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Abstract. Secure multi-party computation (MPC) enables multiple dis-
trusting parties to compute a function while keeping their respective in-
puts private. In a threshold implementation of a symmetric primitive,
e.g., of a block cipher, each party holds a share of the secret key or of
the input block. The output block is computed without reconstructing
the secret key. This enables the construction of distributed TPMs or
transciphering for secure data transmission in/out of the MPC context.
This paper investigates implementation approaches for the lightweight
primitives SKINNY and PHOTON in arithmetic circuits. For these prim-
itives, we identify arithmetic expressions for the S-box that result in
smaller arithmetic circuits compared to the Boolean expressions from
the literature. We validate the optimization using a generic actively se-
cure MPC protocol and obtain 18% faster execution time with 49% less
communication data for SKINNY-64-128 and 27% to 74% faster exe-
cution time with 49% to 81% less data for PHOTON P100 and P288.
Furthermore, we find a new set of parameters for the heuristic method
of polynomial decomposition, introduced by Coron, Roy and Vivek, spe-
cialized for SKINNY’s 8-bit S-box. We reduce the multiplicative depth
from 9 to 5.

Keywords: S-box · SKINNY · PHOTON · Secure Multi-Party Compu-
tation · Arithmetic Circuit

1 Introduction

Recent improvements in advanced cryptographic protocols, such as secure multi-
party computation (MPC), fully homomorphic encryption (FHE), or zero-know-
ledge proof systems, made computation on encrypted data practical. This devel-
opment enables privacy-preserving and GDPR compliant data processing and
utilization in many areas, such as in public sector services, in smart cities, or
healthcare. With added privacy benefits for users and data providers, various
use cases emerge where cryptographic primitives are needed, including proofs
over correct hashing, ciphertext-compression for FHE schemes, and secure out-
sourcing of computation and data storage for MPC. In this context, dedicated
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PRFs [20, 25, 26], block and stream ciphers [1–3, 11, 19, 23, 37], and hash func-
tions [22,24] have been proposed that focus on minimizing multiplicative depth.

However, in a real-world scenario, cryptographic mechanisms and construc-
tions need to interoperate between traditional computing systems (e.g., IoT de-
vices, mobile phones, commodity and server CPUs) and these advanced crypto-
graphic protocols. Traditional symmetric primitives, such as AES [38] and SHA-
2 [39], are widely used in real-world applications and are widespread in internet
and industry standards. For instance, proving properties of information obtained
from real-world processes in zero-knowledge, e.g., the correct processing of finan-
cial transaction data, requires the usage of standardized constructions from that
real-world domain since the information is not protected under non-standard
cryptographic mechanisms. These standards almost exclusively specify tradi-
tional symmetric primitives at the core. Further, thresholdization of primitives,
i.e., where the secret key is split among multiple parties who then jointly compute
the relevant operation without reconstructing the secret key, is already deployed
in industrial distributed key vault solutions and TPMs. Recently, NIST started
investigating threshold implementations of NIST standardized primitives [10]
as well. The important key part of thresholdization is that a threshold and a
non-threshold implementation have to be interoperable, such that, e.g., deriva-
tive products of keys managed in a threshold fashion can be used in systems
unaware of the thresholdization.

While thresholdized AES implementations have been studied, e.g., [13, 14,
17, 21, 31], other traditional primitives have not received that much attention.
In this work, we want to study threshold implementations of lightweight primi-
tives that may be used in applications where AES is undesirable. Lorünser and
Wohner [35] implement several symmetric ciphers using two MPC frameworks,
namely, MP-SPDZ and MPyC, to facilitate a better understanding of the two
MPC frameworks. However, they treat the primitives as black boxes with lit-
tle optimization of the primitive’s performance. In a recent and more relevant
work, motivated partly by the interoperability of privacy-enhancing protocols
and lightweight cryptography, Mandal and Gong [36] study the Boolean circuit
complexity of the core primitives of the NIST Lightweight Cryptography Com-
petition (LWC)1 round 2 candidates. However, their study is limited to Boolean
circuits using the HalfGates garbling scheme by Zahur et al. [41] for the MPC
(2PC to be more precise) evaluation of the ciphers.

To complement this effort, we move to the arithmetic circuit setting where
variables are elements of, e.g., a finite field or ring, and basic gates are addition
and multiplication gates. We investigate whether such a representation results
in benefits, e.g., reduced circuit size, faster execution, or fewer communication
data, over a straight-forward emulation of Boolean arithmetic paired with known
Boolean circuits of lightweight primitives. A possible avenue in the arithmetic
setting is to identify operations and structure in the primitive where groups of
bits can be encoded as field/ring elements and equivalent arithmetic operations
in the field/ring can replace bit-oriented functionality. For this purpose, we an-

1 https://csrc.nist.gov/Projects/Lightweight-Cryptography
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alyze the ten LWC finalists, but we limit our study to substitution-permutation
network (SPN) designs of the underlying primitives. We exclude SPARKLE,
Grain-128AEAD, and TinyJambu. Moreover, we rule out the permutations used
in sponge-based AEADs (Ascon, ISAP, and Xoodyak) for two reasons. First,
independent from the suitability of the permutation, the sponge structure cre-
ates highly serial circuits with high multiplicative depth that results in poor
performance in non-constant round MPC protocols. Second, the permutation’s
round function operates over lanes, sheets, and columns of the state, mixing bits
over all dimensions. This makes grouping bits within the state costly without
a foreseeable benefit for arithmetic purposes. The SPN primitives of Elephant
and GIFT-COFB involve a bit-level permutation making the linear layer costly
(when grouped). Ultimately, we identify two primitives, SKINNY and PHO-
TON, stemming from the finalists Romulus and PHOTON-Beetle, respectively,
where all operations on the state can be expressed as cell-wise operations and no
intra-cell operations occur. We can therefore group the bits of each cell into one
field/ring element and then investigate the cost of all operations in the arith-
metic circuit. While we take SKINNY as the main demonstration example, all
our findings also apply to a threshold implementation of PHOTON.

