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Abstract
In remote state preparation with verifiability (RSPV), a client would like to prepare a

quantum state (sampled from a state family) on the server side, such that ideally the client
knows its full description, while the server holds and only holds the state itself. A closely related
notion called self-testing, which is recently generalized to the single-server computationally-secure
setting [21], aims at certifying the server’s operation. These notions have been widely studied
in various different settings and have become fundamental building blocks in many quantum
protocols [10, 1, 30, 12]. However, there are many variants of definitions in existing works,
and many of these variants do not have some desirable properties like sequential composability.
What’s more, existing works mainly focus on simple state families like simple product states,
and treatments for these types of states are already technically complicated; in this background,
a new framework that could potentially support more general solutions is desirable.

In this paper, we choose notions or basic ideas from existing works [3, 10, 30, 28] and
introduce new notions, with the goal of developing a more general, well-behaved framework
for these problems. We choose RSPV with simulation-based soundness [3, 10, 30] (instead of
rigidity-based soundness [1]), and study its basic properties like composability. Furthermore, for
controlling the server’s operation in a verifiable way, we introduce a new notion named remote
operator application with verifiability (ROAV) as a replacement of self-testing. In this notion the
server is provided with an unknown input state, and is supposed to perform a specific operator
(sampled from an operator family) to the state; the client knows the operator description, but
what server knows in the end is limited to the output state of the operation applied on the
input state. Finally, we show several basic constructions of protocols under our set of notions,
and discuss why these notions could potentially lead to quantum cryptographic protocols with
new functionalities.

1 Introduction

1.1 Background
Development of quantum computers leads to demands of various quantum cryptographic protocols,
for example, quantum computation verification [19, 30], multiparty quantum computations [2], etc.
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In its typical setting, there is a client and a remote quantum server (or servers), and the client
would like to achieve some quantum cryptographic tasks, but it does not trust the server; thus a
cryptographic protocol between the client and the server is needed. Among these problems, two
examples that are basic and very important are remote state preparation (RSP) [3] and self-testing
[29], which we introduce below.

1.1.1 Remote state preparation

In the RSP problem, ideally, the client would like to prepare a quantum state (sampled from a state
family) on the server side; thus in the end the client knows the description of the state, while the
server simply holds the state. The trivial solution is to simply send the quantum state through
a quantum channel. RSP asks: how could we simulate this quantum communication by other
means (like classical communication or other types of quantum communication), possibly under
computational assumptions?

Studies of RSP have a long history [25, 3]. One setting [3] of RSP is the fully honest setting: all
the parties execute the protocols honestly. In this work, we are interested in the setting where the
server could be malicious, and RSP protocols in this setting should satisfy a correctness requirement
and a security requirement.

The natural correctness requirement for RSP says that when the server is honest, the client
accepts and the server gets the state while the client gets the state description. For security, there
are different security notions, including blindness (secrecy) and verifiability (soundness) [7, 10, 31].
In this paper we focus on RSP with verifiability (RSPV). In RSPV, intuitively, the client is able to
verify that in case of acceptance the server really gets the state, as if it is sent through a quantum
channel. A malicious server who attempts to get other states by deviating from the protocol would
be caught cheating by the client.

As a natural quantum task, the RSPV problem is interesting on its own. What’s more, it has
become an important building block in many other quantum cryptographic protocols. As examples,
[10, 7] first construct classical channel cryptography-based RSPV and use it to achieve classical
verification of quantum computations; [1] explores more applications of RSPV; [30] takes the RSPV
approach to achieve classical verification of quantum computations with linear total time complexity.
Many quantum cryptographic protocols rely on quantum channel and quantum communication, and
an RSPV protocol could often allow us to replace these quantum communication steps by other
cheaper resources, like classical communication.

Preparing states on the server side is quite useful. But in many scenarios what the client needs
is to have control on server’s operations, as introduced below.

1.1.2 How to control server’s operations

How could the client verify that the server has really applied an operation on its state? In existing
works, people raised the notion of self-testing to address the problem.

The concept of self-testing also has a long history [29, 26, 20] in quantum information. One
famous application of self-testing is in the study of non-local games [14, 27]. In this scenario, the
client (or called verifer) sends questions to two spatially-separated but entangled quantum servers,
and quantum servers are supposed to perform specific measurements and send back the results,
then the client decides whether to accept or reject. The natural correctness requirement says that
when all the parties follow the protocol, the client accepts with some specific probability, say, OPT.
Furthermore, specific games have the property that, any servers that want to pass the protocol with
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probability bigger than OPT− ϵ have to use a strategy (measurement operators) that is close to
the honest behavior. This provides a way to constrain servers’ operations through only classical
interactions and spatial separation, which is a fundamental technique in the study of non-local
games.

Recently a series of works [21, 12, 4, 23] study the single-server analog of two server self-testing
as discussed above. The goal is typically to design cryptographic protocols between a client and a
single quantum server so that it is certified that the server has prepared the entangled state between
two registers as the two server setting, and has performed the measurements on it. [21] studies the
basic analog of CHSH game on the single server computationally secure setting and construct a
protocol that only uses classical channel; [22, 12] further extend it to the three-qubit and N -qubit
setting; [16, 23] makes use of QFHE [18] to address the problem; [15, 16, 4] study the proof of
quantumness problem and the construction is later proved to have a self-testing property. Typically
these self-testing protocols have also achieved a sense of RSPV since the protocols also certify the
underlying entangled states; however, these self-testing protocols do not aim to reserve the states in
the end.

1.1.3 Subtleties and limitations of existing works

There are several subtleties or limitations in existing works for RSPV or self-testing. First, existing
works for RSPV do not have a consistent choices of definitions. There are roughly two types
of security notions, the rigidity-based (or isometry-based) soundness [7, 1] and simulation-based
soundness [3, 10, 30]. Roughly speaking, these two definitions go as follows:

• (Rigidity-based soundness) The output state, going through an isometry, is close to the target
state.

• (Simulation-based soundness) The target state, going through a simulator, is indistinguishable
to the output state.

Existing works do not seem to care about the differences.
Another subtlety in RSPV and self-testing problems is its composability. For example, one basic

desirable property of cryptographic primitives is sequential composability between independent
instances. This means, if the client and the server execute an RSPV (or self-testing) protocol for a
state family F1, and then execute another protocol for another state family F2, we would like the
overall protocol to be automatically an RSPV for F1 ⊗F2 (defined to be tensor products between
each pair of elements). Existing works [1, 12] deal with this type of states or operators by designing
new protocols and giving highly technical proofs; if such sequential composability property holds for
RSPV or self-testing, protocols for tensor products of simple states could be reduced to protocols
for simple states, which will potentially significantly simplify the constructions and proofs.

One more limitation in current RSPV and self-testing protocols is that they could only handle
simple tensor product states and operators. Remote preparation of large entangled states is also
quite useful in quantum cryptography [8, 5], and a more general solution for RSPV for these types
of states is highly desirable. We note that the composability subtlety discussed above also makes
the problem harder: considering the fact that preparing simple product states is already highly
technically complicated, preparing large entangled states might be too complicated to work on.

