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Abstract. Learning with Errors (LWE) is an important problem for
post-quantum cryptography (PQC) that underlines the security of sev-
eral NIST PQC selected algorithms. Several recent papers [5,21], [26,12]
have claimed improvements on the complexity of so-called dual attacks
on LWE. These improvements make dual attacks comparable to or even
better than primal attacks in certain parameter regimes. Unfortunately,
those improvements rely on a number of untested and hard-to-test sta-
tistical assumptions. Furthermore, a recent paper [17] claims that the
whole premise of those improvements might be incorrect.

The goal of this paper is to improve the situation by proving the cor-
rectness of a dual attack without relying on any statistical assumption.
Although our attack is greatly simplified compared to the recent ones, it
shares all the important statistical elements with those attacks and can
serve as a basis for the analysis of more advanced attacks.

Our main contribution is to clearly identify a set of parameters under
which our attack (and presumably other recent dual attacks) can work.
Furthermore, our analysis completely departs from the existing statistics-
based analysis and is instead rooted in geometry. We also compare the
regime in which our algorithm works to the “contradictory regime” of
[17]. We observe that those two regimes are essentially complementary
but also that the statistical model of [17] does not seem to match what
happens in our attack.
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1 Introduction

The Learning With Errors (LWE) problem [32] has become central to the secu-
rity of several cryptosystems. Most notably, Kyber (public-key encryption) and
Dilithium (signature) have been selected by the NIST for the Post-Quantum
Cryptography (PQC) Standardization and rely on algebraic version of LWE for
their security proofs. Other advanced cryptographic primitives such as FHE can
be built with LWE [11]. This makes LWE security estimates critical for the fu-
ture of PQC. The search LWE problem asks to recover the secret s given one



or more “LWE samples3.” of the form (A,b) where b = As + e, A is chosen
uniformly at random and e has small entries (more details in Section 2.2).

There are two main approaches to attack the LWE problem: so-called primal
and dual attacks. In this paper, we will exclusively focus on dual attacks which
have recent attracted some interest due to significant improvements in their
complexity. Both primal and dual attacks rely on the BKZ lattice reduction
algorithm [34] to obtain short vectors in lattices. The fundamental idea of dual
attacks is to use short vectors in the dual of the lattice to detect whether points
are close to the lattice or not, an idea that can be traced back to [3]. This
allows us to solve the distinguishing LWE problem where one is asked to detect
whether a sample comes from an LWE distribution, or a uniform distribution
[29]. In conjunction with some guessing step, this allows one to recover part of
the secret by trying several values until we get a point close to the lattice. By
repeating this operation a couple of time, we can solve the search LWE problem.

Originally, the main limiting factor (on the complexity) of dual attacks was
the need to compute one short vector (a very expensive operation) per LWE
sample (more details in Section 3) and compute a score for each secret guess.
Since then, a series of improvements have found their way into these attacks.
First, a series of work on lattice sieving have shown [31,30,9] that those algo-
rithms produce not only one but in fact exponentially many short vectors “for
free”. [7] suggested that this idea could be used in dual attacks but it appears
that [19] was the first paper to try to analyze it. Independently, [5] used a “re-
randomization” technique to produce many short vectors from a single BKZ
reduced basis. All those technique greatly reduce the complexity of attack al-
though its correctness relies on an unproven assumption about the quality of
those many short vectors. Then [21] noted that instead of computing the score
for each secret guess separately, all the scores can be computed at once using a
discrete Fourier transform (DFT), essentially reducing the cost to that of a single
guess. Following this work, a technical report by the MATZOV group [26] has
claimed further improvements by the use of a “modulus switching” technique4

that significantly reduces the size of the DFT. Two recent work have modified
this attack to include a quantum speed up [6] and lattice coding speed up [12].

One issue with the papers above is that the number of statistical assumptions
that are necessary to justify the correctness of the algorithms has grown signif-
icantly, notably in [26]. While certain assumptions could probably be justified
(almost) formally, others are subject to more controversy [17]. In particular, the
most controversial aspect of [21] and [26] is that the attack only uses a single5

LWE sample and all the short vectors are derived from this single sample. When
using a single LWE sample, the problem becomes very close to the Bounded Dis-
tance Decoding which has been extensively studied. The status of [5] is unclear

3 Note that this is a matrix sample, so it contains several vector samples.
4 A modulus switching technique was also suggested in [21] but it is unclear to us how
it compares to [26], and [17] suggests that they are different.

5 Recall that in this paper, an LWE sample is always of the form (A,b) where A is a
matrix and b a vector.
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since it also computes many (exponentially) short vectors for each LWE sample,
but they also use many (exponentially) LWE samples. One could in principle
model this as an algorithm operating on a single LWE sample but this sample
would then have exponential size and the dual vectors would be extremely spe-
cial. This makes it unclear whether an argument like that of [17] applies to such
a case.

The purpose of this paper is encourage a more rigorous analysis of dual at-
tacks on LWE to better understand under what set of parameters they provably
work. We note in that regard that a recently accepted paper at TCC 2023 [27]
has focused on similar problems in statistical decoding/“dual attacks” in coding
theory. The authors claim in the conclusion that at least part of their results
apply to lattice dual attack. We believe that it would indeed be interesting to
see what this approach yields for lattices, however we point out that the notion
of dual attack that the authors have in mind looks quite different from the one
in this paper. In short, and with our notations, the “dual attack” of [27] would
be akin to splitting A horizontally instead of vertically. This splitting would
not correspond anymore to a decomposition of Lq(A) as Lq(Aguess)+Lq(Adual)
and therefore looks incompatible with existing works on dual attacks on LWE.
Furthermore, our understanding of [27] is that generating parity check vectors
h corresponds to generating many short dual vectors in L⊥q (A), independently
of the splitting of A. This is completely at odds with lattice dual attacks where
we split A to generate dual vectors in L⊥q (Adual) which is much cheaper. Over-
all it looks like [27] might be a completely different kind of dual attack. See
Appendix A for more details.

1.1 Contributions

The main contribution of this paper is to provide a completely formal, non-
asymptotic analysis of a simplified dual attack. To simplify the presentation, we
do not include elements such as the DFT and modulus switching6 to focus on
the most controversial element, namely the fact that the attack only uses a single
LWE sample and that all the short vectors are derived from this single sample.

Our approach completely departs from the existing statistics-based attacks
and is instead rooted in geometry. This allows us to obtain a relatively short
proof and leverage existing results on the geometry of lattices.

One of the most important technical contribution of this paper is to make
completely clear (Theorem 5) under what choice of parameters the attack works,
without any statistical assumption. As far as we are aware, no other dual attack
has been formally analyzed in this way. We believe that this is important since
virtually all algorithms in the literature rely on statistical assumptions that
clearly cannot hold for all parameter regimes but without a proper analysis, it
is impossible to tell when and why they hold.

We also provide some news results on random q-ary lattices in a similar spirit
to that of Siegel, Rogers and Macbeath. This allows us to obtain some sharper

6 See Section 6 for more details about modulus switching.
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bounds on λ1 for random q-ary lattices and show that the Gaussian Heuristic
is quite tight for such lattices. This heuristic is usually considered valid for
“random” lattices and has been extensively tested. Up to our knowledge, the
only formal analysis of λ1 for random q-ary lattice is in [37, Lemma 7.9.2] which
only analyzes the expected value and therefore provides a much weaker bound
on λ1. We refer to Section 2.5 for more details.

1.2 Comparison with [17]’s Contradictory Regime

A recent paper [17] has claimed that virtuall all recent dual attacks rely on an
incorrect statistical assumption and that they are, therefore, probably incorrect.
They do so by formalizing what they claim is the key statistical assumption of
those paper, and show that for the parameter regime of the attacks, it falls into
what they call the “contradictory regime”, a regime where this assumption can
be proven not to hold.

As a byproduct of our analysis, we are able to compare the regime in which
our analysis works with the contradictory regime of [17]. Interestingly, the two
are essentially complementary with a small gap inbetween. This suggests that
our analysis and that of [17] are quite tight and provide an almost complete
characterization of when dual attacks work. However, we nuance this conclusion
by noting that the statistical model used in [17] to argue about the contradiction
does not seem to match what happens in our algorithm. We refer to Section 5
for more details.

1.3 Organisation of the paper

In Section 2, we introduce the various technical elements that are necessary
to analyse the dual attack. In Section 3, we first present a basic dual attack
whose purpose is to introduce the reader to the ideas of dual attacks without
overwhelming them with technical details. This dual attack is very naive and
computes one short vector per LWE sample, in the spirit of [3]. We emphasize
that this attack and Theorem 4 are not new but that our analysis is significantly
simpler than in previous papers. In Section 4, we introduce our simplified dual
attack in the spirit of [26] and formally analyse its correctness without assump-
tion. In Section 5, we compare our regime with that of [17]. Finally, in Section 6,
we describe what we believe is the main obstacle to develop a formal analysis of
the full algorithm in [26].

2 Preliminaries

We denote vectors and matrices in bold case. We denote by xT the transpose
of the (column) vector x, which is therefore a row vector. We denote by In
the identity matrix of size n × n. For any vector x ∈ Rn, we denote by ∥x∥ its
Euclidean norm. For any integer q, we say that a vector x ∈ Zn

q is totally nonzero
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if all the coordinates of x are nonzero. For any function f : Rn → C, we denote
by f̂ its Fourier transform over Rn defined by

f̂(x) =

∫
Rn

f(y)e−2iπ⟨x,y⟩ dx.

For any n ∈ N and R > 0, we denote by Bn(R) (resp. Bn(R)) the open (resp.
closed) ball of radius R in Rn. We also let BZ

n(R) = Bn(R) ∩ Zn be the set of

integers points in this ball, and similarly for B
Z
n(R). For any two distributions

P and Q, we denote by dTV(P,Q) the statistical distance (or total variation
distance) between P and Q.

2.1 Probabilities

For any finite set X, we denote by U(X) the uniform distribution over X. As
usual, if P and Q are two probability distributions over X and Y respectively,
we denote by PQ the product distribution over X × Y . Recall that we have the
following facts.

Theorem 1 (Hoeffding’s inequality). Let X1, . . . , XN be independent ran-
dom variables such that ai ⩽ Xi ⩽ bi. Consider the sum SN = X1 + · · · +XN .
Then for all t > 0,

Pr[SN − E[SN ] ⩾ t] ⩽ exp

(
−2t2∑N

i=1(bi − ai)2

)

and

Pr[|SN − E[SN ]| ⩾ t] ⩽ 2 exp

(
−2t2∑N

i=1(bi − ai)2

)
.

2.2 LWE

Let n,m, q ∈ N and let χe be a distributions over Zq, which we call χe the noise
distribution. For every vector s ∈ Zn

q , we denote by LWE(m, s, χe) the probability
distribution on Zm×n

q ×Zm
q obtained by sampling a matrix A ∈ Zm×n

q uniformly
at random, sampling a vector e ∈ Zm

q according to χm
e , and outputting (A,b)

where b := As+ e.
We have chosen the “matrix form” for the LWE distribution where each sam-

ple is really m LWE samples in the sense of [32]. We have chosen this formalism
because it is simpler for dual attacks. The value of m is typically in the order
of n and depends on the cryptosystem. In the rest of this paper, we will always
refer to a sample of the form (A,b) as one sample.

The search LWE problem is to find s given oracle access to a sampler for
LWE(m, s, χe). The decision LWE problem is to decide, given oracle access to
either LWE(m, s, χe) or U(Zm×n

q × Zm
q ), which one it is. In practical scenarios,

the attacker may not have access to the sampler but rather only possess a limited
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number LWE samples. In this case, the search LWE problem asks, given those
LWE samples, to recover s if possible.

The LWE secret s is usually generated according to a distribution χs over Zn
q .

One can therefore, in principle, analyse the success probability of an algorithm
for search/decision LWE on a distribution LWE(m, s, χe) where s←$ χn

s . In this
paper, we will not need to make any assumption on the distribution of the secret
since our algorithms work for every secret.

