Application of Mordell-Weil lattices with large
kissing numbers to acceleration of multi-scalar
multiplication on elliptic curves

Dmitrii Koshelev [0000—0002—4796—8989] *

dimitri.koshelev@gmail.com

Parallel Computation Laboratory, Ecole Normale Supérieure de Lyon, France
http://www.ens-1lyon.fr

Abstract. This article aims to speed up (the precomputation stage
of) multi-scalar multiplication (MSM) on ordinary elliptic curves of j-
invariant 0 with respect to specific “independent” (a.k.a. “basis”) points.
For this purpose, so-called Mordell-Weil lattices (up to rank 8) with large
kissing numbers (up to 240) are employed. In a nutshell, the new ap-
proach consists in obtaining more efficiently a considerable number (up
to 240) of certain elementary linear combinations of the “independent”
points. By scaling the point (re)generation process, it is thus possible to
get a significant performance gain. As usual, the resulting curve points
can be then regularly used in the main stage of an MSM algorithm to
avoid repeating computations. Seemingly, this is the first usage of lat-
tices with large kissing numbers in cryptography, while such lattices have
already found numerous applications in other mathematical domains.
Without exaggeration, the article results can strongly affect performance
of today’s real-world elliptic cryptography, since MSM is a widespread
primitive (often the unique bottleneck) in modern protocols. Moreover,
the new (re)generation technique is prone to further improvements by
considering Mordell-Weil lattices with even greater kissing numbers.

Keywords: elliptic curves of j-invariant 0 - kissing number - minimal
points - Mordell-Weil lattices - multi-scalar multiplication.

1 Introduction

It is not a secret that elliptic curves E over finite fields I, of huge characteristics p
are actively used in discrete logarithm cryptography. Multi-scalar multiplication
(MSM) in the F,-point group E(F,) is widely recognized as a very slow operation.
To be more precise, it is about computing the sum Zf\il n; P; for given N € N
“basis” points P; € E(F,;) and integers n; € Z. At the same time, MSM is actually
a ubiquitous primitive in advanced protocols of elliptic cryptography. Therefore,
there is a vital need among implementers to speed up the given primitive.
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As a confirmation of these words, one can mention the relatively recent
ZPRIZE 2022 competition [I] (see also ZPRIZE 2023 [2]). Among its objec-
tives was accelerating MSM on certain elliptic F,-curves Ej : y? = 23 +b (of
Jj-invariant 0). The money rewards of this competition were quite tempting (the
total prize was $4,415,000), which indicates the importance of the topic. As is
well known, j = 0 curves are the most attractive in pairing-based cryptogra-
phy. Furthermore, they enjoy the most efficient group operation (at least among
prime-order curves). That is why curves Ej are a popular choice for implementa-
tion of discrete logarithm-based protocols, even if they do not deal with pairings.

There are numerous algorithms of MSM (see, e.g., [3/4J6] and references
therein). All of them in one way or another are reduced to precomputing auxil-
iary points of the form P, := Zfil v; P; with various integer vectors v = (v;)¥ ;.
The points P, are then utilised (depending on the concrete n;) in the main part
of an MSM algorithm, allowing to avoid a lot of repeating elliptic curve addi-
tions. By the way, P, = P,,, where ¢; = (0,---,0,1,0,---,0) are the standard
basis vectors of the lattice Z.

In fact, the points P, become less useful whenever the vectors v are long with
respect to a certain norm on Z% . In this situation, P, seem to be too redundant
points in the sense that we cannot often apply them during multi-scalar multi-
plication. The author decided to work with the 1-norm |v|; = Zil |v;| to stay
with little naturals. Besides, it is the most suitable to reflect “complexity” of the
points P,. Indeed, if |v;] < 2 and more frequently |v;| < 1 (as it turns out in this
paper), then the 1-norm almost coincides with the minimal number of additions
on F necessary for computing P, given v; and P;. Thus, it is sufficient to focus
on vectors v € Z” that lie in the ball of some small radius R € N, i.e., [v]; < R.
In particular, they have to possess maximum R non-zero coordinates.

For elliptic curves having an F,-endomorphism 7 of degree close to 1, the
famous GLV (Gallant—Lambert—Vanstone) decomposition can be applied in ad-
dition to accelerate MSM even more. As a consequence, MSM algorithms ex-
ploiting GLV are based rather on the auxiliary points

N
P(v,u) =P, + T(Pu> = ZviPi + ulT(R)
i=1

with coefficients u; € Z that equally constitute the short vector u := (u;)Y ;. By
abuse of notation, instead of P, ,) let’s write just P, with v € Z>N such that
UN+i = Us-

Of course, having a huge amount of available memory or a wide communi-
cation channel, the desired points P, can be found once and for all to regularly
restore them from the given memory or channel. However, this solution is vulner-
able to the constant danger that a malicious entity will perform a fault attack,
somehow replacing one or several points in such a way that this breaks a cryp-
tosystem. On the other hand, it is much easier to protect only basic information
storing in a small piece of memory (or establish it over a reliable, but slow chan-
nel) from which every point P, can be safely (re)generated. It is clear that the
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described strategy, applied directly to the points, is too expensive in any sense
of the word.

