
Demystifying Bootstrapping in Fully Homomorphic Encryption

Ahmad Al Badawi and Yuriy Polyakov

Duality Technologies

February 8, 2023

Abstract

Bootstrapping is a term used very often in the context of Fully Homomorphic Encryption
(FHE). Anyone who is familiar with FHE knows that bootstrapping is the most sophisticated
and compute-intensive component of an FHE scheme. However, very few non-FHE-experts un-
derstand what the bootstrapping operation really is and that there are various bootstrapping
methods, each with its own tradeoffs. The goal of this paper is to provide a high-level intro-
duction to common bootstrapping methods and evaluate their performance using the existing
implementations in OpenFHE and HElib open-source libraries.

Our performance evaluation suggests that the bootstrapping in the Cheon-Kim-Kim-Song
(CKKS) scheme provides highest throughput and efficiently achieves large precision for vectors
of real numbers, which are often used in machine learning applications. The Ducas-Micciancio
(DM) and Chillotti-Gama-Georgieva-Izabachene (CGGI) schemes achieve the smallest latency
(typically for small integers or small-precision fixed-point numbers) and provide a general capa-
bility for evaluating arbitrary functions (programmable bootstrapping) via lookup tables. The
Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/Fan-Vercauteren (BFV) schemes pro-
vide higher bootstrapping throughput than DM/CGGI for vectors of small integers or finite-field
elements but do not support programmable bootstrapping.

The target audience is anyone interested in FHE. We intend to keep this paper up-to-date
to include new bootstrapping results as they become available.

1 Introduction

Bootstrapping is a term used very often in the context of Fully Homomorphic Encryption (FHE).
Anyone who has read any introductory material on FHE already knows that bootstrapping is
the most sophisticated and compute-intensive component of an FHE scheme. Very few, beyond
cryptographers working in the field, understand what the bootstrapping operation really is and that
there are various bootstrapping methods, each with its own tradeoffs. Our goals in this document
are to demystify the concept of bootstrapping, correct misperceptions that seem to be common in
the field, and provide a high-level comparison of bootstrapping methods available in common FHE
schemes, so that a reader of this document can make well-informed decisions about choosing when
and how to deploy FHE implementations.

We start with a brief introduction to homomorphic encryption, highlighting key concepts and
historical milestones. Homomorphic encryption (HE) is a type of encryption that enables computa-
tions on encrypted data without having access to the secret key. Fully homomorphic encryption is

1



its most general form that can be used to evaluate arbitrary programs/computations on encrypted
data. The idea of an FHE capability was first described by Rivest, Adleman, and Dertouzos back
in 1978 (note that the first two were co-authors of the famous RSA scheme introduced around
that time) [RAD78]. To describe homomorphic encryption, they used the term ”privacy homomor-
phisms” and formulated the following problem: “it remains to be seen whether it is possible to
have a privacy homomorphism with a large set of operations which is highly secure” [RAD78]. This
problem could not be solved for 30 years, until at the end of 2008 Craig Gentry, a Ph.D. student
at Stanford then, proposed the first FHE scheme [Gen09]. This was a monumental breakthrough
not just in cryptography, but also in theoretical computer science; and bootstrapping was its key
ingredient.

To introduce bootstrapping, we will try to answer three basic questions: 1) what is it? 2) why
do we need it? and 3) how does it work?

What: A good starting point is to look at the definition of bootstrapping in the Oxford Dic-
tionary: bootstrap is defined as “pulling yourself up by your (own) bootstraps”. When we say an
HE scheme is bootstrappable, it means that it can homomorphically evaluate its own decryption
procedure in addition to at least one extra operation [Gen09]. As shown in Fig. 1, evaluating
the decryption procedure in the classical sense requires a ciphertext and secret key as input and
ensures the plaintext as output. In FHE, however, we deal with a homomorphic evaluation of the
decryption procedure, i.e., bootstrapping, which uses an encrypted secret key and a ciphertext to
generate an “equivalent”1 ciphertext that we can further compute on. The encrypted secret key,
also called a bootstrapping or refreshing key, is provided by the secret key holder as part of the
public key material.