2.3 Discrete Gaussian distribution

Let n ∈ N and s > 0. For any x ∈ Rn, we let ρs(x) := e−π∥x∥
2/s2 . As usual,

we extend to ρs to sets by ρs(X) =
∑

x∈X ρs(x) for any set X. For any lattice
L ⊂ Rn, we denote by DL,s the discrete Gaussian distribution over L, defined
by

DL,s(x) =
ρs(x)

ρs(L)

for any x ∈ L. We denote DL,1 by DL for simplicity.
In general, the smaller s is, the harder it is to construct a sampler from

DL,s. The notion of smoothing parameter [28] captures the idea that sampling
for a valuer of s above this threshold is significantly easier than sampling below
because the distribution looks more like a continuous Gaussian. There are many
algorithms to sample above the smoothing parameter [22,20,10], including a
time-space trade-off [1]. Sampling below the smoothing parameter is much more
challenging and usually inefficient [2]. At the extreme, sampling for sufficiently
small values of s allows one to solve the Shortest Vector problem (SVP) [2] which
is known to be NP-hard under randomized reduction [4].

For any q ∈ N, we denote byDZn
q ,s

themodular discrete Gaussian distribution
over Zn

q defined by

DZn
q ,s

(x) =
ρs(x+ qZn)

ρs(Zn)

for any x ∈ Zn
q . We define the periodic Gaussian function fL,s : Rn → R, given

by:

fL,s(t) =
ρs(L+ t)

ρs(L)
.

We have fL/s,1(t/s) = fL,s(t). In the following, for simplicity, we denote fL,1 as
fL.

Lemma 1 ([14, Lemma 2.14]). For any lattice L, s > 0 and x ∈ Rn,
fL,s(x) ⩾ ρs(x).

Lemma 2 ([8, Lemma 7], see also [36, Theorem 1.3.4]). For any lattice
L ⊂ Rn, x ∈ Rn and u ⩾ 1/

√
2π,

ρs((L− x) \Bn(us
√
n)) ⩽

(
u
√
2πee−πu

2
)n

ρs(L)
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Corollary 1 ([36, Corollary 1.3.5]). For any lattice L ⊂ Rn, t ∈ Rn and
r ⩾ δ := s

√
n/2π,

ρs((L− t) \Bn(r)) ⩽ ρs(r − δ)ρs(L)

Lemma 3 ([3, Claim 4.1]). For any lattice L and s > 0, we have f̂L,s =

DL̂,1/s which is a probability measure over the dual lattice L̂.

2.4 Distinguisher

All dual attacks rely on an algorithm to distinguish between the uniform distri-
bution and the modular discrete Gaussian over Zq. Specifically, we are given N
independent samples X1, . . . , XN either from the uniform distribution or modu-
lar discrete Gaussian and we want to decide from which it was sampled. Several
algorithms exist for this task but the most common one is to compute the dis-
crete Fourier transform of the samples (at 1) and to compare against a threshold.
The informal argument usually goes as follows. Consider the sum

S =

N∑
j=1

cos(2πXj) = ℜ

 N∑
j=1

e2iπXj

 .

It is well-known (see Lemma 5 below) that the expected value of S is 0 for
the uniform distribution and we can bound the variance of S easily. For the
modular discrete Gaussian, we note that S is a sum of many (N is typically
exponential) independent various so by the central limit theorem is essential
Gaussian. We can analyze the expected value and variance of each e2iπXj by
Lemma 5 which provides us with an estimate of the expected value and variance
of S and therefore of the parameters of the “Gaussian approximation” of S. We
then use classical tail bounds on Gaussian to bound the probability that S is far
away from its expected value. For example, for a modular discrete Gaussian of
parameter s, the expected value will be at least Ne−πs

2k2/q2 .
The analysis above is quite informal since it requires the central limit theorem

(CLT) to argue that the sum is close to a Gaussian. Unfortunately, a more formal
analysis of this step is often lacking in the literature. Many papers refer to [23,
Section 4] to identity the advantage of distinguishing although the argument
quite informal. [21, Lemma 1] gives a more formal statement of this advantage
but without proof. The analysis of [26] is essentially the one above with an
explicit mention of the CLT. We find this usage of (a non-quantitative version of)
the CLT problematic since the rate of convergence is usually quite slow. In fact
a proper analysis shows that the minimum value of N needed for convergence is
roughly the same as the value needed for distinguishing so this is no small detail.
[19] contains a fully formal analysis that relies on the Berry–Esseen theorem but
which requires a bound on the third moment of the variable. More puzzling is the
fact that these analysis are both lacking and overkill since a simple application
of Hoeffding’s inequality immediately provides the same result. Although we will
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not use this lemma directly, we keep it for reference and also it helps understand
the algorithm and proofs that we use in the dual attack.

Lemma 4. Let X1 and X2 be two distributions over R. Let Ei = EX←$Xi
[cos(X)]

and assume that E1 ̸= E2. There is an algorithm A that given N independent
samples from Xj for j ∈ {1, 2}, correctly finds j in time O(N) with probability
at least 1− 2 exp(−N |E1 −E2|2) on the choice of the samples. Formally, for all
j ∈ {1, 2},

PrX1,...,XN←$Xj
[A(X1, . . . , XN ) = j] ⩾ 1− 2 exp(−N

8 |E1 − E2|2).

Proof. Fix j ∈ {1, 2}. Let X1, . . . , XN ←$ Xj . Let

SN :=

N∑
i=1

Yi, Yi := cos(Xi).

By linearity of the Xi,

EXi←$Xj
[SN ] = N EX←$Xj

[cos(X)] = NEj .

Furthermore, it is clear that −1 ⩽ Yi ⩽ 1. Therefore, by Theorem 1, for all t > 0,

PrXi←$Xj [|SN −NEj | ⩾ t] ⩽ 2 exp

(
−t2

2N

)
.

Set t = N
2 |E1 − E2| > 0, then |SN −NE1| < t implies that |SN −NE2| ⩾ t

and vice versa. Therefore the algorithm can simply compute |SN − NE1| and
check whether this quantity is strictly less than t. This algorithm is correct with
probability at least 1− 2 exp(−N

8 |E1 − E2|2). ⊓⊔

The above lemma requires to compute the average EX←$X [cos(X)] for the
distributions of interest. For distributions over Zq, this is essentially the Fourier
transform of the distribution at 1. We refer to [13] for a well-written analysis of
such transforms on various distributions such as the (modular) discrete Gaussian,
the rounded discrete Gaussian, the central binomial and the bounded uniform
distribution. In this paper, we only require the following result which is well-
known.

Lemma 5 ([13]). Let q ⩾ 1 be an integer and s > 0. Then

EX←$U(Zq)[exp(2ikπX/q)] = 0 for all k ̸= 0,

e−πs
2k2/q2 ⩽EX←$DZq,s

[exp(2ikπX/q)] ⩽ 2e−πs
2k2/q2 for k ∈ {−⌊q/2⌋, . . . , ⌊q/2⌋}.

2.5 Lattices

We denote by L̂ the dual of a lattice L ⊂ Rn defined by

L̂ = {x ∈ span(L) : ∀y ∈ L, ⟨y,x⟩ ∈ Z}.

8



We denote by L∗ = L \ {0} the set of nonzero vectors of a lattice L. We denote
by λ1(L) the length a shortest nonzero vector in L.

Let n ∈ N, 1 ⩽ k ⩽ n and q be a prime power. We say that a lattice L is
a n-dimensional q-ary lattice if qZn ⊆ L ⊆ Zn. Given a matrix A ∈ Zn×k, we
consider the following n-dimensional q-ary lattices:

Lq(A) =
{
x ∈ Zn : ∃s ∈ Zk, As = x mod q

}
,

L⊥q (A) =
{
x ∈ Zn : ATx = 0 mod q

}
.

We refer the reader to [18], [37, Section 2.5.1] or [29] for more details on those con-
structions. Note that, equivalently, we can write Lq(A) = AZk

q + qZn. It is well-
know that for any q-ary lattice L, there exists A and B such that L = Lq(A) =

L⊥q (B), and that L̂⊥q (A) = 1
qLq(A). Furthermore det(Lq(A)) = qn−rkA ⩾ qn−k

and therefore det(L⊥q (A)) = qrkA ⩽ qk. Finally, since Zq is a field, a random
matrix A has full rank (equal to k) with high probability:

PrA←$U(Zn×k
q )[rk(A) = k] =

k−1∏
i=0

(1− qi−n) ⩾ 1− kqk−1−n. (1)

Given k and n, we will consider the distributions Ln,k,q and L⊥n,k,q of q-ary
lattices defined over the set of integer lattices by

Ln,k,q(L) = PrA←$U(Zn×k
q )[L = Lq(A)],

L⊥n,k,q(L) = Pr
A←$U(Zn×(n−k)

q )

[
L = L⊥q (A)

]
.

In other words, the distribution is obtained by taking a matrix A ∈ Zn×k
q with

uniform and i.i.d entries, and looking at the q-ary lattice generated by A; and
similarly for the orthogonal version. Note that contrary to the Loeliger ensemble
Ln,k,q,1, we do not have the rescaling factor q1−k/n, see e.g. [37, Definition 7.9.2].
It will be more convenient to use L⊥n,k,q for proofs, but we often want to apply
them for Ln,k,q. Whenever neither k nor n− k are too small, those two distribu-
tions are very close. The following lemma was inspired by [16, Lemma 2] which
does not contain any proof.

Lemma 6 (Appendix C.1). dTV(L⊥n,k,q,Ln,k,q) ⩽ poly(n, k)q−min(k,n−k).

Those distribution satisfy good uniformity properties when q goes to infinity.
In particular, the following theorem shows that we can computed statistical
properties of lattices sampled according to L⊥n,k,q. The first part of this theorem
is close to [24, Theorem 1]. This result is in some sense the q-ary version of the
result by Siegel on random (real) lattices and its generalization by Rogers and
Macbeath [35,33,25].

Theorem 2 (Appendix C.2). For any function f : Rn → R,

EL←$L⊥
n,k,q

[∑
x∈L∗

f(x)

]
=
(
1− qk−n

) ∑
v∈q(Zn)∗

f(v) + qk−n
∑

x∈(Zn)∗

f(x).
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More generally, let 1 ⩽ p ⩽ n and f : (Zn
q )

p → R, then

EL←$L⊥
n,k,q

 ∑
x1,...,xp∈L

f(x1, . . . ,xp)

 =
∑

x1,...,xp∈Zn

q(k−n)r(x1,...,xp)f(x1, . . . ,xp)

where r(x1, . . . ,xp) := rkZn
q
(x1, . . . ,xp) is the rank of the xi mod q over Zn

q .

We can apply this theorem to bound the expected number of lattice points
in a ball, and therefore obtain bounds on λ1.

Theorem 3 (Appendix C.3). For any 0 < r ⩽ q,

EL←$L⊥
n,k,q

[|L∗ ∩Bn(r)|] = qk−n
(
|BZ

n(r)| − 1
)
,

VL←$L⊥
n,k,q

[|L∗ ∩Bn(r)|] ⩽ qk−n(q − 1)(|BZ
n(r)| − 1).

In particular, if |BZ
n(r)| ⩽ qn−k, then

PrL←$L⊥
n,k,q

[λ1(L) ⩽ r] ⩽
(
q1+k−n|BZ

n(r)|
)2

.

Recall that the Gaussian heuristic says that for a “random” lattice L, λ1(L)
is approximately

GH(L) :=

(
vol(Bn)

det(L)

)−1/n
=

det(L)1/nΓ (1 + n
2 )

1/n

√
π

≈ det(L)1/n
√

n

2πe
.

This heuristic is usually considered valid for “random” lattices and has been ex-
tensively tested. Up to our knowledge, the only formal analysis of λ1 for random
q-ary lattice is in [37, Lemma 7.9.2] which only analyzes the expected value and
not the variance. The following corollary shows that this heuristic is indeed very
sharp for random q-ary lattices.

