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Abstract. Updatable public key encryption has recently been intro-
duced as a solution to achieve forward-security in the context of secure
group messaging without hurting efficiency, but so far, no efficient lattice-
based instantiation of this primitive is known.
In this work, we construct the first LWE-based UPKE scheme with
polynomial modulus-to-noise rate, which is CPA-secure in the standard
model. At the core of our security analysis is a generalized reduction
from the standard LWE problem to (a stronger version of) the Extended
LWE problem. We further extend our construction to achieve stronger
security notions by proposing two generic transforms. Our first transform
allows to obtain CCA security in the random oracle model and adapts the
Fujisaki-Okamoto transform to the UPKE setting. Our second transform
allows to achieve security against malicious updates by adding a NIZK
argument in the update mechanism. In the process, we also introduce
the notion of Updatable Key Encapsulation Mechanism (UKEM), as the
updatable variant of KEMs. Overall, we obtain a CCA-secure UKEM in
the random oracle model whose ciphertext sizes are of the same order of
magnitude as that of CRYSTALS-Kyber.

1 Introduction

Secure group messaging aims to allow secure, long-lasting, communication for a
large group of users. The larger the group and the longer the communication, the
likelier one of the group member gets compromised. When the latter happens,
ideally, one would like to guarantee that messages sent before the attack oc-
curred remain hidden to the attacker. This corresponds to the notion of forward
security [5,9,30,35,19,18,13] and can be achieved by relying on forward-secure
public key encryption (FS-PKE), but it vastly hurts efficiency compared to re-
lying on standard PKE. FS-PKE generates an initial key pair (pk0, sk0) which
allows to derive a chain of key pairs (pk1, sk1), (pk2, sk2), . . . where each pkt+1

can be derived publicly from pkt (and skt+1 from skt). Hence, the first epoch key
pair of an FS-PKE scheme implicitly defines all the subsequent epoch key pairs.



Forward security further requires that it should be hard to go back in the secret
key chain, as compromising skj should not hurt the confidentiality of messages
encrypted under pkt for t < j. Therefore, FS-PKE can be seen as a simple form
of hierarchical identity-based encryption (HIBE) [28,18], and tight connections
between the notions have been observed [26]. As of today, FS-PKE schemes have
similar performances as HIBE constructions, and therefore relying on FS-PKE
for building secure group messaging seems inherently inefficient. The extreme
alternative is to rely on standard PKE and to require every user to refresh their
key pair on a regular basis. This assumes users to be active and online, which is
an undesirable assumption in the context of group messaging. Moreover, a user
refreshing its own key only guarantees confidentiality of messages it receives
(and therefore messages sent by other users) but does not provide any guarantee
about messages it sent. For the latter, users have to rely on the willingness of
receivers to update their keys.

Updatable public-key encryption (UPKE), recently introduced in [31,4], of-
fers a compromise between the above two approaches by relaxing the update
mechanism of FS-PKE: in a UPKE scheme, any user can update any other user’s
key pair by running an update algorithm with (high-entropy) private coins. As
a consequence, a key pair does not need to contain any information about the
next epoch key pair as this information can be provided by the external user
who proceeds in the update. This change allows to hope for UPKE construc-
tions with similar efficiency as standard PKE, but a sender can now protect the
messages it sent by updating the receiver’s key.

To be formal, a UPKE scheme consists in a standard PKE scheme (KeyGen,
Enc,Dec) augmented with two additional algorithms (UpdatePk,UpdateSk). The
UpdatePk algorithm can be run by any user on inputs a target public key pkUt of a
user U used at epoch t and fresh private coins r. It produces a public key pkUt+1 for
user U for epoch t+1 as well as an update ciphertext up (encrypted under pkUt ).
The UpdateSk algorithm then allows user U , given an update ciphertext up and
its secret key skUt to update the latter to obtain secret key skUt+1 corresponding to
pkUt+1. Security of UPKE guarantees that ciphertexts encrypted under U ’s public
key pkUt at any epoch t remain secret to an attacker which compromises skUj
for j > t, as long as any of the updates which occurred between epoch t and
epoch j was performed by an honest user (i.e., using private coins unknown
to the attacker). This is formalized by the notion of IND-CR-CPA security, in
which the adversary can impose updates of the target user’s public key with
Chosen Randomness (CR) (i.e., providing the private coins used by the update
mechanism to the challenger). This has been the main security notion studied so
far [4,31,22]. For practical applications, stronger notions are desirable, and were
introduced in [22]: first, the adversary could have access to a decryption oracle
(using the secret key of the current epoch), which corresponds to CCA security.
Second, the adversary could generate malicious updates. The latter notion cor-
responds to IND-CU-CPA/CCA security, where the adversary provides Chosen
Updates (CU) by providing (possibly malicious) updates to the challenger rather
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than providing private coins (used to honestly generate updates in the chosen
randomness setting).

UPKE has been constructed from various assumptions over the past years. An
efficient IND-CR-CPA construction based on the Computational Diffie-Hellman
(CDH) assumption and in the random oracle model (ROM) was proposed in [31,4].
Constructions in the standard model were first proposed in [22] from the Learn-
ing with Errors (LWE) assumption and from the Decisional Diffie-Hellman (DDH)
assumption, but the latter two constructions are mainly of theoretical interest
as they rely on bit-by-bit encryption, and circular-secure and leakage-resilient
PKE. The LWE-based construction notably relies on super-polynomial modulus-
to-noise rate due to the use of the noise flooding technique. Generic transforms
from IND-CR-CPA security to IND-CU-CCA security are described in [22] but
rely on heavy tools, namely one-time, strong, true-simulation f -extractable Non-
Interactive Zero-Knowledge (NIZK) arguments [21]. In [1], an efficient construc-
tion based on the Decisional Composite Residuosity (DCR) assumption was
proposed. The authors show that a variant of the ElGamal Paillier encryption
scheme [17] can be turned into a (standard model) IND-CR-CPA UPKE scheme,
and achieve IND-CR-CCA and IND-CU-CCA UPKE by further adding NIZK
proofs using the Naor-Yung paradigm [38]. Concrete instantiations of the latter
NIZKs are proposed in the random oracle model, resulting in the first efficient
IND-CR-CCA and IND-CU-CCA instantiations from the DCR assumption and
the strong RSA assumption [8], in the ROM.

1.1 Contributions

We provide the first efficient UPKE instantiation based on the LWE assumption
with polynomial modulus-to-noise rate.

First, we construct a UPKE encryption scheme which follows the lines of
the PKE scheme from [34], which underlies CRYSTALS-Kyber [11]. The main
technicalities lie in its security analysis: (i) we prove our construction to achieve
IND-CR-CPA security in the standard model, based on a new assumption which
generalizes the extended-LWE assumption defined in [39], and (ii) we show that
the latter assumption reduces to the standard LWE assumption by extending
the results from [16,14].

Second, we provide two simple generic transforms which allow to convert any
IND-CR-CPA UPKE construction into IND-CR-CCA and IND-CU-CCA UPKE
schemes in the ROM. As we aim for practical constructions, we focus on con-
structing updatable key encapsulation mechanism (UKEM), which we introduce
as the updatable variant of KEM. Our first transformation is an adaption of the
Fujisaki-Okamoto transform [24] to the context of UPKE and allows to gener-
ically transform an IND-CR-CPA UPKE into an IND-CR-CCA UKEM with a
minimal cost, in the ROM. The second transformation relies on the existence of
a NIZK argument for a specific language. As an important remark, the under-
lying NIZK only plays a role in the update mechanism and should only satisfy
basic properties (namely, a single-theorem NIZK with computational soundness
and computational zero-knowledge is sufficient) while prior constructions [22,1]
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relied on strong NIZK notions (e.g., statistical-simulation-sound NIZKs for in-
stantiating Naor-Yung). The latter NIZK argument can be efficiently instanti-
ated from [33].

1.2 Technical Overview

We now present our contributions in more details, starting with our IND-CR-
CPA UPKE construction.

IND-CR-CPA UPKE from lattices. Our IND-CR-CPA construction follows the
LWE-variant of [34]: a public key is an LWE instance (A,b) with b = As + e
for A ∈ Zn×n

q and s, e ←↩ DZn,σ, the LWE secret s being the corresponding
secret key. An encryption of a message µ ∈ Zn

p is a pair (ct0, ct1) of the form
(XA+E,Xb+ f + ⌊q/p⌋ · µ mod q) with X,E←↩ DZn×n,σ, f ←↩ DZn,σ. Such a
ciphertext can be decrypted by rounding ct1 − ct0s since:

ct1 − ct0s = Xb+ f + ⌊q/p⌋ · µ− (XA+E)s = Xe+ f −Es+ ⌊q/p⌋ · µ

where the term Xe+ f −Es is small. Updating a key pair is done by sampling
small vectors r,η ←↩ DZn,σ. The public key is updated to (A,b + Ar + η) =
(A,A(s+ r) + e+η). The corresponding update ciphertext up is an encryption
of r (which fits in the plaintext space) under the original public key (A,b).
The updated secret key is then s+ r. Correctness follows from the correctness
of the PKE scheme. We emphasize that the secret key and noise term might
have increased in norm, which can hurt correctness of decryption. We provide
more details about how we handle this issue later, when we mention concrete
instantiations.

Let us now focus on the security analysis. An IND-CR-CPA attacker first
sees a public key (A,b = As+ e) and can make a first sequence of updates with
private coins of its choice (r1,η1), . . . , (rchall,ηchall) before asking for a challenge
ciphertext for a pair of plaintexts (µ0,µ1) at epoch chall. The challenge cipher-
text is then encrypted under public key pkchall = (A,b+A∆r

chall+∆η
chall), where

∆r
chall =

∑chall
i=1 ri and ∆η

chall =
∑chall

i=1 ηi. It can then ask for an additional se-
quence of updates (rchall+1,ηchall+1), . . . , (rlast,ηlast) until it decides to compro-
mise the secret key. When the latter happens, an honest update is performed by
the challenger using randomness r∗,η∗. Let ∆r

last and ∆η
last denote respectively∑last

i=1 ri and
∑last

i=1 ηi. Then, the adversary’s goal is to guess which plaintext was
encrypted, given the compromised secret key s+∆r

last + r∗ and the last update
ciphertext which encrypts r∗ under public key (A,b+A∆r

last +∆η
last).

The prior lattice-based construction from [22] has a similar structure (though
it is based on the Dual-Regev PKE scheme [25]) and the authors argue about se-
curity by using the following observation, which we adapt to our construction for
the exposition. First, notice that the final update ciphertext, which encrypts r∗,
can be transformed into an encryption of −s as we are given s + ∆r

last + r∗

and ∆r
last is known. It then suffices to argue that the scheme is circular-secure,

given the compromised secret key (which is additional leakage about s). To do

4



so, observe that, for a ciphertext (ct0, ct1) = (XA+E,Xb+ f + ⌊q/p⌋ ·µ), the
second term can be re-written as (XA+E)s+Xe+ f + ⌊q/p⌋ · µ− Es, where
XA+E is the first part ct0 of the ciphertext. That is, we have:

ct1 = ct0s+ f +Xe−Es+ ⌊q/p⌋ · µ .

Therefore, assuming f is much larger than Xe−Es, the ciphertext distribution
is statistically close to (ct0, ct0s+f+⌊q/p⌋·µ). Under the LWE assumption, ct0 is
pseudorandom, and then any (linear) information about the secret s contained
in µ can be absorbed by the term ct0s. The Leftover Hash Lemma allows to
complete the security analysis by proving that the latter term is statistically close
to uniform, as long as s retains enough min-entropy (in this case, conditioned
on the leaked key s + ∆r

last + r∗). Hence, using noise-flooding and assuming
LWE, the scheme is proven secure. The proof additionally relies on the (key)-
homomorphism of Dual-Regev to incorporate updates required by the adversary
in the challenge/update ciphertext and keys.

Our analysis deviates from the above and avoids the noise-flooding step. In-
stead, we directly prove pseudorandomness of the above XA+E term. It seems
that the LWE assumption for the instance (A,XA+E) would suffice, but the
issue is that the second term ct1 = (XA+E)s+Xe+ f + ⌊q/p⌋ ·µ−Es of the
above tuple contains information aboutX and E, namely the termsXe and−Es.
This is similar to the Extended-LWE assumption [39], which claims that pseu-
dorandomness of an LWE instance (A,As+ e) still holds when the adversary is
given an additional hint h computed as ⟨z, e⟩ mod q for a small z chosen by the
adversary independently ofA. However, the latter assumption is not sufficient: in
our case, the sample contains a hint about both the error and the secret, and ad-
ditionally, as we are interested in updatable encryption, the adversary can make
update queries before asking for the challenge. To answer such queries, one needs
to know A, which is part of the public key, in advance. We introduce the Her-
mite Normal Form Adaptive Extended LWE assumption HNF-AextLWE, which
precisely states that pseudorandomness of (A,As+ e) still holds, provided an
additional hint of the form ⟨z0, s⟩+ ⟨z1, e⟩ mod q, with z0, z1 arbitrarily chosen
by the adversary after it sees A. Equipped with this assumption, the rest of the
proof can be adapted and we are able to prove the IND-CR-CPA security of our
UPKE scheme under the HNF-AextLWE assumption. It remains to show that the
latter assumption is implied by the standard LWE assumption.