In this background, we ask the following question:

Could RSPV and single-server self-testing be more well-behaved and useful?
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1.2 Our Contributions
We argue that the current complicated situation of RSPV and single-server self-testing is largely
from the choices of definitions. In this work we choose or introduce a new set of notions for these
problems and study their properties and applications, which we summarize below.

1.2.1 Choosing or introducing definitions

RSPV We first develop a new set of notions. For RSPV, we choose and study RSPV with
simulation-based soundness (see Section 1.1.3 and 3.1.2). We show that the definitions that we
choose have several desirable properties, which could hopefully make RSPV much easier to work on:

• We show our choice of notions has a well-behaved sequential composability property.

• In usual applications of RSPV, simulation-based definition is as powerful as rigidity-based
definition.

Then we introduce a new notion called remote operator application with verifiability (ROAV), as
our analog of self-testing in the single-party cryptographic setting.

Remote operator application with verifiability (ROAV) Recall in the two-server protocol
design scenario, one typical techniques is to design two subprotocols, one of them has a self-testing
property, while the other is to execute the computation. One server, without communicating with
the other, could not decide which one the client is currently executing; to pass the overall protocol it
has to pass the self-testing subprotocol so that its operations has to be close to the honest behavior;
and this implies the computation subprotocol is also executed almost honestly. The driven question
behind our definition is: could we formulate a notion in the single-server cryptographic setting that
is analogous to what a specific server sees in the two-server setting?

We raise the notion of ROAV for formulating this intuition. An ROAV for a target operation E
is defined as a tuple (ρtest, πtest, πcomp) where:

• ρtest is a specific state used as the input state of πtest.

• πcomp is a protocol with an undetermined input state whose dimension is the same as the
server-side of ρtest.

Here (ρtest, πtest) is the test mode, which means, running πtest on input state ρtest is used to test
the adversary’s behavior; πcomp is the computation mode, which means, in this mode the operator
E is finally applied on the input state. More formally, the soundness is defined roughly as follows:

For any adversary Adv, denoting the final output of running protocol π··· against adversary Adv
on input ρ··· as πAdv

··· (ρ···), the ROAV satisfies:

• either the cheating behavior gets caught in πAdv
test(ρtest) with high probability,

• or πAdv
comp(χ) is close (in a sense) to E(χ) where χ denotes an arbitrary input state.

Finally we note that in the formal notion that we propose we consider a large entangled state which
can be collapsed to any χ by measuring part of its systems.

We argue that our new notion has relatively well-behaved properties, is consistent with the
intuition of self-testing in the multi-party setting, and is potentially useful.
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1.2.2 Applications

We show several potential applications of our notions as follows. First in Section 4.2 we show that
ROAV is potentially a useful tool for constructing RSPV protocols for more general state families.
The outcome of an ROAV protocol is a remote preparation of joint state E(χ) where χ is the input
state; such a state might be hard to prepare directly, but could be made possible once we have an
ROAV for E and have the RSPV for the corresponding ρtest and χ.

Then we construct a Hamiltonian ground energy testing protocol based on specific RSPV and
ROAV. This shows the potential of our set of notions in other quantum cryptogrpahic problems like
QMA verification. Our construction shares similarities to Grilo’s Hamiltonian verification protocol
in the 2-party setting [11].

1.3 More Related Works
One work that shares similarities to our work is [28]. This work studies the complexity of interactive
synthesis of states and unitaries. In a sense, the relation of states and unitaries in their work is
similar to the relation of RSPV and ROAV in our work; but state complexity problem and the
RSPV/ROAV problem seem quite different and have different applications.

1.4 Open Questions and Summary
The obvious open question coming out of this work is to give a construction for ROAV. Our work
focuses on the definitions and applications in an abstract sense; an explicit construction of ROAV
would allow us to instantiate these applications.

We hope our work clarifies the subtleties in RSPV and related problems and could serve as a
foundation for further studies.
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2 Preliminaries
We refer to [24] for basics of quantum computing, and refer to [17] for basics of cryptography. In
this section we clarify some notations and notions.

Notation 2.1. We use [m] to denote {1, 2, · · ·m}.

Notation 2.2. We use D(H) to denote the set of density operators over some Hilbert space H.
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Notation 2.3. For a pure state |Φ⟩, Φ is an abbreviation of |Φ⟩ ⟨Φ|.

Notation 2.4. We use E(ρ) to denote the operation of an operator (either unitary or superoperator)
on density operator ρ. We also use this notation when E is an isometry (say, V ): it is the same as
V ρV †.

When the system that E is contained in the system of ρ, the operation on the remaining system
is identity.

Notation 2.5. We use ρ ≈ϵ σ to denote |ρ− σ|tr ≤ ϵ, where | · |tr is the trace distance.

Definition 2.1 (Bell basis). In a two qubit system, define the following four states as the Bell basis:

1√
2
(|00⟩+ |11⟩), 1√

2
(|00⟩ − |11⟩),

1√
2
(|01⟩+ |10⟩), 1√

2
(|01⟩ − |10⟩).

Define 1√
2
(|00⟩+ |11⟩), these states could be denoted as XaZb |Φ⟩, where Xa means apply X if a = 1

and apply identity if a = 0. Zb is defined similarly.
Now define the Bell-basis measurement as follows: the projection onto Bell basis XaZb |Phi⟩ has

output (a, b).

Definition 2.2. In cryptographic protocols there is usually a completeness requirement and a
soundness requirement. When both requirements are probabilistic, the statements are stated in the
following type:

• (Completeness) In the yes-instance the honest server makes the client accepts with probability
c.

• (Soundness) In the no-instance the malicious server could at most make the client accepts with
probability s.

There should be 0 < s < c < 1. 1 − c is called the completeness error. s is called soundness or
soundness error.

Notation 2.6. In this paper we use π to denote cryptographic protocols. Cryptographic protocols
typically will take a security parameter as part of inputs; in this paper we denote it as κ. When
we analyze security of protocols, operators and states are typically families of operators or states
parameterized by κ; in this paper we make it implicit.

In the end the protocol will also output a flag ∈ {pass, fail}; in this work this decision will be
made solely on the client side and we denote the projection onto the passing space as Πpass.

We use πAdv(ρin) to denote the output joint state of π run on initial state ρin against adversary
Adv.

Notation 2.7. We write ρ ≈ind:F
ϵ σ when ∀Adv ∈ F ,Pr[Adv(ρ) → 1] ≈ϵ+negl(κ) Pr[Adv(σ) → 1].

We write ρ ≈ind
ϵ σ when F is taken to be all the polynomial time algorithms.

Fact 1. If ρ ≈ind
ϵ σ, E is an efficient operator, then Πpass(E(ρ)) ≈ind

ϵ Πpass(E(σ)).
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Fact 2 (Chernoff bounds). Suppose for all i ∈ [K], si is a random variable independently sampled
from {0, 1} with probability 1− p, p corresponding to values 0, 1. Then

Pr[
∑
i∈[K]

si ≥ (1 + δ)pK] ≤ e−δ2pK/3

Finally we review the local Hamiltonian problem.

