
Reframing And Extending The Random Probing
Expansion

Giuseppe Manzoni

Independent researcher, giuseppe.manzoni@zelya.org

Abstract. In the context of circuits leaking the internal state, there are various models
to analyze what the adversary can see, like the p-random probing model in which the
adversary can see the value of each wire with probability p. In this model, for a fixed
p, it’s possible to reach an arbitrary security by ‘expanding’ a stateless circuit via
iterated compilation, reaching a security of 2−κ with a polynomial size in κ.
The existing proofs of the expansion work by first compiling the gadgets multiple
times, and then by compiling the circuit with the resulting gadgets while assuming
the worst from the original circuit. Instead, we reframe the expansion by proving it
as a security reduction from the compiled circuit to the original one. Additionally, we
extend it to support a broader range of encodings, and arbitrary probabilistic gates
with an arbitrary number of inputs and outputs.
This allows us to obtain two concrete results: (i) At the cost of an additional size
factor O(log(d)3), any d-probing secure compiler can be used to produce stateless
circuits with security 2−d against any adversary that sees all wires with a constant
SD-noise of 2−7.41/p, where p is the characteristic of the circuit’s field. (ii) Any
n-shares compiler with (t, f)-RPE gadgets needs t + 1 (which in practice is

⌈
n
2

⌉
)

randoms in the random gadget instead of n.
Keywords: Side-Channel Security · Leakage Resilience · Probing Model · Random
Probing Model

1 Introduction
Even when a cryptographic algorithm is secure against classical black-box attacks, its
implementation could still be vulnerable to side-channel attacks, which make use of some
physical leakage (e.g. the running time [Koc96], the power consumption [KJJ99], the
electromagnetic radiation [QS01]).

Many types of physical leakage can be modelled using the noisy leakage models
[CJRR99, PR13a, DDF14, PGMP19]. In particular, we’ll focus on the noisy models with
the following leakage: for every wire with a value x with distribution X, the adversary
can see any leakage f(x), such that the distribution X and the conditional distribution
X|f(X) are closer than some δ using some metric M (for example the Euclidean norm
in [PR13a, PGMP19], the statistical distance in [DDF14, PGMP19, GPRV22], and the
Average Relative Error in [PGMP19]). Of those metrics, we’ll measure the noise using the
statistical distance as it corresponds to an intuitive concept of the indistinguishability1

between the distributions X and X|f(X).
Given a circuit and its noisy leakage δ, we can calculate the security of that circuit. In

case the guaranteed security is not enough for the intended purpose, we can ‘compile’ it:
transform it into a new circuit that carries out the same function. Usually a compiler will

1i.e. SD [x; y] ≤ δ iff no adversary A can distinguish between x and y with advantage better than δ,
i.e. for all A, |Pr[A(x) = 1]− Pr[A(y) = 1]| ≤ δ. See for example [MT10].

mailto:giuseppe.manzoni@zelya.org

2 Reframing And Extending The Random Probing Expansion

substitute every gate with a small circuit or ‘gadget’, every wire with n wires or ‘shares’,
and every value will be ‘masked’ or ‘encoded’ so that the values in the shares together
reveal the original value. This operation usually allows to increase the security at the cost
of having a bigger circuit, but this is not guaranteed: if the circuit doesn’t have enough
noise (i.e. the leakage δ is too high), then compiling the circuit will only lead to a lower
security. For this reason the ideal is a compiler able to guarantee an arbitrary security for
the highest possible tolerated leakage, and with the lowest possible circuit size increase.

As the noisy models tend to be hard to handle when writing proofs, other models have
been introduced like the the random probing model [ISW03, DDF14, BCP+20] in which
each wire leaks the exact value with a given probability p, and leaks nothing with probability
1− p. While this model doesn’t describe any physical attack, it is equivalent to the noisy
model. In particular, a compiler that tolerates a leakage of p in the random-probing model
is guaranteed to tolerate a noise of p/|K| in the noisy model.

As we anticipated, the ideal compiler is one that can reach an arbitrary security,
and do so while tolerating the highest possible leakage, and so the ideal is to tolerate a
constant leakage regardless of the desired security. The first compiler we know of that
has achieved this was described in [Ajt11]. It used expander graphs and it was followed
by [ADF16] which simplified and improved it using geometric codes. [AIS18] provided
an even simpler compiler, with (as calculated by [BCP+20]) a tolerated leakage in the
random probing model of 2−26 and complexity of O

(
κ8.2), and this was achieved using

an expansion strategy of compilers using multi-party computation protocols. A further
improvement was made by [BCP+20] whose compiler tolerated a leakage of 2−7.97 with
complexity of O

(
κ7.5) and this by using the Random Probing Expandability (or RPE)

property. This expansion works by compiling a set of gadgets with themselves to obtain
bigger and more secure gadgets. These are then compiled again and again until the
wanted security level is reached, and then they are composed into the output circuit. This
approach was then refined in [BRT21] which provided a more in-depth analysis of the RPE
property, it calculated a few of its limits, and it provided gadgets that reach them. They
provided a few alternative compilers. One with a better tolerated leakage 2−7.5 and lower
complexity O

(
κ3.9), while another works for a generic number of shares, with a complexity

of O(κe(n)) with e(n) := log(3n2−2n)
log(⌊(n+1)/2⌋) where the number of shares and the desired security

are unrelated due to the expansion. A successive article [BRTV21] extended the random
probing expansion by allowing a different compiler at different stages of the expansion,
even if we believe they made a mistake in one of the proofs, and so they inverted the order
of the compilers, see footnote 2.

A completely different and widely researched model is the t-probing model, where
the attacker can place at most t probes, and obtain the exact value contained in those
wires. There have been various papers reducing the security of one of the noisy models
to that of the probing model. Various do so by using refresh gates that don’t leak the
internal computation, like [PR13b]. In this paper we’ll focus on reductions without those
leak-free refresh gates, and the first article we know that proved the reduction without
them is [DDF14]. They provide a n-shares compiler based on [ISW03, RP10] that produces
circuits that are ⌊(n− 1)/2⌋-probing secure, and they show that given a circuit c, the
compiled circuit has a security of ∥c∥ e−n/12 for a noise of Θ (1/(n · |K|)). There have been
improvements to this reduction, for example [PGMP19] achieves it by using a different
metric. Yet, to our knowledge, there are no results that tolerate a constant noise for an
arbitrary security by starting with a generic probing secure compiler.

1.1 Our Contributions
At the core of our paper there is the introduction of the Random Probing Reducibility
(or RPR) property, which reduces the security of a compiled circuit to the security of the

Giuseppe Manzoni 3

original one. In particular if a compiler is e-RPR, then any compiled circuit with leakage
rate p can be abstracted into a virtual circuit with leakage rate e(p), and the concrete
circuit will have the same guaranteed security of the virtual circuit. In other words, given
a circuit with a security of 2−κ for a leakage probability e(p), the compiled circuit has a
security of 2−κ for the leakage probability p. If e(p) < p this guarantees the same security
for a higher leakage probability.

With the RPR property we can calculate two out of the three main properties that
characterize generic compiler sequences: the security amplification order and tolerated
leakage, while the third is the size amplification order. Those three are all we need to
calculate the asymptotic size increase necessary to reach a fixed leakage rate as the security
level κ grows. More precisely, we analyze a circuit parametric in its guaranteed security
level κ, so that cκ has security 2−κ for the leakage probability 2−p(κ), for some function p.
If we compile this circuit to obtain one with security 2−κ for a constant tolerated leakage,
then we have a size increase of the factor O (p(κ)e) as κ→∞ for some exponent e that
depends only on the the compiler sequence. This means that if we compile a fixed circuit
c we obtain a complexity of O (κe), like in [BCP+20]. If instead we use an initial circuit
ct that is obtained by a t-probing secure compiler with polynomial complexity, then we
obtain a complexity of O (∥ct∥ log(t)e) for the exact same exponent e. In particular we
provide a compiler sequence with e := 3, with tolerated leakage rate 2−7.41.

Additionally we extend the RPE to tolerate more encodings. We provide the ‘encoding
strength’ property that encapsulates the properties of the encoding that are required by
the RPE, and this allows us to consider any v⃗-linear encoding, but more importantly it
allows us to use the field-extension encoding that we need to output a circuit over Fp from
a circuit over Fpm . This is why from a tolerated leakage rate 2−7.41 we obtain a tolerated
noise of 2−7.41/p instead of 2−7.41/pm. For the common case of circuits whose fields has
characteristic 2, like for the AES encryption, the tolerated noise is 2−8.41.

The main proof we include for the expansion consists in showing that a compiler made
of (t, e)-RPE gadgets is e-RPR. This proof works by composition of sub-circuits: we
use a property that is implied by the (t, e)-RPE, that it’s preserved by composing two
circuit, and such that if all the compiler’s output circuits have that property, then the
compiler is e-RPR. Yet the RPE is not suited for this job as it was designed to handle
the implementation of a gate, not those of a generic circuit, so we need to introduce a
new property that we call Extended RPE (or ERPE). As the ERPE needs to handle
the implementations of generic probabilistic circuits, it’s also capable of handling the
implementation of generic probabilistic gates. For this reason we present it as our main
expandability property instead of the narrower RPE.

Lastly, to show the concrete usefulness of this new property, we provide a (t, ·)-ERPE
random gadget with only t + 1 random gates. This means that an n-shares compiler made
of (t, e)-RPE gadgets only need t + 1 randoms in the random gadget, and not n. Thanks to
the analysis from [BRT21] the optimal t for the RPE is t :=

⌊
n−1

2
⌋

which means a single
step of the expansion converts each random into

⌊
n+1

2
⌋

=
⌈

n
2
⌉

randoms instead of n of the
existing random gadget that are required by [BCP+20, BRT21].

Contents
1 Introduction 1

1.1 Our Contributions . 2

2 Notation and Fundamental Concepts 4

3 Circuit and Security 6
3.1 Circuit Type . 6

4 Reframing And Extending The Random Probing Expansion

3.2 Encoding . 7
3.3 Circuit compiler . 9
3.4 Circuit Security . 9
3.5 Compiler Sequences . 11

4 Calculating the RPR 12
4.1 RPE . 13
4.2 ERPE . 14
4.3 From RPE to RPR . 15

5 Calculating the Properties of Compiler Sequences 16
5.1 Composition of Compiler Sequences . 16
5.2 Classic Expansion . 16

6 Main Compiler Sequence 17
6.1 Field-Extension compiler . 17
6.2 High Tolerated Leakage Compiler . 18
6.3 Main Compiler Sequence . 19

A Definition of Circuit 20

B Lemmas for Fundamental Concepts 21
B.1 Simulatability and Dependency Functions 21
B.2 Partial Order of Distributions . 22
B.3 Correctness . 23
B.4 Monotonicity of security definitions . 24

C From Probing Security To Constant Noise With Polylog Size Increase 25
C.1 Lemma 28: RPS to Probing Security . 25
C.2 Proposition 7: Probing Model to RPS . 28
C.3 Theorem 1: Complexity of Compiler Sequences 29

D Theorem 2: ERPE to RPR 30

E Proofs For the Main Compiler 34
E.1 Security from the RPE . 34
E.2 Composition of Compiler Sequences . 35
E.3 Proofs For the Classic Expansion . 36
E.4 Gadgets Without Strength for Fully-leakable Deterministic Gates 38

2 Notation and Fundamental Concepts
We’ll use x⃗ for a vector, x̆ for a set, x for a random variable. For functions, they describe
their codomain.

Then we can give a few common/intuitive definitions. We’ll indicate with Pr[A] the
probability of the event A, and with Is [A] the function that returns 1 if the predicate A is
true and 0 otherwise. With ‘:=’ we indicate a definition and with ’=’ equality. Given a set
S̆ we write ← S̆ to mean an anonymous random variable with the uniform distribution
over S̆, independent from all the random variables defined before it and used only there.
Similarly to [BCP+20], we’ll use [m] := Z ∩ [1, m] as the set of indexes for a tuple of m
values, P ([m]) is the power set of [m]. Additionally, we’ll sometimes use vector operations
on the subsets of [m], by interpreting them like a vector {false, true}m that says if index
i is in the set. In particular, we’ll use the concatenation of two vectors a⃗ ∥ b⃗ also on those

Giuseppe Manzoni 5

sets. Lastly, we use K for a generic field, Fq for a field of order q and S for a set with at
least two elements, and we’ll note with ˘supp[x] the support of x i.e. the possible values
that x can take with probability different from zero. Also, for brevity we’ll always use
‘monotone’ as ‘monotone non-strictly increasing’ unless specified otherwise, where for sets
we’ll use the partial order ⊆, while for statements we’ll consider true > false, and for
functions we’ll consider f ≤ g iff ∀x. f(x) ≤ g(x).

As the difference is important in various proofs, we’ll define both x⃗|Ĭ and x⃗Ĭ . We’ll
use x⃗|Ĭ to return the elements of x⃗ ∈ Km that have the indexes in Ĭ ⊆ [m] while keeping
track of which elements were selected. This by replacing with ⊥ the elements of x⃗ whose
indexes are not in Ĭ. Instead we’ll use x⃗Ĭ if we’re not keeping track of which elements are
selected and we want a smaller tuple, the same notation as selecting a single element.

Lastly, as we are working with circuits, the most natural definition of ‘probabilistic
function’ is one that returns a new random variable at each invocation, like executing a
probabilistic circuit and obtaining a different value each time. As this is not a function, we
formally define with ‘probabilistic function’ f : Ĭ → Ŏ some deterministic function (here f
to differentiate) with domain Ĭ and codomain the probability distributions over Ŏ. When
we define f(x) := . . . we define the f(x) that calculates the distribution of that expression,
and whenever we use f(x) we mean ← f(x). The intuitive description holds as long as the
expression in definition of f(x) := . . . has no correlation with any random variable defined
outside it, which will always be the case.

Definition 1 (Partial Order). Given two discrete random variables a, b, we say a
d
≤ b iff

for all monotone predicates P we have that Pr[P (a)]≤ Pr[P (b)].

In particular this is a partial order for the equivalence d= which asks if they have
the same distribution, see Lemma 16, and this partial order is preserved by the parallel
composition of arrays as long as the four random variables are independent, see Lemma 17.
Both those lemmas are in Subsection B.2.

Definition 2 (Simulatability). We’ll say that a probabilistic function f : Sin → Sout can
be simulated using some probabilistic function g with domain Sin if there is a probabilistic
function Sim such that for all x ∈ Sin we have that f(x) d= Sim(g(x)).

To say that f can be simulated using g, we could write that g sim−→ f , or that for all
x ∈ Sin, g(x) sim−→ f(x).

Definition 3 (Simulatability From Inputs). We’ll say that a probabilistic function f⃗ :
Si

in → So
out can be simulated using the input elements Ĭ ⊆ [i] if f⃗ can be simulated from

the function (x⃗ 7→ x⃗Ĭ).

In other words, f⃗ can be simulated using the input elements Ĭ iff for all x⃗, y⃗ we have
that y⃗Ĭ = x⃗Ĭ implies f⃗(x⃗) d= f⃗(y⃗), see Lemma 12 in Subsection B.1.

Note that the simulatability from the inputs uses an input domain Sin× . . .×Sin, while
the simulatability allows any kind of domain, e.g. any subset of Sin × . . .× Sin.

Definition 4 (Dependency Function). Given a probabilistic function f⃗ : Si
in → So

out we’ll
indicate with D̆ep[⃗f] its dependency function: the minimal function D̆ep : P ([o])→ P ([i])
such that for all subsets of the outputs Ŏ ⊆ [o] the function f⃗Ŏ can be simulated using the
inputs D̆ep(Ŏ).

Note that the dependency function always exists and it’s unique (Lemma 14) and it’s
monotone (Lemma 15). See Subsection B.1.

6 Reframing And Extending The Random Probing Expansion

3 Circuit and Security
In this section we’ll define the circuits that our proofs operate on. In particular, like the
previous papers on the expansion [BCP+20, BRT21], they are circuits without memory
and we consider only the leakage once the values in the wires become stable, and so we
won’t consider behaviors like glitches.

We’ll also report the definition of the various security notions, and the relevant re-
ductions and relationships between them. Lastly we use those notions to define the
main properties of compiler sequences, and we state the main theorem to calculate their
asymptotic size increase.

3.1 Circuit Type
We can parameterize the type of circuit based on the values and the gates it operates on.

Definition 5 (Circuit Type). We define a type of circuits as the tuple (S,G) which is
identified by the two values:

• A finite set S with at least two elements, which describes the values that the circuit
operates on.

• A finite enumeration Gj , one for each gate, which contains the following:

– A deterministic function Si × Sr → So (where i, r, o depend on the gate and are
respectively the inputs, randoms, and outputs used by it.

– A probability distributions over Sr that describes the randoms used by the gate.
– If the gate is fully leakable (it leaks its i + r inputs and randoms) or if it’s

leakless.

We are aware that the choice of leaking both inputs and the internally generated
randoms is unusual, but it’s necessary to allow the expansion to work with probabilistic
gates. This is because while the random gate can have gadgets with no internal leakage,
this is not always the case, and we must have a way to quantify the impact of this leakage.
The most straight-forward way to do this is to allow the leakage of the randoms together
with the inputs, as the two are independent, and together they completely define the
output.

