
Tighter Security for Generic Authenticated Key
Exchange in the QROM∗

Jiaxin Pan 1 Benedikt Wagner 2,3 Runzhi Zeng 1

September 14, 2023

1 Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

benedikt.wagner@cispa.de
3 Saarland University, Saarbrücken, Germany

Abstract

We give a tighter security proof for authenticated key exchange (AKE) protocols that are generi-
cally constructed from key encapsulation mechanisms (KEMs) in the quantum random oracle model
(QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions for such a KEM-based
AKE protocol in the QROM to the underlying primitives with square-root loss and a security loss
in the number of users and total sessions. Our proof is much tighter and does not have square-root
loss. Namely, it only loses a factor depending on the number of users, not on the number of sessions.

Our main enabler is a new variant of lossy encryption which we call parameter lossy encryption.
In this variant, there are not only lossy public keys but also lossy system parameters. This allows
us to embed a computational assumption into the system parameters, and the lossy public keys are
statistically close to the normal public keys. Combining with the Fujisaki-Okamoto transformation,
we obtain the first tightly IND-CCA secure KEM in the QROM in a multi-user (without corruption),
multi-challenge setting.

Finally, we show that a multi-user, multi-challenge KEM implies a square-root-tight and session-
tight AKE protocol in the QROM. By implementing the parameter lossy encryption tightly from
lattices, we obtain the first square-root-tight and session-tight AKE from lattices in the QROM.

Keywords: Authenticated key exchange, key encapsulation mechanism, quantum random oracle
model, tight security, lattices

∗Supported by the Research Council of Norway under Project No. 324235.

mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de
mailto:jiaxin.pan@ntnu.no, runzhi.zeng@ntnu.no, benedikt.wagner@cispa.de

Contents
1 Introduction 3

1.1 Our Contributions . 3
1.2 More Related Work . 4

2 Preliminaries 5
2.1 Quantum Random Oracle Model . 5
2.2 Background about Lattices . 6

3 Parameter Lossy Encryption 7
3.1 Parameter Lossy Encryption . 8
3.2 Parameter Lossy Encryption from Lattices . 8
3.3 Lossy Encryption from Lattices . 11

4 CCA Secure KEMs from (Parameter) Lossy Encryption 12
4.1 MC-IND-CCA Secure KEM from Lossy Encryption . 12
4.2 MUC-IND-CCA Secure KEM from Parameter Lossy Encryption 13

5 Security Model for AKE 20

6 Session-tight AKE protocol 23

2

1 Introduction
Authenticated key exchange (AKE) is a fundamental primitive in cryptography. An AKE allows to
establish a session key between two users. In combination with symmetric-key primitives, this allows to
establish a secure channel. Many well-known AKE protocols (such as SIGMA [25] and HMQV [26]) are
constructed based on the Diffie-Hellman assumption. Contrary to that, we focus on quantum-safe AKE
in this paper.
KEM/PKE-based AKE. It is known that AKE protocols can be constructed generically from key
encapsulation mechanisms (KEMs) or public-key encryption (PKE) (e.g., [9, 10, 19]). In particular, a
quantum-safe AKE can be constructed from a quantum-safe KEM. One main advantage of such KEM-
based AKE protocols is that they do not require any digital signature to authenticate the protocol
transcripts explicitly. Considering the (in)efficiency of quantum-safe signature schemes, this avoids a
significant overhead.
AKE in the QROM and Its Non-Tightness. The well-established random oracle model (ROM) [4]
idealizes hash functions and is used to prove the security of many practical cryptographic protocols,
including the aforementioned generic KEM-based AKE protocols. For quantum adversaries, however, it
is more realistic to assume that they can run an “offline” primitive such as a hash function in a quantum
manner. To model this, the quantum (accessible) random oracle model (QROM) has been introduced
in [7]. In the QROM, a quantum adversary can query the random oracle on arbitrary superpositions.
This makes it difficult to use many of the proof techniques applied in the classical ROM. In addition, it
introduces a large security loss. We take the existing KEM-based AKE protocol [19] in the QROM as
an example. Its security bound is1

Θ(S2 + S ·N) ·
(

εIND-CPA +
√

Q · εIND-CPA

)
, (1)

where S, N , and Q are the numbers of total sessions, users, and random oracle queries, respectively, and
εIND-CPA is the advantage of breaking the underlying IND-CPA secure PKE. This is the only known
bound in the QROM. Regarding the level of IND-CPA security, especially the square-root loss (i.e., the
term √εIND-CPA) is undesirable. This square-root loss results from the use of the so-called oneway-
to-hiding strategy in the QROM [2]. In practice, the PKE would be implemented by a standardized
scheme with a 128-bit security guarantee. Even without counting other non-tight terms, the resulting
AKE is only guaranteed to have 64-bit security, which is not a reasonable security margin. Even worse,
for today’s applications, it is easy to have S = 230 and N = 230. Hence, the security bound given by
Equation (1) provides almost no security guarantee given such a PKE implementation.

In this paper, our goal is to minimize the security loss of AKE protocols in the QROM. We emphasize
that there is no known tightly secure AKE protocol in the QROM, and most tightly secure AKE protocols
(e.g., [14, 20, 15]) are based on variants of Diffie-Hellman assumptions, which are not quantum-safe.

1.1 Our Contributions
We propose a tighter proof for KEM-based AKE protocols in the QROM. Our proof does not have square-
root loss and is tight with respect to the number of total sessions. Assuming a multi-challenge IND-CCA
secure (MC-CCA) KEM (with advantage denoted as εMC-CCA) and a multi-user, multi-challenge IND-
CCA (MUC-CCA) secure KEM (with advantage denoted as εMUC-CCA), our security bound for AKE in
the QROM is

Θ(N) · εMC-CCA + Θ(1) · εMUC-CCA. (2)

The concrete bound is given in Theorem 6.1. Here, the multi-user security provides an adversary with
multiple users’ public keys but does not allow corruption for any of the corresponding secret keys. The
multi-challenge security allows an adversary to ask for multiple challenge ciphertexts under any user.

We also show that MC-CCA and MUC-CCA can be efficiently achieved either tightly or almost
tightly2 from the Decisional Learning with Errors (LWE) assumption. In combination, our bound for
the resulting AKE protocol is

Θ(N) ·Θ(λ) · εLWE + Θ(λ) · εLWE, (3)
1For all security bounds in this section, we ignore all additive and negligible statistical terms.
2This is a relaxed tightness notion from [8] where security loss is at most linear in the security parameter λ.

3

where λ is the security parameter, and εLWE is the advantage against the LWE assumption (cf. Corol-
lary 6.2). Our AKE model is essentially the Bellare-Rogaway model [5], and additionally, it captures the
key-compromise-impersonation (KCI) attacks.
Parameter Lossy Encryption. Our technical tool is a more expressive and fine-grained variant of
lossy encryption which we call parameter lossy encryption (PLE). (Slightly) different from the original
notion of lossy encryption [16], the PLE has a system parameter that is shared among many users in
the system, and each user has an independent public key. Both public keys and system parameters
have a lossy mode. Under such lossy parameters and lossy public keys, ciphertexts statistically hide the
encrypted messages. This enables a tight security proof as follows: Under the normal parameters, lossy
public keys are statistically close to the normal ones. Further, lossy parameters are computationally
indistinguishable from normal parameters. In combination, this allows us to switch from the normal to
the lossy setting with a security loss that is independent of the number of keys.
Tight Security in the QROM from PLE. Separating the system parameter from public keys can
improve efficiency, since multiple users can share the same system parameter, instead of generating an
independent parameter that is in a user’s public key. This can largely improve the communication
complexity of a KEM-based AKE, where an initiator will generate an ephemeral public key and send it
to the responder (cf. Figure 13). Moreover, separating the system parameters is important for tightness.
For instance, a PLE scheme immediately implies a multi-user, multi-challenge IND-CPA KEM tightly
without random oracles, while the (original) lossy encryption can only tightly imply multi-challenge IND-
CPA KEM. This is because the original lossy encryption requires computational assumptions to switch
user public keys to lossy one-by-one, which introduces a security loss linear in the number of users.
More importantly, the aforementioned fine-grained separation is very useful to remove the square-root
loss in the QROM. When we apply the Fujisaki-Okamoto transformation [11, 17] to achieve IND-CCA
security, the only step that needs computational assumptions is switching normal system parameters to
lossy ones, and all the other proof steps are merely statistical. The parameter-switching step does not
involve random oracles. When the oneway-to-hiding lemma [2] is used, the square root function is only
applied on a purely statistical term and does not affect the security loss with respect to computational
assumptions. Hence, this gives us the first tightly secure multi-user, multi-challenge IND-CCA KEM in
the QROM, which solves the open problem in [19] about a root-tight proof of IND-CCA security. We
note that the work of Pan and Zeng [32] tightly implied a PKE with the same security in the classical
ROM, yet it is not clear how to transform it in the QROM, since they used a lot of reprogramming.
Parameter Lossy Encryption from Lattices. Finally, we propose a tight construction of PLE
from the LWE assumption. Our construction extends the dual Regev encryption [33, 13] with lossy LWE
matrices [27]. Combining with the aforementioned generic constructions, we obtain

• the first lattice-based AKE protocol in the QROM that does not have square-root security loss and
is tightly secure with respect to the number of total sessions. It is not tight with respect to the
number of users;

• the first tightly IND-CCA secure lattice-based KEM in the multi-user, multi-challenge setting and
in the QROM.

Both results provide new insights on minimizing the security loss in the QROM, namely, PLE is a useful
tool to tighten security loss in the QROM. It may be useful for future applications.
Open Problems. We view avoiding the square-root loss and loss concerning the number of total sessions
as an important step towards tightly secure AKE in the QROM. It would be interesting to extend our
techniques to construct a tightly secure AKE in the QROM. Another interesting open problem is how
to construct our parameter lossy encryption from other quantum-safe assumptions, e.g., module-LWE.

1.2 More Related Work
The work of Fujioka et al. (FSXY) [9] constructed AKE generically from KEMs in the standard model.
One may think that it is secure in the QROM with the same proof. However, as pointed out by
Hövelmanns et al. [19], FSXY has two major drawbacks: First, it requires perfect correctness, which
makes it hard to instantiate with lattices. Second, it lacks simplicity, making it overly complicated
and very inefficient. Moreover, the security loss of FSXY is Θ(N2S) which is much larger than ours.
Another work on AKE protocols in the QROM is due to Xue et al. [36] which constructed AKE from

4

commutative supersingular isogenies. Similar to the work of Hövelmanns et al., it contains square-root-
loss and depends on both the number of users and sessions. Hence, the work of Hövelmanns et al. is the
most representative for our discussion. We note a very recent work on lattice-based tightly secure AKE
[30] in the classical ROM, but extending it to the QROM is not trivial, since it seems difficult to extend
the programming techniques of [30] to the QROM.

2 Preliminaries
For an integer n, we define the notation [n] := {1, . . . , n}. Let X and Y be two finite sets. The notation
x $← X denotes sampling an element x from X uniformly at random. Let A be an algorithm. If A is
probabilistic, then y ← A(x) means that the variable y is assigned to the output of A on input x. If A is
deterministic, then we may write y := A(x). We write AO to indicate that A has classical access to oracle
O, and A|O〉 to indicate that A has quantum access to oracle O All algorithms (including adversaries)
in this paper are probabilistic polynomial-time (PPT), unless we state it otherwise. We use code-based
games [6] to define and prove security. We implicitly assume that Boolean flags are initialized to false,
numerical types are initialized to 0, sets and ordered lists are initialized to ∅, and strings are initialized
to the empty string ϵ. The notation Pr[GA ⇒ 1] denotes the probability that the final output GA of
game G running an adversary A is 1. Let Ev be an (classical) event. We write Pr[Ev : G] to denote
the probability that Ev occurs during the game G. In our security notions throughout the paper, we let
N, S be numbers of users and challenges, respectively, which are assumed to be polynomial in λ.

2.1 Quantum Random Oracle Model
In the quantum random oracle model (QROM), some hash functions are modelled as publicly quantum-
accessible random oracles (see [7] for more details). Unlike the classical random oracle model, the efficient
reduction algorithm in the QROM cannot use lazy sampling to simulate quantum random oracles (QROs).
In this paper, we do not specify the way for reduction algorithms to simulate QROs. Following the
convention in [21, 22, 24, 34], we assume that reduction algorithms (i.e., game simulators) have access to
some internal quantum random oracles (which can be instantiated by quantum-secure pseudo-random
functions or real-world hash functions [24, 34]). Lemma 2.1 gives a probabilistic bound for an adversary
A (at most q queries to |O〉) to distinguish whether it is interacting with random oracle O0 or interacting
with random oracle O1, where O0\S = O1\S. If A can distinguish, then Lemma 2.1 states that there
exists an PPT reduction EXT that randomly measures A’s QRO queries and outputs an element x ∈ S.

Lemma 2.1 (OW2H, probabilities [2]). Let X ,Y, and S ⊆ X be sets. Let O0,O1 : X → Y be random
functions satisfying ∀x /∈ S, O0(x) = O1(x). Let inp be some bitstring. (S,O0,O1, inp) may have
arbitrary joint distribution. Let A be an adversary issuing at most q quantum-superposition queries to
random oracle and, on input inp, it outputs either 0 or 1. Let EXTO (O = O0 or O1) be a quantum
algorithm that on input inp does the following: It picks i∗ $← [q], runs A|O〉(inp) until i∗th query (denoted
as |ϕ〉) to O, and returns x′ := Measure(|ϕ〉). Then we have∣∣∣Pr[1← A|O0〉(inp)]− Pr[1← A|O1〉(inp)]

∣∣∣
≤ 2q

√
Pr[x′ ∈ S : x′ ← EXTA,|O1〉(inp)]

We consider a special case of Lemma 2.1. Let S in Lemma 2.1 be a randomly generated set and
independent of inp. Then we have the following corollary. The proof is straight-forward since the S is
independently random, the probability that EXT finds an element in S is the uniform probability |S||X | .