Our contributions can be summarized as follows:

– We provide several program representations for the SKINNY primitive in
arithmetic circuits over F2k (see Sect. 3) optimized for usage in MPC proto-
cols. We identify a trade-off between multiplications and pre-processed ran-
dom bits for the evaluation of polynomials, resulting in a reduced number of
multiplications for all 4-bit S-boxes.

– We benchmark the promising candidates of the trade-off in the secret shar-
ing based “SPDZ-like” protocol MASCOT in the active security setting (see
Sect. 4). We confirm the trade-off in practice and obtain improved perfor-
mance for SKINNY variants with 64-bit block size, i.e., faster execution and
lower communication cost, compared to the baseline.

– We show how the results for SKINNY carry over to a threshold implemen-
tation of PHOTON (see Sect. 4.3). We obtain similar performance improve-
ments for 4-bit S-boxes and can apply well-known optimizations of the AES
S-box used in the 8-bit PHOTON instance.

The rest of this paper is organized as follows. We give an introduction and
background information on SKINNY, PHOTON and on the MPC protocol in
Sect. 2. Then, we investigate the representation of SKINNY in arithmetic circuits
in Sect. 3. The results of the experimental benchmark are detailed and discussed
in Sect. 4. We conclude the paper in Sect. 5.

2 Background on Primitives and MPC

In the following, we give background details on the SKINNY lightweight block
cipher family (Sect. 2.1), the permutations defined in PHOTON (Sect. 2.2) and
discuss one MPC protocol for arithmetic circuits (Sect. 2.3).
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2.1 SKINNY

SKINNY is a lightweight tweakable block cipher proposed by Beierle et al. [7],
which has received a substantial amount of cryptanalysis (see, e.g., [5,18,28,34,
40,42] and [8, §5.3]). The primitive is designed to have a low hardware footprint,
i.e., a small area on chip, and can therefore be used in IoT devices, embedded
devices or RFID tags. Many implementations for hardware and software are
available due to the NIST LWC process as part of the candidates Romulus [29],
SKINNY-AEAD [8] and ForkAE [4]2.

SKINNY comes in several variants that process 64-bit or 128-bit blocks, and
64–384-bit tweakeys. A tweakey is the concatenation of a (secret), e.g., 64- or
128-bit key and a (public) tweak. The round function of this SPN cipher is similar
to many AES-like primitives. Table 1 lists the number of rounds specified for
each variant. The round function alters the internal state, a 4 × 4 array of s-
bit cells. For a block size of 64-bit, s = 4, for 128-bit block size, s = 8. The
initial state is the message block. Let the message be a sequence of s-bit values
s0 s1 . . . s15, then the 4× 4 array is filled row-wise:

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 .

The resulting ciphertext is the state after all rounds have been computed. The
tweakeys are loaded into 4 × 4 arrays, TK1,TK2,TK3, in the same manner.
TK1, present in all variants, is loaded with tweakey bits 0 · · · (16s − 1). TK2
and TK3 are loaded with tweakey bits 16s · · · (32s − 1) and 32s · · · (48s − 1)
respectively, if needed. The round function applies five steps in series: SubCells,
AddRoundConstants, AddRoundKey, ShiftRows and MixColumns.

Table 1: The number of rounds for each variant of SKINNY. Variants are denoted
by SKINNY-b-tk where b is the block size in bits and tk is the tweakey size in
bits. Note that the key size equals the block size in all variants.

Variant Block Size Rounds

SKINNY-64-64
64

32
SKINNY-64-128 36
SKINNY-64-192 40

Variant Block Size Rounds

SKINNY-128-128
128

40
SKINNY-128-256 48
SKINNY-128-384 56

SubCells. SubCells applies the S-box to each cell in the state. For s = 4, the 4-
bit S-box is used (see Fig. 1a), for s = 8, the 8-bit S-box is used (see Fig. 1b).

2 https://cryptography.gmu.edu/athena/index.php?id=LWC,
https://github.com/mustafa-khairallah/lwc-aead-rtl, https://eprint.iacr.org/2021/049.pdf
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Both S-boxes are computed by repeating XOR and NOR operations, and bit
permutations. For the S-box definition as a truth table, we refer the reader
to the original specification document [7].

AddRoundConstants. This step XORs public constants to three cells:

s′0 ← s0 ⊕ c0 , s′4 ← s4 ⊕ c1 , s′8 ← s8 ⊕ 0x2 .

The constants c0 and c1 are defined for each round, whereas the operand for
s8 remains 0x2.

AddRoundKey. In each round, the first two rows of the state are XORed cell-
wise with the first rows of each available round tweakey. Let ai..j ⊕ bi..j be a
short-hand notation for ai ⊕ bi . . . aj ⊕ bj , then

s′0..3 ← s0..3 ⊕ TK10..3 ⊕ TK20..3 ⊕ TK30..3 ,

s′4..7 ← s′4..7 ⊕ TK14..7 ⊕ TK24..7 ⊕ TK34..7 .

ShiftRows. Shift rows applies a cell-wise permutation PS on the state where

PS(0, ..., 15) = (0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12) .

