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Abstract. We study the notion of anonymous credentials with Publicly
Auditable Privacy Revocation (PAPR). PAPR credentials simultaneously
provide conditional user privacy and auditable privacy revocation. The
first property implies that users keep their identity private when authen-
ticating unless and until an appointed authority requests to revoke this
privacy, retroactively. The second property enforces that auditors can
verify whether or not this authority has revoked privacy from an issued
credential (i.e. learned the identity of the user who owns that credential),
holding the authority accountable. In other words, the second property
enriches conditionally anonymous credential systems with transparency
by design, effectively discouraging such systems from being used for mass
surveillance. In this work, we introduce the notion of a PAPR anonymous
credential scheme, formalize it as an ideal functionality, and present con-
structions that are provably secure under standard assumptions in the
Universal Composability framework. The core tool in our PAPR con-
struction is a mechanism for randomly selecting an anonymous commit-
tee which users secret share their identity information towards, while
hiding the identities of the committee members from the authority. As
a consequence, in order to initiate the revocation process for a given
credential, the authority is forced to post a request on a public bulletin
board used as a broadcast channel to contact the anonymous commit-
tee that holds the keys needed to decrypt the identity connected to the
credential. This mechanism makes the user de-anonymization publicly
auditable.
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1 Introduction

Ensuring user privacy while complying with requirements for user accountability
is often a challenging task. As an example, consider an on-line payment platform.
User privacy demands that identities remain unknown while performing on-line
payments, while Know Your Customer and Anti-Money Laundering regulations
demand that misbehaving users should be held accountable. This and many
more sophisticated examples motivate the analysis of the trade-offs between
user privacy and accountability, both from a technical perspective [18, 19, 36, 40,
56], and from an ethical standpoint [1, 45, 59].

The notion of conditional privacy captures settings where a set of authorities
is given the power to revoke a user’s privacy. Unfortunately, the vast majority
of existing systems that provide conditional privacy näıvely trust revocation
authorities to trigger privacy revocation only when a user behaves suspiciously.
Thus, they do not hold authorities accountable, allowing them to surreptitiously
revoke privacy. In particular, third party auditors (e.g. regulatory agencies and
users themselves) cannot verify whether privacy revocation has happened (or
not). As a consequence, user trust in the privacy of such systems is eroded.

We address this issue by introducing the notion of Publicly Auditable Privacy
Revocation (PAPR). In schemes offering conditional privacy, PAPR makes the
actions of authorities transparent to third party auditors, who can monitor when
privacy revocation takes place and thus detect abuse of power by the authorities.
We showcase the power (and challenges) of this notion by showing how to add
PAPR to anonymous credential schemes in order to achieve increased (user)
trust via strong accountability guarantees for both users and authorities.

1.1 Related Works

Privacy Preserving Authentication allows users to authenticate without reveal-
ing their true identities. This feature is crucial for systems with strong user pri-
vacy requirements, and can be achieved in many ways. Anonymous credentials,
envisioned by Chaum in [27] and first realized with provably security in [20], al-
low users to prove ownership of a valid credential without revealing their identity.
Later, anonymous credential schemes with improved efficiency [21, 9, 7] were pro-
posed. Schemes with richer features such as delegation [30] and attributes [21, 7,
12] have also been proposed. More recently, universally composable [22] anony-
mous credentials were proposed in [16, 15]. In anonymous credential schemes,
there are two main strategies to prevent abuse of anonymity: allow users to
authenticate anonymously only a predetermined number of times [58, 17]; or
introduce mechanisms for privacy revocation by a central authority [20].

Conditional Privacy (or revocable privacy [56]) combines user anonymity and
accountability, so that it is possible for an authority to revoke a user’s right to
privacy, should the target user behave in illicit ways. This is often implemented
by giving a selected group of trusted entities the power to revoke confidentiality
or anonymity guarantees as needed. In order to avoid malicious strategies, there
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is an unwillingness by authorities to let users decide who these trusted parties
should be. Instead, a set of central privacy revocation authorities is often used.
This is the case in many applications, including encryption systems [53], e-cash
[14], blind signatures [57] and group signatures [28].

Public Auditability was introduced as a way to make authorities accountable
for their actions and thereby prevent abuse of power. Techniques for public au-
ditability are often application specific. Examples include auditing the behaviour
of pseudonym conversion authorities [19] or auditing that certificate authorities
provide correct public keys [48, 52]. Known approaches to obtain auditability for
privacy revocation authorities in the context of anonymous credentials either
use non-standard techniques, such as witness encryption [42], or rely on a set of
trusted authorities that are assumed not to collude [14, 28, 50, 53, 57].

Anonymous Committees address the problem of ensuring that a set of parties
do not collude, by establishing a committee where the members’ identities are
not known to any party, including the committee members themselves (i.e. a
member knows it is in the committee but does not know the identity of other
members). Several works exist on this problem, e.g. [29, 46, 32, 31]. In this setting,
it is both hard for committee members to collude and for an adversary to subvert
committee members.

In particular, the idea of distributing sensitive information to anonymous
committees (e.g. privacy revocation trapdoors) or having anonymous committees
execute cryptographic protocols has been explored in the context of proactive
secret sharing [11, 41, 26], multiparty computation (MPC) [38] and threshold
encryption [35]. These protocols work in the so called You Only Speak Once
(YOSO) model, where a fresh randomly chosen anonymous committee executes
each round of the protocol, limiting the adversary to probabilistic corruptions
(i.e. when the adversary corrupts any party, it only knows that this party may
be party of the current committee with a certain probability smaller than 1).

Concurrent Work which addresses a similar goal of authority accountability was
proposed in [34]. However, this scheme does not achieve any notion of compos-
ability and cannot be easily proven UC secure. Moreover, the committee that is
expected to cooperate in order to revoke privacy is not hidden, so its publicly
known members may be corrupted by a proactive adversary.

1.2 Our Contributions

We introduce the concept of anonymous credentials with PAPR, which we model
and construct in the Universal Composability [22] framework. We define this
new concept as an ideal functionality supporting standard actions of anonymous
credentials issuance, linkable4 credential showing and privacy revocation. Our

4 While many anonymous credential schemes strive to provide unlinkability among
different showings, we restrict ourselves to the simpler case where different showings
of the same credential can be linked in order to focus on our new PAPR techniques.
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ideal functionality captures the novel PAPR property by guaranteeing that all
parties are notified when the issuer performs privacy revocation on a credential.
Enforcing this guarantee is the main challenge in our construction.

The core of our contribution is a novel mechanism to distributively store the
secret identity connected to a user’s anonymous credential in such a way that
privacy revocation is possible, but any attempt to revoke privacy (by retrieving
the user’s identity) requires a public announcement of the privacy revocation act
of the corresponding credential. Our contributions are summarized as follows:

– We introduce the notion of Publicly Auditable Privacy Revocation (PAPR)
for anonymous credential schemes.

– We provide a security definition of anonymous credentials with PAPR in the
Universal Composability framework (Section 3).

– We construct an efficient anonymous credential scheme that achieves our
PAPR notion with UC security against static malicious adversaries under
standard assumptions (Section 4).

– We show how to modify our construction to obtain a PAPR anonymous
credential scheme that is UC-secure against mobile adversaries via proactive
secret sharing and threshold encryption in the YOSO model (Section 5).

1.3 Overview of our Techniques

At a high level, our approach to create an anonymous credential scheme with
publicly accountable privacy revocation can be summarized in the following three
steps. First, the system maintains one global public list of enrolled parties P
(committee candidates), consisting of party identifiers IDP , e.g., a name, and
identity keys pkP (leveraging a PKI). Second, the issuer produces credentials
for a user, only if: (a) the user proves to have shared their identity key to an
anonymous committee, (b) the committee is composed by a fixed number of other
parties in the system (i.e. from the committee candidates), (c) the selection of
committee parties was provably at random. Third, any credential can be subject
to privacy revocation upon public announcement. The goal of privacy revocation
is to let an authority identify the holder of a given anonymous credential pkC .
Concretely, this is achieved by obtaining the credential holder’s identity key pkP
which is linked to the party’s identity IDP via a public key infrastructure.

We remark that with this approach, no data is actually sent by the user to
the anonymous committee members during credential issuance. Instead the data
is stored within a bulletin board. The bulletin board is also used to publicly
announce privacy revocation since the identities of the (anonymous) committee
members are hidden from the issuer. The main challenge we face in PAPR is
to simultaneously hide the identity of committee members and guarantee the
random selection of the committee.

The Main Protocol The core idea in our main construction of PAPR anonymous
credentials is to enable users to sample a random and anonymous committee in
a verifiable way, using a verifiable shuffle. The protocol leverages a Public Key
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Fig. 1: Mechanics of
∏
PC : 1 Each user Pi locally generates commitments to

hide each committee candidate’s public key. Then, the party shuffles the set of
commitments in a provable way (zkcorr). 2 The output of the shuffle is published
on a public bulletin board (BB) by Pi. 3 The issuer I selects the committee
members for Pi from the shuffled list. 4 Pi secret shares its identity towards the
selected committee members in a publicly verifiable way.

Infrastructure where keys for all m users are registered. Intuitively, to establish
an anonymous committee, a user commits to all user public keys in the list,
shuffles (i.e. permutes and re-randomizes) the initial commitments and proves
that it has done so correctly, posting the resulting commitments and proof to
a Public Bulletin Board (BB). The issuer then selects the committee from the
shuffled commitments by publishing n < m random indices on the BB. This
approach to committee selection is illustrated in Figure 1.

A credential request requires the user to publish secret shares of its identity
encrypted under the public key of the selected committee along with zero knowl-
edge proofs of share validity (i.e. providing a publicly verifiable secret sharing of
its identity). This creates a link between the credential and the encrypted shares
of the identity, without revealing which identity was shared.