Corollary 2.2 With the same notations and assumptions in Lemma 2.1, if S is random set generated
at independently and uniformly random, then we have∣∣∣Pr[1← A|O0〉(inp)]− Pr[1← A|O1〉(inp)]

∣∣∣ ≤ 2q
√
|S|/|X |

Lemma 2.3 gives a probabilistic bound for an adversary (has quantum access to oracles) to distinguish
h(k, ·) and h′, where k is secret, h and h′ are QRO and have the same image. When the image set is
large enough, the adversary cannot distinguish these two oracles, unless it “queries” the oracle on k.

5

Game GDPBA
λ,b

01 (λx)x∈X ← A
02 if ∃x ∈ X s.t. λx > λ: return 0
03 if b = 0
04 Define F := 0
05 else for x ∈ X
06 F(x)← Bλx

07 b′ ← AF

08 return b′

Figure 1: Game GDPBAλ,b used in Lemma 2.4.

Lemma 2.3 ([34]). Let s be an integer. Let h : {0, 1}s × X → Y and h′ : X → Y be two independent
random oracles. If an unbounded time quantum adversary A that queries H at most qH times, then we
have ∣∣Pr[1← A|h〉,|h(k,·)〉() | k ← {0, 1}s]− Pr[1← A|h〉,|h

′〉()]
∣∣ ≤ 2qH · 2−s/2

We also need the following lemma to handle PKE schemes with imperfect correctness (Definition 3.1).
Let Bλ be the Bernoulli distribution (i.e., Pr [b = 1] = λ for the bit b← Bλ). Roughly speaking, for any
unbounded and quantum adversary A, Lemma 2.4 bounds A’s advantage in distinguishing whether it
is interacting with a constant function or a function that follows the Bernoulli distribution Bλ. We call
such a distinguishing problem as Generic quantum Distinguishing Problem with Bounded probabilities
(GDPB).

Lemma 2.4 (GDPB [19]). Let X be a finite set, and let λ ∈ [0, 1]. Then, for any unbounded and
quantum algorithm A issuing at most q quantum queries,∣∣∣Pr[GDPBAλ,0 ⇒ 1]− Pr[GDPBAλ,1 ⇒ 1]

∣∣∣ ≤ 8(q + 1)2λ,

where games GDPBAλ,b are defined in Figure 1.

2.2 Background about Lattices
In this section, we recall the LWE assumption and some well-known facts about Gaussians [29, 12],
and the lossy LWE technique and a generalized leftover hash lemma [1, 23]. First, we recall the LWE
assumption.

Definition 2.5 (LWE Assumption). Let n, m be positive integers, q be a prime. Let χ be a distribution
over Z. All of these are implicitly parameterized by the security parameter λ. We say that the LWEn,m,q,χ

assumption holds, if for any algorithm B, the following advantage is negligible in λ:

AdvLWEn,m,q,χ(B) := |Pr[B(A, b) = 1 | A $← Zn×m
q , b $← Zm

q]
−Pr[B(A, A>s + e) = 1 | A $← Zn×m

q , s $← Zn
q , e← χm]|.

Let s > 0. We define the discrete Gaussian distribution over Z with parameter s, denoted by DZ,s to
be the distribution proportional to ρs(x) := exp(−π‖x‖2/s2), restricted to Z. Next, we recall well-known
regularity lemmas and tail bounds, following [29, 12].

Lemma 2.6 Consider natural numbers n, m ∈ N and a prime q at least polynomial in n. Assume
m ≥ 2n log q and s ≥ ω(

√
log m). Then, the following distributions have negligible statistical distance:{

(A, Ae)
∣∣ A $← Zn×m

q , e← Dm
Z,s

}
and

{
(A, b)

∣∣ A $← Zn×m
q , b $← Zn

q

}
.

Lemma 2.7 For any s ≥ ω(
√

log m), and x← Dm
Z,s, the probability that ‖x‖ > s

√
m is at most 2−m+1.

We also make use of the lossy LWE technique. For that, we require the following lemmas from [1, 23].
The lemmas make use of the so called “smooth average min-entropy” H̃ ·∞ (· | ·) [23].

6

Lemma 2.8 Consider positive integers n, t, m, q, g, and β, s′ > 0 and a distribution χ over Z such that
s′ ≥ βqgnm and Pr[|x| ≥ βq | x← χ] ≤ negl(λ). Assume s is uniformly distributed over [−g, g]n, and e
is distributed according to Ds′

Z,Zm. Let B $← Zn×t
q , C $← Zt×m

q , D← χn×m and set A := BC + D. Then,
for any ϵ ≥ 2−λ, we have

H̃ϵ
∞

(
s

∣∣ A>s + e
)
≥ n log(2g + 1)− (t + 2λ) log q − negl(λ).

Lemma 2.9 Let H := {hk : X → Y}k be a universal family of hash functions. Assume that the keys k of
H are distributed according to some distribution K. Further, let U denote a random variable distributed
uniformly over Y and X be any random variable with values in X and I be any random variable. Let
ϵ ≥ 0. With these assumptions, the statistical distance between (K, hK(X), I) and (K, U, I) is upper
bounded by

2ϵ + 1
2

√
2−H̃ϵ

∞(X | I) · |Y|.

3 Parameter Lossy Encryption
In this section, we focus on public key encryption. Formally, a public key encryption (PKE) scheme PKE
consists of four algorithms (Setup, KG, Enc, Dec) and a message spaceM that is assumed to be efficiently
recognizable. The algorithms work as follows:

• The setup algorithm Setup, on input the security parameter λ, outputs system parameters par.
• The key generation algorithm KG, on input the parameter par, outputs a public and secret key pair

(pk, sk).
• The encryption algorithm Enc, on input pk and a message m ∈M, outputs a ciphertext c ∈ C.
• The decryption algorithm Dec, on input sk and a ciphertext c, outputs a message m′ ∈ M or a

rejection symbol ⊥ /∈M.

Definition 3.1 (Correctness of PKE). A PKE scheme PKE = (Setup, KG, Enc, Dec) with message space
M is (1− δ)-correct if

E(pk,sk)←KG

[
max
m∈M

Pr [Dec(sk, c) 6= m : c← Enc(pk, m)]
]
≤ δ,

where the expectation is taken over par ← Setup(λ), (pk, sk) ← KG(par) and randomness of Enc. Here
δ := δ(λ) is related to the security parameter λ.

For technical reasons, we also need a bound on the probability that two public keys collide.

Definition 3.2 (Collision Probability of Key Generation). We define the collision probability of KG of
PKE as

ηPKE := max [Pr [pk0 = pk1 : (pk0, sk0)← KG(par), (pk1, sk1)← KG(par)]] ,

where the maximum is taken over all pk0, pk1.

We can assume that ηPKE is negligible, as otherwise an adversary would have non-negligible probability
of sampling a secret key for a given public key, which would imply that the scheme is insecure for any
reasonable notion.
Lossy Encryption. We recall the notion of lossy encryption [3, 16, 18]. In lossy encryption schemes,
there are two modes of the public keys. Public keys in the real mode work as defined above. On the
other hand, if we encrypt a plaintext using a public key in lossy mode, the ciphertext statistically hides
the plaintext. Real and lossy public keys should be computationally indistinguishable. Unlike the lossy
encryption in [3, 18], we do not require openability here.

Definition 3.3 (Lossy Encryption). Let PKE := (Setup, KG, Enc, Dec) be a PKE scheme with message
space M′. PKE is lossy if there is an algorithm LKG such that the following properties hold:

• PKE is correct according to Definition 3.1.

7

• Key Indistinguishability: We say PKE satisfies key indistinguishability if for any algorithm B, the
advantage function

Advind-key
PKE (B) := |Pr [B (par, pk)⇒ 1]− Pr [B(par, lpk)⇒ 1]|

is negligible, where the probability is taken over par ← Setup(λ), (pk, sk) ← KG(par), and lpk ←
LKG(par).

• Lossiness: For any arbitrary messages m, m′ ∈ M′, the statistical distance between the following
distributions D and D′ is at most ϵlo, where ϵlo is negligible:

D :=
{

(par, lpk, c)
∣∣∣∣ par← Setup(λ), lpk← LKG(par)

c← Enc(lpk, m)

}
,

D′ :=
{

(par, lpk, c)
∣∣∣∣ par← Setup(λ), lpk← LKG(par)

c← Enc(lpk, m′)

}
.

We refer to ϵlo as the lossiness of PKE.

We give a lattice-based lossy encryption in Section 3.3. The construction is essentially the Regev
encryption scheme [33].

3.1 Parameter Lossy Encryption
We now extend the lossiness notion to a multi-user notion, where the global system parameters are also
allowed to have a lossy mode. We call this new notion parameter lossy encryption.

Definition 3.4 (Parameter Lossy Encryption). Let PKE := (Setup, KG, Enc, Dec) be a PKE scheme
with message space M′. PKE is parameter lossy if there are algorithms LSetup and LKG such that the
following properties hold:

• PKE is correct according to Definition 3.1.
• Parameter-Key Indistinguishability: We say PKE satisfies parameter-key indistinguishability if for

any PPT algorithm B, the advantage function

Advind-par-key
PKE (B) := |Pr [B (par, pk1, . . . , pkN)⇒ 1]

− Pr [B(lpar, lpk1, . . . , lpkN)⇒ 1] |

is negligible, where N denotes the number of users, and the first probability is taken over the
experiment par ← Setup(λ), (pk1, sk1) ← KG(par), . . . , (pkN , skN) ← KG(par) and the second one
is taken over lpar← LSetup(λ), lpk1 ← LKG(lpar), . . . , lpkN ← LKG(lpar).

• Lossiness: For any arbitrary messages m, m′ ∈ M′, the statistical distance between the following
distributions D and D′ is at most ϵlo, where ϵlo is negligible:

D :=
{

(lpar, lpk, c)
∣∣∣∣ lpar← LSetup(λ), lpk← LKG(lpar)

c← Enc(lpk, m)

}
,

D′ :=
{

(lpar, lpk, c)
∣∣∣∣ lpar← LSetup(λ), lpk← LKG(lpar)

c← Enc(lpk, m′)

}
.

We refer to ϵlo as the lossiness of PKE.

3.2 Parameter Lossy Encryption from Lattices
We construct a parameter lossy encryption scheme from the (Decisional) Learning With Errors (LWE)
assumption. Essentially, in our encryption we extend the (dual) Regev scheme [33, 13] with a lossy mode
of system parameters.
Scheme. Our scheme has message space {0, 1}ℓ. As common for lattice-based encryption schemes, a
message m ∈ {0, 1}ℓ has to be encoded on encryption and decoded on decryption. More precisely, we
define the following algorithms and use them in our scheme:

8

• Algorithm Encode(m) computes a vector m> ∈ Zℓ
q. The ith coordinate of m> is given as bq/2e ·mi

for each i ∈ [ℓ].
• Algorithm Decode(m>) computes a message m ∈ {0, 1}ℓ by componentwise rounding. That is, for

all i ∈ [ℓ], it sets mi = 0 if mi is closer to 0 than to bq/2e. Otherwise, it sets mi = 1.
Further, our scheme makes use of parameters n, m, q, t, g ∈ N, s, s′, s′′ ∈ R, s, s′, s′′ > 0 satisfying the
following conditions:

• n = Θ(λ), q prime
• m ≥ 2n log q (for Lemma 2.6)
• s, s′ ≥ ω(

√
log m) (for Lemmata 2.6 and 2.7)

• ss′m ≤ q/4 (for correctness)
• s′ ≥ gn2m (for Lemma 2.8, we choose βq = n)
• n log(2g + 1)− (t + 2λ) log q − negl(λ) ≥ λ log q + Ω(n) (for Lemma 2.9)

For example, a (very conservative) parameter setting that satisfies all these conditions for a given λ is

n := 56λ n6 < q ≤ n7, g :=
√

n, s :=
√

n,
t := λ, m := 2n log q, s′ := n2.5m, s′′ :=

√
n.

Formally, we present our scheme in Figure 2.

Setup(λ)
01 A $← Zn×m

q

02 return par := A

LSetup(λ)
03 B $← Zn×t

q , C $← Zt×m
q

04 D← Dn×m
Z,s′′

05 A := BC + D
06 return lpar := A

KG(par = A)
07 sk := X← Dm×ℓ

Z,s

08 pk := Y := AX
09 return (pk, sk)

LKG(lpar = A)
10 lpk := Y $← Zn×ℓ

q

11 return lpk

Enc(pk = Y, m)
12 s $← [−g, g]n, e← Dm

Z,s′

13 m> := Encode(m)
14 c> := s>A + e>

15 v> := s>Y + m>

16 return c := (c>, v>)

Dec(sk = x, c = (c>, v>))
17 m> := v> − c>X
18 return Decode(m>)

Figure 2: The parameter lossy encryption scheme PKE := (Setup, KG, Enc, Dec) from the LWE assumption
with algorithms LSetup and LKG.

Analysis. We show correctness, parameter-key indistinguishability, and lossiness. The proof of correct-
ness follows standard arguments [33].

Lemma 3.5 The scheme PKE in Figure 2 is (1− δ)-correct, for negligible δ.

Proof. Let sk = X ← Dm×ℓ
Z,s and pk = Y = AX be a pair of public key and secret key. Consider a

message m ∈ {0, 1}ℓ and an honestly computed ciphertext c := (c>, v>) for m. We have c> = s>A+e>
and v> := s>Y + m>. Now, consider m> computed during the decryption algorithm. We have

m> = v> − c>X = m> − e>X.

Thus, one can see that decryption recovers m if each coordinate of e>X has absolute value less than q/4.
Fix such a coordinate, say the ith, and call it z. Except with negligible probability (see Lemma 2.7), we
have that ‖e‖ ≤ s′

√
m, and the ith column x of X satisfies ‖x‖ ≤ s

√
m. Thus, we have

|z| = |e>x| ≤ ‖e‖‖x‖ ≤ ss′m < q/4.

except with negligible probability.

Lemma 3.6 If the LWEt,m,q,D
Z,s′′

assumption holds, then the scheme PKE with algorithms LSetup and
LKG as presented in Figure 2 satisfies parameter-key indistinguishability. Namely, for any adversary A,
there is an algorithm B such that the running time of B is about that of A and

Advind-par-key
PKE (A) ≤ n · Adv

LWEt,m,q,D
Z,s′′ (B) + negl(λ).