This rotates each row by 0, 1, 2 and 3 elements to the right.
MixColumns. The MixColumns step multiplies the state with the matrix

s′0 s′1 s′2 s′3
s′4 s′5 s′6 s′7
s′8 s′9 s′10 s′11
s′12 s′13 s′14 s′15

←

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0




s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 .

Key Schedule. The key schedule describes how a round key is derived from
the cipher’s key. The first round key is the tweakey itself. Round keys for
subsequent rounds are obtained by applying the permutation PT cell-wise
on the 4 × 4 array representation of each tweakey. Each cell in TK2 and
TK3 is further updated by a linear feedback shift register (LFSR). In short,
denoting the round key for the next round by TKi′ , i = 1, 2, 3, we have

TK1′ ←PT (TK1), TK2′ ← LFSR2 ◦ PT (TK2), TK3′ ←LFSR3 ◦ PT (TK3),

where

PT (0, .., 15) = (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)

and LFSR2/LFSR3 are defined in Table 2. PT swaps the first two rows with
the last two rows of the state and applies a permutation to the now first two
rows.
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Table 2: Linear feedback shift registers LFSR2 and LFSR3 defined in the key
schedule of SKINNY for tweakeys TK2 and TK3, respectively.

Cell size

LFSR2 4-bit (x3, x2, x1, x0) → (x2, x1, x0, x3 ⊕ x2)
8-bit (x7, x6, x5, x4, x3, x2, x1, x0) → (x6, x5, x4, x3, x2, x1, x0, x7 ⊕ x5)

LFSR3 4-bit (x3, x2, x1, x0) → (x0 ⊕ x3, x3, x2, x1)
8-bit (x7, x6, x5, x4, x3, x2, x1, x0) → (x0 ⊕ x6, x7, x6, x5, x4, x3, x2, x1)

2.2 PHOTON

We briefly describe the internal permutations Pt, t ∈ {100, 144, 196, 256, 288},
of the PHOTON hash function [27]. Similarly to SKINNY, the internal state is
a d × d array of s-bit cells that is transformed by applying the following round
function steps 12 times: AddConstant, SubCells, ShiftRows, MixColumnsSerial.
Since Pt is a permutation, it has no secret key addition layer. Table 3 lists the
parameters for each variant.

AddConstant. Public round constants and instance-specific internal constants
are XORed to the first column of the state.

SubCells. If s = 4, the PRESENT S-box [9] is applied to each cell in the state.
If s = 8, the AES S-box is applied.

ShiftRows. This applies a cell-wise permutation on the state where row i is
rotated by i columns to the left.

MixColumnsSerial. Each column of the state is multiplied with a matrix At

d times. The multiplication is defined over F2[X]/X4 +X + 1 for s = 4 and
over F2[X]/X8 +X4 +X3 +X + 1 for s = 8.

Table 3: State size d, cell size s and modulus of PHOTON Pt.
Instance d s Modulus

P100 5 4

X4 +X + 1
P144 6 4
P196 7 4
P256 8 4

P288 6 8 X8 +X4 +X3 +X + 1

2.3 A Multi-Party Computation Protocol for Arithmetic Circuits

In this and the following sections, we denote a uniform random sampling from
a finite set A with $← A. We now briefly discuss the SPDZ-style, dishonest-
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majority MPC protocol on arithmetic circuits that achieves active security us-
ing information-theoretically secure MACs. The communication model in the
protocol assumes secure point-to-point channels and a synchronous network. If
we later refer to a round of communication, this means each party broadcasts
one or more local values to all other parties. In this model, the broadcast based
on point-to-point connections costs O(n2) values to send for n players. In the
protocol, the computation is split into a pre-processing, a.k.a. offline, phase and
an online phase. In the offline phase, the players jointly create correlated ran-
domness for multiplication and bit-decomposition. Since neither the individual
party’s inputs nor the concrete function to compute3 have to be known, this
phase can take place well before the online phase and is usually computationally
much heavier. In the online phase, the parties know their own inputs and the
arithmetic circuit. This phase consumes the correlated randomness from the of-
fline phase. Since we only consider binary extension fields in this paper, we adapt
the notation for the MPC protocol accordingly. Recall that F2k = F2[X]/Q(X) is
a finite field with 2k elements, where k > 0. Each element can be represented as
a polynomial of degree at most k−1 whose coefficients are in F2 and Q(X) is an
irreducible polynomial of degree k. Addition g(X)+h(X), for g(X), h(X) ∈ F2k ,
is performed coefficient-wise. Multiplication g(X)h(X) is the ordinary polyno-
mial multiplication modulo Q(X). Every variable in the arithmetic circuit is an
element in F2k . During execution, each player holds or obtains an additive se-
cret share of every variable. We denote the additive share of x ∈ F2k of player i
with x(i), i.e.,

∑
x(i) = x. A SPDZ-like share of the same player is denoted with

JxKi = ⟨x(i),m(i)⟩ which carries a MAC share m(i) that authenticates the secret
share to enable active security where m is created using the global secret MAC
key ∆ ∈ F2k .

Offline Phase. The offline phase implements the functionalities FTriple and FBit
by using somewhat homomorphic encryption SHE (e.g. in [15,16,33]) or oblivious
transfer [32]. While the offline phase dominates the total runtime of the MPC
protocol, its details are less important for the purpose of this paper. We invite
the reader to consult the aforementioned references for further details.

The functionality FTriple produces Beaver multiplication triples [6] of the form

(JaK, JbK, JcK) where c = ab and a, b
$← F2k . The functionality FBit produces

random bits JrK with r
$← {0, 1}.