Reduction from LWE. We first make a reduction from the adaptive extended-
LWE (AextLWE) problem to the HNF-AextLWE problem. AextLWE generalizes
the Extended-LWE problem by allowing the adversary to choose z arbitrarily
(and not necessarily small) given A. The reduction adapts the one from LWE to
HNF-LWE given in [6] to our setting. It relies on the observation made in [16] that,
if A ∈ Zm×n

q for m ≥ 16n+ 4 log log q, one can extract an invertible matrix A0

fromA together with another matrixA1 ∈ Zm′×n
q withm′ = m−16n−4 log log q

such that the matrix A1 · A−1
0 is uniformly distributed. Importantly, a hint

⟨z0, s∗⟩+⟨z1, e∗⟩ mod q for an HNF-AextLWE instance usingA∗ can be computed
as a hint ⟨z, e⟩ mod q for an AextLWE instance using A.
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We then show that LWE reduces to this new adaptive version by seeing it as an
instance of (an adaptive version of) entropic-LWE. Introduced in [14], Entropic-
LWE is a version of LWE where the secret s is sampled from any predetermined
distribution instead of being uniform. However, the distribution being fixed (it
is a problem parameter), this version of entropic-LWE does not suit our adaptive
framework. We generalize the proof of [14, Theorem 4.1] to the adaptive setting.
The reduction goes as follows. First observe that the hint h = ⟨z, e⟩ can also be
computed as ⟨z,b⟩−⟨z,As⟩, with (A,b = As+ e) being the LWE instance. One
can then replace h by ⟨z,As⟩ (since z and b are known to the adversary). This
makes the hint h only depend on s and A. Then, the main idea is to replace the
matrix A by an LWE instance BC+ F and to replace the error e by Fe1 + e2
with e1, e2 chosen from appropriate Gaussian distributions, which results in the
LWE instance (A,b) to be of the form (BC+ F,BCs + F(s + e1) + e2). The
Leftover Hash Lemma allows to argue that Cs is statistically close to uniform
if H∞(s | s+ e1, h) is large enough. This allows to transform the sample to a
form (BC+ F,Bs∗ + Fs+ e) by further reverting the error modification. Note
that s∗ and e are now independent from h, which only depends on A = BC+ F
and s via our first remark, and we can rely on the LWE assumption for instance
(B,Bs∗ + e) to prove pseudorandomness, completing the reduction.

Combining the above two results, we then obtain an IND-CR-CPA UPKE con-
struction based on the standard LWE assumption, leading to the first lattice-
based UPKE with polynomial modulus-to-noise ratio. We now explain how we
transform this construction in order to achieve IND-CU-CCA security.

A Fujisaki-Okamoto transform for UPKE. Prior works [22,1] have relied on the
Naor-Yung paradigm [38] to achieve CCA-security, which requires simulation-
sound NIZK proofs. While this allows to remain in the standard model, efficient
instantiations of NIZKs rely on random oracles, which motivates us to consider
a ROM-based transform following the Fujisaki-Okamoto transform [24]. As we
aim for practical efficiency, we focus on constructing IND-CR-CCA updatable
key encapsulation mechanism (UKEM), a notion we introduce in this work. Our
transform allows to construct IND-CR-CCA UKEM in the ROM with similar
efficiency as that of the underlying IND-CR-CPA UPKE. To encapsulate a key
for a target user with public key pkt (at epoch t), one produces a ciphertext ct as
an encryption of a uniform message m with randomness extracted from applying
a hash function G (modeled as a random oracle) to the public key pkt and the
messagem. The encapsulated key is defined as H(ct,m) for another hash function
(also modeled as a random oracle). Decapsulation recovers m by decrypting ct
and re-encrypts it to check that ct was properly generated, in which case one com-
putes the key H(ct,m). The update mechanism UpdatePk,UpdateSk are exactly
the same as that of the underlying IND-CR-CPA UPKE scheme. Overall, this
is the same transform as for PKE [27] except that pkt is fed as input to G. The
security analysis follows the standard route for FO analyses: we modify oracles
to allow the challenger to simulate the decapsulation oracle without knowledge
of the secret key sk. The main change is that we rely on the additional pkt which
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is fed as an additional input to the hash function G in order to keep track of
possibly valid ciphertexts known by the adversary for each epoch t.

In a concurrent work, Asano et al. [7] define a similar FO transform to build
IND-CR-CCA secure UPKEs. The authors point out a weakness in the generic
CCA transform from [22]: the latter work does not consider the possibility of
updates of the public key that would allow the adversary to come back to the
challenge public key and then trivially break security by querying the CCA
decryption oracle on the ciphertext. This is allowed as in [22], this query is
forbidden only at the challenge epoch. This is solved in [7] by generalizing the
technique of [1], which adjoins a counter to the public key that is incremented at
each update. The construction of [7] relies on using this counter in the derandom-
ization step of their FO transform, which then makes any ciphertext generated
in a previous epoch invalid for decryption queries. Our security model for IND-
CR-CCA UKEM deals with this problem by adding another sanity check in the
decapsulation oracle: we require that the adversary is not allowed to make a
decapsulation query of the challenge ciphertext only if it current public key is
the same as the challenge one.

Adding security against malicious updates. Next, we extend our IND-CR-CCA
construction to achieve IND-CU-CCA security. This is achieved via the standard
Naor-Yung “double-encrypt + NIZK” paradigm [38] applied (only) to the up-
date mechanism: a user’s public key is now a pair of public keys (pkL0 , pk

R). The
first one is an evolving key, for which the user keeps the corresponding secret
key skL0 , while the second one is never updated and its corresponding secret key
is discarded after generation. To update a target public key (pkLt , pk

R) used at
epoch t, one updates the first key as before by revealing the next epoch pub-
lic key pkLt+1 and encrypting the private coins r used for the update. However,
rather than encrypting r under pkLt only, one also encrypts it under pkR. Addi-
tionally, one produces a NIZK argument that the private coins underlying each
ciphertext and used for updating the public key match. The encapsulation and
decapsulation mechanisms are unchanged (and only use pkLt ).

These changes allow us to argue about IND-CU-CCA security using stan-
dard techniques. Let up∗ = (ct∗L, ct

∗
R, π

∗) denote the honest update generated
by the challenger before leaking the secret key, and r∗ denote the underlying
private coins. In the IND-CU-CCA security reduction, one can then replace π∗

by a simulated proof and ct∗R by an encryption of 0 using the zero-knowledge
property and the IND-CPA security of the underlying PKE, since no information
about skR is revealed to the adversary. The soundness of the NIZK argument
guarantees that the adversary cannot produce an accepting argument for invalid
updates. Hence, security can be reduced to that of the underlying IND-CR-CCA
UKEM: the IND-CR-CCA attacker can use the additional key skR to decrypt the
private coins r used by the IND-CU-CCA adversary in its valid updates queries,
and forward r to its IND-CR-CCA challenger for producing the same update.
A crucial remark is that the adversary gets to see an update (and then a NIZK
argument) generated by the challenger only at the very end of the game, when
it compromises the key. In particular, it can no longer query oracles from this
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point and therefore cannot use this proof as part of oracle queries. This allows
us to rely on a NIZK argument which is only computational zero-knowledge.

Concrete parameters. We provide concrete parameters for our (IND-CR-CPA /
IND-CR-CCA) scheme, following design choices of CRYSTALS-Kyber [11]: we
instantiate our construction in the module lattices setting, using binomial dis-
tributions. In particular, we assume that our scheme is secure in the module
setting though our security analysis does not immediately carries over to the
Module Learning With Errors (MLWE) setting [15,32]. To extend it, one would
need a similar reduction from decision entropic-MLWE to MLWE, which is cur-
rently lacking though a recent work from [12] shows a reduction for the search
variants, providing a first step in this direction.

Notice that, as our modulus is small and the key can keep growing with (ad-
versarially generated) updates, we can only guarantee correctness for a bounded
number of updates as the decryption error might become too large at some point.
We introduce a parameter k which is the maximal number of updates for which
correctness is guaranteed with probability extremely close to 1. This parameter
affects the size of the modulus q and forces us to use a larger modulus com-
pared to Kyber (which uses q = 3329 and achieves a ciphertext size of 0.8KB for
128 bit CCA security). Note that in practice, if randomness is honestly sampled
from centered distribution (e.g., r ← U({−1, 0, 1}n)), the expected number of
supported updates is O(k2). In Table 1, we provide parameters for our IND-CR-
CPA/CCA UKEM schemes, for k ∈ {25, 210, 215, 220}, and for a security of λ
close to 128 bits.

λ q k |ct| |up|
DCR-based construction [1] 128 ∞ 8.3KB 1.5KB

Estimate for [22] 120 ≈ 285 25 33KB 360KB

This work 128 ≈ 221 25 1.8KB 5.4KB
128 ≈ 226 210 3.0KB 12KB
116 ≈ 231 215 5.8KB 12KB
128 ≈ 236 220 9.1KB 27KB

Table 1. Concrete parameters for our IND-CR-CCA UKEM.

We provide a brief comparison with the DCR-based (IND-CR-CPA) construc-
tion of [1], whose ciphertext/update size is about 1.5KB. Note that in the latter
work, the authors achieve CCA-security by adding NIZKs, which hurts their
ciphertext size for the CCA setting (about 8.3KB for 128 bits of security), while
using our FO transform leaves us with the same numbers for our IND-CR-CCA
construction. In order to give an insight on the efficiency gain compared to the
construction of [22] (which was not meant to be efficient), we provide estimates of
practical parameters for their scheme. As it requires flooding, we first make the
assumption that flooding by 64 bits suffices (see [37]). In order to give optimistic
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parameters, we relax their statistical leftover hash lemma to a computational
one, i.e., we use an adaptation of the scheme from [34] rather than dual Regev
encryption. This leads to considering parameters for our scheme but with flood-
ing. Also, to achieve IND-CR-CCA security, we apply our efficient FO transform
and not their generic one.

2 Preliminaries

We start by giving out the mathematical background and some useful lemmas
needed in this paper.

Throughout this paper, we use bold upper case letters to denote matrices (A),
bold lower case letters for vectors (a) and italic letters for scalars (a). For any
vector x = (x1, . . . , xn), we use the ℓ2-norm ∥x∥2 =

√∑
x2
i , the ℓ1-norm ∥x∥1 =∑

|xi| and the ℓ∞-norm ∥x∥∞ = max |xi|. For any matrix A = (a1∥ . . . ∥an),
we define ∥F∥2 = max ∥ai∥2, ∥F∥1 = max ∥ai∥1 and ∥F∥∞ = max ∥ai∥∞. We
let ⌊·⌋ denote the floor function and ⌊·⌉ denote the rounding to the closest integer
with ties being rounded up, which are extended to vectors by considering their
coefficient-wise application. For x ∈ Qn and q > p > 0, we write ⌊x⌉p,q for
⌊p/q ·x mod q⌉. In this work, the modulus q will always be implicit and omitted.

For a distribution S, we note s←↩ S the fact that s is sampled using distribu-
tion S. For a random variable X, we write X ∼ S if X follows the distribution S.
We let B(p) denote the Bernouilli distribution of parameter p. We write a ≈δ b
for a, b, δ > 0 if there exists ε < δ such that |a− b| = ε.

We say an algorithm is PPT if it is probabilistic, polynomial-time. We use
log to denote the logarithm in base 2 and ln to denote the logarithm in base e.

We use the convolution product to express the distribution of a sum of ran-
dom variables, which we remind below as well as some additional basic operations
and properties of probability distributions and discrete Gaussian distributions.

Definition 1 (Convolution). Let m ∈ N. Let S1,S2 be two probability distri-
bution on Zm. We define the convolution product S1 ∗ S2 as:

S1 ∗ S2(x) =
∑
y∈Zm

S1(x− y)S2(y).

If X ∼ S1 and Y ∼ S2 are independent random variables, then X+Y ∼ S1 ∗S2.

We recall the definition of min-entropy.

Definition 2 (Min-entropy). Let X,Y be random variables. We define the
min-entropy

H∞(X) = − log
(
max

x
P [X = x]

)
and the average conditional min-entropy:

H∞(X |Y ) = − log
(
Ey[max

x
P [X = x |Y = y]]

)
.
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Definition 3 (Statistical distance). Let S1,S2 be two distributions on Zn.
We define the statistical ∆(S1,S2) as:

∆(S1,S2) =
1

2

∑
x∈Zn

|S1(x)− S2(x)| .