The recent works [I3I4] are devoted to the problem of generating efficiently
the “basis” points P;. In them it is suggested to express N = (N div n)n +
(N mod n) for a little n € N. Besides, we are given n linearly independent
points P;(t) from the Mordell-Weil (MW) group E(F) of a certain non-trivial
twist £ of E over the function field F' := F,(t). In the literature £ is often called
isotrivial elliptic surface. Then, n “basis” points can be obtained at once as
the specialization of P;(t) at an element ¢ € F,. Transparently changing t € F,,
nothing prevents from applying the same procedure N div n (plus one if nt N)
times to obtain N points. In fact, £(F) has the structure of a Euclidean lat-
tice modulo the torsion subgroup E(F ). The corresponding (positive definite)
quadratic form h: E(F) — Q3o is said to be canonical height. However, this lat-
tice structure previously played only a minor role in the cryptographic context
under consideration.

The present work extends the above generation method to a considerable
proportion of the points P,, not exclusively P;. It is proposed to pick MW
lattices (of rank r) with large kissing (a.k.a. Newton) number k. By definition,
it is the number of the shortest (i.e., minimal) lattice points. The norm of the
F-point P,(t) := >._, v;P;(t), where v = (v;)7_; € Z", is an indicator of how
quickly P, (t) can be evaluated at elements of I,. Indeed, the degrees of the point
coordinates are proportional to the norm. And the more minimal points we have,
the greater performance gain takes place. That is why we are interested in large
k with respect to r, that is, in maximizing the quantity ¢ := log,(k)/r. It can be
seen that the generation of P; from [13J14] corresponds to the case when &(F)
is realized as the trivial lattice Z", because e; are its unique minimal vectors up
to sign.

The task of constructing arbitrary lattices having large kissing numbers is
one of the most classical tasks in mathematics. It has been carefully studied for
several centuries. Established lower and upper bounds on k in the first dimensions
can be found in any lattice database like [(JT7]. In turn, asymptotic results
as v — oo are well surveyed, e.g., in [3I]. In that article V1ddut constructs
a k-asymptotically good family of lattices for which the kissing number grows
exponentially, that is, lim sup,._, ., § > 0. Unfortunately, this inequality probably
does not hold for families of MW lattices, making them always k-asymptotically
bad.

The last drawback is slightly mitigated for supersingular elliptic surfaces &,
because for them, § decreases more slowly. In a series of articles [TO[TTIT2] Elkies
thoroughly studies MW lattices of such surfaces in characteristic 2. For moderate
ranks, he (re)discovers lattices with the greatest known kissing numbers. Among
the obtained lattices there is in particular the 24-dimensional Leech lattice Aoy
whose k& = 196560, the optimal kissing number for » = 24. Regarding an odd
characteristic p, it is worth mentioning Shioda’s remarkable article [19] about
certain supersingular surfaces &£,11 of j-invariant 0. Their MW lattices have
the non-constant parameters r = ©(p) and k = §2(p?). Therefore, for p of a
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cryptographic size, k is an order of magnitude greater than r. However, we
cannot employ the given results in discrete logarithm cryptography, because
supersingular elliptic curves E are known to be weaker than ordinary ones,
especially for little p.

Fortunately, at least for even ranks r < 8, it is still possible to achieve the
optimal kissing numbers through the MW lattices of ordinary elliptic surfaces,
although we are forced to restrict ourselves to j = 0. By the way, in the extreme
case r = 8, the largest £ = 240. It is about the classical root lattice Eg, which
is wonderful (in many senses) to the same extent as Agy. For other constant
ordinary j-invariants, the author does not find in the literature examples of
elliptic surfaces whose MW lattices enjoy quite large kissing numbers, not to
mention the optimal ones. The situation when k is not substantially greater
than r does not merit separate attention. As a consequence, we do not lose
much, dealing hereafter only with curves Ej,.

2 Preliminaries

We will freely use the basic notions and facts on Mordell-Weil lattices recalled
in [I3I14], because it is assumed that the reader is aware of those articles, es-
pecially of the first. In turn, abstract lattices have already become paramount
objects of (post-quantum) cryptography, so they do not need any special intro-
duction. Nonetheless, there may be some aspects of lattice theory that are not in
widespread use by the cryptography society. If necessary, such knowledge gaps
can be filled with the help of the manual book [§].

The notation k(r) will stand for the maximal kissing number among all (not
necessarily MW) lattices of rank r. For convenience, Table [1| exhibits lower and
upper bounds on k(r) for the first four even values r. Odd ranks are out of our
interest, because MW ranks of isotrivial elliptic surfaces over finite fields are
always even.

A
el
=
ol
=
N

X

of 6
Y

g 72 78
g 240

Table 1. Bounds on the optimal kissing numbers in small even dimensions

For the sake of simplicity, elliptic F,-curves y? = 23 + b (of j-invariant 0) will
be referred to just as E, i.e., without the index b. For the role of 7 in the GLV
decomposition on such curves, one usually chooses the order 3 automorphism
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[w](z,y) = (wz,y), where w? + w + 1 = 0. Recall that w € F, whenever 0 is an
ordinary j-invariant as in the article context.