While our proofs are more generic, we define Cstd,q := CFq,Gstd as the circuit type with
the standard gates:

1. An addition gate [a, b], [] 7→ [a + b]. Fully leakable.

2. A subtraction gate [a, b], [] 7→ [a− b]. Fully leakable.

3. A copy gate [a], [] 7→ [a, a]. Fully leakable.

4. A multiplication [a, b], [] 7→ [a · b]. Fully leakable.

5. The random gate [], [r] 7→ [r], where the random is uniform over K. Leakless.

6. The constant-c gates [], [] 7→ [c]. Leakless.

We define a circuit c ∈ CS,G as a stateless composition of gates G, with wires that
contain the values in S, and we’ll use the following functions describe c’s behavior. For a
more formal definition see Appendix A.

• c⃗outs : Si × Sr → So; the deterministic function that calculates the outputs of the
circuit from its inputs and randoms.

Giuseppe Manzoni 7

• c⃗wires : Si × Sr → Sw; the deterministic function that calculates the inputs and
randoms of every fully-leakable gate in c, which are the leakable internal wires of c.

• ⃗Rndsc() ∈ Sr; the probabilistic function that calculates the random needed as
parameter of the circuit, with the correct distribution.

• ˘Leakc : [0, 1]→ P ([w]); the probabilistic function that maps the leakage probability
of a single wire to a description of which of the leakable wires are leaking.

• ⃗Gates(c) ∈ N|G|; the vectorial function that for each gate returns how many gates
of that type are in the circuit. This means that

∥∥∥ ⃗Gates(c)
∥∥∥

1
is the total number of

gates in c, where ∥·∥1 is the p-norm with p = 1.

For simplicity and compactness, we’ll also define c⃗outs(x⃗) := c⃗outs(x⃗, ⃗Rndsc()), c⃗wires(x⃗) :=
c⃗wires(x⃗, ⃗Rndsc()), c⃗all(x⃗, r⃗) := c⃗wires(x⃗, r⃗) ∥ c⃗outs(x⃗, r⃗), c⃗all(x⃗) := c⃗all(x⃗, ⃗Rndsc()), and
∥c∥ :=

∥∥∥ ⃗Gates(c)
∥∥∥

1
.

Note that the function ˘Leakc is monotone. More accurately, given any circuit c and
any leakage probability p, p′ ∈ [0, 1], Lemma 18 shows that that:

p ≤ p′ =⇒ ˘Leakc(p)
d
≤ ˘Leakc(p′)

3.2 Encoding
All the circuits we consider will have an associated encoding.

Definition 6 (Encoding). We define an encoding E as a pair of:

• A probabilistic function to encode E.E⃗nc : Dℓ → Sℓ′

out with Dℓ ⊆ Sℓ
in, such that it

returns a new encoding for its parameter, for some tuples (ℓ, ℓ′). Given a set Ŭ ⊆ Dℓ,
we write with E.E⃗nc[Ŭ] the union of the supports of E.E⃗nc for every input in the
set Ŭ , i.e. the set of the valid encodings of Ŭ .

• A deterministic function to decode E.D⃗ec : E.E⃗nc[Dℓ]→ Dℓ that maps each valid
encoding to the value it represents, and it must be such that E.D⃗ec ◦E.E⃗nc is the
identity function.

We can also define the composition of encodings: Given a pair of encodings C, D then
we denote with C ◦D as (C ◦D).E⃗nc := C.E⃗nc ◦D.E⃗nc, (C ◦D).D⃗ec := D.D⃗ec ◦ C.D⃗ec.

Definition 7 (n-shares Encoding). An n-shares encoding is one that has ℓ′ = n · ℓ for fall
ℓ ∈ N, has Dℓ := Sℓ

in, and is compatible with the concatenation of vectors: E.E⃗nc(⃗a ∥ b⃗) d=
E.E⃗nc(⃗a) ∥ E.E⃗nc(⃗b) and E.D⃗ec(c⃗ ∥ d⃗) = E.D⃗ec(c⃗) ∥ E.D⃗ec(d⃗), assuming the the number
of elements in c⃗, d⃗ is a multiple of n.

Definition 8 (Encoding Strength). Given an n-shares encoding, we say that it has
encoding strength k, with k ∈ N ∩ [0, n) if

• The values of ≤ k shares provide no information on the virtual wires: for all S̆ ⊆ [n]
with |S̆| ≤ k, D̆ep[E.E⃗nc](S̆) = ∅.

• From the value of k shares and that of the virtual wire is possible to uniquely
reconstruct the value of the missing shares so that the decoding matches the virtual
wire.

8 Reframing And Extending The Random Probing Expansion

An immediate implication is that the dependency function of the encoding is fully
determined if an encoding has strength:

Lemma 1. Given an n-shares encoding E with strength k, then for all Ĭ ⊆ [n] we have
that D̆ep[E.E⃗nc](Ĭ) = ∅ if |Ĭ| ≤ k and [1] otherwise.

Note that an n-shares encoding with strength n− 1 behaves like the additive encoding
while one with strength 0 doesn’t really do any masking. Also note that [BCP+20] defined
the RPE for the additive encoding, but their proofs only need strength n − 1 to work.
Additionally, the RPE can be easily generalized to any encoding strength with little change,
see Subsection 4.1.

While the proof of the expansion (Theorem 2) is more generic, in most of this paper
we’ll use encodings with strength that operate over a finite field. In particular we’ll consider
the following two encodings:

• For finite field K, given v⃗ ∈ (K\{0})n, we define the v⃗-linear encoding, with
Sin,Sout := K, such that ∀x⃗ ∈ Kn. D⃗ec(x⃗) := v⃗ · x⃗ and with the encoding func-
tion that selects an encoding uniformly between the possible ones. They all have
encoding strength of n− 1. This family of encoding includes the polynomial sharings
of [GPRV22], and the more common additive encoding which is the 1⃗-linear encoding,
with D⃗ec(x) =

∑
i

xi.

• For an irreducible polynomial P ∈ Fq[x] with degree m ≥ 2 and some q power of a
prime, we define the field-extension encoding, with Sin := Fqm , Sout := Fq, m shares,
and the following deterministic encoding: as Fqm can be constructed from Fq using
P , each value of Fqm can be seen as a polynomial of Fq[x] with degree < m, and
so we define E⃗nc as the function that outputs the array of coefficients of the input
value. D⃗ec is simply the inverse of E⃗nc. This has encoding strength of 0.

The traditional definition of ‘correct implementation’ isn’t suitable as we need to
maintain a correspondence between the values of the virtual circuit and the values of the
correct implementation even when they pass through a probabilistic sub-circuit. Not doing
so will also undermine the expansion and the Random Probing Reducibility, as it’d break
the abstraction between the virtual circuit and the concrete one.

Definition 9 (Correctness). Given two circuits v, c and an n-shares encoding E we say
that c is a correct implementation of v for E (or that v is the virtual circuit of c for E) if
there is an encoding R for the randoms such that:

• The encoding R transforms the random distribution of the virtual circuit into the
distribution of the implemented circuit ⃗Rndsc() d= R.E⃗nc(⃗Rndsv())

• For all inputs x⃗ ∈ E.E⃗nc[Si] and randoms r⃗ ∈ ˘supp[⃗Rndsc()] of the implemented
circuit,

v⃗outs(E.D⃗ec(x⃗), R.D⃗ec(r⃗)) = E.D⃗ec(c⃗outs(x⃗, r⃗))

This correctness implies that E.D⃗ec ◦ c⃗outs
d= v⃗outs ◦ E.D⃗ec (Lemma 19) and for

deterministic gates it’s equivalent to the more common E.D⃗ec ◦ c⃗outs = v⃗outs ◦ E.D⃗ec
(Proposition 6). The property ‘a is a correct implementation of b’ is transitive (Lemma 20),
and being a correct implementation is preserved by the composition in parallel and in
series (Lemma 21). See Subsection B.3.

Giuseppe Manzoni 9

3.3 Circuit compiler
Definition 10 (Circuit compiler). We can then define a circuit compiler as a pair of an
encoding E from Sin → Sout and a compilation function CC : CSin,Gin → CSout,Gout such that
for all circuits c ∈ CSin,Gin , the compiled circuit CC(c) must be a correct implementation of
c using E.

From this definition and from Lemma 20 quickly follows that given a circuit c with an
encoding D, and given a compiler (E, CC), then CC(c) has the encoding E ◦D.

Like for the encodings, given the two circuit compilers O, I such that the input circuit
type of O matches the output circuit type of I, we can define the compiler O ◦ I with
(O ◦ I).E := O.E ◦ I.E and (O ◦ I).CC := O.CC ◦ I.CC. This is a circuit compiler as the
correctness property is proven by Lemma 20.

Definition 11 (Circuit Complexity Matrix). Like in [BCP+20], we can define the circuit
complexity matrix of a compiler C (if it exists) as the matrix MC such that for all circuits
c, ⃗Gates(C.CC(c)) = MC · ⃗Gates(c).

This implies that if MO, MI are the circuit complexity matrices of the compilers O, I
then MO◦I = MOMI .

Definition 12 (Gadgets). Given an encoding E with shares from Sin to Sout, we can then
define the gadgets G⃗ : CSin,Gin → CSout,Gout as the sequence of |Gin| circuits of type CSout,Gout ,
such that for all g ∈ [|Gin|], G⃗g is a correct implementation of g using E.

With the gadgets we can make a compiler. In particular, given the gadgets G⃗ with
encoding E we can define the function CCG⃗ that substitutes every gate g with the circuit
G⃗g. Then the tuple C := (E, CCG⃗) is a compiler, see Lemma 22. The circuit complexity
matrix of this compiler exists, and if G⃗ has ℓ elements we have

MC :=
[

⃗Gates(G⃗1) ⃗Gates(G⃗2) · · · ⃗Gates(G⃗ℓ)
]

3.4 Circuit Security
To define the security of a circuit we first describe the adversaries from [DDF14, PGMP19]:

Definition 13 (δ-noisy adversary). Given a δ ∈ [0, 1] we define a δ-noisy adversary on Sℓ

a machine A that plays the following game against an oracle that knows x⃗ ∈ S:

1. A specifies a sequence of ℓ functions Noise such that every Noisei is δ-noisy, where
a function f is δ-noisy if the statistical distance between uniform distribution X and
the conditional distribution X|f(X) is ≤ δ. See [PGMP19] for more on what they
call δ-SD-noisy functions.

2. A receives Noise1(x⃗1) ∥ . . . ∥ Noiseℓ(x⃗ℓ) and outputs some value ⃗outA(x⃗).

Definition 14 (p-random probing adversary). Given a p ∈ [0, 1] we define a p-random
probing adversary on Sℓ a machine A that plays the following game against an oracle that
knows x⃗ ∈ S:

1. A specifies a sequence p⃗ ∈ [0, p]ℓ.

2. A receives (f1 ∥ . . . ∥ fℓ)(x⃗) and outputs some value ⃗outA(x⃗), where fi(x) returns x
with probability p⃗i, and it returns ⊥ with probability 1− p⃗i.

For each δ-noisy adversary there is an equivalent (δ · |S|)-random probing adversary
[DDF14], and for every p-random probing adversary there is an equivalent (p · |S|−1

2)-noisy
adversary [PGMP19].

10 Reframing And Extending The Random Probing Expansion

Definition 15 (Secure Against Adversary). Given a circuit c with encoding E such that
the original circuit was defined over Sorig and with i inputs, and given ε ∈ [0, 1] we’ll say
that c is ε-secure against a given type of adversary if for every adversary A of that type,
there is a random variable ⃗Sim such that for all x⃗ ∈ Si

orig,

SD
[

⃗Sim; ⃗outA(⃗cwires(E.E⃗nc(x⃗)))
]
≤ ε

From the relationship between the adversaries above, if a circuit is ε-secure against δ-
noisy adversaries, it’s ε-secure against 2δ

|S|−1 -random probing adversaries, and if it’s ε-secure
against p-random probing adversaries, then it’s ε-secure against p

|S| -noisy adversaries.
We note that the definition of (p, ε)-RPS from [BCP+20] is equivalent to ε-secure

against a p-random probing adversary, see Lemma 27, yet we’ll use a stronger definition for
the Random Probing Security as we already defined that concept and we need something
stronger for the Random Probing Reducibility later.

Definition 16 (RPS). Given a circuit c ∈ CS,G with encoding E, we’ll say that c is
(p, ε)-RPS (Random Probing Security) with p, ε ∈ [0, 1] if the probability that the leakage
depends on any unmasked inputs is upper bounded by ε:

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(p)) ̸= ∅

]
≤ ε

We can call p the leakage rate, while ε is essentially an upper bound on the circuit
leakage, which is a measure of the guaranteed security, but the higher the ε the lower the
security.

As we anticipated, if a circuit is (p, ε)-RPS, then it’s ε-secure against a p-random
probing adversary (see Lemma 28). Additionally, we can rise the ε and lower the p and
the circuit remain RPS (see Lemma 23), and every circuit with w > 0 internal wires is
(ε/w, ε)-RPS for every ε ∈ [0, 1] (see Lemma 26).

We also want to note the similarity between our definition of the RPS and the security
in the t-probing model:

Definition 17 (t-Probing Security). Given a circuit c with encoding E, we’ll say that c is
secure in the t-probing model if ≤ t wires don’t reveal any information on any inputs:

∀W̆ :
∣∣∣W̆ ∣∣∣ ≤ t. D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅

In particular we have the following reduction: if a circuit c with w wires is secure in the
t-probing model, then it’s (t

2we , 2−t)-RPS, see Proposition 7. If we apply this to the result
of the most classic compilers for the t-probing model, which have a circuit size increase of
Θ
(
t2) e.g. [ISW03], then the compiled circuits are (1/Θ (t), 2−t)-RPS.
While the RPE of [BCP+20] is a property of a single gadget and its main theorem

works by crating bigger and bigger RPE gadgets, we’ll provide a property relative to a
whole compiler that describes a single step of the compilation. In particular we defined it
so that RPE implies the RPR, see Proposition 1.

Definition 18 (RPR). We’ll say that a compiler (E, CC) : Cin → Cout is e-RPR (Random
Probing Reducible) for a continuous monotone function e : [0, 1]→ [0, 1] if for all circuits
c ∈ Cin and for all p, ε ∈ [0, 1] the circuit c is (e(p), ε)-RPS implies that CC(c) is (p, ε)-RPS.

This is meant to be interpreted as follows: a compiled circuit CC(c) with leakage p
can be abstracted into a virtual circuit c with leakage e(p), and if the virtual circuit has a
guaranteed security of ε, then so does the actual circuit CC(c).

We note that the RPR is preserved if the parameter function e in e-RPR is increased,
see Lemma 24.

Giuseppe Manzoni 11

Lemma 2 (RPR of the Composition of Compilers). Given the circuit types Cin, Cmid, Cout,
given the compiler D : Cin → Cmid that is eD-RPR and given a compiler C : Cmid → Cout
that is eC-RPR, then C ◦D is (eD ◦ eC)-RPR.

Proof. We need to prove that given any circuits c ∈ Cin and any p, ε ∈ [0, 1] such that c is
(eD(eC(p)), ε)-RPS, then C.CC(D.CC(c)) is (p, ε)-RPS.

We can use the definition of ‘D is eD-RPR’ with the circuit c, the leakage probability
eC(p) and the circuit leakage ε. Then as c is (eD(eC(p)), ε)-RPS we obtain that D.CC(c)
is (eC(p), ε)-RPS.

We can use the definition of ‘C is eC-RPR’ with the circuit D.CC(c), the leakage
probability p and the circuit leakage ε. Then as D.CC(c) is (eC(p), ε)-RPS, we obtain
that C.CC(D.CC(c)) is (p, ε)-RPS.

Corollary 1. By induction with Lemma 2 we obtain that a given a sequence of compilers
C such that Ci is ei-RPR, then Cn ◦ . . . ◦ C1 is (e1 ◦ . . . ◦ en)-RPR2.

3.5 Compiler Sequences
In this section we won’t limit ourselves to a single expansion strategy, but we’ll provide
a theorem that describes the asymptotic size of a circuit compiled with Ci as i → ∞,
where C is a sequence of compilers, for example the classical expansion of [BCP+20] has
Ci := Xi where X is any compiler.

Definition 19 (Compiler Sequence). We define a compiler sequence as an infinite sequence
C of circuit compilers Cj all with the same input and output circuit types and leakages.

This section’s theorem can be seen as an extension of the results of [BCP+20], and it uses
three properties that are an extension of properties found in [BCP+20] see Subsection 5.2
for more details on their relationship.

Definition 20 (Tolerated Leakage). We say that P is a tolerated leakage for a compiler
sequence C if there is a sequence e such that Cj is ej-RPR and such that em(P)→ 0 as
m→∞.

In other words the more the parameter m is increased, the more the leakage of the
virtual circuit goes to 0, and this happens for all p ≤ P due to the monotonicity of all e.

Definition 21 (Size Amplification Order). We say that λ is a size amplification order
of a compiler sequence C if the increase in circuit size (measured with the 1-norm of the
circuit complexity matrix) is ∥MCm

∥1 = O (λm) as m→∞.