Online Phase. Before detailing the addition and multiplication of shares, we
have to describe the concept of (partially) opening a share. In general, if a share
JxK is opened, each player i broadcasts x(i) and then sums up all shares to obtain
x. For active security, the players first commit to the MAC shares m(i)−∆(i)x(i)

before opening them. Later it is checked whether m−∆x = 0. The core idea of
SPDZ is to defer the checking of the MAC values to the very end of the protocol,
3 However, the players must know an upper bound on the number of required multi-

plication triples resp. random bits.
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resulting in a so-called partial open. Before the final output is revealed, all MACs
of partially opened shares are checked in one go. If this check passes, the output
value is reconstructed.

Let JxK = ⟨x(i),m
(i)
x ⟩, JyK = ⟨y(i),m(i)

y ⟩ be shares and e ∈ F2k a public
constant, then addition of shares, public constants and multiplication by public
constants can be performed locally by each player:

e+ JxK = Je+ xK :

{
⟨x(0) + e,m

(0)
x + e∆(0)⟩ if i = 0 ,

⟨x(i),m
(i)
x + e∆(i)⟩ else ,

e · JxK = Je · xK : ⟨e · x(i), e ·m(i)
x ⟩ ,

JxK + JyK = Jx+ yK : ⟨x(i) + y(i),m
(i)
x +m

(i)
y ⟩ .

Given a multiplication triple (JaK, JbK, JcK) from FTriple, we compute the multipli-
cation JxK · JyK = Jx · yK in two steps.

1. The players partially open Jx− aK as γ and Jy − bK as ϵ.
2. Each player computes locally Jx · yKi = JcKi + γ · JbKi + ϵ · JaKi + γ · ϵ.

The partial open requires one round of communication, unlike the linear opera-
tions mentioned before.

We can also compute a bit-decomposition of a shared x ∈ F2k into k shares
of the bits of x, b0, . . . , bk−1 where x =

∑k−1
j=0 bjX

j . Note that the resulting bit
bi is still shared over F2k . Given k random bits Jr0K, . . . , Jrk−1K from FBit,

1. The players locally compute JrK =
∑k−1

j=0 JrjKXj and partially open Jx − rK
as γ.

2. Let γ0, . . . , γk−1 ∈ {0, 1} be the (clear text) decomposition of γ. Each player
then computes Jb0K = Jγ0 + r0K, . . . , Jbk−1K = Jγk−1 + rk−1K.

In summary, multiplying two secret-shared values, i.e., Jx·yK← JxK·JyK, requires
one multiplication triple from FTriple and one round of communication. A bit-
decomposition of JxK into k bits Jb0K, . . . , Jbk−1K requires k random bits from
FBit and one round of communication. Note that both for multiplication and bit-
decomposition, data of independent operations can be sent in the same round.

3 Arithmetic Circuit Implementation

We aim to explore possible performance gains of an arithmetic representation of
the circuit where we utilize properties of the underlying field over an emulation
of Boolean arithmetic. Thus in the following, variables are elements of a finite
field. The cell-focused nature of SKINNY allows the representation of each cell
as a finite field element. Thus, the state consists of 16 field elements.

Concretely, we define two fields4 of size 24 and 28,

F24 = F2[X]/(X4 +X3 + 1) ,

F28 = F2[X]/(X8 +X7 +X6 +X5 +X4 +X2 + 1) . (1)
4 Since the SKINNY reference does not specify operations in a field, we are free to

pick a suitable one.
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For SKINNY versions with a 64-bit state, we pick the field F24 and for a 128-bit
state, we use F28 . We encode s-bit cell values bs−1 . . . b0 into field elements as
bs−1 . . . b0 ↔

∑s−1
i=0 biX

i. We express values from this correspondence as hex-
adecimal literals, e.g., 0xa3 ↔ X7 + X5 + X + 1. With this correspondence,
XOR of two s-bit values translates to addition of two field elements in F2s . As a
result, all parts of the round function except for SubCells become linear and can
be computed locally by each player. The fields defined in Eqn. (1) entail a mini-
mal number of multiplications to implement the respective S-box via polynomial
interpolation. We give more details later in Sect. 3.2. From Table 2, we can see
that if the tweakey is available in shared bits, the LFSR computation, and thus
the whole key schedule, is also linear and incurs no communication rounds.

Furthermore, we recall that squaring is a linear operation in fields of charac-
teristic two, i.e., (

s−1∑
i=0

biX
i

)2

=
s−1∑
i=0

(biX
i)2 . (2)

Thus, given the bit-decomposition of x ∈ F2s , any power of the form x2j can be
computed without any multiplication triples. We stress, however, that the initial
bit-decomposition requires one opening in the online phase, so computing any
number of squares in {x2, x4, x8, ...} costs one round of communication and s
random bits. Appendix A.1 gives an example of squaring as a linear operation.

In the following, we describe approaches to express the non-linear part of
SubCells, the S-box. Section 3.1 describes the baseline approach that emulates
Boolean arithmetic. Then, we study approaches via polynomial interpolation.
Section 3.2 details the interpolation and Sect. 3.3 improves the evaluation by
utilizing the free squaring property. In Sect. 3.4, we apply a polynomial decom-
position to compute the S-box. Table 4 lists the cost of each S-box implementa-
tion approach in terms of multiplication triples, random bits and communication
rounds.