Why: All common FHE schemes are based on noisy encryptions (the noise is what guarantees
the security of fresh encryption) in which evaluating homomorphic operations increases the noise
magnitude and lowers the quality, i.e., computational budget, of ciphertexts. The primary usage
of bootstrapping is to convert an exhausted ciphertext into an “equivalent” refreshed ciphertext.
Exhausted ciphertexts contain high noise and cannot be operated on further, whereas refreshed
ciphertexts can support further homomorphic operations. A secondary purpose of bootstrapping
is to evaluate a function on the encrypted message during the bootstrapping operation. In this
case, the output ciphertext of bootstrapping encrypts a function of the plaintext message rather
than the message itself, in addition to reducing the noise in the input ciphertext. This form of
bootstrapping is known as functional or programmable bootstrapping.

How: All common bootstrapping methods follow the same blueprint introduced by Craig Gentry,
that is, homomorphic evaluation of their own decryption procedure. However, the bootstrapping
mechanisms vary across FHE schemes. In the following sections of this paper, we will describe
the bootstrapping mechanisms in DM (FHEW) / CGGI (TFHE) [DM15, CGGI16, CGGI20],
CKKS [CKKS17], and BGV/BFV [Bra12, BGV14, FV12] FHE schemes. We will highlight the

1Encrypts the same message but with smaller noise magnitude

2



Figure 1: (a) Classical decryption vs (b) homomorphic decryption or bootstrapping. A ciphertext
is generated as an encryption (Enc) of a certain plaintext message pt under a certain secret key sk.
The refreshing or bootstrapping key is an encryption of the sk and is supposed to be made publicly
available to the evaluator under the circular security assumption.

key differences between the methods, and evaluate their performance based on timing experiments
using the OpenFHE library [ABBB+22] and results reported in peer-reviewed scientific literature.
Based on this analysis, we will provide some practical guidelines. Note that as of the time of
writing this paper, OpenFHE includes bootstrapping for CKKS, DM, and CGGI schemes. Boot-
strapping for BFV/BGV is currently under development and will be included in a future release of
OpenFHE2.

2 Bootstrapping in DM/CGGI cryptosystems

The Ducas-Micciancio (DM), also known as FHEW, cryptosystem3 is notable for being the first
FHE scheme to perform bootstrapping in a fraction of a second [DM15], which is dramatically
faster than the bootstrapping implementation based on Gentry’s original scheme, which required
up to 30 minutes for a single bootstrapping operation [GH11]. The main motivation behind the DM
cryptosystem was to evaluate an elementary bootstrapped computation (a Boolean NAND gate)
with the smallest latency. Since NAND is a complete boolean gate, it can be used to implement
arbitrary functions represented as Boolean circuits. Note that other Boolean gates can also be

2A prototype implementation of bootstrapping for BFV/BGV is already available
3We use the term cryptosystem here because DM and CGGI are based on multiple HE schemes

3

https://github.com/openfheorg/openfhe-development


evaluated at the same computational cost [MP21], enabling more efficient Boolean circuits.

As mentioned earlier, bootstrapping is simply the homomorphic evaluation of a scheme’s de-
cryption function. The decryption procedure in HE schemes consists of computing a linear function
(a product of the ciphertext and the encrypted secret key) and rounding. The DM cryptosystem
uses a combination of schemes to evaluate these two operations. The linear function is evaluated
via accumulation of the product of the ciphertext and the encrypted bits of the secret key using
an intermediate cryptosystem (with small noise growth). Rounding is evaluated by extracting the
most significant bit of linear function result via lookup table evaluation.

The Chillotti-Gama-Georgieva-Izabachene (CGGI) cryptosystem is a more memory-efficient
variant of the DM cryptosystem. The authors used a different bootstrapping technique and intro-
duced some additional optimizations to achieve a latency of less than 0.1 seconds. At a high level,
the CGGI cryptosystem followed the same design as DM but relied on stronger security assump-
tions (binary secret distribution) and employed a more optimized accumulator to achieve faster
bootstrapping. The CGGI cryptosystem was subsequently extended to the same security setting as
DM [MP21], and the authors showed that CGGI is faster (and requires less memory) than DM for
binary and ternary secrets, but DM achieves better performance for larger secret key distributions.

