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Abstract

The main focus of this article is on an open problem, namely the Ring-SIS reduction problem.
We first utilize a spatial isomorphism approach to reduce the Ring-SIS problem to the classic SIS
problem in lattices, indirectly reducing it to the classic SIVP in lattices. This provides theoretical
assurance to some extent for the difficulty and resistance against quantum attacks of the Ring-SIS
problem.

Additionally, we reduce the Ring-LWE problem to the Ring-SIS problem, which guarantees the
security of encryption schemes based on Ring-LWE to a certain degree. Finally, this article proves
that the difficulty of the Ring-SIS problem and the Ring-LWE problem is relatively average with
respect to the spatial dimension or polynomial degree.

Keywords: reduction of the ring-SIS problem; shortest trapdoor in ideal lattices; ring-LWE prob-

lem; univariate polynomial ring; SIVP.

1 Introduction

The main research problem of this article is to reduce the Ring-SIS problem [1] to the SIS problem,
and the Ring-SIS problem refers to f1, ..., fm € Ry, where R, is a polynomial ring with modulus ¢, find

m polynomials g, ..., whose coefficients are not all 0, g,, € Ryo,1}, such that
figr + -+ fmgm = 0 mod ¢R.

Currently, lattice cryptography is an important research field in post-quantum cryptography. In
2005, Regev completed the reduction work of the learning with error problem (LWE), reducing it to a
difficult problem in the classic lattice, that is, the closet vector problem and the shortest vector problem
[2]. Regev’s work ensured the theoretical foundation of lattice cryptography. In 1996, Ajtai gave a new
lattice difficulty problem, namely the shortest integer problem (SIS, [3]). Subsequently, Micciancio and
Peikert gave a more concise conclusion and combined it with the LWE problem to serve as a one-way
trapdoor function for the encryption scheme based on the LWE problem [4]. Moreover, the SIS problem
itself provides the security guarantee of the trapdoor function. This achievement makes the world of
lattice cryptography more dynamic.

With in-depth research on encryption schemes based on the LWE problem, everyone found that the

computational overhead of this type of scheme is not very ideal. Therefore, it is hoped that there will be
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a new difficult problem that can inherit the difficulty of LWE and at the same time ensure the operating
efficiency of the solution. In 2010, Lyubashevsky, Peikert, and Regev proposed a learning with error
problem on polynomial rings, namely the Ring-LWE problem [1], establishing an isomorphic relationship
with the ideal lattice. And reduce it to the bounded coding problem on the ideal lattice (Ideal-BDD).
The Ring-LWE problem is similar in form to the LWE problem, and its calculation time is much less
than that of the LWE problem.

However, the Ideal-BDD problem itself is also a variant of the BDD problem, and the reduction
work has not yet been completed. Therefore, simply reducing the Ring-LWE problem to the Ideal-BDD
problem may not necessarily explain the difficulty. In addition, similar to the encryption scheme based
on LWE, the encryption scheme based on Ring-LWE also requires the Ring-SIS problem as a trapdoor
function, and Lyubashevsky, Peikert, and Regev mentioned “Indeed, the perspectives and techniques that
have so far been employed for the Ring-SIS problem appear insufficient for adapting the more involved
hardness proofs for LWE to the ring setting” in the article [1]. Steven Yue mentioned on the Zhihu
website that the Ring-SIS problem is still an open problem [4]. Therefore, the reduction of the Ring-SIS

problem is an urgent problem that needs to be solved in current lattice cryptography.

1.1 Owur work

The main work of this paper is to reduce the Ring-SIS problem to the SIS problem. Similar to
the article by Micciancio and Peikert [4], we also divide the article into three parts, namely Ring-SIS to
Ring-SIS Reduction, Direct Reduction and Ring-SIS to Ring-LWE Reduction.

1.1.1 Ring-SIS to Ring-SIS Reduction

Let Ring-SIS(m,n,q, 8) be a problem, where m, n are positive integers, ¢ is a prime number, and (3

is a positive number. This part is divided into two steps, namely

1. When there is an oracle that can solve Ring-SIS(m,n,q, ) in polynomial time, there is also an
efficient algorithm that can solve Ring text—SIS(m’ = tm,n,q, ), and the number of times the

algorithm queries the oracle is ¢ times;

2. When there is an oracle that can solve Ring-SIS(m,n,q, ) in polynomial time, there is also an
efficient algorithm that can solve Ring text—SIS(m,n’ = tn,q,3), and the number of times this
algorithm queries the oracle is m(t — 1) + 1 times;

For first step, we can divide it according to the number of polynomials in Ring-SIS(m’ = tm, n, q, 5).
More specifically, fi, ..., fm € Ry is divided into ¢ parts, each part is exactly Ring-SIS(m,n,q, 8), at
this time, use the Ring-SIS(m,n,q, 8) oracle to solve its sutras. The solution for each part together, it
is the solution of Ring-SIS(m’ = tm,n,q,3). At this time, we need to ask ¢ times Ring -SIS(m, n, q, )
oracle.

For second step, according to the properties of polynomials, that is, when f(z)g(x) = (ap + a12 +
12" Y (bg + b1+ - bp—12™ ) mod (2™ + 1) = 0, then there is fi ()i x(2) = (aox”® + a1zF Tt +
ey PO (o 4 bkt b, 2D mod (27 4 1) = 0, where k € [0,1).

According to this property, we have obtained a very important theorem, that is, when F7(x) :=
(FO (@), FO (@), , F (@), G(@) i= (9D (@), g@ (@), -+ , g™ (), if there is

m

FT(2)G(z) =Y fD(2)g" (2) mod (2" + 1) = 0,

then there is

! () mod (z™ +1) =0
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for Fl(z) = (i @), f5 @) £ @), Gl) = (9 @). g0 @), g% (). Among them,
k € [0,t). This conclusion is very important. According to this conclusion, we can extract an n or-
der polynomial in Ring-SIS(m,n’ = tn,q, ), thus forming a Ring-SIS(m,n,q, ) problem. We can
get the solution to a part of the Ring-SIS(m,n’ = tn,q, 3) problem that is divided into parts of the
Ring-SIS(m,n, ¢, ) problem by asking the Ring-SIS(m,n, ¢, 3) oracle m times.

According to the above properties, it can be seen that after the first query m times Ring-SIS(m, n, ¢, )
oracle gets the solution, it will be compared with Ring-SIS(m,n’ = tn, ¢, ) problem, the n’ terms of the
n’ — 1 degree polynomial of the original problem are reduced by n terms, because we asked m times
Ring-SIS(m, n, q, B8) oracle, so after action, it is still Ring-SIS(m,n’ = tn, q, 3) problem, except that each
polynomial is missing n terms.