Since the issuer cannot learn the identity of the members of the privacy revo-
cation committee, it can only trigger privacy revocation for any issued credential
by posting a public request on the BB. The committee members, monitoring the
BB, reacts to such a request and proceed to reconstruct the user’s identity by
providing the decrypted shares to the issuer via a private channel.

We stress that both during committee establishment and secret sharing to
the committee, all computation and communication is carried out by the user
and the issuer only, without involving the committee members at all.

In this protocol, differently from the YOSO model, we allow the party who
requests a credential to learn the identities of the corresponding committee mem-
bers. The rationale is that, as far as static security is concerned, an adversary
playing as a malicious user can already link the identity of a corrupted com-
mittee member to an anonymous credential. Letting the identities of the elected
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committee members be known to the requesting party in this way thus cre-
ates no incentive of corruption, as it leaks no additional information. We stress
that while the identities of committee members are learned, the selecting party
still has no influence over what parties constitute the committee since they are
selected provably at random.

Proactively Secure Versions Our main protocol is only secure against static ad-
versaries. To withstand mobile adversaries, who can periodically uncorrupt par-
ties and corrupt new parties, a heavier machinery is needed. It is crucial to notice
that mobile adversaries in our setting can 1) corrupt a majority of the committee
that holds revocation data for a corrupted party’s credential, which would allow
an adversary to block privacy revocations, and 2) gradually corrupt a majority
of the committee holding revocation data for an honest party (by moving to a
new disjoint set of parties every epoch), which would allow it to stealthily learn
the honest party’s identity. Such mobile adversaries could be trivially addressed
by computing the steps for issuing and revoking a credential via YOSO MPC,
where each round of the computation is performed by a fresh randomly chosen
fully anonymous committee, preventing the adversary from corrupting the com-
mittee currently holding the computation’s secret state. However, YOSO MPC
is notoriously expensive. Therefore, as a first step towards security against a
mobile adversary, we instead show that we can use proactive secret sharing in
the YOSO model, where committees are not known to any party, and the shared
revocation data is periodically transferred to a new randomly chosen anonymous
committee. While this technique solves the issue in a simple way, it requires the
YOSO committees to hold an amount of data linear in the number of credentials
issued.

An even more efficient alternative for proactive security is to employ YOSO
threshold encryption and adding distributed key generation to our setup phase
to obtain a system wide public encryption key. Issuance is then modified so that
each party publishes an encryption of its identity under this common encryption
key and proves in zero knowledge that they have done so in a way that creates a
link between this encryption and the issued credential. Revocation can then be
done by threshold-decrypting the ciphertext connected to that credential. The
advantages of the latter approach are twofold, it both makes credential issuance
simpler for parties (i.e. they generate one ciphertext instead of encrypting mul-
tiple shares), and improves communication complexity for the YOSO committee
members, since they only have to hold shares of a single secret key.

2 Preliminaries

Throughout the paper λ ∈ N denotes a security parameter. We will use the
notation ~a[i] to denote the i’th element of the vector ~a. Finally, when signing
messages not in the message space of the signature algorithm (e.g. a group
element or a vector), we let the conversion to the message space be implicit.
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2.1 Cryptographic Primitives

Our construction employs a key-private encryption scheme (i.e. an encryption
which hides the recipient’s public key) Enc = (Setup,KeyGen,Encrypt,Decrypt),
a signature scheme Sig = (Setup,KeyGen,Sign,Verify), a commitment scheme
C = (Setup,Commit, Open), and Shamir Secret Sharing [55]. Details on these
schemes are presented in Appendix A.

We further use two special types of digital signature schemes, structure pre-
serving signatures (SPSig) [3], and blind signatures (BSig) [54]. Structure pre-
serving signatures are digital signatures where signatures σ and messages m
belong to the same space. Blind signatures are a variant of signatures where the
signer does not learn the message she signs. In known constructions the blind
signature generation procedure is an interactive protocol between the signer and
the party wishing to have a message signed.

We use a non-interactive zero-knowledge (NIZK) proof of shuffle correctness
for commitments defined as the triple of algorithms Shuf = (Setup,Prove,Verify)
as per Definition 1. This NIZK allows for proving that a certain (public) vector
of commitments was obtained by re-randomizing a given (public) vector of com-
mitments and permuting the re-randomized commitments without revealing the
randomness used for re-randomization nor the permutation. This NIZK can be
efficiently realized from the proof of shuffle correctness for ciphertexts of [8]. In
our setting, we view an ElGamal ciphertext as a commitment and use proofs of
commitment shuffle correctness to convince a verifier that two distinct sets of
commitments yield the same set of openings. The definitions of completeness,
soundness and zero-knowledge for Shuf follow the same structure and aims as in
[8] and are available in Appendix A.

Definition 1 (Provable Shuffle of Commitments). A proof system Shuf =
(Setup,Prove,Verify) for proving shuffle of commitments generated by a commit-
ment scheme C consists of the following algorithms.

Shuf.Setup(1λ): The setup algorithm takes as input the security parameter
and outputs public parameters pp, often referred to as the common reference
string (implicitly input to all subsequent algorithms).

Shuf.Prove(n, ρ, {ci}i∈[n]) −→ ({c′i}i∈[n], π): The provable shuffle algorithm
takes as input an integer n, a permutation ρ over the set {1, . . . , n}, and n com-
mitments {ci}i∈[n] generated by C.Commit. It returns a list of n commitments
{c′i}i∈[n] and a proof π.

Shuf.Verify(n, {ci}i∈[n], {c′i}i∈[n], π) −→ v: The verification algorithm takes as
input an integer n, two sets of n commitments and a proof π. It returns 1 (accept)
if π is a valid proof for the relation “there exists a set M = {mi}i∈[n] and a per-
mutation ρ ∈ Sn s.t. {C.Open(ci,mi, ri)}i∈[n] = {C.Open(c′ρ(i),mρ(i), r

′
ρi}i∈[n]”,

where the randomnesses ri, r
′
i are extracted from π. Otherwise it returns 0 (re-

ject).
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2.2 Universal Composability and Ideal Functionalities

In the Universal Composability (UC) framework [22] the security of a protocol
is analyzed under the real-world/ideal-world paradigm, i.e., by comparing the
real world execution of a protocol with an ideal world interaction with the ideal
functionality that it realizes. Protocols that are secure in the UC framework
can be arbitrarily composed with each other without compromising security. In
the ideal world execution, dummy parties (potentially controlled by an ideal
adversary S, referred to as the simulator) interact with an ideal functionality
F . In the real world execution, parties (potentially corrupted by a real world
adversary A) interact with each other by following a protocol π that realizes
the ideal functionality F . The real and ideal executions are controlled by the
environment Z, an entity that controls inputs and reads the outputs of each
party, A and S. The protocol π securely realizes F in the UC framework if the
environment Z cannot efficiently distinguish between the real world execution
with π and A and the ideal world execution with S and F .

Specifically we make use of a set of ideal functionalities FBB , FPKI , FZK and
FNIZK . These functionalities are described in detail in Appendix B, we here only
give an overview of them. Briefly, the bulletin board functionality FBB , works so
that any party can publish a message m to the board by sending (post, sid,m)
and read the contents of the board by sending (read, sid). FPKI is a function-
ality where each party can only send (post, sid,m) once and can retrieve party
P’s message as (read, sid,P). The functionality for interactive zero knowledge,
FZK is defined so that a prover P can send (zk-prover, sid,V, x, w) to FZK ,
which sends (zk-proof, sid, x) to the verifier V only if w is a witness for the
statement x. Analogously, the functionality for non-interactive zero knowledge
FNIZK is defined by (prove, sid, x, w), returning a proof π guaranteeing that
w is a witness for the statement x, and (verify, sid, x, π), outputting 1 for a
valid π for the statement x.

3 Defining PAPR for Anonymous Credentials

In this section we introduce the notion of a Publicly Auditable Privacy Revoca-
tion (PAPR) Anonymous Credential Scheme and describe an ideal functionality
FPC for it. Section 4 presents our protocol ΠPC that realizes FPC based on
efficient and well-known building blocks. Section 4.1 proves ΠPC secure in the
presence of a static, malicious adversary in the UC framework [22].

Defining PAPR Credentials We define the notion of PAPR credentials as the
ideal functionality FPC presented in Figure 3. This functionality provides stan-
dard anonymous credential interfaces supporting requesting credentials (cred-
req), issuing credentials (issue-cred), and showing credentials (show-cred).
While any party may request a credential, only a special party called the issuer
may approve such a request. As usual, requesting an anonymous credential and
later showing it does not reveal any information about the credential owner’s
identity to the issuer nor to the party who is shown a credential. However, we do
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not aim at achieving unlinkability across multiple credential showings. In order to
capture the novel PAPR property, the identity revocation interface (announce-
rev) allows the issuer to request the identity of the owner of a given credential
at any time, but this also immediately informs all other parties that privacy has
been revoked for that credential.

Functionality FPC

FPC is parameterized by a credential space PK. The functionality interacts with
a set of parties P = {P1, . . . ,Pm}, a special party called the issuer I = Pm+1 and
the ideal adversary S. It keeps a list Lcred of credentials and a setup list Lsetup,
both initialized to ∅.
Setup: On input (setup, sid) from Pi, add that party to the list Lsetup.

Credential Request: On input (cred-req, sid) from Pi, if Lsetup 6= P ∪ I, then
ignore the request. If Pi is honest, sample a random pkCi from PK and send
(cred-req, sid) to S. Otherwise send (key?, sid) to S and await response (key,
sid, pkCi). Finally write (Pi, pkCi , 0) to Lcred and send (cred-req, sid, pkCi) to I.

Credential Issuance: On input (issue-cred, sid, pkCi) from I, if (Pi, pkCi , 0) ∈
Lcred, update the entry to (Pi, pkCi , 1) and send (cred, sid, pkCi) to Pi and S. Else
write (⊥, pkCi , 1) to Lcred.