A unique feature the DM and CGGI cryptosystems share is the ability to evaluate arbitrary
functions during the bootstrapping procedure. This can be done as part of the lookup evaluation
procedure by replacing the plaintext bits with a function of them in the lookup table. This notion
is known as functional or programmable bootstrapping [CJP21, LMP22]. Other FHE schemes
do not enjoy this property; however, some special functions can still be evaluated during their
bootstrapping procedure.

One major challenge the DM and CGGI cryptosystems face is enabling programmable boot-
strapping for high-precision inputs. These schemes deal naturally with boolean data types (zeros
and ones) and can be efficiently extended to support a slightly larger plaintext space (up to 3-8 bits
for practical parameter sets). However, increasing the plaintext space by an additional bit after
this threshold is reached requires doubling the runtime, which makes this approach impractical
when higher precision is sought. Recent works show how to reduce this cost to linear (with preci-
sion) for some functions, but an evaluation of more general functions can still be computationally
expensive [CLOT21, LMP22].

We would like to bring to the reader’s attention a recent major development in this fam-
ily of cryptosystems that improves the runtime of the DM scheme and optimizes the bootstrap-
ping key size without any extra security assumptions, achieving the best of both worlds DM and
CGGI [LMK+22].

3 Bootstrapping in CKKS

The Cheon-Kim-Kim-Song (CKKS) scheme is the most recent FHE scheme that is optimized for
floating-point computations [CKKS17]. It provides the best efficiency for machine learning applica-
tions, such as logistic regression training or neural network inference. In contrast to all other com-

4



mon FHE schemes, CKKS is approximate and often uses polynomial approximations to implement
nonlinear functions, e.g., logistic or ReLU functions. As CKKS is approximate, the bootstrapping
for CKKS is also approximate, i.e., the encrypted message in the refreshed ciphertext is close to
the message before bootstrapping, but not equal to it.

The high-level idea of bootstrapping in CKKS follows Genry’s blueprint and the decryption
procedure includes a linear function and modular reduction (equivalent conceptually to round-
ing) [CHK+18]. First, the linear function (inner product of ciphertext and secret key) is implicitly
evaluated by increasing the ciphertext modulus (a larger modulus means more computations can
be done homomorphically). This step adds some “garbage” to the message that is proportional to
the ciphertext modulus before bootstrapping. Then modular reduction is performed to remove this
garbage. The modular reduction is evaluated using its polynomial approximation (a high-degree
polynomial interpolation is needed) and is the most expensive step of the bootstrapping procedure.
Some additional steps are performed but they are omitted here for simplicity.

One important difference between CKKS and DM/CGGI is related to how data is encoded in
ciphertexts. In DM/CGGI, one ciphertext stores one encrypted scalar. In CKKS, one ciphertext
stores a vector of real numbers, and the size of this vector is on the order of thousands. This vector
encoding is similar to the Single-Instruction-Multiple-Data (SIMD) concept in parallel processing.
Using a single ciphertext multiplication, one can perform thousands of real-number multiplications
at once. The same difference equally applies to the bootstrapping procedures. In DM/CGGI, we
can bootstrap only one number at a time while in CKKS we can bootstrap thousands of numbers
(typically 32K - 64K in bootstrapping scenarios) at once. The bootstrapping latency in CKKS is
typically much larger than in DM/CGGI, but the throughput of bootstrapping is much higher due
to the SIMD effect, as we will illustrate later in this paper.

The second difference is related to the precision supported by CKKS and DM/CGGI schemes.
CKKS efficiently supports much higher precision, e.g., single (23-bit) or even double (52-bit)
floating-point precision, while DM/CGGI efficiently supports only a smaller precision (3-8 bits).
Extensions to larger precision for DM/CGGI are efficient only for special nonlinear functions, e.g.,
comparison [LMP22].

