
Kirby: A Robust Permutation-Based PRF
Construction

Charlotte Lefevre1,2, Yanis Belkheyar1 and Joan Daemen1

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
firstname.lastname@ru.nl

2 CSEM, Switzerland

Abstract. We present a construction, called Kirby, for building a variable-input-length
pseudorandom function (VIL-PRF) from a b-bit permutation. For this construction we
prove a tight bound of b/2 bits of security on the PRF distinguishing advantage in the
random permutation model and in the multi-user setting. Similar to full-state keyed
sponge/duplex, it supports full-state absorbing and additionally supports full-state
squeezing, where the latter can at most squeeze b − c bits per permutation call for a
security level of c bits. This advantage is especially relevant on constrained platforms
when using a permutation with small width b. For instance, for b = 256 at equal
security strength the squeezing rate of Kirby is twice that of keyed sponge/duplex.
We define a simple mode on top of Kirby that turns it into a deck function with
parallel expansion. This deck function is suited for lightweight applications in the
sense that it has a low memory footprint. Moreover, for short inputs it can be used
for low-latency stream encryption: the time between the availability of the input
and the keystream is only a single permutation call. Another feature that sets Kirby
apart from other constructions is that leakage of an intermediate state does not allow
recovering the key or earlier states.
Keywords: permutation-based cryptography · provable security · multi-user security
· PRF · lightweight · deck function

1 Introduction
Permutation-based cryptography has become increasingly popular in the last years. Most of
the proposed schemes make use of the sponge [BDPV07], duplex [BDPA11] and monkeydu-
plex constructions [BDPVA12] that are all serial in nature. Particularly noteworthy, the
winner of the NIST SHA-3 competition, the XOF family Keccak [BDPV11] and the recent
winner of the NIST lightweight cryptography competition, the authenticated encryption
scheme Ascon [DEMS21], rely on the sponge and a variant of monkeyduplex [BDPVA12],
respectively. A permutation-based construction that allows more parallelism is Farfalle and
was proposed in [BDP+16] and instantiated with the Xoodoo permutation in [DHAK18].
It results in a so-called doubly extendable cryptographic keyed (deck) function that has
both variable-length input and output.

In this paper, we introduce a novel permutation-based variable-input-length pseudo-
random function (VIL-PRF) construction called Kirby. This construction is suitable to
build efficient lightweight cryptographic primitives with low memory footprint and/or low
latency. We designed our construction to provide a level of generic multi-user security that
is optimal in the width of the permutation to have resilience under leakage of inner states.

Kirby takes an input of variable length, allows full-state absorption, and generates
outputs of length equal to the underlying permutation width. We specify a mode that

mailto:firstname.lastname@ru.nl

2 Kirby: A Robust Permutation-Based PRF Construction

combines Kirby with injective prefix-free input encoding and including in that input a
counter, resulting in a deck function.

Prior work and our contribution. Kirby is inspired by the sponge [BDPV07] and duplex
[BDPA11] constructions and can be also seen as a generalization of the construction used
in Salsa [Ber08]. Over sponge and duplex it has the advantage that it can do full-state
squeezing and over Salsa it has the advantage that it has arbitrary-length input. The
full-state squeezing is possible thanks to continuous ratcheting as in the Davies-Meyer
construction employed in Merkle-Damgård hashing [Mer89,Dam89,PGV93]. A side effect
of this is that leakage of internal state does not allow the recovery of the key or earlier
internal states.

The squeezing phase of the Kirby deck mode is similar to that in farfalle [BDP+16].
Another design that shares elements with Kirby is Muffler [BBN22]. It is a sponge-
based PRF that makes use of identifier to optimize the multi-user security bound of
that construction. In the same vein [DMA17] considered the multi-target security of the
keyed duplex construction in the presence of a global nonce and later this was generalized
in [DM23] by treating different restrictions on the initialization of the keyed duplex.

Similarly to the proof in [DMA17] for the full-state keyed duplex construction, Kirby
handles arbitrary key distributions, that are characterized solely by their min-entropy and
their collision probability, as formally defined in Section 2. In particular, this shows that
Kirby is resilient against related-key attacks.

