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Abstract

The learning with errors problem (LWE) is one of the most important building blocks for
post-quantum cryptography. To better understand the quantum hardness of LWE, it is crucial
to explore quantum variants of LWE, show quantum algorithms for those variants, or prove they
are as hard as standard LWE.

To this end, Chen, Liu, and Zhandry [Eurocrypt 2022] define the S|LWE⟩ problem, which
encodes the error of LWE samples into quantum amplitudes. They then show efficient quantum
algorithms for S|LWE⟩ with a few interesting amplitudes. However, the hardness of the most
interesting amplitude, Gaussian, was not addressed by Chen et al., or only known for some
restricted settings (for example, when the number of S|LWE⟩ samples is very small, it is well
known that S|LWE⟩ is as hard as standard LWE).

In this paper, we show new hardness and algorithms for S|LWE⟩ with Gaussian and other
amplitudes. Our main results are

1. There exist quantum reductions from standard LWE or worst-case GapSVP to S|LWE⟩
with Gaussian amplitude with unknown phase, and arbitrarily many S|LWE⟩ samples.

2. There is a 2Õ(
√
n)-time algorithm for S|LWE⟩ with Gaussian amplitude with known phase,

given 2Õ(
√
n) many quantum samples. The algorithm is modified from Kuperberg’s sieve,

and in fact works for more general amplitudes as long as the amplitudes and phases are
completely known.

One way of interpreting our result is: to show a sub-exponential time quantum algorithm
for standard LWE, all we need is to handle phases in S|LWE⟩ amplitudes better, either in the
algorithm or the reduction.
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1 Introduction

The learning with errors problem asks to learn a secret vector given many noisy linear samples.

Definition 1.1 (Learning with errors (LWE) [Reg09]). Let n, m, q be positive integers. Let s ∈ Zn
q

be a secret vector. The search LWE problem LWEn,m,q,α asks to find the secret s given access to an
oracle that outputs ai, ⟨s,ai⟩ + ei (mod q) on its ith query, for i = 1, · · · ,m. Here each ai is a
uniformly random vector in Zn

q , and each error term ei is sampled from the Gaussian distribution

over Z with standard deviation αq/
√
2π.

The LWE problem is extremely versatile, leading to advanced encryption schemes such as fully
homomorphic encryptions [Gen09, BV11, Mah18]. It is also shown by Regev to be quantumly as
hard as the approximate short vector problems for all lattices [Reg09]. LWE and lattice problems
in general (e.g. [HPS98, Reg09]) are also popular candidates for the NIST post-quantum cryptog-
raphy standardization, due to their conjectured hardness against quantum computers. In fact, the
fastest quantum and classical algorithms for LWE all run in 2Ω(n) time. However, the conjectured
quantum hardness of lattice problem is still lacking solid evidences. Finding quantum algorithms
for lattice problems has therefore been a major open problem in the area of quantum computation
and cryptography in the past decade.

One way of exploring the quantum power for solving LWE is to consider the quantum variants
of LWE, by encoding quantum states into the LWE problem (henceforth, we refer to the original
LWE problem as “classical LWE” or “standard LWE” to distinct them from the quantum variant
mentioned below). To this end, Chen, Liu, and Zhandry [CLZ22] define the following variant of
LWE.

Definition 1.2 (Solve |LWE⟩, S|LWE⟩). Let n, m, q be positive integers. Let f be a function from
Zq to C. Let s ∈ Zn

q be a secret vector. The problem S|LWE⟩n,m,q,f asks to find s given access to

an oracle that outputs independent samples ai,
∑

ei∈Zq
f(ei)| ⟨s,ai⟩+ ei mod q⟩ on its ith query, for

i = 1, · · · ,m. Here each ai is a uniformly random vector in Zn
q .

Chen, Liu, and Zhandry [CLZ22] then show a quantum filtering technique to solve S|LWE⟩
when the DFT of the error amplitude is non-negligible everywhere over Zq. Two interesting error
amplitudes covered by their result are the bounded uniform amplitude and Laplacian amplitude.
In particular, the classical LWE problem with bounded uniform error distribution is proven to be
as hard as worst-case lattice problems [DM13, MP13]. Thus, their work gives a strong indication
that S|LWE⟩ is easier than classical LWE for certain error distributions.

However, the most interesting amplitude, Gaussian, was not addressed in [CLZ22]. For classical
LWE, Gaussian distribution is the default error distribution since Regev [Reg09] shows a quantum
reduction from worst-case lattice problems to LWE with Gaussian error, given arbitrarily many
LWE samples. Interestingly, it was implicitly shown in [SSTX09] and [BKSW18] that S|LWE⟩ with
Gaussian amplitude is as hard as standard LWE when the number of samples is very small. But if
we are given arbitrarily many samples, is the S|LWE⟩ problem with Gaussian amplitude still hard?

Not only did the understanding S|LWE⟩ with Gaussian amplitude shed light on our knowledge
of the standard LWE, but it was also considered a bedrock on which interesting quantum protocols
can be based, especially unclonable cryptography. The idea was first initially by Zhandry [Zha19]
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Error Amplitude # Samples Algorithm or Hardness Reference
Gaussian Few As hard as LWE or approx-GapSVP [SSTX09] [BKSW18]

Gaussian with unknown phase Arbitrary As hard as LWE or approx-GapSVP Sections 3,4

Gaussian 2Õ(
√

n) 2Õ(
√
n)-time quantum algorithm Section 5

Known with wide DFT poly(n) poly(n)-time quantum algorithm [CLZ22]

Table 1: Hardness of S|LWE⟩ with different error amplitudes

for a potential approach to construct a very powerful cryptographic primitive called quantum
lightning, while its concrete and secure instantiation still remains unknown. After that, Khesin,
Lu, and Shor proposed another lightning construction [KLS22] based on S|LWE⟩ but later was
broken by Liu, Montgomery, and Zhandry [LMZ23]. Poremba [Por23], and Ananth, Poremba, and
Vaikuntanathan [APV23] build certifiable deletion based on S|LWE⟩, basing on certain conjectured
security. If S|LWE⟩ with Gaussian amplitude was not secure, then all schemes mentioned before
may not even have semantic security, let alone its unclonability.

1.1 Main results

In this paper, we show new quantum algorithms and hardness results for S|LWE⟩ with Gaussian
and other amplitudes.

Our first result is a sub-exponential time quantum algorithm for solving S|LWE⟩ with Gaussian
amplitude, given sub-exponentially many S|LWE⟩ samples. The algorithm combines Kuperberg’s
sieve [Kup05] and quantum rejection sampling [ORR13]. In fact, it works for a more general
amplitude f as long as the discrete Fourier transform of f has two non-negligible points (the DFT
of Gaussian certainly has two non-negligible points).

Theorem 1.3 (Theorem 5.1, informal). Let f : Z → C be a known, normalized error amplitude
function for S|LWE⟩ such that for the DFTq of f , denoted by g, there exists two distinct values

j1, j2 ∈ Zq such that gcd(j1 − j2, q) = 1 and |g(j1)|, |g(j2)| ≥ 2−
√
n log q, and g(j1), g(j2) are com-

putable in time 2Θ(
√
n log q).

Then there exists a quantum algorithm that, given m = 2Θ(
√
n log q) samples of S|LWE⟩ with

amplitude f , finds the secret within a time complexity of 2Θ(
√
n log q).

Readers may wonder whether Theorem 1.3 leads to sub-exponential time quantum algorithms
for classical LWE. To address this question, let us recall the quantum reduction from GapSVP
and SIVP to classical LWE with Gaussian error distribution due to Regev [Reg09]. This reduction
works even given arbitrarily many classical LWE samples. One would (reasonably?) hope that the
reduction can be modified to a quantum reduction from worst-case lattice problems to S|LWE⟩ with
Gaussian amplitude.

However, we are only able to modify Regev’s reduction into a quantum reduction from worst-
case lattice problem to S|LWE⟩ with Gaussian amplitude with unknown phase, with arbitrarily
many S|LWE⟩ samples. Before stating our main theorem, let us first introduce the definition of
S|LWE⟩ with phase.
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Definition 1.4 (S|LWE⟩phase). Let n,m, q be LWE parameters. Define the following components:
(1) an amplitude function f : supp(f)→ R; (2) a mapping θ : supp(θ)→ R for the phase term; (3)
a distribution Dθ over the set supp(θ).

We say a quantum algorithm solves S|LWE⟩phasen,m,q,f,θ,Dθ
, if for any hidden vector s ∈ Zn

q , when
provided with m samples of

a← U(Zn
q ), y← Dθ,

∑
e∈supp(f)

f(e) exp(2πi · eθ(y))|(⟨a, s⟩+ e) mod q⟩,

the algorithm outputs s with probability at least 1− 2−Ω(n).

On the first pass of the definition, readers can think of y as some auxiliary information. The
phase term θ(y) is a function of y. As it is defined, the function θ may or may not be efficiently
computable (it is not efficiently computable in our result). So we can think of S|LWE⟩phase as a
variant of S|LWE⟩ with a phase term in the amplitude.

Theorem 1.5 (Theorem 4.2, informal). Let q = q(n) > 10n be an integer of at most poly(n) bits,
α ∈ (0, 1

5
√
n
) such that αq > 2

√
n. Suppose there exists quantum algorithms that solve S|LWE⟩phase

where the amplitude f(e) := exp
(
−π e2

(αq)2

)
, the phase θ is not efficiently computable, withm = 2o(n)

samples and in time complexity T . Then there exists a quantum algorithm that solves GapSVPγ

and SIVPγ, where γ ∈ Õ(n/α), in time poly(n,m, T ).

The informal statement above omits the distribution of the unknown phase term θ(y) and
some other details. All those details can be found in the statement of Theorem 4.2. Morally,
Theorem 4.2 says there is a quantum reduction from worst-case lattice problems to S|LWE⟩ with
Gaussian amplitude with unknown phase (the distribution of the unknown phase is known though),
with arbitrarily many S|LWE⟩ samples.

We also provide a quantum reduction directly from classical LWE to S|LWE⟩phase in Theo-
rem 3.4. This reduction goes through the (extrapolated) dihedral coset problem, originally used in
[Reg02, BKSW18]. It achieves worse parameters compared to Theorem 4.2, but is much simpler
to describe. For more details we refer the readers to Section 3. Although the result appears to be
qualitatively similar as Theorem 4.2, as it also says S|LWE⟩ with Gaussian amplitude with unknown
phase is as hard as classical LWE; the reduction itself is very different, therefore it might offer a
different approach for potential improvements.

Overall, we reduce worst-case lattice problems, or classical LWE, to S|LWE⟩ with unknown
phase. Readers may wonder what prevents us from removing the unknown phase in our reductions.
However, the reasons are rather technical and entangled with the details of our algorithms, so we
refer readers to the main body for discussions therein.

In Table 1 we summarize the old and new algorithms and hardness results for S|LWE⟩. In
Figure 1 we provide some examples of interesting amplitudes addressed in our paper or previous
papers.

Future directions. Our main results provide two possibilities of getting a sub-exponential time
quantum algorithm for standard LWE via S|LWE⟩. (1) Changing our reductions to get known
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Figure 1: Interesting S|LWE⟩ error amplitudes (top) and their discrete Fourier transforms (bottom).
All pictures are depicting the real parts of the functions. The x-axis is the input (from −30 to 29,
all examples are given over Z60). The y-axis is the amplitude. Three pictures on the top from left
to right are: (1) Gaussian, where our sub-exponential algorithm applies; (2) Gaussian with some
phase, where our reductions apply when the phase (or the center of the DFT) is unknown; (3)
bounded uniform distribution, where the algorithm in [CLZ22] applies.

phases, or (2) further modify Kuperberg’s algorithm to handle unknown phases. While we have
not accomplished those tasks in our paper (we really hope we have done so!), we cannot rule out
the possibility either.

Organization. The rest of this paper is organized as follows. In Section 2 we provide the back-
ground of quantum computation and lattice problems. In Section 3 we provide the reduction from
classical LWE to S|LWE⟩phase via extrapolated DCP. In Section 4 we provide the reduction from
worst-case lattice problem to S|LWE⟩phase via quantizing Regev’s reduction. We choose to present
the reduction from classical LWE to S|LWE⟩phase via extrapolated DCP first, since this reduction is
relatively easier to follow. In Section 5 we provide our sub-exponential time quantum algorithm for
S|LWE⟩ with completely known amplitude. Section 3, Section 4, Section 5 are in fact self-contained
and independent, containing their own overview if necessary, so readers can start from any section
without reading the others.

2 Preliminaries

Notations and terminology. Let C,R,Z,N be the set of complex numbers, real numbers,
integers and natural numbers (non-negative integers). Denote Z/qZ by Zq. By default we represent
the elements of Zq by elements in (−q/2, q/2]∩Z. For any integer q ≥ 2, let ωq = e2πi/q denote the
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primitive q-th root of unity. The rounding operation ⌊a⌉ : R → Z rounds a real number a to its
nearest integer. For positive integer q the rounding operation ⌊a⌉q : R→ qZ rounds a real number
a to its nearest integer which is a multiple of q. For n ∈ N, let [n] := {1, 2, · · · , n}.

A vector in Rn (represented in column form by default) is written as a bold lower-case letter,
e.g. v. For a vector v, the ith component of v will be denoted by vi. A matrix is written as a bold
capital letter, e.g. A. The ith column vector of A is denoted ai.

For x ∈ R and q ∈ N+, let x mod q be the unique real number z ∈ (−q/2, q/2] such that x−z is
a multiple of q. For a vector v ∈ Rn, we do mod coordinate-wise, i.e. the ith coordinate of v mod q
is given by vi mod q. To avoid ambiguity, we give mod lower precedence than addition/subtraction.
For example, a+ b mod q means (a+ b) mod q.