The third difference between DM/CGGI and CKKS is related to programmable bootstrap-
ping. CKKS does not natively support programmable bootstrapping. However, CKKS provides an
efficient polynomial evaluation mechanism to approximate nonlinear functions, which works well
for relatively smooth functions. Hence, the equivalent functionality in CKKS can be achieved by
evaluating polynomial approximation and then executing the bootstrapping procedure.

We will keep all of these differences in mind when comparing the performance of programmable
bootstrapping between DM/CGGI and CKKS.

Although CKKS bootstrapping is approximate, a recent elegant technique can be used to make
the CKKS bootstrapping error negligible by performing multiple invocations of bootstrapping: first,
on the message, next, on the first-order bootstrapping error, then, on the second-order bootstrap-
ping error, etc., as described in [BCC+22].

5



4 Bootstrapping in BFV/BGV schemes

Brakerski-Gentry-Vaikuntanathan (BGV), Brakerski/Fan-Vercauteren (BFV), and CKKS schemes
are usually bundled together as one family of SIMD-enabled FHE schemes [ABBB+22]. While
CKKS is inherently suitable for encrypted approximate computations that deal with floating-point
numbers, such as those in machine learning, BFV and BGV work well for encrypted exact compu-
tations that deal with integer data types, such as database and string manipulating applications.
All three schemes share a very similar outline and follow the same strategy for bootstrapping.

The main difference between BGV/BFV and CKKS bootstrapping is related to the procedure
for garbage addition and removal. In BGV/BFV, the garbage gets added to a temporarily increased
plaintext space, and then so-called digit extraction polynomials are used to clear out the garbage
from new digits of the plaintext space, appropriately scaling the message down along the way [HS21].
The main bottleneck in BGV/BFV bootstrapping is digit extraction as it requires homomorphic
evaluation of high-degree polynomials.

The use of a special larger plaintext space puts additional constraints on the plaintext alge-
bra, which in practice restricts the size of SIMD-encoded vectors to 2K or less. For this reason,
BGV/BFV bootstrapping achieves a significantly smaller throughput than CKKS as the latter
supports vectors of size 32K - 64K.

Note that BGV/BFV bootstrapping supports two additional operations that can be performed
as part of bootstrapping: scaling down and sign evaluation (comparison) [CGBH+18]. So there is
limited programmable bootstrapping support, but it is not as general as in the case of DM/CGGI.

5 Experimental setup

We present the performance evaluation of bootstrapping for CGGI, CKKS, and BGV schemes. We
chose CGGI over DM because the former is slightly faster than DM for the typical security setting
of uniform ternary secret distribution. The complexity of BGV and BFV bootstrapping is very
similar, so it is sufficient to consider only BGV here. We used the CGGI and CKKS implementations
in OpenFHE to run our experiments. For BGV, we used reported results from [HS21]. Security
parameters were chosen to correspond to the 128-bit security level.

We ran our benchmarks for CKKS and CGGI on a commodity desktop computer system with an
Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 64 GB of RAM, running Ubuntu 20.04.4 LTS. The
compiler used was clang version 10.0.0-4ubuntu1. We compiled OpenFHE with the following CMake
flags: NATIVE SIZE=32 for CGGI with single-bit plaintext space, NATIVE SIZE=64 for CGGI with
multi-bit plaintext space and CKKS, and WITH NATIVEOPT=ON (machine-specific optimizations
were applied by the compiler). We report only the single-threaded time (by setting the environment
variable OMP NUM THREADS=1); no parallelization due to multi-threading or AVX optimization
was used. Note that both schemes in OpenFHE use the same underlying mathematical library
implementation, which helps us avoid discrepancies due to various implementation specifics and
gives us an “apple-to-apple” comparison.

6



5.1 Performance evaluation

To provide a fair comparison of CGGI with SIMD-capable CKKS and BGV, we include the number
of slots (size of vector encoded in a single ciphertext), bits or precision, latency, and throughput.
Moreover, for CKKS and BGV we reserve a reasonable number of multiplicative levels (10 or so)
to support an evaluation of a nonlinear function between the invocations of bootstrapping, thus
emulating programmable bootstrapping in CGGI.