Definition 22 (Security Amplification Order). We say that d > 1 is a security amplification
order for a compiler sequence C and a tolerated leakage P if log2 em(P) = Ω (dm) as
m→∞ where e is the e from the definition of ‘tolerated leakage P ’.

From those two amplification orders we can derive how fast the expansion reaches the
target leakage rate, this is similar to the exponent of [BCP+20]:

Definition 23 (Expansion Exponent). We say that e := log λ
log d is an expansion exponent

for a compiler sequence C and a tolerated leakage P , where λ is a size amplification order
for C and d is an security amplification order for C, P .

2As the RPE implies the RPR, this contrasts with [BRTV21]’s Lemma 9, which we believe to be
wrong. In particular if we call Gk the gadget of the k-th compilation. Then they define the gadget
G(k) := CCk−1 ◦ . . . ◦ CC1(Gk) i.e. G(k) = CCG(k−1) (Gk). This ‘i.e.’ doesn’t hold, which undermines
their proof. The core reason is that given two groups of gadgets b, b′, CCb ◦ CCb′ = CCCCb◦b′ , which can
be easily proven with the associativity of the operation of substituting a leaf of a tree with a sub-tree. In
practice, the right side of the ‘i.e.’ for k = 3 is G(3) = CCCC

G1 (G2)(G3) which, as explained, means that
G(3) = (CCG1 ◦ CCG2)(G3) = (CC1 ◦ CC2)(G3). This is not the definition G(3) = (CC2 ◦ CC1)(G3).

12 Reframing And Extending The Random Probing Expansion

We can now consider a circuit parameterized in its security level, and we can analyse
the asymptotic size increase in case we compile it to reach a constant tolerated leakage.
Theorem 1 (Complexity of Compiler Sequences). Given a compiler sequence C : Cin →
Cout, given a circuit cκ ∈ Cin parametric in its security level, i.e. such that cκ is
(2−p(κ), 2−κ)-RPS for some p : (0,∞)→ (0,∞); then there is a function n : (0,∞)→ N
that calculates which compiler in C to use, such that the compiled circuit c′

κ := Cn(κ).CC(cκ)
satisfies the following properties:

• For all κ > 0, the circuit c′
κ is (P, 2−κ)-RPS.

• As κ→∞, ∥c′
κ∥ = O (∥cκ∥ p(κ)e)

This where P is a tolerated leakage of C, and e is a expansion exponent of C, P .
The proof of this theorem is in Subsection C.3, and it has a few immediate conse-

quences. The first follows immediately from Theorem 1 and the security reductions from
Subsection 3.4:
Corollary 2. Theorem 1 is true also with point 1 substituted with:

1 For all κ > 0, the circuit c′
κ is 2−κ-secure against a P/|Kout|-noisy adversary.

We can then use a fixed input circuit and use Lemma 26 to obtain the security guarantee
for it:
Corollary 3. If we apply Corollary 2 to a fixed input circuit c, then the compiled circuit
size is

∥c′
κ∥ = O (κe)

Note that the expression ∥c′
κ∥ = O (κe) in Corollary 3 is supposed to mirror [BCP+20]’s

expression 12: ∥c′
κ∥ = O (∥c∥ κe). Those are equal because in our case ∥c∥ is constant by

hypothesis, while in theirs we can only assume3 they use a fixed c.
Lastly, instead of using Corollary 2 with a fixed circuit, we can apply it to the input

circuit cκ obtained as the output of a κ-probing secure compiler. All we need to use is
Proposition 7 to obtain an RPS guarantee from the κ-probing security property.
Corollary 4. If we apply Corollary 2 to an input circuit cκ obtained from a κ-probing
secure polynomial compiler, then the compiled circuit size is

∥c′
κ∥ = O (∥cκ∥ log(κ)e)

In other words, with a polylograrithmic size increase a t-probing secure compiler can
be made to create circuits 2−t-secure against a δ-noisy adversary, where the constant δ
and the exponent of the logarithm depend on the compiler sequence.

4 Calculating the RPR
In this section we’ll first report the definition of RPE from [BCP+20], in particular we’ll
give a single generic definition for a i-to-o gate instead of the two definitions for 2-to-1
and 1-to-2 gates, this to better compare it to our more generic properties. We’ll then
provide the definition of the ERPE property such that if all the gadgets of a compiler are
(t, e)-ERPE, then the compiler is e-RPR (Theorem 2). This definition was tailored to that
theorem to highlight the requirements for the expansion, so the result is quite different
from the RPE. For this reason we show that the (t, e)-RPE implies the (t, e)-ERPE.

3It’s not clear if they mean a fixed c or ∥c∥ → ∞, but they calculate their ‘security expansion’ using
the RPE, and by their Corollary 1, a set of (t, f)-RPE gadgets leads to a (p, 2fk(p))-RPS compiler. By
definition that means that given a circuit c, the compiled circuit is (p, 2 ∥c∥ fk(p))-RPS. This means that
to reach a security level of κ they need to satisfy 2 ∥c∥ fk(p) ≤ 2−κ and not fk(p) ≤ 2−κ. This undermines
their expression 12 if ∥c∥ → ∞.

Giuseppe Manzoni 13

4.1 RPE
Before reporting the definition of RPE from [BCP+20], we’ll first give a helper definition
that captures the relationship between J and J ′ as used in [BCP+20]’s RPE. In particular,
the RPE uses the RPE (t, n− 1)-normalization for n shares, as the additive encoding has
strength n − 1. As noted in Subsection 3.2, the RPE can be extended to any encoding
with strength k, and this by using the RPE (t, k)-normalization instead of the RPE
(t, n− 1)-normalization.

Definition 24 (RPE (t, k)-normalization). Calling n the number of shares, given J̆ ⊆
[n · o], we’ll say that a J̆ ′ ⊆ [n · o] is an RPE (t, k)-normalization of J̆ (with t ≤ k < n) if
all the blocks of shares with ≤ t shares are the same between J̆ and J̆ ′, while each block
with with > t shares is substituted with some set of k shares. Formally (with s̆(i) the set
of all the shares of the virtual wire i) we need that for all outputs i ∈ [o]:

J̆ ′ ∩ s̆(i) =
{

J̆ ∩ s̆(i) if
∣∣∣J̆ ∩ s̆(i)

∣∣∣ ≤ t

z̆ for some z̆ : |z̆| = k otherwise

We’ll now provide the definition of RPE from [BCP+20], but extended to any i-to-o
gate. We have split their SimG

1 (which returns two results) in the two functions O′ and I,
while their SimG

2 is implicit in the notion of simulatability. We also extend it to support
any encoding with strength. Lastly, we add a few requirements on the e of the e-RPE that
are only present for the formal proof.

Definition 25 (RPE). Given a gadget G ∈ CSout,Gout (with w internal wires) a correct
implementation for a fully-leakable deterministic gate g ∈ CSin,Gin (with i inputs and
o outputs) using the n-shares encoding E with strength k, and given a monotone and
continuous function e : [0, 1] → [0, 1], we say that G is (t, e)-RPE (Random Probing
Expandability) with t ∈ N ∩ [0, k] if there are the deterministic functions Ŏ′, Ĭ such that
for all subsets of output wires Ŏ ⊆ [n · o],

0 We define the input failure events F̆ (Ŏ, W̆) ⊆ [i], and the failure of an input happens
if the simulation needs more than t shares. More formally, for j ∈ [i]

j ∈ F̆ (Ŏ, W̆) ⇐⇒
∣∣∣Ĭ(Ŏ, W̆) ∩ s̆(j)

∣∣∣ > t

where Ĭ(·, ·) ⊆ [n · i] are the input dependencies, and s̆(j) are the shares of j.

1 For every subset of the internal wires W̆ ⊆ [w], the function x⃗ 7→ G⃗all(x⃗)W̆ ∥ Ŏ′(Ŏ,W̆)

can be simulated using the inputs Ĭ(Ŏ, W̆).

2 For all subsets of internal wires W̆ ⊆ [w], the outputs Ŏ′(Ŏ, W̆) that the simulation
is actually providing are an RPE (t, k)-normalization of Ŏ.

3 For every leakage probability vector p ∈ [0, 1], the failure events must have the
probability distribution F̆ (Ŏ, ˘LeakG(p)) d= ˘Leakg(e(p))

We define the following two properties roughly equivalent to those from [BCP+20] and
which can be calculated with a tool like VRAPS:

Definition 26 (RPE-Tolerated Leakage). We say that P is a t-RPE-tolerated leakage of
some gadget G if there is an e such that G is (t, e)-RPE, and for all p ∈ (0, P] we have
that e(p) < p.

Definition 27 (RPE-amplification order). We say that d is a t-RPE-amplification order
of some gadget G if there is an e such that G is (t, e)-RPE, and e(p) = Θ

(
pd
)
.

14 Reframing And Extending The Random Probing Expansion

4.2 ERPE
As we anticipated in the introduction, instead of the RPE we use the more generic ERPE,
which allows us to handle generic probabilistic gates. Also note that the ERPE is defined
for generic circuits and not only gates, and it’s defined so that it’s preserved by composition.

Definition 28 (ERPE). Given a generic circuit c ∈ CSout,Gout (with w internal wires) a
correct implementation of a circuit c′ ∈ CSin,Gin (with i inputs, o outputs) using the n-shares
encoding E with strength k and the encoding of the randoms R, given a continuous and
monotone function e : [0, 1] → [0, 1], and a t ∈ [0, k] ∩ N, we say that c is (t, e)-ERPE
(Extended Random Probing Expandability) of c′ if there is a function for the input
dependencies Ĭc, a function for the outputs actually simulated Ŏc, and a function for the
dependencies on the virtual wires W̆ ′

c such that

1. For all leakage rates p ∈ [0, 1], for all subsets of output Ŏ ∈ [n · o], the distribution
of virtual wires is the same for all Ŏ (i.e. W̆ ′

c(Ŏ, ˘Leakc(p)) d= W̆ ′
c(∅, ˘Leakc(p))) and

it’s upper bounded by the leakage e(p) (i.e. W̆ ′
c(∅, ˘Leakc(p))

d
≤ ˘Leakc′(e(p))).

2. For every subset of the internal wires W̆ ⊆ [w], for all possible combinations of outputs
to simulate Ŏ ∈ [n · o], for all the possible inputs actually provided Ĭ that are an RPE
(t, k)-normalization of Ĭc(Ŏ, W̆), the outputs actually simulated must be Ŏc(Ŏ, W̆ , Ĭ)
an RPE (t, k)-normalization of O⃗, and they together with W̆ can simulated from the
inputs Ĭ and virtual wires W̆ ′

c(Ŏ, W̆): for all inputs x⃗ ∈ E.E⃗nc[Si
in] and for all the

virtual randoms r⃗′ ∈ ˘supp[⃗Rndsc′()]

x⃗Ĭ ∥ c⃗′wires(E.D⃗ec(x⃗), r⃗′)W̆ ′
c(Ŏ,W̆)

sim−→ c⃗all(x⃗, R.E⃗nc(r⃗′))W̆ ∥ Ŏc(Ŏ,W̆ ,Ĭ)

Ŏ ⊆ [no]

Ĭc(Ŏ, W̆)

Ŏc(Ŏ, W̆, Ĭ)⊆ [no]

Ĭ⊆ [n · i]

W̆⊆ [w]

W̆ ′
c(Ŏ, W̆)

depend on

c⃗outs(x⃗, r⃗)Ŏc

x⃗Ĭ

c⃗′outs(x⃗′, r⃗′)

x⃗′ =E.D⃗ec(x⃗)

c⃗wires(x⃗, r⃗)W̆

c⃗′wires(x⃗′,r⃗′)W̆′
c

can simulate r⃗=R.E⃗nc(r⃗′)

r⃗′

outputs
of c we are
requested

to simulate

outputs of c
we can actually

simulate
from W̆′

c, Ĭ′

wires of c
that are
leaking

wires of c′

we need
leaking

inputs of c
we need to
simulate

Ŏ, W̆

inputs of c
actually
provided
for the

simulation

RPE (t, k)
normaliz.

RPE (t, k)
normalization

leakage
reduction

by e(·)

simulated
values of the

outputs Ŏc of c

values of the
outputs of c′

provided
values of the

inputs Ĭ
of c

values of the
inputs of c′

randoms
of c′

random
of c

contain
values

contain
values

contain
values

contain
values

encoding

encoding

encoding

in→out

compile c′ → c

other

Figure 1: The structure of the ERPE property. On the left side the wires, and on the
right side their values. In gray the entities of the virtual circuit c′.

Giuseppe Manzoni 15

In Figure 1 we represent a compact scheme of the relationships within the ERPE, in
particular, the composition in series is equivalent to stacking two copies of this scheme on
top of each other, while in case of multiple compilations we stack them in depth, roughly
by substituting the exact calculation of c⃗′all with the other simulator.

We will now enunciate the main theorem for the expansion, its proof is in Appendix D

Theorem 2 (ERPE to RPR). Given the gadgets G⃗ for an n-shares encoding E, such
that for all input gates g the gadget G⃗g is (t, e)-ERPE of g, then the compiler (E, CCG⃗) is
e-RPR.

We will show in Lemma 25 that the (t, e)-ERPE is preserved by increasing e.
A special consideration can be given to leakless gadgets for leakless gates, as the (t, e)-

ERPE property only uses the input-output behavior of the gadget and it’s independent
from e. From the definition of ERPE we have the following immediate necessary and
sufficient condition:

Lemma 3 (Leakless ERPE). Given a leakless circuit c ∈ CSout,Gout a correct implementation
of a leakless circuit c′ ∈ CSin,Gin using the n-shares encoding E with strength k and the
encoding of the randoms R, where c′ has i inputs, o outputs, given a continuous and
monotone function e : [0, 1] → [0, 1], and a t ∈ [0, k] ∩ N, then c is (t, e)-ERPE of c′ iff
for all combinations of the required output wires Ŏ ∈ [n · o], there is a combination of
possible inputs Ĭ ∈ [n · i] such that for all the inputs actually provided Ĭ ′ an RPE (t, k)-
normalization of Ĭ there is a set of outputs actually provided Ŏ′ an RPE (t, k)-normalization
of Ŏ such for all inputs x⃗ ∈ E.E⃗nc[Si

in] and for all virtual randoms r⃗′ ∈ ˘supp[⃗Rndsc′()]
we must have that x⃗Ĭ′

sim−→ c⃗outs(x⃗, R.E⃗nc(r⃗′))Ŏ′ .

This lemma has the following immediate implication:

Corollary 5 (Constant Gate). Any n-shares correct and leakless implementation of a
leakless gate (with no inputs and no randoms) for an encoding of strength k is (t, e)-ERPE
for any t ∈ [0, k] ∩ N, and for any continuous and monotone function e : [0, 1]→ [0, 1].

4.3 From RPE to RPR
We can first define a simple variation of the RPE as we need it in a proof later:

Definition 29 (wRPE). We define the (t, e)-wRPE (Weak RPE) as property that is

identical to the RPE except that the item 3 has the
d
≤ instead of the d=, and it also asks

that the probability distribution of the failure events F̆ (Ŏ, ˘LeakG(p)) is the same for all
Ŏ.

Then we have the following implications that we’ll prove in Subsection E.1.

Proposition 1. The (t, e)-RPE implies the (t, e)-wRPE which implies the (t, e)-ERPE.

Instead of showing that the random gadget with n randoms from [BCP+20, BRT21] is
(t, ·)-ERPE, we will prove in Subsection E.1 the more general proposition:

Proposition 2 (Additive Random Gadgets). For the n-shares additive encoding, given a
t ∈ [0, n− 1] ∩ N, and any continuous monotone e : [0, 1]→ [0, 1], we consider the gadget
obtained by a parallel of at least t + 1 random gates and the remaining to reach n are
constant-0 gates. This gadget is (t, e)-ERPE for the random gate.

With this we can obtain the following result that links our paper with [BCP+20], which
can be derived from the last two propositions, Lemma 25, and Theorem 2:

16 Reframing And Extending The Random Probing Expansion

Theorem 3 (RPE to RPR). Given a gadget-based compiler from the framework of
[BCP+20] (i.e. additive encoding over circuits Cstd,q) whose i-th gate of types (addition,
subtraction, copy, multiplication) has a gadget that is (t, ei)-RPE, with any leakless constant-
c gadget, and any random gadget from Proposition 2, then that compiler is e-RPR with
e := max

i
ei.

5 Calculating the Properties of Compiler Sequences
In order to provide the main compiler we need to analyze what happens to the security
amplification order, to the size amplification order and to the tolerated leakage when we
compose compilers and compiler sequences. We also need to know how to calculate them
from the properties of compilers of [BCP+20], which we formalized here with the circuit
complexity matrix, the RPE-amplification order, the RPE-tolerated leakage.

5.1 Composition of Compiler Sequences
We’ll first analyze the size amplification order by adding a compiler before and after
the main compiler sequence. Note that any constant composition of compilers is itself a
compiler. The proofs of this section are in Subsection E.2.