As well as in [13] Sections 4, 5], we will work exclusively with the (rational)
elliptic surfaces

Em: P =2 +t" +c,

where 2 < m < 6 and ¢ € ]F(;k is a certain constant depending on m. We will
suppose everywhere without reminders that m | ¢ — 1. This condition guarantees
that F, is the splitting field of &, i.e., En(F) = En(F,(t)), where F, is the
algebraic closure of F;. In principle, it is possible to consider alternative j = 0
elliptic surfaces. Attractive candidates are briefly discussed in Section They
will be perhaps considered during further research, but the surfaces &,, are quite
enough to demonstrate the power of the article idea.

It is convenient that &, (F') does not contain non-zero torsion points, that is,
Em(F) = Z" as a group. We will refer to &, (F') by means of L, if it is necessary
to stress the lattice structure. The fact is that L,, is never the trivial lattice
Z". As is conventional in lattice theory, the minimal norm of L,, is denoted
by A1 € Qs¢. As it turns out, each minimal point P € L,, (i.e., such that
E(P) = A1) is integral, i.e., P = (x(¢),y(t)) is a pair of polynomial coordinates,
not just rational ones. Some useful information on the lattices L., is collected
in Table [2| (cf. [I3] Table 1]). Be careful, the symbol ~ here stands for the
congruence (a.k.a. isometry) relation rather than the equivalence one as in [§].

m‘ L ‘ k ‘k/6‘ A1 ‘deg(m)‘deg(y)

2(A~| 6| 11]2/3 0 .
3[Di~|24 4| 1|
LB =]54] 9 |4/3 2
E¢ < 72| 12

5 2| 2 3

?Eg:24040

Table 2. Some parameters of the Mordell-Weil lattices Ly, = Em (F)

Note that A5 ~ L, and D) ~ L3 (along with their root sublattices As,
D,) possess the maximal kissing numbers in their dimensions. The situation is
different for the case m = 4, because the value k of the lattice E§ ~ L, (in
contrast to Eg) is not maximal for » = 6. That is why the sublattice Eg is
represented in a separate row of the table. Of course, we can likewise realise
A5, D4 as sublattices of Lo, L3, respectively. However, the minimal norm of
the former is slightly greater (namely Ay = 2), which negatively influences the
coordinate degrees of minimal points. Unlike Eg, the lattices Ay, Dy thus do
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not provide any advantage in our context. Finally, Eg ~ L5 ~ Lg is simply a
self-dual (a.k.a. unimodular) lattice.

As is well known, the automorphism group of both F, &,, is generated by the
order 6 automorphism [—w] = —[w] of the form [-w](x,y) = (wz, —y). Given a
point P on E or &, we lack the notation P := {[fw]iP}fZO for the orbit of P
with respect to [—w]. As should be clear, the norm of P € &,,(F) is invariant
under [—w]. Therefore, the automorphisms also act on the set of minimal points.
This action is free, since the non-zero fixed points of [~w]® (for which zy = 0)
are obviously outside &,,(F) regardless of i € Z/6 and m. Thereby, #P = 6
unless P is the infinity point (0: 1 :0). In particular, always 6 | k.

Like in [13] Section 5], everywhere below a basis of &, (F) will be taken
in the form Py,---, P9, [w]P1,- -, [w]P,/2 and, moreover, all its points will be
minimal. After identifying &,,(F) ~ Z" with respect to such a basis, we obtain
the following action of [—w] induced on Z":

[—W](Ul, R UT) = (’U’I"/2+1? cy Upy v’r’/2+l — U1y Up — vr/2)'

Here, the equality w? = —w — 1 is utilised. Similarly, denote by ¥ the orbit of
v € Z" under the given action. Evidently, for the point

r/2

Pv = ZU’LPZ + Ur/2+i[w]Pi;
i=1

its orbit P, = {Py, }ues-

The coordinates x, y of the six orbit representatives P, coincide up to mul-
tiplication by w, —1, respectively. Consequently, for computing all the points
P, € P,, it is essentially sufficient to determine only one of them. To simplify
this process as much as possible, it is necessary to define the “lightest” point P,
in a sense. One of the reasonable ways (adopted in the next section) is to take a
vector u € U with the smallest 1-norm |uly = >_;_; |u;|. We will equally call this
number the 1-norm of P,, which has nothing to do with the other norm E(Pu).
As an example, the basis points P;, [w]P; are actually the “lightest”, because
they (along with their inverse ones) are of 1-norm 1.

3 Minimal points of the lattices L,,

This section is heavily based on [I3, Section 5]. From there we will borrow the
concrete bases P;, [w]P; depending on m. Be careful, the below points P, /o4, #
[w]P; in contrast to the previous article. We will tacitly resort to the computer
algebra system Magma. The corresponding code is loaded on the web page [15].
We will consider step by step the remaining minimal points P; € L,,, where
r/2 < i < k/6. For compactness, their explicit formulas are omitted in the text
(except for the degenerate case m = 2), but they are momentarily obtained by
launching the Magma code.
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3.1 The case m = 2

Without loss of generality, one can choose the coefficient ¢ = 1. Then, the point
Py := (—1,t) generates & (F) over the ring Z[w]. Furthermore, the set of all
minimal points is nothing but the orbit of Pj, since k = 6 for the lattice L.

3.2 The case m = 3

In addition to the basis points P;, P, from [13} Section 5.2], orbit representatives
among the remaining minimal points in the lattice L3 are the points

Py = WPy (wt) = [W]PL + Po,  Pui= Po(w?t) = (WP — Px

of the smallest 1-norm 2.