Credential Showing: On input (show-cred, sid, pkCi ,Pj) from Pi, if
(·, pkCi , 1) /∈ Lcred, ignore the request. Send (valid-cred, sid, pkCi) to Pj and
(valid-cred, sid, pkCi ,Pj) to S.

Privacy Revocation: On input (announce-rev, sid, pkCi) by I, send
(announce-rev, sid, pkCi) to all Pj ∈ P and S. If (·, pkCi , 1) /∈ Lcred, then ignore
the request. If (⊥, pkCi , 1) ∈ Lcred, then delete (⊥, pkCi , 1) from Lcred, and ignore
the request. Else, (Pi, pkCi , 1) ∈ Lcred, then delete (Pi, pkCi , 1) from Lcred, output
(identity, sid,Pi, pkCi) to S and send a delayed output (identity, sid,Pi, pkCi)
to I.

Fig. 2: Ideal functionality FPC for PAPR Credentials.

4 Realizing PAPR for Anonymous Credentials

In Figures 3 and 5 we describe protocol
∏
PC for anonymous credentials with

PAPR. We consider malicious adversaries that may deviate from the protocol in
any arbitrary way. Moreover, in this section we consider the static case, where
the adversary is only allowed to corrupt parties before protocol execution starts
and parties remain corrupted (or not) throughout the execution. We assume that
parties have access to synchronous communication channels, i.e., all messages
are delivered with a known maximum delay. To be concise, in the protocol de-
scription we let all reads from FBB and FPKI be implicit. It is also implicit that
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if a variable that is part of a procedure (e.g., a public key) is not yet available
on FPKI or FBB , the current procedure will terminate without output (i.e., ig-
nore the procedure call). Lastly, to avoid undefined behaviour while keeping the
protocol description simple, whenever more than one valid message with equal
values exist on FBB , only the chronologically first message shall be considered.
We further assume that a user remains anonymous when posting to FBB as is
the case in the YOSO model.

Using Committees We assume that committees are formed by selecting uni-
formly at random the smallest number n of parties from set P = {P1, . . . ,Pm}
such that every committee is guaranteed an honest majority with overwhelming
probability given a certain corruption ratio. Selecting committees in this way
has been explored extensively in [33], where concrete numerical examples of its
size are provided. Indeed, a few examples are available in Section 6.

Since all parties are potential committee members, they are expected to mon-
itor the bulletin board. Notice, however, that our protocol works with privacy
revocation committees selected from any set of parties (potentially disjoint from
the set of parties who request credentials, as discussed in Section 6.2) as long as
these committees have honest majority with overwhelming probability.

Protocol Overview We now give a step-by-step overview of protocol
∏
PC .

Setup The Issuer Setup and User Setup procedures consist of enrolling keys
for the parties in the system. Note that, by registering its identity key pkPi to
the PKI, the user key and identity are linked. This link forms the basis for user
identification during privacy revocation.

Before a credential can be issued, a committee with which each party’s iden-
tity key will be shared must be established. Each party first executes the Hide
Committee Candidates procedure. In step (a) the party hides the order of
the committee candidates using a verifiably random shuffle, and is then (anony-
mously) bound to the shuffle by signing it with skT . In step (b), it publishes the
shuffle, proof, and signature on the bulletin board.

The issuer then in step (a) of the Sample Committee procedure verifies
that the requesting party has published a single signed and valid shuffle. If so,
in step (b) it responds with a set of random indexes, indicating which of the

shuffled values in ~f ′ shall constitute the committee.

Credential Issuance In the Credential Request procedure, a user in step (1)

collects the public keys of the committee as indicated by I into ~hi, It also puts
the corresponding commitments to the committee keys into ~ci. It then in step
(2) produces a vector of encrypted shares ~Ei of its enrolled identity public key

pkPi for the committee in ~hi. To allow other users to know whether they are in
the committee, a set of indicators, ~qi, is also produced. A party knows it is the
j’th member of a committee if ~qi[j] decrypts to its public key. Before generating
credential keys in step (4) and posting the credential request in step (5), a party
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Protocol
∏
PC (First Part)

Protocol
∏
PC is executed by an issuer I and parties Pi ∈ {P1, . . . ,Pm} interacting

with functionalities FPKI , FBB , FNIZK and FZK .
∏
PC is parameterized by a

constant n ∈ Z such that sampling n parties out of {P1, . . . ,Pm} yields an honest
majority except with negligible probabilty.
Setup: The issuer I and all parties Pi proceed as follows:
1. (Issuer Setup) On input (setup, sid), I generates a blind signature key-

pair (pkB , skB) ← BSig.KeyGen(1λ) with λ ∈ N being a security param-
eter, an enrollment keypair (pkE , skE) ← SPSig.KeyGen(pp), a revocation
keypair (pkR, skR) ← Sig.KeyGen(pp) and an issuance keypair (pkI , skI) ←
Sig.KeyGen(pp) and sends (Report, sid, (pkB , pkE , pkR, pkI)) to FPKI .

2. (User Setup) On input (setup, sid), Pi generates user identity keys
(pkPi , skPi) ← Sig.KeyGen(pp) and sends (Report, sid, pkPi) to FPKI . Addi-
tionally Pi generates a single-use token keypair (pkTi , skTi) ← Sig.KeyGen(pp)
and interacts with I over a secure channel to obtain signatures σE(pkPi) ←
SPSig.Sign(skE , pkPi). Finally Pi runs BSig.User(pkB , pkTi) with I running
BSig.Sign(skB) so as to compute the blind signature σB(pkTi).

3. (Hide Committee Candidates) Let ~pkP be the vector of all pkPj and ~f the

vector, s.t. ~f [j] = C.Commit( ~pkP [j], 1), then Pi proceeds as follows:

(a) Sample a random permutation ρi and verifiably shuffle ~f as (~f ′i , πρi) =

Shuf.Prove(m, ρi, ~f). Sign the shuffle as σTi(
~f ′i)← Sig.Sign(skTi ,

~f ′i),

(b) Send (post, sid, (hide, ~f ′i , πρi , pkTi , σTi(
~f ′i), σB(pkTi)) to FBB .

4. (Sample Committee) When (post, sid, (hide, ~f ′j , πρj , pkTj , σTj (
~f ′j), σB(pkTj ))

appers on FBB , I proceeds as follows:
(a) Check that 1 = BSig.Verify(pkB , pkTj , σB(pkTj )), 1 = Sig.Verify(σTj (

~f ′j))

and 1 = Shuf.Verify(m, ~f, ~f ′j , πρj ).

(b) If true, let ~bj where ~bj [i]
$←− Z∗m+1, |~bj | = n, indicate the indexes se-

lected for the committee, sign ~bj as σI(~bj)← Sig.Sign(skI ,~bj), send (post,

sid, (sample, ~f ′j ,~bj , σI(~f
′
j ||~bj))) to FBB and store (~f ′j ,~bj) internally.

Credential Request: On input (cred-req, sid), if there is an entry (sample, ~f ′j ,~bj ,

σI(~f
′
j ||~bj)) where 1 = Sig.Verify(pkI , σI(

~f ′j ||~bj) on FBB , Pi proceeds as follows:

1. Define ~ai[j] = ~pkP [ρ(j)], ~hi[j] = ~ai[~bi[j]] and ~ci[j] = ~f ′i [~bi[j]] for j = 1, . . . , n.
2. Generate identity shares via Shamir secret sharing, i.e. sample a random

polynomial f() of degree dn
2
e where f(0) = pkPi and set ~si[j] = f(j) for

j = 1, . . . , n. Encrypt the shares under the committee public keys obtaining
~Ei[j] = Enc.Encrypt(si[j],~hi[j]) and construct committee member indicators

~qi[j]← Enc.Encrypt(~hi[j],~hi[j]) for j = 1, . . . , n.
3. Prove correct escrow by sending (prove, sid, xi, w) to FNIZK and getting

(proof, sid, πesci), where xi and w are defined as in zkesc (Figure 4).
4. Generate user credential keys (pkCi , skCi)← Sig.KeyGen(pp).

5. Sends (post, sid, (req, ~Ei, ~f
′
i , ~qi, pkCi , xi, πesci)) to FBB .

Fig. 3:
∏
PC - Setup, Committee Establishment and Credential Request.
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must first prove correct sharing in step (3). We provide a detailed description of
the proven relation zkesc in the next subsection below.

When the issuer observes a credential request on the bulletin board it first
executes step (1) of the Credential Issuance procedure to verify that a com-
mittee has been formed. Step (2) is executed to verify that sharing is done
correctly by the requesting user. If all checks pass, step (3) is executed to sign
the credential and publish it.

zkesc{skP , pkP , σE(pkP),~h,~s, ~r | zkID ∧ zkshare}

1 zkID{skP , pkP , σE(pkP) |
Sig.VerifyKey(skP , pkP)∧
SPSig.Verify(pkE , pkP , σE(pkP))}

2 zkshare{~h,~s, pkP |
2.1 pkP = SShare.Reconstruct(~s)∧
2.2 ∀j ∈ {1, . . . , n} :

2.3
~E[j] = Enc.Encrypt(~s[j],~h[j])∧

2.4 C.Open(~c[j],~h[j], ~r[j])∧
2.5 ~q[j] = Enc.Encrypt(~h[j],~h[j]) }

Fig. 4: Elements of the zkesc statement. Intuitively, zkID states that the proving
user controls the enrolled identity key pkP . zkshare states that the identity key

pkU has been correctly shared to the committee members in ~h.

Proving Correct Escrow The correctness of the identity escrow in a credential
request is defined by the relation zkesc. Figure 4 defines zkesc on a high level, i.e.
by using procedure definitions. To simplify notation, we here define a procedure
for knowledge of a private key, Sig.VerifyKey(sk, pk)→ v, which indicates if sk, pk
is a valid keypair with respect to Sig.KeyGen(.).