In our security analysis, we will rely on the leftover hash lemma, which we
recall below.

Lemma 1 (Leftover Hash Lemma). Fix ε > 0. Let X be a random variable
on {0, 1}m and E be a random variable possibly correlated to X. Assume that
the conditional min-entropy satisfies H∞(X|E) ≥ k. Let H = {Hn}n∈N where
Hn = {hs}s∈{0,1}d for all n, be a universal hash family with output length m ≤
k − 2 log(1/ε). Then, we have

∆ ((hUd
(X), Ud, E) , (Um, Ud, E)) < ε,

where Ud ∼ U({0, 1}d), Um ∼ U({0, 1}m).

2.1 Gaussian distributions

We give the definition of Gaussian distribution and several useful lemmas that
are used afterwards.

Definition 4 (Gaussian distribution). Let m ∈ N. For any symmetric positive-
definite matrix Σ ∈ Rm×m, define the function gΣ : Rm → R as

ρΣ(x) = exp

(
−πx

TΣ−1x

2

)
.

We define the Gaussian distribution on Zm with center parameter c and covari-
ance matrix parameter Σ as DZm,Σ,c(x) = ρΣ(x− c)/ρΣ(Zm − c). We will also
use, for σ > 0, the notation DZm,σ to denote DZm,σ2Id,0. Additionally, we will
let DZm×n,σ denote the distribution obtained by sampling n vectors from DZm,σ

and viewing them as the columns of a matrix in Zm×n.

Lemma 2 (Gaussian tail-bound, [20, Lemma 2.13]). Let x ∼ DZm,σ, then
for all t > 1, we have

P
[
∥x∥2 ≥ tσ

√
m

2π

]
≤ e−

m
2 (1−t)2 .

Lemma 3 (Gaussian convolution, [10, Lemma 4.12]). Let c1, c2 ∈ Zn.
Let X ∼ DZn,σ,c1

, Y ∼ DZn,σ′,c2
and let S be the distribution followed by X+Y .

Then, if (
1

σ2
+

1

σ′2

)−1/2

>

√
ln(2n(1 + 1

ε ))

π
,

then we have the following inequality

∆
(
S,DZn,

√
σ2+σ′2,c1+c2

)
<

2ε

1− ε
.

10



We now state a discrete Gaussian decomposition result.

Lemma 4 (Gaussian decomposition, instantiated from [36, Lemma 1]).
For m ≥ n, let F ∈ Zm×n be a matrix and let s1(F) be the largest singular value
of F. Take σ, σ1 > 0. Let e1 ∼ DZn,σ1

and e2 ∼ DZm,Σ for

Σ = σ2Id− σ2
1F

TF .

Then, if σ >
√
2σ1s1(F) and σ1 >

√
2 ln(2n(1 + 1/ε))/π, we have:

∆ (S,DZm,σ) <
2ε

1− ε
,

where S is the distribution of Fe1 + e2.

In order to apply Lemma 4, one needs to control the ratio s1(F). This is the
purpose of the following result.

Lemma 5 (Adapted from [2, Lemma 8]). There exists a constant K > 1
such that the following holds. For m ≥ 2n, σ > K

√
n and F←↩ DZm×n,σ

P
[
s1(F) > Kσ

√
m
]
< e−m/K ,

where s1(F) denotes the largest singular value of F

In Section 3, we adapt one of the main results from [14] to reduce LWE
to an adaptive version of extended-LWE. The authors originally reduce LWE
to entropic-LWE. Considering a secret s ∈ Zn

q and a (continuous or discrete)
noise e, their result relies on a bound for the quantity H∞(s | s+ e) which they
call noise-lossiness. We give the following lemma, which is the discrete version
of [14, Lemma 5.2]. A proof is given in Section B for completeness.

Lemma 6. Let q, n,m, σ > 0 with m > n. Let s be a random variable on Zn
q

and e←↩ DZn,σ. If q/σ >
√
ln(4n)/π, then we have:

H∞(s | s+ e) ≥ H∞(s)− n log
( q

σ

)
− 1 .

2.2 Updatable Public Key Encryption

We recall the syntax of Updatable Public Key Encryption (UPKE) and adapt
the underlying IND-CR-CPA security notion defined in [22], with a minor mod-
ification: we define correctness and security with a bound on the number of
updates. This is motivated by the fact that, in our LWE-based scheme, updates
make the key slightly larger and then after a (large but polynomial) number of
updates, correctness of decryption is no longer guaranteed. This results from the
fact that we are able to work over a (small) polynomial modulus.

Definition 5. (Updatable Public Key Encryption) An updatable public key en-
cryption scheme is a tuple UPKE = (KeyGen,Enc,Dec,UpdatePk,UpdateSk) of
PPT algorithms with the following syntax:

11



– KeyGen(1λ) takes as input a security parameter 1λ and outputs a pair (pk, sk).

– Enc(pk,m) takes as input a public key pk and a message m and outputs a
ciphertext ct.

– Dec(sk, ct) takes as input a secret key sk and a ciphertext ct and outputs a
message m′.

– UpdatePk(pk) takes as input a public key pk and outputs an update up and
a new public key pk′.

– UpdateSk(sk, up) takes as input a secret key sk and an update up and outputs
a new secret key sk′.

(k, δ)-Correctness: Let (pk0, sk0)← KeyGen(1λ) be a key pair and k > 0 be an
integer. For t < k, define

(upt+1, pkt+1)← UpdatePk(pkt) and skt+1 ← UpdateSk(skt, upt+1).

The UPKE scheme is said to be (k, δ)-correct, for δ > 0, if for all messages m
and t ≤ k

P [Dec(skt,Enc(pkt,m)) ̸= m] < δ ,

where the probability is over the coins of the underlying algorithms.

We give the definition from [22] which we adapt to the bounded number of
updates setting by adding a parameter k for the number of updates.

Definition 6 (k-IND-CR-CPA security). Let k > 0 be an integer and (KeyGen,
Enc,Dec,UpdatePk,UpdateSk) be a UPKE scheme. Let R be the randomness
space of

UpdatePk. We give the k-IND-CR-CPA security game in Figure 1.

The advantage of A in winning the above game is

AdvIND-CR-CPA
UPKE (A) =

∣∣∣∣Pr [β = β′]− 1

2

∣∣∣∣ .
A UPKE scheme is k-IND-CR-CPA-secure if for all PPT attackers A, the

advantage AdvIND-CR-CPA
UPKE (A) is negligible.

We also recall the definition of γ-spreadness, which allows to bound the
probability that a specific randomness r was used to produce a valid encryption.
It is used in Section 5 for our FO transform.

Definition 7 (γ-spreadness, adapted from [23, Section 2.1]). Let γ > 0.
We say that a UPKE (KeyGen,Enc,Dec,UpdatePk,UpdateSk) is γ-spread if for
all m, c and (pk, sk)← KeyGen(1λ), we have

P [Enc(pk,m) = c] ≤ γ.

12



Parameters: λ, k.

Game(A):
t = 0; ▷ Epoch counter
β ←↩ U({0, 1});
(pk0, sk0)← KeyGen(1λ);
(m⋆

0,m
⋆
1, st)←AOup (pk0);

c⋆ ← Enc(pkt,m
⋆
β);

st←AOup (c⋆, st);
r⋆ ←↩ U(R);
(pk⋆, up⋆)← UpdatePk(pkt, r

⋆);
sk⋆ ← UpdateSk(skt, up

⋆);
β′ ←A(pk⋆, sk⋆, up⋆, c⋆, st);
A wins if β = β′.

Oup(r):
t = t+ 1;
if t > k then

return ⊥;
end

(pkt, upt)← UpdatePk(pkt−1; r);
skt ← UpdateSk(skt−1, upt);

Fig. 1: k-IND-CR-CPA security game.

2.3 Updatable Key Encapsulation Mechanism

We introduce the KEM variant of UPKE, which we term Updatable KEM or
UKEM. Defining the KEM equivalent of UPKE seems particularly relevant con-
sidering that UPKE was introduced as a group messaging primitive, hence re-
quiring real-world efficiency.

We adapt the definitions of IND-CR-CCA and IND-CU-CCA security notions
defined by [22] for UPKEs.

Definition 8 (Updatable KEM (UKEM)). An updatable KEM is a tuple
(KeyGen,Encaps,Decaps,UpdatePk,UpdateSk) of algorithms with the following
syntax:

– KeyGen(1λ) takes as input a security parameter 1λ and outputs a pair (pk, sk).
– Encaps(pk) takes as input a public key pk and outputs an encapsulation c

and a key K.
– Decaps(sk, c) takes as input a secret key sk and an encapsulation c and

outputs a key K ′.
– UpdatePk(pk) takes as input a public key pk and outputs an update up and

a new public key pk′.
– UpdateSk(sk, up) takes as input a secret key sk and an update up and outputs

a new secret key sk′.

(k, δ)-Correctness: Let (pk0, sk0)← KeyGen(1λ) be a key pair and k > 0 be an
integer. For t < k, define

(upt+1, pkt+1)← UpdatePk(pkt) and skt+1 ← UpdateSk(skt, upt+1).

The UKEM scheme is said to be (k, δ)-correct, for δ > 0, if for all t ≤ k

P [Decaps(skt, ct) ̸= Kt | (ct,Kt)← Encaps(pkt)] < δ ,

where the probability is over the coins of the underlying algorithms.
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The k-IND-CR-CCA security corresponds to a variant of k-IND-CR-CPA where
the adversary is given access to a decapsulation oracle. We define k-IND-CR-CCA
in the Random Oracle Model (ROM), as we make use of the Fujisaki-Okamato
transform in Section 5 in order to build our IND-CR-CCA UKEM.

Definition 9 (k-IND-CR-CCA KEM security in the ROM). Let (KeyGen,
Encaps,Decaps,UpdatePk,UpdateSk) be a UKEM with key space K. Let R denote
the randomness space of UpdatePk. We give the game for k-IND-CR-CCA security
for an adversary that has access to a random oracle H in Figure 2.

Parameters: λ, k.

Game(A):
t = 0; ▷ Epoch counter
β ←↩ U({0, 1});
(pk0, sk0)← KeyGen(1λ);
st←AOup,Odec,H (pk0);
(c⋆,K⋆)← Encaps(pkt);
if β = 1 then

K⋆ = U(K);
end

pkchall = pkt;
st←AOup,Odec,H (c⋆, st);
r⋆ ←↩ U(R);
(up⋆, pk⋆)← UpdatePk(pkt, r

⋆);
sk⋆ ← UpdateSk(skt, up

⋆);
β′ ←AH(pk⋆, sk⋆, up⋆, c⋆, st);
A wins if β = β′.

Oup(r):
t = t+ 1;
if t > k then

return ⊥;
end

(pkt, upt)← UpdatePk(pkt−1; r);
skt ← UpdateSk(skt−1, upt);

Odec(c):
if pkt = pkchall ∧ c = c⋆ then

return ⊥;
end

return Decaps(skt, c).

Fig. 2: k-IND-CR-CCA security game in the ROM. Note that if β = 0, then the
value of the key K⋆ is the output of Encaps.

The advantage of A in winning the above game is

AdvIND-CR-CCA
UKEM (A) =

∣∣∣∣Pr [β = β′]− 1

2

∣∣∣∣ .
A UKEM scheme is k-IND-CR-CCA-secure if for all PPT attackers A, the

advantage AdvIND-CR-CCA
UKEM (A) is negligible.

Notice that compared to the IND-CR-CCA definition for UPKE given in [22],
we add a check in the Odec oracle that the current public key pkt is different
from the challenge public key pkchall. This disallows trivial attacks in which an
adversary might make carefully chosen updates that would cancel out in order
to get back to the challenge public key and issue a decryption query on the
challenge. Another approach to solve this is given in [7], which generalizes the
one considered in [1].
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In order to define the stronger k-IND-CU-CCA security notions for UKEM, we
add an algorithm VerifyUpdate to the UKEM syntax that allows a user to check
the validity of an update. Specifically, VerifyUpdate(pk, (pk′, up)) takes as input
the current epoch public key pk and a proposed update (pk′, up) and returns a
Boolean value. k-IND-CU-CCA security aims to guarantee security against ad-
versaries who makes malicious updates.

Definition 10 (k-IND-CU-CCA KEM security in the ROM). Let (KeyGen,
Encaps,Decaps,UpdatePk,UpdateSk,VerifyUpdate) be a UKEM. The security game
for IND-CU-CCA is identical to the IND-CR-CCA game, except for the modi-
fied Oup(·) oracle. We present the modified Oup oracle in Figure 3.