Lemma 4 (Size Amplification Order). Given a compiler sequence C and given two
compilers I, O such that we can define C ′

m := O ◦ Cm ◦ I then C ′ has all the size
amplification order of C.

Then we’ll give a lemma for the security amplification order, in case we add a compiler
before the main sequence.

Lemma 5 (Single Input Compiler). Given a compiler sequence C and given a compiler I
such that we can define C ′

n := Cn ◦ I; if there is some l > 0 such that I is O
(
xl
)
-RPR

then C ′ has all the tolerated leakage, security amplification order, size amplification order
and expansion exponent of C.

Lastly, we give a lemma for the security amplification order, in case we add an compiler
in output, which was taken from a compiler sequence so that we can obtain the following
useful property.

Lemma 6 (Fixed Output Compiler Sequence). Given a compiler sequence I and a compiler
sequence O (with respectively a tolerated leakage of Pi, Po; a security amplification order of
di, do for the aforementioned tolerated leakage) then there is a k such that4 Cn := Ok ◦ In

has a security amplification order of di relative to a tolerated leakage of Po.

5.2 Classic Expansion
In this section we’ll analyze the classical expansion strategy from [BCP+20, BRT21], where
the compiler sequence is Cn := Xn, and we calculate the three properties of compiler
sequences from the properties of their gadgets. The proofs will be in Subsection E.3.

The following lemma shows that [BCP+20]’s Nmax (which they define as the highest
module of any eigenvalue of the circuit complexity matrix MX) is a size amplification
order.

Lemma 7 (Size Amplification Order). Given a compiler sequence Cn := Xn, with
diagonalizable circuit complexity matrices MX , then the highest module of any eigenvalue
of MX is a size amplification order.

4In [BRTV21] they use the equivalent of Cn := On ◦ Ik instead of Cn := Ok ◦ In, due to what we
believe to be an error in their Lemma 9, see footnote 2.

Giuseppe Manzoni 17

We can then analyze the tolerated leakage, which is the minimum tolerated leakage of
all gadgets like in [BRT21].

Lemma 8 (Tolerated Leakage). Given a compiler sequence Cm := Xm such that X was
obtained from Theorem 3, given a t and such that the i-th gate in (addition, multiplica-
tion,copy,subtraction) has a t-RPE-tolerated leakage Pi, then P := min

i
Pi is a tolerated

leakage for C.

We can then show that for these families of compilers the security amplification order
is independent of the tolerated leakage, like it’s the case in [BRT21].

Lemma 9 (Universality of security amplification order). Given a compiler sequence
Cn := Xn if d is a security amplification order for some tolerated leakage, then it’s a
security amplification order for any tolerated leakage.

Lastly, we can show that the overall amplification order is the minimal amplification
order of all the compilers, like in [BRT21].

Lemma 10 (Security Amplification Order). Given a compiler sequence Cm := Xm such
that X was obtained from Theorem 3, given a t such that the i-th gate in (addition,
multiplication,copy,subtraction) has a t-RPE-amplification order di, then d := min

i
di is a

security amplification order for C for any tolerated leakage.

6 Main Compiler Sequence
In this section we’ll provide our main compiler sequence to make the output of a t-probing
secure compiler tolerate a constant noise of 2−7.41/p with a cube-logarithmic size increase.
To do that we first need to define two more compilers.

6.1 Field-Extension compiler
First we’ll give a pair of useful lemmas for gadgets whose encoding has strength 0. We
report an immediate consequence of Lemma 3 in case of a leakless gate implemented by a
leakless gadget:

Proposition 3. Any correct leakless implementation of a leakless gate for a strength 0
encoding is (0, e)-ERPE for any continuous and monotone function e : [0, 1]→ [0, 1].

Then we can analyze a fully-leakable deterministic gate, proven in Subsection E.4.

Lemma 11. Given a gadget G (with w internal wires) for the fully-leakable deterministic
gate g (with i inputs) that is correct for an n-shares encoding E with strength 0, then G is
(0, e)-ERPE, with e(x) := min{1, (w · x)1/i}.

The Field-Extension compiler we’ll present here is similar to the method presented
in [GJR18] to reduce the order of the field, the main difference is that they obtain
p′ = Θ

(
p

k log k

)
. The lack of the square for the p is due to the different leakage model, as

they consider one where the inputs are bundled together: they either all leak or all don’t.

Proposition 4. There is a Cstd,qk → Cstd,q compiler that is e-RPR with e(p) := min{1, (w ·
p)1/2} where w := Θ (k log k) is the number of wires in the multiplication gadget, and the
1-norm of its circuit complexity matrix is Θ (k log k).

18 Reframing And Extending The Random Probing Expansion

Proof. The compiler uses the field-extension encoding, which has k shares and strength 0,
and that creates an extension field Fqk from a field Fq by using some irreducible polynomial
P ∈ Fq[x] with degree k.

This extension compiler follows the usual way to build a field of order qk from one of
order q using the same irreducible polynomial P .

We can implement the addition, subtraction, copy, random, constant-c gadgets using k
gates (one per coefficient of the polynomials) of their own type, except the constant-c that
uses the field-extension encoding to obtain the values of the coefficients for the k constants.

The last gadget is the multiplication, which is made of a multiplication of the two
inputs polynomials followed by the rest of the division by P , and it’s widely known that
this can be implemented using Θ (k log k) gates by using the fast Fourier transform.

The correctness of these gadgets follows from the definition of the field-extension
encoding and the properties of extension fields. The random and constant-c gadgets are
leakless as they’re made of leakless gates. Additionally, every gadget of this compiler
is (0, e)-ERPE thanks to Lemma 11 and Lemma 25 for the fully leakable gates, and
Proposition 3 for the leakless ones. Then we know that this compiler is e-RPR from
Theorem 2 as all gadgets are (0, e)-ERPE. The size complexity is ∥M∥1 := Θ (k log k) as
the complexity matrix has finite elements and the highest element is proportional to the
number of wires w, which is Θ (k log k).

6.2 High Tolerated Leakage Compiler
Proposition 5. There is a Cstd,p → Cstd,p compiler with expansion exponent 4.09 and
tolerated leakage 2−7.41.

Proof. To prove this we’ll provide the gadgets, calculate their (1, ·)-RPE and then we’ll
use Theorem 3 to obtain the RPR.

This compiler has the random gadget [] 7→ [← Fp,← Fp, 0], the constant-c gadget
[] 7→ [c, 0, 0], and with the following gates from [BRT21], except the copy gadget has an
additional refresh. We’ll first report the refresh circuit, which we’ll call ⃗ref (⃗a) and it
calculates c⃗ with randoms r⃗ :=← F2

p:

c⃗1 := a⃗1 + r⃗1

c⃗2 := a⃗2 + r⃗2

c⃗3 := a⃗3 − (⃗r1 + r⃗2)

The addition gadget is a⃗, b⃗ 7→ ⃗ref (⃗a) + ⃗ref (⃗b), while the subtraction gadget is a⃗, b⃗ 7→
⃗ref (⃗a)− ⃗ref (⃗b) and the copy gadget is a⃗ 7→ ⃗ref(a⃗′), ⃗ref(a⃗′) with a⃗′ := ⃗ref (⃗a).

The multiplication gadget is a⃗, b⃗ 7→ c⃗ with c⃗ calculated with

∀i ∈ [3]. b⃗′
i,· := ⃗ref (⃗b)

a⃗′ := ⃗ref (⃗a)

∀i ∈ [3]. c⃗i :=
(∑

k

(a⃗′
i · b⃗′

i,k + r⃗i,k)
)
−

(∑
k

r⃗k,i

)

Which uses 4 refresh circuits and 9 additional randoms.
In Table 1 we report the 1-RPE-tolerated leakage and the 1-RPE-amplification order

as calculated by VRAPS. Then Lemma 8 and Lemma 10 show that their minimal values
are the tolerated leakage and the security amplification order for the classic expansion
using this compiler.

In particular, the tolerated leakage is 2−7.41, which can be compared to [BRT21]’s
2−7.50, while the security amplification order is 2 which is the same as [BRT21].

Giuseppe Manzoni 19

Table 1: log2 of RPE-tolerated leakage, and the RPE-amplification order for the RPE
with t := 1, calculated using the VRAPS tool

Gadget log2 of 1-RPE-tolerated leakage 1-RPE-amplification order
Addition −4.75 2

Subtraction −4.75 2
Multiplication −7.41 2

Copy −4.95 2

The circuit complexity matrix with the gates in the order (addition, subtraction, copy,
multiplication, random, constant-0, constant-c with c ̸= 0) is

M =



9 6 9 35 0 0 0
2 5 3 5 0 0 0
4 4 9 29 0 0 0
0 0 0 9 0 0 0
4 4 6 17 2 0 0
0 0 0 0 1 3 2
0 0 0 0 0 0 1


Is diagonalizable with the eigenvalues 17,3,3,9,2,3,1, and so by Lemma 7 the size amplifica-
tion order is 17.

By using both amplification orders we can calculate the expansion exponent, which is
e := log 17

log 2 = 4.09, which can be compared to [BRT21]’s 3.9.

6.3 Main Compiler Sequence
Theorem 4. For every prime p, and natural k ≥ 2, there is a compiler sequence X :
Cstd,pk → Cstd,p with expansion exponent 3 relative to a tolerated leakage 2−7.41.

Proof. We define Xt := H l ◦Ct ◦E where E is the field-extension compiler of Proposition 4,
where H is the high-tolerated leakage compiler of Proposition 5, where l ∈ N is some
constant, and where C is the parametric compiler from [BRT21] instantiated with 21
shares, except that we use our random gadget with 11 randoms instead of 21.

From Lemma 7 we know that we can take the size amplification order of (Ct)t from
[BRT21] which is 3n2 − 2n for a compiler C with n shares, and so 1281 as we use n = 21.
Note that we can use a size amplification order of 1331 as by definition we can always use
a higher value. Then from Lemma 10 we know that we can take the security amplification
order of (Ct)t from [BRT21] which is ⌊(n + 1)/2⌋ as we’re using t := ⌊(n− 1)/2⌋. As
n = 21 we obtain that 11 is a security amplification order of (Ct)t.

Using Proposition 5 we know that (H l)l has a tolerated leakage of 2−7.41; and as l is a
constant, we can use Lemma 4 to show that Xt has the size amplification order of 1331.

We can apply Lemma 6 to (H l ◦ Ct)t to show that for the security amplification order
11 of (Ct)t and the tolerated leakage 2−7.41 of (H l)l there is a l (which is the one we’ll use)
such that (H l ◦Ct)t has the security amplification order 11 for the tolerated leakage 2−7.41.
We can then apply Lemma 5 to Xt and obtain that it has the security amplification order
11 for the tolerated leakage 2−7.41. Paired with the size amplification order, this means
that Xt has a expansion exponent of 3 relative to a tolerated leakage of 2−7.41.

We can apply Corollary 4 with the compiler sequence from Theorem 4 after the classical
t-probing secure compiler from [ISW03] or its extension to bigger fields from [RP10]. As
their complexity is Θ

(
t2), the overall compiler creates circuits that are 2−t-secure against

2−7.41/p-noisy adversaries with an overall size O
(
t2 log(t)3).

20 Reframing And Extending The Random Probing Expansion

A Definition of Circuit
The usual way to describe the circuit, for example in [BCP+20], is to define them as a
graph where the nodes are the gates and the links the wires. Yet a normal graph doesn’t
track where each wire is connected, and so it’s only meaningful for commutative gates
with identical outputs. Additionally, we have the restriction that each input and output
has a single wire linked to it which we’d need to codify into the graph. We need to ask
that the graph is acyclic, we need two additional gate types for the circuit’s overall inputs
and outputs, and we need a way to assign to those additional nodes a label to distinguish
which input or output of the overall circuit they represent.

We believe a more suitable structure for this specific kind of circuits, which also
simplifies our proofs, is a tree that describes the circuits iteratively:

Definition 30 (Circuit). We’ll define a circuit c ∈ CS,G as either

• An index of a gate in G.

• Parallel composition of two smaller circuits c := c′ ∥ c′′.

• Serial composition of two smaller circuits c := co ◦ ci, as long as the number of
inputs of co matches that of the outputs of ci.

• The identity circuit, which outputs its single input.

• The swap circuit, which swaps its two inputs.

Where the identity and swap circuits are just for reshuffling the wires, to ensure that this
formalism can represent all the circuits that can be defined as a graph of gates.

Given a circuit c ∈ CS,G , we can now give the formal definitions of c⃗outs, c⃗wires, ⃗Rndsc(),
˘Leakc and ⃗Gates(c), and we’ll do so iteratively based on c:

• If c is the g-th gate, then c⃗outs is the function that defines the gate. If it’s leakless
then c⃗wires(x⃗, r⃗) := [] otherwise c⃗wires(x⃗, r⃗) := x⃗ ∥ r⃗, ⃗Rndsc() draws a value from
the probability distribution in the description of the gate. We can then define

⃗Gates(c)g := 1 and ⃗Gates(c) ̸=g := 0⃗. Lastly, given v a result of ˘Leakc(p) we have
that for all j the probability of j ∈ v is p and they are independent.

• If c is an identity circuit, then c⃗outs([a]) = [a], ⃗Rndsc() := [], ⃗Gates(c) := 0⃗.
c⃗wires(x⃗, r⃗) := [], ˘Leakc(p) := ∅.

• If c is a swap circuit, then c⃗outs([a, b]) = [b, a], ⃗Rndsc() := [], ⃗Gates(c) := 0⃗.
c⃗wires(x⃗, r⃗) := [], ˘Leakc(p) := ∅.

• If c is a parallel c′ ∥ c′′, then ⃗Rndsc() := ⃗Rndsc′() ∥ ⃗Rndsc′′(), ⃗Gates(c) :=
⃗Gates(c′) + ⃗Gates(c′′), ˘Leakc(p) := ˘Leakc′(p) ∥ ˘Leakc′′(p), and

c⃗outs(x⃗′ ∥ x⃗′′, r⃗′ ∥ r⃗′′) := c⃗′outs(x⃗′, r⃗′) ∥ c⃗′′outs(x⃗′′, r⃗′′)

c⃗wires(x⃗′ ∥ x⃗′′, r⃗′ ∥ r⃗′′) := c⃗′wires(x⃗′, r⃗′) ∥ c⃗′′wires(x⃗′′, r⃗′′)

• If c is a series c′′ ◦ c′, then ⃗Rndsc() := ⃗Rndsc′() ∥ ⃗Rndsc′′(), ⃗Gates(c) := ⃗Gates(c′)+
⃗Gates(c′′), ˘Leakc(p) := ˘Leakc′(p) ∥ ˘Leakc′′(p), and

c⃗outs(x⃗, r⃗′ ∥ r⃗′′) := c⃗′′outs(c⃗′outs(x⃗, r⃗′), r⃗′′)

c⃗wires(x⃗, r⃗′ ∥ r⃗′′) := c⃗′wires(x⃗, r⃗′) ∥ c⃗′′wires(c⃗′outs(x⃗, r⃗′), r⃗′′)

Giuseppe Manzoni 21

B Lemmas for Fundamental Concepts
We’ll prove here various lemmas for the properties of the simulatability, of the dependency
functions, of the partial order, etc, that we need in this paper.

B.1 Simulatability and Dependency Functions

Lemma 12 (Simulatability from the Inputs). The probabilistic vectorial function f⃗ : Si
in →

So
out can be simulated using the input elements Ĭ ⊆ [i] iff for all x⃗, y⃗ ∈ Si

in, y⃗Ĭ = x⃗Ĭ implies
f⃗(x⃗) d= f⃗(y⃗).

Proof. By definition, f⃗ can be simulated using the input elements Ĭ iff f⃗ can be simulated
from (x⃗ 7→ x⃗Ĭ), i.e. iff there is a Sim : S|Ĭ|in → So

out such that x⃗ ∈ Si
in, f⃗(x) d= Sim(x⃗Ĭ).

This implies that for every x⃗, y⃗ ∈ Si
in, y⃗Ĭ = x⃗Ĭ =⇒ f⃗(x⃗) d= Sim(x⃗Ĭ) d= Sim(y⃗Ĭ) d= f⃗(y⃗).

For the opposite implication we have that x⃗, y⃗ ∈ Si
in, y⃗Ĭ = x⃗Ĭ =⇒ f⃗(x⃗) d= f⃗(y⃗).

This implies that for every c⃗ ∈ S|Ĭ|in all f⃗(x⃗) with x⃗Ĭ = c⃗ have all the same probability
distribution. This means that there is a Sim such that x⃗ ∈ Si

in, f⃗(x) d= Sim(x⃗Ĭ).

Lemma 13 (Multiple Simulatability). Given a probabilistic vectorial function f⃗ : Si
in →

So
out, if it can be simulated from the inputs Ĭ, and it can also be simulated from the inputs

Ĭ ′, then it can be simulated from the inputs Ĭ ∩ Ĭ ′.