For illustrative purposes, we define zkesc as a conjunction, where zkesc =
{zkID ∧ zkshare}. The first part, 1 zkID, states that the prover is the owner
of pkP , i.e it knows secret key skP , and an issuer signature, σE(pkP), on pkP .
The second part, 2 zkshare is a statement that 2.1 the shares are constructed
correctly, i.e. any set of k shares will reconstruct to the users public key pkP .
Further, 2.2 each of these shares, 2.3 is correctly encrypted, 2.4 for the correct
committee member, 2.5 which is correctly indicated in ~q.

Credential Showing The Credential Showing and Verify Credential Show-
ing procedures are straightforward zero knowledge proofs of knowledge of the
credential private key skCi for the public key pkCi (and when verifying, also
checking that the shown credential has been issued by I and that the credential
is not revoked).

Privacy Revocation To learn the secret identity behind a credential public key
pkCj , i.e. to revoke the privacy, the issuer (and only the issuer) can execute
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Protocol
∏
PC (Second Part)

Credential Issuance: On input (issue-cred, sid, pki), if there is an entry

(req, ~Ej , ~f
′
j , ~qj , pkCj , xi, πesci) on FBB , I does the following:

1. If no internal entry (~f ′j ,~bj) exists, ignore the next steps.
2. Send (verify, sid, xj , πescj ) to FNIZK , await the reply (verification, sid, v).

If 0 = v, ignore the next steps.
3. Send (post, sid, issue, pkCj , σI(pkCj )← Sig.Sign(skI , pkCj )) to FBB .

Credential showing:

1. (Credential showing) On input (show-cred, sid, pkCi ,Pj), Pi proves ownership
of pkCi by sending (zk-prover, sid,Pj , x, skCi) to FZK where x is a statement
for the relation zkcred{skCi | Sig.VerifyKey(skCi , pkCi)}.

2. (Verify Credential Showing) Any party, upon receiving (zk-proof, sid, x) for
ownership of pkCj from FZK additionally verifies that FBB contains an entry

(issue, pkCj , σI(pkCj )) s.t. Sig.Verify(pkI , pkCj , σI(pkCj )) = 1, and contains no

entry (rev, pkCj , σR(pkCj )) s.t. Sig.Verify(pkR, pkCj , σR(pkCj )) = 1.

Privacy Revocation:

1. (Request Privacy Revocation) On input (announce-rev, sid, pkCj ), I requests

privacy revocation for pkCj , by generating σR(pkCj )← Sig.Sign(skR, pkCj ) and

sending (post, sid, (rev, pkCj , σR(pkCj ))), to FBB .

2. (Privacy Revocation Response) A user, Pi, observing an entry
(rev, pkCj , σR(pkCj )) on FBB (with a valid signature):
(a) If no entries (req, ~Ej , ·, ~qj , pkCj , ·) and (issue, pkCj , σI(pkCj )) exists on
FBB , ignore the next steps.

(b) If for no k, pkPi = Enc.Decrypt(~qj [k], skPi), ignore the next steps.

(c) Calculates sk = Enc.Decrypt( ~Ej [k], skPi).
(d) Constructs a statement xk for the relation zkrevk{skPi | sk =

Enc.Decrypt( ~Ej [k], skPi) ∧ pkPi = Enc.Decrypt(~qj [k], skPi) ∧
Sign.VerifyKey(skPi , pkPi}) and sends the message (prove, sid, xk, skPi)
to FNIZK and await response (proof, sid, πrevk ).

(e) Encrypt πrevk and sk for the issuer as s̃k ← Enc.Encrypt(sk, pkR), π̃revk ←
Enc.Encrypt(πrevk , pkR).

(f) Sends a message (rev-share, sid, pkCj , s̃k, xkπ̃revk ), to I.

3. (Reconstruct Revoked Identity) Upon receiving a message (rev-share,
sid, pkCj , s̃k, xkπ̃revk ), I uses skI to decrypt s̃k and π̃revk , to obtain sk and

πrevk , and verifies πrevk by sending (verify, sid, xk, πrevk ) to FNIZK . On re-
ply (verification, sid, 1), I adds sk to its internal set SpkCj

−shares. If now

|SpkCj
−shares| = dn

2
e + 1, calculate the revoked identity key by Lagrange in-

terpolating the polynomial f ′ defined by the shares in SpkCj−shares and then
calculate the identity public key of the revoked user as f ′(0) = pkPj .

Fig. 5:
∏
PC - Credential Issuance, Credential Showing and Privacy Revocation.
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the Request Privacy Revocation procedure. This procedure consists of pub-
lishing an announcement of the request for privacy revocation, signed with the
privacy revocation key. Any (honest) user Pi, observing such a request executes
the Privacy Revocation Response procedure, where it first checks that a
credential exists for this credential in step (a). If so, in step (b) all committee
member indicators in ~qj of that request are checked by decrypting them with
the responding users identity secret key skPi . If decryption results in the users
identity public key pkPi for the k’th indicator, Pi holds the k’th seat in the com-
mittee. If so, it (c) decrypts the k’th share, (d) proves correct decryption and
committee membership, and (e) encrypts both the share and proof (since the
proof reveals the share) for the issuer, and (f) sends the ciphertexts to the issuer.
The issuer, when receiving such a share, executes the Reconstruct Revoked
Identity procedure to decrypt and check the proof. When it has obtained a
majority of the shares, it reconstructs the revoked identity and obtains pkPj .

4.1 Security Analysis of
∏

PC

We now prove that
∏
PC realizes FPC in the presence of a static malicious

adversary capable of corrupting up to m
2 − 1 users.

Theorem 1. Let Sig be a signature scheme, BSig be a blind signature scheme,
SPSig be a structure preserving signature scheme, SShare be a (t, n)−threshold se-
cret sharing scheme, C be a commitment scheme, Enc be a key-private IND-CPA-
secure public-key encryption scheme and Shuf be a zero-knowledge proof of shuffle
correctness. Protocol

∏
PC UC-realizes FPC in the (FBB, FPKI , FZK , FNIZK)-

hybrid model with security against a static active adversary A corrupting a mi-
nority of P1, . . . ,Pm such that a committee of size n ≤ m has honest majority
with overwhelming probability.

Proof. LetA be a static adversary allowed to corrupt up to m/2−1 parties before
the start of the execution, which remain corrupt throughout the execution. We
prove Theorem 1 by showing that for each A, there exists a simulator SPC so
that any environment Z has a negligible advantage in determining whether it is
interacting with A and

∏
PC or SPC and FPC . SPC is described in Figures 6

and 7.

Indistinguishably of Setup The vectors ~f (~f [j] = C.Commit( ~pkP [j], 1)) and ~f ′i
((~f ′i , πρi) = Shuf.Prove(m, ρi, ~f)) are indistinguishable from those computed in
a real execution due to the hiding property of commitments. Similarly, πρi is
indistinguishable due to the zero knowledge property of zero knowledge proofs.
Thus, Z cannot distinguish this step of the ideal world execution with SPC and
FPC from the real world execution of

∏
PC with A.

Indistinguishably of Credential Requests The simulated proof πesci is indistigu-
ishable from the one computed in a real execution since SPC perfectly emulates
FNIZK . Thus, Z cannot distinguish this step of the ideal world execution with
SPC and FPC from the real world execution of

∏
PC with A.
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Indistinguishably Credential Issuance Here the creation of a credential is sim-
ulated without having any information about the identity of the honest party
who requests the credential in the real world execution.

Indistinguishably of Credential Showings SPC simulates the showing of a cre-
dential without having any information about the identity of the honest party
who shows it in the real world execution. (zk-proof, sid, x) is indistinguishable
from the one computed in the real world execution since SPC perfectly emulates
FZK . Thus, Z cannot distinguish this step of the ideal world execution with
SPC and FPC from the real world execution of

∏
PC with A.

Indistinguishably of Privacy Revocation When simulating honest users responses
to privacy revocation requests, πrevk , computed for the adjusted shares s′k, is
indistinguishable from the one computed in the real world execution since SPC
perfectly emulates FNIZK . Thus, Z cannot distinguish this step of the ideal
world execution with SPC and FPC from the real world execution of

∏
PC with

A.
Notice that throughout the simulation SPC interacts with A exactly as an

honest party would in
∏
PC , except when simulating credential issuance and

showing for honest parties. In these cases, SPC simulates the creation of a cre-
dential and its showing without having any information about the identity of
the honest party who requests/shows the credential. However, this is indistin-
guishable from the real world execution since these proofs are done via FNIZK
and FZK , which produces messages distributed exactly as in a real world ex-
ecution. Moreover, by extracting witnesses from proofs done by A via FNIZK
and FZK , SPC activates FPC with inputs that match A’s behavior. Hence, Z
cannot distinguish the ideal world execution with SPC and FPC from the real
world execution of

∏
PC with A. �

5 From Static to Proactive Security

Protocol
∏
PC as described in the previous sections realizes a PAPR credential

scheme using efficient building blocks, in the static security setting. In this sec-
tion, we sketch how to construct proactively secure PAPR Credentials, at the
price of using less efficient building blocks.

Maintaining the revocation committee secret in the presence of a mobile
adversary naturally puts us in the YOSO setting: the identities of committee
members must remain anonymous, so before they act in a revocation process (or
before) the adversary moves, they must re-share the revocation information they
hold towards a new anonymous committee. While it would be straightforward
to design a protocol realizing FPC by use of YOSO MPC, it would be terribly
inefficient, since it would require computing our credential issuance procedure
as part of a very complex YOSO MPC computation where a fresh anonymous
committee performs each round. Instead, we propose two alternative and more
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Simulator SPC (First Part)

SPC interacts with a copy of the adversary A and the environment Z. SPC forwards
all messages between A and Z. SPC acts as FBB , FPKI , FZK and FNIZK towards
A, by following their respective descriptions (unless explicitly stated).