Repeat this method there are only n terms left in each polynomial of the Ring-SIS(m,n’ = tn, q, 5)
problem, and we can directly use Ring-SIS(m, n, g, 3) is solved by the oracle. Combining these solutions is
the final solution to the Ring-SIS(m,n’ = tn, ¢, 8) problem. Then a total of m(tn—n)/n+1=m(t—1)+1
times are asked Ring-SIS(m,n, ¢, 8) oracle.

1.1.2 Direct Reduction

We reduce the Ring-SIS problem to the SIS problem by establishing an isomorphic relationship
between the two, thus proving the difficulty of the Ring-SIS problem. However, we cannot directly
reduce the Ring-SIS problem to the SIS problem, so we thought of a way. We consider the variants of the
SIS problem and the Ring-SIS problem, that is, the one-dimensional SIS problem and the Ring-SIS|,—q
problem. The so-called one-dimensional SIS problem refers to ol = (ay,az,...,an) € Mpmnx1(Zy) ,
al € Myux1(Zy), find 2z = (21,22, ..., 2n) € Mixmn(Zq), 2i € Mixn(Zy), ||z|| < B, such that

m
o= Zziai = (21,22, zm)(Q1, 00, ... ,am)T =0.
i
Where M,,,xn(Zg) represents a matrix of order m x n and the coefficients are elements in Z4[5]. The
corresponding Ring-SIS|,—=¢ problem refers to fi, ..., f;, € Ry, where R, is a polynomial ring with

modulus ¢, find a set of polynomials g1, ..., gm € Ryo,1} whose coefficients are not all 0, such that

fig1 + -+ fmgmlz=0 = 0 mod ¢R.

The purpose of this is to establish an isomorphic relationship between the Ring-SIS|,.—¢ problem and the
one-dimensional SIS problem.

When the isomorphism relationship is established, we follow the conclusion of Lemma 16, that is, if
space A and space B are isomorphic, then if for 4 in space A is an abstract hard problem if and only
if B in the corresponding space B is also a hard problem. When the isomorphic relationship between
the Ring-SIS|,—o problem and the one-dimensional SIS problem is established, we assume that there
are collision-resolving oracles for the two, and obtain the collision-resolving oracle of the Ring-SIS|,—q
problem that needs to be asked to solve the Ring-SIS problem. The number of times the oracle needs to
be asked and the number of times the one-dimensional SIS question that needs to be asked to crack the
SIS problem collides with the oracle. In the end, the number of times the two are obtained is “roughly
the same” in terms of probability, so this illustrates the connection between the Ring-SIS problem and
the SIS problem.

Although the demonstration of this proof in this article may not be sufficient, one thing we are sure
of is that the one-dimensional SIS problem is difficult, and the difficulty of the Ring-SIS problem is not
lower than that of the one-dimensional SIS problem, but not higher than that of the SIS problem.



1.1.3 Ring-SIS to Ring-LWE Reduction

Let n > 1, and p = p(n) < poly(n) be prime numbers, now consider a set of ‘equations of with error’

(s,a1) =y bi(modq),
(s, a2) =y ba(modg),

(s,an) ~ bp(modg).

Among them, s € M,,x1(Zy), a; is in My, x1(Z,) independently selected uniformly, b; € Z,. There is a
perturbation e; €r x C Z4 in the above equation such that for each ¢, there are b; = (s, a;) + e;. We put

these n ‘equations of with error’ together and get

b1 a{ €1
b2 a2T €9

b=As+e, hereb= | VA= e= 1 . (1)
by, az en

The learning with error problem LWE, , refers to finding s from (1). This problem occupies a very
important position in the hardness assumptions of lattice cryptography, so that various variants based
on the LWE problem have been proposed accordingly. For example, the learning with rounding problem
[6], the Evasive learning with error problem [7], and the learning parity with noise problem [4] etc.

In 2005, Regev gave a proof of the difficulty of the LWE problem. So for the connection between the
LWE problem and the SIS problem [8, 9], we have that when there is an oracle that can solve the LWE
problem within a time polynomial, there is also an effective algorithm that can solve the SIS problem.
This is because for the LWE problem b = As + e, where A € M, xn(Zy), s € Myx1(Z,), and e; € x.
So we can use the collision-resolving oracle of the LWE problem to query b — e = As twice, and get
Asy =b—e= Asg, so we have Au = A(s; — s2) = 0, at this time u is the solution to the SIS problem.

Then the same relationship exists between Ring-SIS and Ring-LWE. The difference is that the Ring-
LWE problem is only “one-dimensional”, that is, finding the polynomial s from b = as+e, where a, s € R,
and x < x. The Ring-SIS problem is to solve m polynomials. In fact, the encryption scheme based on
the Ring-LWE problem also requires multiple b = as + e to set the public key and private key, so the
relationship between m Ring-LWE problems and Ring-SIS is the same as the LWE problem and SIS The

relationship between the problems is consistent.

2 Preliminaries

Lattice. Each element of a lattice in R™ can be expressed linearly by n linearly independent vector
integer coeflicients. This set of linearly independent vectors is called a lattice basis, and we know that the
lattice basis is not unique. Given a set of lattice bases (v1,...,v,) in the lattice £, then the fundamental

parallelelepiped is

P(’Ul, S ,Un) = {Z kivi|k; € [071)} .
=1

If the lattice base (vi,...,v,) is determined, we can use the symbol P(L) to replace P(v1,...,v,).

Va € R™, we can project it onto P(L). According to the properties of projection [10], there is a unique
y € P(L) makes y —x € L. We use the symbol det(L) to represent the volume of the fundamental
parallelelepiped of the lattice £. In other words, the symbol det(L) represents the determinant of a
matrix composed of a set of lattice bases (v1,...,v,). For a given n dimensional lattice, the det(L) size

of any set of lattice bases of the lattice is constant. We simply prove this theorem.



Given n lattice £, (v1,...,v,) and (uq,...,u,) are two arbitrary groups of lattice £ respectively
lattice bases. Therefore we have v; = -7 myju; and w; = Y27, mj;v;,4 € {1,...,n}, therefore there

are two integer matrices M and M’ such that

1 ug uy U1
=M| and : =M

Un Un Un, Un

It is easy to prove that M and M’ are inverse to each other, and M and M’ are both integer matrices,
so there are det(M)det(M’) = 1 and det(M) = det(M’) = %1, so det(vy,...,v,) = £ det(ug, ..., uy).
Isomorphic mapping of polynomial Z[z]/<z™ + 1> to ideal lattice Z.