The length of a vector is the ℓp-norm ∥v∥p := (
∑
vpi )

1/p, or the infinity norm given by its
largest entry ∥v∥∞ := maxi{|vi|}. The ℓp norm of a matrix is the norm of its longest column:
∥A∥p := maxi ∥ai∥p. By default we use ℓ2-norm unless explicitly mentioned. Let x ∈ Cn, then
∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1. Let Bn

p denote the open unit ball in Rn in the ℓp norm.

When a variable v is drawn uniformly random from the set S we denote as v ← U(S). When
a function f is applied on a set S, it means f(S) :=

∑
x∈S f(x).

Definition 2.1 (Statistical distance). For two distributions over Rn with probability density func-
tions f1 and f2, we define the statistical distance between them as

D(f1, f2) =
1

2

∫
Rn

|f1(x)− f2(x)|dx.

We say two distributions (respectively, quantum states) are ϵ-close to each other if their statis-
tical distance (respectively, trace distance by default) is at most ϵ. We say two pure (unnormalized)
states |ϕ⟩ and |ψ⟩ are ϵ-close in ℓ2 distance if ∥|ϕ⟩ − |ψ⟩∥ ≤ ϵmin(∥|ϕ⟩∥, ∥|ψ⟩∥).

Fourier transform. The Fourier transform of a function h : Rn → C is defined to be

ĥ(w) =

∫
Rn

h(x) exp(−2πi ⟨x,w⟩)dx.

Define the convolution of two functions as f ∗ g(y) =
∫
Rn f(x)g(y − x)dx. Then f̂ ∗ g = f̂ · ĝ

and f̂ · g = f̂ ∗ ĝ.
We recall some formulas about Fourier transform (cf. [Gra08, P.100, Proposition 2.2.11]). If h

is defined by h(x) = g(x+ v) for some function g : Rn → C and vector v ∈ Rn, then

ĥ(w) = ĝ(w) · exp(2πi ⟨v,w⟩). (1)

If h is defined by h(x) = g(x) exp(2πi ⟨x,v⟩) for some function g : Rn → C and vector v ∈ Rn,
then

ĥ(w) = ĝ(w − v). (2)

As a corollary of Eqns. (1) and (2), if h is defined by h(x) = f(x + v) exp(2πi ⟨x, z⟩) for
some function f : Rn → C and vectors v, z ∈ Rn, then we define g(x) := f(x + v), so h(x) =
g(x) exp(2πi ⟨x, z⟩). Therefore ĝ(w) = f̂(w) · exp(2πi ⟨v,w⟩), and

ĥ(w) = ĝ(w − z) = f̂(w − z) · exp(2πi ⟨v,w − z⟩).
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2.1 Lattices

An n-dimensional lattice L of rank k ≤ n is a discrete additive subgroup of Rn. Given k linearly
independent basis vectors B = {b1, · · · ,bk ∈ Rn}, the lattice generated by B is

L(B) = L(b1, · · · ,bk) =

{
k∑

i=1

xi · bi, xi ∈ Z

}
.

By default we work with full-rank lattices unless explicitly mentioned.

The minimum distance λ1(L) of a lattice L is the length (in the ℓ2 norm by default) of its
shortest nonzero vector: λ1(L) = minx∈L\{0} ∥x∥. More generally, the ith successive minimum
λi(L) is the smallest radius r such that L contains i linearly independent vectors of norm at most
r. We write λp1 note the minimum distance measured in the ℓp norm.

For a point y ∈ Rn, its distance to L is given by dist(y,L) = minx∈L{∥y − x∥}. Define “the
ball around lattice” as BL(r) = {x ∈ Rn : dist(x,L) < r}. For y ∈ BL(λ1(L)/2), the (unique)
closest vector to y in L is given by κL(y) = argminx∈L{∥y − x∥}. For convenience, we omit the
λ1(L)/2 term and define BL as BL(λ1(L)/2), over which κL is uniquely defined.

The dual of a lattice L ∈ Rn is defined as

L∗ := {y ∈ Rn : ⟨y,x⟩ ∈ Z for all x ∈ L} .

If B is a basis of a full-rank lattice L, then B−T is a basis of L∗. The determinant of a full-rank
lattice L(B) is det(L(B)) = |det(B)|.

Lemma 2.2 (Poisson Summation Formula). For any lattice L and any Schwartz function f : Rn →
C, we have f(L) = det(L∗)f̂(L∗).

Gaussians and lattices. For any s > 0, define the Gaussian function on Rn with parameter s
following the convention in [MR07]

∀x ∈ Rn, ρs(x) = exp(−π∥x∥2/s2).

For any c ∈ Rn, define ρs,c(x) := ρs(x − c). The subscripts s and c are taken to be 1 and
0 (respectively) when omitted. Note that the standard deviation of ρs is s/

√
2π. The Fourier

transform for Gaussian satisfies ρ̂s = snρ1/s. From Poisson summation formula we have ρs(L) =
sn · det(L∗) · ρ1/s(L∗).

For a full-rank, symmetric, positive definite n× n matrix Σ, define the Gaussian function on
Rn with parameter

√
Σ following the convention in [MP12]

∀x ∈ Rn, ρ√Σ(x) = exp(−π · xTΣ−1x).

For any c ∈ Rn, real s > 0, and n-dimensional lattice L, define the discrete Gaussian distribu-
tion DL+c,s as

∀x ∈ L+ c, DL+c,s(x) =
ρs(x)

ρs(L+ c)
.
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Similarly, for a full-rank, symmetric, positive definite n×n matrix Σ, define the discrete Gaussian
distribution DL+c,

√
Σ as

∀x ∈ L+ c, DL+c,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(L+ c)
.

The following Gaussian tail bound over lattices is due to Banaszczyk.

Lemma 2.3 (Lemma 1.5 of [Ban93]). For any n-dimensional lattice L, and r ≥ 1√
2π
, c ∈ Rn,

ρ(L \Bn(r
√
n)) <

(
r
√
2πe · e−πr2

)n
ρ(L),

ρ((L − c) \Bn(r
√
n)) < 2

(
r
√
2πe · e−πr2

)n
ρ(L).

(3)

As a direct corollary, for r > C√
2π
α
√
n with C > 1 be a constant, we have that

ρα((L − c) \Bn(r)) < 2−Ω(n)ρα(L).

Lemma 2.4 (Claim 8.1 [RS17]). For any n ≥ 1, s > 0,

sn(1 + 2e−πs2)n ≤ ρs(Zn) ≤ sn(1 + (2 + 1/s)e−πs2)n.

Smoothing parameter. We recall the definition of smoothing parameter for Gaussian over
lattices and some useful facts.

Definition 2.5 (Smoothing parameter [MR07]). For any lattice L and positive real ϵ > 0, the
smoothing parameter ηϵ(L) is the smallest real s > 0 such that ρ1/s(L∗ \ {0}) ≤ ϵ.

Lemma 2.6 ([MR07]). For any n-dimensional lattice L, and any real ϵ > 0,

ηϵ(L) ≤ λn(L) ·
√
ln(2n(1 + 1/ϵ))/π.

Lemma 2.7 ([Reg09]). For any n-dimensional lattice L, and any real ϵ > 0,

ηϵ(L) ≥
√

ln 1/ϵ

π

1

λ1(L∗)
.

Lemma 2.8 (Claim 3.8 of [Reg09]). For any n-dimensional lattice L, c ∈ Rn, ϵ > 0, and r ≥ ηϵ(L)

ρr(L+ c) ∈ rn det(L∗)(1± ϵ).

q-ary lattices. Given n < m ∈ N and a modulus q ≥ 2, for A ∈ Zn×m
q , define q-ary lattices as

Lq(A) =
{
x ∈ Zm : ∃s ∈ Zn such that x = AT · s+ qZm

}
;

L⊥q (A) = {x ∈ Zm : A · x = 0 (mod q)} .

Those two lattices are dual of each other up to a factor of q, i.e., Lq(A) = q · L⊥q (A)∗.
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Lemma 2.9. Let q ≥ 2,m ≥ 2n log2 q, then for all but at most q−0.16n fraction of A ∈ Zn×m
q , we

have
λ∞1 (Lq(A)) ≥ q

4
.

Proof. The lemma is proven when q is a prime in [GPV08, Lemma 5.3]. Here we extend the proof
to a general q.

For any fixed non-zero s ∈ Zn
q , wlog assuming s1 is a non-zero entry of s. Then for any a ∈ Zn

q ,
y := ⟨a, s⟩ mod q can be written as y = s1a1 + v mod q for some v ∈ Zq. We observe that for
any q ∈ N, for any v ∈ Zq, for any non-zero s1 ∈ Zq,

Pr
a1∈Zq

[ s1a1 + v mod q ∈ (−q/4, q/4) ∩ Z ] ≤ 2/3,

where the equality holds when q ∈ 3k · N for some k ≥ 1, s1 ∈ (q/3) · Z/qZ, s1 ̸= 0, and for some
v ∈ Zq (for example, when q = 15, s1 = 5, and v = 2).

Therefore, over the randomness of A ∈ Zn×m
q , the probability that AT s = y mod q for some

y ∈ Zm such that ∥y∥∞ < q/4 is at most (2/3)m ≤ (3/2)−2n log2 q ≤ q−1.16n. Applying a union
bound over all s ∈ Zn

q completes the proof of Lemma 2.9.

Lattice problems. We have formally defined the LWE, S|LWE⟩, and S|LWE⟩phase problems in
the introduction. Now let us recall the definitions for other lattice problems.

The shortest vector problem (SVP) asks to find a lattice vector of length λ1. More generally,
let γ(n) ≥ 1 be an approximation factor, we consider the approximation version of SVP and its
close variants.

Definition 2.10 (Approximate SVP). Given a basis B of an n-dimensional lattice L, the SVPγ

problem asks to output a non-zero lattice vector Bx, x ∈ Zn \ {0}, such that ∥Bx∥ ≤ γ(n) · λ1(L).

Definition 2.11 (GapSVP). Given a basis B of an n-dimensional lattice L and a number d > 0,
the GapSVPγ problem asks to decide whether λ1(L) ≤ d or λ1(L) > d · γ(n).

Definition 2.12 (Shortest independent vector problem (SIVP)). Given a basis B of an n-dimensional
lattice L, the SIVPγ problem asks to output a set of n linearly independent vectors of length at most
γ(n) · λn(L).

Definition 2.13 (Discrete Gaussian Sampling Problem (DGS)). Given a basis B of an n-dimensional
lattice L and a parameter s > 0, the DGSs problem asks to output a vector whose distribution is
statistically close to DL,s.

Definition 2.14 (Quantum Discrete Gaussian Sampling Problem (|DGS⟩)). Given a basis B of an
n-dimensional lattice L and a parameter s > 0, the |DGS⟩s problem asks to output a quantum state
that is 2−Ω(n)-close to

∑
v∈L ρs(v)|v⟩ in trace distance.

If a quantum algorithm solves |DGS⟩s, then it immediately solves DGSs/
√
2 by simply measuring

the quantum state. Let us also recall the relationships among DGS, GapSVP, and SIVP.
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Lemma 2.15 (Lemma 3.20 of [Reg09]). For any γ = γ(n) ≥ 1, there exists a polynomial time
reduction from GapSVP100

√
nγ for L to DGS√nγ/λ1(L∗) for L∗.

Lemma 2.16 (Lemma 3.17 of [Reg09]). For any γ > ω(
√
log n), there exists a polynomial time

reduction from SIVP2
√
nγ for L to DGSγλn(L) for L.

2.2 Quantum computation

We assume readers are familiar with the basic concepts of quantum computation. All the quantum
background we need in this paper are available in standard textbooks of quantum computation, e.g.,
[NC16]. When writing a quantum state such as

∑
x∈S f(x)|x⟩, we typically omit the normalization

factor except when needed.

The trace distance between two quantum states ρ and σ is defined as δ(ρ, σ) := 1
2 tr |ρ − σ|.

Note that when ρ and σ commute they are diagonal in the same basis,

ρ =
∑
i

ri|i⟩⟨i|, σ =
∑
i

si|i⟩⟨i|,

for some orthonormal basis |i⟩, then δ(ρ, σ) = 1
2 tr |

∑
i(ri − si)|i⟩⟨i|| =

1
2

∑
i |ri − si|.

The trace distance is preserved under unitary transformations, and is contractive under trace-
preserving operations.

Lemma 2.17. Let |ϕ⟩, |ψ⟩ be un-normalized vectors s.t. ∥|ϕ⟩∥ ≥ µ and ∥|ϕ⟩ − |ψ⟩∥ ≤ ϵ. Then

δ

(
1

∥|ϕ⟩∥
|ϕ⟩, 1

∥|ψ⟩∥
|ψ⟩
)

=

√
1−

(
|⟨ϕ|ψ⟩|
∥|ϕ⟩∥∥|ψ⟩∥

)2

≤ O
(√

ϵ

µ

)
.

Lemma 2.18 (Gentle measurement [Win99]). Let ρ be a quantum state and let (Π, I −Π) be a
two-outcome projective measurement such that tr (Πρ) ≥ 1 − ϵ. Let ρ′ = ΠρΠ

tr(Πρ) be the state after

applying the measurement and post-selecting on getting the first outcome. Then δ(ρ, ρ′) ≤ 2
√
ϵ.

We need the following lemma about the trace distance between discrete Gaussian states.

Lemma 2.19. When q > 2
√
nmax(β1, β2) and R ≥ 2

√
n

min(β1,β2)
, the trace distance between

|ϕ1⟩ =
∑

e∈ZqR/R

ρβ1(e)|e⟩ and |ϕ2⟩ =
∑

e∈ZqR/R

ρβ2(e)|e⟩

is at most
√

(β1−β2)2

β2
1+β2

2
(1 + 2−Ω(n)).
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Proof.