Definition 2.3 ([11]). The following problem is called the XZ k-local Hamiltonian problem:
Given input (H, a, b) where H is a Hamiltonian on n-qubit registers, a, b are real value function

of n, and they satisfy:
H =

∑
j∈[m]

γjHj , ∀j, |γj | ≤ 1 (1)

∀j,Hj ∈ {σX , σZ , I}⊗n with at most k appearances of non-identity terms (2)

Decide which is the case:

• Yes-instance: The ground energy of H is ≤ a

• No-instance: The ground energy of H is ≥ b.

Theorem 2.1 ([13]). There exist a(n), b(n) ∈ [0, 1], b − a ≥ 1/poly(n) such that the XZ 5-local
Hamiltonian problem is QMA-complete.

3 Remote State Preparation with Verifiability
In this section we study definitions and basic properties of RSPV.

3.1 Definitions
Recall that in RSPV, the client aims at creating a state sampled from a state ensemble on the
server-side. The client should know the description of the state, while the server holds the state
itself. Similar to many cryptographic problems, an RSPV protocol needs to have completeness
(correctness) and soundness (verifiability). Furthermore, there are two definitions for the soundness
of RSPV: simulation-based soundness [3, 10, 30] and rigidity-based soundness [7, 10, 1], which are
both used in existing works. In this subsection we choose formal definitions for both variants and
study their differences and relations.

3.1.1 Basic settings and completeness

To formalize the completeness and soundness of this notion, let’s first formalize some basic settings
of RSPV. In more detail, we define the target state of RSPV, as follows:

Definition 3.1. An RSPV protocol is defined with respect to an ensemble of normalized states and
the corresponding probabilities

((p1, |φ1⟩), (p2, |φ2⟩), · · · (pD, |φD⟩)),
∑
i∈[D]

pi = 1.
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The target state of an RSPV protocol is denoted by the following joint state of the client and the
server (described in terms of density operators):

ρtar =
∑
i∈[D]

pi |i⟩ ⟨i|︸ ︷︷ ︸
client

⊗ |φi⟩ ⟨φi|︸ ︷︷ ︸
server

(3)

And we simply call it RSPV for (|φ1⟩ · · · |φD⟩) when (pi)i∈[D] is a uniform distribution.
Note that (3) should be intuitively understood as a cq-state; the fact that the client-side register

is classical is equivalent to say any operator (for example, distinguishers that will be used later)
that operates on the client-side register in (3) only has classical access to it.

Then the completeness of an RSPV protocol is defined as follows.

Definition 3.2 (Completeness of RSPV). We say an RSPV protocol for target state ρtar has
completeness error γ if in the honest setting, in the end of the protocol the joint state of the client
and the server is γ-close to ρtar (together with the passing flag). And we simply say the protocol is
complete if it has completeness error negl(κ).

3.1.2 Rigidity-based soundness and simulation-based soundness

The soundness of RSPV is more subtle; below we formalize and study the two types of soundness
definitions.

Rigidity-based soundness Roughly speaking, the rigidity-based soundness says the output state,
after going through an isometry on the server side, is close to the target state. An interpretation is
“the passing flag certifies that the server has really got the state”.

Definition 3.3 (Rigidity-based soundness for RSPV). We say a protocol π is an RSPV for target
state ρtar with soundness error δ and approximation error ϵ under rigidity-based definition if:

For any BQP adversary Adv, any input state ρin ∈ D(S⊗T ) prepared by the adversary where S is
the server-side system and T is a system that will not be touched by any party in the protocol, there
exists a server-side efficiently-computable isometry V Adv and an efficiently-computable operation
SimAdv operated on S such that:

• (Small passing probability) Either:

tr(Πpass(π
Adv(ρin))) ≤ δ,

• or:
Πpass(V

Adv(πAdv(ρin))) ≈ind
ϵ Πpass(ρtar ⊗ SimAdv(ρin)) (4)

where the distinguisher has classical access to the client side of ρtar and quantum access to all
the other registers (including S and T ).

We note that this definition is slightly different from the (rigidity-based) definitions in existing
works [10, 1]. In [10, 1] the left hand side of (4) is statistically close to a state in the form of∑

i |φi⟩ ⟨φi|⊗σi, and then a computaitonal indistinguishability requirement is put on σi for different
i. We argue that our global indistinguishability captures the same intuition and is more general;
what’s more, a suitable formulation of variants of definitions in [10, 1] should imply this definition.1

1One obstacle of showing a direct implication from the definitions in [10, 1] is on the efficient preparable property

8



Simulation-based soundness Different from the rigidity-based soundness, the simulation-based
soundness does not certify that the server really holds the state; an interpretation is “the passing flag
certifies that what the adversarial server gets is no more than holding the state”. It’s not as strong
as the rigidity-based definition on its own, but arguably it’s sufficiently strong for many applications
and it turns out to have good properties.

Definition 3.4 (Simulation-based soundness for RSPV). We say a protocol π is an RSPV for target
state ρtar with soundness error δ and approximation error ϵ under simulation-based definition if:

For any BQP adversary Adv, any input state ρin ∈ D(S ⊗ T ) prepared by the adversary where
S is the server-side system and T is a system that will not be touched by any party in the protocol,
there exists an efficiently-computable operation SimAdv operated on S such that:

• (Small passing probability) Either:

tr(Πpass(π
Adv(ρin))) ≤ δ,

• or:
Πpass(π

Adv(ρin)) ≈ind
ϵ Πpass(Sim

Adv(ρtar ⊗ ρin)) (5)

where the distinguisher has classical access to the client side of ρtar and quantum access to all
the other registers (including S and T ).

We note that in both notions, we consider initial states that are possibly correlated or entangled
between the server’s system S and the running environment T of cryptographic protocols. This
part could be used to model everything else that happens outside this protocol and helps to give
RSPV the sequential composability property (and hopefully other types of composability).

Finally, we could prove the simulation-based soundness as defined above is no stronger than the
rigidity-based soundness defined above:

Theorem 3.1. Suppose π is an RSPV for target state ρtar with soundness error δ and approximation
error ϵ under rigidity-based soundness, it’s also an RSPV with the same configurations under
simulation-based soundness.

Proof. By the rigidity-based soundness we get V , Sim that satisfies (4). Then taking

Sim′( ·︸︷︷︸
ρtar

⊗ ·︸︷︷︸
ρin

) = V †( ·︸︷︷︸
ρtar

⊗Sim( ·︸︷︷︸
ρin

))

as the simulator in (5) completes the proof.

But the inverse is not necessarily true. Actually, the rigidity-based soundness of RSPV is not
even resilient to an additional empty timestep (that is, no party does anything) at the end of the
protocol: the adversary could destroy everything in the end to violate the rigidity requirement. For
comparison, the simulation-based notion has such resilience: the state destroying operation could be
absorbed into the simulator in (5). However, arguably this also means the simulation-based notion
has more well-behaved properties.

on these σi: the definitions of rigidity-based soundness used in [10, 1] does not seem to imply it could be written in
the form of Sim(ρin). A more careful analysis of the relations between this definition and existing rigidity definitions
remains to be done and is out of the scope of this work.
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What’s more, intuitively the simulation-based version is as useful as the rigidity-based version
in common applications of RSPV. When we construct cryptographic protocols, what we are doing
is usually to enforce that the malicious parties could not do something. In this sense, in the
simulation-based soundness it is certified that what the adversary gets is no more than the target
state, which should be at least as secure as really getting the target state.