Definition 1. An ideal lattice is a subset of rings or domains that satisfies the following two properties:

1. Additive closure: If any two elements in the ideal are added, the result is still in the ideal. In other

words, for any elements a and b in the ideal, a + b also belongs to that ideal.

2. Multiplicative absorptivity: If an element in the ideal is multiplied by any element in the ring (or
field), the result is still in the ideal. In other words, for any element a in the ideal and any element

r in the ring (or field), ar and ra belong to that ideal.

For a commutative ring, we can further require that the ideal be closed for both addition and multiplication.

Such an ideal is called a true ideal.

Definition 2. Referring to the definition of ideal, the ideal lattice T is a subset of the lattice L that

satisfies the following two properties:

1. Additive closure: If any two elements in an ideal lattice are added, the result is still in the ideal
lattice. In other words, for any elements a and b in an ideal lattice, a + b also belongs to that ideal

lattice.

2. Multiplicative absorptivity: If an element in an ideal lattice is multiplied by an element in any other
ideal lattice, the result remains in the ideal lattice. In other words, for any element a in the ideal

and any element r in another ideal lattice, both ar and ra belong to that ideal lattice.
Corollary 3. The ideal lattice T is a true idea of the lattice L.
For f(x) = ap + a1z + -+ + a,_12" "' is mapped to
Rot(f) = apl + a1 X + -+ a1 X"t €R.

Among them, R is the mapping of all Z[z]/<z™ + 1> to the elements in the ideal lattice Z collection,

and
0 0 O 0 -1
1 0 0 0 O
01 0 0 0
=10 01 0 0
0 0 O 1 0
So there is
ao —apn-1 -+ —@
ay ap - —ap
Rot(f) = . . _ . ;
Ap—1 Ap—2 e Qo



it is easy to prove that this mapping relationship is isomorphic.

SIS problem [3, 11]. Given the integers n, m, ¢ and the positive number 8. The shortest
integer solution problem is to randomly select vector o; € M, x1(Zy), m € {1,...,m}. The matrix
A € Myxm(Zy), find the non-zero integer coefficient vector z € My, x1(Zy), |||l < B, such that

fA(Z) = Az = Zaizi =0¢ ZZ

Given the lattice £, the representation of the SIS problem on the lattice is
LYA)={2€Z™: Az=0€Z]}.
A variant of the SIS problem
LEA)={2€Z™: Az =uc Zyy = c+ LH(A).

Among them, c is the solution of any non-homogeneous SIS, that is, Ac = u. The variant of the SIS
problem are usually used to construct the one-way trapdoor function of encryption schemes.

Ring-SIS problem [12, 1]. In Z[z]/<f(x)>, f(z) = ™ — 1, the Ring-SIS problem is not difficult.
The reason is that f(z) = 2™ — 1 is reducible, that is

" —1=(1-a)A4+z+z>+---+a2"1).
We let g(z) :=1+x+ 22+ -+ 2" 1 € Z[z]/<a™ — 1>, so there is
(1-x)g(z)=a"—1=0. (2)
On the other hand, for the Ring-SIS problem F(x) = (f1(x), f2(x), ..., fm(z)). That is, find G(x) =
(g1(2), g2(x), ..., gm(x)), such that N
F(@)G(z) =Y figi = 0.
i=1
We let G(z) = (g(x),0,...,0), if for the solution of F(z) is G(x), only fi(z)g(x) = 0 mod gR. So what

kind of g(x) can satisfy this condition? In fact, we assume that fi(z) is a multiple of the polynomial
x — 1, that is, f1(z) = f/(x)(z — 1) then there is

fi@)g(z) = f'(z)(z - 1)§(x) = 0 mod gR.
In other words, as long as fi(x) = f'(z)(x — 1) is satisfied, it is the solution of F(x). So what is the
probability of this happening? We have the following lemma.
Lemma 4. If f(x) = ag + a1z + -+ + a,_12" "1 is a multiple of (x — 1), then ngol a; = 0.

Proof. We use mathematical induction. When n =1, if f(z) = f'(z)(z — 1), then f'(z) = X € Z;. At
this time, there is
fl@)=X=dx=ap+az,

so there is a9 + a; = 0. Assume that it is true when n = k. When n = k + 1, we assume that
f'(x) = by + brz + - + bra® and
f@) = f(@)(z = 1) = (bo + brz + - + bpa®)(x — 1)
= (bo+bix+ -+ bp_12" ) (@ — 1) + bpaF(xz — 1)
:ao—i—alx—i—---—i—akxk—i—bkxk(x—l).
(a) (b)

Because it is true when k = n, then the sum of the coefficients of the (a) equation is 0, and it is easy to

prove that the sum of the coefficients of the (b) equation is also 0. Therefore, the proposition is true. [



Lemma 5 ([12]). If f(z) = ag + a1z + -+ + ap_12""1 € Zy[z], then the probability of >\ a; = 0
occurring is 1/q.

Since the first n — 1 coefficients are all random numbers in the integer ring Z,, so 2?702 a; is also in
the integer ring Z, random number. Randomly select a,,_1, then the probability of satisfying >\, 0 a; =0
is 1/q. The cracking probability of 1/¢ is very large for password security, so the Ring-SIS problem of
polynomial Z[z]/<f(x)>, f(x) = ™ — 1 is not difficult for the security of the password scheme.

Lemma 6. If f(z)g(x) = (ap+arz+- - an_12" 1) (bo+b1z+- - by_12" 1) mod (2" +1) = 0, then there is
ft,k(x)gt,k(x) — (aoxk+a1xk+t+~ . anflkar(”*l)t)(boxk+blxk+t+- . bn,1$k+("7l)t) mod (:Cm—i—l) =0,
where k € [0,1).