3.1 Binary S-box

The Boolean operations AND, XOR and NOT can be naturally emulated in
any field with characteristic two. If the values are a sharing of 0 or 1, AND
is expressed as multiplication, XOR as addition and NOT is addition with the
constant 0x1. In this approach, each bit in an s-bit cell is encoded as a field
element and we compute the S-box as given in the SKINNY specification [7]
emulating Boolean operations (see Fig. 1). We will further use this approach as
baseline for the comparison.
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x′
0 ←x1 ⊕ (¬x′

3 ∧ ¬x′
2)

x′
1 ←x2 ⊕ (¬x1 ∧ ¬x′

3)

x′
2 ←x3 ⊕ (¬x2 ∧ ¬x1)

x′
3 ←x0 ⊕ (¬x3 ∧ ¬x2)

(a) The 4-bit S-box.

x′
0 ←x2 ⊕ (¬x′

3 ∧ ¬x′
1)

x′
1 ←x7 ⊕ (¬x′

7 ∧ ¬x′
2)

x′
2 ←x6 ⊕ (¬x2 ∧ ¬x1)

x′
3 ←x1 ⊕ (¬x′

5 ∧ ¬x3)

x′
4 ←x3 ⊕ (¬x′

7 ∧ ¬x′
6)

x′
5 ←x0 ⊕ (¬x3 ∧ ¬x2)

x′
6 ←x4 ⊕ (¬x7 ∧ ¬x6)

x′
7 ←x5 ⊕ (¬x′

6 ∧ ¬x′
5)

(b) The 8-bit S-box.

Fig. 1: The 4-bit and 8-bit S-box of the SKINNY cipher. The cell bit xi is trans-
formed into x′

i.

3.2 S-box via Polynomial Interpolation

Another representation of the (s-bit) S-box is via a polynomial Ps(z) =
∑2s−1

i=0 aiz
i,

where ai ∈ F2s . Then, the computation of the S-box on a given value x is the
evaluation of Ps at x. We can obtain the coefficients ai by associating (x,Ss(x))
for all x ∈ F2s and computing the interpolating polynomial by means of Lagrange
interpolation, or by solving the following linear system of equations 0x1 0x01 . . . 0x02

s−1

0x10 0x11 . . . 0x12
s−1

...


 a0

...
a2s−1

 =

Ss(0x0)
Ss(0x1)

...

 .

This approach primarily motivated the choice for the irreducible polynomi-
als in Eqn. (1). The chosen modulus entails a maximally sparse interpolating
polynomial for the respective S-box, i.e., for this modulus, Ps(z) contains the
maximal number of coefficients ai = 0x0.

The interpolating polynomial for SKINNY’s 4-bit S-box S4 is

P4(z) = 0xc + 0x8z + 0x3z2 + 0xdz3 + 0xfz4 + 0x4z5 + 0x8z6 + 0x6z7

+ 0x1z8 + 0x9z9 + 0x8z10 + 0xez12 + 0xcz13 + 0xbz14 . (3)

The inverse S−1
4 is slightly sparser, with one less non-zero coefficient. For the

8-bit S-box S8, P8(z) is more unwieldy with degree 252 and 244 non-zero coeffi-
cients. Its inverse S−1

8 has degree 252 with 241 non-zero coefficients.
For a direct evaluation of P (z), we need to compute the powers zi that occur

in P (z). The remaining linear combination
∑

aiz
i is free. In order to minimize

the number of sequential multiplications, we express the computation through
the shortest addition chain of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14} for P4 (see
Fig. 2a). This approach is marked as MUL in Table 4. Analogously for S8, we
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find a chain that requires 242 multiplications in 8 rounds and for S−1
8 , we use

239 multiplications in 8 rounds.

2

1

4

5

10

3

7

14

6

1312

8

9

(a) Only via multiplications (MUL).

2 4

1

8

63 5 10 12 9

7 14 13

(b) Using free squares 2, 4, 8 (SQ1).
Dashed arrows denote free squaring via
bit-decomposition.

Fig. 2: Shortest addition chain for powers in the interpolating polynomial for
SKINNY’s 4-bit S-box. Each level in the tree denotes one communication round.

3.3 S-box via Polynomial Interpolation with Free Squaring

We may use bit-decomposition and then repeated free squaring to compute more
powers in a single round. This creates a trade-off between multiplicative depth,
the number of multiplications and the number of required pre-processed random
bits for the bit-decomposition. We explore this trade-off for the 4-bit S-box in
detail since the number of powers to compute is significantly smaller than for the
8-bit S-box. We denote this approach SQ1, SQ2, . . . where one, two, . . . base
values are used for free squaring. Table 4 lists the cost for each combination. For
S4 and SQ1, we first square z1 to obtain z2, z4, z8. This is illustrated in Fig. 2b.
For SQ2, we compute z3 normally and also square it to obtain z6, z12, z9 for free.
For SQ3, z5 is squared to obtain z10 and for SQ4 squaring z7 yields z14, z13, z11.
While squaring once/twice, e.g., SQ1 and SQ2, decreases the number of rounds
that are necessary for the computation, SQ3 and SQ4 require one more round.
The reason for the additional required round is that some powers can no longer
be computed in the original round since the prerequisite powers are no longer
both available in the previous round because they are computed later for free.
Concretely, power 14 can no longer be computed in round 3 by using powers 6
and 8 since power 6 is computed for free at the earliest in round 3. Figure 5a in
Appendix A.2 illustrates this by showing the addition chain for SQ3.

We visualize the trade-off in the 8-bit case in Fig. 5b in Appendix A.2. Three
configurations may be of interest. The plain multiplication approach requires
242 multiplications in 8 rounds but no random bits. Using only the square chain
1 → 2 → 4 → 8 → . . . requires 236 multiplications, 8 random bits in 4 rounds.
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On the other end, if as many values are computed via squaring as possible, the
computation requires 33 multiplications and 264 random bits in 5 rounds.