Oup(pk
′, up):

if VerifyUpdate(pkt, (pk
′, up)) = ⊥ then

return ⊥;
end

pkt+1 = pk′;
skt+1 ← UpdateSk(skt, upt+1);
t = t+ 1.

Fig. 3: k-IND-CU-CCA security game in the ROM.

A UKEM scheme is k-IND-CU-CCA-secure if for all PPT attackers A, its
advantage AdvIND-CU-CCA

UKEM (A) is negligible.

In the rest of the paper, we omit the k in k-IND-CR-CPA/k-IND-CR-CCA/k-
IND-CU-CCA when it is implicit.

3 Extended LWE

We start by recalling the Learning With Errors (LWE) assumption.

Definition 11. (Learning With Errors - LWE) Let λ ≥ 0 be a security parame-
ter. Let q = q(λ), n = n(λ),m = m(λ) ≥ 0, S be a distribution on Zn

q and χ be
an error distribution on Zm. The goal of LWEq,n,m,χ(S) for an adversary A is
to distinguish between (A,b = As+ e) and (A,u), for A←↩ U(Zm×n

q ), s←↩ S,
e←↩ χm and u←↩ U(Zm

q ). We define the advantage of A in the LWE game as

AdvLWE(A) := |P [A(A,As+ e)→ 1]− P [A(A,u)→ 1]| .

To keep the notations simple, we write LWEq,n,m,σ for σ > 0, to denote
LWEq,n,m,DZm,σ

(U(Zn
q )).

The extended-LWE assumption claims that pseudorandomness of an LWE
instance (A,As+ e) still holds when the adversary is given an additional hint h
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computed as ⟨z, e⟩ mod q for a small z chosen by the adversary independently
of A. We define Adaptive extended-LWE, an adaptive version of this assumption.
As the name suggests, it allows the adversary to choose the hint vector z adap-
tively, i.e. after having seen the matrix A, which is not allowed in the definition
of the extended-LWE from [39]. Furthermore, we remove the constraint that the
hint vector z be short relative to the modulus q. In Theorem 1, we prove that
LWE reduces to this adaptive version by seeing it as an instance of (adaptive)
entropic-LWE, which generalizes the LWE assumption by allowing the secret s
to be sampled in an arbitrary (fixed) set.

Definition 12 (Adaptive extended-LWE - AextLWE). Let λ ≥ 0 be a security
parameter. Let q = q(λ), n = n(λ),m = m(λ) ∈ N and χ be an error distribution
on Zm. The goal of AextLWEq,n,m,χ for an adversary A is to distinguish between
the case where β = 0 and β = 1 in the interactive game depicted in Figure 4.
We define the advantage of A in the AextLWE game as

AdvAextLWE(A) := |P [A(A,As+ e, z, h)→ 1]− P [A(A,u, z, h)→ 1]| ,

where the elements are distributed as shown in Figure 4.
To keep the notations simple, we write AextLWEq,n,m,σ, for σ > 0, to denote

AextLWEq,n,m,DZm,σ
.

CAextLWE A

A←↩ U(Zm×n
q )

β ←↩ U({0, 1}) A−−−−−−→
z, st← A1(A)

z←−−−−−−
s←↩ U(Zn

q ), e←↩ χm

h = ⟨z, e⟩ mod q

b =

{
As+ e if β = 0

u←↩ U(Zm
q ) if β = 1

b, h
−−−−−→

β′ ← A2(A,b, z, h, st)
β′ ∈ {0, 1}
←−−−−−−−−−

Fig. 4: The decision game for AextLWEq,n,m,χ.

We define the Hermite Normal Form (HNF) variant of Adaptive extended-
LWE, based on the normal form reduction from [6, Lemma 2]. Lemma 7 shows
that the HNF variant reduces to the standard Adaptive extended-LWE.

Definition 13 (HNF Adaptive extended-LWE - HNF-AextLWE). Let λ ∈ N
be a security parameter. Let q = q(λ), n = n(λ),m = m(λ) ∈ N and χ be an
error distribution on Rm. The goal of HNF-AextLWEq,n,m,χ for an adversary A
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is to distinguish between the case where β = 0 and β = 1 in the interactive game
depicted in Figure 5. We define the advantage of A in the HNF-AextLWE game
as

AdvHNF-AextLWE(A) = |P [A(A,As+ e, z0, z1, h)→ 1]− P [A(A,u, z0, z1, h)→ 1]|

where the elements are distributed as shown in Figure 5.
To keep the notations simple, we write HNF-AextLWEq,n,m,σ, for σ > 0, to

denote HNF-AextLWEq,n,m,DZm,σ
.

CHNF-AextLWE A

A←↩ U(Zm×n
q )

β ←↩ U({0, 1}) A−−−−−−→
z0, z1, st← A1(A)

z0, z1←−−−−−−
s←↩ χn, e←↩ χm

h = ⟨z0, s⟩+ ⟨z1, e⟩ mod q

b =

{
As+ e if β = 0

u←↩ U(Zm
q ) if β = 1

b, h
−−−−−−−→

β′ ← A2(A,b, z, h, st)
β′ ∈ {0, 1}
←−−−−−−−−−

Fig. 5: The decision game for HNF-AextLWEq,n,m,χ.

Multiple-secret variants. We consider the multiple-secret variants of all our
assumptions Asp ∈ {LWE,AextLWE,HNF-AextLWE} which consist in consider-
ing k distinct secrets for the same public matrix A, thus replacing the secret
vector s ∈ Zn

q by a secret matrix S ∈ Zn×k
q and the error vector e by an error

matrix E ∈ Zm×k
q . Note that for AextLWE and HNF-AextLWE, the hint h ∈ Zq

also becomes a vector h ∈ Zk
q . Also, the multiple-secret variants for AextLWE

and HNF-AextLWE could allow for a different z for each secret, but we restrict
ourselves to the case where the z is the same for all secrets, as it is all we need
for our proofs.

Using a hybrid argument, one can show that for every adversary A for the
multiple-secret variant of Asp with k secrets, there exists an adversary B with a
similar run-time against the single-secret problem Asp such that A’s advantage
is bounded by k · AdvAsp(B).

Lemma 7. Let q ≥ 25, n ≥ 1,m ≥ 16n + 4 log log q, then any adversary A for
HNF-AextLWEq,n,m′,σ , where m′ = m− 16n− 4 log log q, running in time T can
be used to build an adversary B for AextLWEq,n,m,σ running in time ≈ T , with
advantage

AdvHNF-AextLWE(A) ≤ 4 · AdvAextLWE(B) .
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Proof. Assume A is an adversary against HNF-AextLWE. We construct an ad-
versary B against AextLWE with the claimed advantage as follows.

Adversary B receives a matrix A =
(
AT

0 ∥AT
1

)T ∈ Zm×n
q from the AextLWE

challenger, with A0 ∈ Zn×n
q and A1 ∈ Zm−n×n

q . According to [16, Claim 2.13],
with probability at least 1 − 2e−1 ≥ 1/4, there exist n linearly independent
rows within the first 16n + 4 log log q rows of A and an efficient way to find
them, so that B can reorder the matrix so that A0 is invertible. If it cannot find
such n rows, adversary B aborts. To avoid keeping track of the indices for the
reordering, assume that A is such that A0 is invertible and denote by Ad the

last 15n+ 4 log log q rows of A1 so that A1 = (ÃT
1 ∥AT

d )
T
with Ã1 ∈ Zm′×n

q .

It then computes A∗ = −Ã1A
−1
0 ∈ Zm′×n

q and sends A∗ to adversary A. Ad-

versary A responds with the hint vectors z0 ∈ Zn
q , z1 ∈ Zm′

q . Then, adversary B
forwards z = (zT0 ∥zT1 ∥0m−m′−n)T ∈ Zm

q to its challenger and receives a vector

b =
(
bT
0 ∥bT

1 ∥dT
)T

and a hint h = ⟨z, e⟩ mod q from the AextLWE challenger,

with b0 ∈ Zn
q , b1 ∈ Zm′

q and d ∈ Zm−m′

q . It then computes b∗ = b1+A∗b0 and
sends (b∗, h) to A. Finally, it receives a response bit β from A, which it forwards
to its challenger.

In the case where b was a uniform vector, as A0 is an invertible matrix,
matrix A∗ is uniform and so is b∗ = b1 +A∗b0.

If we are in the case whereb0

b1

d

 =

A0

Ã1

Ad

 s+

e0
e1
ed


for s←↩ DZn,σ, e0 ←↩ DZn,σ, e1 ←↩ DZm′ ,σ and ed ←↩ DZm−m′ ,σ, then

b∗ = Ã1s+ e1 − Ã1A
−1
0 A0s+A∗e0 = A∗e0 + e1.

Furthermore, the hint is exactly

⟨z, e⟩ =
〈
zT0 ∥zT1 ∥0m−m′

, eT0 ∥eT1 ∥eTd
〉
= ⟨z0, e0⟩+ ⟨z1, e1⟩ mod q.

Consequently, adversary A receives a valid HNF Adaptive extended-LWE in-
stance.

Adversary B runs A only once and has to compute the reordering which is
feasible in time poly(λ). It has advantage at least AdvHNF-AextLWE(A)/4, complet-
ing the proof of the lemma. ⊓⊔

We now show that LWE reduces to Adaptive extended-LWE .

Theorem 1. Let q be a prime, ε > 0, n,m, k, γ, σ ≥ 0 and K > 1 be the
constant from Lemma 5. Assume that

1. n log(
√
2n) > (k + 1) log(q) + 2 log(1/ε),

2. m > 2n,
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3. γ > K
√
n,

4. σ > 2Kγ
√
mn,

5. q >
√
2n ln(4n)/π.

Then for any adversary A for AextLWEq,n,m,σ running in time T , there exists
an adversary B for LWEq,k,m,γ running in time poly(m, log q) · T such that:

AdvAextLWE(A) ≤ 2me−
m
2 + 17e−n/K + ε+ (2n+ 1) · AdvLWE(B) .

The first condition of the theorem allows us to argue that there will be enough
entropy on the secret key, even after revealing a leakage on it. Conditions 2 and 4
allow us to apply Lemma 5. Conditions 3 allows us to analyze a discrete Gaussian
convolution (using Lemma 3). Condition 5 allows us to apply Lemma 6. As an
example of parameter instantiation, we can take ε = e−n, n=O(k), m = O(n),
q=nO(1), γ = O(n1/2) and σ = O(n3/2).

The proof of Theorem 1 is adapted from that of hardness of entropic LWE
from [14, Theorem 4.1]. We show that a hint on the error e of the LWE sample
can be viewed as a hint on the secret s. As the hint lives in Zq, it leaks at most
log q bits of entropy, making it an adaptive instance of entropic-LWE, where
the secret retains high entropy. The leftover hash lemma allows to handle the
adaptive part of the proof.

Proof. We define a sequence of games and show that they are computationally
or statistically indistinguishable.

Game G0: This is the original AextLWE game with β = 0. The challenger
samples A ←↩ U(Zm×n

q ) and sends A to adversary A. Adversary A chooses
z ∈ Zm

q and sends it to the challenger. Then the challenger samples s←↩ U(Zn
q )

and e ←↩ DZm,σ, computes b = As + e and h = ⟨z, e⟩ mod q to finally send
(b, h) to A.

Game G1: This is the same game as the last one, except that instead of
computing the hint h as h = ⟨z, e⟩ mod q, the challenger sets h = ⟨z,As⟩ =〈
AT z, s

〉
mod q.

Note that ⟨z,As⟩ = ⟨z,b⟩ − ⟨z, e⟩, where ⟨z,b⟩ is computable by the adver-
sary. Hence this game is computationally equivalent to the last one.

Game G2: Here we change the way A is computed by the challenger. It now
samples B←↩ U(Zm×k

q ), C←↩ U(Zk×n
q ), F←↩ DZm×n,γ and sets A = BC+ F.

Observe thatBC+F corresponds to a sample from the multiple-secret variant
of LWEq,k,m,γ with n secrets. By a hybrid argument, for any efficient adversary B
that distinguishes between G1 and G2, we can build an efficient adversary B′ for
LWEq,k,m,γ such that AdvdistG1,G2

(B) ≤ n · AdvLWE(B′).

Game G3: In this game, the challenger aborts if ∥F∥2 > 2γ
√
m or if s1(F) >

Kγ
√
m.

Lemma 2 and Lemma 5 show that this can happen with probability at most
me−

m
2 + 4e−n/K . This implies that any adversary B has advantage at most

AdvdistG2,G3
(B) ≤ me−

m
2 + 4e−n/K in distinguishing between games G2 and G3.
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Game G4: This time, we change the way the error e is computed by the chal-
lenger. Let σ1 =

√
2n. Instead of sampling e←↩ DZm,σ, the challenger computes

Σ = σ2Id− σ2
1F

TF to sample e2 ←↩ DZm,Σ, e1 ←↩ DZn,σ1
and set e = Fe1 + e2.