Proof. According to the conditions, because f(x)g(z) = (ap+aiz+- - an_12" 1) (bo+biz+- - by 12" 1) mod
(z™ 4+ 1) =0, so there is
aobo + (~1) X7 ajba-j )
+ Z?:l ai—1ba—; +(—1) Z;:gl ajbpyi—;) x
+ 2321 a;i—1bs—; + (—1) Z;:; ajbnia—j) x*  mod (z" +1)=0.
+  (Xis ai-1ba—) g1
So we get
agbo + (=1) 27;11 @jbn—j) 22* mod (2™ + 1)
+ (Xh aimiba—i + (1) Z;L;zl ajbpi1—j) @t mod (2" +1)
+ (X aisibsi + (-1) Z;:gl ajbpyo—j) @2 mod (2™ + 1) =0.
+ (Z?:l aiflbn,i) x2k+(”_1)m mod (xnt + 1)
O

Corollary 7. Let FT(I) = (f(l)(x)af(Z)(x)a e 7f(m)(x)); G(I) = (g(l)(z)vg(z)(x)a e 7g(m)(x))7 Zf

there is

Zf(l (2)g" (x) mod (2" + 1) = 0.
Then for Fl(x) = ( 82 (2). £3 (). f’,’;)(m)), G(x) = (9, (2). 9,3 (2). -+ 9/} (2)), there are
)Gy Z ) mod (z" + 1) = 0.
Among them, k € [0,t).
Proof. Let the Ith component (polynomial) of F () be

f(”( )= (l)—I-(L(l)l'—l- ;l) @ n—1

So we get
F'(@)G(x) =) fD(@)g"V(x)
l

m l l l 1)
> aé)b() (—1)2 =1 aﬁ)lbfl g)
m 2 l l n—1 l !
S (S a0+ ()i al Y, ) e
m 3 1) (1 n—1 (1), (1 n
+ (2 a2 a0, ) @ mod (a7 +1) =0,

_|_

‘;‘ > (Z? 1 El)lb(l) ) ikt



And we have

)Gy ( Z (l) ) mod (2™ + 1)
= l) + (= )Z?_ll ag-l)bs) ]) 22* mod (2™ + 1)
(1) (1 O "

+ Zzz 19 )1b ) +(=1) Z? 21 ()bgwl j 2?* ! mod (2 4 1)

m l l n 1)1 n
+ X (S aibsl - (DY 0 b ) @ med @+ 1) =0

m n (l) @) 2k+(n—1)t nt
+ Zl Zz 1 1, 1bn [ € mod (:L’ + 1)

O

Lemma 8. When f(x)g(z) mod (z™ + 1) = 0, f(z)g(x)xz mod (z™ + 1) = 0. More generally , if
S f(z)g(z) mod (2™ +1) =0, it f(x)g(x)z mod (z" + 1) = 0.

Proof. When f(z)g(x) mod (z™ + 1) = 0, we have

aobo + (—1) Z;l:_ll ajbn,j)
+ (X @b+ (D)X, agbagay) @
+ (X aimibs—i + (—1) 2773 ajbpia—j) «*  mod (z"+1)=0.

+ (i ai1bn—i) T
Therefore, there is

0= (aobo—i- Za] n— j>
2
(Zaz 1ba—i + ( Zaj n+1— J)

=1

(i ailbni> .
i=1

agbo + (~1) 0} ajbn_j)
+ (X2 aisibei + (- 1) Z;Z; ajbpi1-;) =
+ Z?:l a;—1bs_; + (—1) Z;L:_Sl ajanrQ,j 2  mod (l‘n + 1) = 0.

So, we know that

n—1

+ (Z?:l a‘i—lbn—i) x
According to the Corollary 7, if >°1" | f(z)g(x) mod (z" + 1) = 0, then }_." | f(z)g(z)z mod (z" +
1) =0. O

Corollary 9. When f(x)g(x) mod (z" + 1) = 0, f(z)g(x)z* mod (z" + 1)
S, f(@)g(z) mod (2" 4+ 1) =0, 30", f(2)g(z)z” mod (2™ +1) =0, k € Z.

= 0. More generally, if



3 Hardness of Ring-SIS with Small Modulus

Lemma 10. For any integer m, q, even number n and X C mel(ﬁq), such that Vx,z' € X, there
are ged(x — 2',q) = 1 and ||z — 2’| < B. Then if there is a collision-resolving query oracle W for
Ring-SIS(m,n*, q, X), then there is also a solution Ring-SIS(m,n*+1, ¢**1 1) algorithm, and ask the

number of oracle W is m(n — 1) + 1.

Proof. According to the definition of the Ring-SIS(m,n**1, ¢k*1 g*+1) problem, we can think that we

find solution

G(z) = (g"(x), 2(x), -, g™(x)), §'(z) € Zy[z]/<a™ " +1>,ie{1,...,m}.

Make FT(z)G(x) = 0, where

k+1

F(z) = (f'(z), f (), f"(2)), f'(2) € Zyla]/<a”

We use the method of Definition 34 in the Appendix to Ring-SIS(m,n*+1, ¢#*+1 g*+1) extracts the
first Ring-SIS(m, n*, ¢, X), that is

+1>,ie{l,...,m}.

(EONT (@) = (fO(@), [P @), , 0 (@), [0 () € Zy[a]/<a™ +1>,i € {1,...,m}.

Here,
i(ivo)( ) = (z 0) + a(l O)er 7&0)1
And use the collision-resolving query oracle W of Ring-SIS(m,n*,q, X) to Q(O)(z) is used to find m

solutions, and

©) . . 3
Gy (@) 1= (g"7°

(@), g0 @), g (@),
g0 (@) € Z,fo

]/<x" +1>ie{l,...,n},7€{1,...,m}

is obtained. Where,

g(ivjvo) (x) — béi’jﬁo) + b:(Liuj’O) bS}:]_Ol)wn —1
We will turn it into
g(i,j,o) (’JZ) _ bgi7j70) + b(liJaO)xn . bS,Jiol) (nk’fl)n'

Construct

GO (@) = (9190 (@), g 290 (@), -, g™ (@), g0 () € Z,[o) /<™ +1>,i € {1,....n},j € {L,...,m}.

According to the Corollary 7, we have (F(® (x))TQ;O)(x) =0. We let
Fz) = (fO(@), fOx), -, f (@), fD(2) € Zyla]/<a™ " +1>,i € {1,...,m}.
Among them,
() :Féi)Jr Jrf()l,]-} = apx +a1x>‘+”+~~+ank_1x)‘+(” “Drxe{l,...,n}.
So we set F(z) = F(*)(z), and calculate

FO(2) = (FO )76 (@),..., (FO@@)TCD (),
(FO@) G () € Zyfa)/<a™ " +1>i € {1,...,m}.

This is still a Ring-SIS(m,nk*1 ¢+ BE+1) problem. But what is different from F(x) is that since
(E(O)(x))TQEO)(x) =0, so the polynomials in F(})(z) all have less n* terms.