Table 4: Cost of implementation approaches for SKINNY’s 4-bit and 8-bit S-
boxes. MUL denotes the direct evaluation of the interpolating polynomial, BIN
is the emulation of Boolean arithmetic, SQi denotes utilization of i free square
chains and CRV denotes the polynomial decomposition.

S4 S−1
4

Mult. Bits Depth Mult. Bits Depth

MUL 12 0 4 11 0 4

BIN 4 0 2 4 0 4

SQ1 9 4 3 8 4 3
SQ2 6 8 3 6 8 3
SQ3 5 12 4 5 12 4
SQ4 3 16 4 3 16 4

CRV 2 8 4 2 8 4

S8 S−1
8

Mult. Bits Depth Mult. Bits Depth

MUL 242 0 8 239 0 8

BIN 8 0 4 8 0 4

SQ1 236 8 4 233 8 4
SQ33 33 264 5 32 256 5

CRV 10 40 5 10 40 5

3.4 Decomposition

We can use the decomposition method, CRV, by Coron, Roy and Vivek [12] to
reduce the number of multiplications to evaluate the interpolating polynomial
P (z). In short, P (z) is decomposed into the sum of products of polynomials pi(z)
and qi(z),

P (z) =

t−1∑
i=1

pi(z)qi(z) + pt(z) , (4)

where each polynomial pi, qi only has monomials za with a ∈ L (see below).
The set L is constructed from a number of cyclotomic bases αj , where each base
constructs the consecutive squares starting from αj

Cαj = {2iαj mod 2s − 1 | ∀0 ≤ i < 2s} (5)

and thus
L = Cα1

∪ · · · ∪ Cαl
. (6)

With a good choice of l cyclotomic bases, all powers za for a ∈ L can be computed
with l − 2 multiplications. Naturally, α1 = 0 and α2 = 1, i.e., z0 and z1, which
don’t require any computation. Essentially, zαj is computed as the product of
previous values, while z2

iαj is computed for free since squaring is linear in our
chosen field. Therefore, the entire polynomial can be evaluated with l − 2 +
t − 1 multiplications by first computing the monomials defined by L and then
computing the product pi(z)qi(z).
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Table 5: Parameter choices for the polynomial decomposition in F2s and the
evaluation cost in terms of multiplication triples, random bits and multiplicative
depth. The parameter t denotes the number of pi/qi polynomials in Eqn. (4).

s t Base α Mult. Bits Depth

CRV [12] 4 2 {0, 1, 3} 2 8 4

CRV [12] 8 6 {0, 1, 3, 7, 29, 87, 251} 10 48 9
Ours for S8 and S−1

8 8 7 {0, 1, 3, 5, 7, 11} 10 40 5

The CRV method is heuristic as one chooses the cyclotomic bases and co-
efficients for polynomials qi to solve the resulting linear system for coefficients
of pi. The authors of [12] give α values for 4- and 8-bit polynomials for which
random choices for qi lead to a system with a solution.

Their parameter choice was motivated by finding higher-order masking to
protect implementations against side-channel attacks and has a minimal number
of multiplications. For our scenario, we also attempt to reduce the multiplicative
depth since this reduces the number of communication rounds in the protocol.
Table 5 lists our parameter choice and the heuristics given in [12]. For the 4-bit
case, the choice αj ∈ {0, 1, 3} is also minimal in terms of communication rounds.
For the specific S-boxes S8 and S−1

8 , we find a new set of cyclotomic bases
with a lower multiplicative depth and less random bits which only increases the
number of linear operations. For the 4-bit case, we detail the coefficients of pi/qi
in Table 7 in Appendix A.3.

Using this approach, any 4-bit S-box can be implemented requiring 2 mul-
tiplications and 8 random bits in 4 rounds. Our new parameters implement
SKINNY’s 8-bit S-boxes with 10 multiplications and 40 random bits in 5 rounds,
however, they don’t allow the implementation of any 8-bit S-box5.

4 Experimental Results

We implemented two cipher variants, SKINNY-64-128 and SKINNY-128-256, in
the forward and inverse direction. In Sect. 4.1 we evaluate all S-box approaches
for SKINNY’s 4-bit S-box and in Sect. 4.2, we investigate the BIN and CRV
variant for SKINNY’s 8-bit S-box. Finally, we apply the results to PHOTON
in Sect. 4.3. Table 6 shows the gate counts for the complete primitives. In all
comparisons, BIN denotes the baseline.

We benchmark in a three-party LAN setting6 using the MASCOT MPC
protocol [32] in the MP-SPDZ framework [30]. MASCOT provides active security
for a dishonest majority. In the MP-SPDZ implementation, shares are elements
of the field F240 defined as F240 = F2[Y ]/(Y 40+Y 20+Y 15+Y 10+1). We therefore
5 The parameters cannot be used to decompose the AES S-box, for instance.
6 Each party runs on a separate machine with 4 cores and 16 GB RAM connected

with a bandwidth of 10 Gbit/sec and <1 ms latency.
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Table 6: Gate counts of SKINNY-64-128, SKINNY-128-256, PHOTON P100,
PHOTON P288 and AES-128 (for context). Add/Cmul denote the number of
local linear operations.