9

Proof. To show parameter-key indistinguishability, we need to argue that the distributions of (1) param-
eters and keys output by Setup and KG and (2) parameters and keys output by LSetup and LKG are
computationally indistinguishable. We show this using a sequence of hybrid distributions. Namely, we
start with distribution D1, which is the distribution output by Setup and KG, namely

D1 :=
{

(A, Y1, . . . , YN)
∣∣∣∣ A $← Zn×m

q ,

∀i ∈ [N] : Xi ← Dm×ℓ
Z,s , Yi := AXi

}
.

Now, we argue that the distribution

D2 :=
{

(A, Y1, . . . , YN)
∣∣∣∣ A $← Zn×m

q ,
∀i ∈ [N] : Yi

$← Zn×ℓ
q

}
is statistically close to D1. This can easily be seen using ℓ ·N applications of Lemma 2.6. Next, using n
applications of the LWEt,m,q,D

Z,s′′
assumption (one per row of A), we see that the distribution

D3 :=

(A, Y1, . . . , YN)

∣∣∣∣∣∣
B $← Zn×t

q , C $← Zt×m
q , D← Dn×m

Z,s′′

A := BC + D,
∀i ∈ [N] : Yi

$← Zn×ℓ
q


is computationally indistinguishable from D2. Finally, observe that D3 is exactly the distribution of
parameters and keys output by LSetup and LKG.

Lemma 3.7 The scheme PKE with algorithms LSetup and LKG as presented in Figure 2 satisfies lossi-
ness.

Proof. Fix two arbitrary messages m, m′ ∈ {0, 1}ℓ. According to the definition of lossiness, and the speci-
fication of scheme PKE and algorithms LSetup and LKG, we need to argue that the following distributions
D and D′ are statistically close:

D :=

(A, Y, c>, v>)

∣∣∣∣∣∣
B $← Zn×t

q , C $← Zt×m
q , D← Dn×m

Z,s′′ ,

A := BC + D, Y $← Zn×ℓ
q ,

c> := s>A + e>, v> := s>Y + Encode(m)

 ,

D′ :=

(A, Y, c>, v>)

∣∣∣∣∣∣
B $← Zn×t

q , C $← Zt×m
q , D← Dn×m

Z,s′′ ,

A := BC + D, Y $← Zn×ℓ
q ,

c> := s>A + e>, v> := s>Y + Encode(m′)

 .

Observe that it is sufficient to argue that s>Y is statistically close to uniform over Zℓ
q, given A, Y, c>

as in D and D′. To do this, we make use of Lemma 2.9. Namely, we consider the hash function family
s 7→ s>Y parameterized by Y. As Y is sampled uniformly at random in distributions D and D′, and q
is a prime, this family is universal. Next, we claim that s has a lot of entropy given c>. Precisely, we
use Lemma 2.8 and derive

H̃ϵ
∞ (s | c) ≥ n log(2g + 1)− (t + 2λ) log q − negl(λ)

≥ λ log q + Ω(n),

where the first inequality follows from Lemma 2.8, and the last inequality follows from our assumptions
on parameters. Now that the lower bound on the entropy of s is established, we use Lemma 2.9 with
ϵ = 2−λ and Y := Zλ

q , and get that the statistical distance between s>Y and uniform, given A, Y, c>, is
at most

2ϵ + 1
2

√
2−H̃ϵ

∞(s | c) · |Y| ≤ 2−λ+1 + 1
2

√
2−λ log q−Ω(n)+λ log q ≤ negl(λ),

which finishes the proof.

10

3.3 Lossy Encryption from Lattices
We present a simple construction of lossy encryption from lattices. The construction is essentially Regev’s
public key encryption scheme [33] Formally, the public key encryption PKE = (Setup, KG, Enc, Dec) and
algorithm LKG for message space {0, 1}ℓ is given in Figure 3. For our description, we rely on algorithms
Encode and Decode introduced in Section 3.2. It makes use of parameters n, m, q ∈ N, s, s′ ∈ R, s, s′ > 0,
that should satisfy the following conditions

• n = Θ(λ), q prime

• m ≥ 2(n + ℓ) log q (for Lemma 2.6)

• s, s′ ≥ ω(
√

log m) (for Lemmata 2.6 and 2.7)

• ss′m ≤ q/4 (for correctness)

An example non-optimized instantiation for a given security parameter λ and message length ℓ = n is
n := λ, n3 < q ≤ n4, m := 4n log q, and s := s′ := log m.

Setup(1λ)
01 return par := A $← Zn×m

q

KG(par = A)
02 sk := S $← Zn×ℓ

q , E← Dm×ℓ
Z,s

03 pk := Y := S>A + E> ∈ Zℓ×m
q

04 return (pk, sk)

LKG(par = A)
05 return lpk := Y $← Zℓ×m

q

Enc(pk = Y, m)
06 x← Dm

Z,s′

07 c := Ax
08 v := Yx + Encode(m)>
09 return c := (c, v)

Dec(sk = S, c = (c, v))
10 m := v− S>c
11 return Decode(m>)

Figure 3: The lossy PKE scheme PKE := (Setup, KG, Enc, Dec) from the LWE assumption with algorithm
KG.

We now turn to the analysis of PKE. We show correctness, key indistinguishability, and lossiness.

Lemma 3.8 The scheme PKE in Figure 3 is (1− δ)-correct, for negligible δ.

Proof. The proof is standard [33, 13]. One can easily see that decryption works as long as |e>x| < q/4
for any column e of E. By Lemma 2.7 and our assumption about s, s′, m, and q, we have

|e>x| ≤ ‖e‖‖x‖ ≤ ss′m < q/4.

with overwhelming probability.

Lemma 3.9 If the LWEn,m,q,DZ,s
assumption holds, then the scheme PKE with algorithm LKG as pre-

sented in Figure 3 satisfies key indistinguishability. Namely, for any algorithm A, there is an algorithm
B such that the running time of B is about that of A and

Advind-key
PKE (A) ≤ ℓ · AdvLWEn,m,q,DZ,s (B)

Proof. The statement follows directly from the LWE assumption, applied to each row of matrix Y.

Lemma 3.10 The scheme PKE with algorithm LKG as presented in Figure 3 satisfies lossiness.

Proof. Fix two arbitrary messages m, m′ ∈ {0, 1}ℓ. Now, according to the definition of lossiness and
the specification of the scheme, we have to argue that the distributions D and D′ are statistically close,
where D and D′ are given as

D :=
{

(A, Y, c, v)
∣∣∣∣ A $← Zn×m

q , Y $← Zℓ×m
q

c := Ax, v := Yx + Encode(m)>
}

,

11

D′ :=
{

(A, Y, c, v)
∣∣∣∣ A $← Zn×m

q , Y $← Zℓ×m
q

c := Ax, v := Yx + Encode(m′)>
}

.

It is sufficient that in both distributions the term[
A
Y

]
x

is statistically close to uniform. This is guaranteed by Lemma 2.6.

4 CCA Secure KEMs from (Parameter) Lossy Encryption
In this section, we construct two KEM schemes KEM1 and KEM2 from lossy encryption and parameter
lossy encryption, respectively. The schemes KEM1 and KEM2 have tight multi-challenge, and tight multi-
user multi-challenge security, respectively, and will be used in the construction of our AKE protocol in
Section 6. Before we describe the schemes in Sections 4.1 and 4.2, we recall the formal definition of
KEMs and define the security notions of interest.
Definitions. We recall the syntax and security definitions of a KEM. A KEM KEM consists of four
algorithms (Setup, KGen, Encaps, Decaps) and a key space K that is assumed to be efficiently recognizable.
The algorithms work as follows:

• The setup algorithm Setup, on input the security parameter λ, outputs system parameters par.
• The key generation algorithm KGen, on input the parameter par, outputs a public and secret key

pair (pk, sk).
• The encapsulation algorithm Encaps, on input pk , outputs a ciphertext e and a key K ∈ K.
• The decapsulation algorithm Decaps, on input sk and a ciphertext e, outputs a key K ∈ K or a

rejection symbol ⊥ /∈ K.
In this paper, we use MC-IND-CCA secure KEM and MUC-IND-CCA secure KEM to construct

AKE protocols.

Definition 4.1 (MC-IND-CCA Security of KEM). Let KEM = (Setup, KGen, Encaps, Decaps) be a KEM.
We say that KEM is MC-IND-CCA secure, if for any algorithm A, the advantage

AdvMC-IND-CCA
KEM (A) := |Pr[MC-IND-CCAAKEM,0(λ)⇒ 1]

− Pr[MC-IND-CCAAKEM,1(λ)⇒ 1]|

is negligible in λ, where games MC-IND-CCAAKEM,b(λ) for b ∈ {0, 1} are specified in Figure 4.

Definition 4.2 (MUC-IND-CCA Security of KEM). Let KEM = (Setup, KGen, Encaps, Decaps) be a
KEM. We say that KEM is MUC-IND-CCA secure, if for any algorithm A, the advantage

AdvMUC-IND-CCA
KEM (A) := |Pr[MUC-IND-CCAAKEM,0(λ)⇒ 1]

− Pr[MUC-IND-CCAAKEM,1(λ)⇒ 1]|

is negligible in λ, where games MUC-IND-CCAAKEM,b(λ) for b ∈ {0, 1} are specified in Figure 4.

4.1 MC-IND-CCA Secure KEM from Lossy Encryption
Let PKE = (Setup, KG, Enc, Dec) be a lossy encryption scheme with message space M′, randomness
space R′, and ciphertext space C′. Let s be an integer and K be a key space. Let H : M′ × C′ → K,
H′ : {0, 1}s×C′ → {0, 1}s, and G : M′ →R′ be random oracles. Our KEM scheme KEM1 with KEM key
space K is shown in Figure 5.

KEM1 has the same structure as the modular Fujisaki-Okamoto transformation FO6⊥[PKE, G, H] from
[21, 19], but its underlying PKE is a lossy encryption scheme. Theorem 4.3 shows that, if PKE is a lossy
encryption, then KEM1 is a tightly IND-CCA secure KEM in the multi-challenge setting (Definition 4.1)
in the QROM.

12

Game MC-IND-CCAA
KEM,b(λ)

01 par← Setup(λ)
02 (pk, sk)← KGen(par)
03 for i ∈ [S]
04 (e, K)← Encaps(pk)
05 e[i] := e, K0[i] := K
06 K1[i] $← K
07 b′ ← ADec(par, pk, e, Kb)
08 return b′

Game MUC-IND-CCAA
KEM,b(λ)

09 par← Setup(λ)
10 for j ∈ [N]
11 (pkj , skj)← KGen(par)
12 for i ∈ [S]
13 (e, K)← Encaps(pkj)
14 e[j, i] := e
15 K0[j, i] := K
16 K1[j, i] $← K
17 pk[j] := pkj

18 b′ ← ADecmu (par, pk, e, Kb)
19 return b′

Oracle Dec(e)
20 if e ∈ e
21 return ⊥
22 K := Decaps(sk, e)
23 return K

Oracle Decmu(j, e)
24 if e ∈ e[j, ·]
25 return ⊥
26 K := Decaps(skj , e)
27 return K

Figure 4: Games MC-IND-CCAAKEM,b and MUC-IND-CCAAKEM,b for a KEM KEM = (Setup, KGen, Encaps,
Decaps). In Decmu, e[j, ·] is the list (e[j, 1], ..., e[j, S]).

KGen1(par)
01 (pk, sk)← KG(par)
02 k $←M′

03 pk′ := pk
04 sk′ := (sk, k)
05 return (pk′, sk′)

Encaps1(pk)
06 r $←M′, R := G(r)
07 e := Enc(pk, r; R)
08 K := H(r, e)
09 return (e, K)

Decaps1((sk, k), e)
10 r′ := Dec(sk, e)
11 if r′ = ⊥∨ e 6= Enc(pk, r′; G(r′))
12 K := H′(k, e)
13 else K := H(r′, e)
14 return K

Figure 5: The KEM scheme KEM1 = (Setup := Setup, KGen1, Encaps1, Decaps1) based on a lossy encryp-
tion scheme PKE = (Setup, KG, Enc, Dec), where par ← Setup(λ). KEM1 has implicit rejection property,
namely, the decryption algorithm returns a pseudorandom KEM key if the input ciphertext is invalid.

Theorem 4.3 Let S be the number of challenge ciphertexts. If PKE is a (1− δ)-correct lossy encryption
(Definition 3.3) with lossiness ϵlo

PKE and H′, G, and H are modeled as quantum random oracles, then for
any quantum adversary A, there exists an adversary B such that the running time of A is about that of
B and

AdvMC-IND-CCA
KEM1

(A) ≤ 4Advind-key
PKE (B) + S2

(
1
|M′|

+ 1
|K|

+ 1
2s

)
+ S + S2

|R′|
+ 48(1 + (qH + qG + 2qDec + S)2)δ

+ 4 (qG + qH)

√
S · ϵlo

PKE + S

|M′|
+ 4qH′ · 2−s/2,

where qH′ , qG, qH, and qDec are the numbers of A’s queries to H′, G, H, and Dec, respectively.

The proof of Theorem 4.3 is the almost identical to the one of Theorem 4.4, except that Theorem 4.3
deals with only one user and uses the key indistinguishability of lossy encryption (cf. Definition 3.3)
instead of the parameter-key indistinguishability. By letting N := 1 in the proof of Theorem 4.4, all
arguments can be adapted to the proof of Theorem 4.3. Thus, we refer the reader to the proof of
Theorem 4.4.

4.2 MUC-IND-CCA Secure KEM from Parameter Lossy Encryption
Let PKE = (Setup, KG, Enc, Dec) be a parameter lossy encryption scheme with public key space PK′,
message space M′, randomness space R′, and ciphertext space C′. Let s be an integer and K be a key
space. Let H : PK′ ×M′ × C′ → K, H′ : PK′ × {0, 1}s × C′ → {0, 1}s, and G : PK′ ×M′ → R′ be
random oracles. Fix par ← Setup(λ) and our KEM scheme KEM2 with KEM key space K is defined as
in Figure 6.