Continue to follow the above method until finally each polynomial of F(*~1)(z) has only n* terms left,
so it can be solved by using the oracle again. According to this method to solve the Ring-SIS(m, n*+1, gh+1, gh+1)

problem, then we ask the oracle

k1 _ ok
n**tl—n .
m (nk > +1=m(n— 1)+ 1(times).

Remark 11. According to the above process, it can be summarized as

G(z) = (g1,---+Gm)-

Here,

m ) m ) m
Gi=>_ "> g > g | i

ji=1 ji=1 Jn—1=1

3.1 Ring-SIS to Ring-SIS Reduction

Lemma 12. For any integer n,m,q and X C My, x1(Ry), such thatVz,z’ € X, there are ged(z—2', q) =
1 and ||x — || < 8. Then for the integer ¢, we have a direct reduction from the collision-resolving query
algorithm of Ring-SIS(m,n¢, ¢¢, B¢) to the collision-resolving query algorithm of Ring-SIS(m,n,q, X).

This algorithm reduces in polynomial time of its input size and makes m(n°~* —1) +1 calls to its oracle.

Proof. See the appendix for detailed proof. O

Lemma 13. For any integer m,q, even number n and X C My, x1(Ry), such that Yx,z' € X, there
are ged(x — 2',q) = 1 and ||z — 2’| < B. Then for the integer ¢, we have a direct reduction from the
collision-resolving query algorithm of Ring-SIS(m®,n,q,8) to the collision-resolving query algorithm of
Ring-SIS(m,n,q, X). This algorithm reduces in polynomial time of its input size and makes m*~1 calls

to its oracle.

Proof. Suppose F(x) = (fi(z), fa(2), ..., fme(x)), which is divided into m¢~! parts, that is

Fi(z) = (fi(2), f2(z),..., fm(x)),
Fy(z) = (fm+1(m)7fm+2(x)7"'ame(x))v

Fe1(z) = (fmc,mﬂ(m), fme—ma2(2), ..y fine (:E))

So Fj(x) is Ring-SIS(m,n, q, X) question, i € {1,2,...,m"'}. So we only need to ask m°~! times
Ring-SIS(m,n, ¢, X) collision-resolving oracle to solve Ring-SIS(m¢, n,q, 5) question. O

Remark 14. When n and m are close, the conclusions of Lemma 12 and Lemma 13 are “roughly the
same” from the perspective of the collision-resolving oracle querying Ring-SIS(m,n,q, X). But in fact,
the computational complezity of Lemma 12 is much greater than that of Lemma 13. Therefore, assuming
that Ring-SIS(m,n,q, X) is attacked one day, it is far safer to increase the order of the polynomial than

to increase the number of polynomials (or the dimension of Ring-SIS(m,n,q, X)).

3.2 Direct Reduction

Lemma 15. As =0, is equivalent to tB = 0. Where A € Myxm(Z), s € Mumx1(Z); x € Miym(Z),B €
Mpxn(Z).
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Lemma 16. If space A and space B are isomorphic, then if A in space A is an abstract difficult problem,

if and only if B in the corresponding space B is also a difficult question.

Proof. Assuming that spaces A and B are isomorphic, we denote an abstract difficult problem in space
A as A and the corresponding problem in space B as B. By the definition of isomorphism, there exists
a bijective function f : A — B that preserves the structure and properties in A. Therefore, we can
map elements in A to elements in B through f. Now let us prove that if A is a hard problem, then B
is also a hard problem: Suppose in the space A, for the problem A, we suppose there is a polynomial-
time algorithm that solves A. That is, we can compute in polynomial time a result that satisfies A in
A. According to the definition of isomorphism, we can define a mapping function h : A — B, where
h(a) = f(a). Since f is a bijective function, h is also a bijective function.

Now let us consider the problem B in the space B. Given an input z’, we can map it back to the
space A through the inverse mapping h~! of the function h, and get the corresponding input = = h=1(z").
We can then compute the result that satisfies A in space A using a polynomial-time algorithm that solves
problem A in space A. Finally, we map the result back to the space B through the function h, and get
the result that satisfies B in the space B. The entire process can be completed in polynomial time.

Therefore, if A is a hard problem, then B is also a hard problem. O

Lemma 17. If space A and space B are isomorphic, space C and space D are isomorphic. Then space

A x B and space C x D are also isomorphic.

Proof. First, we know that A and B are isomorphic, then there is a bijection f : A — B that preserves
the operations and inverse operations in A. Similarly, we know that C' and D are isomorphic, and there
exists a bijection g : C'— D that preserves the operations and inverse operations in C'. We can define a
new mapping h : A x B — C x D, mapping the elements (a,b) in A x B to the elements in C x D (¢, d),
where ¢ = f(a) and d = g(b).

Now we show that h is a bijective function.

1. Mapping is injective. Suppose there are two different elements (al,b1) and (a2,52) belonging
to A x B, and h(al,bl) = h(a2,b2). Then according to the definition of h, f(al) = f(a2) and
g(bl) = ¢g(b2). Since f and g are both bijective functions, we can get al = a2 and bl = b2.
Therefore, h is injective.

2. Mapping is surjective. For any (c,d) belonging to C x D, we can choose a = f~1(c) and
b= g~ 1(d) to construct element (a, b) belongs to Ax B. By definition, h(a,b) = (f(a), g(b)) = (c,d).
Therefore, h is surjective.

3. Mapping is homomorphic. Assume (al,bl) and (a2,b2) belong to A x B, let us prove that
h((al,bl) + (a2,b2)) = h(al,bl) + h(a2,b2) and h(—(al,bl)) = —(h(al,bl)). From the definitions
of vector addition and scalar multiplication and the properties of f and g we can get these two

equations. Therefore, h holds operations and inverse operations.

In summary, we proved that there is a bijective function mapping the elements in A x B to the
elements in C x D, and this mapping preserves operations and inverse operations. Therefore, A x B is

isomorphic to C' x D. O

Lemma 18. If space A, space B and space E are isomorphic, space C, space D and space F are

isomorphic. Then space A x B x E It is also isomorphic to the space C x D x F.