Corollary 2 (Informal, Appendix C.4). Under the assumption that |BZ
n(r)| ≈

vol(Bn(r)), which holds when r ≫
√
n, we have for any α ⩽ 1 that

PrL←$Ln,k,q
[λ1(L) ⩽ αGH(L)] ⪅ (qαn)

2
.

Lemma 7 (The Pointwise Approximation Lemma [3, Lemma 1.3], mod-
ified). Let L be an n-dimensional lattice, and let h be a function from Rn

to R that is periodic over L and whose Fourier series ĥ is a probability mea-
sure over the dual lattice L̂. Let N be an integer, δ > 0 and X ⊆ Rn a finite
set. Let W = (w1, · · · ,wN ) be a list of vectors in the dual lattice chosen ran-

domly and independently from the distribution ĥ. Then with probability at least
1− |X|2−Ω(Nδ2),

hW (x) :=
1

N

N∑
i=1

cos(2π⟨wi,x⟩) (2)

satisfies that |hW (x)− h(x)| ⩽ δ for all x ∈ L+X.
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Proof. The proof is exactly the one in [3] with the following modifications. Let
δ > 0. For any x ∈ Rn, the Chernoff-Hoeffding bounds guarantees that the
mean of N samples is not within a window of δ of the correct expectation with
probability at most 2−Ω(Nδ2). Since f is periodic over the lattice L, it suffices
to check that the inequality that we want holds for all x ∈ X, and there are |X|
such points. Hence, by a union bound, the probability that the approximation
is within a window δ of the correct expectation for all x ∈ X simultaneously is
at least 1− |X|2−Ω(Nδ2). ⊓⊔

2.6 Short vector sampling

For the purpose of this paper, we will only need to know that there is a way to
sample relatively short vectors (SV) in a lattice and we will treat such an algo-
rithm as a black box. Since such an algorithm would typically be parametrized
(see below), we introduce an integer parameter β to capture this fact.

Black box 1. For any integers n ⩽ m, β and prime power q, there exists a
deterministic algorithm B and two functions TSV and ℓSV such that when B is
given A ∈ Zm×n

q , it returns a nonzero vector in L⊥q (A) in time TSV(m,β, qn)

and EA←$Zm×n
q

[
∥B(A)∥2

]
⩽ ℓSV(m,β, qn)2.

One way to implement this black box is to use lattice reduction algorithms
such as BKZ: they provide a very flexible way to take a basis of lattice and
compute relatively short vectors in this lattice. Since the literature on this topic
is quite extensive and there are many cost models associated to that task, we
refer the reader to e.g. [21] for more details. For simplicity, we assume that the
algorithm is deterministic but we could make it probabilistic by adding random
coins to the input of the algorithm and take those into account in the expected
value. In the case of BKZ, the parameter β is the block size.

3 Basic dual attack

In this section, we present a basic dual attack whose purpose is to introduce the
reader to the ideas of dual attacks without overwhelming them with technical
details. This dual attack is very naive and computes one short vector per LWE
sample, in the spirit of [3]. We emphasize that this attack and Theorem 4 are
not new but that our analysis is significantly simpler than in previous papers.

Fix s ∈ Zn
q an unknown secret and (A,b) a LWE sample. Recall that b =

As+ e for some unknown e ∈ Zm
q . In its simplest form, a dual attack splits the

secret s into two parts sguess ∈ Znguess
q and sdual ∈ Zndual

q where n = nguess+ndual.
The matrix A ∈ Zm×n

q is correspondingly split into two parts:

A =
[
Aguess Adual

]
, s =

[
sguess
sdual

]
. (3)

11



Therefore,
b = Aguesssguess +Adualsdual + e.

The algorithm now makes a guess s̃guess ∈ Znguess
q on the value of sguess and tries

to check whether this guess is correct. Consider the lattice

L⊥q (Adual) =
{
x ∈ Zm : xTAdual = 0 mod q

}
. (4)

By the inequalities of Section 2.5, we have that

det(L⊥q (Adual)) ⩽ qndual . (5)

Check that for any x ∈ L⊥q (Adual),

xTb = xTAguesssguess + xTAdualsdual + xTe = xTAguesssguess + xTe (mod q).

Therefore,

xT (b−Aguesss̃guess) = xTAguess(sguess − s̃guess) + xTe (mod q).

The main observation is now that:

– if the guess is correct (s̃guess = sguess) then xT (b − Aguesss̃guess) = xTe
(mod q) follows roughly a modular Gaussian distribution,

– if the guess is incorrect (s̃guess ̸= sguess) then it follows a uniform distribution
because x ̸= 0 and A was chosen uniformly at random.

A crucial ingredient in the reasoning above is the length of x. Indeed, the dot
product xTe will follow a modular Gaussian whose deviation is proportional to
∥x∥. This is where the BKZ lattice reduction algorithm comes in: from a basis
of L⊥q (Adual), we compute a short vector x using Black box 1.

The algorithm for this dual attack is described in Algorithm 1. In this attack,
we compute one dual vector for each LWE sample. While this kind of attack is
already known to be correct, we reprove it for several reasons. First, we are not
satisfied with the informal treatement of the proof in the literature. Second, our
proof does not use any assumption whereas most papers in the literature use the
Central Limit Theorem or approximate sums of Gaussian as a Gaussian at some
point (see Section 2.4 for more comments). Figure 1 gives a high level view of
the variable involved and their dependencies.

Theorem 4 (Appendix B). Let n,m, β be integers, q be a prime power,
nguess+ndual = n, s ∈ Zn

q , σe > 0 and N ∈ N. Let 0 < δ < ε := exp
(
−πσ2

eℓSV(m,β, qndual)2/q2
)
,

where ℓSV comes from Black box 1. Let (A(1),b(1)),. . .,(A(N),b(N)) be samples
from LWE(m, s, DZq,σe

), then Algorithm 1 on (m,nguess, ndual, q, δ,N, (A(i),b(i))i)
runs in time poly(m,n) ·(N ·TSV(m,β, qn)+qnguess) and returns sguess with prob-
ability at least

1− exp

(
−N(ε− δ)2

2

)
− (qnguess − 1) exp

(
−Nδ2

2

)
over the choice of the (A(i),b(i)).

12



Algorithm 1: Basic dual attack

Input: m, n = nguess + ndual (see (3)), q prime power, δ > 0 and N ∈ N.
Input: list of N LWE samples (A(1),b(1)), . . . , (A(N),b(N)).
Output: (Guess of) the first nguess coordinates of the secret or ⊥.

1 for j from 1 to N do

2 Compute a basis of L⊥
q (A

(j))

3 Compute a short vector xj ∈ L⊥
q (A

(j)) using Black box 1

4 for s̃guess ∈ Znguess
q do

5 Compute the list y1, . . . , yN where yj = xT
j (b

(j) −A
(j)
guesss̃guess)

6 S ←
∑N

j=1 cos(2πyj/q)

7 if S ⩾ Nδ then
8 return s̃guess
9 return ⊥

sguess

s̃guess

−
A

(1)
guess e(j) A

(1)
dual

BKZ

× +

+

y1

A
(N)
guess e(j) A

(N)
dual

BKZ

× +

+

yN

· · ·

· · ·

· · ·

distinguisher Gaussian/
Uniform

Fig. 1. Conceptual representation of the variables involved in Algorithm 1 and their
dependencies.
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Remark 1. As expected, we recover the well-known fact that for the attack to
succeed with constant probability, we can take δ = ε/2 and then we need at least

N =
8nguess log(q)+Ω(1)

ε2 samples. Furthermore, a careful look at the proof shows
that Black box 1 can be weakened even further to only require an inequality on
the moment-generating function of ∥B(A)∥2.

4 Modern dual attack

The main limitation of the basic dual attack is the requirement to compute one
short vector for each LWE sample. Looking at Figure 1, this is necessary to en-
sure the statistical independence of the variables that go into the distinguisher.
Furthermore, the attack requires an exponential number of LWE samples, some-
thing which is not always possible.

As explained in the introduction, a series of work have progressively intro-
duced the idea of generating all short vectors from a limited number, or even a
single, LWE sample (A,b). This is the case in [5,21,19], and [26] where only a
single LWE sample is used, and it dramatically reduces the complexity of the
attack. Unfortunately, the statistical analysis of these attacks has been lacking
in the literature: [5], [19]7 and [21] offer no real proof of correctness to speak
of. Only [26] tries to provide a complete proof of correctness, which is very de-
tailed, but has to rely on statistical assumptions. Those assumptions have been
called into question [17], and more importantly are extremely difficult to verify.
Stepping back, we believe that the reason for this situation is that they try to
analyse their attack using a similar proof strategy to that of our basic dual at-
tack (Section 3). The problem stems from the fact that the basic dual attack
requires the independence of many variables to work. Since those variables be-
come dependent in their attack, these papers inevitably have to assume that
non-independent quantities are “independent enough”.

In this section, we start completely from scratch: we design and analyze
without any assumption a modern dual attack. Our proof scheme is completely
different from the basic one and shows that those attacks do work. The main
outcome of this proof is that we can finally understand the constraints on the
various parameters that are necessary for the attack to work.

4.1 Intuition

Fix s ∈ Zn
q an unknown secret and (A,b) an LWE sample. Recall that b = As+e

for some unknown e ∈ Zm
q . As in the basic dual attack, we split the secret s into

two parts sguess ∈ Znguess
q and sdual ∈ Zndual

q where n = nguess+ndual. The matrix

7 Part of [19] presents an attack that is similar to our basic attack and analyzes this
attack formally. This paragraph only applies to the part that relies on sieving to
produce many short vectors from a single LWE sample.
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A ∈ Zm×n
q is correspondingly split into two parts:

A =
[
Aguess Adual

]
, s =

[
sguess
sdual

]
. (6)

The algorithm now makes a guess s̃guess ∈ Znguess
q on the value of sguess and tries

to check whether this guess is correct. Check that

b−Aguess · s̃guess = Aguess · (sguess − s̃guess) +Adual · sdual + e. (7)

Consider the lattice

L⊥q (Adual) =
{
x ∈ Zm : xT ·Adual = 0 mod q

}
. (8)

Fix N ∈ N and s > 0, and let W = (w1, . . . ,wN ) ∈ L⊥q (Adual)
N be sampled

according to DL⊥
q (Adual),s. For any x ∈ Rm, define

gW (x) =
1

N

N∑
j=1

cos(2π⟨x,wj⟩/q) (9)

for all x ∈ Rm. We will evaluate gW at b−Aguess ·s̃guess for all s̃guess ∈ Znguess
q and

keep the highest value. We now explain the intuition for this. Let L = Lq(Adual)
to simplify notations. Recall that in Section 2.3, we have defined the standard
periodic Gaussian function

fL,1/s(x) =
ρ1/s(x+ L)

ρ1/s(L)

for any x ∈ Rm and s > 0. The important fact is that for large N , with high
probability on the choice of the wj , the two functions above are close everywhere
for integer vectors (Lemma 8). This fact essentially comes from [3].

Recall that we evaluate gW at points b−Aguess · s̃guess which are all integers.
Since gW is very close to fL over the integers, we have to analyse the behaviour
of fL,1/s. For this, we rely on standard Gaussian tailbounds (Lemma 9) to get
that for any s > 0 and x ∈ Rm, we essentially have

fL,1/s(x) ≈ ρ1/s(dist(x, L)). (10)

In other words, fL,1/s measure the distance to the lattice L.

We are now ready to see what makes the attack work. The intuition is that
for most choices of A and e, for all s̃guess ∈ Znguess

q \ {sguess},

dist(b−Aguess · sguess, L)≪ dist(b−Aguess · s̃guess, L) (11)

and therefore

fL,1/s(b−Aguess · sguess) > fL,1/s(b−Aguess · s̃guess)
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and the same will be true for gW , which means that the algorithm will correctly
output sguess. This is the main idea of our analysis but making it formal requires
some care. In order to make that statement precise, we need a quantitative
version of (11). The first step (Lemma 10) is to show that that essentially

if 2∥e∥ ⩽ λ1(Lq(A)) then f
L,

1
s
(e) > f

L,
1
s
(e+x) for all x ∈ Lq(Aguess)\L. (12)

This requires some explanations. Going back to (11), we have that

dist(b−Aguess · sguess, L) = dist(e+Adual · sdual, L)
= dist(e, L) since Adual · sdual ∈ L

= ∥e∥ if ∥e∥ < λ1(L)/2.