KEM2 has two differences compared to the modular Fujisaki-Okamoto transformation FO6⊥[PKE, G, H]
from [21, 19]. The first one is that we include a user public key into the hash function. We suppose that

13

KGen2(par)
01 (pk, sk)← KG(par)
02 k $← {0, 1}s

03 pk′ := pk
04 sk′ := (sk, k)
05 return (pk′, sk′)

Encaps2(pk)
06 r $←M′

07 R := G(pk, r)
08 e := Enc(pk, r; R)
09 K := H(pk, r, e)
10 return (e, K)

Decaps2((sk, k), e)
11 r′ := Dec(sk, e)
12 if r′ = ⊥
13 ∨e 6= Enc(pk, r′; G(pk, r′))
14 K := H′(pk, k, e)
15 else K := H(pk, r′, e)
16 return K

Figure 6: KEM scheme KEM2 = (Setup, KGen2, Encaps2, Decaps2) based on a parameter lossy encryption
PKE = (Setup, KG, Enc, Dec), where par ← Setup(λ). KEM2 has implicit rejection property, namely, the
decryption algorithm returns a pseudorandom KEM key if the input ciphertext is invalid.

this change is necessary for tightness in the multi-user setting. The second difference is that our security
requirement on the underlying PKE is parameter lossy. More precisely, we show in Theorem 4.4 that, if
PKE is a parameter lossy encryption, then KEM2 is a tightly IND-CCA secure KEM in the multi-user
and multi-challenge setting (Definition 4.2) in the QROM.

Theorem 4.4 Let N be the number of users and let S be the number of challenge ciphertexts. If PKE
is a (1− δ)-correct parameter lossy encryption (Definition 3.4) with lossiness ϵlo

PKE and H′, G, and H are
modeled as quantum random oracles, then for any quantum adversary A, there exists an adversary B
such that the running time of A is about that of B and

AdvMUC-IND-CCA
KEM2

(A) ≤ 4Advind-par-key
PKE (B) + 48N(1 + (qH + qG + 2qDec + S)2)δ

+ NS + N2S2

|R′|
+ N2S2

(
1
|M′|

+ 1
|K|

+ 1
2s

+ ηPKE

)
+ 4(qG + qH)

√
NS · ϵlo

PKE + NS

|M′|
+ 4NqH′ · 2−s/2,

where qH′ , qG, qH, and qDec are the numbers of A’s queries to H′, G, H, and Decmu, respectively. ηPKE is
the collision probability of KG (Definition 3.2).

Proof of Theorem 4.4. We prove the theorem via a sequence of games, formally given in Figure 7. Follow-
ing [21, 34, 19], we assume that the game has access to some internal quantum random oracles (QROs)
which are used to simulate the QROs accessed by the adversary. Namely, let h′, h′pk1

, . . . , h′pkN
: C′ → K

be internal QROs used to simulate H′, h, hpk1 , . . . , hpkN
: C′ → K be internal QROs used to simulate

H, and g, g′pk1
, . . . , g′pkN

: M′ → R′ be internal QROs used to simulate G. Such internal QROs can be
simulated be several ways [34], e.g., using 2q-wise independent hash function (if the adversary queries the
QRO at most q times) [37]. For sake of simplicity, during all our security games, we implicitly exclude
collisions of users’ public keys pki’s and secret keys ki’s for implicit rejection and the collisions of the
PKE messages rj,i’s, randomnesses Rj,i’s, and KEM keys Kj,i. Excluding such collisions will add

N2S2
(

1
|M′|

+ 1
|K|

+ 1
|R′|

+ 1
2s

+ ηPKE

)
to the final bound. In G0, we use g, h′, and h to simulate G, H′, H, respectively. This game is equivalent
to MUC-IND-CCAAKEM2,0 game (Definition 4.2), so we have

Pr
[
MUC-IND-CCAAKEM2,0 ⇒ 1

]
= Pr

[
GA0 ⇒ 1

]
.

G1: If A queries Decmu on (j, e) that e is invalid, then Decmu returns h′pkj
(e) instead of H′(pkj , kj , e).

We use Lemma 2.3 to bound the difference. Concretely, we apply Lemma 2.3 for any user j ∈ [N], by
viewing H′(pkj , ·) as oracle h in Lemma 2.3, and h′pkj

as oracle h′ in Lemma 2.3. Thus, we have∣∣Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ 2NqH′ · 2−s/2.

14

Game G0-G9

01 par← Setup(λ)
02 par := lpar← LSetup(λ) // G6-G9
03 for j ∈ [N]
04 (pkj , (skj , kj))← KG(par)
05 (lpkj , lskj)← LKG(par) // G6-G7
06 (pkj , skj) := (lpkj , lskj) // G6-G7
07 for i ∈ [S]
08 rj,i

$←M′

09 Rj,i := G(pkj , rj,i)
10 Rj,i

$←R′ // G7-G9
11 e := Enc(pkj , rj,i; Rj,i)
12 Kj,i := H(pkj , rj,i, e)
13 Kj,i := hpkj

(e) // G3-G9

14 Kj,i
$← K // G9

15 e[j, i] := e, K[j, i] := Kj,i

16 pk[j] := pkj

17 b′ ← ADecmu,|H〉,|H′〉,|G〉(par, pk, e, K)
18 return b′

Oracle H′(pk, k, e)
19 return h′(pk, k, e)

Oracle Decmu(j, e)
20 if e ∈ e[j, ·]
21 return ⊥
22 r′ := Dec(skj , e)
23 if r′ = ⊥ ∨ c 6= Enc(pkj , r′; G(pkj , r′))
24 K := H′(pkj , kj , e)
25 K := h′

pkj
(e) // G1-G2

26 else
27 K := H(pkj , r′, e)
28 K := hpkj

(e) // G3
29 K := hpkj

(e) // G4-G9
30 return K

Oracle G(pk, r)
31 if pk ∈ pk // G2-G4, G8-G9
32 return g′

pk(r) // G2-G4, G8-G9
33 return g(pk, r)

Oracle H(pk, r, e)
34 if pk ∈ pk // G3-G9
35 ∧e = Enc(pk, r; G(pk, r)) // G3-G9
36 return hpk(e) // G3-G9
37 return h(pk, r, e)

Figure 7: Games sequence G0-G9 in the proof of Theorem 4.4. Highlighted lines are only executed in
the corresponding games.

G2: The image set of G(pkj , ·) is restricted to be the set only containing “good” randomnesses of pkj .
Namely, for j ∈ [N], we define the set

R′bad(pkj , skj , r) := {R′ ∈ R′ | Dec(sk, Enc(pk, r; R′)) 6= r}

which denotes the “bad” randomness with respect to (pkj , skj) and r. And we similarly define the “good”
randomness set as R′good(pkj , skj , r) := R′\R′bad(pkj , skj , r). and let g′pkj

: M′ → R′ be a quantum-
accessible random oracle such that for any r ∈M′, g′pkj

(r) is sampled uniformly from R′good(pkj , skj , r).
We use Lemma 2.4 to bound the probability difference between G1 and G2. The proof method here

is similar to the one in [19, Theorem 2]. We define

δ(pkj , skj , r) := |R′bad(pkj , skj , r)|/|R′|,
δ(pkj , skj) := max

r∈M′
δ(pkj , skj , r),

and by these notations, if PKE is (1− δ)-correct, then δ = E[δ(pkj , skj)] where the expectation is taken
over (pk, sk)← KG.

Here we construct unbounded adversaries Bj for 1 ≤ j ≤ N that run in game GDPBδ,b (b = 0 or
b = 1). For any such j, Bj first generates (pki, ski, ki) for i ∈ [N] as in G1 and picks a random function
f (domain and range will be clear later), and then it sets λr := δ(pkj , skj , r) for all r ∈M′ and outputs
(λr)r∈M′ .

Then, Bj has quantum access to a function F (provided by GDPBδ,b). It sets up the oracle G(pk, ·)
such that

G′(pk, r) =


Samp(R′good(pk, sk, r); f(pk, r)) if pk ∈ {pk1, ..., pkj−1},
Samp(R′good(pkj , skj , r); f(pkj , r)), if pk = pkj ∧ F(r) = 0
Samp(R′bad(pkj , skj , r); f(pkj , r)), if pk = pkj ∧ F(r) = 1
g(pk, r), Otherwise

,

and uses such G′ to simulate G1 for A (namely, it replaces G(pkj , ·) by G′(pkj , ·), and other oracles like H
and Dec are the same as in G1) and outputs A’s final output. Here Samp is a sampling process and f is

15

used to generate randomness for Samp (so that it can sample elements from a set uniformly at random).
Since Bj is unbounded, it can construct such f and Samp.

If Bj is playing GDPBδ,0, then F(r) always outputs 0, and then G′(pkj , r) = g′pkj
(r) in G2. If Bj is

playing GDPBδ,1, then F(r) outputs 1 with probability δ(pkj , skj , r) and then G′(pkj , r) is distributed
identically with G(pkj , r) (and g(pkj , r)) in G1.

We further let Hybj for 0 ≤ j ≤ N be a hybrid game which is almost the same as G1 except that, for
users j +1 to N , we use g′pkj+1

, . . . , g′pkN
to simulate G(pkj+1, ·), . . . , G(pkN , ·), respectively. By definition,

Hyb0 = G2 and HybN = G1. By the construction of Bj , if Bj plays GDPBδ,1, then it simulates Hybj−1
for A. If Bj plays GDPBδ,0, then it simulates Hybj for A. We can use Bj for each j ∈ [N] described
above to bound the probabilities difference between Hybj−1 and Hybj . Namely, using Lemma 2.4, we
have

|Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
| ≤ |Pr[HybAN ⇒ 1]− Pr[HybA0 ⇒ 1]|

≤
N∑

j=1
|Pr[HybAj ⇒ 1]− Pr[HybAj−1 ⇒ 1]|

≤
N∑

j=1

∣∣∣Pr[GDPBBj

δ,0 ⇒ 1]− Pr[GDPBBj

δ,1 ⇒ 1]
∣∣∣

≤ N · (δ + 8(qH + qG + 2qDec + S)2δ)
= 8N(1 + (qH + qG + 2qDec + S)2)δ

by Lemma 2.4 and Bj issuing (qH + qG + 2qDec + S) queries to F. The additional δ appears in the next to
last equation is from the probability that a bad key pair with no good randomness [35, 28]. For simplicity,
we add the error bound δ here and exclude the event that KG outputs such bad key pair.

G3: In this game, we start to get rid of the secret key by using the “encrypt-then-hash” technique
[21, 34, 19]. When A queries H(pk, r, e) where pk = pkj for some j ∈ [N] and e = Enc(pkj , r; G(pkj , r)),
instead of returning h(pk, r, e), the game returns hpkj

(e) (see Items 34 to 36). For consistency, we
also change the generation of challenge KEM keys (in Item 13) and Decmu (in Item 28), since if e =
Enc(pkj , r; G(pkj , r)) then H(pkj , r, e) = hpkj

(e).
We claim that A’s views in G2 and G3 are the same. This is because, starting from G2, G(pkj , ·)

always uses “good” randomness, which implies that the map Enc(pkj , ·; G(pkj , ·)) is injective and thus
H(pkj , ·, Enc(pkj , ·; G(pkj , ·))) behaves as a random oracle. We have

Pr
[
GA2 ⇒ 1

]
= Pr

[
GA3 ⇒ 1

]
.

G4: We change Decmu such that, on query (j, e), it always returns hpkj
(e) regardless of the validity of

e (Item 29). We argue that this change does not affect A’s view: On query (j, e), if e is a valid ciphertext
with respect to pkj , then Decmu returns hpkj

(e) in both two games; If e is invalid (its decryption is ⊥ or
it cannot pass the re-encryption checking), then in G3, Dec returns h′pkj

(e), which is an independently
random key (h′pkj

is an internal RO). Moreover, if e is invalid, hpkj
(e) is also independently random by

the definition of H (A cannot learn hpkj
(e) from H when e is invalid). Therefore, when e is invalid with

respect to pkj , hpkj
(e) has the same distribution with h′pkj

(e), which means that the modification made
by G4 does not change A’s view. We have

Pr
[
GA3 ⇒ 1

]
= Pr

[
GA4 ⇒ 1

]
.

G5: We switch back to using g to simulate G instead of using (g′pk1
, ..., g′pkN

). Similar to the gamehop
from G1 to G2, we have∣∣Pr

[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣ ≤ 8N(1 + (qH + qG + 2qDec + S)2)δ.

Observe that in G5, we do not need to use skj to simulate Decmu(j, ·) (where j ∈ [N]). From G6 to
G8, we start to use the properties of parameter lossy encryption PKE to finish the proof.

16

Reduction B(par, pk1, ..., pkN)
01 for j ∈ [N]
02 kj ← {0, 1}s

03 for i ∈ [S]
04 rj,i

$←M′

05 Rj,i := G(pkj , rj,i)
06 e := Enc(pkj , rj,i; Rj,i)
07 K := hpkj

(e)
08 e[j, i] := e
09 K[j, i] := K
10 pk[j] := pkj

11 b′ ← ADecmu,|H〉,|H′〉,|G〉(par, pk, e, K)
12 return b′

Oracle Decmu(j, e)
13 if e ∈ e: return ⊥
14 return K := hpkj

(e)

Oracle G(pk, r)
15 return g(pk, r)

Oracle H(pk, r, e)
16 if pk ∈ pk ∧ e = Enc(pk, r; G(pk, r))
17 return hpk(e)
18 return h(pk, r, e)

Oracle H′(pk, k, e)
19 return h′(pk, k, e)

Figure 8: Adversary B in bounding G5 and G6.

G6: We switch the parameter and public keys of PKE to the lossy mode, namely, the parameter par
in G6 is generated by LSetup (Item 02) and the public keys in G6 are generated by LKG (Items 05 to 06).

We construct a reduction B against the parameter-key indistinguishability of PKE in Figure 8. B’s
input (par, pk1, ..., pkN) is from Setup and KG, then B perfectly simulates G5 for A. If (par, pk1, ..., pkN)
is from LSetup and LKG, then B perfectly simulates G6 for A. Moreover, B outputs A’s final output. So,
we have ∣∣Pr

[
GA5 ⇒ 1

]
− Pr

[
GA6 ⇒ 1

]∣∣ ≤ Advind-par-key
PKE (B).