3.2 Basic Properties of RSPV with Simulation-based Soundness
Below we prove several useful properties of simulation-based RSPV.

3.2.1 Composition property

First we could prove the simulation-based RSPV has a natural sequential composition property. As
far as we know, rigidity-based RSPV does not seem to behave well under this property.

Theorem 3.2 (Sequential composition of RSPV). Under simulation-based notion, if π1 is an RSPV
protocol for ρtar with soundness s and approximation error ϵ1, π2 is an RSPV protocol for σtar

with soundness s and approximation error ϵ2, the honest behavior of π1 and π2 are completely
independent, then π2 ◦ π1 is an RSPV protocol for ρtar ⊗ σtar with soundness s and approximation
error ϵ1 + ϵ2.

Proof. For an adversary, suppose the initial joint state is ρ0 ∈ D(S ⊗ T ), the output state of π1

with ρ0 being the initial state is ρ1 ∈ D(S ⊗ T ), and the final output state of π2 with ρ1 being
the initial state is ρ2 ∈ D(S ⊗ T ). Then by the simulation-based soundness of π2 there exists an
efficiently computable simulator Sim2 working on S such that:

Πpass(ρ2) ≈ind
ϵ2 Πpass(Sim2(σtar ⊗ ρ1)) (6)

By the simulation-based soundness of π1 there exists an efficiently computable simulator Sim1 such
that:

Πpass(ρ1) ≈ind
ϵ1 Πpass(Sim1(ρtar ⊗ ρ0)) (7)

which by Fact 1 implies

Πpass(Sim2(σtar ⊗ ρ1)) ≈ind
ϵ1 Πpass(Sim2(σtar ⊗ Sim1(ρtar ⊗ ρ0))) (8)

Combining (6)(8) and choosing

Sim(σtar ⊗ ρtar ⊗ ·) := Sim2(σtar ⊗ Sim1(ρtar ⊗ ·))

as the final simulator completes the proof.

3.2.2 Cut-and-choose soundness amplification procedure

Consider an RSPV protocol with soundness s. We want s to be small. However, very frequently, in
some initial construction of RSPV, s might be not good enough (for example, s might be very close
to 1). In this case, a soundness amplification procedure is needed.

One commonly used technique for soundness amplification is the cut-and-choose. In this technique,
to amplify an RSPV protocol π with soundness s, both parties run many repetitions of π, and it’s
required that the server should pass in all the subprotocols. Intuitively if the server wants to pass the
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overall protocol with high probability, the number of iterations that it could cheat will be relatively
small (recall that a cheating server in a single execution of π is caught with probability 1− s). Then
a state (and its corresponding classical description) is randomly chosen from these output states.

Protocol 1 (Cut-and-choose for RSPV). Given an RSPV protocol π for target state ρtar and a
repetition number L. The cut-and-choose amplification procedure is defined as below.

1. For each i ∈ [L]:

(a) Run π. Both parties keep the state. The client rejects if π rejects.

2. The client randomly chooses i ∈ [L] and sends it to the server. Both parties use the output
from the i-th repetition as the output state.

We have the following theorem on this cut-and-choose process. Note this process does not reduce
the approximation error but make the soundness better.

Theorem 3.3. If π is an RSPV with soundness s and approximation error ϵ, for any s′ < s,
Protocol 1 has soundness s′ and approximation error ϵ+ 2

L logs(s
′).

Especially, by taking L = O( 1
ϵ(1−s) ), we are able to amplify the original protocol to a new

protocol with a much smaller soundness value, and approximation error O(ϵ).

Proof. Consider an adversary Adv. Define event Ei = “the adversary passes by the i-th iteration”.
Then by the simulation-based soundness property we get, for any i, there exists an efficiently
computable simulator Simi such that either Pr[Ei|Ei−1] < s, or (5) is satisfied by the end of the
i-th iteration.

Suppose this adversary could pass the protocol with overall probability ≥ s′. Define Slow pass
as the set of i that satisfies Pr[Ei|Ei−1] < s. To pass the overall protocol the adversary needs
to pass in each iteration, thus to pass the overall protocol with probability ≥ s′, there has to be
|Slow pass| ≤ logs(s

′).
Denote the initial state as ρ0, and denote the output state by the end of the i-th round as ρi.

Then for each i ∈ [L]− Slow pass,

Πpass(ρi) ≈ind
ϵ Πpass(Simi(ρtar ⊗ ρi−1))

which implies
Πpass(π>i(ρi)) ≈ind

ϵ Πpass(π>i(Simi(ρtar ⊗ π<i(ρ0)))) (9)

where π>i is the protocol after round i, and π<i is the protocol before round i.
In the second round the client makes a random choice of i ∈ [L]. We will construct a simulator

that simulates the overall state. The simulator Sim applied on (ρtar ⊗ ρ0) is defined as follows:

1. Sample a random coin i← [L].

2. Run π̃<i on ρ0 and get ρ̃i−1.

3. Run Simi on ρtar ⊗ ρ̃i−1.

4. Run π̃>i on Simi(ρtar ⊗ ρ̃i−1).

11



where π̃ denotes the simulated protocol execution of π: instead of interacting with the client, the
simulator does all the client-side operations on its own registers and disgards these registers in the
end.

We prove this simulator achieves what we want.
use Disgard[· · · ] to denote the operation of disgarding the client-side registers with specific indices,

which is in the second step of Protocol 1. Then by (9) we have

Πi∈[L]−Slow pass(
∑
i∈[L]

1

L
|i⟩ ⟨i| ⊗ Disgard[[L]− i](Πpass(π>i(ρi)))) (10)

≈ind
ϵ Πi∈[L]−Slow pass(

∑
i∈[L]

1

L
|i⟩ ⟨i| ⊗ Disgard[[L]− i](Πpass(π>i(Simi(ρtar ⊗ π<i(ρ0)))))) (11)

By |Slow pass| ≤ logs(s
′) there is

Πi∈[L]−Slow pass(
∑
i∈[L]

1

L
|i⟩ ⟨i| ⊗ Disgard[[L]− i](Πpass(π>i(ρi)))) (12)

≈ 1
L logs(s

′)

∑
i∈[L]

1

L
|i⟩ ⟨i| ⊗ Disgard[[L]− i](Πpass(π>i(ρi))) (13)

Πi∈[L]−Slow pass(
∑
i∈[L]

1

L
|i⟩ ⟨i| ⊗ Disgard[[L]− i](Πpass(π>i(Simi(ρtar ⊗ π<i(ρ0)))))) (14)

≈ 1
L logs(s

′)

∑
i∈[L]

1

L
|i⟩ ⟨i| ⊗ Disgard[[L]− i](Πpass(π>i(Simi(ρtar ⊗ π<i(ρ0))))) (15)

Combining them completes the proof.