⟨ϕ1|ϕ2⟩
∥|ϕ1⟩∥∥|ϕ2⟩∥

=
∑

e∈ZqR/R

ρ β1β2√
β21+β22

(e)

/√ ∑
e∈ZqR/R

ρβ1/
√
2(e)

∑
e∈ZqR/R

ρβ2/
√
2(e)

=
∑

e∈Z/R

ρ β1β2√
β21+β22

(e)

/√ ∑
e∈Z/R

ρβ1/
√
2(e)

∑
e∈Z/R

ρβ2/
√
2(e) (1 + 2−Ω(n))

=
β1β2√
β21 + β22

·
√
2√

β1β2

∑
e∈RZ

ρ√
β21+β22
β1β2

(e)

/√∑
e∈RZ

ρ√2/β1
(e)

∑
e∈RZ

ρ√2/β2
(e) (1 + 2−Ω(n))

=

√
2β1β2√
β21 + β22

(1 + 2−Ω(n)),

where we use the Poisson summation formula and Banaszczyk’s tail bound.

So their trace distance is at most√
1−

(
|⟨ϕ1|ϕ2⟩|
∥|ϕ1⟩∥∥|ϕ2⟩∥

)2

≤

√
(β1 − β2)2

β21 + β22
(1 + 2−Ω(n)).

We use the following quantum algorithms:

Lemma 2.20 (Quantum Fourier Transform (QFT) [Kit95]). Let q ≥ 2 be an integer. The following
unitary operator QFTq can be implemented by poly(log q) elementary quantum gates. When QFTq

is applied on a quantum state |ϕ⟩ :=
∑

x∈Zq
f(x)|x⟩, we have

QFTq|ϕ⟩ =
∑
y∈Zq

∑
x∈Zq

1
√
q
· e−2πi·xy/q · f(x)|y⟩.

We use the following lemma [ORR13] to change the amplitude of a state.

Lemma 2.21 (Quantum rejection sampling). Let f : D → C be a normalized amplitude of some
quantum state |ϕf ⟩ :=

∑
x∈D f(x)|x⟩. Let γ : D → [0, 1] be a polynomial time computable function.

There is a quantum algorithm that takes as input |ϕf ⟩, outputs a state
∑

x∈D
1√
M
γ(x)f(x)|x⟩ with

probability M where M =
∑

x∈D γ
2(x)|f(x)|2.

In this paper we are interested in preparing the Gaussian state |σn,R⟩ :=
∑

x∈Zn∩Bn(R
√
n) ρR(x)|x⟩

for some radius R ≤ 2poly(n). Given Lemma 2.3, there is a 2−Ω(n) mass in the tail of ρR(x)
outside Bn(R

√
n). This means for any integer P ∈ (2R

√
n, 2poly(n)), |σn,R⟩ is 2−Ω(n) close to∑

x∈Zn
P
ρR(x)|x⟩. This also means we can prepare |σn,R⟩ by generating n independent samples of

one-dimensional Gaussian state |σ1,R⟩, which can be done efficiently using [GR02].

Lemma 2.22 (Gaussian state preparation). Let n,R ∈ N such that 1 ≤ R ≤ 2n
c
for some constant

c ≥ 0. Then we can create a poly(n) size unitary U that maps |0⟩ to a state within trace distance
2−Ω(n) from |σn,R⟩ with 2n ⌈nc · log n⌉ qubits.
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3 Reduction via Extrapolated DCP

In this section, we show how to obtain a quantum reduction from classical LWE to S|LWE⟩phase
with Gaussian amplitude. Our reduction goes through the Extrapolated Dihedral Coset problem
(EDCP), derived from a modification of the reduction by Regev [Reg04] and Brakerski et al.
[BKSW18]. Our reduction consists of two steps:

Step 1 Given a classical LWE instance, our quantum reduction first generates an Extrapolated DCP
state with amplitudes following a Gaussian distribution centered at an unknown value. More
precisely, we establish the following theorem:

Theorem 3.1. Let n,m, q ∈ N+, α, β, γ ∈ R+ satisfy m ≥ n log q, α = Ω(
√
n), αγ

√
m < β <

q
16

√
m log β

. There exists a poly(n) time quantum algorithm that, given a classical LWE instance

LWEn,m,q,γ = (A,AT s+ e), generates, with probability 1− 2−Ω(n), a vector y ∈ Zm
q ∩BLq(A)

and an Extrapolated DCP state of form

|EDCP⟩ =
∑
j∈Zq

ρσ(j − c)|j⟩|(v + j · s) mod q⟩, (4)

where

1. the vector v is chosen uniformly at random from Zn
q and is unknown.

2. the Gaussian width σ = αβ√
α2∥e∥2+β2

.

3. the vector y is sampled by first sampling x ∈ Zm ∩ Bm(λ1(Lq(A))/2) with probability

proportional to Pr(x) ∝ ρ
β
√

Σ/2
(x) where Σ = Im+ α2

β2 ee
T , then outputting y = (ATv+

x) mod q.

3. the center c = − α2⟨x,e⟩
α2∥e∥2+β2 (we don’t know how to efficiently compute c with success

probability 1 − 2−Ω(n) since we don’t know x and e; we can guess c correctly with non-
negligible probability, but the event of guessing correctly is not efficiently checkable).

Step 2 Given an Extrapolated DCP state with amplitudes following a Gaussian distribution centered
at an unknown value, we adapt the quantum reduction proposed by Brakerski et al. [BKSW18]
to transform it to an S|LWE⟩ instance. The resulting S|LWE⟩ instance will have amplitudes
represented as a Gaussian distribution multiplied by an unknown phase term. More precisely,
we establish the following theorem:

Theorem 3.2. There exists an efficient quantum algorithm that, given an Extrapolated DCP
state of form as Equation (4), generates an S|LWE⟩ state of form

S|LWE⟩ =
∑
e∈Z

ρq/σ(e) exp(2πi · ce/q)|(⟨a, s⟩+ e) mod q⟩ (5)

along with a known vector a← U(Zn
q ). Here the parameters σ, c correspond to those mentioned

in Theorem 3.1.
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In the remaining part of this section, we will provide the detailed proofs for Theorem 3.1 and
Theorem 3.2. By combining these two theorems, we achieve a quantum reduction from classical
LWE to S|LWE⟩, whose amplitude is represented as a Gaussian distribution multiplied by an un-
known phase term. This establishes that solving the classical LWE problem is as hard as solving
the quantum variant S|LWE⟩ with an “unknown phase”. Formally, we define our special parameters
and functions, and propose the main theorem for this section here:

Definition 3.3. Let n,m, q ∈ N+, α, β, γ ∈ R+ satisfy m ≥ n log q, α = Ω(
√
n), αγ

√
m < β <

q
16

√
m log β

. Given a classical LWE instance LWEn,m,q,γ = (A,AT s+ e), we define:

1. A family of functions {fE : Z → R}E∈N with fE(e) = ρq/σ(E)(e) where σ(E) = αβ√
α2E+β2

is

known given E,α, β.

2. A distribution Dθ,e(y) over Zm
q ∩BLq(A) given by Pr(y) ∝ ρ

β
√

Σ/2
(y′) where Σ = Im+ α2

β2 ee
T

and y′ = y − κLq(A)(y).

3. A family of functions {θE,e : Zm
q ∩BLq(A) → R}E∈N with θE,e(y) = − α2⟨y′,e⟩

q(α2E+β2)
(This family

of functions is not efficiently computable when assuming classcial LWE is hard).

Theorem 3.4 (Main theorem, from LWE to S|LWE⟩phase). Following the parameters defined in
Definition 3.3. Given a classical LWE sample (A,AT s + e), assuming there exists quantum algo-

rithms that can solve S|LWE⟩phasen,ℓ,q,fE ,θE,e,Dθ,e
for all E ∈ {1, 2, · · · , ⌈γ2m⌉}, with ℓ = 2o(n) and time

complexity T = 2o(n), then there exists a quantum algorithm capable of solving for the secret vector
s ∈ Zn

q from the LWE instance (A,AT s+e), with success probability 1−2−Ω(n) and time complexity
O((T + ℓ · poly(n, q)) · γ2m).

Remark 3.5. A typical setting of parameters is to let γ ≥ 2
√
n and m ∈ Ω(n log q), then the

smallest modulus q can be q = Θ̃(β
√
m) = Θ̃(n2).

Proof. We proceed to address the classical LWE instance (A,AT s+ e) as follows:

1. Enumerate E ∈ {1, 2, · · · , ⌈γ2m⌉} to make a guess for ∥e∥2.

2. Apply Theorem 3.1 and Theorem 3.2 ℓ times to generate ℓ instances of S|LWE⟩ in the form
of Equation (5).

3. Utilize the quantum algorithm in the assumption for S|LWE⟩phasen,ℓ,q,fE ,θE,e,Dθ,e
, with those ℓ

S|LWE⟩ instances as input, to derive a solution s′.

4. Employ any verification algorithm (e.g., as proposed by Regev [Reg09, Lemma 3.6]) to ascer-
tain whether s′ = s. If this condition holds, output s′ and conclude the process.

It can be easily verified that this algorithm operates with a runtime ofO((T+ℓ·poly(q, n))·γ2m).
Furthermore, as indicated in Theorem 3.1, the probability of successfully generating ℓ S|LWE⟩ states
in step 2 is exponentially close to 1. Thus, when E = ∥e∥2 (i.e., when we guess E correctly), the
probability that the solution s′ = s is exponentially close to 1. Consequently, the aforementioned
algorithm achieves success probability exponentially close to 1.
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3.1 Reduce classical LWE to Extrapolated DCP

Our quantum reduction from classical LWE to Extrapolated DCP follows the general design of
Regev’s reduction [Reg04] and the reduction proposed by Brakerski et al. [BKSW18]. In these
reductions, the Euclidean space Rn is divided into grids, with each grid cell having a width that
lies between the length of the error vector ∥e∥ and the length of the shortest vector in the lattice
λ1(Lq(A)). The key observation is that when randomly selecting a vector x ∈ Rn, the vectors
x,x + e, · · · ,x + k · e will be in the same grid cell with high probability, creating a superposition
in the quantum world.

We modify the reductions in [Reg04, BKSW18] by introducing Gaussian balls around all lattice
points in Lq(A), where the radius of each ball is a quantity smaller then the length of shortest
vector in the lattice λ1(Lq(A)). Note that the reductions in [Reg04, BKSW18] use Euclidean balls
or cubes.

Here we give the detailed proof of Theorem 3.1.

Proof of Theorem 3.1. Following the parameters defined in Theorem 3.1. Relying on both Lemma 2.9
and Banaszczyk’s tail bound from Lemma 2.3, we make the assumptions that λ1(Lq(A)) ≥ q

4 and

∥e∥ < γ
√
m for the remainder of this proof; these assumptions hold with probability 1 − 2−Ω(n).

Our quantum reduction from classical LWE to Extrapolated DCP works as follows (for simplicity,
we omit the normalization factors):

1. We start by preparing the superposition using the Gaussian state sampler (see Lemma 2.22)∑
j∈Zq

ρα(j)|j⟩
∑
v∈Zn

q

|v⟩
∑
x∈Zm

q

ρβ(x)|x⟩.

2. We apply a unitary to compute (j,v,x) → (ATv − j · (AT s + e) + x) mod q on the third
register, obtaining the state∑

j∈Zq

ρα(j)|j⟩
∑
v∈Zn

q

|v⟩
∑
x∈Zm

q

ρβ(x)|(ATv − j · (AT s+ e) + x) mod q⟩. (6)

This state approximates, with an error of 1− 2−Ω(n), the same state structure with the only
difference being the range of x in the summation, which is now Zm rather than Zm

q . By

expressing ATv − j · (AT s + e) + x as AT (v − j · s) + (x − j · e), we perform a change of
variables v← (v + j · s) mod q and x← x+ j · e, yields that the state of form Equation (6)
is 2−Ω(n)-close to the state∑

j∈Zq

ρα(j)|j⟩
∑
v∈Zn

q

|(v + j · s) mod q⟩
∑
x∈Zm

ρβ(x+ j · e)|(ATv + x) mod q⟩. (7)

To proceed, we need the following lemma to guarantee that each vector in the support of the
third register y := ATv + x mod q corresponds to a unique x, in order to match with the
target of Theorem 3.1 and to simplify later analyses. The proof of this lemma is deferred to
Appendix A.2.
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Lemma 3.6. Assume that (β
√
m+ αγm)

√
log β < λ1(Lq(A))/2 and β >

√
m, then the state

in Equation (7) is 2−Ω(n)-close to the state∑
j∈Zq

ρα(j)|j⟩
∑
v∈Zn

q

|(v + j · s) mod q⟩
∑

x∈Zm,
∥x∥<λ1(Lq(A))/2

ρβ(x+ j · e)|(ATv + x) mod q⟩. (8)

Under the condition of Theorem 3.1, (β
√
m+ αγm)

√
log β < 2β

√
m log β < q/8 < λ1(Lq(A))/2

and β > αγ
√
m >

√
m, so the state in Equation (7) is 2−Ω(n)-close to the state in Equa-

tion (8), which can be rewritten as follows

∑
v∈Zn

q ,x∈Zm,

∥x∥<λ1(Lq(A))/2

∑
j∈Zq

ρα(j)ρβ(x+ j · e)|j⟩|(v + j · s) mod q⟩

 |(ATv + x) mod q⟩ (9)

3. We measure the state in Equation (9) on the third register and denote the result as y =
(ATv + x) mod q (note that we have ∥x∥ < λ1(Lq(A))/2, so the vectors v and x are both
unique), then the remaining state on the first two registers is∑

j∈Zq

ρα(j)ρβ(x+ j · e)|j⟩|(v + j · s) mod q⟩.

The amplitude of this state is computed as follows

ρα(j)ρβ(x+ j · e) = exp

[
−π
(
j2

α2
+
j2∥e∥2 + 2j ⟨x, e⟩+ ∥x∥2

β2

)]
∝ exp

[
−π
(
(α2∥e∥2 + β2)j2 + 2jα2 ⟨x, e⟩

α2β2

)]
∝ ρσ(j − c),

where the Gaussian width σ = αβ√
α2∥e∥2+β2

∈ (α/
√
2, α) and the center c = − α2⟨x,e⟩

α2∥e∥2+β2 .