Summarizing, our contributions are:

• A new permutation-based VIL-PRF construction Kirby and deck mode on top of
that supports full-state absorbing and squeezing; allowing a low memory footprint
and low-latency operation. Moreover, it has built-in ratcheting providing a degree of
leakage resilience and static identifiers allowing optimal multi-target security;

• A proof of a tight bound on the PRF distinguishing advantage in the random per-
mutation model and in the multi-user setting supporting arbitrary key distributions.

Organization of the paper. We introduce preliminaries in Section 2. We specify the
construction Kirby in Section 3 together with rationales. Section 4 is dedicated to the
security proof of the construction. Finally, in Section 5, we specify the Kirby deck mode.

2 Preliminaries
Notation. We introduce here useful notation. Let a, b ∈ N such that a ≤ b. We use
Ja, bK to denote the set {a, a + 1, . . . , b}. Let d ∈ N. We use the letter b to denote the
width of a permutation and κ for the length of the keys. The set {0, 1}d denotes the
strings of length d bits, and {0, 1}∗ denotes

⋃
a∈N{0, 1}a ∪ ϵ. Moreover, {0, 1}d+ denotes

the strings with length a multiple of d, i.e., {0, 1}d+ =
⋃

a∈N{0, 1}ad. Let s, s′ ∈ {0, 1}∗.
We denote the length of s as |s|. The empty string is represented by ϵ. We write s||s′ for
the concatenation of s and s′. For two string s1 and s2 of equal length, we use s1 + s2 to
denote the bitwise addition of s1 and s2. Given a, b ∈ N such that a < 2b, ⟨a⟩b denotes an
injective encoding of a over b bits.

Given a finite set S, x
$←− S means that x is the result of a uniform random sampling in

S. Similarly, if D represents a distribution, x
$←− D signifies that x is generated using the

distribution D. The set of permutations over b bits is denoted Perms(b). For n, k ∈ N

Lefevre et al. 3

such that n ≥ k, (n)k denotes the falling factorial of n of degree k, i.e.,

(n)k =
k−1∏
i=0

(n− i) .

A string E ∈ {0, 1}∗ is a prefix of E′ ∈ {0, 1}∗, denoted by E ≺ E′ if E′ truncated to
its first |E| bits is equal to E. Moreover, a set E ⊂ {0, 1}∗ is prefix-free if for any E, E′ ∈ E
distinct, E is not a prefix of E′.

Key sampling. Similarly to the work of Daemen et al. [DMA17], we assume that the
keys of the µ users K1, . . . , Kµ ∈ {0, 1}κ are generated using an arbitrary distribution Dkey.
This distribution is characterized by two essential parameters: the min-entropy and the
maximum collision probability. The min-entropy of a distribution Dkey is defined by

Hmin(Dkey) = max
m∈J1,µK,x∈{0,1}κ

− log2

(
Pr

(
K1, . . . , Kµ

$←− Dkey : Km = x
))

.

The maximum collision probability is defined by

Hcol(Dkey) = max
m,m′∈J1,µK,m ̸=m′

− log2

(
Pr

(
K1, . . . , Kµ

$←− Dkey : Km = Km′

))
.

In the case where Dkey denotes uniform sampling, we have Hmin(Dkey) = Hcol(Dkey) = κ.

Indistinguishability. Let W0, W1 be two worlds, and consider a distinguisher A placed in
world Wa, for a

$←− {0, 1}, that we denote by AWa . Without loss of generality, we assume
that A is a deterministic algorithm that never makes queries for which it already knows
the answer.

The advantage of A is defined as follows:

Adv(W0, W1)(A) =
∣∣Pr

(
AW0 = 1

)
−Pr

(
AW1 = 1

)∣∣ .

H-coefficient technique. In the proof, we will use the H-coefficient technique [Pat08,CS14].
Consider two worlds W0 and W1. We summarize the interaction between A and the world
in a transcript, which contains tuples of queries-responses. Denote by τ0 (resp., τ1) the
probability distribution of the transcript in W0 (resp., W1). Consider a partition of all the
possible transcripts as T = TGOOD ∪ TBAD. If there exists ϵ1, ϵ2 > 0 such that

∀τ ∈ TGOOD,
Pr (τ1 = τ)
Pr (τ0 = τ) ≥ 1− ϵ1 ,

and Pr (τ0 ∈ TBAD) ≤ ϵ2 ,

then

Adv(W0, W1)(A) ≤ ϵ1 + ϵ2 .

3 Specification and Design Rationale
In this section, we describe the Kirby construction specification with a simple algorithm
and deliver some design rationales to link the different elements of the construction with
the associated features.