Note that now

b = (BC+ F)s+ e1F+ e2 = BCs+ F(e1 + s) + e2.

Let S be the distribution of the random variable Fe1 + e2. By Lemma 4
we have ∆(S,DZm,σ) < 4e−m. Hence any adversary B has advantage at most

AdvdistG3,G4
(B) ≤ 4e−m in distinguishing between games G3 and G4.

Game G5: In this game, when computing b, the challenger samples a value
s⋆ ←↩ U(Zk

q ) and instead of computing b = BCs + F(s + e1) + e2, it sets
b = Bs⋆ + F(s+ e1) + e2.

Here we replaced Cs by a uniform value s⋆ ←↩ U(Zk
q ). To show that this

modification is statistically indistinguishable for the adversary, we show that s
has enough entropy to apply the leftover hash lemma. Indeed, apart from Cs,
the information that the adversary has in game G4 can be computed from B,
F, e2, e1 + s and h =

〈
AT z, s

〉
. Only the last two values depend on s. We have

H∞(s | s+ e1, h) ≥ H∞(s | s+ e1)− log(q)

≥ H∞(s)− n log(
q

σ1
)− log(q)

= n log(q)− n log(
q

σ1
)− log(q)

= n log(σ1)− log(q)

> k log(q) + 2 log(1/ε).

The second inequality comes from applying Lemma 6 and the last one comes
from the first condition of the theorem. Indeed, as σ1 =

√
2n, Condition 1 can

be rewritten as n log(σ1) > (k + 1) log(q) + 2 log(1/ε). Lemma 1 gives that

∆ ((C,Cs, s+ e1, h), (C, s⋆, s+ e1, h)) < ε,

which implies that any adversary B distinguishing between games G4 and G5

has advantage at most AdvdistG4,G5
(B) < ε.

Game G6: Here we revert the modification made on the error sampling. Instead
of computing the error e as a decomposition e = Fe1+e2, we sample e←↩ DZm,σ

again. As for the analysis of game G4, this game is statistically close from the
last via Lemma 4.

Game G7: In this game, we still have A = BC + F. However this time, the
challenger samples u ←↩ U(Zm

q ) and sets b = u, so that the adversary receives

(b = u, h =
〈
AT z, s

〉
mod q).

Assume we have a distinguisher A between D6 and D7. We build an ad-
versary B against LWEq,k,m,σ that has the same advantage. Adversary B re-
ceives B ∈ Zm×k

q and b ∈ Zm
q from its LWEq,k,m,σ challenger. It then samples
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C ←↩ U(Zk×n
q ) and F ←↩ DZm×n,γ , sets A = BC + F and sends A to A.

From there, it receives a vector z ∈ Zm
q from A, which it uses to compute

h =
〈
AT z, s

〉
mod q, for s←↩ U(Zn

q ). Finally, adversary B sets b′ = b+ Fs and
sends (b′, h) to A.

If b = Bs⋆ + e, then b′ = Bs⋆ + e + Fs, so A was given a tuple from
game G6. If b ←↩ U(Zm

q ), then b′ ∼ U(Zq) and A was given a tuple from

game G7. We thus have AdvdistG6,G7
(A) = AdvLWE(B). As we assumed γ < σ,

LWEq,k,m,σ is no easier than LWEq,k,m,γ . By using Lemma 3 and the condition
on γ, one can build an adversary B′ for LWEq,k,m,γ . It simply adds a Gaussian

noise of standard deviation
√
σ2 − γ2 to the LWE sample and calls B on this

sample, so that AdvLWEq,k,m,σ (B) ≤ AdvLWEq,k,m,γ (B′) + e−n.
From now on we only revert the modifications that were made at the begin-

ning.

Game G8: In this game, the challenger does not abort anymore if ∥F∥2 > 2γ
√
m,

s1(F)/sn(F) > C1 or if s1(F) > C2σ
√
m. As for the analysis of game G3, this

induces an advantage discrepancy ≤ me−
m
2 + 4e−n/K .

Game G9: Here A is again sampled as A ←↩ U(Zm×n
q ). As for the analysis of

game G2, this game is computationally indistinguishable from the last by the
hardness of the LWEq,k,m,γ assumption.

Game G10: This is the final game. The hint h =
〈
AT z, s

〉
is now computed

as h = ⟨z, e⟩ for e ←↩ DZm,σ. At the end, the adversary thus receives the tuple
(b←↩ U(Zm

q ), ⟨z, e⟩). This change results in a computationally equivalent game.

Indeed, both
〈
AT z, s

〉
and ⟨z, e⟩ are publicly computable as s and e are values

totally unrelated to b. This is the β = 1 case in the AextLWE game. By collecting
all the inequalities:

AdvAextLWE(A) ≤ 2me−
m
2 + 17e−n/K + ε+ (2n+ 1)AdvLWE(B),

which completes the proof of Theorem 1. ⊓⊔

4 IND-CR-CPA UPKE from LWE

We now describe a UPKE scheme with security based on the HNF-AextLWE
assumption. As already shown, it is implied by the standard LWE assumption.
Our scheme, detailed in Figure 6, avoid noise flooding by taking advantage of the
HNF-AextLWE assumption defined in Section 3. We then provide the first efficient
UPKE scheme based on lattices. Our construction follows the lines of [34] which
underlies Kyber [11].

In contrast, the only prior lattice-based construction, proposed in [22] and
based on the Dual-Regev PKE from [25], is highly inefficient: (i) it supports only
binary plaintexts, (ii) updates are done via bit-by-bit encryption of the private
coins, and (iii) the security analysis relies on noise flooding, which requires a
super-polynomial modulus.
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Public parameters: (n, q, p, σ)

KeyGen(1λ):
A←↩ U(Zn×n

q ), s, e←↩ DZn,σ;
pk = (A,b = As+ e), sk = s;
return (pk, sk).

Enc(pk,µ ∈ Zn
p ):

X,E←↩ DZn×n,σ and f ←↩ DZn,σ;
return ct = (XA+E, Xb+ f + ⌊q/p⌋ · µ mod q).

Dec(sk = s, ct = (ct0, ct1)):
v = ct1 − ct0s;
return ⌊p/q · v⌉p.

UpdatePk(pk = (A,b)):
r,η ←↩ DZn,σ;
return (pk′ = (A,b+Ar+ η), up = Enc(pk, r)).

UpdateSk(sk, up):
return sk′ = sk + Dec(sk, up).

Fig. 6: LWE-based IND-CR-CPA UPKE construction.

Theorem 2. Let ε, δ ∈ (0, 1), k > 0. Let q, p be primes and n,m> 0 and σ> 0
such that σ ≥

√
2 ln(2n(1 + 1/ε))/π. Assuming the hardness of HNF-AextLWE,

the scheme presented in Figure 6 is k-IND-CR-CPA secure. More precisely, for
any adversary A for the k-IND-CR-CPA game, there exists an adversary B for
HNF-AextLWE running in similar time as A such that:

AdvIND-CR-CPA
UPKE (A) ≤ 14ε

1− ε
+ (2n+ 1) · AdvHNF-AextLWE(B) .

Furthermore, assuming q > 2p · (2y2σ2nk + yσ) and p > 2yσ where y =√
−2 log(δ/(4n)), the scheme is (k, δ)-correct.

Proof. The proof of correctness is detailed in the appendix (Appendix B). We
also provide a proof of γ-spreadness there, which is relevant for the next section.

We show the IND-CR-CPA security of the scheme. Let us start by defining all
the security games.

Game G0: This is the original IND-CR-CPA game. Adversary A receives pk0 =
(A,b0 = As + e) and queries the Oup(·) oracle with randomness (r1,η1), . . . ,
(rchall,ηchall) until it asks for a challenge at epoch chall for a pair of plaintexts
(µ0,µ1). At this epoch, the secret key is skchall = s + ∆r

chall where ∆r
chall =∑chall

i=1 ri and the public key is

pkchall =
(
A, bchall = A(s+∆r

chall) + e+∆η
chall

)
,
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with ∆η
chall =

∑chall
i=1 ηi. It receives a challenge

c∗ =
(
Tchall = XchallA+Echall, padchall = Xchallbchall + fchall + ⌊q/p⌋ · µβ

)
,

for β ∈ {0, 1} uniform.
Then the adversary queries the Oup(·) oracle until the last epoch last. At this

epoch, the secret key is sklast = s+∆r
last, where ∆

r
last =

∑last
i=1 ri and the public

key is pklast = (A,blast = A(s + ∆r
last) + e + ∆η

last), where ∆η
last =

∑last
i=1 ηi.

The challenger samples the final update r∗,η∗ ←↩ DZn,σ and sends

up∗ = Enc(pklast, r
∗)

= (Tlast = XlastA+Elast, padlast = Xlastblast + flast + ⌊q/p⌋ · r∗)

together with pk∗ = (A,blast + Ar∗ + η∗) and sk∗ = s + ∆r
last + r∗ to the

adversary.

Game G1: In this game we modify the update up∗. Instead of computing it as

up∗ = (Tlast = XlastA+Elast, padlast = Xlastblast + flast + ⌊q/p⌋ · r∗),

the challenger sets

up∗ = (Tlast = XlastA+Elast, padlast = Xlastblast + flast + ⌊q/p⌋ · (−s)).

This modification results in a computationally equivalent game. Indeed ad-
versary receives up∗ together with sk∗ = s+∆r

last + r∗ with ∆r
last known to the

adversary. This modification is just a substraction of ⌊q/p⌋ · (s+ r∗) in padlast.

Game G2: In this game, we again modify the update. This time the challenger
computes the update up∗ as

Tlast = XlastA+Elast − ⌊q/p⌋ · Id,
padlast = Tlast(s+∆r

last)−Elast(s+∆r
last) +Xlast(e+∆η

last)

+ flast + ⌊q/p⌋ ·∆r
last.

Notice that

padlast = Xlastblast + flast + ⌊q/p⌋ · (−s).

Therefore, the only difference with the previous game is that we subtract a
publicly computable element ⌊q/p⌋ · Id in Tlast, which implies that this game is
computationally equivalent to the last one.

Game G3: In this game, instead of computing Tlast as Tlast = XlastA+Elast−
⌊q/p⌋ · Id the challenger sets Tlast uniformly, i.e., Tlast ←↩ U(Zn×n

q ).
Lemma 8 below states that games G2 and G3 are computationally indistin-

guishable. The proof relies on the hardness of HNF-AextLWE. In particular, any
adversary B has advantage at most Adv(B) ≤ n ·AdvHNF-AextLWE at distinguishing
games G2 and G3.
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Game G4: Here, instead of having the challenger sample s, e ←↩ DZn,σ at the
start of the game, and r∗,η∗ ←↩ DZn,σ at the end and setting sk∗ = s+r∗+∆r

last

and pk∗ = (A,A(s+∆r
last + r∗) + e+∆η

last + η∗), we do the following.
Let us define distributions S, St and Sẽ as:

S = DZn,σ
√
2, St = DZn, σ√

2
, t2
, and Sẽ = DZn, σ√

2
, ẽ2
.

Then, in game G4, the challenger samples t, ẽ ←↩ S at the beginning of the
game, then samples s←↩ St, e←↩ Sẽ and finally sets sk∗ = t+∆r

last and pk∗ =
(A,At+ ẽ+A∆r

last +∆η
last).

Let δ = 2ε/(1 − ε). Lemma 3 shows that this change only induces a sta-
tistically negligible bias. Specifically, assuming σ ≥

√
2 ln(2n(1 + 1/ε))/π, t is

within statistical distance at most δ from the distribution of s+ r∗ in game G3,
and the marginal distribution of s in game G4 with respect to the adversary’s
view is:

P [s = x] =
∑
y∈Zn

P [s = x|t = y]P [t = y]

=
∑
y∈Zn

DZn, σ√
2

(
x− y

2

)
DZn,σ

√
2(y)

=
∑
y∈Zn

DZn,σ
√
2(2x− y)DZn,σ

√
2(y)

≈δ DZn,2σ(2x) = DZn,σ(x).

The fourth equality comes from applying Lemma 3 for the convolution of two
Gaussian distributions with the same standard deviation. The same argument
applies for ẽ and e. Hence any adversary B has advantage at most 4δ = 8ε/(1−ε)
in distinguishing games G3 and G4.

Game G5: In this game, we replace b0 and up∗ = (Tlast,padlast) by uniform
elements. Note thatTlast is already uniform since gameG3. Hence, the challenger
samples b0,padlast ←↩ U(Zn

q ), and sets pk0 = (A,b0) at the start of the game,
and returns up∗ = (Tlast,padlast) as the last update message.

Lemma 9 below states that this game and the previous one are computation-
ally indistinguishable under the LWE assumption.