G7: The randomness Rj,i of challenge ciphertext e[j, i] is generated by independently uniform sam-
pling from R′ instead of by using G (see Item 10).

In G6, we always have Rj,i = G(pkj , rj,i) for all (j, i) ∈ [N]× [S], while in G7, Rj,i’s are independent
of G. Despite these rj,i’s and Rj,i’s, oracle G behaves the same in G6 and G7. Let O0 be the oracle G
in G6 and let O1 be the oracle G in G7, then we have O0\S = O1\S, where S is defined as follows:

S := {(pk1, r1,1), (pk1, r1,2), ..., (pkj , rj,i), ..., (pkN , rN,S)}, and |S| = NS

We use Lemma 2.1 to bound the difference between G6 with G7. By this lemma, there is an
algorithm EXT captures the probability that A “learns” rj,i ∈ S. However, this probability cannot be
directly bounded since ej,i is still related to rj,i. To deal with it, we use delayed analysis. Looking ahead,
we will firstly switch all challenge ciphertexts to other challenge ciphertexts that are independent of rj,i’s
(by using the lossiness of PKE) so that rj,i’s are independently and uniformly random in A’s view, so
we can bound the winning probability of EXT and thus can bound |Pr

[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]
|. For

readability, we continue the proof of Theorem 4.4 and leave these arguments as a lemma which will be
proved later.

Lemma 4.5 With notations and assumptions from G6 and G7 in the proof of Theorem 4.4, we have

|Pr
[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]
| ≤ 2(qG + qH + NS)

√
NS · ϵlo

PKE + NS/|M′|.

G8: We switch the parameter and public keys of PKE to the normal mode (namely, parameter and
public keys are generated by Setup and KG). Moreover, we restrict the image of G(pkj , ·) to be the set
only containing “good” randomnesses of pkj (as we did in G2). Similar to the game hops from G5 to
G6 and from G1 to G2, there exists an adversary B such that

|Pr
[
GA7 ⇒ 1

]
− Pr

[
GA8 ⇒ 1

]
|

≤ Advind-par-key
PKE (B) + 8N(1 + (qH + qG + 2qDec + S)2)δ.

G9: We change the generation of challenge KEM keys Kj,i’s. In this game, we generate Kj,i
$← K

instead of Kj,i := hpkj
(ej,i) where ej,i = e[j, i]. Since hpkj

’s are internal QROs, A cannot trivially detect
this modification.

17

We claim that this modification does not change A’s view except with negligible probability. Here
we firstly analyze the information about hpkj

(ej,i) for (j, i) ∈ [N]× [S] that A can learn from its oracle
queries.

• Oracles G and H′: These two oracles do not reveal any information about hpkj
(ej,i) since they are

independent to each other in both G7 and G8.

• Oracle Dec: If A queries Decmu(j, ej,i) for (j, i) ∈ [N] × [S], then by the definitions of Decmu
in G7 and G8, the oracle always returns ⊥; Otherwise, Decmu returns a key that is independent
to hpkj

(ej,1), ..., hpkj
(ej,S) (since hpkj

is a QRO). So, Dec does not reveal any information about
hpkj

(ej,i).

• Oracle H: A learns hpkj
(ej,i) if it queries H(pkj , r, ej,i) such that ej,i = Enc(pkj , r; R) where

R = G(pkj , r). Since in G8, we already restricted G(pkj , ·) to always output good randomess,
Enc(pkj , ·; G(pkj , ·)) is injective and ej,i = Enc(pkj , r; R) means that (r, R) = (rj,i, Rj,i). Since
G(pkj , ·) is random oracle and Rj,i is sampled at uniformly random from R′, we have

Pr
[
Rj,i = G(pkj , rj,i)

]
= 1/|R′|.

Since there are NS randomnesses, by a union bound, we have

|Pr
[
GA8 ⇒ 1

]
− Pr

[
GA9 ⇒ 1

]
| ≤ NS/|R′|.

In G9, the KEM keys Kj,i’s are generated at independently and uniformly random. We can undo
the modifications made in G8, . . . , G1 to achieve the game MUC-IND-CCAAKEM,1. We have

|Pr[GA9 ⇒ 1]− Pr[MUC-IND-CCAAKEM,1 ⇒ 1]|

≤ 24N(1 + (qH + qG + 2qDec + S)2)δ + 2NqH′ · 2−s/2

+ 2(qG + qH + NS)
√

NS · ϵlo
PKE + NS/|M′|+ 2Advind-par-key

PKE (B).

Combining all the probability differences in the games sequence, we have

|Pr[MUC-IND-CCAAKEM,0 ⇒ 1]− Pr[MUC-IND-CCAAKEM,1 ⇒ 1]|

≤ 4Advind-par-key
PKE (B) + 48N(1 + (qH + qG + 2qDec + S)2)δ

+ NS + N2S2

|R′|
+ N2S2(1

|M′|
+ 1
|K|

+ 1
2s

+ ηPKE)

+ 4(qG + qH + NS)
√

NS · ϵlo
PKE + NS/|M′|+ 4NqH′ · 2−s/2,

as stated in Theorem 4.4.

Proof of Lemma 4.5. In the gamehop from G6 to G7 in the proof of Theorem 4.4 in Section 4.2, we
argued that if A plays G6 then A is interacting with the oracle O0, and if A plays G7 then A is
interacting with oracle O1, where O0 is the oracle G in G6, O1 is the oracle G in G7, O0\S = O1\S, and
S is defined as follows:

S := {(pk1, r1,1), (pk1, r1,2), ..., (pkj , rj,i), ..., (pkN , rN,S)}.

We can view O0 and O1 as follows:

O0(pk, r) =


Rj,i, if ∃(j, i) ∈ [N]× [S]

s.t. (pk, r) = (pkj,i, rj,i)
g(pk, r), Otherwise

, O1(pk, r) = g(pk, r).

Therefore, we can also view the game environment of G6 is the same as the one of G7, except that
the oracles G in these two games are different. That is, we can view Rj,i’s in G6 are also generated by
independently and uniformly sampling, but then G is set up such that G(pkj , rj,i) := Rj,i. While in G7,

18

Game G′
7 and G′′

7

01 lpar← LSetup(λ), par := lpar
02 for j ∈ [N]
03 (lpkj , lskj)← LKG(par)
04 (pkj , skj) := (lpkj , lskj)
05 for i ∈ [S]
06 rj,i

$←M′, Rj,i
$←R′

07 e := Enc(pkj , rj,i; Rj,i)
08 r′

j,i
$←M′, R′

j,i
$←R′ // G′′

7
09 e := Enc(pkj , r′

j,i; R′
j,i) // G′′

7
10 e[j, i] := e, K[j, i] := hpkj

(e)
11 pk[j] := pkj

12 (pk, r)← EXTA,|G〉,Decmu,|H〉,|H′〉(par, pk, e, K)
13 return (pk, r)

Oracle H′(pk, k, e)
14 return h′(pk, k, e)

Oracle Decmu(j, e)
15 if e ∈ e[j, ·]
16 return ⊥
17 K := hpkj

(e)
18 return K

Oracle G(pk, r)
19 return g(pk, r)

Oracle H(pk, r, e)
20 if pk ∈ pk
21 ∧e = Enc(pk, r; G(pk, r))
22 return hpk(e)
23 return h(pk, r, e)

Figure 9: Games G′7 and G′′7 in the proof of Lemma 4.5. Highlighted lines are only executed in the
corresponding games.

we do not change G. So, GA6 is equivalent to A plays G7 but the oracle G it interacts with is O0. And
thus we have

|Pr
[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]
|

= |Pr
[
1← AO0 : G7

]
− Pr

[
1← AO1 : G7

]
|.

Here we ignore other oracles that A can access, since such oracles, Dec, H′, and H, are either independent
of G or can be simulated by querying G.

In G7, A issues at most (qG + qH) queries to G. By using Lemma 2.1, there exists EXT such that

|Pr
[
1← AO0 : G7

]
− Pr

[
1← AO1 : G7

]
|

≤ 2(qG + qH)
√

Pr[(pk, r) ∈ S : (pk, r)← EXT in G′7]

where G′7 is defined in Figure 9 and (pk, r) ∈ S means that there exists (j, i) ∈ [N] × [S] such that
(pk, r) = (pkj,i, rj,i) (i.e., EXT finds out one of rj,i’s in G′7). G′7 has identical structure with G7, and
the only difference is that G′7 is defined for EXT, since by definitions in Lemma 2.1, EXT plays the same
game with A and it randomly measures A’s QRO queries and outputs the measurement outcome.

Here we bound Pr[(pk, r) ∈ S : (pk, r) ← EXT in G′7]. We use an auxiliary game G′′7 , which is
almost the same as G′7 except that the challenge ciphertexts ej,i’s are generated using r′j,i’s and R′j,i’s,
respectively, which are independent of rj,i. By the lossiness of PKE and a simple hybrid argument, we
have

|Pr[(pk, r) ∈ S : (pk, r)← EXT in G′7]
−Pr[(pk, r) ∈ S : (pk, r)← EXT in G′′7]| ≤ NS · ϵlo

PKE.

In G′′7 , rj,i’s are independent of the view of A (and thus independent of EXT), so we have

Pr[(pk, r) ∈ S : (pk, r)← EXT in G′′7] ≤ NS

|M′|
.

Therefore, we have

|Pr
[
GA6 ⇒ 1

]
− Pr

[
GA7 ⇒ 1

]
| ≤ 2(qG + qH)

√
NS · ϵlo

PKE + NS/|M′|,

as stated in Lemma 4.5.

19

User Ui : (pk′
i, sk′

i) User Uj : (pk′
j , sk′

j)

(Mi, st)← Init(sk′
i, pk′

j) Mi

(Mj , SKj)← DerR(sk′
j , pk′

i, Mi)Mj

SKi ← DerI(sk′
i, pk′

j , Mj , st)

st

Figure 10: Illustration for a two-pass AKE protocol execution between user Ui and Uj .

5 Security Model for AKE
A two-message AKE protocol AKE consists of five algorithms Setup′, KG′, Init, DerR, and DerI. The setup
algorithm Setup′, on input security parameter 1λ, outputs global AKE system parameters par′. For sake
of simplicity, we ignore the input λ and just write par′ ← Setup′. KG′ takes the system parameters par′
as input and outputs a key pair (pk′, sk′). A user in an AKE protocol runs KG′ to generate a long-term
key pair for itself.

Algorithms Init, DerR, and DerI are used to establish AKE sessions between users. Let Ui and Uj be
two users with long-term key pairs (pk′i, sk′i) and (pk′j , sk′j), respectively. Figure 10 shows how Ui, (as
initiator) shares an AKE session key with Uj (as responder). To initialize the session with Uj , Ui runs
the session initialization algorithm Init, which takes sk′i, pk′j as inputs and outputs a protocol message
Mi and session state st, and then Ui sends Mi to Uj and keeps st locally. On receiving Mi, Uj runs the
responders derivation algorithm DerR, which takes sk′j , pk′i, and the received message Mi as inputs, to
generate a response Mj and a session key SKj . Uj sends Mj to Ui. Finally, on receiving Mj , Ui runs the
initiators derivation algorithm DerI which inputs sk′i, pk′j , the received message Mj , and the local session
state st generated before, to generate a session key SKi. In two-message AKE protocols, the responder
does not need to save session state since it can compute the session key right after receiving the initiator’s
message.
AKE Security Model. Following [20], we define a game-based AKE security model using pseudocode.
This model is a weaker version of the weak-forward-secrecy model in [20] that it does not consider the
state-reveal attack and considers only one Test query. Our motivation of considering such a model is to
focus on the standard security for AKE, such as security against key-compromise-impersonation (KCI)
attacks and weak forward secrecy. With state reveals, our security loss has an additional linear factor on
the number of sessions, but no square-root loss, which still improves the bound of Hövelmanns et al. [19].
We stress that even in this weaker model the analysis of KEM-based AKE in the QROM of Hövelmanns
et al. still has a square-root-loss. For more details, please refer to Remark 6.3.

In this AKE model, we consider N users U1, ..., UN in the security game wFS-KCIAKE,b shown in
Figure 11, where each user Ui(i ∈ [N]) has a honestly generated long-term key pair (pk′i, sk′i). Each user
may have multiple sessions at the same time. In this model, each session between two users has a unique
session identification number sID, and it also has the following variables defined relative to sID:

• Init[sID] ∈ [N] denotes the initiator of the session.
• Resp[sID] ∈ [N] denotes the responder of the session.
• Type[sID] ∈ {“In”, “Re”} denotes the session is owned by the initiator or by the responder.
• Used[sID] denotes whether the session sID was used if Type[sID] = “In”.
• I[sID] denotes the messages that was computed by the initiator.
• R[sID] denotes the messages that was computed by the responder.
• SK[sID] denotes the session key of the session.
In the security games wFS-KCIAKE,b of this model, A is given access to oracles SessionI,SessionR,

and DerI. These oracles are used to capture the adversary’s ability to control the channel, in the security
game as described in Figure 11, adversary A is given access to oracles SessionI,SessionR, and DerI.
SessionI creates a session owned by the initiator, and SessionR creates a session owned by the responder,
which are different sessions. More precisely, A queries SessionI(i, j) to activate a session between Ui (as
initiator) with Uj (as responder) and gets (sID, Mi), where sID is the session ID of this session and Mi is
Ui’s initiator protocol message (generated from Init). The query SessionR(i, j, M) captures the process
that A sends M to Uj , activates a session between Ui (as initiator) with Uj (as responder), and gets the
session ID sID and the responded protocol message Mj of this session. To complete a session sID owned

20

Game wFS-KCIAKE,b

01 cnt := 0,Ltest := ∅
02 par′ ← Setup′(1λ)
03 for i ∈ [N] : (pk′i, sk′i)← KG′(par′)
04 O1 := (SessionI,DerI,SessionR)
05 O2 := (Cor,Rev,Test)
06 b′ ← AO1,O2(par, (pki)i∈[N])
07 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0:
08 return 0
09 return b′

Oracle Test(sID) // Only one query
10 sID∗ := sID
11 SK0 := SK[sID], SK1

$← SK
12 return SKb

Oracle Rev(sID)
13 revSK[sID] := 1
14 return SK[sID]

Oracle Cor(i)
15 Cor[i] := 1
16 return sk′i

Oracle SessionI((i, j) ∈ [N]2)
17 cnt := cnt + 1, sID := cnt
18 (Init[sID], Resp[sID]) := (i, j)
19 Type[sID] := “In”
20 (Mi, st) := Init(ski, pkj , par′)
21 (I[sID], St[sID]) := (Mi, st)
22 return (sID, Mi)

Oracle DerI(sID, M)
23 if Used[sID] = 1 ∨ St[sID] = ⊥
24 ∨SK[sID] 6= ⊥ : return ⊥
25 Used[sID] := 1, st := St[sID]
26 (i, j) := (Init[sID], Resp[sID])
27 SK := DerI(sk′i, pk′j , M, st)
28 (R[sID], SK[sID]) := (M, SK)
29 return 1

Oracle SessionR((i, j) ∈ [N]2, M)
30 cnt := cnt + 1, sID := cnt
31 (Init[sID], Resp[sID]) := (i, j)
32 Type[sID] := “Re”
33 (Mj , SK) := DerR(sk′j , pk′i, M)
34 (I[sID], R[sID]) := (M, Mj)
35 SK[sID] := SK
36 return (sID, Mj)

Figure 11: The games wFS-KCIAKE,b (b ∈ {0, 1}) for AKE = (Setup′, KG′, Init, DerR, DerI).

by an initiator, A queries DerI(sID, M), which capturs the process that A sends the response M to the
initiator of the session. Moreover, DerI and SessionR may output ⊥ to indicate that the session does
not generate a session key.