4 Remote Operator Application with Verifiability
In this section we introduce a new notion named remote operator application with verifiability
(ROAV), for certifying server’s operations. We will give the definition, and show how to use this
notion to construct other RSPV protocols and the energy test protocol.

4.1 Definitions of ROAV
Definition 4.1. An ROAV for a tuple of operators (E1, E2 · · ·ED) is in the form of (ρtest, πtest, πcomp)
where:

• ρtest is in the form of (3) Definition 3.1; πtest, πcomp are protocols as defined in Notation 2.6;
there is a specific register on the server-side, and the honest behavior of both πtest and πcomp

take this register as part of their inputs, and:

– the server-side of ρtest is expected to be in this register in the execution of πtest;

12



– the input of πcomp on this register is not expected to be a specific state; when we describe
it (together with the corresponding client-side information) below, we typically use symbol
χ.

• (E1, E2 · · ·ED) is a tuple of operators operating on a server-side register and they satisfy∑
i∈[D] E

†
iEi = I.

Here (E1, E2 · · ·ED) are the operators to be verified. Similar to Definition 3.1, we define the target
operator as the following superoperator on both the client side and the server side, working on the
server-side register and producing outputs on both the server-side register and a client-side register:2

E( ·︸︷︷︸
server

) =
∑
i∈[D]

|i⟩ ⟨i|︸ ︷︷ ︸
client

⊗Ei(·)E†
i︸ ︷︷ ︸

server

An informal description of our ROAV notion is as follows. In Definition 4.1 (ρtest, πtest) is used to
certify the server’s operation. Explicitly, suppose the adversary is Adv, then protocol πAdv

test(ρtest) is
used to certify the server’s operation. Our goal is to certify that the server has applied the operator
E on the server-side input state, which means, πAdv

comp(·) is close to E(·) where we use · to denote
an arbitrary input state. We further note that Adv is the same adversary in both possible running
above, and whether the client is running πtest or πcomp is not revealed in advanced.

The completeness and soundness are defined as follows.

Definition 4.2 (Completeness of ROAV). (ρtest, πtest, πcomp) is an ROAV for target operator E
with completeness error γ if in the honest setting, for any input state χ, the joint output state of
the client and the server is γ-close to E(χ). We simply say the protocol is complete if γ = negl(κ).

The soundness is formulated by a simulation-based definition. One additional subtlety is whether
the server-side registers of E is contained in or could be bigger than the server-side of χ. We will
first formulate the simpler case where the server-side of E is contained in χ; then we formulate the
more general case.

4.1.1 Simpler case: the server-side of E is contained in the server-side register of χ

Definition 4.3 (Soundness of ROAV). (ρtest, πtest, πcomp) is an ROAV for target operator E with
soundness error δ and approximation error ϵ if: For any BQP adversary Adv, there exists an efficiently
computable simulator SimAdv such that for any state ρin ∈ D(S ⊗ T ) prepared by the adversary
where S is the server-side system and T is a system that will not be touched by any party in the
protocol, one of the following two is true:

• (Small passing probability) when ρ is taken to be ρtest:

tr(Πpass(π
Adv
test(ρtest ⊗ ρin))) ≤ δ

• Define
|Φ⟩ = 1√

D

∑
i∈[D]

|i⟩︸︷︷︸
client

⊗ |i⟩︸︷︷︸
server

(16)

2Note that we are not using Notation 2.4 for Ei(·)E†
i to be consistent with the usual notations.
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then there is
Πpass(π

Adv
comp(Φ⊗ ρin)) ≈ind

ϵ Πpass(Sim
Adv(E(Φ)⊗ ρin)) (17)

where the distinguisher has classical access to the client side output of E and quantum access
to all the registers (including the client-side of Φ, system S, and T ).

4.1.2 General definition of ROAV soundness

Here we further generalize the notion to the setting where E might operate on a server-side register
that is possibly bigger than the server-side of ρtest. The soundness definition is mostly the same as
Definition 4.3, with differences on (17) and an additional simulator.

Definition 4.4 (Soundness of ROAV). (ρtest, πtest, πcomp) is an ROAV for target operator E with
soundness error δ and approximation error ϵ if: For any BQP adversary Adv, there exist efficiently
computable simulators SimAdv and SimAdv

in such that for any state ρin ∈ D(S ⊗ T ) prepared by the
adversary where S is the server-side system and T is a system that will not be touched by any party
in the protocol, one of the following two is true:

• (Small passing probability) when ρ is taken to be ρtest:

tr(Πpass(π
Adv
test(ρtest ⊗ ρin))) ≤ δ

• Define
|Φ⟩ = 1√

D

∑
i∈[D]

|i⟩︸︷︷︸
client

⊗ |i⟩︸︷︷︸
server

(18)

then there is

Πpass(π
Adv
comp(Φ⊗ ρin)) ≈ind

ϵ Πpass(Sim
Adv(E(Φ⊗ SimAdv

in (ρin))) (19)

where the distinguisher has classical access to the client-side outputs of E and quantum access
to all the registers.

With this definition, we could handle the case where some server-side states are not known by
the client. For example, if the client wants to force the server to apply an operation on a QMA
witness state, this definition will be needed.

4.1.3 Basic properties

We show that, under our definition, ROAV has a relatively well-behaved property which allows us to
derive ROAV for larger operators in the form of tensor products from ROAV for simpler operators.

Theorem 4.1. Suppose (ρtest,1, πtest,1, πcomp,1) is an ROAV under simpler definition (Definition
4.3) for target operator E1 soundness error δ and approximation error ϵ1, (ρtest,2, πtest,2, πcomp,2) is
an ROAV (also under Definition 4.3) for target operator E2 soundness error δ and approximation
error ϵ2, E1 and E2 operate on different registers, the server-side dimension of ρtest,1 is D1 and the
server-side dimension of ρtest,2 is D2.

Consider the protocol (ρtest, πtest, πcomp) where:

14



•
ρtest =

1

2
|1⟩ ⟨1|︸ ︷︷ ︸

client side register of roundtype

⊗ρtest,1 ⊗
1

D2
I+

1

2
|2⟩ ⟨2| ⊗ 1

D1
I⊗ ρtest,2

• πtest is defined as follows. The client chooses to execute one of the following depending on the
value of roundtype register, without telling the server the value of roundtype:

– If roundtype = 1, execute πtest,1.
– If roundtype = 2, execute πtest,2 ◦ πcomp,1

•
πcomp := πcomp,2 ◦ πcomp,1

Then (ρtest, πtest, πcomp) is an ROAV for target operator E1⊗E2 with soundness error δ′ = 1− 1
2 (1−

δ) + 1
2ϵ1 and approximation error ϵ′ = ϵ1 + ϵ2.

We note that our composition protocol could only handle the case where the ROAVs are under
the simpler definition (Definition 4.3).