On the other hand, if s̃guess ̸= sguess then

dist(b−Aguess · s̃guess, L)
= dist(e+Adual · sdual +Aguess(sguess − s̃guess), L)

= dist(e+Aguess(sguess − s̃guess), L) since Adual · sdual ∈ L

= dist(e+ x, L)

where
x = Aguess(sguess − s̃guess) ∈ Lq(Aguess)

Assume for now that x ∈ Lq(Aguess) \ L which we will see below is not always
true but holds with probability exponentially close to 1 over the choice of A.
Then

dist(b−Aguess · s̃guess, L) = dist(e+ x, L)

= min{∥e+ x+ z∥ : z ∈ L}
⩾ min{∥e+ y + z∥ : z ∈ L,y ∈ Lq(Aguess) \ L}
⩾ min{∥y + z∥ : z ∈ L,y ∈ Lq(Aguess) \ L} − ∥e∥
⩾ λ1(L+ Lq(Aguess))− ∥e∥.

The last step holds because y + z ̸= 0 for all z ∈ L and y ∈ Lq(Aguess) \ L.
This is where our assumption that x ∈ Lq(Aguess) \ L is crucial. The condition
in (11) now becomes

∥e∥ ⩽ λ1(L+ Lq(Aguess))− ∥e∥

and this gives us (12) because L+Lq(Aguess) = Lq(Adual)+Lq(Aguess) = Lq(A).
Now that we have (12), the second step is to apply it to A. Recall that we

made a crucial assumption above: it only applies to e+x for x ∈ Lq(Aguess) \L
where x = Aguess(sguess− s̃guess) and sguess ̸= s̃guess. This condition is equivalent
to x /∈ AdualZndual

q + qZm since L = Lq(Adual). A sufficient condition for this to
hold is thatA has full rank over Zq which happens with probability exponentially
close to 1 over the choice of A. This allows us to conclude (Theorem 5) that
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Algorithm 2, which essentially performs the steps highlighted above, works for
almost all A and e that satisfy roughly 2∥e∥ ⩽ λ1(A). At this point, one can
make two interesting observations:

– It tells us that if 2∥e∥ ⩽ λ1(Lq(A)) then we can distinguish e from any e+x
by using fL,1/s. This makes intuitive sense since this condition guarantees
that e is the closest vector to 0 in Lq(A) which is a necessary condition for
the algorithm to work unconditionally.

– Even though we take short vectors in the dual lattice Lq(Adual), it looks like
only the length of the shortest vectors in A matters for the analysis! This
is just a result of the simplifications that we have made above to give the
intuition. The length of the dual vectors does play a role in Lemma 10 and
the subsequent lemmas.

4.2 Formal Analysis

This section gives a formal analysis of the intuitions from the previous section.
We will reuse the notation defined there.

Lemma 8. Let B ∈ Zm×n
q , s, δ > 0 and N ∈ N. With probability at least

1− qm · 2−Ω(Nδ2) over the choice of W = (w1, . . . ,wN ) from DN
L⊥

q (B),s, we have

|gW (x) − fLq(B),1/s(x)| ⩽ δ for all x ∈ Zm, where gW is defined in (9) and
fLq(B) is defined in Section 2.3.

Proof. Let L = Lq(B) and for any j, let w′j = 1
qwj and W ′ = (w′j)j′ . Since

L̂ = 1
qL
⊥
q (B), we indeed have that W ′ is sampled from from DN

L̂,s
which is a

probability distribution over L̂. Let h = fL,1/s which is L-periodic, then ĥ = DL̂,s
by Lemma 3. For any x ∈ Rm,

gW (x) =
1

N

N∑
j=1

cos(2π⟨x,wj⟩/q) =
1

N

N∑
j=1

cos(2π
〈
x,w′j

〉
) = hW ′(x).

Apply Lemma 7 to h with X = {0, . . . , q − 1}m to get that with probability at

least 1 − |X|2−Ω(Nδ2) over the choice of W ′, we have |h(x) − hW ′(x)| ⩽ δ for
all x ∈ L + X. But L = Lq(B) is a q-ary lattice, i.e. qZm ⊂ L so L + X ⊃
qZm + {0, . . . , q − 1}m = Zm which concludes the proof. ⊓⊔

Lemma 9. Let L ⊂ Rm and s > 0, then for any x ∈ Rm:

– fL,1/s(x) ⩾ ρ1/s(dist(x, L)),

– if dist(x, L) ⩾ τ := 1
s

√
m/2π then fL,1/s(x) ⩽ ρ1/s(dist(x, L)− τ).

Proof. The first fact is a direct consequence of Lemma 1. Indeed, write x = z+t
where z ∈ L and t ∈ Rm are such that dist(x, L) = ∥t∥. Since fL,1/s is L-periodic
and z ∈ L,

fL,1/s(x) = fL,1/s(x− z) = fL,1/s(t) ⩾ ρ1/s(t) = ρ1/s(∥t∥).

17



For the second fact, let ℓ = dist(x, L) and observe that by definition (L − x) \
Bm(ℓ) = L−x. By assumption, ℓ ⩾ τ := 1

s

√
m/2π, so we can apply Corollary 1

to get that
ρ1/s((L− x) \Bm(ℓ)) ⩽ ρ1/s(ℓ− τ)ρ1/s(L)

and therefore

fL,1/s(x) =
ρ1/s(L− x)

ρ1/s(L)
=

ρ1/s((L− x) \Bm(ℓ))

ρ1/s(L)
⩽ ρ1/s(ℓ− τ).

⊓⊔

Lemma 10. Let B ∈ Zm×n
q , L ⊂ Zm a lattice, e ∈ Zm, s, δ > 0 and N ∈ N.

Let τ = 1
s

√
m/2π and assume that λ1(L+ Lq(B)) ⩾ τ + ∥e∥ and

ρ1/s(e)− ρ1/s(λ1(L+ Lq(B))− ∥e∥ − τ) > 2δ.

Then, with probability at least 1−qm·2−Ω(Nδ2) over the choice of W = (w1, . . . ,wN )
from DN

L⊥
q (B),s, we have

gW (e) ⩾ ρ1/s(e)− δ > ρ1/s(λ1(L+ Lq(B))− ∥e∥ − τ) + δ ⩾ gW (e+ x)

for all x ∈ L \ Lq(B), where gW is defined in (9).

Proof. Apply Lemma 8 to get that with probability at least 1−qm ·2−Ω(Nδ2) over
the choice ofw1, . . . ,wN i.i.d. fromDL⊥

q (B),s, we have |gW (y)−fLq(B),1/s(y)| ⩽ δ
for all y ∈ Zm. By Lemma 9, we have

gW (e) ⩾ fLq(B),1/s(e)− δ ⩾ ρ1/s(e)− δ.

Let x ∈ L \ Lq(B), then z − x ∈ L + Lq(B) and z − x ̸= 0 for any z ∈ Lq(B).
As a result, Lq(B)− x ⊆ (L+ Lq(B)) \ {0}. Hence,

dist(x, Lq(B)) = min
z∈Lq(B)

∥x+ z∥ ⩾ min
y∈(L+Lq(B))\{0}

∥y∥ = λ1(L+Lq(B)) ⩾ τ+∥e∥.

(13)
But then

dist(e+ x, Lq(B)) ⩾ dist(x, Lq(B))− ∥e∥ ⩾ τ. (14)

We can therefore apply Lemma 9 to get that for any x ∈ L \ {0},

gW (e+ x) ⩽ fLq(B),1/s(e+ x) + δ ⩽ ρ1/s(dist(e+ x, Lq(B))− τ) + δ.

Since ρ1/s : [0,∞)→ R is decreasing, and reusing (13) and (14) we further have

ρ1/s(dist(e+ x, Lq(B))− τ) ⩽ ρ1/s(dist(x, Lq(B))− ∥e∥ − τ)

⩽ ρ1/s(λ1(L+ Lq(B))− ∥e∥ − τ).

Putting everything together, we have

gW (e)− gW (e+ x) ⩾ ρ1/s(e)− ρ1/s(λ1(L+ Lq(B))− ∥e∥ − τ)− 2δ > 0

by our assumption. ⊓⊔
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Algorithm 2: Modern dual attack

Input: m, n = nguess + ndual (see (3)), q prime power, N ∈ N
Input: LWE sample (A,b), list W = (w1, . . . ,wN ) of vectors in L⊥

q (Adual).
Output: (Guess of) the first nguess coordinates of the secret, or ⊥.

1 sguess ← ⊥
2 Smax ← 0
3 for s̃guess ∈ Znguess

q do
4 Compute the list y1, . . . , yN where yj = wT

j (b−Aguesss̃guess)

5 S ←
∑N

j=1 cos(2πyj/q)

6 if S ⩾ Smax then
7 Smax ← S
8 sguess ← s̃guess
9 return sguess

We can now finally start our main result by putting everything together.

Theorem 5. Let A ∈ Zm×n
q , e ∈ Zm, s ∈ Zn

q , s, δ > 0 and N ∈ N. Let

τ = 1
s

√
m/2π. Assume that m ⩾ n, A has full rank, λ1(Lq(A)) ⩾ τ + ∥e∥, and

ρ1/s(e)− ρ1/s(λ1(Lq(A))− ∥e∥ − τ) > 2δ.

Let b = As + e mod q. Let W = (w1, . . . ,wN ) be samples from DN
L⊥

q (Adual),s
,

then Algorithm 2 on (m,nguess, ndual, q,N, (A,b),W ) runs in time poly(m,n) ·
(N + qnguess) and returns sguess with probability at least 1 − qm · 2−Ω(Nδ2) over
the choice of W .

Proof. Let B = Adual and L = Lq(Aguess). Observe that

L+ Lq(B) = Lq(Aguess) + Lq(Adual)

= AdualZndual
q + qZm +AguessZnguess

q + qZm

= AZn
q + qZm

= Lq(A).

Our assumptions are therefore exactly that of Lemma 10 which can apply to
get that with probability at least 1 − qm · 2−Ω(Nδ2) over the choice of W =
(w1, . . . ,wN ) from DN

L⊥
q (B),s = DN

L⊥
q (Adual),s

, we have

gW (e) > gW (e+ x) (15)

for all x ∈ L \ Lq(Adual), where gW is defined in (9). Furthermore, A has full
rank and m ⩾ n so its columns are linearly independent over Zq and

L \ Lq(Adual) = Lq(Aguess) \ Lq(Adual) = Lq(Aguess) \ qZm. (16)

Assume that we are in the case where W satisfies the above inequalities
and consider the run of Algorithm 2 on (m,nguess, ndual, q,N, (A,b),W ). The
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algorithm tests all possible values of s̃guess ∈ Znguess
q and returns the one that

maximizes S. Let s̃guess ∈ Znguess
q and ∆s̃guess = sguess − s̃guess. First note that

b−Aguesss̃guess = (As+ e mod q)−Aguesss̃guess

= Adualsdual +Aguess∆s̃guess + e mod q.

For any j, let yj (̃sguess) be the value computed at Line 4. Note that

yj (̃sguess) = wT
j (b−Aguesss̃guess)

= wT
j Adualsdual +wT

j (Aguess∆s̃guess + e) + modq

but wj ∈ L⊥q (Adual) so wT
j Adual = 0 mod q, hence

= wT
j (Aguess∆s̃guess + e) mod q.

Let S(̃sguess) be the value computed at Line 5 and check that

S(̃sguess) =
∑N

j=1
cos(2πyj (̃sguess)/q)

=
∑N

j=1
cos(2πwT

j (Aguess∆s̃guess + e)/q) by periodicity of cos

= NgW (Aguess∆s̃guess + e).