In wFS-KCIAKE,b, A can forward messages between sessions honestly, or modify messages to launch
some attacks (e.g., man-in-the-middle attack or replaying attack). For two sessions sID and sID′, We
define two relationships:

Definition 5.1 ((Partially) Matching Session). We say sessions sID and sID′ match if the same users
are involved (i.e., (Init[sID], Resp[sID]) = (Init[sID′], Resp[sID′])), the messages sent and received are
the same ((I[sID], R[sID]) = (I[sID′], R[sID′])), and they are of different types Type[sID] 6= Type[sID′].

We say sID is partially matching to sID′ if Type[sID] = “In”, Type[sID′] = “Re”, and the initial
messages are the same (I[sID] = I[sID′]).

Sessions sID and sID′ match means that A honestly delivers the protocol message between sID with
sID′ without any modification. If Type[sID] = “In”, sID partially matches sID′ means that A honestly
sends the protocol message generated from sID to sID′. sID does not have matching session means that
A may tamper with the session.

Furthermore, A has access to oracles Cor and Rev to reveal secret information. By querying Cor(i),
A can get the long-term secret key of user Ui, and by querying Rev(sID), A can obtain the session key
of session sID. The following variables are used to keep track of which queries the adversary made and
which secret information is revealed. If the variable equals 1, then it means the corresponding secret
information is revealed.

• Cor[i] denotes whether the long-term secret key of user Ui was revealed.

• revSK[sID] denotes whether the session key of session sID was revealed.

Finally, A is given access to oracle Test which will return either the session key of the given session
or a uniformly random key independent of the given session. A can only issue once query to Test. A

21

A gets (Initiator, Responder), attack type Co
r[

i∗
]

Co
r[

j∗
]

Ty
pe

[sI
D
∗]

|M
(s

ID
∗)
|

|P
(s

ID
∗)
|

(1) (long-term, long-term), wFS - - - 1 -
(2) (long-term, long-term), wFS - - “Re” 0 1
(3) (long-term, -), KCI - F “In” 0 0
(4) (-, long-term), KCI F - “Re” 0 0

Table 1: List of valid attack types against two-message AKE protocols in the wFS-KCIAKE,b game (in
Figure 11). (i∗, j∗) = (Init[sID∗], Resp[sID∗]). An attack is regarded as an AND conjunction of variables
with specified values as shown in the each line, where F means “false”, “-” means that the variable can
take arbitrary value (can be viewed as “true”), and “n/a” means that there is no (partially) matching
session exists. The sets M(sID∗) and P(sID∗) are defined in Valid procedure in Figure 12. Here “0” and
“1” are numbers instead of boolean values.

session sID that has been queried to Test is called as a test session, and we denote the test session as
sID∗. A wins if it can distinguish the keys output by Test are either the actual session keys of the test
session or independent random keys, i.e., distinguish whether it plays wFS-KCIAKE,0 or wFS-KCIAKE,1.

Alg Fresh(sID∗)
01 (i∗, j∗) := (Init[sID∗], Resp[sID∗])
02 M(sID∗) := {sID| (Init[sID], Resp[sID]) = (i∗, j∗)

∧ (I[sID], R[sID]) = (I[sID∗], R[sID∗])
∧ Type[sID] 6= Type[sID∗]} // Matching session(s) of sID∗

03 if revSK[sID∗] ∨ (∃sID ∈M[sID∗] : revSK[sID] = 1): return 0
// A trivially learned the test session’s key

04 if ∃sID ∈M(sID∗) s.t. sID ∈ Ltest: return 0 // A also tested a matching session

05 return 1

Alg Valid(sID∗)

06 (i∗, j∗) := (Init[sID∗], Resp[sID∗])
07 M(sID∗) := {sID| (Init[sID], Resp[sID]) = (i∗, j∗)

∧ (I[sID], R[sID]) = (I[sID∗], R[sID∗])
∧ Type[sID] 6= Type[sID∗]} // Matching session(s) of sID∗

08 P(sID∗) := {sID| I[sID] = I[sID∗]
∧ Type[sID] 6= Type[sID∗]
∧ Type[sID] = “In”} // Partially matching session(s) of sID∗

09 if |P(sID∗)| > 1 ∨ |M(sID∗)| > 1: return 1
10 if the attack type of sID∗ ∈ Table 1: return 1
11 else return 0

Figure 12: Algorithms to check the validity and freshness of the test session sID∗. Item 09 forces a secure
AKE protocol not to have more than one (partially) matching sessions.

To avoid trivial attack, we define freshness and validity. In Figure 12, we define two processes to
determine if a given session ID sID∗ is fresh and valid. Roughly speaking, sID∗ is fresh if its session key
is not revealed and its matching sessions are not revealed and not been tested, and sID∗ is valid if it is
fresh and the attack A performed on sID∗ is defined in this AKE model. We capture all valid attacks in
Table 1.

Definition 5.2 (Freshness and Validity). Let sID∗ be a session. (1) sID∗ is fresh if Fresh(sID∗) outputs
1. (2) sID∗ is valid if Valid(sID∗) outputs 1. Fresh and Valid are given in Figure 12.

In Table 1, all attacks are defined using the boolean variables that indicates which queries the ad-
versary made. This table is obtained from considering all possible attacks and excluding all trivial or

22

redundant attacks and state attacks in the full attack table in [20]. Informally, the attacks defined in
Table 1 capture weak forward secrecy (wFS), and key compromise impersonation (KCI). The man-in-
the-middle attack and replaying attack are captured Moreover, if A is able to create more than one
(partially) matching session to a test session, then it is considered to be insecure in this model.

In this model, we require that the test session is fresh and valid. The adversary wins if it distinguishes
the session keys from uniformly random keys which it obtains through queries to the Test oracle.

Definition 5.3 (Key Indistinguishability of AKE). Let AKE := (Setup′, KG′, Init, DerR, DerI) be an AKE
protocol and consider the games wFS-KCIAKE,b for b ∈ {0, 1} defined in Figure 11. We say AKE is wFS-KCI
secure, if for all adversaries A, the following advantage is negligible:

AdvwFS-KCI
AKE (A) :=

∣∣∣Pr
[
wFS-KCIAAKE,0(λ)⇒ 1

]
− Pr

[
wFS-KCIAAKE,1(λ)⇒ 1

]∣∣∣
6 Session-tight AKE protocol
Let KEM1 and KEM2 be two KEM schemes with KEM key spaces K1 and K2, respectively. We construct
our two-message AKE protocol AKE = (Setup′, KG′, Init, DerR, DerI) as shown in Figure 13, where SK is
the session key space of AKE and H : {0, 1}∗ → SK is a hash function which is used to derive the session
key.

Alg Setup′(λ)
01 par← Setup1(λ)
02 p̃ar← Setup2(λ)
03 return par′ := (par, p̃ar)

Alg KG′(par, p̃ar)
04 (pk, sk)← KGen1(par)
05 return (pk, sk)

Alg DerR(skj , pki, (p̃k, ctj))
06 Kj := Decaps1(skj , ctj)
07 (c̃t, K̃)← Encaps2(p̃k)
08 (cti, Ki)← Encaps1(pki)
09 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
10 SK := H(ctxt, Ki, Kj , K̃)
11 return ((c̃t, cti), SK)

Alg Init(ski, pkj , (par, p̃ar))

12 (p̃k, s̃k)← KGen2(p̃ar)
13 (ctj , Kj)← Encaps1(pkj)
14 st := (p̃k, s̃k, ctj , Kj)
15 return ((p̃k, ctj), st)

Alg DerI(ski, pkj , (c̃t, cti), st)

16 let (p̃k, s̃k, ctj , Kj) := st
17 K̃ := Decaps2(s̃k, c̃t)
18 Ki := Decaps1(ski, cti)
19 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
20 SK := H(ctxt, Ki, Kj , K̃)
21 return SK

Figure 13: Our AKE protocol AKE which is based on KEM schemes KEM1 = (Setup1, KGen1, Encaps1,
Decaps1) and KEM2 = (Setup2, KGen2, Encaps2, Decaps2).

Theorem 6.1 Let N be the number of users and S be the number of total sessions in game wFS-KCI. If
KEM1 is a MC-IND-CCA secure KEM and KEM2 is a MUC-IND-CCA secure KEM and H is modeled
as a quantum random oracle, then for any quantum adversary A against AKE, there exists quantum
adversaries B1 and B2 such that the running time of B1 and B2 about that of A and

AdvwFS-KCI
AKE (A) ≤ NηKEM1 + 4qH

√
SN√
|K1|

+ 4qH
√

S√
|K2|

+ 4 · AdvMUC-IND-CCA
KEM2

(B2) + 4N · AdvMC-IND-CCA
KEM1

(B1),

where qH is the number of queries to H and ηKEM1 is the pulibc key collision probability of KEM1.

Combining the results from this section with the results from Sections 3.2, 3.3, 4.1 and 4.2, we obtain
the following corollary

23

Corollary 6.2 There is an AKE scheme AKE, such that for any quantum adversary A against AKE,
there is an algorithm B such that the running time of B is about that of A and

AdvwFS-KCI
AKE (A) ≤ 16k · Adv

LWEt,m,q,D
Z,s′′ (B)

+ 16Nℓ · Adv
LWEk′,m,q,DZ,s (B) + negl(λ),

where k = Θ(λ), k′ = Θ(λ), ℓ = Θ(λ), t = Θ(λ), m = o(λ2) and s, s′′ > denote appropriate parameters
and negl(λ) denotes a negligible statistical term.

Remark 6.3 (Session State Reveal). Our AKE model does not allow an adversary to reveal session states
as in [19]. Considering SessionStateReveal, our security bound is no longer session-tight, since we cannot
simulate the session states in a session-tight manner, given only MC-CCA or MUC-CCA security. In
order to embed challenges, the security reduction has to guess which session will be tested by adversaries
in advance. Hence, the bound will be

εAKE ≤ Θ(NS) ·Θ(λ) · εLWE,

which does not contain square-root loss. It still improves the bound of Hövelmanns et al. [19] which has
square-root loss on εLWE (cf. Equation (1)).

Proof of Theorem 6.1. First, we assume that all users in the AKE game have different key pairs and
all the messages output by the oracles are different. This will add ηKEM1 to the final bound. Since
KEM1 and KEM2 are multi-challenge IND-CCA and multi-user-challenge IND-CCA secure, respectively,
the probability that two differenct executions of Encaps1, KGen2, or Encaps2 have the same output is
negligible (and such probability is already considered in their multi-user-challenge or multi-challenge
definitions). So, assuming different executions of SessionI and SessionR will output different protocol
messages will not influence our final bound. Moreover, by this assumption, it is impossible for a session
to have more than one matching or partially matching session.

To bound AdvwFS-KCI
AKE (A), we split up the event that the adversary wins into four cases. Let Gx,b

be a game that is the same as wFS-KCIAAKE,b(λ) except that the test session sID∗ is of type (x) (for
x ∈ {1, 2, 3, 4}, (see Table 1). That is,

Pr [Gx,b ⇒ 1] = Pr
[
wFS-KCIAAKE,b(λ)⇒ 1 ∧ sID∗ is of type (x)

]
,

and thus we have

AdvwFS-KCI
AKE (A) =

∣∣∣Pr
[
wFS-KCIAAKE,0(λ)⇒ 1

]
− Pr

[
wFS-KCIAAKE,1(λ)⇒ 1

]∣∣∣
≤

4∑
x=1
|Pr [Gx,0 ⇒ 1]− Pr [Gx,1 ⇒ 1]| .

Now, we can construct a security reduction according to the type of sID∗. Lemmata 6.4 and 6.5
bound |Pr [Gx,0 ⇒ 1]− Pr [Gx,1 ⇒ 1]| for x ∈ {1, 2, 3, 4}. These lemmas will be proved later.

Lemma 6.4 With notations and assumptions in the proof of Theorem 6.1, there exists an adversary B2
such that its running time is about if A and

|Pr
[
GA1,0 ⇒ 1

]
− Pr

[
GA1,1 ⇒ 1

]
| ≤ 2AdvMUC-IND-CCA

KEM2
(B2) + 2qH

√
S√

|K2|
,

|Pr
[
GA2,0 ⇒ 1

]
− Pr

[
GA2,1 ⇒ 1

]
| ≤ 2AdvMUC-IND-CCA

KEM2
(B2) + 2qH

√
S√

|K2|
.