3.3 The case m = 4
The subcase E§ ~ L4. In addition to the basis points P, P, P3 from 13,

Section 5.3], orbit representatives (of the smallest 1-norm) among the remaining
minimal points in the lattice L4 are:

Points of 1-norm 2:
Py:=P + P, Ps =P + P, Py := [w] P + Ps;
Points of 1-norm 3:
P;:= P, + P, — [w] P, Py := [w]P; — Py + [w]Ps;
Points of 1-norm 4:
Py :=[1 +w]Py + [w] P2 + Ps.

Moreover, the points of 1-norm n > 3 are expressed via the points of 1-norm
< n as follows:

P7:P4—[OJ}P37 Pg: [OJ]P5_P27 PQZ[W]P4+P5.
The subcase Eg < L4. The lattice Ly contains the sublattice L) generated
over Z[w] by the points

Pll = Pl — [w]Pg, PQ/ = Pl — [W]Pg, P3I = PQ — [W]Pg.

The Gram matrix of h with respect to the order P}, P}, Pj, [w]Py, [w]|Ps, [w]P4
has the form

21 0-10 -1
1 2 0 -1-1-1
0 0 21 1-1
-1-11 2 1 0
0-11 1 2 0
-1-1-10 0 2



8 D. Koshelev

Its determinant and minimal norm are equal to A = 3 and A\; = 2, respec-
tively. Recall that § = )\7{/2/(2’"\/2) is the center density (see, e.g., [8, Section
1.1]) of an arbitrary r-dimensional lattice. Therefore, the center density of our
lattice L) is equal to § = 1/(8v/3) as well as for Eg. At the same time, as stated
in [8, Section 4.8.3], there is the unique (up to an isometry) lattice of rank 6
with the given value §. Consequently, L ~ Eg as we wanted.

In addition to the basis points P|, Py, Pj, orbit representatives (of the small-
est 1-norm) among the remaining minimal points in the lattice L/ are:

Points of 1-norm 2:
Pli=P— P,  Pl=WlP-P,  Pi=[IP— P
Pri=wlPl+ P,  F:=P+wP;,  Pyi=P+[wbPs;
Points of 1-norm 3:

Pl = [w]P[+ P, — P;, P :=[w]P + P+ [w]Ps;

Points of 1-norm 4:
P{y =14 w]P{ 4+ P; + [w]P;.

Moreover, the points of 1-norm n > 3 are expressed via the points of 1-norm
< n as follows:

P{O:P’;_Péa Pl/lz[w]P?l)—’—Pév P1/2:P1/+P{1'

3.4 The case m =5
In addition to the basis points Py, Ps, P3, Py from [13 Section 5.4], orbit repre-

sentatives (of the smallest 1-norm) among the remaining minimal points in the
lattice Ly are:

Points of 1-norm 2:

Py =P+ P, Ps := P> + Ps, Pri= Py + Py,
PS::Pl—[LU]PQ, PQI:PQ—[(U]P?,, P1022P3—[W]P4;

Points of 1-norm 3:

Py =P+ P+ P, Py =P+ P3 + Py, Pi3:= P + P, — [w]Ps,
P14 = P2 + Pg — [W]P4, P15 = P1 — [UJ]PQ — [W]Pg,, P16 = P2 — [UJ]P3 — [W]P4;
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Points of 1-norm 4:

Pipi=P,+ Py + Ps+ Py Pis = P+ Py + Py — [w] P4,

Pig := P, + Py — [w]P5 — [w] Py, Py := P, — [w]Py — [w]P5 — [w] Py,
Py := P+ [1 —w|P, — [w] P, Pyy := [w]P1 + [1 + w]| Py + P,

Poz := Py + [1 — w|P3 — [w] Py, Py := [w]Py + [1 + w|P3 + Py;

Points of 1-norm 5:

P25 = P1 —+ PQ —+ []. — W]Pg — [(JJ}P4, P26 = P1 — [W}PQ — []. +w]P3 — P4,
Po7 := P + [1 — w]PQ — [W]Pg — [w]P4, Pog := [1 +w]P1 + Py + P3 — [OJ]P47
P29 = [W]P1+[1+W}P2—|—P3—|—P4, P30 = [OJ]P1—|—[LU]P2+[1+LU]P3+P4,

Points of 1-norm 6:
Py =Py + [2|Py + [1 — w]P3 — [w] Py,
Py = Py + |
Ps3:= Py + |
Py := Py + |
Py5 :=[1+w|P, + P + [1 — w]P3 — [w]Py;

Points of 1-norm 7:

P36 2=P1+[1—W]P2— [2W]P3— [1—|—w]P4,

P37 = []. +CU]P1 + [2]P2 + [1 — w]P3 — [W]P4;
Points of 1-norm 8:

ng = P1 + [1 — w]Pg — [2W]P3 — [1 + 2w]P4,

P39 = [W]P1+[1+2W]P2+[2+CU]P3+P47
P40 = [2+w]P1+[2]P2+[1—w]P3—[w]P4

Moreover, the points of 1-norm n > 3 are expressed via the points of 1-norm
< n as follows:

Points of 1-norm 3:

Py = P3+ Ps, Py = Py + Ps, Pz = Pr+ Py,
Py = P + P, Pis = Py — [w] s, Pig = Py — [w]Py;
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Points of 1-norm 4:

Py7 = Ps + Pr, Pig = Ps + Py, Prg = Py + Pig,
Py = P15 — [w] Py, Py, = Py + Pris, Pyy = [w]P5 + P,
Po3 = P3 + Pyg, P24:[W]P6+P7;

Points of 1-norm 5:

Py5 = P3 + Py, Py = P15 — P, Py = Py + Py,
Pog = [w]P1 + Pis, Prg = Py + Py, P3y = P7 + [w]Pi1;

Points of 1-norm 6:

Py = Py + Pyg, P3y = Pi5 + Pig, P33 = Py — [w] P2,
P3y = Py — Py, P35 = Pog — [w]Ps;

Points of 1-norm 7:
P3¢ = P3y — |w|P3, P37 = Py + Pss;
Points of 1-norm 8:

P3g = P3g — [w] Py, P3g = [w]Py + Pay, Pyy = Py + Psy.

3.5 The case m = 6

This case is similar to the previous one because of the isometry Ls ~ Lg. Indeed,
the above linear relations remain the same if a basis P;, [w]P; of Lg, where i < 4,
has the Gram matrix exactly as in [I3], Section 5.4]. Clearly, this can be ensured
with the help of an appropriate coordinate change. The main difference consists
in other formulas of the minimal points P;, where i < 40. In [I3] formulas of
the basis points P; are not derived when m = 6, because in the context of that
article (unlike the current one) the Lg-based generation method is not faster
than the Ls-based one.

By our assumption, m | ¢ — 1. The condition 5 | ¢ — 1 sometimes may not
hold. In turn, 6 | ¢ — 1 or, equivalently, 3 | ¢ — 1 automatically for all ordinary
curves of j-invariant 0. Therefore, it is actually useful to possess formulas for the
points P; € Lg. Nevertheless, derivating such formulas is a much less ambitious
task than the research project from Section [5.2] whose outcomes promise to
substantially outperform the case under consideration. That is why the author
decided not to dwell on it (at least now). Besides, as explained in the next
section, the Ls-based generation method (when applicable) is still a little bit
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more efficient on average than the Lg-based one. Thus, the case m = 5 does not
completely lose relevance at the moment.

Perhaps, explicit formulas of P; € Lg are not represented anywhere in the
literature for the abstract coefficient ¢ from the equation of &. The author
succeeded to find only the paper [2I] handling the special case ¢ = —1, although
its reasoning is in parallel with [20] dealing with the general ¢ when m € {4,5}.
Recall that the latter paper underlies [I3] Sections 5.3, 5.4]. Therefore, the former
paper appears to be generalized to the other values ¢ € Fy. In particular, for an
appropriately chosen ¢, the splitting field of & probably can be reduced from
F,(/1,V/2) (when ¢ = —1) to the expected field F,(v/1), that is, to F, in our
setting.

4 Generating the minimal points

Assume that ¢ € [, is a known element such that the reduction (a.k.a. special-
ization) &, ; of the surface &, at ¢ is F;-isomorphic to the original curve E.
As explained in [I3] Section 3], we are able to obtain such an element as some
m-th root ¢ =3/~ when it is extracted over F,, that is, approximately with the
probability 1/m. The associated isomorphism has the form

P gm,t — E (‘Tvy) = (Cafxa ny)7

where the coefficients ¢, ¢, € F, depend on ¢.

To this moment, we are given (formulas of) the minimal points P; € L,
from Section [3] All of the following is equally true in the case of the points
P! € L. Therefore, this case will not be mentioned further to avoid sitting
on two chairs. Throughout the section, we will assume that the “basis” points
i (Pi(t)) € E(IF,), where i < r/2, have already been generated by [I3, Algorithm
1] with respect to ¢t € F,. Our purpose is to generate as fast as possible the
remaining “minimal” points ¢;(P;(t)), where i < k/6. By abuse of notation, we
will refer to these points simply by P; as well as for the initial lattice points. Let’s
suppose for simplicity that multiplications by w, —1 (apart from additions in F,)
are not taken into account in the below estimations of running time. Thereby,
once a “minimal” point P; is determined, so is its full orbit P; of 6 conjugates.

A naive method of finding P; € E(F,) consists in performing successive curve
additions of the form P, = P, + P;, (up to the automorphisms of FE) such
that 41, 42, 7/2 < i. As shown in Section such a minimal addition chain
takes place regardless of m. Thus, the total number of additions on E is equal
to A := k/6 — r/2. According to [5], [9, Section 6.4.1], the general addition
operation on an arbitrary curve E : y? = 23 + b2® (in Jacobian coordinates)
costs no less than 16 multiplications in ;. Sometimes, £ can be transformed into
other forms enjoying faster addition formulas. The most efficient among them is
widely recognized to be the twisted Edwards form (in extended coordinates) on
which + requires 10 multiplications. To sum up, the overall running time of the
naive generation method lies between 10A and 16 A field multiplications.
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From the geometric point of view, the minimal points are no different from
the basis ones. As a result, we have another Algorithm [I] of generating all the
“minimal” F,-points on E, which supplements [13] Algorithm 1] in a natural way.
Formally speaking, the corresponding vectors v € Z" (i.e., such that P, = P,)
have to be returned in the new algorithm in parallel with the points. Otherwise,
the latter are useless for subsequent MSM algorithms. Note that reducing P;(¢)
amounts to two Horner’s schemes applied to the coordinate polynomials z =
x(P;) and y = y(P;). In turn, each application of y; costs 2 multiplications in
F, (by cq, ¢y). As a consequence, to obtain one “minimal” point it is enough to
perform M := deg(z) + deg(y) + 2 field multiplications. Therefore, M A is the
total number of multiplications in the new generation method.