There are two cases to distinguish:

– If s̃guess = sguess then S(̃sguess) = NgW (e).
– If s̃guess ̸= sguess then S(̃sguess) = NgW (e + x) where x = Aguess∆s̃guess ∈

Lq(Aguess) = L. But A (and hence Aguess) has full rank by assumption and
∆s̃guess ̸= 0 so x ̸= 0 mod q. It follows by (16), x ∈ Lq(Adual) \ qZm =
L \ Lq(Adual). Hence, by (15), S(̃sguess) < NgW (e) = S(sguess).

This shows that S(sguess) > S(̃sguess) for all s̃guess ̸= sguess. Therefore, Algo-
rithm 2 correctly returns sguess. Note that the entire argument was under the
assumption that (15) holds for W , which we already argue holds with probability

at least 1− qm · 2−Ω(Nδ2).

The naive analysis of the complexity is straightforward and gives

qnguess · poly(m,n) ·N.

By using the DFT trick as we did in the proof of Theorem 4 we can improve the
running time to

poly(m,n) · (N + qnguess).

4.3 Informal Application

Choosing the parameters in order to apply Theorem 5 is not immediately obvi-
ous. In this section, we explain how to do so in a concrete case of interest. In
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order to simplify things, we will neglect some factors and point out the various
lemmas that can be used to make this reasoning completely formal.

Fix n,m and let q be a prime power. Let s ∈ Zn
q be a secret and σe > 0.

Let (A,b) be sample from LWE(m, s, DZq,σe), and e so that b = As + e. By
Corollary 1, we have

∥e∥ ⪅ σe

√
m/2π

with high probability. Let s > 0 to be defined later. We choose δ to be quite
smaller than the smallest possible value ρ1/s(∥e∥), for example

δ = 1
10ρ1/s(σe

√
m/2π) = 1

10e
−ms2σ2

e/2.

We choose N accordingly so that the success probability is very high, i.e.

N =
poly(m) + n log2(q)

δ2
.

By (1), A has full rank with high probability and therefore det(Lq(A)) = qm−n.
By Theorem 3, and the informal Corollary 2, we have

λ1(Lq(A)) ⪆ GH(Lq(A)) = vol(Bm)−1/nq1−m/n ≈
√

m

2πe
q1−n/m.

Let τ = 1
s

√
m/2π. In order to apply Theorem 5, we need to satisfy the conditions

λ1(Lq(A)) ⩾ τ + ∥e∥ and ρ1/s(e)− ρ1/s(λ1(Lq(A))− ∥e∥ − τ) > 2δ.

Since we have chosen δ to be very small compared to ρ1/s(e), those inequalities
are almost equivalent to

λ1(Lq(A)) ⩾ τ + 2∥e∥.

This condition will be satisfied roughly when√
m

2πe
q1−n/m ⩾ 1

s

√
m/2π + 2σe

√
m/2π

that is

q1−n/m ⩾ ( 1s + 2σe)
√
e.

In other words, we have a lower bound on s. We observe that there is a trade-off
between the cost of sampling from DL⊥

q (Adual),s and the cost of running Algo-
rithm 2 since a large value of s:

– makes it easy to sample from DL⊥
q (Adual),s,

– but makes δ = 1
10ρ1/s(σe

√
m/2π) small and therefore N = Ω(δ−2), and the

complexity, gigantic.
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We note that the total complexity of the attack, including the cost of gener-
ating the small dual vectors, is a highly nontrivial function of the parameters.
Consequently, it is not at all clear that the optimal choice of s is the lower
bound identified above. In previous papers on the topic, the optimal choice of
the parameters has usually been obtained by running an optimisation procedure
for concrete LWE instances. Furthermore, the majority of such papers, includ-
ing ours, only provide a complexity up to polynomial factors which makes any
comparison very delicate at best. Since this paper is mostly concerned with the
correctness of the algorithm, we do not attempt to give a closed form formula
for the overall complexity or give any numbers for concrete LWE schemes.

5 Comparison with [17]’s Contradictory Regime

In [17], the authors claim that [26] falls into what they call the “contradictory
regime” and conclude that the result is most likely incorrect. They similarly
conclude the recent derivative works [6,12], as well as [21] are flawed. They
do so by reconstructing the key heuristic claim of [26] and showing, both by
theoretical arguments and experiments, that this heuristic is incorrect. We copy
this heuristic below, slightly adjusted to our notations.

Heuristic 1 ([17, Heuristic Claim 3]). Let Λ ⊆ Rn be a random lattice of

determinant 1, W ⊆ Λ̂ be the set consisting of the N = (4/3)n/2 shortest vectors

of Λ̂. For some σ > 0 and T ⩾ 1, consider tBDD ←$N (0, σ2)n and i.i.d t
(i)
unif ←$

U(Rn/Λ) where i ∈ {1, . . . , T}. Let8 ℓ =
√

4/3 · GH(n), ε = exp(−2π2σ2ℓ2). If
lnT ⩽ Nε2,

Pr
[
fW(tBDD) > fW(t

(i)
unif ) for all i ∈ {1, . . . , T}

]
⩾ 1−O

(
1√
lnT

)
where N (0, σ2) denotes the normal distribution.

In this heuristic, the function fW is the same as hW in Lemma 7, which is
the same as gW defined in (9) up to a factor 1/q in the cosine. There are several
obvious (minor) problems about this heuristic since [26] works with integer lat-
tices and discrete Gaussians. As a first step, we rewrite this heuristic in a way
that is closer to [26] and we also change the notations to ours (see Appendix D.1
for details about the rewrite).

Heuristic 2 ([17, Heuristic Claim 3] adapted). Let A ∈ Zm×n
q with i.i.d.

coefficients. Let L = Lq(A) ⊆ Zm and W ⊆ L⊥q (A) be the set consisting of

the N = (4/3)d/2 shortest vectors of L⊥q (A). For some σe > 0 and T ⩾ 1,

8 We overload the notation GH: in [17], GH(m) corresponds to our GH(L) for L of
volume 1, that is vol(Bm)−1/m.
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consider e ←$ Dn
Zq,σe

and i.i.d t
(i)
unif ←$ U(Zm/L) where i ∈ {1, . . . , T}. Let

ℓ =
√

4/3 ·GH(L), ε = exp(−πσ2
eℓ

2). If lnT ⩽ Nε2,

Pr
[
gW (e) > gW (t

(i)
unif ) for all i ∈ {1, . . . , T}

]
⩾ 1−O

(
1√
lnT

)
.

In [17, Section 4.2 and 4.3], the authors argue by theoretical arguments that
Heuristic 1 does not hold. Although [17] did not define what they mean by
“random lattice” in the heuristic, they in fact use random q-ary lattices in their
experiments and also the theoretical properties of “random lattices” that they
use hold for q-ary lattices. Therefore, their analysis hold also for Heuristic 2.

Their reasoning is as follows: assume that we have a large number of random

candidates (the t
(i)
unif ) and one point close to the lattice L (the point e), then

Heuristic 2 says that we can always distinguish e from the candidates (since
it has maximum value of gW ). The contradiction comes from the fact that in
reality, for T large enough, many of candidates will be closer to L than e and
therefore no algorithm can distinguish them [15]. This gives rise to what [17]
calls the “contradictory regime” where an algorithm would somehow be able to
distinguish indistinguishable distributions.

We first compare this regime to that of our algorithm and we then discuss
the statistical model chosen by [17] in Heuristic 1.

5.1 Almost complementary regimes

In Section 4.3, we have applied our main theorem to a concrete instance and
derived that9 for a typical LWE problem where the ratio m/n is fixed (and
not too close to 0 or 1), q is large and the error follows a discrete Gaussian of
parameter σe, our algorithm works as soon as

q1−n/m ⩾ ( 1s + 2σe)
√
e (17)

where

N =
poly(m) + n log2(q)

δ2
, δ = 1

10e
−ms2σ2

e/2.

In our attack, T is the number of guesses that the algorithm makes, that is
T = qnguess . In order to match [17, page 21], we will choose s so that lnT = Nε2:

lnT = Nε2 ⇔ nguess ln(q) =
poly(m) + n log2(q)

δ2
ε2

⇔ nguess ln(q) = (poly(m) + n log2(q))100e
2ms2σ2

e/2e−2πσ
2
eℓ

2

⇔ nguess ln(q)

100(poly(m) + n log2(q))
= e(ms2−2πℓ2)σ2

e .

Note that nguess < n < m so for large enough value of q and m, the left-hand side
of this expression is smaller than 1 (recall that poly(m) comes from the choice of

9 Under some mild technical simplification to make the computation easier.
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N so we can always make it slightly bigger to artificially increase the denominator
if we want). It follows that we can always choose such that lnT = Nε2 in such
a way that (17) holds (see Appendix D.2) and therefore Theorem 5 ensures that
our algorithm works in this regime.

We will now compare this with [17]’s contradictory regime. This regime,
defined in [17, page 21] is when10

rGH(Lq(Adual)) <

√
m

2π
σe, where r = T−1/m. (18)

Note here that the lattice is Adual because [17] modularizes the algorithm by
separating the lattice in which dual-distinguishing is done, with the part of the
lattice that is enumerated over (see Section 5.2). Indeed, this regime comes from
Heuristic 1 and the lattice in question is the one where dual vectors are generated.

Recall that for the algorithm to work, A and therefore Adual must have full
rank, so det(Lq(Adual)) = qm−ndual . Now observe that

rGH(Lq(Adual))√
m
2πσe

=
T−1/m

√
m
2πeq

1−ndual/m√
m
2πσe

=
q−nguess/mq1−ndual/m

√
eσe

=
q1−(ndual+nguess)/m

√
eσe

.

Recall that n = ndual + nguess so the contradictory regimes corresponds to

q1−n/m < σe

√
e. (19)

Comparing between the working regime (17) and the contradictory one (19),
and recalling that we can choose s as large as we want, we observe that they do
not overlap and the bounds only differ by a factor of two. This suggest that, for
our algorithm, the “theoretically working” regime and the contradictory regime
almost characterize whether the dual attack will work or not. However, the next
section will slightly nuance this conclusion.

5.2 A statistical mismatch

The authors of [17] decided to modularize the algorithm by separating the lattice
in which dual-distinguishing is done (Lq(Adual)) from the part of the lattice that
is enumerated over (Lq(Aguess)). In fact, Heuristic 1 only mentions the dual-
distinguishing and not the enumeration. This however, poses a problem because
it is clear that what [17] calls the “targets” (b−Aguesss̃guess) in our terminology,

t
(i)
unif in Heuristic 1) depends on the particular choice of Aguess. This last point

10 Recall that because of the difference between the normal distribution and the dicrete
Gaussian, we have σ = σe/

√
2π in our analysis, see Appendix D.1.
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does not seem to be discussed at all in [17] and our understanding of the paper
is that the authors decided to model the statistics of the targets in a way that is
independent of the actual choice of Aguess: they chose the uniform distribution
over the fundamental domain of Lq(Adual). As far as we can tell, this choice is
not justified or motivated in the paper. In the case of [26] and our algorithm, the
algorithm exclusively works over integers which is why we propose Heuristic 2
as an integer-version of Heuristic 1.

A careful look at Heuristic 2 reveals however that this statistical model does
not seem to match what happens in our algorithm:

– In Heuristic 2, t
(i)
unif is sampled uniformly in Zm/L.

– In reality, t
(i)
unif = e+x(i) where x(i) can be any vector in L′ \ qZm where L′

is another random q-ary lattice, chosen independently of L. In our algorithm,
L = Lq(Adual) and L′ = Lq(Aguess).