Unfortunately, the center c remains unknown because we have no knowledge of x other than
that it is the error term in the LWE sample y = (ATv + x) mod q. The analysis of the
distribution of y and c is deferred to Section 3.3.

It’s evident that in the state of Equation (8), the amplitude for every v ∈ Zn
q is the same, which

implies that the distribution of the vector v is uniformly random. This completes the proof.

Remark 3.7. It seems that our reduction bears similarities to the reduction from classical LWE to
G-EDCP (Extrapolated DCP with amplitudes following a Gaussian distribution) proposed by Brak-
erski et al. [BKSW18]. However, our reduction, compared to both Regev’s reduction and Brakerski
et al.’s reduction, exhibits superior success probability. In the previous reductions, the failure prob-
ability is inverse-polynomial, leading to the reduction of classical LWE to only polynomially many
(Extrapolated) DCP states. In contrast, our reduction achieves 1 − 2−Ω(n) success probability, al-
lowing for the construction of sub-exponentially many Extrapolated DCP states without failure, the
cost is introducing an unknown center in the Gaussian distribution of the amplitude. This novel
approach offers the potential for creating sub-exponential time quantum algorithms for the standard
LWE problem.
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3.2 Reduce Extrapolated DCP to S|LWE⟩

The second step of our quantum reduction from classical LWE to S|LWE⟩phase involves reducing
the obtained Extrapolated DCP states to S|LWE⟩phase. This step is an adaptation of the reduction
from G-EDCP to LWE proposed by Brakerski et al. [BKSW18]. We give the detailed proof of
Theorem 3.2 here.

Proof of Theorem 3.2. Suppose we are given an Extrapolated DCP state with the form as Equa-
tion (4). Our quantum reduction works as follows (for simplicity, we omit the normalization factors):

1. Apply Quantum Fourier Transformation on Zn
q for the second register, obtaining the state∑

a∈Zn
q

∑
j∈Zq

ω⟨a,v+j·s⟩
q ρσ(j − c)|j⟩|a⟩.

2. Measure the second register to get a particular measurement result â, which is randomly

chosen from Zn
q with a uniform distribution. By omitting the global phase term ω

⟨â,v⟩
q , the

remaining state is ∑
j∈Zq

ω⟨â,j·s⟩
q ρσ(j − c)|j⟩.

3. Apply another Quantum Fourier Transformation on Zq and incorporate Gaussian tails of j
again, obtaining a state 2−Ω(n)-close to the state∑

b∈Zq

∑
j∈Z

ωj(⟨â,s⟩+b)
q ρσ(j − c)|b⟩.

4. Use the Poisson summation formula on the amplitude and change the summation variable to
e← ⟨â, s⟩+ b− q · j, this state can be rewritten as∑

b∈Zq

∑
j∈Z

ωj(⟨â,s⟩+b)
q ρσ(j − c)|b⟩

=
∑
b∈Zq

∑
j∈Z

σρ1/σ

(
j − ⟨â, s⟩+ b

q

)
· exp

(
−2πi · c

(
j − ⟨â, s⟩+ b

q

))
|b⟩

∝
∑
e∈Z

ρq/σ(e) · exp(2πi · ce/q)|(⟨−â, s⟩+ e) mod q⟩

Finally, this state along with the classical vector −â will be the output S|LWE⟩phase instance of our
quantum reduction.

3.3 The distribution of unknown center

For additional technical insights, we present a more detailed analysis of the distribution of center c
in the Extrapolated DCP states (see Equation (4)) we get. To achieve this, we begin by examining
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the distribution of x after measurement on the third register of the state given in Equation (9). It
is evident that the probability of obtaining a specific vector x is proportional to

Pr(x) ∝
∑
j∈Zq

ρα(j)
2ρβ(x+ j · e)2

≈
∑
j∈Z

ρα(j)
2ρβ(x+ j · e)2

=
∑
j∈Z

exp

[
−2π

(
j2

α2
+
j2∥e∥2 + 2j ⟨x, e⟩+ ∥x∥2

β2

)]

=
∑
j∈Z

ρσ/
√
2(j − c) · exp

[
−2π

(
∥x∥2

β2
− α2 ⟨x, e⟩2

β2(α2∥e∥2 + β2)

)]
.

We observe that σ = αβ√
α2∥e∥2+β2

> α√
2
= Ω(

√
n), which implies that almost all of the weight of

ρ√2/σ is concentrated at ρ√2/σ(0) with exponentially small weight elsewhere. Using the Poisson
summation formula, we get that∑

j∈Z
ρσ/

√
2(j − c) =

∑
j∈Z

σ√
2
ρ√2/σ(j) · exp(−2πi · cj) ∈

σ√
2
(1± 2−Ω(n)).

Let us denote Σ =
(
Im − α2

α2∥e∥2+β2ee
T
)−1

= Im + α2

β2 ee
T , the remaining term can be written as

exp

[
−2π

(
∥x∥2

β2
− α2 ⟨x, e⟩2

β2(α2∥e∥2 + β2)

)]
= exp

[
−2π · 1

β2
(x)T

(
Im −

α2

α2∥e∥2 + β2
eeT

)
x

]
= exp

[
−2π · 1

β2
(x)TΣ−1x

]
= ρ

β
√

Σ/2
(x).

This means that the distribution of x follows the discrete Gaussian distribution with center 0
and covariance matrix β2Σ/2. Correspondingly, the distribution of y ∈ Zm

q ∩ BLq(A) is given by
Pr(y) = ρ

β
√

Σ/2
(x).

To derive the distribution of the unknown center c = α2⟨x,e⟩
α2∥e∥2+β2 , we emphasize that the proba-

bility of every entry in e having a greatest common divisor of 1 is exponentially close to 1, and the
distribution of x is smooth enough to be treated as a continuous Gaussian distribution since the
eigenvector of β2Σ/2 are β2/2 and (β2 + α2∥e∥2)/2. So the distribution of the unknown center c

can be approximated by the discrete Gaussian distribution with minimum step α2

α2∥e∥2+β2 , center 0

and variance

σ2c =

(
α2

α2∥e∥2 + β2

)2

· eT
(
β2Σ/2

)
e =

α4∥e∥2

2(α2∥e∥2 + β2)
.

In conclusion, we propose the following statement for the distribution of the unknown center
in the Extrapolated DCP states:
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Theorem 3.8. The distribution of c in Equation (4) of Theorem 3.1 approximately follows the

discrete Gaussian distribution D α2

α2∥e∥2+β2
Z,σc

where σc =
α2∥e∥√

2(α2∥e∥2+β2)
.

Remark 3.9. As readers may notice, the Gaussian width σ of j and the Gaussian width σc of c
(the center of the distribution of j) satisfy σc =

α∥e∥√
2β
σ. In our settings, if we assume β ≫ α · ∥e∥,

then the distribution of j is a discrete Gaussian distribution with a small shift. However, this shift
is non-negligible, preventing our S|LWE⟩-like state from being exponentially close to a S|LWE⟩ state
without unknown phase.

4 Reduction via Quantizing Regev’s Iterative Reduction

In this section, we show how to reduce from the problem of generating discrete Gaussian states
(|DGS⟩, Definition 2.14) to a variant of S|LWE⟩ with an unknown phase term on the amplitude
(S|LWE⟩phase), by modifying Regev’s iterative reduction [Reg09] from the problem of generating
discrete Gaussian samples (DGS, Definition 2.13) to LWE. Combined with the known reductions
from GapSVP and SIVP to DGS in Lemma 2.15 and Lemma 2.16, it gives a quantum reduction
from GapSVPÕ(n1.5) and SIVPÕ(n1.5) to S|LWE⟩phase.

4.1 Overview of our reduction

As in [Reg09], our proof is iterative. We start from generating discrete Gaussian states with
exponentially large widths (discrete Gaussian samples with exponentially large widths in Regev’s
reduction; both can be done efficiently). Then, each iteration produces discrete Gaussian states
(samples) with smaller widths. Repeating the iteration for polynomial number of times gives the
discrete Gaussian states (samples) for the |DGS⟩ (DGS) problem. We illustrate Regev’s reduction
in Figure 2a, aligned with our reduction in Figure 2b, and then explain with more details.

nc samples
of DL,r

nc samples
of DL,r

√
n/(αq)

nc samples
of DL,rn/(αq)2

Quantum query
for CVPL∗,αq/(

√
2r)

Quantum query
for CVPL∗,(αq)2/(r

√
2n)

Classical, use LWE

[Reg09
, Lemma 3.14]

Classical, use LWE

[Reg09
, Lemma 3.14]

...

...
(a) Two iterations in Regev’s reduction [Reg09].

3m2n2 states
of |DL,r⟩

3m2n2 states
of |DL,r

√
n/(αq)⟩

3m2n2 states
of |DL,rn/(αq)2⟩

Quantum query
for CVPL∗,αq/r

Quantum query
for CVPL∗,(αq)2/(r

√
n)

Use S|LWE⟩phase,(Theorem 4.7)

[Reg09
, Lemma 3.14]

Use S|LWE⟩phase,(Theorem 4.7)

[Reg09
, Lemma 3.14]

...

...
(b) Two iterations in our reduction that quantizes
Regev’s reduction.

Figure 2: The correspondence between Regev’s reduction (from DGS to LWE) and our reduction
(from |DGS⟩ to S|LWE⟩phase).
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In order to quantize Regev’s iterative reduction, we focus on quantizing the only classical step
in the reduction – solving CVP. Roughly speaking, given a CVP instance x, Regev [Reg09] utilizes
LWE oracle to solve CVP by feeding it with samples a := L−1v mod q and ⟨x,v⟩ mod q where
v← DL,r, which are close to the LWE sample a and ⟨a, s⟩+e mod q where s = (L∗)−1κL∗(x) mod q
and e is sampled from the Gaussian distribution. To quantize this step, a natural idea is to
replace the classical v with a superposition state of Gaussian samples

∑
v∈L ρr(v)|v⟩, measure

a = L−1v mod q, and compute ⟨x,v⟩ mod q in another register, hoping that the register contains
an S|LWE⟩ state. However, we should be careful to make sure that the v register does not collapse
to a classical v. Our solution is to measure the v register in Fourier basis, which can ensure that
each v ∈ qL+La appears in the amplitude of the ⟨x,v⟩ register. But it also inevitably introduces
a phase term that we are unable to compute efficiently from the measurement results. The above
discussion ignores the Gaussian distribution to smooth the error distribution. More details can be
found in Section 4.2.

The above described reduction leads us to requiring an S|LWE⟩phase oracle with specific param-
eter. We first formally define our special parameters and functions, and propose the main theorem
for this section here:

Definition 4.1. Let L be an n-dimensional integer lattice. Given parameters q,R ∈ N+ such that
R ∈ 2poly(n), α, r ∈ R and a vector x ∈ Rn such that dist(x,L∗) ≤ λ1(L∗)/2, we define

1. An amplitude function f : ZqR/R→ R with f(e) = ρ√2αq(e) which is completely known.

2. A family of distribution D
(r,x)
θ over Zn

R∩R·B(qL)∗ parameterized by (r,x) and given by Pr(y) ∝
ρ√

Σ/2
(z (y)) where Σ := I

r2
+ x′x′T

2α2q2−r2∥x′∥2 , x
′ := x−κL∗(x) and z(y) := y/R−κ(qL)∗(y/R).

3. A family of phase function θ(r,x) : Zn
R∩R ·B(qL)∗ → R parameterized by (r,x) with θ(r,x)(y) =

r2⟨x′,z(y)⟩
2α2q2

, where x′ = x−κL∗(x) and z(y) = y/R−κ(qL)∗(y/R). This function is not known
to be efficiently computable since it requires to solve approximate CVP.

Theorem 4.2 (Main theorem, from |DGS⟩ to S|LWE⟩phase). Let L be an n-dimensional integer
lattice. Let ϵ = ϵ(n) be a negligible function such that ϵ(n) < 2−n, q = q(n) > 10n be an integer of
at most poly(n) bits, α ∈ (0, 1

5
√
n
) such that αq > 2

√
n, R = R(n) be an exponentially large integer

such that R > max{22n+2nλn(L)2, 2
4n+1

√
2nλn(L∗)λn(L)

αq , 23nλn(L∗)}. Let r0 > 4
√
nηϵ(L)/α be the

width parameter of the |DGS⟩ problem.

Assume there exists quantum algorithms that can solve S|LWE⟩phase
n,m,q,f,θ(r,x),D

(r,x)
θ

for any choice

of pair (r,x) such that αqr0/
√
n < r < 22n

√
2λn(L), x ∈ L∗/R and dist(x,L∗) ≤ αq/r, with

m = 2o(n) samples and in time complexity T . Then there exists a quantum algorithm that can
generate a state that is 2−Ω(n)-close to the discrete Gaussian state |DL,r0⟩ =

∑
v∈L ρr0(v)|v⟩ in

time complexity O((m4 +m3T )poly(n)).

Then the |DGS⟩ problem is easily reduced to either GapSVP or SIVP. The connection to
GapSVP and SIVP is a Corollary of Theorem 4.2 and Lemmas 2.6, 2.7, 2.15, and 2.16.

Corollary 4.3. Under the same assumption used in Theorem 4.2, there exists quantum algorithms
for solving GapSVPγ and SIVPγ for γ ∈ Õ(n/α) in time complexity poly(n,m, T ).
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Remark 4.4. Readers may think the assumption of Theorem 4.2 looks too strong because the family
of phase functions {θ(r,x)} is a very large family. However, we know the absolute value of θ(r,x)(y)
is small with high probability, when (r,x) follows the setting in Theorem 4.2 and y is sampled from

the corresponding distribution D
(r,x)
θ . This is because when y← D

(r,x)
θ , z(y) = y/R− κ(qL)∗(y/R)

follows the distribution ρ√
Σ/2

(z(y)) over support Zn
R/R ∩ B(qL)∗ and thus has ℓ2 norm at most

√
nαq

r
√

2α2q2−r2∥x′∥2
with 1− 2−Ω(n) probability. Then

∣∣θ(r,x)(y)∣∣ ≤ √
n

2αq with 1− 2−Ω(n) probability. As

our algorithm in Section 5 can solve the problem in sub-exponential time if θ(r,x)(y) is always zero,
there might be a way to solve the problem when θ(r,x)(y) is close to zero.