Algorithm 1: New method of generating all the “minimal” points

Data: finite field IF; of characteristic 7 or greater,
ordinary elliptic F-curve E of j-invariant 0,
natural m such that 2 <m <6 and m | g — 1,
element ¢ € F; such that &, ¢ ~y, E and the F;-isomorphism ¢ : Emyis — E,
coordinate formulas for representatives P1,- -, Py € Em(F) of the orbits of
minimal points;
Result: k£ “minimal” points in E(F);
begin

for i :=1 to k/6 do

| Pi=p(Pi(1));

end

return P, - - -,ﬁ/ﬁ.
end

We see that the new approach is faster than the naive one whenever the cost
of one addition on F is greater than M. Interestingly, this is always the case,
because M < 7, that is, 10 — M > 3 and 16 — M > 9. Table [3| demonstrates
the exact numbers of multiplications (checked in Magma [I5]) for all the cases
2 < m < 6. As expected, the performance gain (namely, the last two columns)
increases when m does. In particular, we do not get any benefit for m = 2
and the best result occurs for m € {5,6}. Curiously, there is one exception: the
value (10 — M)A is equal to 30 for the lattice Ly, but 27 for its sublattice L.
Nevertheless, the situation is opposite (66 < 81) if the curve E is in the short
Weierstrass form.

It is impossible not to mention that the entries of Table [3| should be slightly
recalculated under a deeper complexity analysis. Indeed, there are several mi-
nor optimization possibilities not taken into account before, but explained in
the next paragraphs. For simplicity, such a detailed analysis is omitted in the
present paper, because it is more mathematical in nature than engineering. Un-
doubtedly, the table tendencies will remain after recalculation. In other words,
supremacy of the new generation method over the naive one is beyond question.
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Lattice‘ A ‘M‘IO - M‘lﬁ - M‘lOA‘lGA‘MA‘(lO - M)A‘(IG — M)A

Ly |03 7 13 0

Lz |24 6 12 20132| 8 12 24
Ly |6]5 5 11 60 | 96 | 30 30 66
Ly |9 90 144 | 63 27 81
Ls 7 3 9

I 36 360|576 | 252 108 324

Table 3. Comparison (in terms of the numbers of multiplications in F;) of the naive
and new methods of generating all the “minimal” F;-points on E

Ideally, the optimization tricks under consideration have to be used in the pro-
cess of programming Algorithm [1| (or some of its versions) in one of low-level
languages. Nonetheless, in view of Section it is more logical at the beginning
to conduct further research on the topic prior to proceeding with an optimized
implementation.

First, the constant w € [, may be quite large (in absolute value) in contrast to
—1. Hence, multiplication by w may not be completely free. Second, formulas of
the minimal points P; € L,, may sometimes have small or repeating coefficients,
at least for different indices i. As a result, with the same input argument ¢ €
F,, evaluating P;(t) together (i.e., for all ¢ < k/6) may cost considerably less
separately. On the contrary, repeating field multiplications are seemingly rare in
the addition chains P; = P;, + P,;, and the majority of these multiplications are
general (i.e., not by a constant). The fact is that addition chains are inherently
computed successively (not in parallel as P;(t)), hence there is limited room for
their optimization.

The operation + on E does not keep affine coordinates unless the inverse
operation in F is used. Since the latter is recognized to be much more expen-
sive than multiplication, + must return (weighted) projective coordinates. In
particular, most instances of 4+ in our addition chains are forced to receive such
burdensome input coordinates. As an exception, the points P; of 1-norm 2 (un-
like those of larger 1-norms) are the sums of two basis points, which are usually
given on the affine plane. Therefore, the 1-norm 2 points require fewer multi-
plications than 10 and 16, respectively. However, the proportion of these points
decreases with growth of m. For the cases m € {5,6} the most interesting for
us, there are solely 6 such points among 36 non-basis minimal points. By the
way, all the minimal points P; € L,, are integral, hence reducing them always
avoids inverting in [F;. This circumstance no doubt leads to a slight acceleration
of MSM algorithms based on P;.

It has not yet been clearly justified for which value m the L,,-based gen-
eration method (let’s denote it by M,,) is the best. So far, we have just made
sure that this method is better than the naive one with the same m. Evidently,
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the smaller the given parameter, the more performant Algorithm [I} but at the
price of fewer returning points. It is important to remember that this algorithm
is always preceded by much slower [I3, Algorithm 1]. Recall that its complexity
on average amounts to m(a)m + %/~ (apart from several more multiplications),

where (;)m is the m-th power residue symbol and %/- is the m-th root in the
field F,.