Mult. Random Bits Add/Cmul Comm. Rounds

SKINNY-64-128 (BIN) 2304 0 10238 72
SKINNY-64-128 (CRV) 1152 4608 82764 144

SKINNY-128-256 (BIN) 6144 0 27465 145
SKINNY-128-256 (CRV) 7680 30720 1545744 240

PHOTON P100 (BIN) 1200 0 13862 48
PHOTON P100 (CRV) 600 2400 56520 48

PHOTON P288 (BIN) 13824 0 135648 72
PHOTON P288 (AES) 2592 6912 207072 60

AES-128 [14] 1200 3200 45149 53

embed both F24 and F28 into F240 . This also achieves 40-bit statistical security.
Let E4 and E8 denote the embedding F24 ↪→ F240 and F28 ↪→ F240 , respectively.
We use E4(Y ) = Y 35+Y 20+Y 5+1 and E8(Y ) = Y 35+Y 30+Y 25+Y 20+Y 10+Y 5

as they require the lowest number of linear operations to be computed among
all available embeddings. Note that decomposing an embedded element from F2s

still only costs s random bits (see Appendix A.4 for more details).
We compute 100 circuits (key schedule, if applicable, and block encryption/

decryption) in parallel to allow for amortization effects in the pre-processing
phase. Both the input block and the key are secret inputs and not entirely known
by any party. Note that if one party fully knows the key, it may be more efficient
to compute the key schedule locally and input each round key separately. We
compute the key schedule within the MPC protocol to make our experiments
more broadly usable, if, e.g., the key is the result of a previous MPC computation
or each party inputs a key share. Our code, scripts and artifacts are available
online7.

4.1 SKINNY-64-128

We choose the SKINNY-64-128 variant to assess the performance of all 4-bit
S-box implementation approaches. Any performance gains for SKINNY-64-64 or
SKINNY-64-192 will be similar since these variants only differ in the number of
rounds and the linear key schedule.

Figure 3a visualizes the total, i.e., pre-processing and online, runtime and
total communication data per player per encryption/decryption and S-box im-
plementation approach for SKINNY-64-128. We note that the number of multi-
plications in the circuit seems to dominate the total performance regarding time
and data. The more free squares are used, the lower the time and data.
7 https://github.com/ErikP0/arithmetic-circuits-for-spn-primitives
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While the SQ4 approach uses fewer multiplications than BIN, we measure
fewer data but a slower total time, presumably due to the two additional rounds
and four bit-decompositions. The CRV implementation performs best in time
and data compared to all other approaches, including the baseline Boolean arith-
metic emulation BIN. At least in our setting, trading-off two multiplications with
two bit-decompositions (and thus eight random bits) leads to better overall per-
formance. SQ4 is around 24% slower but uses 23% less data than BIN. CRV is
approx. 18% faster and uses 49% less data than BIN.
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(a) SKINNY-64-128.
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(b) SKINNY-128-256 and AES-128.

Fig. 3: Total, i.e., pre-processing and online, execution time and communica-
tion data for multiple S-box implementation approaches of SKINNY-64-128 and
SKINNY-128-256 amortized with 100 executions in parallel. The legend symbol
o denotes the forward direction while × denotes the inverse direction.

4.2 SKINNY-128-256

We implemented the BIN and CRV approach for the 8-bit S-boxes since the
MUL or SQ1/SQ33 approaches are not better than CRV or BIN in any metric,
i.e., number of multiplications, number of random bits or multiplicative depth.
We evaluate BIN and CRV in SKINNY-128-256 and report the total time and
communication data per player in Fig. 3b. In the same figure, we also give total
time and communication data of an AES forward and inverse computation in
the same setting following the implementation from Damgård et al. [14].

As already visible in the gate counts (cf. Table 4), the CRV approach does
not create a favourable trade-off for the 8-bit S-box. This means that the BIN
baseline approach is faster and uses less data than CRV. Furthermore, for the
block size of 128 bits, AES outperforms SKINNY-128-256. The S-box of AES
is much cheaper to implement arithmetically, via 6 multiplications and two bit-
decompositions than the Boolean implementation that would require 32 mul-
tiplications. In addition, AES only has ten rounds while SKINNY-128-256 has
more than four times more rounds.
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4.3 PHOTON

Finally, we transferred the results to PHOTON. The four defined permutations
P100, P144, P196 and P256 use the 4-bit S-box of PRESENT [9] while P288 uses the
AES S-box. The PHOTON permutations have mixing layers where the state is
multiplied with a mixing matrix in a pre-defined finite field. While it may seem
that this complicates the implementation approaches, a fixed modulus is not a
problem since the CRV method (for the 4-bit case) applies to any field with the
same cost. Further, any AES S-box implementation may be applied to P288. To
illustrate how our results carry over, we implemented P100 and P288. For P100,
we apply the CRV decomposition approach, and for P288 we apply the known
AES S-box optimizations from [14].

Figure 4 illustrates the benchmark results. For P100, we note a 27% faster
execution with 49% less data. For P288, we observe a 74% faster execution with
81% less data.
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P100 (CRV)
P288 (BIN)
P288 (AES)

Fig. 4: Total, i.e., pre-processing and online, execution time and communication
data for PHOTON P100 and P288 amortized with 100 executions in parallel.

5 Conclusion

We investigated and identified improvements of an arithmetic circuit represen-
tation of the most costly component of the SKINNY cipher, namely, the S-box,
over an emulation of its Boolean circuit for MPC evaluation. Our approaches
implement SKINNY’s S-boxes over F24 and F28 .

In the 4-bit case, we identified a favourable trade-off between the Boolean
implementation, a direct interpolation of the S-box with squaring, and a poly-
nomial decomposition approach. Choosing the decomposition approach saves
50% of multiplications in the circuit, traded-off with pre-processed random bits,
compared to the Boolean implementation. Our practical benchmark confirms
the trade-off. Moving to the arithmetic circuit setting indeed offers increased
performance benefits of ≈ 18% faster execution with ≈ 49% less data.
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In the 8-bit case, we observe that the S-box cannot be more efficiently ex-
pressed using our techniques. Our benchmark shows no improvement over the
baseline Boolean circuit approach. Nonetheless, we find new parameters for the
polynomial decomposition approach specific to SKINNY’s 8-bit S-boxes that
reduces the multiplicative depth of an evaluation from 9 to 5.