Proof. Suppose an adversary Adv satisfies

tr(Πpass(π
Adv
test(ρtest ⊗ ρin))) > δ′ (20)

Then by the construction of πtest considering roundtype = 1 there is

tr(Πpass(π
Adv
test,1(ρtest,1 ⊗

1

D2
I⊗ ρin))) > δ

By the soundness of πtest,1 there exists efficiently-computable simulator SimAdv
1 such that

Πpass(π
Adv
comp,1(Φ1 ⊗

1

D2
I⊗ ρin)) ≈ind

ϵ1 Πpass(Sim
Adv
1 (E1(Φ1)⊗

1

D2
I⊗ ρin))) (21)

Now we move to analyze the second ROAV. First from (20) considering roundtype = 2 we get

tr(Πpass(π
Adv
test,2(π

Adv
comp,1(

1

D1
I⊗ ρtest,2 ⊗ ρin)))) > 1− 2(1− δ′) (22)

Notice the server-side of Φ1 in (21) is 1
D1

I, we can re-write (22) as

tr(Πpass(π
Adv
test,2(π

Adv
comp,1(Φ1 ⊗ ρtest,2 ⊗ ρin)))) > 1− 2(1− δ′) (23)

Combining it with (21) we get

tr(Πpass(π
Adv
test,2(Sim

Adv
1 (E1(Φ1)⊗ ρtest,2 ⊗ ρin)))) > 1− 2(1− δ′)− ϵ1 > δ (24)

Applying the soundness property of (ρtest,2, πtest,2) we know there exists an efficiently computable
server-side simulator SimAdv such that

Πpass(π
Adv
comp,2(Sim

Adv
1 (E1(Φ1)⊗ Φ2 ⊗ ρin))) ≈ind

ϵ2 Πpass(Sim
Adv(E1(Φ1)⊗ E2(Φ2)⊗ ρin)) (25)

Combining (21) and (25) completes the proof.
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4.1.4 Comparison to the non-local games setting

Recall that in the usual setting of self-testing protocols, the client sends questions to two spatially-
separated quantum servers. How is this related to our notions? In our notion there is no explicit
appearance of two different servers; however, we could think about what the server is able to do if
we focus on a specific server in the multi-server setting: the state that it holds is determined by the
questions to and answers from the other server, which is unknown to it; to pass the client’s checking,
it has to apply the specific operation, regardless what the underlying state is. Indeed, one reason
that self-testing in the multi-server setting is powerful is it allows us to design protocols that behave
as follows:

1. The client chooses to play either Game 1 or Game 2 with the two servers; the distribution of
questions seems the same in the view of a specific server.

Game 1 is to control the server’s operation and Game 2 is to perform some nontrivial cryptographic
tasks. Then the soundness proof could go as follows:

1. The ability of passing Game 1 implies the servers’ operations are close to some target operations.

2. Each of the servers is not aware of which game they are playing, and each of their operations
only depends on the question it receives. Thus the operation closeness properties derived from
Game 1 could be used to argue about behaviors of servers in Game 2.

3. Prove that servers with these behaviors could achieve the goal in Game 2.

Our notion shares the same intuition with the self-testing in the multi-server setting as described
above. In our definition of ROAV, the (ρtest, πtest) is used to test the server’s behavior, and the
soundness allows us to argue about the behavior of the server in πcomp.

4.2 Building RSPV from ROAV
In this subsection we argue that ROAV is potentially useful for building RSPV for state families
that are not easy to construct directly. We give a protocol for building RSPV protocols from ROAV
and more basic RSPV.

As a preparation we formulate a condition on the target state (Equation (3)).

Definition 4.5. Consider a target state (formulated in (3)):

ρtar =
∑
i∈[D]

pi |i⟩ ⟨i|︸ ︷︷ ︸
client

⊗ |φi⟩ ⟨φi|︸ ︷︷ ︸
server

(26)

If {|φi⟩}i∈[D] is an orthogonal normal basis, we say (26) is a target state with respect to an orthogonal
normal basis.

Protocol 2. Suppose (ρtest, πtest, πcomp) is an ROAV for target operator E. p is a constant in (0, 1).
ρ0 is a target state as formulated in (26). Suppose π0 is an RSPV for the target state

p |test⟩︸ ︷︷ ︸
roundtype

⟨test| ⊗ ρtest + (1− p) |comp⟩ ⟨comp| ⊗ ρ0 (27)

where the roundtype register is on the client side, and the server-side of ρtest and ρ0 are of the same
dimension.
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1. Run protocol π0.

2. Depending on the value of roundtype:

• If roundtype = test, run πtest.
• If roundtype = comp, run πcomp and keeps the output.

Theorem 4.2. Suppose (ρtest, πtest, πcomp) is an ROAV for E with soundness error δ and approxi-
mation error ϵ. π0 is an RSPV for (27) with soundness error δ and approximation error ϵ0. Then
Protocol 2 is an RSPV for target state E(ρ0) with soundness error δ′ = 1 − p(1 − δ) + ϵ0 and
approximation error ϵ′ = 4p+ ϵ+ ϵ0.

Thus to use this protocol we need to make p small to keep the approximation error small, which
leads to an RSPV protocol with large soundness error. But this could be solved by taking Protocol
2 to the cut-and-choose amplification protocol in Section 3.2.2.

The following fact is useful for proving Theorem 4.2.

Fact 3. Suppose |Φ⟩ =
∑

i∈[D]
1√
D
|i⟩ ⊗ |i⟩, (|φ1⟩ , |φ2⟩ , · · · |φD⟩) is an orthogonal normal basis,

U ∈ CD×D is defined as U |i⟩ = |φi⟩, then

(U† ⊗ I) |Φ⟩ = (I ⊗ U) |Φ⟩

A corollary is a state in the form of (26) could be prepared by operating on the client side of |Φ⟩.

Proof for Theorem 4.2. Suppose the adversary is Adv, the input state is ρin and Protocol 2 passes
with probability > δ′. More formally, denoting the step 2 in Protocol 2 as πstep2, there is

tr(Πpass((πstep2 ◦ π0)
Adv(ρin))) > δ′. (28)

First this implies the π0 step passes with probability > δ′ > δ. By the soundness of π0 there exists
an efficiently computable server-side simulator SimAdv

0 such that

Πpass(π
Adv
0 (ρin)) ≈ind

ϵ0 Πpass(Sim
Adv
0 ((27)⊗ ρin)) (29)

This together with (28) implies

tr(Πpass(π
Adv
step2(Sim

Adv
0 ((27)⊗ ρin)))) > δ′ − ϵ0. (30)

which further implies

tr(Πpass(|test⟩ ⟨test| ⊗ (πAdv
test(Sim

Adv
0 (ρtest ⊗ ρin))))) > δ (31)

From (31), by the ROAV soundness there exists an efficiently computable server-side simulator
SimAdv such that

Πpass(π
Adv
comp(Sim

Adv
0 (Φ⊗ ρin))) ≈ind

ϵ Πpass(Sim
Adv(E(Φ)⊗ ρin))

Applying Fact 3 we can measure the client-side of Φ to collapse it to ρ0:

Πpass(π
Adv
comp(Sim

Adv
0 (ρ0 ⊗ ρin))) ≈ind

ϵ Πpass(Sim
Adv(E(ρ0)⊗ ρin)) (32)

Notice that SimAdv
0 (ρ0 ⊗ ρin) ≈2p SimAdv

0 ((27)⊗ ρin), this together with (29)(32) implies

Πpass((πcomp ◦ π0)
Adv(ρin)) ≈ind

2p+ϵ0+ϵ Πpass(Sim
Adv(E(ρ0)⊗ ρin))

Noticing that πcomp(·) ≈2p πstep2(·) completes the proof.
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4.3 Testing Ground State Energy by ROAV
In this subsection we give a Hamiltonian ground energy testing protocol based on RSPV and ROAV.