In what follows, we will display the idea of our proof for Theorem 4.2, which will be an
expansion of the proof idea described earlier with Figure 2. As is described before, our proof is
iterative. We start from generating discrete Gaussian states with exponentially large widths. Then,
equipped with an S|LWE⟩phase solver, we iteratively generate discrete Gaussian states with smaller
widths in each step. Repeating the iterative step for polynomial number of times gives the discrete
Gaussian states we desired. Formally, our initialization and iterative steps are:

Theorem 4.5 (The initialization step, [Reg09, Lemma 3.12]). There exists an efficient quantum
algorithm that given any n-dimensional integer lattice L and width r > 22n

√
2λn(L), output a state

that is 2−Ω(n)-close to the state |DL,r⟩ =
∑

v∈L ρr(v).

Theorem 4.6 (The iterative step). Let L be an n-dimensional integer lattice, q > 2 be an integer.
Define the parameters ϵ ∈ (0, 2−n), α ∈ (0, 1

5
√
n
), r > 4qηϵ(L), and a precision parameter R >

max{2
√
nr
√
log r, 2

√
n

αq ,
22n+1nrλn(L∗)

αq , 23nλn(L∗)} as an integer.

Assume that there exists a quantum algorithm that solves S|LWE⟩phase
n,m,q,f,θ(r,x),D

(r,x)
θ

for any x ∈

L∗/R with dist(x,L∗) < αq/r in time complexity T . Then there exists a quantum algorithm that,
given 3m2n2 discrete Gaussian states |DL,r⟩ =

∑
v∈L ρr(v)|v⟩, produces 3m2n2 discrete Gaussian

states that are 2−Ω(n)-close to |DL,r
√
n/αq⟩, in time complexity O((m4 +m3T )poly(n)).

The iterative step consists of two steps:

Step 1 Given a CVP instance, we can use a collection of discrete Gaussian states |DL,r⟩ to construct an
S|LWE⟩phase instance. Solving the S|LWE⟩phase instance will in return solve the CVP problem.
More precisely, we show the following theorem:

Theorem 4.7. Let L be an n-dimensional integer lattice, define the parameters ϵ ∈ (0, 2−n),

α ∈ (0, 1
5
√
n
), r > 4qηϵ(L), and a precision parameter R > max{2

√
nr
√
log r, 2

√
n

αq ,
22n+1nrλn(L∗)

αq }
as an integer.

Assume that there exists an quantum algorithm that solves S|LWE⟩phase
n,m,q,f,θ(r,x),D

(r,x)
θ

for any

x ∈ L∗/R with dist(x,L∗) < αq/r in time complexity T . Then there exists a quantum algo-
rithm that, given 3m2n2 discrete Gaussian states |DL,r⟩ =

∑
v∈L ρr(v)|v⟩, answers quantum

query to CVPL∗,αq/r on the support L∗/R (denoted by |x,y⟩ → |x,y+κL∗(x)⟩ with x ∈ L∗/R
such that dist(x,L∗) ≤ αq/r) up to exponentially small error, with exponentially small dis-
turbance to the states |DL,r⟩, and in time O((m2 +mT )poly(n)).
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Step 2 (Same as the quantum step in Regev’s reduction) A query to the CVP oracle can help to
generate a discrete Gaussian state with a smaller width. More precisely:

Theorem 4.8 ([Reg09, Lemma 3.14]). There exists an efficient quantum algorithm that,
given any n-dimensional lattice L, a number d < λ1(L∗)/2 and an integer R > 23nλn(L∗),
outputs |DL,

√
n/d⟩ =

∑
v∈L ρ

√
n/d(v)|v⟩, with only one quantum query on the second register

of state ∑
x∈L∗/R,∥x∥≤d

ρd/
√
n(x)|x,x mod P(L∗)⟩,

to the CVPL∗,d oracle, which is on the support L∗/R.

The full picture of the proof for the main reduction Theorem 4.2 is illustrated in Figure 3.
The proof starts with the initial step (Theorem 4.5) then applies the iterative step (Theorem 4.6)

3m2n2 states
of |DL,r⟩

3m2n2 states
of |DL,r

√
n/(αq)⟩

3m2n2 states
of |DL,rn/(αq)2⟩

Quantum query
for CVPL∗,αq/r

Quantum query
for CVPL∗,(αq)2/(r

√
n)

Use S|LWE⟩phase,(Theorem 4.7)

[Reg09
, Lemma 3.14]

Use S|LWE⟩phase,(Theorem 4.7)

[Reg09
, Lemma 3.14]

...

...

1. Guess the parameters for the
S|LWE⟩phase instance. (Theorem 4.13)
2. Generate S|LWE⟩phase instance
with the correct guess. (Theorem 4.9)

Figure 3: Illustration of two iterations of the reduction algorithm.

for poly(n) times. The iterative step consists of two parts, first the construction of CVP oracle
(Theorem 4.7) with the help of discrete Gaussian states from the previous iteration and the help
of an S|LWE⟩phase solver, and then the generation of a narrower discrete Gaussian state through
one query to the CVP oracle (Theorem 4.8). Since the discrete Gaussian states generated in the
previous iteration are only disturbed by an exponentially small amount upon each query of the
CVP oracle, we can reuse them for 3m2n2 times to construct 3m2n2 narrower discrete Gaussian
states for use of the next iteration.

It is left to prove Theorem 4.7, to which the remainder of this section will be devoted. To
prove it, we start by generating an S|LWE⟩phase instance but with an unknown Gaussian width,
instead of the fixed and known width

√
2αq in the S|LWE⟩phase solver, as displayed in Theorem 4.9

in Section 4.2. We then address and resolve the issue of the unknown width in order to solve the
CVP instance using the S|LWE⟩phase oracle, in the proof of Theorem 4.13 in Section 4.3. Finally,
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we note that the procedure in Theorem 4.13 answers the CVP quantum query with 1 − 2−Ω(n)

probability. Therefore using the idea of gentle measurement, we can answer each CVP quantum
query with exponentially small disturbance to the states |DL,r⟩, as discussed in Section 4.4.

4.2 Generating the S|LWE⟩phase samples

In this subsection, we show how to create the S|LWE⟩phase instance for Theorem 4.7 but with an
unknown Gaussian width. Given a CVPL∗,αq/r instance, the idea is to replace the classical Gaussian
samples from DL,r in [Reg09] (that helps to produce the LWE instance) with a superposition state

of Gaussian samples |DL,r⟩ :=
∑

v∈L ρr(v)|v⟩ that helps to produce the S|LWE⟩phase instance.

Theorem 4.9. Let L be an n-dimensional integer lattice, define the parameters ϵ ∈ (0, 2−n),
α ∈ (0, 1

5
√
n
), σ ∈ [αq,

√
2αq], r > 4qηϵ(L), and a precision parameter R > 2

√
nr
√
log r as an

integer. Given a CVPL∗,αq/r instance x ∈ L∗/R and a state |DL,r⟩ as input, there exists an

efficient quantum algorithm that generates a random vector a← U(Zn
q ) and a state 2−Ω(n)-close to

the following state

γat =
∑

y∈Zn
R∩R·B(qL)∗

ρ√
Σ/2

(z(y))|y⟩⟨y| ⊗ |ψa,y
t ⟩⟨ψ

a,y
t |

where t =
√
σ2 + r2∥x′∥2, s = (L∗)−1κL∗(x) mod q, x′ = x − κL∗(x), z(y) = y/R − κ(qL)∗(y/R),

Σ = In
r2

+ x′x′T

σ2 , and the state |ψa,y
t ⟩ is an S|LWE⟩-like state

|ψa,y
t ⟩ :=

∑
u∈ZqR/R

ρt(u) exp

(
2πi · ur

2 ⟨x′, z(y)⟩
t2

)
| ⟨s,a⟩+ u mod q⟩. (10)

Proof. From now on, when it is clear from the context, we use z to denote the value z(y), which
actually depends on y.

Here is the procedure of our quantum algorithm. For simplicity, we ignore the normalization
factors when writing down superposition states.

1. Prepare the initial state

|DL,r⟩ ⊗
∑

e∈ZqR/R

ρσ(e)|e⟩,

which is 2−Ω(n)-close to
∑

v∈L,∥v∥≤
√
nr ρr(v)|v⟩⊗

∑
e∈ZqR/R ρσ(e)|e⟩ by Banaszczyk’s Gaussian

tail bound.

2. Measure a := L−1v mod q to get an outcome a and a result state 2−Ω(n)-close to∑
v∈qL+La,∥v∥≤

√
nr

ρr(v)|v⟩ ⊗
∑

e∈ZqR/R

ρσ(e)|e⟩

According to Lemma 2.8, when r/
√
2 > qηϵ(L), the distribution of a is 2−Ω(n)-close to uniform.
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3. Apply a unitary to add the inner product ⟨x,v⟩ mod q to the last register1 and get∑
v∈qL+La,∥v∥≤

√
nr

ρr(v)|v⟩ ⊗
∑

e∈ZqR/R

ρσ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩. (11)

Note that since we assumed x ∈ L∗/R, the second register always has its value in ZqR/R.

Intuitively, since u := ⟨x′,v⟩+ e ≤ αq
√
n+ σ

√
n < q/2 with high probability and R > 2

√
nr,

Equation (11) should be 2−Ω(n)-close to the following state displayed in Equation (12). The
proof is deferred to Appendix A.3.

Lemma 4.10. Suppose that q/2 > αq
√
n + σ

√
n, R > 2

√
nr
√
log r and r >

√
2qηϵ(L) for

ϵ < 2−n, then the state in Equation (11) is 2−Ω(n)-close to the state∑
v∈qL+La

ρr(v)|v mod R⟩ ⊗
∑

u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩. (12)

By the assumption that σ ≤
√
2αq, we have that αq

√
n + σ

√
n ≤ (1 +

√
2)αq

√
n < q/2.

Therefore, according to the lemma mentioned above, we can obtain a state that is 2−Ω(n)-
close to the state displayed in Equation (12).

4. Recall that ωq = e2πi/q. Applying QFTR to the first register, we can get a state 2−Ω(n)-close
to ∑

y∈Zn
R

∑
v∈qL+La

ρr(v) · ω⟨v,y⟩
R |y⟩ ⊗

∑
u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩. (13)

We show that the state in Equation (13) is 2−Ω(n)-close to the following state displayed in
Equation (14). The proof is deferred to Appendix A.4.

Lemma 4.11. Suppose that ϵ < 2−n, R > 2
√
nr
√
log r, r > 4qηϵ(L) and σ ≥ αq, then the

state in Equation (13) is 2−Ω(n)-close to the state∑
y∈Zn

R∩R·B(qL)∗

ρ√Σ(z) exp
(
2πi
〈
La, κ(qL)∗(y/R)

〉)
|y⟩

⊗
∑

u∈ZqR/R

ρt(u) exp

(
2πi · ur

2 ⟨x′, z⟩
t2

)
| ⟨s,a⟩+ u mod q⟩,

(14)

where t, s, z,Σ are specified in Theorem 4.9.

By the assumption that σ ∈ [αq,
√
2αq], we have that αq

√
n + σ

√
n < (1 +

√
2)αq

√
n <

(1 +
√
2)q/5 < q/2. Therefore, according to Lemma 4.11, we can obtain a state that is

2−Ω(n)-close to the state (recall the definition of |ψa,y
t ⟩ in Equation (10))∑

y∈Zn
R∩R·B(qL)∗

ρ√Σ(z) exp
(
2πi
〈
La, κ(qL)∗(y/R)

〉)
|y⟩ ⊗ |ψa,y

t ⟩

1More precisely, this step can be done by computing ⟨x,v⟩ mod q in another register, applying unitary U that
maps |x, y⟩ to |x, x + y mod q⟩ for every x, y ∈ Zq to compute (e + ⟨x,v⟩) mod q = (⟨s,a⟩ + ⟨x′,v⟩ + e) mod q, and
then uncomputing ⟨x,v⟩ mod q.
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5. Measure the first register to get a state 2−Ω(n)-close to the state γat .

Finally, combining the measurement result a from step 2 and the state γat from step 5 gives the
desired sample.

Remark 4.12. An important caveat is that we should not discard the y register and hope we can
solve the problem given only a and the S|LWE⟩-like state |ψa,y√

2αq
⟩ whose error amplitude is Gaussian

with a small phase, because such a solver is so strong that it solves LWE directly. This is because
such a solver utilizes no information about y (the seed that generates θ). So it should output s
given samples a and the second register after step 3 (Note that in the actual procedure the solver
is given the second register after step 5, but step 4 and step 5 are both local operations acting on
the first register, which should not influence the state of the second register). This leads to an
algorithm that outputs s given samples (a, ⟨s,a⟩+ e mod q) where a ← UZn

q
and e = ⟨x′,v⟩ for v

distributed according to DqL+La,r/
√
2 and a fixed vector ∥x′∥ ≤ αq

r . As the distribution of e is close
to a Gaussian distribution, this will give a surprising method to solve LWE.

This also explains why we describe the auxiliary information y carefully in Definition 1.4
and Definition 4.1 instead of discarding y and strengthening the solver in Theorem 4.2 to solve

S|LWE⟩phasen,m,q,f,θ,D for any unknown θ such that |θ| ≤
√
n

2αq (see Remark 4.4) and an arbitrary distri-
bution D.