Further, we apply our technique to PHOTON and obtain an improved circuit
representation with 50% fewer multiplications for the variants with 4-bit cells.
For the 8-bit cell-based variant P288 with the AES S-box optimization, we achieve
a circuit with ≈ 81% fewer multiplications. A practical benchmark confirms the
optimization effort over a Boolean circuit emulation with 27% and 74% faster
execution and 49% and 81% less data for P100 and P288, respectively.

Finally, we note that the identified polynomial decomposition approach will
likely achieve similar improvements for other primitives with 4-bit S-boxes, such
as Midori, TWINE, LED, KLEIN, QARMA, or KNOT.

17



A Appendix

A.1 Squaring is Linear

In the following, we briefly recall how squaring becomes a linear operation once
the bit-decomposition of the finite field element is available. Let, for example,
b3, b2, b1, b0 be the bits of x ∈ F24 , then x2 can be expressed as

(b3X
3 + b2X

2 + b1X + b0)
2 mod (X4 +X3 + 1)

= (b3X
3)2 + (b2X

2)2 + (b1X)2 + b20 mod (X4 +X3 + 1)
= b23X

6 + b32X
4 + b21X

2 + b20 mod (X4 +X3 + 1)
= b3X

6 + b2X
4 + b1X

2 + b0 mod (X4 +X3 + 1)
≡ (b3 + b2)X

3 + (b3 + b1)X
2 + b3X + (b3 + b2 + b0)

Note that x4 follows naturally by setting b′3 = b3 + b2, b′2 = b3 + b1 etc. and
repeating the computation from above.

A.2 Additional Figures
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(a) Shortest addition chain for powers in
the interpolating polynomial for S4 us-
ing free squares (2, 4, 8), (6, 12, 9) and (10)
(SQ3). Note that since 6 is no longer avail-
able in round 2, 14 has to be computed in
round 4.
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Fig. 5: Additional figures for shortest addition chain and the multiplication – free
squares trade-off.

18



A.3 Polynomial Decomposition Parameters

Table 7: Decomposition parameter for the forward and inverse 4-bit S-box of
SKINNY and PHOTON. We give coefficient vectors for the polynomials for all
powers in L = (z0, z1, z2, z3, z4, z6, z8, z9, z12).

S-box Modulus pi(z)

SKINNY forw. 4-bit X4 +X3 + 1
q1(z) = (0x0, 0x6, 0x4, 0xd, 0x3, 0x4, 0x8, 0xb, 0x8)
p1(z) = (0x1, 0xc, 0xf, 0x1, 0x5, 0x2, 0xb, 0xb, 0x0)
p2(z) = (0xc, 0x3, 0x0, 0x8, 0xe, 0xa, 0x0, 0x9, 0x0)

SKINNY inv. 4-bit X4 +X3 + 1
q1(z) = (0x0, 0x6, 0x4, 0xd, 0x3, 0x4, 0x8, 0xb, 0x8)
p1(z) = (0x7, 0x7, 0x7, 0x9, 0x3, 0xa, 0xc, 0xf, 0x7)
p2(z) = (0x3, 0xd, 0x4, 0xf, 0x5, 0x7, 0x0, 0x6, 0x0)

PHOTON 4-bit X4 +X + 1
q1(z) = (0x9, 0xf, 0x6, 0xb, 0x7, 0x6, 0xc, 0x8, 0xa)
p1(z) = (0xa, 0x2, 0x0, 0xe, 0x1, 0x1, 0x4, 0x0, 0x3)
p2(z) = (0x9, 0xb, 0x5, 0xe, 0x4, 0x9, 0x5, 0x0, 0x0)

A.4 Embeddings

We detail the used (inverse) embeddings in Table 8. The inversion of the em-
bedding of F24 and F28 only costs 4 and 8 random bits from FBit, respectively.

Table 8: The used embeddings from F24 and F28 into F240 on a bit level. Let
b3X

3+ b2X
2+ b1X+ b0 be an element in F24 and b7X

7+ b6X
6+ b5X

5+ b4X
4+

b3X
3 + b2X

2 + b1X + b0 be an element in F28 . An element in F240 is
∑39

i=0 b
′
iY

i.
Bits b′i that are not set below are 0.
Embedding F24/F28 to F240 F240 to F24/F28

F24 ↪→ F240 via
Y 35 + Y 20 + Y 5

+1


b′0
b′5
b′10
b′15
b′20
b′30
b′35

 =


1 1 1 0
0 1 1 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
0 1 0 0


b0

b1
b2
b3

 b0
b1
b2
b3

 =

1 1 0 0
0 1 0 1
0 0 0 1
0 0 1 0

 b′0
b′5
b′10
b′15



F28 ↪→ F240 via
Y 35 + Y 30 + Y 25

+Y 20 + Y 10



b′0
b′5
b′10
b′15
b′20
b′25
b′30
b′35

 =


1 0 1 0 0 1 1 1
0 1 1 1 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 1 1 0 1 0
0 1 0 0 1 0 0 1
0 1 1 0 0 0 0 0




b0
b1
b2
b3
b4
b5
b6
b7




b0
b1
b2
b3
b4
b5
b6
b7

 =


1 1 1 0 1 0 1 0
0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 1
0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1
0 0 1 1 1 0 0 0
0 1 0 0 0 1 0 0
0 1 1 1 0 0 1 1





b′0
b′5
b′10
b′15
b′20
b′25
b′30
b′35


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