Setup:
1. (Issuer Setup) Run the

∏
PC procedure for Issuer Setup if the issuer is honest

and send (Setup, sid) to FPC .
2. (User Setup) Run the

∏
PC procedure for User Setup for all honest users, then

send (Setup, sid) to FPC for all honest users.
For each (post, sid, ·) sent to FPKI by a corrupt party, send (Setup, sid) to FPC .

3. (Hide Committee Candidates) Run the Hide Committee Candidates proce-
dure for each honest user.

4. (Sample Committee) If the issuer is honest, then for each (post,

sid, (hide, ~f ′j , πρj , pkTj , σTj (
~f ′j), σB(pkTj )) sent to FBB , (either by a corrupt Pj

or when simulating an honest Pj), the simulator executes step (1) of the Sample
Committee procedure. If the checks verify, also execute step (2).

Credential Request: If the simulator receives a message (cred-req, sid) from
FPC , an honest user has requested a credential. To simulate this, SPC executes
the Credential Request procedure in

∏
PC , but does so using arbitrary values

for skPi , pkPi and σE(pkPi) and a simulated proof πesci for the arbitrary values.
If later SPC receives a message for FNIZK , (verify, sid, xi, πesci) it responds with
(verification, sid, 1) instead of following the FNIZK description. If the simulator

receives (req, ~Ei, ~f
′
i , ~qi, pkCi , xi, πesci) from a corrupt user Pi, intended for FBB ,

the simulator executes checks in step (1) and (2) of the Credential Issuance
procedure. If the checks clear, the request is valid and the simulator then sends
(cred-req, sid) to FPC , awaits the message (key?, sid) and responds by sending
(key, sid, pkCi) to FPC .
Credential Issuance: If I is honest, on message (cred, sid, pkCj ) from FPC sim-

ulate by executing step (3) of the Credential Issuance procedure. If instead I
is corrupt, for each message (post, sid, issue, pkCj , σI(pkCj )) sent to FBB , SPC
sends (issue-cred, sid, pkCj ) to FPC if σI(pkCj ) is a valid signature on pkCj by I.
Credential showing:

1. (Credential showing) Whenever the simulator receives (valid-cred, sid, pkCi ,Pj)
from FPC , SPC simulates a successful show of credential pkCi to party Pj by
simulating a successful proof of relation zkcred via FZK with Pj acting as verifier,
resulting in Pj receiving (zk-proof, sid, xi) from FZK .

2. (Verify Credential Showing) Whenever the simulator receives a message
(zk-prover, sid,Pj , xi, skCi), where xi is a statement for zkcred{skCi |
Sig.VerifyKey(skCi , pkCi)}, from a corrupt party Pi, intended for FZK , it veri-
fies the proof by following the description of FZK . If the verification clears, send
(show-cred, sid, pkCi ,Pj) to FPC .

Fig. 6: Simulator SPC for protocol
∏
PC .

efficient constructions. The first demonstrates how to wrap our protocol
∏
PC
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Simulator SPC (Second Part)

Privacy Revocation:

1. (Request Privacy Revocation) If the issuer is honest, and the simulator receives
a message (announce-rev, sid, pkCj ) from FPC , it executes the Request Pri-

vacy Revocation procedure in
∏
PC to simulate the issuer. If the issuer is

corrupt and SPC receives (post, sid, rev, pkCj , σR(pkCj )), intended for FBB
where σR(pkCj ) is a valid revocation signature on pkCj , the simulator sends

(announce-rev, sid, pkCj ) to FPC .

2. (Reconstruct Revoked Identity) When SPC receives a message with the identity
of a user (identity, sid,Pi, pkCi), it must simulate responses from the honest
committee members. If I is honest or Pi is corrupt, SPC thus executes the∏
PC procedure for Privacy Revocation Response for each honest Pj .

If I is corrupt and Pi is honest the simulator needs to ”adjust” the shares which
the honest committee members respond with, so that the shares reconstruct to
pkPi rather that the arbitrary value used during simulation of the credential
request. Therefore the simulator first constructs a polynomial f of degree dn

2
e−1

where f(pkPi) = 0 and f(k) = ~si[k] for each k where ρi(k) ∈ ~bi (i.e. for the
corrupt users in the simulated committee, don’t change the shares).

Then for each k where ρi(k) /∈ ~bi (honest users) let s′k = f(k) and construct
a statement xk for relation zkrevk with s′k. If later the simulator receives a
message for FNIZK , (verify, sid, xk, πrevk ) it responds with (verification,
sid, 1) instead of following the FNIZK description. Honest committee members
are then simulated by executing step (e) and (f) of the Privacy Revocation
Response procedure using s′k and πrevk as constructed by the simulator.

Finally, when A stops, output whatever A outputs to Z.

Fig. 7: Simulator SPC for protocol
∏
PC .

with a YOSO resharing procedure to obtain proactive security. The second im-
proves efficiency further by using YOSO Threshold Encryption directly.

5.1 Modeling Proactive Security

We model proactive security, similarly to [47], by each party in the system having
an epoch tape which maintains an integer epoch initialized to 0 at the start of
the execution. The execution proceeds in phases which alternate between an
operational phase and a refreshing phase, starting with the operational phase.
In contrast to [47], we force every party to have the same value as epoch counter.

Epochs The refreshing stage is started by the adversary sending refresh to all
parties. Refresh of individual parties is not allowed. Upon receiving the refresh

command, a party increases epoch by 1 and executes its instructions for refresh-
ment. Once each party has completed its refreshment instructions and handed
over execution to Z, a new operational phase begins.
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Corruptions A mobile adversary A can corrupt or uncorrupt any party Pi after
a refreshing phase ends (i.e. after the last party has handed over execution to
Z) but before the next operational phase starts (i.e. before the first activation
of a party in the operational phase). After A moves, every party Pi remains
corrupted (or honest) throughout that entire operational phase. At no time can
A corrupt more than dm2 e − 1 parties.

5.2 Proactive Security Through YOSO Resharing

Let us now describe how to modify
∏
PC to obtain proactive security by adding

a re-sharing procedure in the YOSO model. Resharing is a standard procedure
in proactive secret sharing that allows a set of parties to transfer a shared secret
for which they hold shares to a second set of parties who obtain fresh shares
independent from the original ones. On a high level, YOSO resharing allows for
a current committee to reshare a secret towards a future anonymous commit-
tee while only speaking once. Such a YOSO resharing procedure can be added
to our PAPR protocol without modifying existing procedures. That is, we use∏
PC as it is, but add a YOSO reshare procedure for maintaining the escrowed

user identities over different epochs. Before every new epoch starts, current re-
vocation committees reshare the identity information they hold towards a single
anonymous committee that holds this information in the next epoch. We refer
to this protocol as

∏
PC−P . The approach is illustrated in Figure 8.

P1

...

Pn

... ...

Epoch 1 Epoch k

Issuance Resharing

pkP1

pkPn

= Committee

Fig. 8: Functioning of
∏
PC−P with YOSO resharing: as in the issuance procedure

of
∏
PC , initially each user Pi secret shares its identity pkPi towards a different

designated hidden committee. Subsequently, before the start of each epoch, the
committees reshare the identities towards a new single anonymous committee.

A YOSO resharing scheme can be abstractly described as having a com-
mittee establishment part, where all parties jointly elect the new committee
without learning it, and a resharing part, where the current committee prov-
ably reshares the committee secret to the new committee without learning or
revealing the new committee members. Multiple choices are available for im-
plementing YOSO resharing, e.g. Evolving-Committee Proactive Secret Sharing
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[11], Random-Index Private Information Retrieval [39] plus standard resharing
techniques, or YOLO YOSO Anonymous Committee PVSS Resharing [26]. We
refrain from picking a particular scheme, and instead use the committee es-
tablishment and resharing procedures abstractly, as described below:

Committee Establishment During committee establishment, a single com-
mittee for the next epoch of size n is elected from all m committee candidates,
without revealing the committee to any party. This procedure will output a set
of anonymous public keys which constitute the committee keys.

Resharing During resharing, each member of the current epoch committee
re-shares the secret using the anonymous public keys of the next epoch’s com-
mittee. This procedure will thus output a set of anonymously encrypted shares
of the secret. Before these encrypted shares are published, the old shares must
be made inaccessible, e.g. by deleting them.

Figure 9 describes how to add a refresh procedure based on YOSO-Resharing
to

∏
PC in order to realize FPC proactive security against a mobile adversary A.

Protocol
∏
PC−P is obtained by executing

∏
PC with the modifications described

in Figure 9 in order to securely refresh shares of revocation information across
epoch changes. We here indicate instances of functionalities specific to an epoch
be indicated in the superscript, so that F1

PKI is the shared instance during the
first epoch and F2

PKI the shared instance during the second.

Hold Revocation Responses: Postpone revocation requests until refresh phase.
Reshare: Pi on command refresh from Z does:

(a) Generate new keys (pk′Pi , sk
′
Pi)← Sig.KeyGen(pp), replace Fepoch

PKI with Fepoch + 1
PKI

and send (post, sid, pk′Pi) to Fepoch + 1
PKI .

(b) Execute the YOSO Committee Establishment procedure, obtaining the
anonymous committee public keys for the epoch + 1 committee.

(c) For each postponed revocation request for credentials issued in the current
epoch, execute steps (1) to (5) of Privacy Revocation Response in

∏
PC ,

i.e. stopping before sending shares to I.
(d) If Pi is part of the YOSO committee for the current epoch, handle any revoca-

tion requests for credentials issued during previous epochs by executing steps
(3) to (5) of the Privacy Revocation Response procedure in

∏
PC .

(e) Erase skPi . Set skPi = sk′Pi , pkPi = pk′Pi and epoch = epoch + 1.
(f) For all credentials that have not been revoked, execute YOSO resharing of es-

crowed identities towards the epoch + 1 committee. For all revocation requests
handled in steps (c) or (d), post the results by executing step (6) of the Privacy
Revocation Response procedure in

∏
PC .