Proof. According to Lemma 17, we know that if space A and space B are isomorphic, space C' and space
D are isomorphic. Then the space A x B and the space C' x D are also isomorphic. That is, there is a
mapping h : Ax B — C x D, such that the mapping is homomorphic and one to one. So we let the space

11



X := A x B and the space Y := C x D, so the space X and the space Y are isomorphic. Combined with
the Lemma 17 , we have the space A x B x E and the space C x D x F which are also isomorphic. [

Lemma 19 ([4], TH3.8). Let m,n be integers, § > Boo > 0 be real numbers, and q > - n*) be the
modulus of an integer numbers with no more than poly(n) integer divisors less than oo, set S = {z €

M1 (Z)\ {0} |2z]] < BA|2lloo € Boo}. Then for v = max{l, 8Bs/q} - O(B+/n), there is a difficult

problem from n dimensional lattice efficient reduction of the S—collision-resolving search algorithm in
SIS(m,n,q) from SIVPZ.

Corollary 20 (When n = 1, the case of Lemma 19, we call it the one-dimensional SIS problem). Let
m be an integer, B > Poo > 0 be a real number, and q > [ be the modulus of an integer with no more
than poly(1) integer divisors less than Peo, the set S = {z € My x1(Z) \ {0} ||2z]] < BA|Z]lcc < Boo}-
Then for v = max{1, 88x/q} - O(B+\/1), there is a difficult problem from n dimensional lattice efficient

reduction of the S—-collision-resolving search algorithm in SIS(m,1,q) from SIVPZ.

Definition 21 (One-dimensional SIS variant problem). For o’ = (a1, az,...,an) € Mpmnxi1(Z,), ol €
Mnxl(Zq); ﬁnd Z = (2172’2, .. .,Zn) € Mlxmn(Zq); Z; € Mlxn(Zq): ”Z” < B; such that

o= Zziai = (21,22, ..., 20) (01, 00, ..., a)T = 0.
i

Lemma 22. If the SIS problem is hard, then the one-dimensional SIS variant problem is also hard.

Proof. The correctness of Lemma 22 is obvious. We set m’ = mn, so the one-dimensional SIS variant
problem is transformed into the SIS problem. Therefore, m’ satisfies the condition that the two are

equivalent. O

Theorem 23. The Ring-SIS|,—o problem is equivalent in difficulty to the one-dimensional SIS variant

problem in the classical lattice.

sA = Mlxmn(Zq) X anxl(Zq) — Mlxl(Zq)~

spAy = (Zylx]/<a™ +1>) x (Zy[x]/<x™ + 1>)|o=0 = Zg[x]/<x + 1>.
The first mapping (a certain row)

9 L0 [x]/<a™ + 1> = Mixmn(Zy)

1

m—
ap+ a1+ -+ am1 H(a()»alv"' aam71)~

Second mapping (a certain column)
hZl[z]/<a™ + 1> = Monnxi(Zg)
bo+ b1z + - A by 1™ (boy —bm_1, -, —b1).
Then there is
(a0 + a1z + -+ am_12™ ) (bo + b1z + - 4+ bp_12™ ) mod ¢ mod (2™ + 1)|.—0
=aobp — a1bym—1 — - — ap_1b
=g((ao, a1, -+ ,am—1)) - h((bo, =bm—1,- -+, —=b1)).

Therefore in the space Mixmn(Zq) X Mupmnx1(Z,) the inner product and the product defined in
space (Zg [z]/<z™ +1>) x (Zy[r]/<x™ +1>) is homomorphic, and it is easy to prove that this operation
is also a bijection.

According to the Lemma 17, it can be seen that the corresponding Ring-SIS|,—¢ on the ring is also
difficult.

12



Theorem 24. If the Ring-SIS|,—¢ problem is hard, then the Ring-SIS problem is also hard.
Proof. For the Ring-SIS problem, if there is an algorithm W that can solve the Ring-SIS problem, that
is, find f(z) € Zy*?[x], such that

(fl(x)v vfm(x))'(gl(x) agm Zfz z _0 (3)

This also means that the coefficient before z° in the equation(3) is also 0, then f(z) € Z**[x] is also

an Ring-SIS|,—o problem solution

(fl(z)7 ,fm(z))'( ( ) agm |a: O—Zfz |x 0o=0.

This is contradictory to the conclusion of Theorem 23, so the Ring-SIS problem is also difficult. O
Theorem 25. Problem Ring-SIS(m,n,q,D% ,,) is “roughly the same” as difficult as problem SIS(m, n,q, D} ,,,)-

Proof. Due to the existence of the one-dimensional SIS problem collision-resolving oracle, the oracle can
solve s; for any form of 2111 s;a. In order to be able to solve the SIS problem, we use Gauss’s rule
to convert the equation (4) into a ladder form and then use the one-dimensional SIS problem collision-
resolving oracle to solve it. It is assumed that the SIS problem can be solved by asking O(n) times. The

dimensional SIS problem can be solved by colliding with the oracle.

Zzn ) Sqoz(l)
m dict Szaz('2)
As = Zsiai = Y sial? (4)
i=1 :
Zznl sia ( )
Among them, A = (a1, ..., 0y), and o; = (az(l), . ,041(-")). The Ring-SIS problem also requires O(n)

times of querying Ring-SIS|,—¢ to solve the problem until it collides with the oracle.

O(n) 1nqu1rles

One-dimensional SIS problem SIS problem

0

Ring-SIS|,—¢ problem

O(n) 1nqu1r1cs

Ring-SIS problem

According to the form F(z)G(x) = 0, we have

m

FT(@)G(x) =) fP(@)gV ()

l
l l n l l
Zl ()b( ( 1)2] 11 ()b() )
l l n— l l
+ (S a0+ () a0, ) w (5)
S (S a2by) + () e b, ) 2 mod (a7 4 1) = 0.

+

m n l l n—
+ > (Zz 1 E)lb()) !
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We rewrite the equation (5) as

n—2

zm:amb(l) Hy (Z Oy > 0
l =1

J
2 n— 3 m
Z( o 5O ) y (Z Oy ]> ~0
i l
3 m
Z( al o) ) + (z:a”bﬁf+2 j) ~0 (6)
i l

Jj=

3 M
g; NJ

() ;

The equation (4) is consistent with the equation (6). We also need to convert it into a ladder form,
and then use the Ring-SIS|,—o problem collision-resolving oracle to solve it. Therefore, the number of
times that the Ring-SIS|,—o questions need to be asked to solve the Ring-SIS problem is the same as the
number of one-dimensional SIS questions that need to be asked to solve the SIS problem, which can also
be O(n) times. Therefore, judging from the number of times the oracle is asked, the difficulty of the SIS
problem is similar to that of the Ring-SIS problem. O

Remark 26. Although the proof of Theorem 25 may not be sufficient, there is one thing we are certain
about. That is, if the one-dimensional SIS problem is difficult, then the Ring-SIS|.—o problem is also
difficult, which implies that the difficulty level of the Ring-SIS problem is no lower than that of the Ring-
SIS|,—o problem and no higher than that of the SIS problem, due to the following theorem.