Proof. This was proven in [BBP+16] as their Lemma 7.5. We could prove it using the
equivalence relationship x⃗ ∼Ĭ y⃗ ⇐⇒ x⃗Ĭ = y⃗Ĭ , and so from Lemma 12 we have that
f⃗ can simulated from the inputs I iff x⃗ ∼Ĭ y⃗ =⇒ f⃗(x⃗) d= f⃗(y⃗). Then it’s a matter of
showing that y⃗ ∼Ĭ∩Ĭ′ y⃗′ means that there are x⃗, x⃗′, m⃗ such that y⃗ ∼Ĭ x⃗ ∼Ĭ′ m⃗ ∼Ĭ′ x⃗′ ∼Ĭ y⃗′.
Note that this only works because the domain Si

in allows every element to take values
independent from the values of the other elements.

Lemma 14 (Dependency Function). Given a probabilistic vectorial function f : Si
in → So

out,
its dependency function always exist and is unique.

Proof. The dependency function exists if for every subset of the outputs there is the
minimal subset of inputs that allow to simulate those outputs. Thanks to Lemma 13
those subsets of the inputs create a finite meet-semilattice and so there is a single global
minimum.

Lemma 15 (Monotonicity). All the dependency functions are monotone.

Proof. Given a f⃗ : Si
in → So

out, we define D̆ep(Ŏ) :=
⋂

Ŏ′⊇Ŏ D̆ep[⃗f](Ŏ
′) and by construction

we have that D̆ep is monotone and D̆ep(Ŏ) ⊆ D̆ep[⃗f](Ŏ). Also, f⃗Ŏ can be simulated using
the inputs D̆ep(Ŏ). This is because it can be simulated using the inputs D̆ep[⃗f](Ŏ

′) for
any Ŏ′ ⊇ Ŏ by simulating more outputs and discarding the ones not needed. Then we can
apply Lemma 13 on every possible D̆ep[⃗f](Ŏ

′) to see that it can be simulated from the
inputs D̆ep(Ŏ). This means that D̆ep ⊇ D̆ep[⃗f] as the latter is minimal by definition. All
this means D̆ep = D̆ep[⃗f] and that they are monotone.

22 Reframing And Extending The Random Probing Expansion

B.2 Partial Order of Distributions

Lemma 16 (Partial Order). The relationship
d
≤ is a partial order for the equivalence d=.

Proof. The reflexivity is immediately proven, as a
d
≤ a iff for all monotone P , Pr[P (a)]≤

Pr[P (a)] which is obviously true.
The transitivity is just as obvious, as given a a, b, c, P we have that Pr[P (a)]≤ Pr[P (b)]

and Pr[P (b)]≤ Pr[P (c)] imply Pr[P (a)]≤ Pr[P (c)].
For the antisymmetry, we have that for all monotone P Pr[P (a)]≤ Pr[P (b)] and for

all monotone P , Pr[P (b)]≤ Pr[P (a)], mean that for all monotone P , Pr[P (a)]= Pr[P (b)].
As the random variables a, b are discrete, there is a sequence of P such that P1 is always
false, and Pi+1 was true for all the elements of Pi plus one. All this implies that for all x,
Pr[a = x]= Pr[b = x] and so a d= b.

Lemma 17 (Parallel Composition). If v⃗
d
≤ V⃗ and u⃗

d
≤ U⃗, with v⃗, u⃗, V⃗, U⃗ pair-wise

independent, then v⃗ ∥ u⃗
d
≤ V⃗ ∥ U⃗

Proof. To prove this, we’ll prove it in two stages: v⃗ ∥ u⃗
d
≤ v⃗ ∥ U⃗ and v⃗ ∥ U⃗

d
≤ V⃗ ∥ U⃗.

We’ll only write the proof of the first as the other one is basically identical.
So we prove that given a generic monotone P , Pr[P (v⃗ ∥ u⃗)]≤ Pr

[
P (v⃗ ∥ U⃗)

]
Let’s call Px⃗(y⃗) := P (x⃗ ∥ y⃗). This is monotone, and so by hypothesis

∀x⃗. Pr[Px⃗(u⃗)]≤ Pr
[
Px⃗(U⃗)

]
This implies that

∑⃗
x

Pr[x⃗ = v⃗]Pr[Px⃗(u⃗)]≤
∑⃗
x

Pr[x⃗ = v⃗]Pr
[
Px⃗(U⃗)

]
As v⃗ is independent with u⃗ and U⃗, we have that∑

x⃗

Pr[x⃗ = v⃗ ∧ P (x⃗ ∥ u⃗)]≤
∑

x⃗

Pr
[
x⃗ = v⃗ ∧ P (x⃗ ∥ U⃗)

]

And so that Pr[P (v⃗ ∥ u⃗)]≤ Pr
[
P (v⃗ ∥ U⃗)

]
Lemma 18 (Leaking Wires). For every circuit c and for every leakage rates p, p′ ∈ [0, 1],

p ≤ p′ =⇒ ˘Leakc(p)
d
≤ ˘Leakc(p′)

Proof. First of all, if c has no leakable wire, then ˘Leakc(p) := [] making the thesis true

by definition of
d
≤. Then let’s first consider v̆(p) ∈ {∅, [1]} a probabilistic function that

returns a random variable with Bernoulli distribution Pr[v̆(p) = [1]]= p.
The possible monotone predicates for v̆ are P (·) := true, P (·) := false, P (ă) := (ă =

[1]). It’s immediate to prove that if p ≤ p′ then for all monotone predicates P ,

Pr[P (v̆(p))]≤ Pr[P (v̆(p′))]

This means that p ≤ p′ =⇒ v̆(p)
d
≤ v̆(p′). As ˘Leakc(p) d= v̆(p) ∥ . . . ∥ v̆(p), we can

prove the lemma by using Lemma 17.

Giuseppe Manzoni 23

B.3 Correctness
Lemma 19 (Necessary Condition for Correctness). If C is a correct implementation of c

for E, then for every encoded input x⃗ ∈ E.E⃗nc[Si]

E.D⃗ec(C⃗outs(x⃗)) d= c⃗outs(E.D⃗ec(x⃗))

Proof. By definition ⃗RndsC() d= ⃗RndsC(), and this is preserved if we apply equal functions
one on each side of the d=, so

c⃗outs(E.D⃗ec(x⃗), R.D⃗ec(⃗RndsC())) d= E.D⃗ec(C⃗outs(x⃗, ⃗RndsC()))

As by hypothesis ⃗RndsC() d= R.E⃗nc(⃗Rndsc()), we can apply R.D⃗ec to each side and
obtain that R.D⃗ec(⃗RndsC()) d= ⃗Rndsc(), so the previous expression is equivalent to

c⃗outs(E.D⃗ec(x⃗)) d= E.D⃗ec(C⃗outs(x⃗))

Proposition 6 (Correctness for Deterministic). Given a deterministic c, ‘C is a correct
implementation of c for E’ is equivalent to: for every encoded input x⃗ ∈ E.E⃗nc[Si]

E.D⃗ec(C⃗outs(x⃗)) = c⃗outs(E.D⃗ec(x⃗))

Proof. For Lemma 19, the correctness implies

E.D⃗ec(C⃗outs(x⃗)) d= c⃗outs(E.D⃗ec(x⃗))

As c⃗outs is deterministic by hypothesis, and because C⃗outs has a discrete probability
distribution, the d= implies the =.

For the opposite implication, we have by hypothesis that c is deterministic, so we can
rewrite the hypothesis as: for all encoded inputs x⃗

c⃗outs(E.D⃗ec(x⃗), []) = E.D⃗ec(C⃗outs(x⃗), ⃗RndsC())

In other words, for all encoded inputs x⃗ for all the possible values r⃗ of the randoms of the
compiled circuit

c⃗outs(E.D⃗ec(x⃗), []) = E.D⃗ec(C⃗outs(x⃗, r⃗))

We can prove the definition of correct implementation by using any encoding for the
randoms such that E⃗nc([]) = ⃗RndsC().

Lemma 20 (Transitiveness of the correctness). If c′′ is a correct implementation of
c′ (using E′), and c′ is a correct implementation of c (using E), then c′′ is a correct
implementation of c (using E′ ◦ E).

Proof. Let’s call R′ the encoding of the randoms relative to E′, same for R and E, then
to prove the point 1 of the definition of correct implementation we have:

⃗Rndsc′′() d= R′.E⃗nc(⃗Rndsc′()) d= R′.E⃗nc(R.E⃗nc(⃗Rndsc())) d= (R′ ◦R).E⃗nc(⃗Rndsc())

We can then report the point 2 of the definition of ‘c′ is a correct implementation of c’
applied with the values x⃗ := E′.D⃗ec(x⃗) and r⃗ := R′.D⃗ec(r⃗):

c⃗outs(E.D⃗ec(E′.D⃗ec(x⃗)), R.D⃗ec(R′.D⃗ec(r⃗))) = E.D⃗ec(c⃗′outs(E′.D⃗ec(x⃗), R′.D⃗ec(r⃗)))

24 Reframing And Extending The Random Probing Expansion

And we can apply E.D⃗ec to both sides of the point 2 of the definition of ‘c′′ is a correct
implementation of c′’:

E.D⃗ec(c⃗′outs(E′.D⃗ec(x⃗), R′.D⃗ec(r⃗))) = E.D⃗ec(E′.D⃗ec(c⃗′′outs(x⃗, r⃗)))

As = is transitive, they imply the point 2 of the definition of correct implementation.

Lemma 21 (The composition retains the correctness). If c′, d′ are correct implementations
of respectively c, d, then c′ ∥ d′ is a correct implementation of c ∥ d, and c′ ◦ d′ is a correct
implementation of c ◦ d, assuming the last composition is meaningful.

Proof. The first point of the definition of correctness can be proven by the definition of
⃗Rnds() for series and parallel and by the encoding of the randoms for the series and

parallel being obtained by a parallel of the two encodings of the randoms.
The second point can be proven quickly by writing one side of the equation, write it

in terms of the two sub-circuits, split the encoding functions in the parallel of the two
encodings, apply the second point of the two correctness hypotheses for the sub-circuits,
and then write it again in terms of the overall circuit.

Lemma 22 (Gadget-based compiler). Given the gadgets G⃗ defined with the n-shares
encoding E, then (E, CCG⃗) is a compiler, where the compilation function CCG⃗ : CSin,Gin →
CSout,Gout obtained by substituting every gate g with the relative circuit G⃗g. More formally,

CCG⃗(c) =



G⃗c if c a gate of Gin

CCG⃗(c′) ∥ CCG⃗(c′′) if c = c′ ∥ c′′ for any c′, c′′

CCG⃗(co) ◦ CCG⃗(ci) if c = co ◦ ci for any co, ci

i′ if c is the identity circuit
s′ if c is the swap circuit

where the identity gadget i′ is obtained by composing in parallel n identity circuits, and the
swap gadget s′ is any gadget made of identity and swap circuits to link the inputs i with
the outputs i + n and vice-versa.

Proof. We can prove that (E, CCG⃗) is a compiler inductively. For the base case, the G⃗c

are correct by definition of gadgets, while the identity and swap gadget are correct as their
circuit is deterministic and E.D⃗ec is preserved, see Proposition 6. For the induction step,
both types of composition preserve the correctness, as stated in Lemma 21.

B.4 Monotonicity of security definitions
Lemma 23 (Monotone RPS). If a circuit c is (p, ε)-RPS then given any p′, ε ∈ [0, 1] with
p′ ≤ p, ε′ ≥ ε the circuit c is (p′, ε′)-RPS.

Proof. We can first define the monotone predicate (monotone due to composition of
monotone functions remaining monotone, and the dependency function is monotone for
Lemma 15) P (W) := D̆ep[⃗cwires◦E.E⃗nc](W) ̸= ∅.

Then (p, ε)-RPS iff Pr
[
P (˘Leakc(p))

]
≤ ε and by Lemma 18 we obtain that

Pr
[
P (˘Leakc(p′))

]
≤ Pr

[
P (˘Leakc(p))

]
≤ ε ≤ ε′

Lemma 24 (Monotone RPR). Given a compiler C that is e-RPR, and given a monotone
continuous e′ ≥ e, then C is also e′-RPR.

Giuseppe Manzoni 25

Proof. We need to prove that C is also e′-RPR. This means that given a generic p, ε ∈ [0, 1]
and a generic circuit c, we have additional hypothesis that c is (e′(p), ε)-RPS and we need
to prove that C.CC(c) is (p, ε)-RPS.

As e(p) ≤ e′(p) and c is (e′(p), ε)-RPS, then by Lemma 23 we obtain that c is (e(p), ε)-
RPS, which means we can use the hypothesis that C that is e-RPR to obtain that C.CC(c)
is (p, ε)-RPS.

Lemma 25 (Monotone ERPE). Given two circuits c, c′ such that c is (t, e)-ERPE of c′,
then for all continuous monotone e′ : [0, 1]→ [0, 1] with e′ ≥ e, the circuit c is (t, e′)-ERPE
of c′

Proof. All the conditions of the ERPE are untouched by changing e with e′ except the
continuity, the monotonicity and the [0, 1]→ [0, 1] (which are preserved by hypothesis),

and that W̆ ′
c(∅, ˘Leakc(p))

d
≤ ˘Leakc′(e(p)). As for all p we have that e(p) ≤ e′(p), then we

can use Lemma 18 which guarantees that ˘Leakg(e(p))
d
≤ ˘Leakg(e′(p)) and this proves the

thesis as
d
≤ is a partial order, and so it’s transitive.

Lemma 26. Given a circuit c with w ≥ 1 internal wires, then ∀ε ∈ [0, 1], c is (ε/w, ε)-RPS.

Proof. By definition of RPS we need to show that

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(ε/w)) ̸= ∅

]
≤ ε

As D̆ep[⃗cwires◦E.E⃗nc](∅) = ∅, we have that D̆ep[⃗cwires◦E.E⃗nc](w̆) ̸= ∅ =⇒ w̆ ̸= ∅, which

implies Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(ε/w)) ̸= ∅

]
≤ Pr

[
˘Leakc(ε/w) ̸= ∅

]
= 1− (1− ε/w)w

So it’s sufficient to show that 1− (1− ε/w)w ≤ ε. As w ≥ 1, ε/w ∈ [0, 1] we can use
Bernoulli’s inequality, which states that ε/w · w ≥ 1− (1− ε/w)w.

C From Probing Security To Constant Noise With Polylog
Size Increase

We’ll prove the theorems we need to demonstrate Corollary 4, and show that with a
polylograrithmic size increase a t-probing secure compiler can be made to create circuits
2−t-secure against a δ-noisy adversary for some constant δ.

C.1 Lemma 28: RPS to Probing Security
As [BCP+20] gives a definition of random probing security without an explicit connection to
existing concepts like the random probing adversary of [DDF14], so we state the following:

Lemma 27 (Security against random probing adversary). A circuit c is (p, ε)-random
probing secure according to [BCP+20] if there is a ⃗Sim such that for all x⃗ ∈ Si

orig,

SD
[

⃗Sim; c⃗wires(E.E⃗nc(x⃗))| ˘Leakc(p)

]
≤ ε

This is equivalent to say that c is ε-secure against a p-random probing adversary.

Proof. Note that the definition of random probing security according to [BCP+20] can be
rewritten as

SD
[

⃗Sim; ⃗outA′ (⃗cwires(E.E⃗nc(x⃗)))
]
≤ ε

26 Reframing And Extending The Random Probing Expansion

where A′ is the p-random probing adversary that specifies the maximum leakage p for all
wires, and that returns the value of the leaking wires without altering them.

From the definition of ε-secure against an adversary, and for the expression just written,
this lemma can be proven by the following: for all p-random probing adversaries A there
is a ⃗SimA such that for all x⃗ ∈ Si

orig

SD
[

⃗SimA; ⃗outA(⃗cwires(E.E⃗nc(x⃗)))
]
≤ SD

[
⃗Sim; ⃗outA′ (⃗cwires(E.E⃗nc(x⃗)))

]
We can prove this by first noticing that for every p-random probing adversaries A there

is a f⃗A such that ⃗outA = f⃗A ◦ ⃗outA′ , as A′ uses the highest possible leakage rate and
returns the leaking wires as is. For this reason f⃗A has to first lower the probability of each
wires from p to the various pi ≤ p chosen by A (this by keeping each leaking value with
probability pi/p, and discarding it with probability 1− pi/p), and then apply the same
function that A does on the vector of leaked values.

This means that we can choose ⃗SimA := f⃗A(⃗Sim). From here the lemma follows from
a well-known property of the SD (which we can find for example in [HU05]): for all A, B, f
we have that SD [f(A); f(B)] ≤ SD [A; B].

With this lemma we can then prove that our RPS implies the security against random
probing adversaries.

Lemma 28 (RPS to Probing Security). If a circuit is (p, ε)-RPS, then it’s ε-secure against
a p-random probing adversary.