Wrap: Any other input is forwarded to
∏
PC .

Fig. 9: Sketch of proactive security wrapper protocol
∏
PC−P .
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Assuming an ideal functionality FY PSS capturing YOSO proactive secret
sharing with the properties outlined above, the security of

∏
PC−P is captured

as follows. Notice that such a FY PSS can be obtained via the techniques of [38,
39, 26] plus UC-secure NIZKs modelled FNIZK .

Theorem 2. (Informal) Let Sig be a signature scheme, BSig be a blind sig-
nature scheme, SPSig be a structure preserving signature scheme, SShare be a
(t, n)−threshold secret sharing scheme, C be a commitment scheme, Enc be a
key-private IND-CPA-secure public-key encryption scheme and Shuf be a zero-
knowledge proof of shuffle correctness. Protocol

∏
PC−P UC-realizes FPC in

the (FBB, FPKI , FZK , FNIZK , FY PSS)-hybrid model, with proactive secu-
rity against a mobile active adversary A corrupting a minority of parties in
P1, . . . ,Pm so that any committee of size n ≤ m has honest majority, with over-
whelming probability.

5.3 Proactive Security Through YOSO Threshold Encryption

While the protocol in Figure 9 shows how to wrap
∏
PC with a YOSO-resharing

step to obtain proactive security, it is possible to realize a proactively secure
PAPR credential scheme in a more efficient way using YOSO Threshold En-
cryption [35]. We can realize a PAPR Credential scheme assuming we have such
a YOSO Threshold encryption system, with procedures for setting up YOSO
committees (Committee Selection), generating a committee keypair so that all
system parties hold the public key and each committee member holds a share of
the corresponding secret key (Distributed Key Generation), resharing the secret
key (Reshare), decryption of a ciphertext to a share of the plaintext (Thresh-
old Decryption) and reconstruction of the plaintext given a sufficient amount of
shares of the plaintext (Reconstruct). We sketch our protocol

∏
PC−PT below:

Setup Each party Pi generates an identity keypair and registers the public key
on a PKI. The issuer I generates issuance and revocation keypairs, registers
the public keys on a PKI and publishes signatures of each user’s public key
under the issuance key. All Pi execute the Committee Selection and the anony-
mous committee executes the Distributed Key Generation procedure obtaining
a threshold public key pkTHE and shares of the corresponding secret key.
Credential Issuance To request a credential, a user generates a new creden-
tial keypair, encrypts its identity public key under pkTHE . It then sends this
ciphertext and the public key of the new credential keypair to the issuer over
an anonymous channel and proves in zero knowledge that it knows the private
key and issuer signature on the encrypted public key. If the issuer accepts the
proof, it returns a signature on the credential public key.
Revocation Request The issuer requests privacy revocation for a credential
by signing the credential public key with its revocation key and posting the
signature on a bulletin board.
Reshare and Revocation Response On command refresh from Z, all cur-
rent epoch honest committee members constructs revocation responses for pri-
vacy revocation requests correctly posted on the system bulletin board by exe-
cuting the Threshold Decryption procedure to obtain shares of the revoked users
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identity public key. They then execute the committee Reshare procedure before
giving the shares to the issuer. When the issuer obtain these shares, it learns
the identity key of the revoked user by executing the Reconstruct procedure.

Assuming an ideal functionality FY THE capturing YOSO threshold encryp-
tion with the properties outlined above, the security of

∏
PC−PT is captured as

follows. Notice that such a FY THE can be obtained via the techniques o [35]
by employing UC-secure NIZKs as modelled in FNIZK and UC-secure proactive
resharing as modelled in FY PSS (discussed above).

Theorem 3. (Informal) Let Sig be a signature scheme, BSig be a blind sig-
nature scheme and Enc be a key-private IND-CPA-secure public-key encryption
scheme. Protocol

∏
PC−PT UC-realizes FPC in the (FBB, FPKI , FZK , FNIZK ,

FY THE)-hybrid model with proactive security against a mobile active adversary
A corrupting a minority of P1, . . . ,Pm such that a committee of size n ≤ m has
honest majority with overwhelming probability.

The advantage of this approach in relation to the simple extension
∏
PC−P

using YOSO resharing is that using YOSO threshold encryption in this way
gives us amortized communication complexity essentially independently from
the number of credentials issued. Notice that in

∏
PC−P the YOSO committees

are required to hold shares of the identity public keys connected to every creden-
tial that has been issued (and not revoked). On the other hand, in this improved
construction, the YOSO committees only need to hold shares of the secret key
for the threshold encryption scheme. Moreover, credential issuance also becomes
cheaper, since a party who requests a credential no longer needs to secret share
its identity public key towards a committee. In the new credential issuance pro-
cedure, a party only needs to publish an encryption of its identity public key
under the threshold encryption public key, which also makes the zero-knowledge
proof it generates in this phase cheaper (i.e. proving that a single ciphertext
contains a certain message, instead of proving that a set of encrypted secret
shares reconstruct that message).

6 Practical Considerations

We now discuss the properties of PAPR for anonymous credential schemes from
a practical perspective.

6.1 Optimizing the Committee Size

Given a set of parties P of size m and a certain corruption ratio t, we are
interested in sampling uniformly at random the minimum number of parties n
from P such that an honest majority committee is guaranteed with overwhelming
probability 1−2−κ, where κ is a security parameter. This situation is extensively
described in [33], but to aid intuition we here provide a few numerical examples
when κ = 60. If m = 10, 000 and t = 30%, then n = 462. If m = 2, 000 and
t = 30%, then n = 382. If m = 10, 000 and t = 20%, then n = 178. If m = 2, 000
and t = 20%, then n = 164.
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6.2 Flexibility in the Protocol Design

Throughout the paper we made some simplifying assumptions to ease the ex-
planation. Below, we discuss ways to generalize our protocol in the cases where
the assumptions are not actual limitations of the protocol design.

Multiple Authorities The FPC functionality and its concrete realization,∏
PC , are defined for a single issuer I. This is done to keep the protocol simple

and easy to read. Extending the scheme to multiple authorities can be done
straightforwardly in two ways. One way is to exploit the fact that the scheme is
proven to be universally composable, so we can run multiple parallel instances
without compromising security. This approach requires no changes to the func-
tionality or the protocol description. A second way is to define FPC for multiple
issuing parties. This can be done by imposing that credential requests shall spec-
ify which I that can issue and revoke the credential, and by letting credential
showings be valid for any issuing I. This change can be trivially reflected in our∏
PC construction.

Separating the Issuance and Revocation Roles Analogously to the pre-
vious paragraph, we have kept the protocol description simple by appointing a
single party I for both issuance and revocation roles. Modifying FPC and

∏
PC

by introducing a revoking party R, and appointing the privacy revocation role
to R, rather than I, is straightforward: In FPC allow R (instead of I) to send
(announce-rev, sid, ·). In

∏
PC move the generation and PKI-registration of

the revocation keypair (pkR, skR) into a separate Revoker Setup procedure,
and in the Privacy Revocation Response procedure, send the shares to R
rather than to I. This separation of roles can be combined with the above
modification for multiple authorities to freely select a desired set of issuers and
revokers.

Establishing Eligible Committee Candidates In PAPR, the set of com-
mittee candidates is the root of trust for the guaranteed privacy revocation and
public announcement. In practice, our system can easily be adapted to have
the list of eligible committee candidates be publicly chosen and endorsed, e.g.,
through an election or by the issuer. In particular, the set of committee candi-
dates does not have to coincide with the whole set of users.

Separating Users and Committee Candidates
∏
PC is described assuming

the set of users and the set of committee candidates to be the same. Indeed,
∏
PC

can be modified to accommodate a set of committee candidates that is indepen-
dent from the set of users. For instance, split P into a subset C = {Pi1 , . . . ,Pic}
of potential committee members and a subset of standard users U = P r C, and
run the instructions Hide Committee Candidates and Sample Committee
(from Figure 3), letting the index run among the public keys in C. In such a sep-
aration, committee candidates may be expected to be online all the time. This
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behavior can be incentivized through a reward system or by law constraints. On
the other hand, users are allowed to be offline whenever they wish.

Managing a dynamic user set
∏
PC crucially relies on FPKI to contain a

fixed list of all parties before credentials are issued. In practice the set of active
users might however change over time, with users joining or leaving the system.
However, this reliance is not as strong as it appears on first glance.

By running parallel instances of
∏
PC with multiple authorities, as described

above, each new instance will have a separate FPKI . Thus users joining an
already existing system can be enrolled to a new instance of the protocol.

On the other hand, if enough committee candidates leave the system, e.g.
due to loss of their keys, the possibility of privacy revocation can be affected.
While a party leaving the system would technically fall under corrupt behaviour,
this is not a problem in

∏
PC−P and

∏
PC−PT . This is since these protocols re-

share committee secrets and explicitly use a new instance of FPKI for each
epoch. Thus, inactive users will not enroll with the new FPKI and will as a
consequence not be considered committee candidates anymore. In the case of∏
PC however, this mechanism is not present, and one must therefore account

for the probability of parties leaving the system when selecting the size of n.

6.3 Overhead From a User Perspective

Despite the many parts of the protocol, from a user perspective, the protocol is
a very low cost endeavor.

∏
PC is designed with user overhead in mind, reducing

complexity for the user and keeping as much of the resulting complexity in the
credential issuance phase. A user only needs to store a bare minimum of their
own identity key and their own credentials. Credential issuance is somewhat
computationally intense for the user, but this only happens once – per creden-
tial issuance. During normal (application) operation, there is zero computational
overhead for the user. Finally, a user will experience some additional computa-
tional overhead when and only if they are involved as a committee member in an
actual privacy revocation request (or in a YOSO-resharing for

∏
PC−P ). So in

summary, computational efforts for users are only necessary in the beginning and
sometimes (or rarely) at the end of an epoch, but never during normal operation.