Indeed, a key point in the proof of Theorem 5 is to show that points of the form
e + x(i) as described are always far away from L, a fact that does not hold for
completely uniform targets. As a result, with high probability over the choice
of A, the targets (except for the correct guess) are all bounded away from 0 in
the dual lattice. In fact, one can see that the mismatch is even deeper since the
argument of [17] is statistical in nature: the contradiction comes from the fact
that if we try too many targets, we will eventually get a false-positive. On the
other hand, our algorithm and analysis is not statistical: for the vast majority
of choices of A, all targets satisfy the bound unconditionally and we can safely
look at all targets without the risk of any false-positive.

In conclusion of this section, it seems that the contradictory regime of [17]
nicely complements the working regime of our algorithm. On the other hand,
the statistical model that underlines this contradictory regime does not seem
to correctly model what happens in our algorithm. Without more explanations
about why the authors [17] chose this uniform model, we are unsure whether this
regime alignment is specific to our algorithm or if there a deeper reason behind
it.

6 Open questions

We have analyse formally a dual attack in the spirit of [26]. However, as noted in
[17], the algorithm used by [26] produces many short dual vectors in a sublattice
L′′ of L⊥q (Adual) (instead of the entire L⊥q (Adual)). In other words, W is roughly
the set of vectors of L′′ in a ball and therefore gW does not exactly measure the
distance to L but rather to a more complicated lattice. This fact makes the
analysis of gW considerably more challenging and we believe that more research
is needed to understand how this affects the choice of the parameters.

Another issue that we have avoided is that of modulus switching. Indeed,
while [26] claims that this techniques bring significant improvements in the
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complexity, [17] claims that geometric arguments contradicts this statement.
We leave as an open problem the study of a modification of our algorithm that
would include modulus switching. We believe that a formal analysis would be
the best way to resolve this issue. A priori, we do not see any major reason why
this could not be analysed formally but it may prove to be a nontrivial technical
challenge due to the effects of rounding modulo p on the uniform distribution
modulo q. We note in this direction that the approach of [12] of using lattice
codes instead of modulus switching might be a better fit for a formal analysis.
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A Details on the comparison with [27]

In this section, we try to compare our approach (and more generally lattice dual
attacks) with the approach of [27]. As much as possible, we will try to express
things with our notations.

The starting point of the “coding dual attack” is to consider a code C of
dimension k and length n with parity matrix H. Following our notation, we will
instead use n to denote the dimension and m the ambient dimension, i.e. k → n
and n → m. In our language, this corresponds to a lattice L = L⊥q (H) ⊆ Zm

for some H ∈ Zm×(m−n)
q . We get a vector b = c+ e with c ∈ L and e sampled

according to some distribution and the goal is to recover c. Let h be a parity-
check vector of L, i.e.11 h ∈ qL̂. Note that since L = L⊥q (H) then there exists a

matrix A ∈ Zm×n
q such that qL̂ = Lq(A). Therefore h ∈ Lq(A).

The idea of the attack is to partition the coordinates {1, . . . ,m} into two sets
P and N . Then observe that

⟨b,h⟩ = ⟨e,h⟩ = ⟨eP ,hP⟩+ ⟨eN ,hN ⟩.

Therefore, ⟨b,h⟩ can be seen an “LWE” (LPN) sample given by

(a, ⟨a,u⟩+ e) where


a = hP ,

u = eP ,

e = ⟨eN ,hN ⟩.

The idea is that by generating many parity-check vectors h, we can obtain
many “LWE” samples for the same secret u. The attack then continues using
the so-called RLPN (or ISD) algorithm to recover the secret u = eP and then
recursively solve the rest of the problem in a much lower dimension.

Superficially, it may look like the partition between P and N is similar to
our splitting between sdual and sguess, and the corresponding split of the matrix
A. In the details, however, this is quite different since P and N correspond to
a “horizontal/row” split of the matrix A whereas lattice dual attack perform
a “vertical/column” split of A. Furthermore, the distribution of the “LWE”
samples is completely non-standard. Since hP and hN are components of a
single parity check vector h ∈ Lq(A):

– the components of a are not independent and not uniform,
– a and e are not independent.

In particular, it looks like [27, Proposition 1] is needed to fix the dependency
introduced by this particular approach. By comparison, such a problem does not
appear in our approach and therefore we do not need a similar proposition.

In conclusion, it looks like [27], if applied to lattices, might be a completely
different kind of “dual attack” on LWE, probably quite different from the existing
ones. In particular, we are not sure where [27, Proposition 1] would fit in existing
attacks.
11 The factor q is necessary to keep h an integer vector.
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B Basic dual attack: proof of Theorem 4

Lemma 11. Let q be a prime power, k ∈ N and f : Zk
q → Zq be linear map. If

f is not the zero map then f(U(Zq)) = U(Zq).

Proof. Since q be a prime power, Zq is a field. Since f is not the zero map, f(Zq)
has at least dimension one, therefore f(Zq) = Zq. But then for any u ∈ Zq,
f−1({u}) has size exactly | ker f |. It follows that for any u ∈ Zq,

Prx←$U(Zk
q )
[f(x) = u] =

|f−1({u})|
|Zk

q |
=
| ker f |
qk

is independent of u which proves the result. ⊓⊔

Proof (Proof of Theorem 4). Denote by B the algorithm from Black box 1, which
we assume to be deterministic (otherwise we would need to add the random
bits to the probability below which can be done easily). By the algorithm and

Equation (5), xj = B(A(j)
dual) ∈ L⊥q (A

(j)
dual). Furthermore, by Black box 1,

E
Adual←$Zm×ndual

q

[
∥B(Adual)∥2

]
⩽ ℓSV(m,β, qndual)2 (20)

Furthermore, note that since qZm ⊆ L⊥q (A
(j)
dual), we can always make sure that

the coordinates of xj are in12 {−⌊q/2⌋, . . . , ⌊q/2⌋}.
Denote by A the algorithm from Algorithm 1. Again we assume that A is

deterministic for simplicity, i.e. the loop looks at the elements in deterministic
order. For any s̃guess, let

yj (̃sguess) = xT
j (b

(j) −A(j)
guesss̃guess), S(̃sguess) =

N∑
j=1

cos(2πyj (̃sguess)/q)

be the values computed at Lines 5 and 6.
Let s̃1, . . . , s̃qnguess be the order in which the algorithm tries the values of

s̃guess. Let M be the index such that s̃M = sguess. Therefore, the algorithm
returns the correct value if the test at Line 7 fails during the first M − 1 itera-
tions of the loop, and succeeds at the M th iteration. In other word, the success
probability of the algorithm is

p := Pr(A(j),bj)←$LWE(m,s,DZq,σe )

[∧M−1

j=1
S(̃sj) < Nδ

∧
S(sguess) ⩾ Nδ

]
= 1− PrA(j),bj

[∨M−1

j=1
S(̃sj) ⩾ Nδ

∨
S(sguess) < Nδ

]
⩾ 1−

∑M−1

j=1
PrA(j),bj

[S(̃sj) ⩾ Nδ]− Pr(A(j),bj)[S(sguess) < Nδ]

= q(sguess)−
M−1∑
j=1

q(s̃j)

12 This is a technical condition, we obviously expect the coordinates to be much smaller
than that.
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where for any s̃ ∈ Znguess
q ,

q(s̃guess) := Pr(A(j),bj)←$LWE(m,s,DZq,σe
[S(̃sguess) ⩾ Nδ].

Recall that by definition of the LWE distribution, b(j) = A(j)s + e(j) where
e(j) ←$ DZq,σe , and A(j) ←$ U(Zm×n

q ). Therefore,

yj (̃sguess) = xT
j (b

(j) −A(j)
guesss̃guess)

= xT
j (A

(j)s+ e(j) −A(j)
guesss̃)

= xT
j (A

(j)
dualsdual + e(j) +A(j)

guess(sguess − s̃))

= xT
j (e

(j) +A(j)
guess(sguess − s̃guess))

since xT
j A

(j)
dual = 0 by definition of xj . Recall, as this is crucial for the proof,

that xj = B(A(j)
dual) only depends on A

(j)
dual which is independent of A

(j)
guess. We

now analyse two cases. To emphasize the various (in)dependence between the
variables, the coming calculations will be extremely detailed.

• If s̃guess ̸= sguess then for every j,

EA(j),e(j) [cos(2πyj (̃sguess)/q)]

= ℜ
(
EA(j),e(j) [exp(2iπyj (̃sguess)/q)]

)
= ℜ

(
EA(j),e(j)

[
exp(2iπxT

j (e
(j) +A(j)

guess(sguess − s̃guess))/q)
])

= ℜ
(
EA(j),e(j)

[
exp(2iπxT

j e
(j))/q) exp(2iπxT

j A
(j)
guess(sguess − s̃guess)/q)

])
but A

(j)
dual and A

(j)
guess are independent so

= ℜ

(
E
A

(j)
dual

[
E
A

(j)
guess,e(j)

[
exp(2iπB(A(j)

dual)
Te(j))/q)

× exp(2iπB(A(j)
dual)

TA
(j)
guess(sguess − s̃guess)/q)

]])
but A

(j)
guess and e(j) are independent so

= ℜ

E
A

(j)
dual

Ee(j)

[
exp(2iπB(A(j)

dual)
Te(j))/q)

]
×E

A
(j)
guess

[
exp(2iπB(A(j)

dual)
TA

(j)
guess(sguess − s̃guess)/q)

]
= ℜ

E
A

(j)
dual

Ee(j)

[
exp(2iπB(A(j)

dual)
Te(j))/q)

]
×E

A
(j)
guess

[
exp(2iπfB(A(j)

dual)
(A

(j)
guess)/q)

]
where for any nonzero x ∈ Zn

q , we let fx : Aguess 7→ xTAguess(̃s− sguess) which
is a linear map and not the zero-map since s̃guess ̸= sguess; but then for any

fixed A
(j)
dual, fB(A(j)

dual)
(U(Zm×nguess

q )) = U(Zq) by Lemma 11 and since A
(j)
guess ←$

U(Zm×nguess
q ) is independent of A

(j)
dual,

= ℜ
(
E
A

(j)
dual

[
Ee(j)

[
exp(2iπB(A(j)

dual)
Te(j))/q)

]
Eα←$U(Zq)[exp(2iπα/q)]

])
= 0
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since Eα←$U(Zq)[exp(2iπα/q)] = 0 by Lemma 5. It follows that

E[S(s̃guess)] =
N∑
j=1

E[cos(2πyj (̃sguess)/q)] =
N∑
j=1

Ey←$U(Zq)[cos(2πy/q)] = 0.

On the other hand, note that −1 ⩽ cos(2πyj (̃sguess)/q) ⩽ 1 for all j. Further-
more, note that the yj (̃sguess) are independent since the (A

(j), e(j)) are indepen-
dent. Therefore, we can apply Theorem 1 to get for any δ > 0 that

q(s̃guess) = Pr(A(j),b(j))[S(s̃guess) ⩾ Nδ] ⩽ exp

(
− 2(Nδ)2

N · (1− (−1))2

)
= exp

(
−Nδ2

2

)
when s̃guess ̸= sguess.

• If s̃ = sguess then for every j,

EA(j),e(j) [cos(2πyj(sguess)/q)]

= ℜ
(
EA(j),e(j) [exp(2iπyj(sguess)/q)]

)
= ℜ

(
EA(j),e(j)

[
exp(2iπxT

j e
(j)/q)

])
= ℜ

(
EA(j),e(j)

[
exp(2iπB(A(j)

dual)
Te(j)/q)

])
= ℜ

(
EA(j)

[
Ee(j)

[
exp(2iπB(A(j)

dual)
Te(j)/q)

]])
but the coordinates of e(j) are independently sampled from DZq,σe

,

= ℜ

(
EA(j)

[
m∏

p=1

Ee←$DZq,σe

[
exp(2iπB(A(j)

dual)pe/q)
]])

but note that each expected value in the product is real and lower-bounded by
Lemma 5,

⩾ EA(j)

[
m∏

p=1

exp
(
−πσ2

eB(A
(j)
dual)

2
p/q

2
)]

⩾ EA(j)

[
exp

(
−πσ2

e

∥∥∥B(A(j)
dual)

∥∥∥2/q2)]
but the function X 7→ exp

(
−πσ2

eX/q2
)
is convex so by Jensen’s inequality,

⩾ exp

(
−πσ2

e EA(j)

[∥∥∥B(A(j)
dual)

∥∥∥2]/q2)
but A

(j)
dual and A

(j)
guess are independent so by (20)

⩾ exp
(
−πσ2

eℓSV(m,β, qndual)2/q2
)

= ε
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where ε is defined in the statement of Theorem 4. It follows that

E[S(sguess)] =
N∑
j=1

E[cos(2πyj(sguess)/q)] ⩾ Nε.