Proof. If a circuit c with n-share encoding E with n · i inputs and original field Sorig is
(p, ε)-RPS then by definition

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(p)) ̸= ∅

]
≤ ε

⇐⇒
∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
Pr
[
D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅

]
≥ 1− ε

We also have that

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅

]
=Is

[
D̆ep[⃗cwires◦E.E⃗nc](W̆) = ∅

]
=Is

[
∃ ⃗Sim. ∀x⃗ ∈ Si

orig. ⃗Sim d= c⃗wires(E.E⃗nc(x⃗))W̆

]
= max

⃗Sim
min

x⃗∈Si
orig

Is
[

⃗Sim d= c⃗wires(E.E⃗nc(x⃗))|W̆
]

If we substitute this into the statement before the last we obtain

⇐⇒
∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
max

⃗Sim
min

x⃗∈Si
orig

Is
[

⃗Sim d= c⃗wires(E.E⃗nc(x⃗))|W̆
]
≥ 1− ε

We can bring the maximization over ⃗Sim out of the sum by making it a maximization
over a function ⃗Sim′:

⇐⇒ max
⃗Sim′

∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
min

x⃗∈Si
orig

Is
[

⃗Sim′(W̆) d= c⃗wires(E.E⃗nc(x⃗))|W̆
]
≥ 1− ε

As
∑

min ≤ min
∑

, the last statement implies

max
⃗Sim′

min
x⃗∈Si

orig

∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
Is
[

⃗Sim′(W̆) d= c⃗wires(E.E⃗nc(x⃗))|W̆
]
≥ 1− ε

Giuseppe Manzoni 27

Which is equivalent to

∃ ⃗Sim′. ∀x⃗ ∈ Si
orig.

∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
Is
[

⃗Sim′(W̆) d= c⃗wires(E.E⃗nc(x⃗))|W̆
]
≥ 1− ε

That is equivalent to saying that ∃ ⃗Sim′ such that ⃗Sim′(W̆) returns some vector ·⃗|W̆ , and
such that ∀x⃗ ∈ Si

orig∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
Is
[

⃗Sim′(W̆) d= c⃗wires(E.E⃗nc(x⃗))|W̆
]
≥ 1− ε

As the content of the Is [. . .] is a deterministic predicate that compares probability distri-
butions, the last statement is equivalent to saying that ∃ ⃗Sim′ such that ⃗Sim′(W̆) returns
some vector ·⃗|W̆ , and such that ∀x⃗ ∈ Si

orig∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
Is
[
¬(⃗Sim′(W̆) d= c⃗wires(E.E⃗nc(x⃗))|W̆)

]
≤ ε

As SD [A; B] ≤ Is
[
¬(A d= B)

]
can be quickly proven by separating the two possible

values of the Is [·], the previous statement implies: ∃ ⃗Sim such that ⃗Sim(W̆) returns some
vector ·⃗|W̆ , and such that ∀x⃗ ∈ Si

orig∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
SD
[

⃗Sim(W̆); c⃗wires(E.E⃗nc(x⃗))|W̆
]
≤ ε

Let’s consider the left side of this inequality∑
W̆

Pr
[
W̆ = ˘Leakc(p)

]
SD
[

⃗Sim(W̆); c⃗wires(E.E⃗nc(x⃗))|W̆
]

Let’s define the random variable L̆ := ˘Leakc(p)

=
∑
W̆

Pr
[
W̆ = L̆

]
SD
[

⃗Sim(W̆); c⃗wires(E.E⃗nc(x⃗))|W̆
]

By definition of Statistical Distance,

=
∑
W̆

Pr
[
W̆ = L̆

]1
2

∑
y⃗∈(S∪{⊥})ni

∣∣∣Pr
[

⃗Sim(W̆) = y⃗
]
− Pr

[⃗
cwires(E.E⃗nc(x⃗))|W̆ = y⃗

]∣∣∣
As both ⃗Sim(W̆) and c⃗wires(E.E⃗nc(x⃗))|W̆ return a vector ·⃗|W̆ , we can ignore the other
elements as they are all ⊥

=
∑
W̆

Pr
[
W̆ = L̆

]1
2
∑

y⃗∈S|W̆ |

∣∣∣Pr
[

⃗Sim(W̆)W̆ = y⃗
]
− Pr

[⃗
cwires(E.E⃗nc(x⃗))W̆ = y⃗

]∣∣∣
=1

2
∑
W̆

∑
y⃗∈S|W̆ |

∣∣∣Pr
[
W̆ = L̆

]
Pr
[

⃗Sim(W̆)W̆ = y⃗
]
− Pr

[
W̆ = L̆

]
Pr
[⃗
cwires(E.E⃗nc(x⃗))W̆ = y⃗

]∣∣∣
=1

2
∑
W̆

∑
y⃗∈S|W̆ |

∣∣∣Pr
[
W̆ = L̆ ∧ ⃗Sim(W̆)W̆ = y⃗

]
− Pr

[
W̆ = L̆ ∧ c⃗wires(E.E⃗nc(x⃗))W̆ = y⃗

]∣∣∣
=1

2
∑
W̆

∑
y⃗∈S|W̆ |

∣∣∣Pr
[
(⃗Sim(L̆)L̆, L̆) = (y⃗, W̆)

]
− Pr

[
(⃗cwires(E.E⃗nc(x⃗))L̆, L̆) = (y⃗, W̆)

]∣∣∣

28 Reframing And Extending The Random Probing Expansion

As given z⃗, w̆, (z⃗w̆, w̆) is bijective with z⃗|w̆,

=1
2

∑
y⃗∈(S∪{⊥})ni

∣∣∣Pr
[

⃗Sim(L̆)|L̆ = y⃗
]
− Pr

[⃗
cwires(E.E⃗nc(x⃗))|L̆ = y⃗

]∣∣∣
=1

2
∑

y⃗∈(S∪{⊥})ni

∣∣∣Pr
[

⃗Sim(L̆) = y⃗
]
− Pr

[⃗
cwires(E.E⃗nc(x⃗))|L̆ = y⃗

]∣∣∣
=1

2
∑

y⃗∈(S∪{⊥})ni

∣∣∣Pr
[

⃗Sim(˘Leakc(p)) = y⃗
]
− Pr

[⃗
cwires(E.E⃗nc(x⃗))| ˘Leakc(p) = y⃗

]∣∣∣
=SD

[
⃗Sim(˘Leakc(p)); c⃗wires(E.E⃗nc(x⃗))| ˘Leakc(p)

]
This means that ∃ ⃗Sim′. ∀x⃗ ∈ Si

orig. SD
[

⃗Sim′; c⃗wires(E.E⃗nc(x⃗))| ˘Leakc(p)

]
≤ ε, and

the thesis follows from Lemma 27.

C.2 Proposition 7: Probing Model to RPS
As we need to obtain the RPS property and not the weaker security in the random
probing model, we can not use the result from [DDF14]. Instead we report the following
proposition:

Proposition 7 (Probing Model to RPS). If a circuit c with w wires is secure in the
t-probing model, then it’s (t

2we , 2−t)-RPS where e is the mathematical constant.

Proof. We can prove this with the following passages:

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(p)) ̸= ∅

]
=
∑

W̆ ⊆[w]

Pr
[
W̆ = ˘Leakc(p)

]
Is
[
D̆ep[⃗cwires◦E.E⃗nc](W̆) ̸= ∅

]
=
∑

W̆ ⊆[w]

p|W̆ |(1− p)w−|W̆ |Is
[
D̆ep[⃗cwires◦E.E⃗nc](W̆) ̸= ∅

]

By definition of ‘secure in the t-probing model’, |W̆ | ≤ t guarantees no dependency, so

≤
∑

W̆ ⊆[w]

p|W̆ |(1− p)w−|W̆ |Is
[∣∣∣W̆ ∣∣∣ > t

]
=

∑
W̆ ⊆[w]
|W̆ |>t

p|W̆ |(1− p)w−|W̆ |

=
w∑

l:=t+1

(
w

l

)
pl(1− p)w−l ≤

w∑
l:=t+1

(
w

l

)
pl ≤

w∑
l:=t+1

wl

l! pl

Using Stirling’s approximation, which is known to be a lower bound of l!

≤
w∑

l:=t+1

(pw)l

√
2πl(l

e)l
≤

w∑
l:=t+1

(epw

l
)l ≤

w∑
l:=t+1

(epw

t
)l

If we choose a p < t
we ,

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(p)) ̸= ∅

]
≤

w∑
l:=t+1

(epw

t
)l ≤

∞∑
l:=t+1

(epw

t
)l =

(epw
t)t+1

1− epw
t

Giuseppe Manzoni 29

If we choose p := t
2we

Pr
[
D̆ep[⃗cwires◦E.E⃗nc](˘Leakc(t

2we
)) ̸= ∅

]
≤

(epw
t)t+1

1− epw
t

= 0.5t+1

1− 0.5 = 2−t

This by definition means that c is (t
2we , 2−t)-RPS

C.3 Theorem 1: Complexity of Compiler Sequences
Theorem 1: Given a compiler sequence C : Cin → Cout, given a circuit cκ ∈ Cin
parametric in its security level, i.e. such that cκ is (2−p(κ), 2−κ)-RPS for some p : (0,∞)→
(0,∞); then there is a function n : (0,∞)→ N that calculates which compiler in C to use,
such that the compiled circuit c′

κ := Cn(κ).CC(cκ) satisfies the following properties:

• For all κ > 0, the circuit c′
κ is (P, 2−κ)-RPS.

• As κ→∞, ∥c′
κ∥ = O (∥cκ∥ p(κ)e)

This where P is a tolerated leakage of C, and e is a expansion exponent of C, P .

Proof. Let’s call d the security amplification order and λ the size amplification order that
lead to the expansion exponent e. Then from the definition of d, there is a sequence of
functions e such that Cm is em-RPR and log2 em(P) = Ω (dm) as m→∞. In other words
there is a b < 0 such that

lim inf
m→∞

|log2 em(P)|
dm

= −2b > 0

As log2 em(P) ≤ 0, this means that lim sup
m→∞

log2 em(P)
dm = 2b < b

And so eventually log2 em(P) ≤ bdm, i.e. eventually em(P) ≤ 2dmb. More precisely
this means that there is an n′ such that for every m ≥ n′ we have that em(P) ≤ 2dmb.

We can now choose
n(κ) := max{n′, logd

p(κ)
−b
}

As n(κ) ≥ n′ we have that en(κ)(P) ≤ 2dn(κ)b Additionally, 2dn(κ)b ≤ 2−p(κ) as

dn(κ)b ≤ dlogd
p(κ)
−b b = p(κ)

−b
b = −p(κ)

This means that as cκ is (2−p(κ), 2−κ)-RPS, then by Lemma 23 the circuit cκ is
(en(κ)(P), 2−κ)-RPS as en(κ)(P) ≤ 2−p(κ).

We can then apply the definition of RPR from ‘Cn(κ) is en(κ)-RPR’ to obtain that
c′

κ := Cn(κ).CC(cκ) is (P, 2−κ)-RPS, which satisfies point 1 of the theorem.
Then by definition of size amplification order, the definition of circuit complexity matrix,

of circuit size and of p-norm,

∥c′
κ∥ ≤

∥∥MCn(κ)

∥∥
1 ∥cκ∥ = O

(
∥cκ∥ λn(κ)

)
As n(κ) = max{n′, logd

p(κ)
−b } = max{n′, log p(κ)

log d − log −b
log d } = log p(κ)

log d + Θ (1) then

λn(κ) = λ
log p(κ)

log d +Θ(1) = Θ
(

λ
log p(κ)

log d

)
= Θ

(
p(κ)

log λ
log d

)
And so ∥c′

κ∥ = O
(
∥cκ∥ λn(κ)) = O

(
∥cκ∥Θ

(
p(κ)

log2 λ
log2 d

))
= O (∥cκ∥ p(κ)e) which proves

the second point, and so the theorem.

30 Reframing And Extending The Random Probing Expansion

D Theorem 2: ERPE to RPR
In this appendix we will prove our main theorem for the expansion: Theorem 2. To do
this we first introduce a few other lemmas in order to make the proof more readable.

The following two lemmas are an immediate consequence of Lemma 3.

Lemma 29 (Identity Circuit). Any correct and leakless n-shares implementation G of the
identity circuit for an encoding with strength k is (t, e)-ERPE for any t ∈ [0, k] ∩ N and
for any monotone and continuous e : [0, 1]→ [0, 1].

Lemma 30 (Swap Circuit). Any correct and leakless n-shares implementation G of the
swap circuit for an encoding with strength k is (t, e)-ERPE for any t ∈ [0, k] ∩ N and for
any monotone and continuous e : [0, 1]→ [0, 1].

Lemma 31 (Parallel Composition). Given a compiler (E, CCb) and two circuits c′
1, c′

2
such that c1 := CCb(c′

1) is (t, e)-ERPE of c′
1 and c2 := CCb(c′

2) is (t, e)-ERPE of c′
2, then

c1 ∥ c2 is (t, e)-ERPE of c′
1 ∥ c′

2.

Proof. We’ll call c = c1 ∥ c2, c′ = c′
1 ∥ c′

2, and we choose

Ĭc(Ŏ1 ∥ Ŏ2, W̆1 ∥ W̆2) := Ĭc1(Ŏ1, W̆1) ∥ Ĭc2(Ŏ2, W̆2)
W̆ ′

c(Ŏ1 ∥ Ŏ2, W̆1 ∥ W̆2) := W̆ ′
c1

(Ŏ1, W̆1) ∥ W̆ ′
c2

(Ŏ2, W̆2)
Ŏc(Ŏ1 ∥ Ŏ2, W̆1 ∥ W̆2, Ĭ ′

1 ∥ Ĭ ′
2) := Ŏc1(Ŏ1, W̆1, Ĭ ′

1) ∥ Ŏc2(Ŏ2, W̆2, Ĭ ′
2)

Then by using those definitions and the fact that the RPE (t, k)-normalization is
compatible with the composition in parallel, the items of the definition of ERPE become
the following

1 For all leakage rates p ∈ [0, 1], we must have that

W̆ ′
c1

(∅, ˘Leakc1(p)) ∥ W̆ ′
c2

(∅, ˘Leakc2(p))
d
≤ ˘Leakc′

1
(e(p)) ∥ ˘Leakc′

2
(e(p))

This has the structure A ∥ B
d
≤ C ∥ D, which means we can prove it using Lemma 17

as A, B, C, D are pairwise independent, and as A
d
≤ C and B

d
≤ D by the the item 1

of the ERPE of c1 and c2.
Then we need to show that for all possible combinations of output to simulate
Ŏ1 ∥ Ŏ2 ∈ [n · (o1 + o2)], we must have that

W̆ ′
c1

(Ŏ1, ˘Leakc1(p))∥W̆ ′
c2

(Ŏ2, ˘Leakc2(p)) d= W̆ ′
c1

(∅, ˘Leakc1(p))∥W̆ ′
c2

(∅, ˘Leakc2(p))

This is true as for the item 1 of the ERPE of c1 and c2 we obtain that

W̆ ′
c1

(Ŏ1, ˘Leakc1(p)) d= W̆ ′
c1

(∅, ˘Leakc1(p))

W̆ ′
c2

(Ŏ2, ˘Leakc2(p)) d= W̆ ′
c2

(∅, ˘Leakc2(p))

2 We need to show that for all subsets of the required output wires Ŏ1 ∥ Ŏ2 ⊆
[n · (o1 + o2)], for every subset of the internal wires W̆1 ∥ W̆2 ⊆ [w1 + w2], for all
the inputs actually provided Ĭ1 an RPE (t, k)-normalization of Ĭc1(Ŏ1, W̆1) and Ĭ2
an RPE (t, k)-normalization of Ĭc2(Ŏ2, W̆2), we need that Ŏc1(Ŏ1, W̆1, Ĭ1) an RPE
(t, k)-normalization of Ŏ1 and Ŏc2(Ŏ2, W̆2, Ĭ2) an RPE (t, k)-normalization of Ŏ2.
This is true by the item 2 of the ERPE of c1, c2.

Giuseppe Manzoni 31

Additionally, we need that the function that takes as parameter the inputs x⃗1 ∥ x⃗2 ∈
E.E⃗nc[Si1+i2

in] and the original randoms r⃗′
1 ∥ r⃗′

2 ∈ ˘supp[⃗Rndsc′
1
() ∥ ⃗Rndsc′

2
()] and

calculates

c⃗1all(x⃗1, R.E⃗nc(r⃗′
1))W̆1 ∥ Ŏc1 (Ŏ1,W̆1,Ĭ1) ∥ c⃗2all(x⃗2, R.E⃗nc(r⃗′

2))W̆2 ∥ Ŏc2 (Ŏ2,W̆2,Ĭ2)

can be simulated using (x⃗1)Ĭ1
∥ (x⃗2)Ĭ2

, and

c⃗′
1wires(E.D⃗ec(x⃗1), r⃗′

1)W̆ ′
c1 (Ŏ1,W̆1) ∥ c⃗′

2wires(E.D⃗ec(x⃗2), r⃗′
2)W̆ ′

c2 (Ŏ2,W̆2)

This is guaranteed by the item 2 of the ERPE of c1 and c2 and by the composition
of the simulatability.

Lemma 32 (Series Composition). Given a compiler (E, CCb) and two circuits c′
1, c′

2 such
that c1 := CCb(c′

1) is (t, e)-ERPE of c′
1 and c2 := CCb(c′

2) is (t, e)-ERPE of c′
2, then

c1 ◦ c2 is (t, e)-ERPE of c′
1 ◦ c′

2.