Table 1 shows that CGGI has the lowest bootstrapping latency. CGGI bootstrapping is the
most efficient option when the number of slots is small and precision is low. However, as the number
of slots is increased, CKKS bootstrapping becomes the most efficient option (higher throughput and
higher precision are achieved). BGV bootstrapping has throughput similar to CGGI for Boolean
arithmetic, but is more efficient than CGGI for larger plaintext spaces, i.e., higher precision.

It is important to note that CKKS does not require bootstrapping for many simpler operations,
such as multiplication. The multiplication only consumes one level and can be done for thousands
of real numbers at a time. On the other hand, integer multiplication can be expensive in CGGI
(may require additional bootstrapping calls), especially if the multiplication result should not wrap
around the current plaintext modulus. In summary, the number of bootstrapping invocations in
CKKS is typically significantly smaller than in CGGI for many practical use cases.

Notes on parallelization and hardware acceleration. We intentionally chose the single-
threaded CPU setup to provide a fair comparison of the bootstrapping methods using the same
implementation. The runtimes achieved in practice can be much smaller (even by orders of magni-
tude) by either using multithreading on a multi-core/socket CPU system or hardware acceleration.
Both of these performance improvements can be applied to all bootstrapping methods considered
here. For instance, cuFHE achieved a 26x speed-up for CGGI by executing many gates in paral-
lel on a GPU [DS15] and [JKA+21] achieved a speed-up of 100x for CKKS bootstrapping. The
discussion of accelerated implementations of bootstrapping methods is beyond the scope of our
introductory paper.

7



Table 1: Performance of bootstrapping in CGGI (single- and multi-bit plaintext space), CKKS
(fully- and sparsely-packed ciphertexts), and BGV schemes5. CGGI and CKKS experiments were
run in OpenFHE; BGV experiments were obtained using HElib; all experiments were performed in
the single-threaded mode and did not use AVX acceleration

Scheme Library
Number
of Slots

Bits of
Precision

Latency Throughput
Notes(sec) slots/sec

CGGI
TFHE OpenFHE 1

1 0.058 17.2 Latency of NAND

3-4 0.694 1.44 Latency of f(x) mod p

CKKS OpenFHE 32,768

13 48.4 677 Full packing

30 96.8 339 2 bootstrapping iterations to
increase precision [BCC+22]

CKKS OpenFHE 32

18 24.1 1.33 Sparse packing

34 48.4 0.661 2 bootstrapping iterations to
increase precision [BCC+22]

BGV HElib 1,024

1 15 68.3 Thin bootstrapping [HS21]

16 163 6.28 Full bootstrapping [HS21]

6 Recommendations and concluding remarks

Our goal was to explain various bootstrapping methods and provide some guidelines that can be
used in practice. Our main results can be summarized as follows:

• CKKS bootstrapping has the best performance when the ciphertext contains a large number
of slots (more than 100) and/or higher precision is sought (more than 3-8 bits).

• DM/CGGI bootstrapping is more efficient when the number of slots is small (up to 100) and
the desired precision is low (up to 3-8 bits).

• DM/CGGI bootstrapping can be used to efficiently evaluate arbitrary functions (over small
integers) using lookup tables, whereas CKKS can evaluate relatively smooth functions (over
real numbers) that can be adequately approximated using polynomials, e.g., Chebyshev in-
terpolation.

• BGV/BFV bootstrapping is somewhat faster than DM/CGGI (if we consider slot-amortized
time), but slower than CKKS. However, BGV bootstrapping does not natively support arbi-
trary function evaluation.

5Specific OpenFHE benchmarks or examples used to generate these figures:
CGGI benchmark (1-bit): benchmark/src/binfhe-ginx.cpp
CGGI benchmark (3- or 4-bit): src/binfhe/examples/eval-function.cpp; 3 bits of precision (p = 23) for arbitrary
functions and 4 bits (p = 24) for periodic functions [LMP22]
CKKS full packed benchmark: src/pke/examples/simple-ckks-bootstrapping.cpp
CKKS sparse benchmark: src/pke/examples/advanced-ckks-bootstrapping.cpp
CKKS multi-iteration bootstrapping: src/pke/examples/iterative-ckks-bootstrapping.cpp

8



• Hardware acceleration can be applied to all these bootstrapping methods, and the available
literature suggests the expected speed-up should be similar for all these methods.