Lemma 6.5 With notations and assumptions in the proof of Theorem 6.1, there exists an adversary B1
such that its running time is about if A and

Pr
[
GA3,0 ⇒ 1

]
− Pr

[
GA3,1 ⇒ 1

]
| ≤ 2NAdvMC-IND-CCA

KEM1
(B1) + 2qHN

√
S√

|K1|
,

Pr
[
GA4,0 ⇒ 1

]
− Pr

[
GA4,1 ⇒ 1

]
| ≤ 2NAdvMC-IND-CCA

KEM1
(B1) + 2qHN

√
S√

|K1|
.

24

Combining these lemmas, we have

AdvwFS-KCI
AKE (A) =

∣∣∣Pr
[
wFS-KCIAAKE,0 ⇒ 1

]
− Pr

[
wFS-KCIAAKE,1 ⇒ 1

]∣∣∣
≤ NηKEM1 + 4qHN

√
S√

|K1|
+ 4qH

√
S√

|K2|
+ 4AdvMUC-IND-CCA

KEM2
(B2) + 4N · AdvMC-IND-CCA

KEM1
(B1)

as stated in Theorem 6.1.

Proof of Lemma 6.4. We bound type (1), i.e. |Pr
[
GA1,0 ⇒ 1

]
− Pr

[
GA1,1 ⇒ 1

]
|. The proof for type (2),

i.e. |Pr
[
GA2,0 ⇒ 1

]
− Pr

[
GA2,1 ⇒ 1

]
|, is identical as the one of type (1). To prove the bound, we give a

game sequence G1-0,b, G1-1,b, and G1-2,b in Figure 14. Game G1-0,b is the same as G1,b, and we have

Pr
[
GA1,b ⇒ 1

]
= Pr

[
GA1-0,b ⇒ 1

]
for both b ∈ {0, 1}.

Game G1-0,b-G1-2,b (b ∈ {0, 1})

01 L2 := ∅
02 cnt := 0, sID∗ := ∅
03 par← Setup1(λ)
04 p̃ar← Setup2(λ)
05 par′ := (par, p̃ar)
06 for t ∈ [N] :
07 (pkt, skt)← KGen1(par)
08 O1 := (SessionI,DerI,SessionR)
09 O2 := (Cor,Rev,Test)
10 b′ ← AO1,O2,|H〉(par′, (pkt)t∈[N])
11 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0
12 ∧ sID∗ is not type (1).
13 return 0
14 return b′

Oracle DerI(sID, M)
15 if Used[sID] = 1 ∨ St[sID] = ⊥
16 ∨SK[sID] 6= ⊥ : return ⊥
17 Used[sID] := 1, st := St[sID]
18 (i, j) := (Init[sID], Resp[sID])
19 let (c̃t, cti) := M
20 let (p̃k, s̃k, ctj , Kj) := st
21 K̃ := Decaps2(s̃k, c̃t)
22 if ∃K s.t. (p̃k, c̃t, K) ∈ L2 // G1-1,b-G1-2,b

23 K̃ := K // G1-1,b-G1-2,b

24 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
25 SK := H(ctxt, Ki, Kj , K̃)
26 (R[sID], SK[sID]) := (M, SK)
27 return 1

Oracle SessionI((i, j) ∈ [N]2)
28 cnt := cnt + 1, sID := cnt
29 (Init[sID], Resp[sID]) := (i, j)
30 Type[sID] := “In”
31 (p̃k, s̃k)← KGen2(p̃ar)
32 L2 := L2 ∪ {(p̃k,⊥,⊥)} // G1-1,b-G1-2,b

33 (ctj , Kj)← Encaps1(pkj)
34 (p̃k, s̃k)← KGen2(p̃ar)
35 st := (p̃k, s̃k, ctj , Kj), Mi := (p̃k, ctj)
36 (I[sID], St[sID]) := (Mi, st)
37 return (sID, Mi)

Oracle SessionR((i, j) ∈ [N]2, M)
38 cnt := cnt + 1, sID := cnt
39 (Init[sID], Resp[sID]) := (i, j)
40 Type[sID] := “Re”
41 let (p̃k, ctj) := M
42 (c̃t, K̃)← Encaps2(p̃k)
43 if (p̃k,⊥,⊥) ∈ L2 // G1-1,b-G1-2,b

44 K̃j ← K2 // G1-2,b

45 L2 := L2 ∪ {(p̃k, c̃t, K̃)} // G1-1,b-G1-2,b

46 Kj := Decaps1(skj , ctj)
47 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
48 SK := H(ctxt, Ki, Kj , K̃)
49 SK[sID] := SK, Mj := (c̃t, cti)
50 (I[sID], R[sID]) := (M, Mj)
51 return (sID, Mj)

Figure 14: Games in proving Lemma 6.4. Oracles in O2 are the same as in wFS-KCIAKE,b. The QRO H
is simulated in the same way as in the proof of Theorem 4.4.

G1-1,b: The game first initializes a list L2 that will be used to store triples (p̃k, c̃t, K̃) of KEM2
generated in SessionI and SessionR. Specifically, it maintains L2 as follows:

• In SessionI(i, j), the game simulator records (p̃k,⊥,⊥) in L2.

• In SessionR(i, j, (p̃k, ctj)), the game simulator records the tuple (p̃k, c̃t, K̃) in L2 if p̃k is generated
from SessionI (i.e., generated by the game simulator).

25

• In DerI(sID, (c̃t, cti)), the game simulator gets the decryption of c̃t from L2 (without decrypting)
if its corresponding KEM key is recorded in the list.

This modification does not change A’s view. If p̃k is generated from SessionI and c̃t is generated
from SessionR, then the game simulator knows the corresponding KEM key of c̃t. L2 is used to record
such KEM keys. Therefore, these modifications are conceptual, we have

Pr
[
GA1-0,b ⇒ 1

]
= Pr

[
GA1-1,b ⇒ 1

]
for both b ∈ {0, 1}.

G1-2,b: We switch the KEM keys generated by KEM2 to be independently and uniformly random.
Namely, in SessionR(i, j, (p̃k, cti)), if p̃k is generated from SessionI (i.e., (p̃k,⊥,⊥) ∈ L2), we sample
K̃ uniformly at random. Intuitively, this change will not influence the consistency of the computation of
session keys, since in G1,b, all KEM keys of KEM2 generated by the game can found in the L2, and the
adversary cannot get the corresponding s̃k.

Reduction BDecmu
2 (p̃ar, pk, c, K)

01 L1 := ∅
02 cnt := 0, sID∗ := ⊥
03 par← Setup1(λ), par′ := (par, p̃ar)
04 for t ∈ [N] :
05 (pkt, skt)← KGen1(par)
06 O1 := (SessionI,DerI,SessionR)
07 O2 := (Cor,Rev,Test)
08 b′ ← AO1,O2,|H〉(par′, (pkt)t∈[N])
09 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0
10 return 0
11 return b′

Oracle DerI(sID, M)
12 if Used[sID] = 1 ∨ St[sID] = ⊥
13 ∨SK[sID] 6= ⊥ : return ⊥
14 Used[sID] := 1, st := St[sID]
15 (i, j) := (Init[sID], Resp[sID])
16 let (c̃t, cti) := M
17 let (p̃k,⊥, ctj , Kj) := st
18 if ∃K s.t. (p̃k, c̃t, K) ∈ L2

19 K̃ := K

20 else K̃ := Decmu(sID, c̃t)
21 Ki := Decaps1(ski, cti)
22 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
23 SK := H(ctxt, Ki, Kj , K̃)
24 (R[sID], SK[sID]) := (M, SK)
25 return 1

Oracle SessionI((i, j) ∈ [N]2)
26 cnt := cnt + 1, sID := cnt
27 (Init[sID], Resp[sID]) := (i, j)
28 Type[sID] := “In”

29 p̃k := pk[sID]
30 L2 := L2 ∪ {(p̃k,⊥,⊥)}
31 (ctj , Kj)← Encaps1(pkj)
32 st := (p̃k, s̃k, ctj , Kj), Mi := (p̃k, ctj)
33 (I[sID], St[sID]) := (Mi, st)
34 return (sID, Mi)

Oracle SessionR((i, j) ∈ [N]2, M)
35 cnt := cnt + 1, sID := cnt
36 (Init[sID], Resp[sID]) := (i, j)
37 Type[sID] := “Re”
38 let (p̃k, ctj) := M
39 (c̃t, K̃)← Encaps2(p̃k)
40 if (p̃k,⊥,⊥) ∈ L2

41 Let t ∈ [S] s.t. p̃k = pk[t]
42 (c̃t, K̃) := (c[t, sID], K[t, sID])
43 L2 := L2 ∪ {(p̃k, c̃t, K̃)}
44 Kj := Decaps1(skj , ctj)
45 (cti, Ki)← Encaps1(pki)
46 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
47 SK := H(ctxt, Ki, Kj , K̃)
48 SK[sID] := SK, Mj := (c̃t, cti)
49 (I[sID], R[sID]) := (M, Mj)
50 return (sID, Mj)

Figure 15: The reduction in the proof of Lemma 6.4. The highlighted codes show how the reduction
embeds the challanges into the AKE sessions. Oracles O2 and H are simulated in the same way with
that in Figure 14.

More formally, we use MUC-IND-CCA security of KEM2 to argue that A cannot detect this change.
To this end, we construct a reduction (against KEM2), which works as follows: It plays the MUC-IND-CCA
game with S users and S challenge ciphertexts per users (S is the number of session in the AKE game).
It embeds the challenge public keys in SessionI and embed the challenge ciphertexts in SessionR. This
reduction B2 is formally given Figure 15. The triple recorded in L2 are all from the inputs of B2. When
simulating DerI, if (p̃k, c̃t, K̃) /∈ L2, then c̃t is not a challenge ciphertext respect to p̃k, and B2 can query
Decmu to decrypt c̃t. If B2 plays MUC-IND-CCAKEM2,0, then it perfectly simulates G1-1,b, and if it plays
MUC-IND-CCAKEM2,1, then it perfectly simulates G1-2,b. Therefore, we have

|Pr
[
GA1-1,b ⇒ 1

]
− Pr

[
GA1-2,b ⇒ 1

]
| ≤ AdvMUC-IND-CCA

KEM2
(B2).

26

We argue that G1-2,0 is equivalent to G1-2,1, except with a negligible probability. Let (pki, pkj , p̃k, cti,

ctj , c̃t, Ki, Kj , K̃) be the hash input of sID∗. Since sID∗ is of type (1), then by definition, sID∗ has a unique
matching session, which means that (p̃k, c̃t, K̃) is generated by the game and thus K̃ is independently
and uniformly random. Then, by Corollary 2.2, if A queries H at most qH times, except with 2qH

√
S√

|K2|
(there are at most S session keys), the session key of sID∗ generated in G1-2,0 is indistinguishable from
the one in G1-2,1, i.e.

∣∣Pr
[
GA1-2,0 ⇒ 1

]
− Pr

[
GA1-2,1 ⇒ 1

]∣∣ ≤ 2qH
√

S√
|K2|

,

and in conclusion, we have

∣∣Pr
[
GA1,0 ⇒ 1

]
− Pr

[
GA1,1 ⇒ 1

]∣∣ ≤ 2AdvMUC-IND-CCA
KEM2

(B2) + 2qH
√

S√
|K2|

.

The same arguments can be used to bound |Pr
[
GA2,0 ⇒ 1

]
− Pr

[
GA2,1 ⇒ 1

]
|, and we have

∣∣Pr
[
GA2,0 ⇒ 1

]
− Pr

[
GA2,1 ⇒ 1

]∣∣ ≤ 2AdvMUC-IND-CCA
KEM2

(B2) + 2qH
√

S√
|K2|

.

Proof of Lemma 6.5. We firstly bound type (3), i.e. |Pr
[
GA3,0 ⇒ 1

]
− Pr

[
GA3,1 ⇒ 1

]
|. The proof for

type (4), i.e. bounding |Pr
[
GA4,0 ⇒ 1

]
− Pr

[
GA4,1 ⇒ 1

]
| is the same as the one of type (3). We provide

a sequence of games G3-0,b, G3-1,b, and G3-2,b in Figure 16. Game G3-0,b is the same as G3,b, and we
have

Pr
[
GA3-0,b ⇒ 1

]
= Pr

[
GA3,b ⇒ 1

]
for both b ∈ {0, 1}.

G3-1,b: In this game, we guess which user will be targeted by the type (3) attack by A. Namely, we
modify the game as follows:

1. When initializing the game environment, the game samples t∗ $← [N] and initializes a list L1, which
will be used to store some ciphertext-key pairs of KEM1 generated in SessionI or DerI.

2. Moreover, after A outputs b′, if Resp[sID∗] 6= t∗, then the game aborts. This abort condition means
that the game expects that the responder of test session sID∗ is user t∗, and it also means that A
cannot corrupt user t∗ since the game requires sID∗ to be valid (in type (3) attack, Cor[j∗] cannot
be corrupted, where j∗ = Resp[sID∗]).

3. In SessionI, if the KEM1 ciphertexts and keys are generated using pkt∗ , the game records such
ciphertext-key pairs in L1. Moreover, in SessionR, the game uses L1 to recover the KEM keys of
ct if ct is recorded in L1. This modification is similar to the one in G1-1,b (in Figure 14), except
that here L1 only stores the ciphertext-key pairs generated using pkt∗ in SessionI.

A cannot detect these modifications unless it triggers the abort conditions described above. Since t∗ is
sampled uniformly at random and the view of A is independent of t∗ until a potential abort, we have

Pr
[
GA3-0,b ⇒ 1

]
= N · Pr

[
GA3-1,b ⇒ 1

]
for both b ∈ {0, 1}.

G3-2,b: In SessionI, if the responder is user t∗, then we switch the KEM keys to be independently
and uniformly random, instead of being generated using Encaps1(pkt∗).