6.4 Practical Attacks

Denial of Service An adversary with the capability to mount large scale De-
nial of Service (DoS) attacks, i.e. targeting all potential committee members,
can of course delay privacy revocation while the attack is maintained. However,
it cannot prevent revocation indefinitely. Once the DoS attack is mitigated or no
longer maintained, the protocol can simply resume execution, at which point the
identity of the user will be revealed. Since the committee members are revealed
to the user during credential issuance, one can also imagine DoS attacks tar-
geting only the committee members by a corrupt user utilizing this knowledge.
However, while such an attack is cheaper to mount, it is not feasible to maintain
it indefinitely. Thus, DoS attacks can delay, but not prevent privacy revocations.



24 Joakim Brorsson et al.

Sybil Attacks Sybil attacks, where a single party poses a multiple parties, are
prevented due to the fact that each user needs to enroll (i.e. post to FPKI) in
the system with a public key linked to their real identity. Thus we obtain a list
of the actual users in the system, preventing Sybil attacks.

6.5 Towards an Efficient Instantiation of PAPR Credentials

We here provide a list of building blocks that may be used to efficiently instan-
tiate our

∏
PC protocol.

– To prove correct shuffling of committee candidates’ public keys, the Bayer
and Groth’s scheme [8] may be used, and the computational complexity for
the prover isO(m log(

√
m)), wherem is the number of committee candidates.

– For Sig, Boneh Boyen signatures may be used [13, Section 4.3], where the
computational complexity is constant for both signing and verifying.

– For SPSig, Abe et al.’s scheme SIG1 in [3, Section 4.1] may be used, where
the complexity is linear in the size of the message, which in our case makes
it constant since in our protocol we only sign single group elements.

– For Enc and C, ElGamal encryption may be used, in the second case we see
ciphertexts as commitments and rely on the schemes’ binding property.

– Protocols realizing the functionalities FBB , FPKI , FZK and FNIZK can be
found in [25, 51, 23, 43], respectively.

As described at a high level in Figure 4, zkesc, which is at the core of our
protocol, proves the following.

– 1 zkID states that the user is the owner of pkP , i.e it knows the secret key
skP , and knows a signature generated by the issuer on pkP , i.e σE(pkP).
Thus the computational complexity to prove it is constant O(1).

– 2 zkshare states that 2.1 the n shares are constructed correctly, i.e. any set
of k shares will reconstruct to the users public key pkP . Further, 2.2 each
of these shares, 2.3 is correctly encrypted, 2.4 for the correct committee
member, 2.5 which is correctly indicated in ~q. Each of these steps introduces
a computational complexity that is linear with respect to n.

The overall complexity of zkesc is therefore O(n).
We additionally provide a discussion of heuristically substituting functional-

ities for non-UC but more efficient building blocks in Appendix C.
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A Definitions of Standard Primitives

In this section, we present definitions for the syntax of building blocks we use in
our protocols and reference their required security guarantees.

Definition 2 (Public Key Encryption Scheme). A public-key encryption
scheme is a tuple of PPT algorithms (Setup,KeyGen,Encrypt,Decrypt) defined
as follows.

Enc.Setup(1λ): The setup algorithm takes as input the security parameter and
outputs some public parameters pp.

Enc.KeyGen(pp) −→ (sk, pk): The key generation algorithm takes as input the
public parameters and outputs a secret/public key pair (sk, pk).

Enc.Encrypt(m, pk) −→ c: The encryption algorithm takes as input a message
m and a public key pk. It returns a ciphertext c.
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Enc.Decrypt(c, sk) −→ m: The decryption algorithm takes as input a ciphertext
c and a secret key sk. It returns a plaintext message m.

We consider an encryption scheme secure if it is indistinguishable under Cho-
sen Plaintext Attacks (IND-CPA) and key-private as formalised in [10, Def. 1].

Definition 3 (Signature Scheme). A signature scheme Sig with message space
M is a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) defined as follows.

Sig.Setup(1λ): The setup algorithm takes as input the security parameter and
outputs some public parameters pp.

Sig.KeyGen(pp) −→ (sk, pk): The key generation algorithm takes as input the
public parameters and outputs a secret/public key pair (sk, pk).

Sig.Sign(sk,m) −→ σ: The sign algorithm takes in input a secret key sk and a
message m ∈M; it outputs a signature σ.

Sig.Verify(pk,m, σ) −→ v: The verification algorithm takes in input a public
key pk, a message m ∈M and signature σ. It outputs 0 (reject) or 1 (accept).

Throughout the paper we assume Sig to be correct and existentially unforge-
able as in [13, Def. 2]. In a nutshell this means that signatures generated by
the signing algorithm are always accepted by the verifying algorithm, and that
without the knowledge of the secret key it is computationally infeasible to gen-
erate a signature that is accepted by the verifying algorithm with non-negligible
probability.

Definition 4 (Blind signature). A blind signature BSig with message space
M is a tuple of PPT algorithms (KeyGen,User,Sign,Verify) defined as follows
([2]).

BSig.KeyGen(1λ) −→ (sk, pk): The randomized key generation algorithm takes
as input a security parameter 1λ with λ ∈ N and outputs a secret/public key pair
(sk, pk).

BSig.User and BSig.Sign are randomized interactive algorithms.
The user runs BSig.User on an initial state (pk,m), where pk is a public key

and m ∈ M is a message, and let it interact with BSig.Sign run by the signer
on initial state a secret key (sk). At the end of the protocol, BSig.User either
enters the halt state and outputs a signature σ as its last outgoing message, or
enters the fail state. Instead, BSig.Sign simply enters the halt state, without
generating any output.

BSig.Verify(pk,m, σ) −→ v: The deterministic verification algorithm takes in
input a public key pk, a message m ∈ M and signature σ. It outputs 0 (reject)
or 1 (accept).

Where an interactive algorithm is a stateful algorithm that on input an in-
coming message min (this is ε if the party is initiating the protocol) and state
St outputs an outgoing message mout and updated state St′. Two interactive
algorithms A and B are said to interact when the outgoing messages of A are
passed as incoming messages to B, and vice versa, until both algorithms enter
either the halt or fail state. We write (mA, StA,mB, StB) ← [A(StA) ↔ B(StA)]
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to denote the final state after an interaction between A and B when run on initial
states StA and StB, respectively.

(Correcteness) A blind signature scheme is correct if for all λ ∈ N and for all
m ∈ M, it holds that StBSig.User = halt and BSig.Verify(pk,m, σ) −→ 1 when
(sk, pk) ← BSig.KeyGen(1λ) and (mSign, StSign, σ, StUser) ← [BSig.Sign(sk) ↔
BSig.User((pk,m))] with probability 1.

A blind signature has to guarantee unforgeability, i.e., a user should not be
able to forge signatures, and blindness, i.e., the signer should not be able to see
the messages that is being signed, or even be able to relate signed messages to
previous protocol sessions.

(Unforgeability) Let BSig = (KeyGen,User,Sign,Verify) be a blind signature
scheme, let λ ∈ N be the security parameter, and let A be a forging algorithm
with access to the signing oracle. The experiment Expomu

BSig,A(λ) first generates

a keypair (sk, pk)← BSig.KeyGen(1λ) and runs A on input (1λ, pk). The adver-
sary has access to a signing oracle that runs the BSig.Sign(sk, .) algorithm and
maintains state across invocations. At the end of its execution, the adversary
outputs a set of message signatures pairs {(m1, σ1), . . . , (ms, σs)}. Let t be the
number of completed signing sessions during A’s attack. Then A is said to win
the game if BSig.Verify(pk,mi, σi) −→ 1 for all 1 ≤ i ≤ s, all mi are different
and s > t. BSig is said to be unforgeable (one-more unforgeable under sequential
attacks) if the probability of winning the above game is negligible for all PPT
adversaries A.

Formally, the experiment is defined as follows:

Experiment Expomu
BSig,A(λ):

(sk, pk)← BSig.KeyGen(1λ)
SSet← ∅; s← 0 // set of signer sessions and number of finished sessions
{(m1, σ1), . . . , (ms, σs)} ← A(1λ, pk : Sign(., .))
if BSig.Verify(pk,mi, σi) −→ 1 for all 1 ≤ i ≤ s and s ≥ t and mi 6= mj for all
1 ≤ i < j ≤ s then

Return 1
else

Return 0
end if

Where A’s queries to the signing oracles are answered as follows:

Oracle Sign(s,min): // s is a session identifier
if s /∈ SSet then
SSet← {s}; StBSig.Sign[s]← sk
(mout, StBSig.Sign[s])← BSig.Sign(min, StBSig.Sign[s])
if StBSig.Sign[s] = halt then
t← t+ 1

end if
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Return mout

end if

The advantage of A in breaking BSig is defined as the probability that the
above experiment returns 1:

Advomu
BSig,A(λ) = Pr[Expomu

BSig,A(λ) = 1]

BSig is said to be one-more unforgeable under sequential attacks if the ad-
vantage Advomu

BSig,A(λ) is a negligible function in the security parameter λ for all
PPT adversaries A.

(Blindness) Let BSig = (KeyGen,User,Sign,Verify) be a blind signature scheme,
let λ ∈ N be the security parameter and let A an adversary. The adversary
A acts as a cheating signer, who is trying to distinguish between two signa-
tures created in different signing sessions. The experiment chooses a random
bit b, generates a fresh key pair (sk, pk) ← BSig.KeyGen(1λ) and runs the ad-
versary A on input (1λ, pk, sk). A outputs two challenge messages m0 and m1

and then act as the signer in two sequential interactions with the BSig.User al-
gorithm. If b = 0, then A first interacts with BSig.User(pk,m0) and then with
BSig.User(pk,m1); If b = 1, then A first interacts with BSig.User(pk,m1) and
then with BSig.User(pk,m0). If in both sessions the BSig.User algorithms accept,
then A is additionally given the resulting signatures σ0, σ1 for messages m0,m1.
Finally, A outputs its guess d and wins the game if b = d. BSig is said to be
blind (blind under sequential attacks) if 2p − 1, where p is the probability that
A wins the above game, is negligible for all PPT adversaries A.