Game G6: This is the final game. Here, the challenger replaces the challenge c∗

to make it uniform: it samples Tchall ←↩ U(Zn×n
q ) and padchall ←↩ U(Zn

q ), and
then sets c∗ = (Tchall,padchall).

Remember that in game G5, we have c∗ = (XchallA+Echall,Xchallbchall +
fchall + ⌊q/p⌋ · µβ). We can rewrite c∗ in a matrix form as:

Xchall

(
A∥bchall

)
+

(
Echall∥fchall

)
+ ⌊q/p⌋ ·

(
0∥µβ

)
(1)

with A ←↩ U(Zn×n
q ) and bchall = b0 + A∆r

chall + ∆η
chall. Recall that we have

b0 ←↩ U(Zn
q ) since game G5. The last column of Equation (1) is

(Xchallb0 + fchall) + (Xchall(A∆r
chall +∆η

chall)) + ⌊q/p⌋ · µβ .
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The first term is a multiple-secret LWE sample that is independent of any ad-
verserially chosen value and the second one can be viewed as an HNF-AextLWE
hint on the secret Xchall with the vector v = A∆r

chall+∆η
chall. Note that Equa-

tion (1) does not involve a hint on the error of the multi-sercet LWE sample,
hence taking the 0 vector for the second part of the hint vector suffices.

The above indicates that the modification between this game and game G5

can be analyzed by using the multiple-secret variant of HNF-AextLWEq,n,n+1,σ

with n secrets and hint vector z = [vT ∥0T ]T . Consequently, any adversary A
has advantage at most n · AdvHNF-AextLWE in distinguishing between games G5

and G6.
Note that in game G6, the adversary has no information on the challenge µβ .

Hence AdvG6(A) = 0. We obtain

AdvIND-CR-CPA
UPKE (A) ≤ 10ε

1− ε
+ (2n+ 1) · AdvHNF-AextLWE.

This completes the proof, up to Lemmas 8 and 9 below. ⊓⊔

Lemma 8. For any adversary A that distinguishes between games G2 and G3,
there exists an efficient algorithm B for HNF-AextLWEq,n,n,σ, calling A once,

such that AdvdistG2,G3
(A) ≤ n · AdvHNF-AextLWE(B).

Proof. This proof constructs an algorithm B for the multiple-secret variant of the
HNF-AextLWE assumption with n secrets, using a distinguisher A for games G2

and G3.
Algorithm B receives a matrix A ∈ Zn×n

q from the HNF-AextLWE challenger.
Then it samples s, e ←↩ DZn,σ and sets pk0 = (A,b0 = As + e), forwards pk0
to A and acts as A’s challenger until the last update phase where it has to
send up∗ and sk∗ to A. At this stage, algorithm B knows the sum of all the
updates ∆r

last and the sum of all the noises used for each updates ∆η
last as A

has finished querying the Oup oracle.
The HNF-AextLWE challenger expects vectors z0, z1 for which to send a

hint h. Let Xlast ←↩ DZn×n,σ be the secret matrix and Elast ←↩ DZn×n,σ be
the error matrix sampled by the challenger in the multiple-secret variant of
HNF-AextLWE. Algorithm B sets z0 = e+∆η

last and z1 = −(s+∆r
last).

It then receives from the challenger a matrix B ∈ Zn×n
q and a hint h =

Xlastz0 + Elastz1 = (Xlast∥Elast)z, where z =
(
zT0 ∥zT1

)T
. The matrix B is

either uniform or of the form XlastA+Elast.
Adversary B sets

up∗ = (Tlast = B− ⌊q/p⌋ · Id, Tlast(s+∆r
last) + h+ flast + ⌊q/p⌋∆r

last)

=
(
Tlast, Tlast(s+∆r

last) +Xlast(e+∆η
last)−Elast(s+∆r

last)

+ flast + ⌊q/p⌋∆r
last

)
.

It also sets pk∗ = (A,b0+A(∆r
last+ r∗)+∆η

last+η∗) and sk∗ = s+∆r
last+ r∗,

where flast, r
∗,η∗ ←↩ DZn,σ.
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The case where B is uniform corresponds to adversary A playing game G3

and the case where B = XlastA + Elast corresponds to A playing game G2.
Hence B has the same advantage as A.

By a hybrid argument, there exists an adversary B′ for HNF-AextLWEq,n,n,σ

such that the advantage of B in the multiple-secret variant of HNF-AextLWE
with n secrets can be bounded by n · AdvHNF-AextLWE(B′), completing the proof.

⊓⊔

Lemma 9. For any adversary A that distinguishes between games G4 and G5,
there exists an adversary B for LWEq,n,2n,σ/2 calling A once, such that:

AdvdistG4,G5
(A) ≤ AdvLWE(B) + 6ε

1− ε
.

Proof. Let us build an adversary B for LWEq,n,2n,σ/2 that uses any distinguisherA
between games G4 and G5.

Adversary B receives a uniform B ∈ Z2n×n
q and a vector c ∈ Z2n

q from the
LWE challenger. The vector c is either uniform or computed as an LWE sample
with secret s ←↩ DZn,σ/2. Now adversary B samples Elast,Xlast ←↩ DZn×n,σ. It
then computes

B′ = MB+

(
0

Elast

)
, with M =

(
Id 0

Xlast Id

)
∈ Z2n×2n

q

and parses B′ as
(
AT ∥TT

last

)T
. Let t, ẽ←↩ S = DZn,σ

√
2. After that, it samples

elements s′ ←↩ DZn,σ/2,t/2 and η, f ′ ←↩ DZn,σ/2,ẽ/2 that are used to adjust the
standard deviations of the discrete Gaussian distributions involved in the proof.

Then it sets e′ =
(
ηT ∥f ′T

)T
and c′ = M(c + e′) + MBs′ and parses c′ as(

bT
0 ∥uT

1

)T
.

From there, adversary B runs as A’s challenger and sets pk0 = (A,b0). At
epoch last, it computes

up∗ = (Tlast,u1 + (Tlast −Elast + ⌊q/p⌋ · Id)∆r
last) +Xlast∆

η
last.

If A returns G4 then B guesses that c is an LWE sample and if A returns G5 it
guesses that it is uniform.

If c is uniform, as M is invertible, B′ and c′ are also uniformly distributed
and adversary A is playing game G5.

If c = Bs+ (eT ∥fT )T , for s←↩ DZn,σ/2 and e, f ←↩ DZn,σ/2, then

c′ = M

(
Bs+

(
e+ η
f + f ′

))
+MBs′

=

(
A

Tlast −Elast

)
(s+ s′) +

(
e+ η

Xlast(e+ η) + f + f ′

)
=

(
b0

u1

)
.
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Let us set s̄ = s+ s′, ē = e+ η, f̄ = f + f ′. Then, using the equation above, we
have the following:

up∗ = (Tlast, u1 + (Tlast −Elast + ⌊q/p⌋ · Id)∆r
last +Xlast∆

η
last)

= (Tlast, (Tlast −Elast)s̄+Xlast(ē+∆η
last) + f̄

+ (Tlast −Elast + ⌊q/p⌋ · Id)∆r
last)

= (Tlast, (Tlast −Elast)(s̄+∆r
last) +Xlast(ē+∆η

last) + f̄ + ⌊q/p⌋ ·∆r
last).
(2)

Let δ = 2ε/(1 − ε), for ε ∈ (0, 1). As s ←↩ DZn,σ/2 and s′ ←↩ DZn,σ/2,t/2,
Lemma 3 gives that the distribution of s̄ has statistical distance at most δ
from DZn,σ/

√
2,t/2. Similarly, errors η and f ′ were chosen such that ē and f̄

are within statistical distance at most δ from DZn,σ/
√
2,ẽ. The equation above

shows that up∗ is statistically close (at distance at most 3δ) from its value in
game G4, thus A can be viewed as playing game G4.

Overall, algorithm B has advantage at least AdvdistG4,G5
(A) − 3δ, completing

the proof. ⊓⊔

5 A UPKE Fujisaki-Okamoto Transform

In this section, we describe a transform from an IND-CR-CPA UPKE into an
IND-CR-CCA UKEM following the Fujisaki-Okamoto [24] technique.

Definition 14 (FO-transform for UPKEs). Let UPKE be a UPKE, and G
and H be two functions modeled as random oracles. We define the transform
FO(UPKE,G,H) in Figure 7.

KeyGen = UPKE.KeyGen.

Encaps(pk):
m←↩ U(M);
c← UPKE.Enc(pk,m;G(pk,m));
K = H(m, c);
return (c,K).

Decaps(sk, c):
m′ ← UPKE.Dec(sk, c);
if c ̸= UPKE.Enc(pk,m′;G(pk,m′))

then return ⊥;
return K′ = H(m′, c).

UpdatePk = UPKE.UpdatePk.

UpdateSk = UPKE.UpdateSk.

Fig. 7: Transform FO(UPKE,G,H) for a UPKE using random oracles G,H.

Our FO transform is essentially the KEM⊥ construction from [27]. We add pk
to the inputs of the hash function used to determinize the Enc algorithm in order
to prevent trivial attacks, given the ability of the adversary to update the key
pair.
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Theorem 3 (FO transform for UPKEs). Let γ, δ ∈ (0, 1), k > 0. Let
UPKE = (Enc,Dec,UpdatePk,UpdateSk) denote a γ-spread and (k, δ)-correct k-
IND-CR-CPA UPKE scheme. Then the UPKE FO(UPKE,G,H) is a (k, δ)-correct
k-IND-CR-CCA UKEM in the ROM.

More precisely, for any adversary A for the k-IND-CR-CCA UKEM game in
the ROM making at most qG queries to oracle G, qH queries to oracle H and qD
queries to oracle Odec, there exists an adversary B for the k-IND-CR-CPA game
of UPKE with a similar running time such that:

AdvIND-CR-CCA(A) ≤ qG · δ + qD · γ + 2

(
AdvIND-CR-CPA(B) + qG + qH

|M|

)
.

The proof of the above theorem follows standard techniques for FO analysis
(e.g., [27]), and we postpone it to the appendix (Appendix C).

Note that we rely on the γ-spreadness of the underlying UPKE scheme.
We prove this property for the scheme from Section 4 in the appendix (Ap-
pendix B.3).

6 Obtaining IND-CU-CCA Security

In this section, we further boost security in order to achieve IND-CU-CCA-
security. As in [1], we use a NIZK argument that two keys encrypt the same
message in order to make a reduction from IND-CU-CCA to IND-CR-CCA. This
technique allows to extract the randomness used by the adversary for the oracle
queries to Oup(·), to forward it to the update oracle of the IND-CR-CCA chal-
lenger. We give the definitions about Non Interactive Zero Knowledge (NIZK)
argument in the ROM in the appendix (Appendix A).

Let UPKE = (KeyGen,Enc,Dec,UpdatePk,UpdateSk) be a k-IND-CR-CPA
UPKE, for some k > 0. Define UKEM = (KeyGen,Encaps,Decaps,UpdatePk,
UpdateSk) as the k-IND-CR-CCA UKEM scheme obtained by applying our FO
transform from Section 5 to UPKE, using G,H modeled as random oracles. Let F
be a third function, also modeled as a random oracle. We assume that UpdatePk
proceeds in two parts (this is the case for all known constructions, including
the one from Section 4): UpdatePk(pk) = (Enc(pk, r),NewPk(pk, r)), i.e., a first
part which encrypts the randomness of the update using the UKEM encryption
algorithm, and a second one which returns the updated public key. Let us define
the language

LUKEM
up = {(pk0, pk1, pk′, ct0, ct1) | ∃r0, r1, r,
ct0 = Enc(pk0, r; r0) ∧ ct1 = Enc(pk1, r; r1) ∧ (pk′, ct0) = UpdatePk(pk0; r)}.

Let Π = (ProveF,VerifyF) a NIZK argument in the random oracle for LUKEM
up .

We construct an k-IND-CU-CCA UKEM as described in Figure 8.

Theorem 4. Let UPKE,UKEM, Π be defined as above. Then, the construction
UKEM described in Figure 8 is an k-IND-CU-CCA UKEM. Specifically, for any
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KeyGen(1λ):
(pk0, sk0)← KeyGen(1λ);
(pk1, sk1)← KeyGen(1λ);
return pk = (pk0, pk1), sk = sk0.

Encaps(pk):
parse pk as (pk0, pk1);
(c,K)← Encaps(pk0);
return (c,K).

Decaps(sk, c) = Decaps(sk, c).

UpdatePk(pk):
parse pk as (pk0, pk1);
sample r ←↩ R;
pk′

0 ← NewPk(pk0, r);
ct0 ← Enc(pk0, r);
ct1 ← Enc(pk1, r);
π ← ProveF(pk0, pk1, pk

′
0, ct0, ct1, r);

return up = (ct0, ct1, π), pk
′
= (pk′

0, pk1).