Formally, we use MC-IND-CCA security of KEM1 to argue that A cannot detect this change. Namely,
we construct a reduction B1 in Figure 17. It embeds the challenge public key pk∗ into the user t∗’s public
key. The ciphertext-key pairs recorded in L1 are all from the inputs of B1. In the reduction, if A
corrupts user t∗, then the reduction aborts. This does not change the winning probability of A since
by the definitions of G3-1 and G3-2 , corrupting user t∗ makes sID∗ become invalid. Further, reduction
B1 uses the decryption oracle provided by KEM1 to decrypt the ciphertext respect to pkt∗ . If B1 plays

27

Game G3-0,b-G3-2,b(b ∈ {0, 1})
01 t∗ $← [N],L1 := ∅ // G3-1,b-G3-2,b

02 cnt := 0, sID∗ := ∅
03 par← Setup1(λ), p̃ar← Setup2(λ)
04 par′ := (par, p̃ar)
05 for t ∈ [N] :
06 (pkt, skt)← KGen1(par)
07 O1 := (SessionI,DerI,SessionR)
08 O2 := (Cor,Rev,Test)
09 b′ ← AO1,O2,|H〉(par′, (pkt)t∈[N])
10 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0:
11 return 0
12 if Resp[sID∗] 6= t∗ // G3-1,b-G3-2,b

13 abort // G3-1,b-G3-2,b

14 return b′

Oracle DerI(sID, M)
15 if Used[sID] = 1 ∨ St[sID] = ⊥
16 ∨SK[sID] 6= ⊥ : return ⊥
17 Used[sID] := 1, st := St[sID]
18 (i, j) := (Init[sID], Resp[sID])
19 let (c̃t, cti) := M
20 let (p̃k, s̃k, ctj , Kj) := st
21 K̃ := Decaps2(s̃k, c̃t)
22 Ki := Decaps1(ski, cti)
23 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
24 SK := H(ctxt, Ki, Kj , K̃)
25 (R[sID], SK[sID]) := (M, SK)
26 return 1

Oracle SessionI((i, j) ∈ [N]2)
27 cnt := cnt + 1, sID := cnt
28 (Init[sID], Resp[sID]) := (i, j)
29 Type[sID] := “In”
30 (p̃k, s̃k)← KGen2(p̃ar)
31 (ctj , Kj)← Encaps1(pkj)
32 if j = t∗ // G3-1,b-G3-2,b

33 Kj ← K1 // G3-2,b

34 L1 := L1 ∪ {(ctj , Kj)} // G3-1,b-G3-2,b

35 (p̃k, s̃k)← KGen2(p̃ar)
36 st := (p̃k, s̃k, ctj , Kj), Mi := (p̃k, ctj)
37 (I[sID], St[sID]) := (Mi, st)
38 return (sID, Mi)

Oracle SessionR((i, j) ∈ [N]2, M)
39 cnt := cnt + 1, sID := cnt
40 (Init[sID], Resp[sID]) := (i, j)
41 Type[sID] := “Re”
42 let (p̃k, ctj) := M
43 (c̃t, K̃)← Encaps2(p̃k)
44 Kj := Decaps1(skj , ctj)
45 if j = t∗

46 ∧ ∃K s.t. (ctj , K) ∈ L1 // G3-1,b-G3-2,b

47 Kj := K // G3-1,b-G3-2,b

48 (cti, Ki)← Encaps1(pki)
49 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
50 SK := H(ctxt, Ki, Kj , K̃)
51 SK[sID] := SK, Mj := (c̃t, cti)
52 (I[sID], R[sID]) := (M, Mj)
53 return (sID, Mj)

Figure 16: The games sequence in the proof of Lemma 6.5. Oracles in O2 are defined the same as in
wFS-KCIAKE,b. The QRO H is simulated in the same way with that in the proof of Theorem 4.4.

MC-IND-CCAKEM1,0, then it perfectly simulates G3-1, and if it plays MC-IND-CCAKEM1,0, then it perfectly
simulates G3-2. Therefore, we have

Pr
[
GA3-1,b ⇒ 1

]
− Pr

[
GA3-2,b ⇒ 1

]
| ≤ AdvMC-IND-CCA

KEM1
(B1).

Lastly, we argue that G3-2,0 is equivalent to G3-2,1 except with a negligible probability. Let (pki, pkj , p̃k,

cti, ctj , c̃t, Ki, Kj , K̃) be the hash input of sID∗. Since sID∗ is of type (3), then by definitions in Table 1
and in games G3-2,b, user t∗ is the responder of sID∗, which means that j = t∗ and (ctj , Kj) is generated
in SessionI(i, j), and thus the key Kj is independently and uniformly random. By Corollary 2.2, if
A queries H at most qH times, except with 2qH

√
S
|K1| , the session key of sID∗ generated in G3-2,0 is

indistinguishable from the one in G3-2,1, i.e.,

∣∣Pr
[
GA3-2,0 ⇒ 1

]
− Pr

[
GA3-2,1 ⇒ 1

]∣∣ ≤ 2qH

√
|S|
|K1|

,

and in conclusion, we have∣∣Pr
[
GA3,0 ⇒ 1

]
− Pr

[
GA3,1 ⇒ 1

]∣∣ ≤ 2NAdvMC-IND-CCA
KEM1

(B1) + 2NqH
√

S√
|K1|

.

Observe that the same arguments can be used to bound |Pr
[
GA4,0 ⇒ 1

]
− Pr

[
GA4,1 ⇒ 1

]
|, and we have

∣∣Pr
[
GA4,0 ⇒ 1

]
− Pr

[
GA4,1 ⇒ 1

]∣∣ ≤ 2NAdvMC-IND-CCA
KEM1

(B1) + 2NqH
√

S√
|K1|

.

28

Reduction BDec
1 (par, pk∗, c, K)

01 t∗ $← [N],L1 := ∅
02 cnt := 0, sID∗ := ∅
03 p̃ar← Setup2(λ)
04 par′ := (par, p̃ar), pkt∗ := pk∗

05 for t ∈ [N]\{t∗} :
06 (pkt, skt)← KGen1(par)
07 O1 := (SessionI,DerI,SessionR)
08 O2 := (Cor,Rev,Test)
09 b′ ← AO1,O2,|H〉(par′, (pkt)t∈[N])
10 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0
11 return 0
12 if Resp[sID∗] 6= t∗: return 0
13 return b′

Oracle DerI(sID, M)
14 if Used[sID] = 1 ∨ St[sID] = ⊥
15 ∨SK[sID] 6= ⊥ : return ⊥
16 Used[sID] := 1, st := St[sID]
17 (i, j) := (Init[sID], Resp[sID])
18 let (c̃t, cti) := M
19 let (p̃k, s̃k, ctj , Kj) := st
20 K̃ := Decaps2(s̃k, c̃t)
21 if i = t∗: Ki := Dec(cti)
22 else Ki := Decaps1(ski, cti)
23 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
24 SK := H(ctxt, Ki, Kj , K̃)
25 (R[sID], SK[sID]) := (M, SK)
26 return 1

Oracle Cor(i)
27 if i = t∗: abort the game and output 0
28 Cor[i] := 1
29 return sk′

i

Oracle SessionI((i, j) ∈ [N]2)
30 cnt := cnt + 1, sID := cnt
31 (Init[sID], Resp[sID]) := (i, j)
32 Type[sID] := “In”
33 (p̃k, s̃k)← KGen2(p̃ar)
34 (ctj , Kj)← Encaps1(pkj)
35 if j = t∗

36 (ctj , Kj) := (c[sID], K[sID])
37 L1 := L1 ∪ {(ctj , Kj)}
38 (p̃k, s̃k)← KGen2(p̃ar)
39 st := (p̃k, s̃k, ctj , Kj), Mi := (p̃k, ctj)
40 (I[sID], St[sID]) := (Mi, st)
41 return (sID, Mi)

Oracle SessionR((i, j) ∈ [N]2, M)
42 cnt := cnt + 1, sID := cnt
43 (Init[sID], Resp[sID]) := (i, j)
44 Type[sID] := “Re”
45 let (p̃k, ctj) := M
46 (c̃t, K̃)← Encaps2(p̃k)
47 if j = t∗

48 if ∃K s.t. (ctj , K) ∈ L1
49 Kj := K

50 else Kj := Dec(ctj)
51 else Kj := Decaps1(skj , ctj)
52 (cti, Ki)← Encaps1(pki)
53 ctxt := (pki, pkj , p̃k, cti, ctj , c̃t)
54 SK := H(ctxt, Ki, Kj , K̃)
55 SK[sID] := SK, Mj := (c̃t, cti)
56 (I[sID], R[sID]) := (M, Mj)
57 return (sID, Mj)

Figure 17: The reduction in the proof of Lemma 6.5. The highlighted codes show how the reduction
embeds the challanges into the AKE sessions. Oracles O2 and H are simulated in the same way with
that in Figure 16.

References
[1] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction,

properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 57–74. Springer, Heidelberg (Aug 2013) (Cited on page 6.)

[2] Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-classical oracles.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 269–295.
Springer, Heidelberg (Aug 2019) (Cited on page 3, 4, 5.)

[3] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commit-
ment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
1–35. Springer, Heidelberg (Apr 2009) (Cited on page 7.)

[4] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93. pp. 62–73.
ACM Press (Nov 1993) (Cited on page 3.)

29

[5] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.)
CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug 1994) (Cited on page 4.)

[6] Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-
playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer,
Heidelberg (May / Jun 2006) (Cited on page 5.)

[7] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles
in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69.
Springer, Heidelberg (Dec 2011) (Cited on page 3, 5.)

[8] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (Aug 2013)
(Cited on page 3.)

[9] Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange
from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg (May 2012) (Cited on page 3, 4.)

[10] Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenticated key
exchange from one-way secure key encapsulation mechanism. In: Chen, K., Xie, Q., Qiu, W., Li, N.,
Tzeng, W.G. (eds.) ASIACCS 13. pp. 83–94. ACM Press (May 2013) (Cited on page 3.)

[11] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes.
Journal of Cryptology 26(1), 80–101 (Jan 2013) (Cited on page 4.)

[12] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. Cryptology ePrint Archive, Report 2007/432 (2007), https://eprint.iacr.org/
2007/432 (Cited on page 6.)

[13] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197–206. ACM Press (May
2008) (Cited on page 4, 8, 11.)

[14] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key ex-
change. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125.
Springer, Heidelberg (Aug 2018) (Cited on page 3.)

[15] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenticated key ex-
change and signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–700. Springer, Heidelberg, Virtual Event (Aug
2021) (Cited on page 3.)

[16] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Constructions from
general assumptions and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (Dec 2011) (Cited
on page 4, 7.)

[17] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transforma-
tion. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371. Springer,
Heidelberg (Nov 2017) (Cited on page 4.)

[18] Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-based selective-opening
security and compact ciphertexts. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol.
9986, pp. 146–168. Springer, Heidelberg (Oct / Nov 2016) (Cited on page 7.)

[19] Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quan-
tum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020,
Part II. LNCS, vol. 12111, pp. 389–422. Springer, Heidelberg (May 2020) (Cited on page 3, 4, 6, 12,
13, 14, 15, 16, 20, 24.)

30

https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432

[20] Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In:
Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146.
Springer, Heidelberg (Oct 2021) (Cited on page 3, 20, 23.)

[21] Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in
the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part III. LNCS, vol. 10993, pp. 96–125. Springer, Heidelberg (Aug 2018) (Cited on page 5, 12, 13,
14, 16.)

[22] Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection in the quantum
random oracle model. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 618–645.
Springer, Heidelberg (Apr 2019) (Cited on page 5.)

[23] Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE in the quantum
random oracle model. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol.
11273, pp. 253–282. Springer, Heidelberg (Dec 2018) (Cited on page 6.)

[24] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the
quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III.
LNCS, vol. 10822, pp. 552–586. Springer, Heidelberg (Apr / May 2018) (Cited on page 5.)

[25] Krawczyk, H.: SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and its use
in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer,
Heidelberg (Aug 2003) (Cited on page 3.)

[26] Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (Aug 2005) (Cited on page 3.)

[27] Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective
opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 332–364. Springer, Heidelberg (Aug 2017) (Cited on page 4.)

[28] Liu, X., Wang, M.: QCCA-secure generic key encapsulation mechanism with tighter security in the
quantum random oracle model. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 3–26.
Springer, Heidelberg (May 2021) (Cited on page 16.)

[29] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In:
45th FOCS. pp. 372–381. IEEE Computer Society Press (Oct 2004) (Cited on page 6.)

[30] Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight security. In:
Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology – CRYPTO 2023. pp. 616–647.
Springer Nature Switzerland, Cham (2023) (Cited on page 5.)

[31] Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated key exchange in the qrom.
Cryptology ePrint Archive (2023) (Cited on page .)

[32] Pan, J., Zeng, R.: Compact and tightly selective-opening secure public-key encryption schemes. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp. 363–393. Springer,
Heidelberg (Dec 2022) (Cited on page 4.)

[33] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow,
H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press (May 2005) (Cited on page 4, 8, 9,
11.)

[34] Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum
random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol.
10822, pp. 520–551. Springer, Heidelberg (Apr / May 2018) (Cited on page 5, 6, 14, 16.)

[35] Unruh, D.: Post-quantum verification of Fujisaki-Okamoto. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part I. LNCS, vol. 12491, pp. 321–352. Springer, Heidelberg (Dec 2020) (Cited on
page 16.)

31

[36] Xue, H., Au, M.H., Yang, R., Liang, B., Jiang, H.: Compact authenticated key exchange in the
quantum random oracle model. Cryptology ePrint Archive, Report 2020/1282 (2020), https://
eprint.iacr.org/2020/1282 (Cited on page 4.)

[37] Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg
(Aug 2012) (Cited on page 14.)

32

https://eprint.iacr.org/2020/1282
https://eprint.iacr.org/2020/1282

	Introduction
	Our Contributions
	More Related Work

	Preliminaries
	Quantum Random Oracle Model
	Background about Lattices

	Parameter Lossy Encryption
	Parameter Lossy Encryption
	Parameter Lossy Encryption from Lattices
	Lossy Encryption from Lattices

	CCA Secure KEMs from (Parameter) Lossy Encryption
	MCINDCCA Secure KEM from Lossy Encryption
	MUCINDCCA Secure KEM from Parameter Lossy Encryption

	Security Model for AKE
	Session-tight AKE protocol