On the other hand, note that −1 ⩽ cos(2πyj(sguess)/q) ⩽ 1 for all j. Further-
more, note that the yj(sguess) are independent since the (A

(j), e(j)) are indepen-
dent. Therefore,

q(sguess) = Pr(A(j),b(j))[S(sguess) ⩾ Nδ]

= 1− Pr(A(j),b(j))[S(sguess) < Nδ]

= 1− Pr(A(j),b(j))[Nε− S(sguess) > N(ε− δ)]

= 1− Pr(A(j),b(j))[E[S(sguess)]− S(sguess) > N(ε− δ)]

⩾ 1− exp

(
− 2(N(ε− δ))2

N · (1− (−1))2

)
by Theorem 1 applied
to − S(sguess) when ε > δ

= 1− exp

(
−N(ε− δ)2

2

)
.

Putting everything together, we get that

p ⩾ 1− exp

(
−N(ε− δ)2

2

)
− (M − 1) exp

(
−Nδ2

2

)
and we conclude by nothing that M ⩽ qnguess .

The naive analysis of the complexity is straightforward:

– the first loop has complexity N · (poly(m,n) + TSV(m,β, qn),
– the second loop has complexity qnguess ·N · poly(m,n),

hence a total of

N · poly(m,n) · (TSV(m,β, qn) + qnguess).

By using the DFT trick of [21], we can compute all scores S using a DFT for a
total cost of N + qnguess instead of N · qnguess so the final cost is

poly(m,n) · (N · TSV(m,β, qn) + qnguess).

⊓⊔

C Random q-ary lattices

As usual, an (n, k, q) (linear) code is a k-dimensional subspace of Zn
q . For any

subset E of Zn
q , we denote by E∗ the set {e ∈ E : e ̸= 0} of nonzero elements.

For any matrix A ∈ Zn×k
q , we let CA = AZn

q =
{
x ∈ Zn

q : ∃s ∈ Zk
q : x = As

}
. For

any matrix B ∈ Zn×(n−k)
q , we let C⊥B =

{
x ∈ Zn

q : BTx = 0
}
. It follows almost

from the definition that such codes satisfy the following averaging lemma.
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Lemma 12. Let f : Zn
q → R, then

E
B∼U(Zn×(n−k)

q )

 ∑
v∈(C⊥

B )∗

f(v)

 = qk−n
∑

v∈(Zn
q )

∗

f(v).

More generally, let 1 ⩽ p ⩽ n and f : (Zn
q )

p → R, then

E
B∼U(Zn×(n−k)

q )

[∑[
v1, . . . , vp ∈ C⊥B

lin indep

]
f(v1, . . . , vp)

]
= q(k−n)p

∑[
v1, . . . , vp ∈ Zn

q

lin indep

]
f(v1, . . . , vp).

Proof. For any v ∈ Zn
q , let Nv = |

{
B ∈ Zn×(n−k)

q : v ∈ C⊥B

}
. We observe that

if v ̸= 0 then Nv = qn(n−k)−n+k. Indeed, let ϕ : Zn×(n−k)
q → Zn−k

q defined by

ϕ(B) = BT v. If v ̸= 0 then rkϕ = n−k and therefore dimkerϕ = n(n−k)−rkϕ.
The result follows immediately by writing

E
B∼U(Zn×(n−k)

q )

 ∑
v∈(C⊥

B )∗

f(v)

 =
1

|Zn×(n−k)
q |

∑
v∈(Zn

q )
∗

Nvf(v).

The more general result follows the same proof by considering the map ϕ :

Zn×(n−k)
q → (Zn−k

q )p defined by

ϕ(B) =
(
BT v1, . . . , B

T vp
)

which has rank (n− k)p for any v1, . . . , vp are linearly independent. ⊓⊔

Theorem 6. Let 1 ⩽ p ⩽ n and f : (Zn
q )

p → R, then

E
B∼U(Zn×(n−k)

q )

 ∑
c1∈C⊥

B

· · ·
∑

cp∈C⊥
B

f(c1, . . . , cp)


=

p∑
r=0

q(k−n)r
∑[

c1, . . . , cp ∈ Zn
q

rk(c1, . . . , cp) = r

]
f(c1, . . . , cp).

Proof. Let 0 ⩽ r ⩽ p and let

σr = EB

[∑[
c1, . . . , cp ∈ C⊥B
rk(c1, . . . , cp) = r

]
f(c1, . . . , cp)

]
.

We can write

EB

 ∑
c1∈C⊥

B

· · ·
∑

cp∈C⊥
B

f(c1, . . . , cp)

 =

p∑
r=0

σr
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so it suffices to compute each σr. Note that if c1, . . . , cp ∈ C⊥B are such that
rk(c1, . . . , cp) = r then r among them must be linearly independent and the
others are in the span of those. Let G be the set of permutations on {1, . . . , p}.
Then by Lemma 12,

σr = EB

[∑[
c1, . . . , cr ∈ C⊥B

lin indep

]∑[
cr+1, . . . , cp ∈ span(c1, . . . , cr)

]∑
σ∈G

f(cσ(1), . . . , cσ(p))

]

= q(k−n)p
∑[

c1, . . . , cr ∈ Zn
q

lin indep

]∑[
cr+1, . . . , cp ∈ span(c1, . . . , cr)

]∑
σ∈G

f(cσ(1), . . . , cσ(p))

= q(k−n)r
∑[

c1, . . . , cp ∈ Zn
q

rk(c1, . . . , cp) = r

]
f(c1, . . . , cp).

⊓⊔

C.1 Proof of Lemma 6

Proof. Let n, k ∈ N and q be a prime power. Let L be a q-ary lattice and let

A(L) =
{
A ∈ Zn×k

q : L = Lq(A)
}
, A⊥(L) =

{
B ∈ Zn×(n−k)

q : L = L⊥q (B)
}
.

By definition of L, L mod q := {x mod q : x ∈ L} is a linear subspace of Zn
q

of dimension 1 ⩽ r ⩽ n. We denote this dimension by rkZq (L) := r. Now
observe that by definition, if L = Lq(A) then Lq(A) mod q = AZn

q and therefore

rk(A) = rkZq
(L). Similarly, if L = L⊥q (B) then L mod q = ker(BT ) and therefore

rk(B) = rk(BT ) = dim(Im(BT )) = n− rkZq
(L). Now let

F =
{
L : qZn ⊆ L ⊆ Zn, rkZq = k

}
.

Then

PrL←$Ln,k,q
[L ∈ F ] = PrL←$Ln,k,q

[
rkZq (L) = k

]
= PrA←$U(Zn×k

q )

[
rkZq (Lq(A)) = k

]
by definition

= PrA←$U(Zn×k
q )[rk(A) = k] by the analysis above

⩾ 1− kqk−1−n by (1).

Similarly,

PrL←$L⊥
n,k,q

[L ∈ F ] = PrL←$L⊥
n,k,q

[
rkZq

(L) = k
]

= Pr
B←$U(Zn×(n−k)

q )

[
rkZq

(L⊥q (B)) = k
]

by definition

= Pr
B←$U(Zn×(n−k)

q )
[rk(B) = n− k] by the analysis above

⩾ 1− (n− k)qk−1 by (1).
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Now observe that

dTV(L⊥n,k,q,Ln,k,q)

=
1

2

∑
L

∣∣L⊥n,k,q(L)− Ln,k,q(L)
∣∣

⩽
1

2

∑
L∈F

∣∣L⊥n,k,q(L)− Ln,k,q(L)
∣∣+ 1

2

∑
L/∈F

(L⊥n,k,q(L) + Ln,k,q(L))

⩽
1

2

∑
L∈F

∣∣L⊥n,k,q(L)− Ln,k,q(L)
∣∣+ 1

2
PrL←$Ln,k,q

[L /∈ F ]

+
1

2
PrL←$L⊥

n,k,q
[L /∈ F ]

⩽
1

2

∑
L∈F

∣∣L⊥n,k,q(L)− Ln,k,q(L)
∣∣+ kqk−1−n + (n− k)qk−1. (21)

Furthermore, we observe that

∑
L∈F

∣∣L⊥n,k,q(L)− Ln,k,q(L)
∣∣ = ∑

L∈F

∣∣∣∣ |A(L)|qnk
− |A

⊥(L)|
qn(n−k)

∣∣∣∣ .
We now claim that for L ∈ F , |A(L)|

qnk − |A
⊥(L)|

qn(n−k) is a constant independent of L.

To see that, first observe that if L = Lq(A) for some A ∈ Zn×k
q of full rank (i.e.

rk(A) = k) then the columns of A form a basis of L mod q. Therefore, A(L)
is simply is the set of all basis of L mod q, a k-dimensional subspace, which is
well-known to have cardinal

|A(L)| = (qk − 1)(qk − q) · · · (qk − qk−1).

Similarly, if L = L⊥q (B) for some B ∈ Zn×(n−k)
q of full rank (i.e. rk(B) = n− k)

then the columns of B form a basis of the orthogonal subspace of L mod q which
has dimension n − k. Therefore, A⊥(L) is simply is the set of all basis of the
orthogonal subspace of L mod q, a n − k-dimensional subspace, which is well-
known to have cardinal

|A⊥(L)| = (qn−k − 1)(qn−k − q) · · · (qn−k − qn−k−1).

We can then notice that F is in fact isomorphic to the set of all k-dimensional
subspaces of Zn

q since a lattice L of F is uniquely identified by L mod q which is
a k-dimensional subspace, and every such subspace can be trivially realized by
Lq(A) where A is a basis. Therefore

|F| = (qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qn − q) · · · (qk − qk−1)
.
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It follows that∑
L∈F

∣∣L⊥n,k,q(L)− Ln,k,q(L)
∣∣

= |F|

∣∣∣∣∣ 1

qnk

k−1∏
i=0

(qk − qi)− 1

qn(n−k)

n−k−1∏
i=0

(qn−k − qi)

∣∣∣∣∣
=

(qn − 1)(qn − q) · · · (qn − qk−1)

qnk
·

∣∣∣∣∣1− q−n(n−2k)
∏n−k−1

i=0 (qn−k − qi)∏k−1
i=0 (q

k − qi)

∣∣∣∣∣
⩽

∣∣∣∣∣1− q−n(n−2k)
∏n−k−1

i=0 (qn−k − qi)∏k−1
i=0 (q

k − qi)

∣∣∣∣∣ .
There are two cases to consider.
•If k ⩽ n− k, then n− 2k ⩾ 0 and∏n−k−1

i=0 (qn−k − qi)∏k−1
i=0 (q

k − qi)
=

∏n−k−1
i=n−2k(q

n−k − qi)∏k−1
i=0 (q

k − qi)

n−2k−1∏
i=0

(qn−k − qi)

=

∏k−1
j=0 (q

n−k − qn−2k+j)∏k−1
i=0 (q

k − qi)

n−2k−1∏
i=0

(qn−k − qi)

=

∏k−1
j=0 (q

k − qj)∏k−1
i=0 (q

k − qi)
q(n−2k)k

n−2k−1∏
i=0

(qn−k − qi)

= q(n−2k)k
n−2k−1∏

i=0

(qn−k − qi).