Given that we must use the information of y, one may hope to compute z(y) to learn something

about the phase θ(r,x)(y) = r2⟨x′,z(y)⟩
2α2q2

. However, z(y) has ℓ2 norm roughly
√
n
r (see Remark 4.4). So

computing z(y) from y is a CVPL∗, q
√
n

r

instance, which is even harder than the goal of this iteration

(a quantum query to CVPL∗,αq/r). How to utilize y requires more attempts and is an important
step towards our ultimate goal of solving standard LWE efficiently.

4.3 Dealing with the unknown Gaussian width

Now that we know how to generate (a, γat ) which resembles an S|LWE⟩phase instance. However, the
S|LWE⟩phase solver requires instances with an error distribution of the fixed width

√
2αq. To bridge

this gap, we experiment with different values of σ to obtain a suitable width that is sufficiently
close to

√
2αq. Equipped with the S|LWE⟩phase solver, we can in turn solve the CVP problem. We

realize this idea in the proof of the following theorem:

Theorem 4.13. Let L be an n-dimensional integer lattice, define the parameters ϵ ∈ (0, 2−n),

α ∈ (0, 1
5
√
n
), r > 4qηϵ(L), and a precision parameter R > max{2

√
nr
√
log r, 2

√
n

αq } as an integer.

Assume that there exists a quantum algorithm A that, given m samples of independently
uniformly random vector a ∈ Zn

q and state γa√
2αq

, solves the secret vector s in time complex-

ity T . Then there exists a quantum algorithm that, given a CVPL∗,αq/r instance x ∈ L∗/R and

3m2n states |DL,r⟩ as input, outputs s = (L∗)−1κL∗(x) mod q with probability 1 − 2−Ω(n) in time
O((m2 +mT )poly(n)).

Proof. Let σ′ =
√
2α2q2 − r2∥x′∥2 and σi = αq

(
1 + (

√
2− 1) i

2m

)
, ti =

√
σ2i + r2∥x′∥2 for i =
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0, 1, · · · , 2m. In this condition, we have σi ∈ [αq,
√
2αq]. Since r∥x′∥ < αq, there must exist an

index 0 ≤ j < 2m such that σj < σ′ ≤ σj+1.

Then σj is a suitable value of σ to generate samples for the quantum algorithm A. Formally,

Lemma 4.14. The quantum algorithm A can solve s with probability at least 1/2, when given m
independent samples of vector a ∈ Zn

q and state γatj .

Before the proof of the lemma, let’s first show how to construct a CVP algorithm based on the
lemma. Here is the procedure of our quantum algorithm.

1. (Generate classical LWE samples for verification of the solution) Apply Theorem 4.9 to n
states |DL,r⟩ with σ = σ0 to obtain n samples of vectors a ∈ Zn

q and states γat0 . Then, measure
the second register of γat0 to obtain n classical LWE samples of the form ⟨a, s⟩+ u mod q.

2. Enumerate σ from the set {σi : i ∈ {0, 1, · · · , 2m− 1}}.

3. For each σ = σi, apply Theorem 4.9 to mn states |DL,r⟩ to obtain mn samples of vectors
a ∈ Zn

q and states γati with a precision of 1− 2−Ω(n).

4. Utilize the quantum algorithm A on a group of m samples of vectors a ∈ Zn
q and states γati

to derive a solution s′.

5. Employ any verification process (e.g., as proposed by Regev in [Reg09, Lemma 3.6]) with the
assistance of the n classical LWE samples obtained in step 1 to check whether s′ = s. If this
condition holds, output s′ and conclude the process.

This procedure will use a maximum of 2m2n+n < 3m2n samples of |DL,r⟩ and operates with a
time complexity of O((m2+mT )poly(n)). Moreover, it will output the correct s with a probability
of at least 1− 2−Ω(n) when σ = σj , by Lemma 4.14.

Lemma 4.14 follows from the fact that γatj is close to γa√
2αq

as tj is close to
√
2αq. For

completeness, let’s provide the formal proof here.

Proof of Lemma 4.14. We label the m samples to be {(ai, γai
tj
)}i∈[m]. By assumption, the quantum

algorithmA can solve s with probability at least 1−2−Ω(n), when givenm samples {(ai, γai√
2αq

)}i∈[m].
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The trace distance between the states in these two different types of samples is given by

δ

(
m⊗
i=1

γai
tj
,

m⊗
i=1

γai√
2αq

)
≤

m∑
i=1

δ
(
γai
tj
, γai√

2αq

)

≤
m∑
i=1

δ

|DqL+Lai,r⟩
∑

e∈ZqR/R

ρσj (e)|e⟩, |DqL+Lai,r⟩
∑

e∈ZqR/R

ρσ′(e)|e⟩

+ 2−Ω(n)

=
m∑
i=1

δ

 ∑
e∈ZqR/R

ρσj (e)|e⟩,
∑

e∈ZqR/R

ρσ′(e)|e⟩

+ 2−Ω(n)

≤(∗) m

√
(σ′ − σj)2
σ2j + σ′2

(1 + 2−Ω(n)) + 2−Ω(n)

≤ m ·

√
(αq/(2m))2

2(αq)2
(1 + 2−Ω(n)) + 2−Ω(n)

≤ 1

2
√
2
+ 2−Ω(n)

where (∗) is according to Lemma 2.19 and σj , σ
′ ∈ [αq,

√
2αq), R > 2

√
n

αq .

Therefore, the quantum algorithm A will output s when given {(ai, γai
tj
)}i∈[m] with probability

at least

1− 1

2
√
2
− 2−Ω(n) >

1

2
.

One last gap between Theorem 4.13 and the theorem we need to prove (Theorem 4.7) is that, in
Theorem 4.13 the algorithm only outputs s = (L∗)−1κL∗(x) mod q, which answers a modulo version
of CVPL∗,αq/r for instance x ∈ L∗/R. However, as [Reg09] shows, CVP is efficiently reducible to its
modulo version, which closes this final gap. Formally,

Theorem 4.15 ([Reg09, a slight modification of Lemma 3.5]). Let L be an n-dimensional integer

lattice, define distance parameter d ∈ (0, λ1(L)/2), and integers q > 2, R > 22n+1nλn(L)
d . Assume

there exists an algorithm A that, on input x ∈ L/R with the guarantee dist(x,L) ≤ d, outputs
s = L−1κL(x) mod q with probability 1 − 2−Ω(n), then there exists a polynomial-time algorithm
that, on input x ∈ L/R with guarantee dist(x,L) ≤ d, outputs κL(x) with probability 1 − 2−Ω(n)

using at most n calls to A.

Proof. It is merely the same as the proof of Lemma 3.5 in [Reg09], but with a slight modification.
Compute a sequence x1,x2, · · · where x1 is the input x and xi+1 is given by the following: for
xi ∈ L/R, call A to compute si = L−1κL(xi) mod q, and then compute yi := (xi−Lsi)/q. Now that
yi ∈ L/(Rq) and dist(yi,L) = dist(xi,L)/q, we can apply Babai’s nearest plane algorithm [Bab86]
to find a point xi+1 ∈ L/R such that dist(xi+1,yi) ≤ 2ndist(yi,L/R) ≤ 2n−1nλn(L/R) < d/2n+2.
Then dist(xi+1,L) ≤ dist(yi,L) + dist(xi+1,yi) < dist(xi,L)/q + d/2n+2.

Thus dist(xi,L) ≤ 1
qi−1 (dist(x1,L)−dq/(2n+2(q− 1)))+dq/(2n+2(q− 1)) ≤ d

qi−1 +
d

2n+1 . Then

κL(xi+1) = κL(yi) because dist(yi,L) + dist(xi+1,yi) < dist(xi,L)/q + d/2n+2 < d < λ1(L)/2.
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After n steps, we have a point xn+1 such that dist(xn+1,L) ≤ d
qn + d

2n+1 <
d
2n . Hence we can

apply Babai’s nearest plane algorithm [Bab86] to recover κL(xn+1).

Note that κL(xi) = qκL(yi) + Lsi = qκL(xi+1) + Lsi. We can recover κL(x1) step by step.
Notice that each call to A has failure probability 2−Ω(n) and we use n calls to A, so our algorithm
has failure probability at most 2−Ω(n), which completes the proof.

As a direct corollary of Theorem 4.13 and Theorem 4.15, we can reduce CVP to S|LWE⟩phase
given a sufficient number of states |DL,r⟩. Formally,

Corollary 4.16. Let L be an n-dimensional integer lattice, define the parameters ϵ ∈ (0, 2−n),

α ∈ (0, 1
5
√
n
), r > 4qηϵ(L), and a precision parameter R > max{2

√
nr
√
log r, 2

√
n

αq ,
22n+1nrλn(L∗)

αq } as
an integer. Assume that there exists a quantum algorithm A that, given m samples of uniformly
random vector a ∈ Zn

q and state γa√
2αq

, solves the secret vector s in time complexity T . Then there

exists an algorithm that given a CVPL∗,αq/r instance x ∈ L∗/R and 3m2n2 states |DL,r⟩ as input,

outputs κL∗(x) with probability 1− 2−Ω(n) in time O((m2 +mT )poly(n)).

4.4 Answering the quantum CVP query with small disturbance on |DL,r⟩

We are now ready to conclude the proof of Theorem 4.7. Corollary 4.16 provides a method to
answer classical queries for CVPL∗,αq/r on instance x ∈ L∗/R with 1 − 2−Ω(n) probability. By
deferred measurement principle and gentle measurement principle, we expect that it can help us to
answer quantum query |x,y⟩ → |x,y+κL∗(x)⟩ with dist(x,L∗) ≤ αq/r, using 3m2n2 states |DL,r⟩
while introducing only an exponentially small disturbance on them. However, it is important to
note that the gentle measurement principle is primarily suitable for producing measurement results
(which is classical) rather than answering quantum query. Therefore, we shall provide a formal
proof for using gentle measurement principle to answer quantum query:

Proof of Theorem 4.7. The existence of the quantum algorithm A in Corollary 4.16 is a direct
consequence of the assumption that a quantum algorithm can solve the S|LWE⟩phase

n,m,q,f,θ(r,x),D
(r,x)
θ

problem. Specifically, let’s recall the expression

γa√
2αq

=
∑

y∈Zn
R∩R·B(qL)∗

ρ√
Σ/2

(z(y))|y⟩⟨y| ⊗ |ψa,y√
2αq
⟩⟨ψa,y√

2αq
|.

The quantum algorithm A proceeds by first measuring the result of |y⟩ to obtain a specific y and
an S|LWE⟩ state |ψa,y√

2αq
⟩. The parameters and functions of this state corresponds to the parameters

and functions defined in Definition 4.1. Subsequently, A applies the S|LWE⟩phase
n,m,q,f,θ(r,x),D

(r,x)
θ

solver

to compute s.

We defer all the measurements in the algorithm in Corollary 4.16 including those in the

S|LWE⟩phase solver A to obtain a unitary U : |x⟩|DL,r⟩⊗(3m
2n2)|0Aux⟩ → |x⟩|ϕx⟩, where the first

register of |ϕx⟩ contains the solution κL∗(x), and the size of U is O((m2 + mT )poly(n)). As
the algorithm in Corollary 4.16 outputs κL∗(x) with probability at least 1 − 2−Ω(n) whenever
dist(x,L∗) ≤ αq/r and x ∈ L∗/R, by gentle measurement principle [Win99], there exists state
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|ϕAuxx ⟩ such that the state |ϕx⟩ is 2−Ω(n)-close to the state |κL∗(x)⟩|ϕAuxx ⟩ in ℓ2-norm. Our quantum
algorithm answers the query |x,y⟩ → |x,y + κL∗(x)⟩ with dist(x,L∗) ≤ αq/r using the following
procedure:

1. Prepare the initial state

|x,y⟩|DL,r⟩⊗(3m
2n2)|0Aux⟩.

2. Apply U to the registers containing |x⟩|DL,r⟩⊗(3m2n2)|0Aux⟩ to get a state 2−Ω(n)-close to the
state

|x,y⟩|κL∗(x)⟩|ϕAuxx ⟩

in ℓ2-norm.

3. Apply a unitary to add the value of κL∗(x) to y to get a state 2−Ω(n)-close to the state

|x,y + κL∗(x)⟩|κL∗(x)⟩|ϕAuxx ⟩

in ℓ2-norm.

4. Apply U † to the registers containing |x⟩|κL∗(x)⟩|ϕAuxx ⟩ to get a state 2−Ω(n)-close to the state

|x,y + κL∗(x)⟩|DL,r⟩⊗(3m
2n2)|0Aux⟩

in ℓ2-norm.

Therefore, we can answer the quantum query up to exponentially small error with exponentially
small disturbance on the states |DL,r⟩ in time O((m2 +mT )poly(n)), which ends up the proof of
Theorem 4.7.

5 Quantum Sub-exponential Time Algorithm for S|LWE⟩

In this section, we provide a quantum sub-exponential time algorithm designed to solve S|LWE⟩
instances with specific amplitudes. More precisely, we consider scenarios where the discrete Fourier
transform of these amplitudes exhibits a 2−

√
n log q mass on two distinct points. Our approach is

built upon two key steps: (1) generate a DCP state for each quantum S|LWE⟩ sample, resulting in
a sub-exponential collection of DCP states; (2) employ the Kuperberg sieve technique [Kup05] on
the DCP states to successfully recover the secret vector. Formally, We state the main theorem of
this section as follows:

Theorem 5.1 (Main theorem). Assuming the existence of an algorithm that, given the normalized
amplitude function f : Z → C of any S|LWE⟩ state, identifies two distinct points j1 and j2 from
Zq with gcd(j1 − j2, q) = 1 and computes DFTq(f) (the discrete Fourier transform of f , defined

as DFTq(f)(j) = 1√
q

∑
e∈Z f(e)ω

je
q for j ∈ Zq) on these points in time 2O(

√
n log q), subject to the

condition that |DFTq(f)(j1)| and |DFTq(f)(j2)| are both greater than 2−
√
n log q.
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Under these assumptions, there exists a quantum algorithm that, given ℓ = 2Θ(
√
n log q) samples

of vector a← U(Zn
q ) and S|LWE⟩ state of form

S|LWE⟩ =
∑
e∈Z

f(e)| ⟨a, s⟩+ e mod q⟩,

solves the secret vector s ∈ Zn
q within a time complexity of 2Θ(

√
n log q).