Formally, the experiment is defined as follows:

Experiment Expblind
BSig,A(λ):

b← {0, 1}; (sk, pk)← BSig.KeyGen(1λ)
((m0,m1), StA)← A(ε, (1λ, pk, sk))
(mA, StA, σb, Stb)← [A(StA)↔ User((pk,mb))]
(mA, StA, σ1−b, St1−b)← [A(StA)↔ User((pk,m1−b))]
if St0 = fail or St1 = fail then
σ ← fail

else
σ ← (σ0, σ1)

end if
d← A(σ, StA)
if b = d then

Return 1
else

Return 0
end if

The advantage of A in breaking BSig is defined as
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Advblind
BSig,A(λ) = 2 · Pr[Expblind

BSig,A(λ) = 1]− 1

BSig is said to be blind under sequential attacks if the advantage Advblind
BSig,A(λ)

is a negligible function in the security parameter λ for all PPT adversaries A.

Definition 5 (Commitment Scheme). A commitment scheme C is a tuple
of PPT algorithms (Setup,Commit,Open) defined as follows.

C.Setup(1λ): The setup algorithm takes as input the security parameter and
outputs some public parameters pp (implicit input in all subsequent algorithms)

C.Commit(m, r) −→ c: This procedure takes as input a vector of messages
m = {m1, . . . ,mn} and a vector of randomness r = {r1, . . . , rn} (sometimes
referred to as key). It outputs a commitment c.

C.Open(c,m, r) −→ v: This procedure takes as input a commitment c, a vector
of messages m = {m1, . . . ,mn} and a vector of randomness r = {r1, . . . , rn}. It
outputs a verification bit indicating whether m, r is an opening to c or not.

A commitment scheme should be correct, i.e the opening procedure will return 1
(accept) with probability 1 if the commitment c is generated by Commit on the
remainder of the input to Open. Furthermore, it should be hiding, in the sense
that the commitment leaks no information about the message, and binding so
that the commitment can only be opened to the committed message. These
properties are defined in [4, Def. 1, Def. 2].

Definition 6 (Provable Shuffle of Commitments). A proof system Shuf =
(Setup,Prove,Verify) for proving shuffle of commitments generated by a commit-
ment scheme C consists of the following algorithms.

Shuf.Setup(1λ): The setup algorithm takes as input the security parameter
and outputs public parameters pp, often referred to as the common reference
string (implicitly input to all subsequent algorithms).

Shuf.Prove(n, ρ, {ci}i∈[n]) −→ ({c′i}i∈[n], π): The provable shuffle algorithm
takes as input an integer n, a permutation ρ over the set {1, . . . , n}, and n com-
mitments {ci}i∈[n] generated by C.Commit. It returns a list of n commitments
{c′i}i∈[n] and a proof π.

Shuf.Verify(n, {ci}i∈[n], {c′i}i∈[n], π) −→ v: The verification algorithm takes as
input an integer n, two sets of n commitments and a proof π. It returns 1 (accept)
if π is a valid proof for the relation “there exists a set M = {mi}i∈[n] and a per-
mutation ρ ∈ Sn s.t. {C.Open(ci,mi, ri)}i∈[n] = {C.Open(c′ρ(i),mρ(i), r

′
ρi}i∈[n]”,

where the randomnesses ri, r
′
i are extracted from π. Otherwise it returns 0 (re-

ject).

We assume this scheme is executed by a prover P and a verifier V, both
of which are probabilistic polynomial time interactive algorithms. The public
transcript generated by P and V when interacting on inputs s and t is denoted
by tr ← 〈P(s),V(t)〉 and we write 〈P(s),V(t)〉 = b, b ∈ {0, 1} for rejection or
acceptance. Let R be a polynomial time decidable ternary relation. We denote
w as a witness for the statement x if (σ, x, w) ∈ R and we define the languages
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Lσ = {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x having a witness w for the relation R.

The triple (Shuf.Setup,P,V) is called an argument for a relation R with per-
fect completeness if for all non-uniform polynomial time interactive adversaries
A we have:

(Computational soundness)

Pr[(σ, hist)← Shuf.Setup(1λ) : x← A(σ, hist) : x /∈ Lσ∧
〈A,V(σ, x)〉 = 1] ≈ 0

(Perfect completeness)

Pr[(σ, hist)← Shuf.Setup(1λ) : x← A(σ, hist) : (σ, x, w) /∈ R∨
〈P(σ, x, w),V(σ, x)〉 = 1] = 1

Moreover, an argument (Shuf.Setup,P,V) is called public coin if the verifier
chooses their messages uniformly at random and independently of the messages
sent by the prover, i.e., the challenges correspond to the verifier’s randomness
ρ. Then we define:

(Perfect special honest verifier zero knowledge) A public coin argument (Shuf.Setup,P,V)
is called perfect special honest verifier zero knowledge (SHVZK) argument for R
with common reference string generator Shuf.Setup if there exists a probabilis-
tic polynomial time simulator S such that for all non-uniform polynomial time
adversaries A we have

Pr[(σ, hist)← Shuf.Setup(1λ) : (x,wρ);

tr ← 〈P(σ, x, w),V(σ, x, ρ)〉 : (σ, x, w) ∈ R ∧ A(tr) = 1]

= Pr[(σ, hist)← Shuf.Setup(1λ) : (x,wρ);

tr ← S(σ, x, ρ) : (σ, x, w) ∈ R ∧ A(tr) = 1]

Then, to construct a fully zero-knowledge argument secure against arbitrary
verifiers one can first construct a perfect special honest verifier zero knowledge
argument and then convert it into a fully zero-knowledge argument [37].

A scheme with the above properties can be efficiently realized from the proof
of shuffle correctness for ciphertexts of [8]. In our setting, we view an ElGamal
ciphertext as a commitment (since it is unconditionally binding and computa-
tionally hiding) and use proofs of commitment shuffle correctness to convince a
verifier that two distinct sets of commitments yield the same set of openings.
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B Functionalities

The bulletin functionality FBB is defined in Figure 10. It is modified from [25,
Fig. 17] to not be authenticated (since we assume anonymous posting to the
bulletin board). In the main body of the paper we often omit specifying the
MID for brevity.

FBB keeps an initially empty ordered list M and interacts with a set of parties P
as follows:

Post to Bulletin Board: Upon receiving a message (post, sid,MID,m) from a
party Pi ∈ P, if there is no message (sid,MID,m′) ∈ M, append (sid,MID,m)
to the listM of messages that were posted in the public bulletin board. Then send
(posted, sid,MID,m) to S.

Read from Bulletin Board: Upon receiving a message (read, sid) from a party
in P, return (read, sid,M) to the caller.

Fig. 10: Ideal functionality FBB .

Next, we present the FPKI functionality, defined in Figure 11, which is taken
from [51, Figure 3] with a slight change of wording.

FPKI keeps an initially empty listM of messages and interacts with a set of parties
P as follows:

Report Query: Upon receiving a message (report, sid, v) from party Pi, record
(Pi, v) in M iff Pi does not have a record and no record containing v exists.

Retrieve Query: Upon receiving a message (retrieve, sid,Pi), look up and reply
with (Pi, v), where v = ⊥ when there is no record for Pi.

Fig. 11: Ideal functionality FPKI .

The FZK functionality in Figure 12 is adapted from [23, Fig. 7], so that the
identity of the prover is not revealed to the verifier. In practice, this can be
realized by communicating over a sender-anonymous channel.

Finally, we give the non-interactive zero knowledge functionality FNIZK in
Figure 13, taken from [43, Fig. 4].
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FZK proceeds as follows, running with the parties in P, and parameterized with a
relation R:

Prove: Upon receiving (zk-prover, sid,Pj , x, w) from Pi: If R(x,w) = 1, then
send the message (zk-proof, sid, x) to Pj and S. Otherwise, ignore.

Fig. 12: Ideal functionality FZK .

Parameterized with relation R and running with the parties in P.

Proof: On input (prove, sid, x, w) from party Pi ignore if (x,w) /∈ R. Send (prove,
sid, x) to S and wait for answer (proof, sid, π). Upon receiving the answer store
(x, π) and send (proof, sid, π) to Pi.
Verification: On input (verify, sid, x, π) from Pj check whether (x, π) is stored.
If not send (verify, sid, x, π) to S and wait for an answer (witness, sid, w). Upon
receiving the answer, check whether (x,w) ∈ R and in that case, store (x, π). If (x, π)
has been stored return (verification, sid, 1) to Pj , else return (verification,
sid, 0).

Fig. 13: Ideal functionality FNIZK .

C Heuristics for Efficient Subtitutions of Functionalities
To instantiate

∏
PC efficiently without Universal Composability, the ideal func-

tionalities FBB , FPKI , FZK and FNIZK may be substituted respectively by a
blockchain such as Ethereum (note that FBB may also be implemented starting
from consensus protocols such as those in [29, 46, 32, 31, 5, 6, 49, 60]), a PKI with
key transparency such as CONIKS [52], Schnorr proofs over the Tor network
and Groth-Sahai proofs [44]. We stress that the security of these substitutions
would be heuristic. If formally proven secure, the resulting scheme would at best
be proven sequentially composable, due to the nature of Groth-Sahai proofs.

In such a system where FNIZK is substituted for Groth-Sahai proofs, the
conditions 2.3 and 2.4 in zkesc (Figure 4) can be realized as the verification
equations of a pairing-based PVSS scheme, e.g. [24].