VerifyUpdate(up, pk
′
):

parse up as (ct0, ct1, π) and pk
′
as (pk′

0, pk1);
return VerifyF((pk0, pk1, pk

′
0, ct0, ct1), π);

UpdateSk(up, pk
′
):

if VerifyUpdate(up, pk
′
) = 0 then

return ⊥;
end

parse up as (ct0, ct1, π);
run UpdateSk(sk, ct0).

Fig. 8: Construction of a IND-CU-CCA UKEM.

adversary A against the k-IND-CU-CCA security of UKEM, there exist adver-
saries B, C,D, E with running times similar to A’s such that:

AdvIND-CU-CCA(A) ≤ AdvIND-CR-CCA
UKEM (B)+AdvIND-CR-CPA

UPKE (C)+AdvzkΠ(D)+AdvsoundΠ (E) .

The proof closely follows the one of IND-CU-CCA security of the construction
from [1] and is detailed in the appendix (Appendix D).

7 Concrete Parameters

In this section, we give some concrete parameters for the scheme presented in
Section 4, which can directly be transformed into an IND-CR-CCA UKEM by
applying the FO transform from Section 5. We focus on the latter. We conjecture
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that security holds in the module setting and use the lattice-estimator SAGE
module (commit fd4a460) from [3] to estimate the security of the given parameter
sets. For our UPKE/UKEM, we consider the module variant of the scheme
presented in Section 4, i.e., we define R = Z[X]/(Xd + 1) and Rq = R/qR and
we consider the base ring to be R instead of Z.

Note that, for p > 0 a prime, the message space of Enc for the module variant
isM = Rn

p which is of size pdn. For optimization purposes, we drop the last n−1
rows of the whole ciphertext computed by Enc in our encapsulation mechanism,
so that an encapsulation is just:

c = (xTA+ eT ,xb+ f + ⌊q/p⌋m)

for x, e ∈ Rn
q , f ∈ Rq and m ∈ Rp. The message space is now M = Rp, of

size pd. This optimization is made possible by considering the UKEM, which
only require a message space with at least λ bits of entropy, which is the case
when setting d = 256. The whole message space Rn

p is only used to encrypt
updates, as an update changes all components of the secret key.

Also, as done in [11], we replace Gaussian distributions by the centered bino-
mial distributions Bη, which for η > 0, samples elements (ai, bi)i≤η ←↩ U({0, 1}2)
and returns

∑η
i=1 (ai − bi). Samples from Bη are contained in [−η, η], and we

choose the modulus q such that perfect correctness (δ = 0) is guaranteed up to
a bounded number of (possibly malicious) updates. We let k denote this bound,
and provide parameters for k ∈ {25, 210, 215, 220}. We are assuming worst-case
updates and then make q scale linearly with k. It could be tempting to make it
scale with

√
k as updates are symmetric and centered in 0 though we should not,

as they are chosen by the attacker. Due to this requirement, our UPKE/UKEM
suffers from a loss compared to Kyber, which can take q as small as 3329 and
then have ciphertexts of size 0.8KB.

As we are working in the UPKE setting, we consider that the adversary gets
a leakage s+r on the initial secret key s, which roughly halves the variance of the
distribution of s in the adversary’s view (as shown in the proof of Theorem 2).
We use a script to compute the average variance left on s conditioned on the
value of s + r. We obtain that for s ←↩ Bn

2η, we are left on average as if s was
sampled from Bn

η . This is taken into account for the security estimates.
Our parameters are given in Table 2. Note that as done in Kyber, in order to

have fast multiplication using the Number Theoretic Transform in the ring, we
take modulus q = 1 mod 2d. This is the first practical lattice-based construction
of UPKE/UKEM, hence there are no equivalent constructions to compare our
results to. We achieve similar efficiency as the IND-CR-CPA construction of [1],
which is based on the DCR assumption achieves a ciphertext and update size
of 1.5KB (for the CPA case only, although our FO transform applies to their
scheme). Note that by increasing d, the matrices involved become smaller. Hence,
a tradeoff can be made to reduce the sizes of the updates at the cost of increas-
ing ciphertext size. For small number of updates, we also apply the bit-dropping
technique from Kyber to improve parameters. This optimization drops parts of
the least significant bits of the ciphertexts to reduce their size. We use the script
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provided at https://github.com/pq-crystals/security-estimates to esti-
mate the correctness loss implied by using this technique.

λ q n d p η δ k |ct| |up|
DCR-based construction [1] 128 0 ∞ 8.3KB 1.5KB

Estimate for [22] 120 ≈ 285 11 256 21 10 0 25 33KB 360KB

This work 128 ≈ 221 3 256 5 2 2−136 25 1.8KB 5.4KB
128 ≈ 226 4 256 5 2 0 210 3.0KB 12KB
116 ≈ 231 2 512 5 2 0 215 5.8KB 12KB
128 ≈ 236 3 512 5 2 0 220 9.1KB 27KB

Table 2. Parameter sets for the module variant of our IND-CR-CCA UKEM.

IND-CU-CCA instantiation. In order to add security against chosen updates via
our transform from Section 6, we can further add a computationally sound NIZK
argument for LUKEM

up in the updates. In the module setting, the language LUKEM
up

can be defined as:

LUKEM
up = {(pk0, pk1, pk′, ct0, ct1) | ∃X0,X1,E0,E1 ∈ Rn×n, f0, f1, r ∈ Rn

ct0 = (X0A+E0,X0b+ f0 + ⌊q/p⌋ · r) mod q ∧ ∥X0∥2, ∥E0∥2, ∥f0∥2 < B0

∧ ct1 = (X1Ã+E1,X1b̃+ f1 + ⌊q/p⌋ · r) mod q ∧ ∥X1∥2, ∥E1∥2, ∥f1∥2 < B0

∧ ∥b′ − (b+Ar)∥2 ≤ B1 ∧ ∥r∥2 < B1 }.

where pk0 = (A,b), pk1 = (Ã, b̃), pk′ = (A,b′) and B0, B1 are bounds for
correctness.

Proving membership in LUKEM
up then corresponds to proving 4 norm bounds

for matrices, 4 norm bounds for vectors and 2n2 + 2n linear equations over Rq.
This can be achieved by applying [33], which allows to prove exact norm bounds
and linear relations using a commit-and-prove protocol. This only affects the size
of the updates, since the ciphertext remains the same as in the IND-CR-CCA
setting.
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14. Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In:
EUROCRYPT (2020)

15. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS (2012)

16. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehle, D.: Classical hardness
of learning with errors. In: STOC (2013)

17. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: CRYPTO (2003)

18. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: EUROCRYPT (2003)

19. Cronin, E., Jamin, S., Malkin, T., McDaniel, P.: On the performance, feasibility,
and use of forward-secure signatures. In: CCS (2003)

20. Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector problem
with a distance guarantee. In: CCC (2014)

21. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Efficient public-key cryp-
tography in the presence of key leakage. In: ASIACRYPT (2010)

22. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: TCC (2021)
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Appendix

A Non-Interactive Zero-Knowledge Argument

In this section, we recall the definition of NIZK arguments. We focus on defini-
tions in the ROM, without a trusted setup, as these are the ones we aim to use
for our instantiations.

Definition 15 (NIZK in the ROM). Let L ⊆ {0, 1}∗ an NP language, defined
by an efficient relation R, such that x ∈ L ⇔ ∃w ∈ {0, 1}q(|x|) : R(x,w) = 1, for
some polynomial q. Let H denote a hash function, modeled as a random oracle.
A non-interactive zero-knowledge argument in the ROM for L is a pair of PPT
algorithms (ProveH,VerifyH), such that:

- ProveH(x,w) : on input a statement x and a witness w, returns a proof π;

- VerifyH(x, π) : on input a statement x, and a proof π, returns 0 or 1.

We further require the following properties.

Completeness. For all x,w such that R(x,w) = 1, we have:

VerifyH(x,ProveH(x,w)) = 1 .

Computational soundness. For all x /∈ L, for all PPT adversary A:

Pr[VerifyH(x, π⋆) = 1 | π⋆ ← AH(x)] ≤ negl(λ) ,

where the probability is over the choice of the random oracle. We let the above
probability be denoted by AdvsoundΠ (A).
Computational zero-knowledge. There exists a PPT simulator Sim which
can program the random oracle H values such that, for all x,w such that R(x,w) =
1, for all PPT adversary A, we have:

AdvzkΠ(A) :=
∣∣∣Pr[AH(x,ProveH(x,w)) = 1]− Pr[AH(x, Sim(x)) = 1]

∣∣∣ ≤ negl(λ) .

B Complements on the IND-CR-CPA UPKE Scheme

B.1 Proof of Lemma 6

Proof. By [14, Lemma 5.1], we have

H∞(s | s+ e) ≥ H∞(s)− log

 ∑
y∈Zn

q

max
x∈Zn

q

P [e = y − x]

 .
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Hence it suffices to show
∑

y∈Zn
q
maxx∈Zn

q
P [e = y − x] ≤ 2qn/σn. It holds

that, ∑
y∈Zn

q

max
x∈Zn

q

P [e = y − x] =
1

ρσ(Zn)

∑
y∈Zn

q

max
x∈Zn

q

ρσ(y − x+ qZn)

≤ 1

ρσ(Zn)

∑
y∈Zn

q

2

= 2
qn

ρσ(Zn)

≤ 2
qn

σn
.

The second inequality comes from applying [14, Lemma 2.4], which requires
q/σ ≥

√
ln(4n)/π. The last equality comes from the Poisson summation formula

which gives that ρσ(Zn) = σnρ1/σ(Zn) ≥ σn. ⊓⊔

B.2 Correctness of the scheme

Proof. Let us prove the correctness of our UPKE. Let (pk = (A,As + e), sk =
s) ← KeyGen(1λ) be an honestly generated key pair. In order to consider the
worst case scenario where k updates to the key have been performed, assume
that s and e satisfy ∥s∥∞, ∥e∥∞ ≤ kyσ, for y a parameter that we set afterwards.

Let µ ∈ Zn
p and

Enc(pk, µ) = (XA+E, Xb+ f + ⌊q/p⌋ · µ mod q) .

Then, we have

Dec(s, ct) = ⌊ct1 − ct0 · s⌉p
= ⌊Xb+ f + ⌊q/p⌋ · µ− (XA+E)s⌉p
= ⌊Xe−Es+ f + ⌊q/p⌋ · µ⌉p .

We obtain that Dec(s, ct) = µ if ∥Xe − Es + f∥∞ < q/(2p). By the triangu-
lar inequality, it suffices to have ∥Xe∥∞ + ∥Es∥∞ + ∥f∥∞ < q/(2p). By using
that ∥Mv∥∞ ≤ ∥MT ∥1∥v∥∞ ≤

√
n∥MT ∥2∥v∥∞ for any matrix M ∈ Zn×n and

any vector v ∈ Zn, we obtain another sufficient condition:

√
n∥XT ∥2∥e∥∞ +

√
n∥ET ∥2∥s∥∞ + ∥f∥∞ < q/(2p). (3)

If we assume that ∥XT ∥2, ∥ET ∥2 < y
√
nσ and ∥f∥∞ < yσ, for some y > 0,

then (3) is verified if
q > 2p · (2y2σ2nk + yσ).

We bound the ℓ2-norms using Lemma 2 and a union-bound, and the ℓ∞-norms
with Lemma 2 in dimension 1 and a union-bound. Using the independence of
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the random variables, the assumption we made on the norms are verified with
probability at least

P
[
∥XT ∥2, ∥ET ∥2 < y

√
nσ ∧ ∥f∥∞ < yσ

]
>

(
1− nyne

n
2 (1−y2)

)2
(
1− 2ne−

y2

2

)
>

(
1− 2nyne

n
2 (1−y2)

)(
1− 2ne−

y2

2

)
> 1− 4ne−

y2

2 .

In order to achieve (k, δ)-correctness, it suffices to set y =
√
−2 log(δ/(4n)).

Notice that we implicitly assumed that the norm of the updates were bounded
by yσ. As the plaintext space is Zn

p , in order to fit a secret key into an encryption,
it suffices that p > 2yσ. ⊓⊔

B.3 γ-Spreadness of the Scheme

We adapt the proof of [29, Lemma 6] for FrodoKEM to prove the following result.

Lemma 10. The UPKE construction given in Section 4 is γ-spread.

