(153 KB), the proof of linearity is of size 2N ′ log2 Br bits, that is, 12 KB and
the proof of boundedness is roughly of size ≈ 200 KB. Then πds is of 565 KB.

The total amount of communication per party in the protocol is ≈ 750 KB.

6.2 Bounded Number of Signatures

Another interesting setting is where a service is used at most once a day each
year, and a signature is required to use the service. One concrete example is FIDO
login7 where the signing key is secret shared over several devices to ensure both
that the user can log in in the case of lost devices and that no one can impersonate
the user even with a limited number of stolen devices.Hence, we must make sure
that the signing key does not leak when up to 365 signatures are produced.

Following a similar analysis as above, where we extend the standard deviation
to σr = ν ·

√
N · 365 (see [ASY22, Theorem 4.1]) to ensure that the signature

does not leak too much information when producing at most 365 signatures. We
furthermore set N = 2048, and get σr ≈ 213.6, Bz ≈ 223.7 and q ≈ 225 to ensure
at least 128 bits of security with respect to the hardness of R-SIS and R-LWE.
The elements z are of size 4.4 KB and the verification key y is of size 6.4 KB.

Since q is similar in this setting as in the previous, the size of the intermediate
communication within the signing protocol is essentially the same as above.

6.3 Unbounded Number of Signatures

In general, it is undesirable to upper-bound the number of signatures that can be
produced with a signing key before it is not secure to use it anymore. One reason
for this is that it is hard to keep a state over a longer time, and if the signing is
running in a virtual environment it might be re-booted from a backup with an
older state and a fresh counter, and hence, end up producing more signatures
than initially recommended. In practice, we often upper limit the number of
signatures by 264, or some other number that is close to the capacity of what
modern computers can compute when choosing concrete parameters for certain
security levels. Hence, we expand the number of signatures and use the square-
root bound as above to compute the parameters for general-use signatures.

This leads to σr = ν ·
√
N · 264 ≈ 241.3 when N = 2048 and Bz ≈ 251.4,

and hence, we need to set q ≈ 253 to get exactly 128 bits of security. We get
signatures of size 11.5 KB, and verification keys of size 13.6 KB.

Since q is approximately twice the number of bits, the dimension of the
lattice needs to be doubled, and we estimate the intermediate communication
to be approximately twice compared to the previous settings.

7 See https://fidoalliance.org for more details.
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7 Extensions

Concrete instantiation and implementation. We have only given a rough
estimate of public key and signature sizes and a conservative communication
estimate in this paper to show that we can achieve practical signatures in a
real-world scenario. We leave it as follow-up work to concretely instantiate the
key generation protocol and the proof systems, and to implement the scheme.

Compression. The most efficient lattice-based public keys, ciphertexts, signa-
tures, and zero-knowledge proofs in the literature use compression techniques
to reduce the size of communication. The compression rate is chosen based on
the hardness of the underlying assumptions so that one gives an approximate
relation instead with a fine-tuned reduction to a problem of the appropriate hard-
ness level, see for example Kyber [SAB+20] or Dilithium [LDK+20] for details.
These techniques can potentially reduce the size of public keys and signatures
in our case as well, in addition to reducing the communication on our protocol
where the security is much higher to ensure the correctness of the distributed
decryption protocol.

Pre-processing keys. Although some bits of the signing key s leak with each
signature, we do not need to run the whole KGen at each key renewal. The
decryption key shares ski are bound by the security guarantees of E , and hence,
they can be reused even if s needs to be refreshed. This also allows s to be
generated in batches and replaced independently from ski.

Reducing communication cost via optimistic approach. Assuming non-
malicious behavior we can omit sending wj and πdsj for j ∈ U , and send only dsj
and ρj for the second round of signing. If signature verification fails then each
signer sends wj and πdsj in a third round as proof of correct computation. In an
honest execution, this saves |U|(|wj |+|πdsj )| bits per party, significantly reducing
the overall communication. For one-time signatures, 395 KB of 750 KB per party
communication is due to πds, which can be removed with this approach.

Removing trapdoor commitments for pre-processing. The pre-processing
in Boschini et al. [BTT22] to remove the trapdoor commitments is an immediate
extension to our protocol, as the committed values in both protocols are similar
to the ones in [DOTT21]. However, the application is a bit trickier and results
in an increase in communication. Unlike their work, the commitments in our
protocol are to the encryptions of per-signature randomness. This would require
each commitment to have an associated NIZK of correct encryption, increasing
the communication size for a set of commitments. This also raises the non-trivial
question of computing NIZKs for random linear combinations of bounded values,
which gives an extensive overhead to the protocol. We leave this as future work.
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Adding robustness. Our protocol does not guarantee robustness where t hon-
est users are able to produce a verifying signature regardless of the malicious
attempts of remaining signers. We rely on the availability of a broadcast chan-
nel like robust Schnorr signatures. This by itself cannot guarantee robustness
as the broadcast channel is often trickier in practice. It is possible to replace
the broadcast channel with alternative solutions like the recent work by Ruffing
et al. [RRJ+22] which is a generic wrapper that adds robustness to any semi-
interactive threshold signature with the help of a semi-trusted coordinator.
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