4.3.1 Overview of the protocol

As a review, in existing Hamiltonian ground energy testing protocols like [9, 11], the high level
structure of protocols is typically as follows:

Input: a Hamiltonian H =
∑

i γiHi where Hi is simple.
The honest server gets a witness state ρ.

1. Repeat (sequentially or in parallel) the following for polynomial number of times:

The client samples a random Hi and uses some protocols to get the measurement results of
operator Hi on the server-side state. The server is not able to know which operator the client
is measuring.

2. The client calculates the weighted average of the measurement results in the first step and
decides whether it’s a yes-instance or no-instance.

The first step seems to have a form of ROAV, in the sense that the protocols aim at certifying that
the server has measured an operator obliviously. Although the witness state is not held by the client,
this is still within reach of our definition in Section 4.1.2. A more subtle difference here is that an
ROAV protocol is defined for a fixed family of operators, while in the protocol described above
the target operators depends on the input Hamiltonian H. We expect that it’s typically harder to
construct ROAV compared to other primitives like RSPV, thus we want to find a way to reduce this
task to simpler primitives.

In this subsection we show a protocol that reduces this problem to the following two protocols:

1. An ROAV for a simple, fixed operator family: tensor products of Bell basis measurements.

2. An RSPV for state families that depend on the input Hamiltonian (but still as simple as
products of simple states).

The idea is to make use of teleportation-based computation [6].3 As a simple example, we consider
the single-qubit witness case below.

As the setup, assume the server holds a single-qubit witness state ρ, and in addition holds one of
the four Bell state (see Definition 2.1). Index the qubit register for the witness with wire number
w = 1, and index the qubit register for the Bell state with wire number w = 2, 3. Then the quantum
teleportation says a Bell-basis measurement on qubit 1, 2 results in a state of the following form on
qubit 3:

Xa′
Zb′(ρ), a′, b′ depend on the Bell state choices and measurement outcomes

An explicit expression for this process is as follows. Use E to denote the Bell-basis measurement,
use XaZb |φ⟩ to denote different Bell basis states, there is

(E ⊗ I)(ρ⊗ XaZb(φ)) =
∑

c,d∈{0,1}2

1

4
|c, d⟩︸︷︷︸

measurement outcome

⟨c, d| ⊗ Xa+cZb+d(ρ)

3Several other existing works [11, 5] also use it for different purposes or in different settings.
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Then the standard basis measurement outcome on these three qubits encodes the standard basis
measurement outcome on ρ. Furthermore, to control the measurement operator applied on ρ, the
client only needs to have control on the state in qubit number 3, as follows:

For any gate g on the 3rd qubit, (E ⊗ I)(ρ⊗ g(XaZb(φ))) =
∑

c,d∈{0,1}2

1

4
|c, d⟩ ⟨c, d| ⊗ g(Xa+cZb+d(ρ))

(33)
Especially, if g = H, g(Xa+cZb+d(ρ)) = Xb+dZa+c(g(ρ)).

This relation allows us to reduce the task of measuring operator Hi on ρ to the standard basis
measurement of (33). What we need for translating (33) to a protocol is an ROAV for E and an
RSPV for the states that will be used (including the test state of ROAV, g(XaZb(ρ)) for g ∈ {I,H}).
Below we formulate the protocol.

4.3.2 Protocol formulation

To formulate the protocol, we define several notations for preparation.

Notation 4.1 (Notation preparation for Protocol 3). Consider qubit registers indexed by (1, i), (2, i), (3, i),
i ∈ [n]. Define

|φ⟩ = ⊗i∈[n](
1√
2
(| 0︸︷︷︸

(2,i)

0︸︷︷︸
(3,i)

⟩+ | 1︸︷︷︸
(2,i)

1︸︷︷︸
(3,i)

⟩)) (34)

Define index set I2 = {(2, i)|i ∈ [n]}, and define I3 similarly. We say a⃗ ∈ {0, 1}n indexed by I2, when
its coordinates are denoted as as a(2,i) where (2, i) ∈ I2. Define Xa⃗ as the operation that applies X

on qubit (2, i) if a(2,i) = 1. Define notations Zb⃗ and Hv⃗ similarly.
Define the following state in the form of (3), which is the family of all the possible four Bell

states on wire 2, 3 for each i:

|ϕ⟩ ⟨ϕ| = 1

22n

∑
a⃗,⃗b∈{0,1}n indexed by I2

|⃗a, b⃗⟩ ⟨⃗a, b⃗|︸ ︷︷ ︸
client-side

⊗Xa⃗Zb⃗(φ)

Define operation

E = “For each i, measure (1, i), (2, i) on the Bell basis and measure (3, i) on the standard basis

and report the result to the client.”

Below we introduce more notations that deal with the Hamiltonian and its repetition.

Notation 4.2 (More notation preparation for Protocol 3). For an XZ-local-Hamiltonian as defined
in (4)(2)

H =
∑
j∈[m]

γjHj , (35)

denote vecx(Hj) as an n-dimension vector indexed by I3 that:

• If the observable on the i-th qubit in Hj is σX , the i-th coordinate of vecx(Hj) is 1;

• If the observable on the i-th qubit in Hj is σZ or I, the i-th coordinate of vecx(Hj) is 0.
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That is, vecx(Hj) indicates whether the corresponding observable in Hj is the σX observable.
Similarly define vecz(Hj) as the indicator for whether the corresponding observable in Hj is the

σZ observable.
An example is as follows: Hvecx(Hi) flips all the σX operations in Hi to σZ operations and keeps

the others unchanged. Then define state

ρcomp =
1

m

∑
j∈[m]

|j⟩ ⟨j|︸ ︷︷ ︸
client-side

⊗Hvecx(Hj)(ϕ) (36)

That is, the client randomly samples an Hj from (35) and flips the σX operators to σZ operators.
Now consider the K-fold tensor product for the notations above and in Notation 4.1. The qubit

registers are indexed by (w, i, k), w ∈ {1, 2, 3}, i ∈ [n], k ∈ [K]. Then |φ⟩⊗K is defined as the k-fold
tensor product of |φ⟩ arranged on registers (2, i, k), (3, i, k). Similarly |ϕ⟩⊗K is defined as the k-fold
tensor product of |ϕ⟩, where the client-side registers are denoted by a⃗k, b⃗k, k ∈ [K]. E⊗K is similarly
defined as applying E for each k ∈ [K]. Then similarly ρ⊗K

comp is defined as∑
j⃗=(j1,j2···jK)∈[m]K

|⃗j⟩ ⟨⃗j| ⊗ Hvecx(Hj1 )(ϕ)⊗ Hvecx(Hj2 )(ϕ)⊗ · · · ⊗ Hvecx(HjK
)(ϕ)