Proof. Let ct = (ct0, ct1) be an element of the ciphertext space, µ be a message
and pk = (A,b) be a public key. We have:

P [ct = Enc(pk, µ)] ≤ PX,E[ct0 = XA+E]

=
∑

PX,E[ct0 = X̃A+E ∧X = X̃]

=
∑

PE[E = X̃A+ ct0] · P
[
X = X̃

]
≤

∑
P [E = 0] · P

[
X = X̃

]
= P [E = 0]

= (DZ,σ(0))
n2

where the fourth inequality stems from the fact that the distribution DZ,σ(x) is
maximal at x = 0. ⊓⊔

C Analysis of the FO Transform (Theorem 3)

The (k, δ)-correctness of FO(UPKE,G,H) in the ROM follows from the (k, δ)-
correctness of the underlying UPKE scheme, since Encaps runs the Enc algorithm,
Decaps runs the Dec algorithm and the underlying KeyGen,UpdatePk algorithms
are unchanged.
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In Figure 1, we present the random oracles and decapsulation oracles as
they are in the original IND-CR-CCA UKEM game. The idea of the proof is the
same as for usual proofs of FO: we modify oracles to allow the challenger to
simulate the decapsulation oracle without knowledge of the secret key sk. The
additional pk in the inputs of the oracle G allows the challenger to keep track of
the ciphertexts known by the adversary for any public key pk, through epochs.

Algorithm 1: Oracles G,H and Odec for Game 0.

1 G0(pk,m):
2 if ∃r : (pk,m, r) ∈ LG then
3 return r
4 end
5 r ←↩ U(R);
6 LG = LG ∪ {(pk,m, r)};
7 return r

8 H0(m, c):
9 if ∃K : (m, c,K) ∈ LH then

10 return K
11 end
12 K ←↩ U(K);
13 LH = LH ∪ {(m, c,K)};
14 return K

15 Odec,0(c):
16 if c = c⋆ ∧ pkt = pkchall then
17 Abort
18 end
19 return Decaps(skt, c)

We add a subscript i to the oracle names to refer to the implementation of
this oracle in Game i. For instance, oracle G0 refers to the oracle G in Game 0.
When the context is clear, we omit the subscript. We let K denote the key space
and R the space of the randomness used by algorithm Enc.

Let us define the following sequence of games. Note that, in each game, the
challenger initializes all relevant lists LH ,LG, or LE to ∅ at the start of the
game.

– Game 0: This is the original IND-CR-CCA UKEM game, using oracles as
they are described in Figure 1.

– Game 1: In this game, we modify both the random oracles and the de-
capsulation oracle. We replace the oracles of Figure 1 by those in Fig-
ure 2. The main difference is that oracle G on input (pk,m) keeps track
of (pk,m,Enc(pk,m; r), r), where r is the output of G(pk,m). This allows
for oracles H and Odec to know, for every epoch t, if they are queried on
valid encapsulations for pkt.

– Game 2: In this game, the challenger additionally aborts if the adversary
makes a query G(pk,m⋆) or H(m⋆, c) with m⋆ being the (uniformly random)
message used to compute the challenge encapsulation c⋆, where pk and c are
arbitrary. As the adversary A cannot learn H(m⋆, c⋆), no information about
it is available to the adversary. Hence AdvG2(A) = 0, and Games 1 and 2
are indistinguishable up to the adversary making a query using m⋆.
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Algorithm 2: Oracles G,H and Odec for Game 1. Here pkt denotes the
public key at the current epoch t.

1 G1(pk,m):
2 if ∃r : (pk,m, r) ∈ LG then
3 return r
4 end
5 r ←↩ U(R);
6 c = Enc(pk,m; r);
7 LE = LE ∪ {(pk,m, r, c)};
8 LG = LG ∪ {(pk,m, r)};
9 return r

10 H1(m, c):
11 if ∃K : (m, c,K) ∈ LH then
12 return K
13 end
14 K ←↩ U(K);
15 if ∃pk, r : (pk,m, c, r) ∈ LE then
16 LD = LD ∪ {(pk,m, c,K)};
17 end
18 LH = LH ∪ {(m, c,K)};
19 return K

20 Odec,1(c):
21 if c = c⋆ ∧ pkt = pkchall then
22 abort
23 end
24 if ∃m,K : (pkt,m, c,K) ∈ LD then
25 return K
26 end
27 if ∃m, r : (pkt,m, c, r) ∈ LE then
28 K ←↩ U(K);
29 LH = LH ∪ {(m, c,K)};
30 LD = LD ∪ {(pkt,m, c,K)};
31 return K

32 end
33 return ⊥

Let us now prove that the above games are indistinguishable in the adver-
sary’s view.

Indistinguishability of Games 0 and 1. Compared to G0, oracle G1 only per-
forms additional bookkeeping operations. Hence there is no difference between
G0 and G1 for the adversary. Oracle H1 might behave differently than H0 only if
a decapsulation query is made to Odec for a c such that (pkt,m, c, r) ∈ LE for
some (m, r), where t is the current epoch. Consider the case where the adversary
makes a query c to the decapsulation oracle Odec at epoch t:

1. Assume thatOdec,0(c) =⊥ andOdec,1(c) ̸=⊥: then by the definition ofOdec,1,
this implies that there exists4 (pkt,m, r, c) ∈ LE such that c = Enc(pkt,m; r),
where r = G(pkt,m). As we assumed Odec,0(c) =⊥, the original decapsula-
tion function fails on c, hence r is such that we have Dec(skt,Enc(pkt,m; r)) ̸=
m. By the (k, δ)-correctness, this happens with probability at most δ.

2. Assume that Odec,0(c) ̸=⊥ and Odec,1(c) =⊥: by the definition of Odec,1,
this implies that there is no (pkt,m, r, c) ∈ LE , hence A did not make any
query G(pkt,m) but was able to compute a valid ciphertext of m under pkt.
By γ-spreadness, this happens only with probability at most γ.

3. Assume that Odec,0(c) = K and Odec,1(c) = K ′ for some K,K ′ ̸= ⊥: by the
definition of Odec,1 we know that there exists (pkt,m, r, c) ∈ LE such that

4 Note that the only way Odec,1(c) returns K ̸= ⊥ is that either (pkt,m, r, c) ∈ LE

or that oracle H1 added (pkt,m, c,K) to LD. However, the latter only happens if
(pkt,m, r, c) ∈ LE . Thus Odec,1(c) does not return ⊥ only if (pkt,m, r, c) ∈ LE .
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c = Enc(pkt,m; r), and as Odec,0(c) ̸=⊥, this is a valid encryption. Hence
K = H0(m, c). We consider the two following sub-cases:

(a) Adversary A first made the decryption query Odec(c) without knowing
H(m, c). By definition of Odec,1(c), the challenger samples K ′ ←↩ U(K)
and adds (m, c,K ′) to LH . By definition of H1, we have H1(m, c) = K ′.
Thus K ′ has the same distribution as K and H1 has the same behaviour
as H0.

(b) AdversaryA already knows H(m, c) as it queried it before to the oracle H.
It is then set to a uniformly random value K ′ ←↩ U(K). Then, when the
adversary makes the decryption query Odec(c), the definition of H1(m, c)
guarantees that Odec,1(c) returns K ′, which has the same distribution
as K and H1 behaves identically to H0.

We just showed that except with probability at most qG·δ+qD ·γ, Games 1 and 2
behave identically. Further note that in Game 1, for any epoch t, oracle queries
to Odec can be simulated without the knowledge of the secret key skt.

Indistinguishability of Games 1 and 2. Let us call FIND the event that an
adversary A makes a query G(pk,m⋆) or H(m⋆, c) with m⋆ being the (uniformly
random) message used to compute the challenge encapsulation c⋆, where pk and
c are arbitrary. As already detailed, adversary A has advantage at most P [FIND]
in distinguishing between Games 1 and 2. We now bound the probability P [FIND]
by constructing an adversary B for the IND-CR-CPA game such that

P [FIND] ≤ 2

(
AdvIND-CR-CPA(B) + qG + qH

|M|

)
. (4)

Adversary B first receives pk0 from its IND-CR-CPA challenger and for-
wards pk0 to A. Whenever A makes an Oup oracle query, adversary B makes
the same Oup query to its challenger. Whenever A makes a G,H or Odec query,
adversary B runs them as in Game 1, which is possible as it does not need to
know the secret key, as observed above. When A requests a challenge, B samples
two random messages m0,m1 ←↩ U(M) and sends them to its challenger.

The challenger answers with the IND-CR-CPA challenge c⋆. Adversary B sam-
ples K⋆ ←↩ U(K) and sends the challenge (K⋆, c⋆) to A.

From now, adversary B continues to simulate A’s challenger. If A makes a
query G(pk,mb′) or H(mb′ , c) for any b′ ∈ {0, 1}, adversary B stops running A
and returns b′ to its challenger. If A makes no such request, then B samples
b′ ←↩ U({0, 1}) and returns b′.

Call WRG the event that A makes an oracle query to G or H containing m1−b,
where b is the challenge bit. Since A has absolutely no information about m1−b,
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this happens with probability at most P [WRG] ≤ (qG + qH)/|M|. Then:

AdvIND-CR-CPA(B) =
∣∣∣∣P [b = b′]− 1

2

∣∣∣∣
=

∣∣∣∣P [FIND ∧ ¬WRG] +
1

2
P [¬FIND]− 1

2

∣∣∣∣
=

∣∣∣∣P [FIND]− P [FIND ∧WRG] +
1

2
P [¬FIND]− 1

2

∣∣∣∣
≥ 1

2
P [FIND]− P [FIND ∧WRG]

≥ 1

2
P [FIND]− P [WRG] .

The second equality holds as B finds b′ if and only if A makes an oracle query
containing mb (i.e., both FIND and ¬WRG occur) or if no such query occurs, by
guessing randomly. For the third equality, we use that for any two events A,B, we
have P [A ∧ B] = P [A]− P [A ∧ ¬B]. Equation (4) then follows, which completes
the proof of Theorem 3. ⊓⊔

D Analysis of the IND-CU-CCA Transform (Theorem 4)

We proceed by a sequence of hybrid games.

Game 0: This is the original IND-CU-CCA game where the challenger’s bit is set
to b = 0.

Game 1: We replace the proof π⋆ in the final update up⋆ = (ct⋆0, ct
⋆
1, π

⋆) by a
simulated NIZK proof. As the adversary only sees this simulated proof at the
very end of the game and cannot submit any additional update or decryption
queries, the two games are indistinguishable thanks to the computational zero-
knowledge property of the underlying proof system.

Game 2: We now change the plaintext underlying ct⋆1 to an encryption of 0 rather
than r. This change remains undetected thanks to the IND-CPA security of the
underlying encryption scheme. As an important remark, note that IND-CPA se-
curity (which is implied by IND-CR-CCA security) suffices here as no information
about sk1 is provided to the adversary, since neither the decapsulation oracle
nor the final secret contain information about sk1.

Game 3: In this game, when the adversary makes an update query which passes
VerifyUpdate, the challenger does the following. Let ((ct0, ct1, π), (pk

′
0, pk1)) de-

note such a query. Then, the challenger uses both secret keys sk0 and sk1 to
decrypt ct0 and ct1 and verify that the underlying plaintexts are indeed equal
and that the new public key pk′0 is computed honestly. It halts if it is not the
case. Unless Game 3 aborts, the two games are identical. The computational
soundness of Π guarantees that any PPT adversary cannot trigger an abort, ex-
cept with negligible probability. Here, we insist that standard (computational)
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soundness suffices as the adversary does not receive any proof until it can no
longer make queries.

Game 4: This final game is identical to the previous game except that the chal-
lenger’s bit is 1. We show that these two games are indistinguishable under the
IND-CR-CCA security of UKEM.

Assume there exists a PPT adversary A that can distinguish Game 3 and
Game 4. We construct a PPT adversary B against the IND-CR-CCA security of
UKEM as follows. Adversary B gets pk0 from its challenger and further samples
an additional key pair (pk1, sk1) ← KeyGen(1λ). It also implements a random
oracle F by storing a table. It forwards (pk0, pk1) to A as the public key.

When A makes a decapsulation query, adversary B simply submits the same
query to its decapsulation oracle and returns the result to A. When A makes an
update query ((ct0, ct1, π), (pk

′
0, pk1)), adversary B verifies the validity of π and if

it passes verification, uses sk1 to decrypt ct1 in order to recover the randomness r
used by A to generate its update. Adversary B can then submit r to its own
update oracle to produce the same update.

When A asks for a challenge, so does B, and the latter forwards its challenge
encapsulation c⋆ to the former.

Finally, when A stops making updates, so does B. Its challenger then replies
by (pk⋆, sk⋆, up⋆), where up⋆ is simply an encryption ct⋆0 of the last (unknown)
update under the last epoch public key pkℓlast. It generates an encryption ct⋆1
of 0 under pk1, as well as a simulated proof π⋆ that (pkℓlast, pk1, pk

⋆, ct⋆0, ct
⋆
1) is a

valid update. It finally sends the tuple ((pk⋆, pk1), sk
⋆, ct⋆0, ct

⋆
1, π

⋆) to A. When A
halts with output b′, so does B.

This completes the proof of Theorem 4. ⊓⊔
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