Many applications may require both large problem sizes (where CKKS works well) and arbitrary
function evaluation (where CGGI performs well), e.g., decision tree training. In this case, scheme
switching from CKKS to CGGI and back may be beneficial. The OpenFHE team is currently
adding this capability to the library and will make it available in 2023.

To have a further discussion on this paper, go to the OpenFHE Discourse forum.

References

[ABBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja Er-
abelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu
Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V., Kurt Rohloff,
Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and
Vincent Zucca. OpenFHE: Open-source fully homomorphic encryption library. In
Proceedings of the 10th on Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography, WAHC’22, page 53–63, New York, NY, USA, 2022. Association
for Computing Machinery.

[BCC+22] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.
META-BTS: Bootstrapping precision beyond the limit. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, pages 223–
234, 2022.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36, 2014.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Advances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 868–
886. Springer, 2012.

[CGBH+18] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and K. Lauter.
Logistic regression over encrypted data from fully homomorphic encryption. BMC
Med Genomics, 11(Suppl 4):81, Oct 2018.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Advances in
Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part I 22, pages 3–33. Springer, 2016.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: fast
fully homomorphic encryption over the torus. J. Cryptol., 33(1):34–91, 2020.

9

https://openfhe.discourse.group/


[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages 360–
384, Cham, 2018. Springer International Publishing.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping enables
efficient homomorphic inference of deep neural networks. In Shlomi Dolev, Oded
Margalit, Benny Pinkas, and Alexander Schwarzmann, editors, Cyber Security Cryp-
tography and Machine Learning, pages 1–19, Cham, 2021. Springer International Pub-
lishing.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I 23, pages 409–437. Springer, 2017.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved
programmable bootstrapping with larger precision and efficient arithmetic circuits
for tfhe. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, pages 670–699, Cham, 2021. Springer International Publishing.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In Advances in Cryptology–EUROCRYPT 2015: 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34, pages 617–640. Springer,
2015.

[DS15] Wei Dai and Berk Sunar. cuhe: A homomorphic encryption accelerator library. In
Cryptography and Information Security in the Balkans: Second International Confer-
ence, BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015, Revised Selected
Papers 2, pages 169–186. Springer, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. Cryptology ePrint Archive, Paper 2012/144, 2012. https://eprint.iacr.
org/2012/144.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology–EUROCRYPT 2011: 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Es-
tonia, May 15-19, 2011. Proceedings 30, pages 129–148. Springer, 2011.

[HS21] Shai Halevi and Victor Shoup. Bootstrapping for HElib. Journal of Cryptology,
34(1):7, 2021.

10

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144


[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee.
Over 100x faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 114–148, 2021.

[LMK+22] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim Deryabin,
Jieun Eom, and Donghoon Yoo. Efficient FHEW bootstrapping with small evalua-
tion keys, and applications to threshold homomorphic encryption. Cryptology ePrint
Archive, Paper 2022/198, 2022. https://eprint.iacr.org/2022/198.

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic
sign evaluation using FHEW/TFHE bootstrapping. In Advances in Cryptology–
ASIACRYPT 2022: 28th International Conference on the Theory and Application
of Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Pro-
ceedings, Part II, pages 130–160. Springer, 2022.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryptosystems.
In Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography, WAHC ’21, page 17–28, New York, NY, USA, 2021. Association
for Computing Machinery.

[RAD78] Ronald L Rivest, Len Adleman, and Dertouzos. On data banks and privacy homo-
morphisms. Foundations of secure computation, 4(11):169–180, 1978.

11

https://eprint.iacr.org/2022/198

	Introduction
	Bootstrapping in DM/CGGI cryptosystems
	Bootstrapping in CKKS
	Bootstrapping in BFV/BGV schemes
	Experimental setup
	Performance evaluation

	Recommendations and concluding remarks