Then the honest behavior that we want to design a protocol for could be described as

E⊗K(ρ⊗K ⊗ ρ⊗K
comp) (37)

where ρ is the ground state of the Hamiltonian.
Then we define a series of notations for arguing about the energy corresponding to (37). For each

k ∈ [K], introduce variable c⃗k ∈ {0, 1}n, d⃗k ∈ {0, 1}n, e⃗k ∈ {0, 1}n (which are 3K n-dimensional
vectors), and they correspond to the measurement outcome of (37) on qubits in the k-th fold indexed
by I1, I2, I3. Then define

valtempH (⃗ak, b⃗k, c⃗k, d⃗k, e⃗k, jk) = ((⃗ak + c⃗k + e⃗k) · vecz(Hjk) + (⃗bk + d⃗k + e⃗k) · vecx(Hjk)) mod 2

valH (⃗ak, b⃗k, c⃗k, d⃗k, e⃗k, jk) = m · γjk(−1)valtempH(a⃗k ,⃗bk ,⃗ck,d⃗k,e⃗k,jk)

Use Tk to denote the tuple (⃗ak, b⃗k, c⃗k, d⃗k, e⃗k, jk) and use T to denote the tuple (Tk)k∈[K]. Define

valH(T ) =
1

K

∑
k∈[K]

valH(Tk) (38)

Protocol 3. Input: an XZ 5-local Hamiltonian H =
∑

j∈[m] γjHj, a, b, b − a ≥ 1/poly(n), as
Definition 2.3.

Take K = 100κ2 1
(b−a)2 . Consider qubit registers indexed by (w, i, k), w ∈ {1, 2, 3}, i ∈ [n], k ∈ [K].

Use notations in Notation 4.1, 4.2. Suppose (ρtest, πtest, πcomp) is an ROAV for E⊗K . Suppose π0

as an RSPV for the following target state:

1

2
|operatortest⟩︸ ︷︷ ︸

roundtype

⟨operatortest| ⊗ ρtest +
1

2
|energytest⟩ ⟨energytest| ⊗ (ρcomp)

⊗K (39)

Note the roundtype information is kept on the client side and hidden from the server.
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1. Execute protocol π0.

2. Depending on the value of roundtype:

• If roundtype = operatortest, the client executes πtest with the server.

• If roundtype = energytest, the client executes πcomp with the server. Suppose the set of
client-side information is denoted by T as in Notation 4.2. Accept if val(T ) ≤ a+b

2 and
reject otherwise.

Theorem 4.3. Suppose (ρtest, πtest, πcomp) is complete, π0 is complete, then Protocol 3 is complete.

Proof. From the completeness we know the first step of Protocol 3 succeeds with 1 − negl(κ)
probability, the operatortest succeeds with 1− negl(κ) probability, and the energy test implements
(37) up to only a negligible error. For a yes-instance, for each k ∈ [K], by the promise there is
E[valH(Tk)] ≤ a. Thus for K = 100κ2 · 1

(b−a)2 by Chernoff’s bound there is Pr[valH(T ) ≤ a+b
2 ] ≤

2−κ.

Theorem 4.4. Suppose (ρtest, πtest, πcomp) is an ROAV with soundness error δ and approximation
error ϵ. π0 is an RSPV with soundness error δ and approximation error ϵ0. Then Protocol 3 has
soundness error δ′ = min{1− 1

2 (1− δ) + 2ϵ0, ϵ+ ϵ0 +
1
2 + negl(κ)}.

By substituting suitable parameters it’s possible to make the soundness smaller than the
completeness.

Proof. Suppose H is a no-instance, the adversary is Adv and the protocol passes with probability
> δ′. That is, 4

tr(Πpass(πstep2 ◦ π0)
Adv) > δ′ (40)

This implies tr(Πpass(π
Adv
0 )) > δ. By the soundness property of π0 there exists an efficiently

computable server-side simulator SimAdv
0 such that

Πpass(π
Adv
0 ) ≈ind

ϵ0 Πpass(Sim
Adv
0 (equation (39))) (41)

Further note (40) implies tr(ΠpassΠoperatortest(πstep2 ◦ π0)
Adv) > δ′. Combining it with (41) we get

tr(Πpassπ
Adv◦SimAdv

0
test (ρtest)) > 1− 2(1− δ′ + ϵ0) > δ (42)

By the soundness of ROAV this implies there exists an efficiently computable server-side simulator
SimAdv, a server-side state ρ (corresponding to the output of SimAdv

in in the soundness of ROAV) such
that

Πpass(π
Adv◦SimAdv

0
comp (Φ)) ≈ind

ϵ Πpass(Sim
Adv(E(ρ⊗ Φ))) (43)

Now we consider a distinguisher that first measures the client side of Φ and collapse both sides of
(43) to connect (43) with ρcomp. This is done as follows:

1. First sample the client-side register corresponding to j⃗ in ρcomp;

2. Then by Fact 3 there is a client-side measurement that collapses the server-side to Hvecx(Hj)(ϕ)
(see (36)).

4We omit the initial states since it’s not important here and could be |0⟩.

21



This implies

Πpass(π
Adv◦SimAdv

0
comp (ρ⊗K

comp)) ≈ind
ϵ Πpass(|energytest⟩ ⟨energytest|︸ ︷︷ ︸

roundtype

⊗(SimAdv(E(ρ⊗ ρ⊗K
comp)))) (44)

Porjecting (41) onto roundtype = comp we get

tr(Πpass(πstep2◦π0)
Adv)) ≤ 1− 1

2
(1−tr(Πpass(|energytest⟩ ⟨energytest|⊗(πAdv

comp(Sim
Adv
0 (ρ⊗K

comp))))))+ϵ0

Combining it with the left hand side of (44) we get

δ′ ≤ 1

2
tr(Πpass(|energytest⟩ ⟨energytest| ⊗ (SimAdv(E(ρ⊗ ρ⊗K

comp))))) + ϵ0 + ϵ+
1

2
(45)

Now we analyze the energy test passing probability in (45). By the definition of E and ρ⊗K
comp,

E(ρ⊗ ρ⊗K
comp) is applying the energy test described in the beginning of Section 4.3.1, and see whether

valH(T ) < a+b
2 holds (see (38) for the definition of val(T )). By the fact that the ground energy of

H is ≥ b, we know for each k ∈ [K], conditioned on any possible outcome of T1, · · ·Tk−1, there is
E[valH(Tk)] ≥ b; then we could apply the Chernoff’s bound and get

tr(ΠvalH(T )< a+b
2
(E(ρ⊗ ρ⊗K

comp))) < 2−κ

Substituting it to (45) completes the proof.
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