Proof. We’ll call c := co ◦ ci, c′ := c′
o ◦ c′

i, and we choose

Ĭc(Ŏ, W̆i ∥ W̆o) := Ĭci(˘Ico(Ŏ, W̆o), W̆i)
W̆ ′

c(Ŏ, W̆i ∥ W̆o) := W̆ ′
ci

(˘Ico(Ŏ, W̆o), W̆i) ∥ W̆ ′
co

(Ŏ, W̆o)
Ŏc(Ŏ, W̆i ∥ W̆o, Ĭ) := Ŏco(Ŏ, W̆o, Ŏci(˘Ico(Ŏ, W̆o), W̆i, Ĭ))

1 We need to prove that for all combinations of the output wires Ŏ ∈ [µ]o the probability
distribution of W̆ ′

c(Ŏ, ˘Leakc′(p)) d= W̆ ′
c(∅, ˘Leakc′(p)).

We’ll prove this by showing that

W̆ ′
c(Ŏ, ˘Leakc(p)) d= W̆ ′

ci
(∅, ˘Leakci

(p)) ∥ W̆ ′
co

(∅, ˘Leakci
(p))

Proof:

W̆ ′
c(Ŏ, ˘Leakc(p))

By definition, with w̆o := ˘Leakco(p)

=Pr
[
W̆ ′

ci
(˘Ic′

o
(Ŏ, w̆o), ˘Leakci(p)) ∥ W̆ ′

co
(Ŏ, w̆o) = w̆′

i ∥ w̆′
o

]
=Pr

[
W̆ ′

ci
(˘Ico(Ŏ, w̆o), ˘Leakci(p)) = w̆′

i ∧ W̆ ′
co

(Ŏ, w̆o) = w̆′
o

]
=
∑
wo

Pr
[
W̆ ′

ci
(˘Ico(Ŏ, w̆o), ˘Leakci(p)) = w̆′

i ∧ W̆ ′
co

(Ŏ, w̆o) = w̆′
o ∧ w̆o = wo

]
=
∑
wo

Pr
[
W̆ ′

ci
(˘Ico(Ŏ, w̆o), ˘Leakci(p)) = w̆′

i

]
Pr
[
W̆ ′

co
(Ŏ, w̆o) = w̆′

o ∧ w̆o = wo

]
For the item 1 of the ERPE of ci, W̆ ′

ci
is identically distributed for every value of its

first parameter

=
∑
wo

Pr
[
W̆ ′

ci
(∅, ˘Leakci(p)) = w̆′

i

]
Pr
[
W̆ ′

co
(Ŏ, w̆o) = w̆′

o ∧ w̆o = wo

]
=Pr

[
W̆ ′

ci
(∅, ˘Leakci(p)) = w̆′

i

]∑
wo

Pr
[
W̆ ′

co
(Ŏ, w̆o) = w̆′

o ∧ w̆o = wo

]

32 Reframing And Extending The Random Probing Expansion

=Pr
[
W̆ ′

ci
(∅, ˘Leakci(p)) = w̆′

i

]
Pr
[
W̆ ′

co
(Ŏ, w̆o) = w̆′

o

]
=Pr

[
W̆ ′

ci
(∅, ˘Leakci(p)) = w̆′

i

]
Pr
[
W̆ ′

co
(Ŏ, ˘Leakc′

o
(p)) = w̆′

o

]
For the item 1 of the ERPE of co, W̆ ′

co
is identically distributed for every value of its

first parameter

=Pr
[
W̆ ′

ci
(∅, ˘Leakci

(p)) = w̆′
i

]
Pr
[
W̆ ′

co
(∅, ˘Leakco

(p)) = w̆′
o

]
=Pr

[
W̆ ′

ci
(∅, ˘Leakci

(p)) ∥ W̆ ′
co

(∅, ˘Leakco
(p)) = w̆′

i ∥ w̆′
o

]
Additionally, We need to prove that for all leakage rates p ∈ [0, 1] the distribution
of the set of leaking virtual wires W̆ ′

c must be upper bounded by the leakage of the
virtual circuit:

W̆ ′
c(∅, ˘Leakc(p))

d
≤ ˘Leakc(e(p))

We can prove this by showing that

W̆ ′
c(∅, ˘Leakc(p)) d= W̆ ′

ci
(∅, ˘Leakci

(p)) ∥ W̆ ′
co

(∅, ˘Leakci
(p))

d
≤ ˘Leakc′(e(p))

We already proved the left part in the proof, and to prove the right part we can use
the item 1 of the ERPE of co and ci and obtain that:

W̆ ′
ci

(∅, ˘Leakci
(p))

d
≤ ˘Leakc′

i
(e(p)) ∧ W̆ ′

co
(Ŏ, ˘Leakci

(p))
d
≤ ˘Leakc′

o
(e(p))

As the four expressions are all independent, we can use Lemma 17 and obtain that

W̆ ′
ci

(∅, ˘Leakci
(p)) ∥ W̆ ′

co
(Ŏ, ˘Leakci

(p))
d
≤ ˘Leakc′

i
(e(p)) ∥ ˘Leakc′

o
(e(p))

2 For all combinations of the output wires Ŏ ∈ [n · o] for all the internal wires
W̆i ∥ W̆o ⊆ [w], we define M̆ := ˘Ico

(Ŏ, W̆o), and Ĭ := Ĭci
(M̆, W̆i). For all the possible

provided inputs Ĭ ′ an RPE (t, k)-normalization of Ĭ we define M̆ ′ := Ŏci
(M̆, W̆i, Ĭ ′),

and Ŏ′ := Ŏco
(Ŏ, W̆o, M̆ ′).

From item 2 of the ERPE of ci, M̆ ′ an RPE (t, k)-normalization of M̆ ; and from
item 2 of ERPE of co, Ŏ′ an RPE (t, k)-normalization of Ŏ, which proves the first
part of this point by definition.
Then for all x⃗, r⃗′

i, r⃗′
o we need to prove that

x⃗Ĭ′ ∥ c⃗′wires(E.D⃗ec(x⃗), r⃗′
i ∥ r⃗′

o)W̆ ′
c(Ŏ,W̆)

sim−→ c⃗all(x⃗, Rci
.E⃗nc(r⃗′

i)∥Rco
.E⃗nc(r⃗′

i))W̆o ∥W̆i ∥Ŏ′

We first define (wi, v⃗) := c⃗iall(x⃗, Rci .E⃗nc(r⃗′
i)) and (wo, y⃗) := c⃗oall(v⃗, Rco .E⃗nc(r⃗′

o)).
We also define the corresponding values in the virtual circuit x⃗′ := E.D⃗ec(x⃗),
(w⃗′

i, v⃗′) := c⃗′
iall(x⃗′, r⃗′

i), and (w⃗′
o, y⃗′) := c⃗′

oall(v⃗′, r⃗′
o).

Thanks to our definition of correctness,

v⃗′ = ⃗(c′
i)outs(x⃗′, r⃗′

i)

= ⃗(c′
i)outs(E.D⃗ec(x⃗), Rci .D⃗ec(Rci .E⃗nc(r⃗′

i)))

=E.D⃗ec(⃗(ci)outs(x⃗, Rci .E⃗nc(r⃗′
i)))

=E.D⃗ec(v⃗)

Giuseppe Manzoni 33

Then what we need to prove is that

x⃗Ĭ′ ∥ (w⃗′
i)W̆ ′

ci
(M̆,W̆i) ∥ (w⃗′

o)W̆ ′
co

(Ŏ,W̆o)
sim−→ y⃗Ŏ′ ∥ (w⃗i)W̆i

∥ (w⃗o)W̆o

By the item 2 of the ERPE of ci (as M̆ ′ an RPE (t, k)-normalization of M̆ , Ĭ an
RPE (t, k)-normalization of Ĭ; w⃗′

i was calculated with input x⃗′ and x⃗′ = E.D⃗ec(x⃗)
by definition) that

x⃗Ĭ′ ∥ (w⃗′
i)W̆ ′

ci
(M̆,W̆i)

sim−→ v⃗|M̆ ′ ∥ (w⃗i)Wi

By the item 2 of the ERPE of co (as Ŏ′ an RPE (t, k)-normalization of Ŏ, M̆ ′ an
RPE (t, k)-normalization of M̆ ; w⃗′

o was calculated with input v⃗′ and v⃗′ = E.D⃗ec(v⃗))

v⃗M̆ ′ ∥ (w⃗′
o)W̆ ′

co
(Ŏ,W̆o)

sim−→ y⃗Ŏ′ ∥ (w⃗o)W̆o

Combining those two we obtain that

x⃗Ĭ′ ∥ (w⃗′
i)W̆ ′

ci
(M̆,W̆i) ∥ (w⃗′

o)W̆ ′
co

(Ŏ,W̆o)
sim−→ v⃗M̆ ′ ∥ (w⃗i)W̆i

∥ (w⃗′
o)W̆ ′

co
(Ŏ,W̆o)

sim−→ y⃗Ŏ′ ∥ (w⃗i)W̆i
∥ (w⃗o)W̆o

Lemma 33 (Link Between Dependencies). Given a circuit c′ with n-shares encoding D′,
w the number of internal wires, and the compiled circuit c (with encoding D := E ◦D′, i
inputs, o outputs) that is (t, e)-ERPE of c′, given Ĭc,W̆ ′

c,Ŏc from the definition of ERPE,
then for all W̆ ⊆ [w]

D̆ep[⃗cwires◦D.E⃗nc](W̆) ⊆ D̆ep[c⃗′wires◦D′.E⃗nc](W̆ ′
c(∅, W̆))

Proof. We know from the item 2 of the ERPE with Ŏ := ∅, for all Ĭ an RPE (t, k)-
normalization of Ĭc(∅, W̆), for all x⃗ ∈ E.E⃗nc[Si

in] and for all r⃗′ ∈ ˘supp[⃗Rndsc′()],

x⃗Ĭ ∥ c⃗′wires(E.D⃗ec(x⃗), r⃗′)W̆ ′
c(∅,W̆)

sim−→ c⃗all(x⃗, R.E⃗nc(r⃗′))W̆ ∥ Ŏc(1̆,W̆ ,Ĭ)

This implies that x⃗Ĭ ∥ c⃗′wires(E.D⃗ec(x⃗), r⃗′)W̆ ′
c(∅,W̆)

sim−→ c⃗wires(x⃗, R.E⃗nc(r⃗′))W̆

We can choose r⃗′ := ⃗Rndsc′() (and so R.E⃗nc(r⃗′) = ⃗Rndsc()) and so ∀x⃗ ∈ E.E⃗nc[Si
in]

x⃗Ĭ ∥ c⃗′wires(E.D⃗ec(x⃗))W̆ ′
c(∅,W̆)

sim−→ c⃗wires(x⃗)W̆

Then ∀y⃗ ∈ Si
in We can choose x⃗ := E.E⃗nc(y⃗) (and so E.D⃗ec(x⃗) := y⃗) and we obtain

E.E⃗nc(y⃗)Ĭ ∥ c⃗′wires(y⃗)W̆ ′
c(∅,W̆)

sim−→ c⃗wires(E.E⃗nc(y⃗))W̆

As Ĭ an RPE (t, k)-normalization of Ĭc we have that D̆ep[E.E⃗nc](Ĭ) = ∅ i.e. [] sim−→

E.E⃗nc(y⃗)Ĭ . So, ∀y⃗ ∈ Si
in c⃗′wires(y⃗)W̆ ′

c(∅,W̆)
sim−→ c⃗wires(E.E⃗nc(y⃗)))W̆

As the original circuit has encoding D′, we can choose y⃗ := D′.E⃗nc(z⃗), then

c⃗′wires(D′.E⃗nc(z⃗))W̆ ′
c(∅,W̆)

sim−→ c⃗wires(E.E⃗nc(D′.E⃗nc(z⃗)))W̆

34 Reframing And Extending The Random Probing Expansion

This is equivalent to (c⃗′wires ◦D′.E⃗nc)W̆ ′
c(∅,W̆)

sim−→ (⃗cwires ◦D.E⃗nc)W̆

As by definition the function (c⃗′wires ◦D′.E⃗nc)W̆ ′ can be simulated using the inputs
D̆ep[c⃗′wires◦D′.E⃗nc](W̆ ′), we obtain that the function (⃗cwires ◦D.E⃗nc)|W̆ can be simulated
using the inputs D̆ep[c⃗′wires◦D′.E⃗nc](W̆ ′

g(∅, W̆)). By definition, D̆ep[⃗cwires◦D.E⃗nc] is minimal,
and so D̆ep[⃗cwires◦D.E⃗nc](W̆) ⊆ D̆ep[c⃗′wires◦D′.E⃗nc](W̆ ′

g(∅, W̆))

Lemma 34 (All outputs ERPE to RPR). Given a compiler (E, CC) such that for all
circuits c′ ∈ Cin the compiled circuit c := CC(c′) is (t, e)-ERPE of c′, then c is e-RPR.

Proof. Let’s call D′ the encoding of c′ and D := E ◦D′ the encoding of c, and W̆ ′
c from

the definition of ERPE
To say that it’s e-RPR is to say that given a circuit c, if c′ is (e(p), ε)-RPS, then c is

(p, ε)-RPS.
From the definition of the RPS of c′, Pr

[
D̆ep[c⃗′wires◦D′.E⃗nc](˘Leakc′(e(p))) ̸= ∅

]
≤ ε

The item 1 of the ERPE says that W̆ ′
c(∅, ˘Leakc(p))

d
≤ ˘Leakc′(e(p)) and as W̆ 7→

D̆ep[c⃗′wires◦D′.E⃗nc](W̆) ̸= ∅ is monotone, we can apply the definition of
d
≤ and the hypoth-

esis, and obtain that Pr
[
D̆ep[c⃗′wires◦D′.E⃗nc](W̆ ′

c(∅, ˘Leakc(p))) ̸= ∅
]
≤ ε

We know from Lemma 33 that for all W̆ ⊆ [w]

D̆ep[⃗cwires◦D.E⃗nc](W̆) ⊆ D̆ep[c⃗′wires◦D′.E⃗nc](W̆ ′
c(∅, W̆))

and so we obtain that Pr
[
D̆ep[⃗cwires◦D.E⃗nc](˘Leakc(p)) ̸= ∅

]
≤ ε. I.e. c is (p, ε)-RPS.

Theorem 2: Given the gadgets G⃗ correct for an n-shares encoding E, and such that for
all gates g ∈ Gin the gadget G⃗g is (t, e)-ERPE of g, then the compiler (E, CCG⃗) is e-RPR.

Proof. We first show that for all circuits c ∈ Cin, the compiled circuit CCG⃗(c) is (t, e)-
ERPE of c. We can do this by induction. We know that for all gates g, G⃗g is (t, e)-ERPE
of g. Also, if c is the identity circuit CCG⃗(c) is (t, e)-ERPE for Lemma 29, and same for
the swap circuit and Lemma 30. The two induction steps are the composition in parallel
and in series, and are proven respectively by Lemma 31 and Lemma 32. This means we
can use Lemma 34 to show that the compiler (E, CCG⃗) is e-RPR.

E Proofs For the Main Compiler
We’ll present in this appendix the proofs necessary to analyze our main compiler.

E.1 Security from the RPE
Proposition 1: The (t, e)-RPE implies the (t, e)-wRPE which implies the (t, e)-ERPE.

Proof. The first implication is true as the RPE satisfies the conditions of the wRPE, while
we can prove the second implication by constructing the wRPE from the ERPE by only
limiting it. We write the definition of Definition 28 and we call G the implementation,
we limit it to deterministic fully-leakable gate g, so r⃗′ := [], R.E⃗nc(r⃗′) := ⃗RndsG(), and
g⃗wires is the identity function. We then limit and rename ŎG(Ŏ, W̆ , ·) := Ŏ′(Ŏ, W̆). We
define W̆ ′

G(Ŏ, W̆) := F̆ (Ŏ, W̆) with F̆ defined like in the RPE:

j ∈ F̆ (Ŏ, W̆) ⇐⇒
∣∣∣ĬG(Ŏ, W̆) ∩ s̆(j)

∣∣∣ > t

Giuseppe Manzoni 35

Then we have that if ĬG(Ŏ, W̆) ∩ s̆(j) ̸= Ĭ ∩ s̆(j) then j ∈ F̆ (Ŏ, W̆) and |Ĭ ∩ s̆(j)| = k.
Thanks to the completion property implicit in the definition of ‘E has strength k’ we
obtain the following simulation

x⃗Ĭ ∥ E.D⃗ec(x⃗)F̆ (Ŏ,W̆)
sim−→ x⃗ĬG(Ŏ,W̆)

So we can use the right side as the basis for the simulation of item 2 instead of the left side,
and so we can avoid the quantification over Ĭ. The result is the definition of (t, e)-wRPE,
which makes it a sufficient condition for the (t, e)-ERPE.

Proposition 2: For the n-shares additive encoding, given a t ∈ [0, n − 1] ∩ N, and any
continuous monotone e : [0, 1]→ [0, 1], we consider the gadget obtained by a parallel of at
least t + 1 random gates and the remaining to reach n are constant-0 gates. This gadget is
(t, e)-ERPE for the random gate.