And therefore∣∣∣∣∣1− q−n(n−2k)
∏n−k−1

i=0 (qn−k − qi)∏k−1
i=0 (q

k − qi)

∣∣∣∣∣
=

∣∣∣∣∣1− q(n−2k)(k−n)
n−2k−1∏

i=0

(qn−k − qi)

∣∣∣∣∣
=

∣∣∣∣∣1−
n−2k−1∏

i=0

(1− qi−n+k)

∣∣∣∣∣
= 1−

n−2k−1∏
i=0

(1− qi−n+k)

⩽
n−2k−1∑

i=0

qi−n+k by Weierstrass product inequality

⩽ q(n−2k)−n+k

= q−k. (22)
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•If k ⩾ n− k, then 2k − n ⩾ 0 so exactly the same argument yields∏n−k−1
i=0 (qn−k − qi)∏k−1

i=0 (q
k − qi)

=

∏n−k−1
i=0 (qn−k − qi)∏k−1

i=2k−n(q
k − qi)

∏2k−n−1
i=0 (qk − qi)

=

∏n−k−1
i=0 (qn−k − qi)∏n−k−1

j=0 (qk − q2k−n+j)
∏2k−n−1

i=0 (qk − qi)

=

∏n−k−1
i=0 (qn−k − qi)

q(2k−n)(n−k)
∏n−k−1

j=0 (qn−k − qj)
∏2k−n−1

i=0 (qk − qi)

=
q(2k−n)(k−n)∏2k−n−1
i=0 (qk − qi)

.

And therefore∣∣∣∣∣1− q−n(n−2k)
∏n−k−1

i=0 (qn−k − qi)∏k−1
i=0 (q

k − qi)

∣∣∣∣∣
=

∣∣∣∣∣1− qk(2k−n)∏2k−n−1
i=0 (qk − qi)

∣∣∣∣∣
=

∣∣∣∣∣1− 1∏2k−n−1
i=0 (1− qi−k)

∣∣∣∣∣
=

1∏2k−n−1
i=0 (1− qi−k)

− 1

⩽
1

1−
∑2k−n−1

i=0 qi−k
− 1 by Weierstrass product inequality

=
q−k(q2k−n − 1)

q + q−k − 1− qk−n
after calculation

⩽
qk−n

q + q−k − 1− qk−n
. (23)

Recall that k ⩽ n− k so if q ⩾ 3 then the denominator is at least 1 so the above
quantity is less than qk−n. If q = 2 then the denominator becomes 1+2−k−2k−n
which can be seen to be at least 1/2. Therefore in all cases, this quantity is
bounded by 2qk−n.

Putting everything together, it follows from (21), (22) and (23) that

dTV(L⊥n,k,q,Ln,k,q) ⩽ 1
2 max(q−k, 2qk−n) + kqk−1−n + (n− k)qk−1

⊓⊔

C.2 Proof of Theorem 2

Proof. Recall that to each matrix B ∈ Zn×(n−k)
q , we associated the code C⊥B ={

x ∈ Zn
q : BTx = 0

}
. We now let Λ⊥B =

{
x ∈ Zn : (x mod q) ∈ C⊥B

}
: this is
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clearly a lattice and in fact, L⊥q (B) = Λ⊥B . In what follows, for any set X we
write f(X) for

∑
x∈X f(x). We can therefore write

EL∼L⊥
n,k,q

[∑
x∈L∗

f(x)

]
= E

B∼U(Zn×(n−k)
q )

 ∑
v∈(Λ⊥

B)∗

f(v)


= EB

f((qZn)∗) +
∑

v∈(C⊥
B )∗

f(v + qZn)


where the last step follows because Λ⊥B = qZn + C⊥B . Using Lemma 12, we get

EL

[∑
x∈L∗

f(x)

]
= f((qZn)∗) + qk−n

∑
v∈(Zn

q )
∗

f(v + qZn)

= (1− qk−n)f((qZn)∗) + qk−n
∑

v∈(Zn)∗

f(v).

⊓⊔

C.3 Proof of Theorem 3

Proof. Let 0 < r ⩽ q and let fr be the indicator function of Bn(r). Note that if
x ∈ q(Zn)∗ then ∥x∥ ⩾ q so x /∈ Bn(r) and fr(x) = 0. By Theorem 2,

µ := EL←$L⊥
n,k,q

[|L∗ ∩Bn(r)|]

= EL←$L⊥
n,k,q

[∑
x∈L∗

fr(x)

]
=
(
1− qk−n

) ∑
v∈q(Zn)∗

fr(v) + qk−n
∑

x∈(Zn)∗

fr(x)

= qk−n
(
|BZ

n(r)| − 1
)
.

Similarly,

µ2 := EL←$L⊥
n,k,q

[
|L∗ ∩Bn(r)|2

]
= EL←$L⊥

n,k,q

(∑
x∈L∗

fr(x)

)2


= EL←$L⊥
n,k,q

 ∑
x,y∈L∗

fr(x)fr(y)


=

∑
x,y∈(Zn)∗

q(k−n)rk(x,y)fr(x)fr(y)
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where rk := rkZn
q
. We now consider the various cases that can occur. If x ∈ q(Zn)∗

then fr(x) = 0 so this term is zero, and similarly if y ∈ q(Zn)∗. Therefore all
nonzero terms must have rk(x) = rk(y) = 1 and rk(x,y) ∈ {1, 2}. For i ∈ {1, 2},
let

Si = {(x,y) : x,y /∈ qZn and rk(x,y) = i}.

Let (x,y) ∈ S1, then there exists u ∈ Zq such that y = ux mod q, and u ̸= 0
since a shifted sphere of radius r ⩽ q cannot only contain at most point of qZn.
In other words,

S1 =
{
(x, ux+ qz) : x /∈ qZn, u ∈ Z∗q , z ∈ Zn

}
.

Assume that fr(x) ̸= 0, then ∥x∥ ⩽ r. Let u ∈ Z∗q , then |{ux+ qz : z ∈ Zn} ∩
Bn(r)| ⩽ 1 since r ⩽ q. It follows that |S1| ⩽ (q − 1)(|BZ

n(r)| − 1). On the other
hand, |S2| ⩽ (|BZ

n(r)| − 1)2. It follows that

µ2 = |S1|qk−n + |S2|q2(k−n)

⩽ qk−n(q − 1)(|BZ
n(r)| − 1) + q2(k−n)(|BZ

n(r)| − 1)2

= qk−n(q − 1)(|BZ
n(r)| − 1) + µ2.

It follows that

σ2 := VL←$L⊥
n,k,q

[|L∗ ∩Bn(r)|] = µ2 − µ2 ⩽ qk−n(q − 1)(|BZ
n(r)| − 1).

We can now apply the above results to study λ1 of a random lattice. For any
lattice L, let Xr(L) := |L∗ ∩ Bn(r)|. First note that for any radius r > 0,
λ1(L) ⩽ r if and only if Xr(L) ⩾ 2 since as soon as there is one point in the ball,
there are at least two (a vector and its opposite). Therefore we need to study
the probability that Xr(L) ⩾ 2. Choose r such that µ ⩽ 1, which is equivalent
to

|BZ
n(r)| − 1 ⩽ qn−k, and therefore implied by |BZ

n(r)| ⩽ qn−k.

Then observe that

PrL←$L⊥
n,k,q

[Xr(L) ⩾ 2] = PrL←$L⊥
n,k,q

[Xr(L)− µ ⩾ 2− µ]

⩽ PrL←$L⊥
n,k,q

[|Xr(L)− µ| ⩾ 2− µ]

⩽

(
σ2

2− µ

)2

by Chebyshev’s inequality

⩽ σ4

⩽ q2(k−n)(q − 1)2(|BZ
n(r)| − 1)2.

⊓⊔
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C.4 Proof of Corollary 2

Proof. Note that by Section 2.5, if L is sampled according to L⊥n,k,q then L =

Lq(A) for some A ∈ Zn×(n−k)
q and therefore det(L) ⩽ qn−k. As a result,

GH(L) = det(L)1/n vol(Bn)
−1/n ⩽ r := q1−k/n vol(Bn)

−1/n.

Note that since α ⩽ 1, αr is such that

|BZ
n(αr)| ≈ vol(Bn(αr)) = αnrn vol(Bn) = αn det(L) ⩽ αnqn−k ⩽ qn−k.

We can therefore apply Theorem 3 to αr to get that

PrL←$L⊥
n,k,q

[λ1(L) ⩽ αr] ⩽
(
q1+k−n|BZ

n(αr)|
)2

= (qαn)
2
.

By Lemma 6, the distributions L⊥n,k,q and Ln,k,q are very close and therefore the
same holds for Ln,k,q. ⊓⊔

D Comparison with [17]

D.1 Rewrite of Heuristic 1 into Heuristic 2

Similarly to our algorithm Algorithm 2, and as was made clear by the analysis of
Section 4.2, [26] only works with q-ary lattices. Therefore we can specialize the
heuristic to L = Lq(A) where L is random in the sense that A is sampled from
U(Zm×n

q ). The dual of L is 1
qL
⊥
q (A) by Section 2.5. In a similar way to what we

did in the proof of Lemma 8, we can “integrate” the 1/q factor directly in the
score function which because gW defined in (9) and therefore the set W becomes
a subset of L⊥q (A). The target tBDD corresponds to the error e of our algorithm
and is sampled according to a discrete Gaussian DZq,σe

instead of a normal
distribution. Care must be taken at this point since the normalization factor in
the exponent of the normal distribution is 1/2 whereas it is π for the discrete
Gaussian. This means that DZq,σe

corresponds to N (0, σ2) where σ = σe/
√
2π.

We reflect this change in value of ε. Finally, note that Heuristic 1 assumes that
L has determinant 1 which is clearly not the case of Lq(A). Instead of rescaling
L, we observe that the only place where this makes a difference is the Gaussian
Heuristic: [17] defines GH(m) as the typical value for a m-dimensional lattice of
volume 1. In contrast, we define GH(L) as the typical value for a m-dimensional
lattice of volume det(L).

D.2 Analysis of the value of s

Recall that we choose s such that

nguess ln(q)

100(poly(m) + n log2(q))
= e(ms2−2πℓ2)σ2

e
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Note that the left-hand side is less than 1 and so its value is 1/P where P is a
polynomial in m,n and ln(q). Hence, we need to take

s2 = 2
πℓ2

m
+
− ln(P )

mσ2
e

=
2π

m
·

(√
4

3

√
m

2πe
q1−n/m

)2

+
− ln(P )

mσ2
e

=
4

3e
q2(1−n/m) +

− ln(P )

mσ2
e

Since P is polynomial, the second term of the right-hand side is negligible com-
pared to the first one and therefore

s ≈
√

4

3e
q1−n/m.

We want to verify that it satisfies (17), that is

q1−n/m ⩾ ( 1s + 2σe)
√
e.

In our choice of parameters, n = 2m/3 so 1−n/m = 1/3 and q is large so q1−n/m

is much larger that 2σe
√
e. Hence to satisfy the condition it is essentially enough

to satisfy
s ⩾
√
eqn/m−1

which is trivially satisfied since s is very large (multiple of q1−n/m) and the
right-hand side if very small.

43


	Provable Dual Attacks on Learning with Errors
	1 Introduction
	1.1 Contributions
	1.2 Comparison with DP23's Contradictory Regime
	1.3 Organisation of the paper

	2 Preliminaries
	2.1 Probabilities
	2.2 LWE
	2.3 Discrete Gaussian distribution
	2.4 Distinguisher
	2.5 Lattices
	2.6 Short vector sampling

	3 Basic dual attack
	4 Modern dual attack
	4.1 Intuition
	4.2 Formal Analysis
	4.3 Informal Application

	5 Comparison with DP23's Contradictory Regime
	5.1 Almost complementary regimes
	5.2 A statistical mismatch

	6 Open questions
	A Details on the comparison with cryptoeprint:2023/1460
	B Basic dual attack: proof of Theorem 4
	C Random q-ary lattices
	C.1 Proof of Lemma 6
	C.2 Proof of Theorem 2
	C.3 Proof of Theorem 3
	C.4 Proof of Corollary 2

	D Comparison with DP23
	D.1 Rewrite of Heuristic 1 into Heuristic 2
	D.2 Analysis of the value of s