Theorem 27. If there exists a oracle that can solve the SIS problem in polynomial time, then there also

exists an efficient algorithm to solve the Ring-SIS problem.

Proof. If there exists a collision-resolving oracle that can solve the SIS problem in polynomial time, i.e.,
find s = (s1,...,8m), Si € Z1, such that

m
E Q;8; = O,
i=1

we can construct an isomorphism mapping the vector a; = (o}, ..., a?) to fi(z) = ( ) 4 a( g4t
agn)znfl. Similarly, s; is mapped to g;(x) = s;. Therefore, we have

m

Z figi = 0.

i=1
Thus, s = (s1,-..,8m) is also a solution to the Ring-SIS problem. O

4 Hardness of Ring-LWE with Small Uniform Errors

Lemma 28. If there exists a collision-resolving oracle that can solve the Ring-LWE(m, n, ¢, DR aq)|a=0
problem in polynomial time, then there also exists an efficient algorithm to solve the LWE(m,1,¢, Dz aq)

problem in polynomial time. Similarly, the reverse is also true.

Proof. According to Theorem 23, assuming the existence of an oracle that solves the LWE(m, 1, ¢, D, aq)
problem, i.e., finds s € M, x1(Z,) such that b = As + e, where A € Miyxmn(Z,) and b,e € Z,. We can

establish the following isomorphism mapping, namely
b=sA+e
+
bla=o0 = (55 - a +e€f)la=o-

14



Here, sf,a € Ry, ef = e+ex+ - +e,12" Ve, € {1,2,...,9g— 1},i € {1,...,n — 1}. Clearly,
we have established an equivalence between the LWE(m, 1, ¢, D oq) and Ring-LWE(m, n, ¢, DR aq)|e=0
problems. By Lemma 16, we know that the existence of an oracle for LIWE(m, 1, ¢, D¢ oq) is equivalent

to the existence of an efficient algorithm to solve Ring-LWE(m, n, ¢, Dr.aq)|z=0- O

Lemma 29. If there exists an oracle that can solve the Ring—LWE(m,mq,D%Qq) problem, then there
must exist an efficient algorithm to solve the Ring-LWE(m, n, ¢, Dg ,,)|z=0 problem.

Proof. Let’s assume that there exists an oracle W that can solve the Ring-LWE(m, n, q, DR q) problem.

In other words, it can find s € R, within polynomial time such that
b= as+ e, where a € Ry,e € DR aq-
Since b = as + e is a polynomial, the same equation holds for the constant term of b, which is
blz=0 = (as + €)|z=0, where a € Ry, e € DR aq.
Therefore, s € R, is also a solution to the Ring-LWE(m, n, ¢, D ,,)|z=0 problem. O

Lemma 30 ([4], Th 2.13). Assuming that we can factorize q into q¢ = p{'p5* - - p* in poly(n) polyno-

mial time, let 0 < o < 1/w,. If the LWE (m,n,q, D%

7 aq) Problem is hard, where m(n) = nPW | then

LWE(m/,n,q,Dy,,,) is also pseudorandom for any m'(n) = nPW and

14+1/¢ 1

o > max{a,w, o /e,wn/p?»w-,wn/P;k},

where £ is an upper bound on p; such that p; < w, /.

Corollary 31. Assuming that we can factorize q into g = p{'ps? - - - p* in polynomial time, let 0 < o <
ljw. If the LWE (m,1,q,D7,,) problem is hard, where m is any integer, then LWE(m/, 1,q,D7',,,) is

also pseudorandom for any m’ and

1+1/¢

o’ > max{a,w ot w/pl, L w /P

where £ is an upper bound on p; such that p; < w/c’.

Lemma 32. Assuming we can factorize ¢ = pi'p5* - - - piF in polynomial time, where p; are primes and
e; are positive integers. Let 0 < a < 1/wy,. If the Ring-LWE(m,n,q, D% ,,) problem is hard, where
m(n) = n°D, then Ring-LWE(m/, n, 4, DR or4) 18 also pseudorandom for any m'(n) = n°W | and

o > 1rr1a)<<{<)¢,w,1l+1/Z . al/e,wn/p‘il,... ,wn /DR,

where £ is an upper bound on primes p; such that p; < wy /.

Proof. If there exists an oracle that solves the Ring-LWE(m, n, ¢, DR ,,) problem, then there must exist
an algorithm to solve the Ring-LWE(m, n, g, D;g’aq)u:o problem. According to Lemma 29, we know that
the Ring-LWE(m, n, ¢, D ,,)|lz=0 problem is equivalent to the LWE(m, 1, ¢, D% ,,) problem. Therefore,
there also exists an algorithm to solve the LWE(m, 1, q, D%aq) problem. Based on Corollary 31, we can
conclude that there exists an algorithm to solve the LWE(m/, 1, ¢, D% ,,) problem.

Using the equivalence between Ring-LWE(m’,n,q, DR ,,)lz=0 problem and LWE(m',1,¢,D% ,,)
problem again, we can obtain a solution to the Ring-LWE(m/, n, q, D%yaq)h:o problem, and thus obtain

an algorithm for solving Ring-LWE(m’, n, ¢, D% ,,) problem using the conclusion of Lemma 29. O

Theorem 33. If there exists an oracle W capable of solving Ring-LWE(n, ¢, Dg . q), then there also
exists an algorithm W' that can construct collision queries for Ring-LWE(m,n,q,D%’aq), and thereby

solve the Ring-SIS(m,n, g, D%,aq) problem.
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Proof. For a Ring-LWE(n, ¢, Dr aqg) problem, given (a;,b;) € R4 x Ry, the goal is to find s; € R4 such
that

b; = a;s; + €.