To prove Theorem 5.1, we begin by introducing the Kuperberg sieve algorithm [Kup05].

Lemma 5.2 (Kuperberg sieve). Let s ∈ Zn
q be a secret vector. There exists a quantum algorithm

that given ℓ∗ = 2Θ(
√
n log q) samples of

a← U(Zn
q ), |ψa⟩ = |0⟩+ ω⟨a,s⟩

q |1⟩,

finds out the secret vector s in time 2Θ(
√
n log q).

Now we present the proof of Theorem 5.1 here.

Proof of Theorem 5.1. Suppose we have ℓ = ℓ∗ · 24
√
n log q = 2Θ(

√
n log q) instances of S|LWE⟩ states.

Our quantum algorithm proceeds as follows:

1. Apply QFT to any S|LWE⟩ state, resulting in the state

QFTq · S|LWE⟩ = 1
√
q

∑
j∈Zq

∑
e∈Z

f(e)ωj(⟨a,s⟩+e)
q |j⟩ =

∑
j∈Zq

ω⟨j·a,s⟩
q DFTq(f)(j)|j⟩,

2. Identify two distinct points j1, j2 ∈ Zq where DFTq(f)(j1) and DFTq(f)(j2) are both com-

putable and have norms greater than 2−
√
n log q. Define γ(j) : Zq → [0, 1] as

γ(j) =
min{|DFTq(f)(j1)|, |DFTq(f)(j2)|}

|DFTq(f)(j)|
for j = j1, j2

and γ(j) = 0 otherwise, apply quantum rejection sampling (Lemma 2.21) to obtain the state

DFTq(f)(j1)

|DFTq(f)(j1)|
ω⟨j1·a,s⟩
q |j1⟩+

DFTq(f)(j2)

|DFTq(f)(j2)|
ω⟨j2·a,s⟩
q |j2⟩, (15)

with probability

M =
∑
j∈Zq

γ2(j)|f(j)|2 = 2(min{|DFTq(f)(j1)|, |DFTq(f)(j2)|})2 > 2−2
√
n log q.

3. For the states that have been successfully transformed to Equation (15), apply a unitary
operation

U : |j1⟩ →
DFTq(f)(j1)

|DFTq(f)(j1)|
|0⟩, |j2⟩ →

DFTq(f)(j2)

|DFTq(f)(j2)|
|1⟩,

this results in the state
|ψ(j2−j1)a⟩ = |0⟩+ ω⟨(j2−j1)a,s⟩

q |1⟩,
where (j2 − j1)a is a known vector in Zn

q that is uniformly random by the assumption that
gcd(j1 − j2, q) = 1.
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4. Select ℓ∗ such states obtained in step 3 and apply the Kuperberg sieve algorithm to recover
the secret vector s ∈ Zn

q .

It is evident that transforming any S|LWE⟩ state to a DCP-like state requires a time complexity of
2O(

√
n log q). Therefore, the run time of our quantum algorithm is constrained by both the quantity

of S|LWE⟩ states and the application of the Kuperberg sieve, which both exhibit a complexity of
2Θ(

√
n log q). In step 2, the count of states successfully transformed to Equation (15) will be at least

M2ℓ = ℓ∗ with a probability exponentially close to 1. This concludes the proof.

Corollary 5.3. Suppose m,n, q are LWE parameters. There exists a quantum algorithm that, given
2Θ(

√
n log q) samples of vector a← U(Zn

q ) and S|LWE⟩ state of form

S|LWE⟩ =
∑
e∈Z

ρσ(e) exp(2πi · ce/q)| ⟨a, s⟩+ e mod q⟩,

where the Gaussian width σ satisfies σ = Ω(
√
n), σ ≤ q, and c is an arbitrary known number that

can be different for different samples, solves the secret vector s ∈ Zn
q within a time complexity of

2Θ(
√
n log q).

Proof. Let us define

N =
∑
e∈Z

ρ2σ(e) =
∑
e∈Z

σ√
2
ρ√2/σ(e) ≈

σ√
2
,

where the final approximation holds under the assumption that σ = Ω(n). In this case, the
summation of ρ√2/σ the summation of ρ√2/σ is concentrated at ρ√2/σ(0), with exponentially small
weight elsewhere.

In the given problem scenario, it becomes evident that

f(e) =
1√
N
ρσ(e) exp(2πi · ce/q),

thus

DFTq(f)(j) =
1√
qN

∑
e∈Z

ρσ(e) exp(2πi · (j + c)e/q)

=(∗)
1√
qN

∑
e∈Z

σρ1/σ

(
e− j + c

q

)
≈(∗∗)

1√
qN

σρ1/σ

(⌊
j + c

q

⌉
− j + c

q

)
=

1√
qN

ρq/σ(j + c− ⌊j + c⌉q),

here (∗) is from the Poisson summation formula, (∗∗) holds due to the initial assumption that σ =

Ω(
√
n). In this case, the summation

∑
j∈Zq

ρ1/σ

(
e− j+c

q

)
is concentrated at ρ1/σ

(⌊
j+c
q

⌉
− j+c

q

)
,

with exponentially small weight elsewhere.
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Define j1 = ⌊−c⌋ mod q, j2 = (⌊−c⌋ + 1) mod q, we can establish that |j + c − ⌊j + c⌉q | ≤ 1
holds for both j = j1 and j = j2. This implies that

|DFTq(f)(j)| ≥

√√
2

qσ
ρq/σ(1)(1− 2−Ω(n)) ≥

√√
2

q2
e−π(1− 2−Ω(n))≫ 2−

√
n log q,

for both j = j1, j2.

As a result, we can deduce the validity of the original statement by straightforwardly applying
Theorem 5.1.

Remark 5.4. Readers may be curious about why our sub-exponential algorithm cannot handle
S|LWE⟩ instances with an unknown phase, similar to the S|LWE⟩ states we obtain from the reductions
discussed in previous sections. Informally speaking, when the phase term of S|LWE⟩ samples is
unknown, we can only obtain a DCP-like state with varying weights in the superposition. Although
the ratio of weights on |0⟩ and |1⟩ can be bounded by an inverse polynomial, this ratio tends to
become extremely large during the sieving step of Kuperberg’s algorithm. As a result, the final state
collapses into either |0⟩ or |1⟩, and the information about s is entirely lost.
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A Appendix

A.1 Upper bounds on Gaussian tails

Lemma A.1. Let L ⊆ Rn be a lattice, u ∈ Rn be a fixed vector, ϵ ∈ (0, 1) be a small error
parameter, σ be a positive real number with σ > 2ηϵ(L). Then we have∑

x∈L∗

ρ1/σ(x− u) < ρ1/σ(u− κL∗(u)) + ϵ.

If u’s closest vectors in L∗ are not unique, then κL∗(u) can be an arbitrary one of the closest
vectors.

Proof. It suffices to prove that ∑
x∈L∗\{κL∗ (u)}

ρ1/σ(x− u) < ϵ.
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For any x ∈ L∗, we have that

∥x− u∥2 ≥ 1

2

(
∥x− u∥2 + ∥κL∗(u)− u∥2

)
(by the definition of κL∗(u))

≥ 1

4
(∥x− u∥+ ∥κL∗(u)− u∥)2

≥ 1

4
∥x− u− (κL∗(u)− u)∥2 (triangle inequality)

=
1

4
∥x− κL∗(u)∥2,

so ∑
x∈L∗\{κL∗ (u)}

ρ1/σ(x− u) ≤
∑

x∈L∗\{κL∗ (u)}

ρ2/σ(x− κL∗(u))

=
∑

x∈L∗\{0}

ρ2/σ(x)

< ϵ,

as desired.

Lemma A.2. Let L ⊆ Rn be a lattice, u ∈ Rn be a fixed vector, ϵ ∈ (0, 1) be a small error
parameter, σ be a positive real number with σ > 2

√
2ηϵ(L). Then we have∑

x∈L∗

ρ1/σ(x− u) < ρ1/σ(κL∗(u)− u) + ϵ · ρ√2/σ(κL∗(u)− u).

If u’s closest vectors in L∗ are not unique, then κL∗(u) can be an arbitrary one of the closest
vectors.

Proof. It suffices to prove that∑
x∈L∗\{κL∗ (u)}

ρ1/σ(x− u) < ϵ · ρ√2/σ(κL∗(u)− u).

For any x ∈ L∗, we have that

∥x− u∥2 − 1

2
∥κL∗(u)− u∥2 ≥ 1

4

(
∥x− u∥2 + ∥κL∗(u)− u∥2

)
(by the definition of κL∗(u))

≥ 1

8
(∥x− u∥+ ∥κL∗(u)− u∥)2

≥ 1

8
∥x− u− (κL∗(u)− u)∥2 (triangle inequality)

=
1

8
∥x− κL∗(u)∥2,

so ∑
x∈L∗\{κL∗ (u)}

ρ1/σ(x− u) ≤ ρ√2/σ(κL∗(u)− u)
∑

x∈L∗\{κL∗ (u)}

ρ2
√
2/σ(x− κL∗(u))

= ρ√2/σ(κL∗(u)− u)
∑

x∈L∗\{0}

ρ2
√
2/σ(x)

< ϵ · ρ√2/σ(κL∗(u)− u),
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as desired.

A.2 Proof of Lemma 3.6

Proof of Lemma 3.6. Denote the (unnormalized) state in Equation (7) as |Φ⟩, and the (unnor-
mailized) state in Equation (8) as |Φ′⟩. Then we have

∥|Φ⟩ − |Φ′⟩∥2 =
∑
v∈Zn

q

∑
j∈Zq

ρα(j)
2

∥∥∥∥∥∥∥∥
∑

x∈Zm,
∥x∥≥λ1(Lq(A))/2

ρβ(x+ j · e)|(ATv + x) mod q⟩

∥∥∥∥∥∥∥∥
2

≤(1) q
n
∑
j∈Zq

ρα(j)
2

 ∑
x∈Zm,

∥x∥≥λ1(Lq(A))/2

ρβ(x+ j · e)


2

≤(2) q
n

∑
j∈Zq ,

|j|<α
√
m log β

ρα(j)
2

 ∑
x∈Zm,

∥x∥≥β
√
m log β

ρβ(x)


2

+ qn
∑
j∈Zq ,

|j|≥α
√
m log β

ρα(j)
2

( ∑
x∈Zm

ρβ(x)

)2

,

where in (1) we absorb the summation over v ∈ Zn
q in qn, and use the fact that ρ is non-negative;

in (2), the first term uses the following: when ∥x∥ ≥ λ1(Lq(A))/2 and |j| < α
√
m log β, we have

∥x+ j · e∥ > λ1(Lq(A))/2− α
√
m log β · γ

√
m > β

√
m log β, the second term uses for any c ∈ Rn,∑

x∈Zm ρβ(x+ c) ≤
∑

x∈Zm ρβ(x).

From Banaszczyk’s tail bound (see Lemma 2.3), we have that∑
x∈Zm,

∥x∥≥β
√
m log β

ρβ(x) < β−3m
∑
x∈Zm

ρβ(x),
∑
j∈Zq ,

|j|≥α
√
m log β

ρα/
√
2(j) < β−6m

∑
j∈Zq

ρα/
√
2(j).

Notice that β >
√
m, so from Lemma 2.4,

∑
x∈Zm ρβ(x) < (1 + 2−Ω(m))βm. Therefore,

∥|Φ⟩ − |Φ′⟩∥2 < 2qnβ−6m
∑
j∈Zq

ρα(j)
2

( ∑
x∈Zm

ρβ(x)

)2

< 2(1 + 2−Ω(n))qnβ−4m
∑
j∈Zq

ρα(j)
2
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On the other hand, notice that from Lemma 2.4,
∑

x∈Zm ρβ/
√
2(x) > (β/

√
2)m, we have that

∥|Φ⟩∥2 ≥
∑
v∈Zn

q

∑
j∈Zq

ρα(j)
2
∑
x∈Zm

ρβ(x+ j · e)2

= qn
∑
j∈Zq

ρα(j)
2
∑
x∈Zm

ρβ(x)
2

> qn
(
β√
2

)m ∑
j∈Zq

ρα(j)
2

Hence, we get that ∥|Φ⟩−|Φ′⟩∥2
∥|Φ⟩∥2 < 2−Ω(n), this implies that |Φ⟩ and |Φ′⟩ are 2−Ω(n)-close to each

other, by Lemma 2.17, as desired.

A.3 Proof of Lemma 4.10

Proof of Lemma 4.10. For any vector v ∈ qL+ La such that ∥v∥ ≤
√
nr, as q/2 > σ

√
n, the state∑

e∈ZqR/R

ρσ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩ (16)

is 2−Ω(n)-close to the state ∑
e∈[−σ

√
n,σ

√
n]∩(Z/R)

ρσ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩

in ℓ2 norm by Banaszczyk’s tail bound (see Lemma 2.3), which is 2−Ω(n)-close to the state∑
e∈ZqR/R−⟨x′,v⟩

ρσ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩

in ℓ2 norm due to Banaszczyk’s tail bound and the fact that |⟨x′,v⟩| ≤ αq
r ·
√
nr < q/2 − σ

√
n,

which implies [−σ
√
n, σ
√
n] ∩ (Z/R) ⊆ ZqR/R− ⟨x′,v⟩.