Proof. First of all, let’s call G the gadget, and ℓ the number of randoms in G. G is correct
for the random gate by using the ℓ-shares additive encoding for the randoms. Then we
rewrite Lemma 3 with i = 0, Ĭ := ∅, Ĭ ′ := ∅, x⃗ := [], with o = 1, e(·) = 0 and then apply
the definition of RPE (t, n− 1)-normalization, and we obtain that G is (t, 0)-ERPE of the
random gate iff

• for all Ŏ ⊆ [n] with |Ŏ| ≤ t, for all virtual randoms r⃗′ ∈ ˘supp[⃗Rndsg()], we have
that [] sim−→ G⃗wires([], R.E⃗nc(r⃗′))Ŏ

• and there is a j ∈ [n], such that for all virtual randoms r⃗′ ∈ ˘supp[⃗Rndsg()], we have
that [] sim−→ G⃗wires([], R.E⃗nc(r⃗′))[o]\{j}.

In the first case we have |Ŏ| ≤ t, so the adversary obtains at most t randoms.
As the encoding of the randoms has strength ℓ − 1 ≥ (t + 1) − 1 ≥ t, we have that
G⃗wires([], R.E⃗nc(r⃗′))|Ŏ can be simulated with no virtual random.

For the second case, we can chose j := 1 and one of the randoms is not selected, and
so due to the additive encoding having strength ℓ− 1, G⃗wires([], R.E⃗nc(r⃗′))|[o]\{1} can be
simulated with no virtual random, as required.

E.2 Composition of Compiler Sequences
Lemma 4: Given a compiler sequence C and given two compilers I, O such that we can
define C ′

m := O ◦ Cm ◦ I then C ′ has all the size amplification order of C.

Proof. By definition of circuit complexity matrix,

MC′
m

= MO ·MCm
·MI

And by the properties of the matrix norm induced by the vector p-norms,∥∥MC′
m

∥∥
1 ≤ ∥MO∥1 · ∥MCm

∥1 · ∥MI∥1

Which means that given a generic λ, size amplification order of C∥∥MC′
m

∥∥
1 ≤ ∥MO∥1 · ∥MCm

∥1 · ∥MI∥1 = Θ (∥MCm
∥1) = O (λm)

which means that λ is also a size amplification order for C ′

36 Reframing And Extending The Random Probing Expansion

Lemma 5: Given a compiler sequence C and given a compiler I such that we can define
C ′

n := Cn ◦ I; if there is some l > 0 such that I is O
(
xl
)
-RPR then C ′ has all the tolerated

leakage, security amplification order, size amplification order and expansion exponent of
C.

Proof. Given a generic P tolerated leakage of C and relative security amplification order
d, let’s call f a function such that I is f -RPR and f(x) = O

(
xl
)
. This means that

log2 f(x) = Ω (log2 x). By hypothesis there is a sequence of functions en such that Cn is
en-RPR and log2 en(P) = Ω (dn), and so log2 f(en(P)) = Ω (log2 en(P)) = Ω (Ω (dn)) =
Ω (dn). As C ′

i is (f ◦ ei)-RPR by Lemma 2, then P is a tolerated leakage of C ′, and d is
a relative security amplification order. By Lemma 4 also the size amplification order is
preserved, and so is the expansion exponent.

Lemma 6: Given a compiler sequence I and a compiler sequence O (with respectively a
tolerated leakage of Pi, Po; a security amplification order of di, do for the aforementioned
tolerated leakage) then there is a k such that5 Cn := Ok ◦ In has a security amplification
order of di relative to a tolerated leakage of Po.

Proof. Let’s define ei the e from the definition of di and of Pi, then In is ei
n-RPR and

log2 ei
n(Pi) = Ω (dn

i). Let’s also define eo the e from the definition of do and of Pi, then On

is eo
n-RPR, and log2 eo

n(Po) = Ω (dn
o). This means that there is a k such that eo

k(Po) ≤ Pi,
and for that k (as ei

n is monotone) we have that log2 ei
n(eo

k(Po)) ≤ log2 ei
n(Pi) = Ω (dn

i),
which proves the thesis as Ok ◦ In is (ei

n ◦ eo
k)-RPR per Lemma 2.

E.3 Proofs For the Classic Expansion
Lemma 7: Given a compiler sequence Cn := Xn, with diagonalizable circuit complexity
matrices MX , then the highest module of any eigenvalue of MX is a size amplification
order.

Proof. We will consider the circuit complexity matrix MX , which is a square matrix
with elements in ℜ. If it’s diagonalizable in C, then there are the matrices P, J such
that MX = P −1 · J · P , where J is a diagonal matrix with the values λi which are the
eigenvalues of MX , and λ1 is the highest eigenvalue in module.

Additionally, from [HJ85] we know that

∥MCn
∥1 = ∥Mn

X∥1 =
∥∥P −1JnP

∥∥
1 ≤

∥∥P −1∥∥
1 ∥J∥

n
1 ∥P∥1

And that ∥J∥1 = max
j∈[n]

n∑
i=1
|Ji,j | = max

j∈[n]
|λj | = |λ1|

Which means that ∥MCn
∥1 = O (|λ1|n), and so |λ1| is a size amplification order.

Lemma 8: Given a compiler sequence Cm := Xm such that X was obtained from
Theorem 3, given a t such that the i-th gate in (addition, multiplication,copy,subtraction)
has a t-RPE-tolerated leakage Pi, then P := min

i
Pi is a tolerated leakage for C.

Proof. From Theorem 3 we know that X is e-RPR with e(p) = max
i

ei(p), where ei is
taken from the definition of t-RPE-tolerated leakage, and is such that for all p ∈ (0, Pi],
ei(p) < p.

This also means that for all p ∈ (0, P], e(p) < p.
5In [BRTV21] they use the equivalent of Cn := On ◦ Ik instead of Cn := Ok ◦ In, due to what we

believe to be an error in their Lemma 9, see footnote 2.

Giuseppe Manzoni 37

As by definition of RPR e is continuous, then for every ϵ ∈ (0, P), we can apply the
extreme value theorem to p 7→ e(p)− p with p ∈ [ϵ, P] and because for all p ∈ (0, P] we
have that e(p)− p < 0 by hypothesis, then we obtain that M := max

p∈[ϵ,P]
e(p)− p < 0. This

means that for all p ∈ [ϵ, P] we have that e(p) ≤M + p.
By applying this iteratively we obtain that em(p) ≤M ·m + p as long as em−1(p) ≥ ϵ.

If instead em−1(p) < ϵ then em(p) < em−1(p) < ϵ. This means that for every ϵ ∈ (0, P)
eventually as m→∞ we have that em(P) < ϵ.

This by definition means that em(P)→ 0 as m→∞. Additionally from Corollary 1
we have that the compiler Cm is em-RPR, this means by definition that P is a tolerated
leakage.

Lemma 9: Given a compiler sequence Cn := Xn if d is a security amplification order for
some tolerated leakage, then it’s a security amplification order for any tolerated leakage.

Proof. This is an immediate consequence of Lemma 6: given a security amplification
order d of C and a tolerated leakage P of C there is a k such that eventually as n→∞,
Cn = Ck ◦ Cn−k and such that C has that security amplification order d relative to the
tolerated leakage P .

Lemma 10: Given a compiler sequence Cm := Xm such that X was obtained from
Theorem 3, given a t such that the i-th gate in (addition, multiplication,copy,subtraction)
has a t-RPE-amplification order di, then d := min

i
di is a security amplification order for

C for any tolerated leakage.

Proof. Thanks to Theorem 3, X is e-RPR with e(p) := max ei(p), the ei taken from the
definition of t-RPE-amplification order. Then as ei(p) = Θ

(
pdi
)

= O
(
pd
)

we have that
e(p) = O

(
pd
)
.

By definition of e(x) = O
(
xd
)

we know that there is a x′ < 1 such that for all 0 < x < x′

we have that e(x)/xd is upper bounded by some constant c′. Then for c := max{c′1/d, 1/x′}
we have that f(x) := min(1, (cx)d) is such that e(x) ≤ f(x). This is proven for x = 0
as e(x) = 0 = f(x) as e is continuous, below x′ as e(x) ≤ c′xd ≤ (cx)d and above x′ as
e(x) ≤ 1 ≤ (cx′)d ≤ (cx)d.

As e(x) ≤ f(x), we can use Lemma 24 and obtain that X is f -RPR. Thanks to
Corollary 1 the compiler Cn is fn-RPR.

We can split f and write it as f(x) = min(1, f ′(x)) and f ′(x) := (cx)d. As f ′ maps a
value ≥ 1 to one ≥ 1, we have that fn(x) = min(1, f ′n(x)).

We then have by induction that f ′n(x) = xdn
n∏

i=1
cdi . This because f ′0(x) := x and

f ′(f ′n(x)) = (cxdn
n∏

i=1
cdi

))d = xdndcd
n∏

i=1
cdid = xdn+1

n+1∏
i=1

cdi

As
n∑

i=1
di−n =

n−1∑
i=0

d−i ≤
∞∑

i=0
d−i = 1/(1− 1/d) = d/(d− 1), then

f ′n(x) = xdn
n∏

i=1
cdi

= (c

n∑
i=1

di−n

x)dn

≤ (cd/(d−1)x)dn

This means Cn is en-RPR with en(x) := min(1, cd/(d−1)x)dn by Lemma 24. This
means that for any P < c−d/(d−1) we have that log2 en(P) = dn log2(cd/(d−1)P) ≤ 0 which
means that log2 en(P) = Θ (dn) which means P is a tolerated leakage and d is a security

38 Reframing And Extending The Random Probing Expansion

amplification order for P . We can apply Lemma 9 and we obtain that d is a security
amplification order for any tolerated leakage.

E.4 Gadgets Without Strength for Fully-leakable Deterministic Gates
Lemma 11: Given a gadget G (with w internal wires) for the fully-leakable deterministic
gate g (with i inputs) that is correct for an n-shares encoding E with strength 0, then G
is (0, e)-ERPE, with e(x) := min{1, (w · x)1/i}.

Proof. To prove that we can prove that it’s (0, e)-wRPE and use Proposition 1. As
the encoding has strength 0, in the definition of wRPE we have that t, k := 0, and so
Ŏ′(·, ·) := ∅ as ∅ is the only RPE (0, 0)-normalization of anything. This makes the second
point automatically true.

We can then chose Ĭ(W̆) to ∅ if W̆ = ∅ and [i · n] otherwise. Those obviously satisfy
the first point as the internal wires W̆ = ∅ can be simulated with no input and no randoms,
while all the others internal wires can always be simulated using all the inputs and randoms.

As per the third point, the previous assignment make F̆ (Ŏ, W̆) equal to ∅ if W̆ = ∅
and [i] otherwise, which means that we also satisfy the requirement that the distribution
of F̆ (Ŏ, ˘LeakG(p)) is the same for all Ŏ.

What we need to prove is that for every leakage probability vector p ∈ [0, 1], the failure

events must have the probability distribution F̆ (∅, ˘LeakG(p))
d
≤ ˘Leakg(e(p)).

Let’s call v̆(p) the probabilistic function that returns a random variable that is ∅ with
probability (1− p)w and is [i] with probability 1− (1− p)w. Then F̆ (∅, ˘LeakG(p)) d= v̆(p),
so we need that for all monotone P and for all p ∈ [0, 1]

Pr[P (v̆(p))]≤ Pr
[
P (˘Leakg(e(p)))

]
If we exclude the constant P (which obviously satisfy the inequality), then all monotone
non-constant P have P (∅) = false, P ([i]) = true. We can then define the monotone
non-constant predicate P ′(Ŭ) := (Ŭ = [i]), and we obtain that for Ŭ ̸= [i] we have that
P ′(Ŭ) = false ≤ P (Ŭ). This means that

Pr
[
P ′(˘Leakg(e(p)))

]
≤ Pr

[
P (˘Leakg(e(p)))

]
And as v̆(p) only has the values ∅ and [i], Pr[P (v̆(p))]= Pr[P ′(v̆(p))]. Those two together
mean that we can prove the lemma by showing that for every p ∈ [0, 1]

Pr[P ′(v̆(p))]≤ Pr
[
P ′(˘Leakg(e(p)))

]
I.e. 1− (1−p)w ≤ e(p)i. If G has no wires (w = 0) then is 0 ≤ e(p)i = 0. Otherwise w ≥ 1,
p ∈ [0, 1] so we can use Bernulli’s inequality, which that states that pw ≥ 1 − (1 − p)w,
which implies that 1− (1− p)w ≤ min{1, pw}. The thesis is proven as

min{1, wp} = min{1i, ((wp)1/i)i} = min{1, (wp)1/i}i = e(p)i

References
[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit

compilers with o(1/ log(n)) leakage rate. Cryptology ePrint Archive, Paper
2016/173, 2016. https://eprint.iacr.org/2016/173.

https://eprint.iacr.org/2016/173

Giuseppe Manzoni 39

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular
approach. Cryptology ePrint Archive, Paper 2018/566, 2018. https://eprint.
iacr.org/2018/566.

[Ajt11] Miklós Ajtai. Secure computation with information leaking to an adversary.
Electron. Colloquium Comput. Complex., TR11, 2011.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits
for multiplication. IACR Cryptol. ePrint Arch., 2016:211, 2016.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random probing security: Verification, composition,
expansion and new constructions. Cryptology ePrint Archive, Paper 2020/786,
2020. https://eprint.iacr.org/2020/786.

[BRT21] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power
of expansion: More efficient constructions in the random probing model.
Cryptology ePrint Archive, Paper 2021/434, 2021. https://eprint.iacr.
org/2021/434.

[BRTV21] Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud.
Dynamic random probing expansion with quasi linear asymptotic complexity.
Cryptology ePrint Archive, Paper 2021/1455, 2021. https://eprint.iacr.
org/2021/1455.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Annual International
Cryptology Conference, 1999.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: from probing attacks to noisy leakage. Cryptology ePrint Archive,
Paper 2014/079, 2014. https://eprint.iacr.org/2014/079.

[GJR18] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely
compute with noisy leakage in quasilinear complexity. In Thomas Peyrin and
Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, pages
547–574, Cham, 2018. Springer International Publishing.

[GPRV22] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.
Probing security through input-output separation and revisited quasilinear
masking. Cryptology ePrint Archive, Paper 2022/045, 2022. https://eprint.
iacr.org/2022/045.

[HJ85] Roger A. Horn and Charles R. Johnson. Norms for vectors and matrices, page
257–342. Cambridge University Press, 1985.

[HU05] Dennis Hofheinz and Dominique Unruh. On the notion of statistical security
in simulatability definitions. Cryptology ePrint Archive, Paper 2005/032, 2005.
https://eprint.iacr.org/2005/032.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Annual International Cryptology Conference, 1999.

https://eprint.iacr.org/2018/566
https://eprint.iacr.org/2018/566
https://eprint.iacr.org/2020/786
https://eprint.iacr.org/2021/434
https://eprint.iacr.org/2021/434
https://eprint.iacr.org/2021/1455
https://eprint.iacr.org/2021/1455
https://eprint.iacr.org/2014/079
https://eprint.iacr.org/2022/045
https://eprint.iacr.org/2022/045
https://eprint.iacr.org/2005/032

40 Reframing And Extending The Random Probing Expansion

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Annual International Cryptology Conference, 1996.

[MT10] Ueli Maurer and Stefano Tessaro. A hardcore lemma for computational
indistinguishability: Security amplification for arbitrarily weak prgs with
optimal stretch. In Theory of Cryptography Conference, 2010.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue.
Unifying leakage models on a rényi day. Cryptology ePrint Archive, Paper
2019/138, 2019. https://eprint.iacr.org/2019/138.

[PR13a] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In International Conference on the Theory and
Application of Cryptographic Techniques, 2013.

[PR13b] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, Advances in Cryptology – EUROCRYPT 2013, pages 142–159, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Research in Smart Cards,
2001.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of aes. Cryptology ePrint Archive, Paper 2010/441, 2010. https://eprint.
iacr.org/2010/441.

https://eprint.iacr.org/2019/138
https://eprint.iacr.org/2010/441
https://eprint.iacr.org/2010/441

	Introduction
	Our Contributions

	Notation and Fundamental Concepts
	Circuit and Security
	Circuit Type
	Encoding
	Circuit compiler
	Circuit Security
	Compiler Sequences

	Calculating the RPR
	RPE
	ERPE
	From RPE to RPR

	Calculating the Properties of Compiler Sequences
	Composition of Compiler Sequences
	Classic Expansion

	Main Compiler Sequence
	Field-Extension compiler
	High Tolerated Leakage Compiler
	Main Compiler Sequence

	Definition of Circuit
	Lemmas for Fundamental Concepts
	Simulatability and Dependency Functions
	Partial Order of Distributions
	Correctness
	Monotonicity of security definitions

	From Probing Security To Constant Noise With Polylog Size Increase
	Lemma 28: RPS to Probing Security
	Proposition 7: Probing Model to RPS
	Theorem 1: Complexity of Compiler Sequences

	Theorem 2: ERPE to RPR
	Proofs For the Main Compiler
	Security from the RPE
	Composition of Compiler Sequences
	Proofs For the Classic Expansion
	Gadgets Without Strength for Fully-leakable Deterministic Gates