Here, a; and b; are ring elements in R, and s; is the secret key while e; € x is a small error term.
If there exists an oracle W capable of solving the Ring-LWE(n, ¢, Dr q) problem, then for a m-fold
Ring-LWE(n, ¢, Dr,aq) problem, i.e., Ring-LWE(m,n, ¢, D% ,,), we only need to query the oracle W m

times in order to obtain s; € Ry, ¢ € {1,...,m} such that
(bl =ai1s1+e1,...,0m :amsm—kem). (7)
as in Equation (7). Let F(z) = (a1,...,an), and consider G(z) = ({1,...,%m) as a special solution to

the Ring-SIS(m,n, ¢, DR ,,,) problem, such that
FT(x)G(x) =aity + -+ amtm =0,
and a;t; =0 for i € {1,...,m}.
Using the oracle machine W again m times, we obtain y; = s; +¢; for i € {1,...,m}, such that
(b1:a1(31+t1)+61,...,bm:am(sm+tm)+em). (8)

By combining the information from Equation (7) and Equation (8), we can obtain a solution to the
Ring-SIS(m, n,q, D% ,,) problem. O
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Appendix

Definition 34 (Polynomial degree extension method).

e-l g T u(ovi) x(nfl)nc_l 4

u(()o’i) I ugo’i)l‘ + o 4 u(O,i) xn6*1_1 + u(o,j) xncfl + u(oﬂ') !,Encfl-‘rl + e 4+ u(O,i) z(n—n (n-1)ne—1

ne—1_1 ne—1 ne—141 (n_l)ncfl_l

(Z(()O’i) + ago’i)x 4+ 4 a'ELOjZZ o1

We refer to it as “ polynomial degree extension”, and conversely, we call it “ polynomial degree reduction”.

Proof of Lemma 12. First, we use the approach defined in Definition 34 to extract aE(O)(sc) Ring-SIS(m, n, ¢¢, °) problem from F(x) = F()(z) = Ring-SIS(m, n¢, ¢¢, 3°),

as stated in Equation (P1).

e P A Y B L s TP aﬁgﬂ)ncfl_1x<”*1)”6_1*1 + aggﬂl)ncfl gn=Dn®""

Q(()O’i) + ngﬂ') r + - + (—ngo—,il) 1
(P1)
] i ,t ne—1l_ o ne— i n—1)nc=1
aélﬂ) e ag\l, e afllk)l_lx o ST a;107)1+>\ o ST agii)l)n0*1+>\ 2(n—1) X4
le,i) + gglai) r + -+ ngljl) =1 v

Let E(O)(x) = (i(o’l),i(o’z), . ,i(o’m)), here i(o’i) = Q(()O’i) +Q§O’i)x +-- -leo_’il)x"_l. According to the Ring-SIS(m,n, ¢, X) oracle, we can make m queries to F) (x)
and obtain
GO (@) : = (g1 (2), g3 (x), -+, g™ (@), g0 (2) € Zyla] /<™ + 1> i€ {1,...,n},j € {1,...,m}.

Here, g(i’j’o) (x) = b(()i’j’o) + bgi’j’o)x 4o a0 nk -1

nk—1



Likewise. We transform it into

g(i,j,O) (1’) — b((Ji,j,O) + b§i7j’0)$n 4ot b(i»j>0)x(nk—1)n.

nk—1

We construct
G (@) = (g0 (@), g0 (@), g0 (2)), O (2) € Zy[a] /(@™ +1),i € {1, n},j € {1,...,m}.

We define F()(z) = (FO(2)TG\ (2), (FO (2) TG (2), ..., (FO(2))TGY (x)). At this point, F() ()
is also a Ring-SIS(m, n¢, ¢, 3°) problem. We extract a F™")(z) from F(1)(z), which is a Ring-SIS(m, n, ¢¢, 5°)
problem, as stated in Equation (P2).

We let FO(@) = (£, f02, 0 fOm™), where f09 = af +af"z + - + a1, Using
the Ring-SIS(m, n, ¢, X') oracle, we make m queries to F© (z) and obtain

G (@) = (gD (@), g2 (@), - gD (@),
g(i’j’o)(x) € Zq[x]/<x"k +1>ie{l,...,n}kje{l,...,m}.
Where,
D) () = pED 3D D ot

g nk—1

We could rewrite it as

g0 (a) = B 4 B g D g0,

nk—1
Construct a part of solution, that is
G;l)(x) = (g(l’]’l)(;v),g(Q’J’l)(x), e ,g(m’]’l)(;v)),g(”’l)(x) € Zglz]/<a™ +1>,ie {1,...,n},je{l,...,m}.

Suppose that F® (z) = (FM(2))TG (2), (FO () TG (@), ..., (FO(2)TGH (x)), and FO(z) is a
Ring-SIS(m, n¢, ¢¢, 3°) problem. The solution to the recursive problem F(x) = F(9)(z) = Ring-SIS(m,n¢, ¢¢, 5°)
is given by

G(J?) = (gl, ‘e ,gm),

where

m om ) m
G= 29 D9 D e | Gidue i

Jj1=1 Jj1=1 Jne—n=1

To verify that G(z) is a solution to the problem F(z) = F(©)(z) = Ring-SIS(m,n¢, ¢¢, 5°), we only
need to calculate F'7'(2)G(z) = 0. For convenience, let’s define

F(z) = (fO (), fOx), - f™ (@), fD(2) € Zyla]/<a™ " +1>,i € {1,...,m}.

where,

@ (x) = féi) + et féic),l,}} =apz* +a ™" 4+ 4 ank_lfz:)‘ﬂnk*l)", red{l,...,n}.

Then we have

m m m m
FT(@)G(a) =Y (F + -+ F ) [ S a S a2 Y ghen | e

k=1 Jji=1 Jji=1 Jne—n=1

3

Since Z?;l(]:éi) Y g7") = 0, we have
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FT(@)G(a) =Y (F 4+ +F2 (a2 > gien | Gidnemnn

i=1 Ji=1 Jji=1 Jne—n=1
m m m m

_ i) J1 J2 . -

=S| AIQC g+ A E ' DGR D Gieow | Giduemnir-
=1 J1=1 ji=1 Jji=1 Jne—n=1

m m m .
S (AT e | -
=1 Jl 1]1 1 j1:1
we have
F'(2)G(x)
(i (@ " N .
=S FE o+ FL DS Y g | G
1=1 j1:1 j1:1 .jnc—nzl
m m ) m
5 S DD SRSSRECCING SF TN D o I SRV PN
=1 Jji1=1 J1=1 Ji=1 Jne—n=1
STASS S g+ o+ FL O adn S d | [ > i | G
1=1 Jji=1 Jji=1 Jji=1 Jj1=1 Jj2=1 Jne—n=1

If we continue this way, it is easy to prove that G(x) is a solution to the Ring-SIS(m,n¢, ¢¢, 5¢) problem.
In this case, it will take a total of m(n® —n)/n+1=m(n°~t — 1) + 1 queries. O
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