Specialists know well that the symbol (;)m can be determined (at least for
m < 6) by means of Euclidean-type algorithms. With proper implementation,
their execution times are close to that of several dozen multiplications. Thus,
extracting %/* is an order of magnitude more laborious operation (even for m =
2) than the others in F, that we encountered. Concrete complexity estimates
heavily depend on m and q. At best, %/- is expressed via one exponentiation in
F,, which costs no less than ¢ := [log,(¢)] field multiplications. As an example,
for the conventional 128-bit security level, £ 2 256 and this lower bound on ¢ is
known to be even higher for pairing-friendly curves FE.

Let’s compare, e.g., the methods M5, Mg with the degenerate one Ms. The
following reasoning is mutatis mutandis transformed for the cases m € {3,4}.
The methods M5, Mg both give k/6 = 40 points in E(F;) at the cost of one
radical, of & 5, 6 residue symbols, respectively, and of ~ 250 multiplications
according to Table [3| In turn, M> generates only one “basis” point (apart from
its conjugates by [—w]) after computing =~ 2 Legendre symbols and one square
root (and a few auxiliary multiplications). Therefore, the latter needs to be
launched 40 times (with different elements t € F;) to obtain the identical number
of points. At least when /-, ¥/-, /- are all represented by exponentiations in F,,
the 40-time method M5 is without doubt substantially slower than the one-time
My, Ms.

Besides, M5 does not return “dependent” points unlike M5, Mg. This means
that the total number of F;-points on E generated by the multiple method M>
is still smaller. As in the introduction, let IV stand for the number of all “basis”
points, which must be generated in any case. We see that M, generates exactly
N (“basis”) points with the same number of launches against 40N/4 = 10N
points returned by My, Mg after N/4 launches, where 4 | N for simplicity. Of
course, a concrete MSM algorithm may not need certain “dependent” points
(e.g., those of higher 1-norms), hence for it, the efficiency of Ms, Mg may be too
exaggerated. Nevertheless, in general (i.e., abstracting from MSM algorithms),
the methods M5, Mg are justified to be the best among all the state-of-the-art
generation methods. This is also consistent with the conclusions of [I3] Section
4], where “basis” points are the only resulting ones.

Finally, it remains to choose the winner between M5 and Mg. As already said
in Section the first method (unlike the second) suffers from an applicability
restriction (of the form 5 | ¢ — 1). However, if both methods are available, then
M5 is a little more preferable than Mg, because on average the first has one
residue symbol less than the second. Certainly, we are under the pretty natural
heuristic assumption that ( )5 (resp., ¥/-) is implemented not slower than (7)

q aJo
(resp., ¥/-).
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5 Final remarks

5.1 Hybrid point generation

Special attention should be paid to the generation technique combined from the
minimal points P; € Ly and P} € L} simultaneously, that is, with one element
t € [, such that £, ; ~p F. This technique allows to obtain at once more ;-
points on E. A minor comment is that P/, Pj, Pj are no longer considered as
basis points, but as points of 1-norm 2 with respect to Py, P, P3 and their
counterparts [w]P;. Therefore, none of the induced points P/ € E(IF,) are given
in advance and hence they all need to be computed. It is also worth bearing in
mind that the 1-norm becomes greater for all the points P;.

To continue we lack the notion of so-called everywhere integral points (in the
sense of Shioda [22/25/26]) in the MW lattice of an elliptic F-surface £. By one of
definitions, these are integral points P = (z,y) € £(F) for which E(P) < 2y or,
equivalently, deg(x) < 2x and deg(y) < 3y, where x € N is the arithmetic genus
of £. No worries, x is nothing but 1 whenever £ is a rational surface, which is the
case for &, with m < 6. Be careful, in some sources (but not here) such points
are called just integral, while arbitrary points with polynomial coordinates x,
y are called oo-integral or Fy[t]-integral. For convenience, let e be the (finite)
number of all everywhere integral points in E(F).

Note that L} is an instance of what is known as the narrow Mordell-Weil
lattice L, := &, (F)° whose definition is given, e.g., in [I9, Section 2]. By virtue
of [T9, Remark 3.5], the lattices L], are root ones we have previously encountered
(not only for m = 4). It turns out (cf. [26 Section 3.1]) that the minimal points
of L,, and those of L/, (a.k.a. roots) together constitute the set of all everywhere
integral points in &,,(F). For m € {2, 3}, the number e = 2k € {12, 48}, since the
kissing numbers of Ay, A3 coincide and this is equally true for D4, D}. Finally,
Eg = E{, which implies the equality e = k (= 240) in the last cases m € {5,6}.
For clarity, these facts are translated into Table [4]supplementing Table[2] Among
other things, the column “ind” contains the indices [L,, : L’ ].

m‘L’m‘z‘nd‘ e |e/6

21A2| 3 |12] 2
3/Da| 4 48] 8
4|E¢| 3 [126] 21
5

— Eg| 1 |240/|40
6

Table 4. Some parameters of the narrow sublattices L], C L,

The aforementioned hybrid generation is naturally generalized to the other
cases m # 4 by exploiting likewise all everywhere integral points in &,,(F).
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However, the maximal number e = 240 occurs for m € {5, 6}, hence the original
methods M5, Mg remain the best. Moreover, there is the fact [25], Theorem
2.1] that none of rational elliptic surfaces £ enjoys e > 240. Certainly, nothing
prevents us from using other points from £(F'). Nevertheless, it is desirable to
keep the integrality property to be able to return affine points in E(IF,) without
inverting in F;. Extra integral points in &,,(F) (of canonical height > 2) are
succinctly surveyed in [23], Section 8]. There are only an insignificant number
of such “sporadic” points, not to mention that deg(xz) > 2 or deg(y) > 3 for
them. Therefore, it is not expected that the efficiency of the generation process
including these points is so impressive to dwell on it.