We can perform a change of variable u← ⟨x′,v⟩+ e to write the last state as∑
u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩. (17)

Observe that Equation (16) and Equation (17) are 2−Ω(n)-close to each other in ℓ2 norm for every
v ∈ qL+ La such that ∥v∥ ≤

√
nr. Therefore, the given state∑

v∈qL+La,
∥v∥≤

√
nr

ρr(v)|v⟩ ⊗
∑

e∈ZqR/R

ρσ(e)| ⟨s,a⟩+
〈
x′,v

〉
+ e mod q⟩

is 2−Ω(n)-close to the state∑
v∈qL+La,
∥v∥≤

√
nr

ρr(v)|v⟩ ⊗
∑

u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩,
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which is 2−Ω(n)-close to the state

|Φ⟩ :=
∑

v∈qL+La,
∥v∥<R/2

ρr(v)|v⟩ ⊗
∑

u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩

by Banaszczyk’s tail bound.

It remains to prove that |Φ⟩ is 2−Ω(n)-close to

|Φ′⟩ :=
∑

v∈qL+La
ρr(v)|v mod R⟩ ⊗

∑
u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩.

The proof is similar to the proof of Lemma 3.6. We first give an upper bound for ∥|Φ⟩−|Φ′⟩∥2:

∥|Φ⟩ − |Φ′⟩∥2 ≤(1)

 ∑
v∈qL+La,
∥v∥≥R/2

ρr(v)

∥∥∥∥∥∥|v mod R⟩ ⊗
∑

u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)| ⟨s,a⟩+ u mod q⟩

∥∥∥∥∥∥


2

≤(2)

 ∑
v∈qL+La,

∥v∥>
√
nr

√
log r

ρr(v)

√ ∑
u∈ZqR/R

ρσ(u− ⟨x′,v⟩)2


2

≤(3) r
−6n

 ∑
u∈Z/R

ρσ(u)
2

∑
v∈qL

ρr(v)

2

≤(4) r
−4n

 ∑
u∈Z/R

ρσ(u)
2

 det((qL)∗)2(1 + 2−Ω(n))

where (1) is due to triangle inequality, (2) uses that R/2 >
√
nr
√
log r, (3) is due to Banaszczyk’s

tail bound, and (4) is due to Lemma 2.8 and r ≥ ηϵ(qL) for ϵ < 2−n.

On the other hand, notice that

∥|Φ⟩∥2 ≥
∑

v∈qL+La,
∥v∥≤

√
nr

ρr(v)
2
∑

u∈ZqR/R

ρσ(u−
〈
x′,v

〉
)2

≥(1) (1− 2−Ω(n))
∑

v∈qL+La,
∥v∥≤

√
nr

ρr(v)
2
∑

u∈Z/R

ρσ(u)
2

≥(2) (1− 2−Ω(n))(r/
√
2)n det((qL)∗)

∑
u∈Z/R

ρσ(u)
2

where (1) is due to Banaszczyk’s tail bound and the fact that σ
√
n < q/2−|⟨x′,v⟩| when ∥v∥ ≤

√
nr,

and (2) is due to Banaszczyk’s tail bound, Lemma 2.8 and r/
√
2 ≥ ηϵ(qL) for ϵ < 2−n.

Hence, we have that ∥|Φ⟩−|Φ′⟩∥2
∥|Φ⟩∥2 < 2−Ω(n), this implies that |Φ⟩ and |Φ′⟩ are 2−Ω(n)-close to

each other, by Lemma 2.17, as desired.
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A.4 Proof of Lemma 4.11

Proof of Lemma 4.11. The amplitude of |y⟩| ⟨s,a⟩+ u mod q⟩ in the given state (Equation (13)) is∑
v∈qL+La

ρr(v)ρσ(u−
〈
x′,v

〉
)ω

⟨v,y⟩
R = ρt(u)

∑
v∈qL+La

ρ√
Σ−1

(
v − r2u

t2
x′
)
ω
⟨v,y⟩
R

∝ ρt(u)
∑

w∈(qL)∗−y/R

ρ√Σ(w) exp

(
2πi

〈
La− r2u

t2
x′,w

〉)
ω
⟨La,y⟩
R ,

where t =
√
σ2 + r2∥x′∥2 ∈ [σ,

√
2σ), matrix Σ = In

r2
+ x′x′T

σ2 with eigenvalues 1/r2, (t/rσ)2, and
we use the Poisson Summation Formula to compute the last equality. We define the amplitude as
a function

ϕ(y, u) := ρt(u)
∑

w∈(qL)∗−y/R

ρ√Σ(w) exp

(
2πi

〈
La− r2u

t2
x′,w

〉)
ω
⟨La,y⟩
R .

Meanwhile, for y/R ∈ B(qL)∗ , we define another amplitude function ϕ′(y, u) as

ϕ′(y, u) := ρt(u)ρ√Σ(z) exp

(
2πi

〈
La− r2u

t2
x′,−z

〉)
ω
⟨La,y⟩
R ,

where we recall that z = z(y) = y/R − κ(qL)∗(y/R). ϕ′(y, u) is the leading term in ϕ(y, u), as we
will implicitly show below.

We prove that the following (unnormalized) states

|Φ⟩ :=
∑
y∈Zn

R

∑
u∈ZqR/R

ϕ(y, u)|y⟩| ⟨s,a⟩+ u mod q⟩ (the given state)

|Φ′⟩ :=
∑

y∈Zn
R∩R·B(qL)∗

∑
u∈ZqR/R

ϕ′(y, u)|y⟩| ⟨s,a⟩+ u mod q⟩ (the target state in Equation (14))

are 2−Ω(n)-close to each other. To prove it, we need in addition the following (unnormalized) state

|Φ′′⟩ :=
∑

y∈Zn
R∩R·B(qL)∗

∑
u∈ZqR/R

ϕ(y, u)|y⟩| ⟨s,a⟩+ u mod q⟩.

Let’s begin by establishing upper bounds for both ∥|Φ′′⟩ − |Φ′⟩∥2 and ∥|Φ⟩ − |Φ′′⟩∥2. The first
term is relatively simpler to bound: for any ϵ < 2−n, according to Lemma A.2 and the assumption
that rσ

t > r√
2
> 2
√
2ηϵ(qL), we get that

∥|Φ′′⟩ − |Φ′⟩∥2 =
∑

y∈Zn
R∩R·B(qL)∗

∑
u∈ZqR/R

∣∣ϕ(y, u)− ϕ′(y, u)∣∣2

≤
∑

y∈Zn
R∩R·B(qL)∗

∑
u∈ZqR/R

ρt(u) ∑
w∈(qL)∗\{0}

ρt/rσ(w − z)

2

< ϵ2
∑

u∈ZqR/R

ρt(u)
2

∑
y∈Zn

R∩R·B(qL)∗

ρt/rσ(z).

(18)
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To establish an upper bound for the latter term ∥|Φ⟩ − |Φ′′⟩∥2, according to Lemma A.2 and
the fact that rσ

t > 2
√
2ηϵ(qL), we get that for y ∈ Zn

R \R ·B(qL)∗ ,∑
w∈(qL)∗−y/R

ρ√Σ(w) ≤
∑

w∈(qL)∗−y/R

ρt/rσ(w)

≤ exp

(
−πdist(y/R, (qL)

∗)2

(t/rσ)2

)
+ ϵ · exp

(
−πdist(y/R, (qL)

∗)2

2(t/rσ)2

)
≤ exp

(
−πdist(y/R, (qL)

∗)2

2(t/rσ)2

)(
exp

(
−π (λ1((qL)

∗)/2)2

4/r2

)
+ ϵ

)
≤ 2−n+1 exp

(
−πdist(y/R, (qL)

∗)2

2(t/rσ)2

)
where the last inequality holds since λ1((qL)∗) ≥

√
n ln 2
π · 1

qηϵ(L) ≥
√

n ln 2
π · 4r by Lemma 2.7.

Therefore,

∥|Φ⟩ − |Φ′′⟩∥2 =
∑

y∈Zn
R\R·B(qL)∗

∑
u∈ZqR/R

|ϕ(y, u)|2

≤
∑

u∈ZqR/R

ρt(u)
2

∑
y∈Zn

R\R·B(qL)∗

 ∑
w∈(qL)∗−y/R

ρ√Σ(w)

2

≤ 2−2n+2
∑

u∈ZqR/R

ρt(u)
2

∑
y∈Zn

R\R·B(qL)∗

exp

(
−πdist(y/R, (qL)

∗)2

(t/rσ)2

)
.

(19)

Combine the two upper bounds in Equation (18) and Equation (19), we get that

∥|Φ⟩ − |Φ′⟩∥2 ≤ 2∥|Φ⟩ − |Φ′′⟩∥2 + 2∥|Φ′′⟩ − |Φ′⟩∥2

≤ 2−2n+3
∑

u∈ZqR/R

ρt(u)
2
∑
y∈Zn

R

exp

(
−πdist(y/R, (qL)

∗)2

(t/rσ)2

)
.

(20)

On the other hand, we can compute that

∥|Φ′⟩∥2 =
∑

y∈Zn
R∩R·B(qL)∗

∑
u∈ZqR/R

∣∣ϕ′(y, u)∣∣2
≥

∑
u∈ZqR/R

ρt(u)
2

∑
y∈Zn

R∩R·B(qL)∗

exp

(
−πdist(y/R, (qL)

∗)2

(1/
√
2r)2

)
.

(21)

Combining with the bounds in Equation (20), we get that

∥|Φ⟩ − |Φ′⟩∥2

∥|Φ′⟩∥2
≤ 2−2n+3

∑
y∈Zn

R
exp

(
−π dist(y/R,(qL)∗)2

(t/rσ)2

)
∑

y∈Zn
R∩R·B(qL)∗

exp
(
−π dist(y/R,(qL)∗)2

(1/
√
2r)2

) . (22)

Now let’s establish an upper bound on the ratio between the two summations on the right-hand
side of the above inequality. We accomplish this through the following steps:
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1. Expanding the support of y. Given our assumption that L is an integer lattice, we have
(qL)∗+k = (qL)∗ for any k ∈ Zn. Consequently, dist((y−Rk)/R, (qL)∗) = dist(y/R, (qL)∗+
k) = dist(y/R, (qL)∗). Therefore, we can expand the support of y from Zn

R to Zn
RN for any

N ∈ N+, which is a combination of Nn hypercubes, each in the form Zn
R +Rk, i.e.

∥|Φ⟩ − |Φ′⟩∥2

∥|Φ′⟩∥2
≤ 2−2n+3 lim

N→+∞

∑
y∈Zn

RN
exp

(
−π dist(y/R,(qL)∗)2

(t/rσ)2

)
∑

y∈Zn
RN∩R·B(qL)∗

exp
(
−π dist(y/R,(qL)∗)2

(1/
√
2r)2

) .
2. Bound the numerator and denominator as N approaches infinity. Assume that N is a suffi-

ciently large integer, and denote ℓmax = maxy∈Rn dist(y, (qL)∗) < +∞. For the numerator,
when considering y ∈ Zn

RN , the closest vector from y/R to the lattice (qL)∗ will have ℓ∞
norm at most RN/2 + ℓmax. Thus∑

y∈Zn
RN

exp

(
−πdist(y/R, (qL)

∗)2

(t/rσ)2

)
≤

∑
u∈(qL)∗,

∥u∥∞≤RN/2+ℓmax

∑
y∈Zn

ρt/rσ(y/R− u).

Similarly, for the denominator, when considering u ∈ (qL)∗ with ℓ∞ norm at most RN/2 −
ℓmax, the vectors y ∈ Zn ∩ R · B(qL)∗ for which the closest vector to (qL)∗ is u will certainly
have an ℓ∞ norm at most RN/2. Thus

∑
y∈Zn

RN∩R·B(qL)∗

exp

(
−πdist(y/R, (qL)

∗)2

(1/
√
2r)2

)
≥

∑
u∈(qL)∗,

∥u∥∞≤RN/2−ℓmax

∑
y∈Zn,

∥y/R−u∥<λ1((qL)∗)/2

ρ1/
√
2r(y/R− u)

≥
∑

u∈(qL)∗,
∥u∥∞≤RN/2−ℓmax

∑
y∈Zn

ρ1/
√
2r(y/R− u)− 2−Ω(n)ρ1/

√
2r(Z

n/R)

 ,

where the final inequality is based on Banaszczyk’s tail bound (Lemma 2.3), with the guar-

antee that λ1((qL)∗)/2 >
√

n ln 2
π · 2r >

2√
2π
· 1√

2r

√
n.

According to Lemma 2.6, it follows that η2−n(Zn/R) ≤ 1
R ·
√

2n
π < 1√

2r
< t

rσ . Therefore, by

using Lemma 2.8, we can conclude that∑
y∈Zn

ρt/rσ(y/R− u) ≤ (1 + 2−Ω(n)) ·Rn · (t/rσ)n,

∑
y∈Zn

ρ1/
√
2r(y/R− u)− 2−Ω(n)ρ1/

√
2r(Z

n/R) ≥ (1− 2−Ω(n)) ·Rn · (1/
√
2r)n.
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3. Establish an upper bound for the right hand side of Equation (22). By combining the in-
equalities in the previous step, we obtain that

∥|Φ⟩ − |Φ′⟩∥2

∥|Φ′⟩∥2
≤ 2−2n+3(1 + 2−Ω(n)) · (

√
2t/σ)n · lim

N→+∞

#{u ∈ (qL)∗ : ∥u∥∞ ≤ RN/2 + ℓmax}
#{u ∈ (qL)∗ : ∥u∥∞ ≤ RN/2− ℓmax}

≤ 2−n+3(1 + 2−Ω(n)) · lim
N→+∞

#{u ∈ (qL)∗ : ∥u∥∞ ≤ RN/2 + ℓmax}
#{u ∈ (qL)∗ : ∥u∥∞ ≤ RN/2− ℓmax}

= 2−n+3(1 + 2−Ω(n)) · lim
N→+∞

(RN/2 + ℓmax)
n

(RN/2− ℓmax)n

= 2−n+3(1 + 2−Ω(n)).

Consequently, we can infer that the provided state |Φ⟩ is 2−Ω(n)-close to |Φ′⟩, according to
Lemma 2.17, as desired.
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