5.2 Mordell-Weil lattices of higher kissing numbers

This section briefly outlines a promising research direction on the topic. It is rea-
sonable to wonder about extending the article idea to MW lattices (of isotrivial
ordinary elliptic surfaces) with kissing numbers k& > 240. Intuitively, they should
provide a more impressive performance gain during point generation than the
lattices previously considered. As before, there is hope to identify desired lattices
only for the j-invariant 0. Unfortunately, all rational elliptic surfaces necessarily
have the MW ranks r < 8 (see, e.g., [I8]), which is somewhat demotivating in
view of Table [I] Therefore, we are forced to resort to elliptic surfaces of greater
arithmetic genus x > 1. The next case x = 2 corresponds to so-called K& sur-
faces. Already in this case, the theory of MW lattices is significantly complicated.

In a series of works [2728/29J30] Usui establishes the full classification (i.e.,
for all m € N) of the lattices L,, over the algebraic closure F,. As explained in
[13, Section 3], for each m > 6, the cost of finding a necessary element ¢ € F,
is permanent and amounts just to 6(;)6 + &/-. Thereby, the kissing number or
rather 0 := k/r is actually the main indicator for running time of the L,,-
based generation methods. The minimal norm A; (crucial for the speed of point
reduction) also plays a role, but appears to be secondary as we will see in the
next noteworthy examples (A = 4 for all of them).

According to [30, Main Theorem], solely the lattice Li» merits attention,
because it is easily seen that Lio enjoys the largest value 6 = 115.5 among all
the lattices L,,. More precisely, Lio possesses the parameters r = 16, \; = 4,
and k = 1848. Although the last value is pretty small compared to 4320 <
k(16) < 7320, it is much greater than the kissing number 2 - 240 = 480 of the
16-dimensional direct squares L2, LZ. The latter essentially underlie the methods
Ms, Mg applied twice, that is, with two different seeds ¢ € IF,.

Recall that at the moment the maximal (in characteristic 0) MW rank r = 68,
which is attained by the lattice Lzgg. For it, Ay = 120 > 4 and k = 2472 and
hence § &~ 36.353 < 115.5. The inequalities >, < confirm that Lsgo (like the
other lattices L,, for m # 12) loses to L2 based on a combination of factors. This
opinion is opposite to [I3] Section 3], because for generating only “independent”
points, the MW rank is the unique important indicator.
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In addition to the surfaces &,,, separate consideration deserve the K3 surfaces

/

c
fm:y2:x3+cltm+tf7}l+co,

where similarly m < 6 and ¢, ¢| # 0. Over arbitrary fields (including F;) the
MW lattices A,,, of these surfaces are thoroughly studied in [I6]. In particular,
over [, one can put ¢; = ¢; = 1 without loss of generality. The coefficient cg
conversely matters even over F, (unlike c in the equation of &,,), hence it is more
correct to indicate ¢q as follows: Fy,(co), Am(co)-

Obviously, if ¢; = 1, ¢] = ¢, then £15 ~5, F4(0) and hence L1z ~ Ag(0). In
turn, A5(0) has the even better parameters r = 16, A\ = 4, and k = 2640 (i.e.,
0 = 165) by virtue of [30, Section 3]. The cases m < 4 are less remarkable, since
the value ¢ of the lattice A,,(0) diminishes by analogy with L,,. Thus, the family
Fm(0) remotely resembles &,,. Finally, little is known about 4,,(0) for m > 6.

It must be understood that, generally speaking, minimal and everywhere
integral points are not at all the same thing. In this connection, there is an inde-
pendent task of maximizing the number e instead of k. As stated in [26], Section
4], the record is e = 5820, at least in 2010 when that article was published. This
record is due to the MW lattice of the surface £: y? = 2% + 5 —¢75 — 11 from
[24] isomorphic to F5(11y/—1) as usual over F,. For this lattice, \; = 4, r = 18,
and so e/r = 323.(3) > 165. By the way, 18 is the maximal possible MW rank
for ordinary elliptic K3 surfaces (see, e.g., [I6, Section 8]). In the literature such
surfaces are said to be singular.

It should be stressed that the splitting field of £ is exactly F,(v/1, v/10).
Probably, there is not yet an article dedicated to the twists of the surface &,
in contrast to &£, Fn(0) with m < 6. This subject is important if we want to
try to ease the restrictions on F, as much as possible. Currently, V1, V10 I,
seem quite severe conditions to be able to use &£ for generating F,-points on j = 0
elliptic curves. In other words, we are interested in coefficients ¢y, ¢1, ¢ € F, such
that the surface F5 (with the given coefficients) is a twist of £ whose MW lattice
is full already over F, under more mild conditions (e.g., without V10 F,).
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