4 Kirby: A Robust Permutation-Based PRF Construction

3.1 Kirby Specification
Kirby operates on a b-bit state S and for its iterations it makes use of a transformation F
consisting of the permutation P with a feedforward: F(S) = P (S) + S. First, it initializes
the state S with the concatenation of a κ-bit key K and a (b − κ)-bit key identifier id.
Then it sequentially absorbs the blocks of E by for each block adding it to the state and
then applying F to the result. After all blocks of E have been absorbed, it returns the
state S as output Z.

It is instantiated by choosing the key length κ and a permutation P . We define formally
the Kirby construction in Algorithm 1. We show in Figure 1 a schematic of the Kirby
construction with a 3-block input.

Algorithm 1 Definition of construction Kirby[P, κ].
Require: P is a b-bit permutation

Input: bit strings key K, identifier id, input block sequence E = (E1, . . . , E|E|)
Output: a b-bit string Z
S ← K||id
S ← S + P (S)
for i = 1 to |E| do

S ← S + Ei

S ← S + P (S)
end for
return Z ← S

PS

E1

P

E2

P

E3

ZPK||id

Figure 1: Example of iteration of Algorithm 1, for an input sequence E with |E| = 3.

3.2 Design Rationale
The main objective of this design is to provide a simple algorithm for building a VIL-PRF
from a permutation that is versatile, with good provable security, and that allows for
compact implementation.

For those two aspects, the overall design requires very few operations on top of the
permutation and only two time the width of the permutation as memory storage for
round-based implementations.

The critical path of the construction for single-block inputs E is the permutation,
the input block addition and a b-bit padded string and the feedforward addition The
initialization step taking the key and identifier can be pre-computed and hence does not
impact the latency.

The design of Kirby also takes into account side-channel leakage considerations. First,
the fact that the key and fixed-value identifier id is only used during the initialization
phase reduces the attack surface. The relative similarity of our construction to the use-case
study in [CLMP21] makes us think that it could be possible to prove that the leakage of
intermediate state does not compromise any previously computed state.

Lefevre et al. 5

For the provable security aspect, the main elements of our design are the identifier, the
key length and the requirement that the set of input block sequences must be prefix-free.

The same identifier can be used for multiple users, with a slight degradation on the
security that can be compensated by increasing the key length. We elaborate more on the
impact of using the same identifier too many times in Section 4.2. We show in our security
proof the importance of the requirement that the set of input sequences is prefix-free. This
element plays a major role in the security to avoid collision, and length extension attacks.

Finally, we show in Section 4.2 how the combination of all those elements result in a
tight security bound.

4 Security Analysis of Kirby
In this section, we provide a security proof of Kirby in the ideal permutation model similar
to the proof of [DMA17]. In detail, Section 4.1, we introduce useful definitions as well as
the security model. Section 4.2 is dedicated to the security bound and the proof. Finally,
in Section 4.3 we discuss the tightness of the security bound.

K1, . . . , Kµ
$←− Dkey

KirbyK1,id1 · · · KirbyKµ,idµ P

$
WR WI

RO1

$

· · · ROµ

$

P

$

A
Figure 2: Illustration of the security game. The symbol $ on top of an oracle means
that the underlying primitive is sampled uniformly at random, and KirbyK,id denotes the
construction Kirby initialized with the key K and the identifier id.

4.1 Security Model
We will prove the security of Kirby in the multi-user scenario. Namely, the construction
is assumed to be used simultaneously by µ users, split as µ = µ1 + · · · + µs, where µi

users share the same identifier. We represent this quantity by a vector µ := (µ1, . . . , µs).
The set of queried strings is denoted by E, and contains elements of form (m, E), where
the block sequence E ∈ {0, 1}b+ ∪ ϵ has been queried to the oracle number m. We abuse
notation, and say that E is prefix-free whenever the following set is prefix-free:{

⟨m⟩⌈log2(µ)⌉||E
∣∣ (m, E) ∈ E

}
.

Our goal is to prove an upper bound on the advantage of any adversary to distinguish
these µ instances of Kirby based on a random permutation from µ independent random
oracles, under the assumption that the set of queried strings E is prefix-free. We use IK[m]
as an abbreviation for Km, ||idm.

Specification of the worlds. The security model is a special type of distinguishing game,
akin to multi-user PRF. In the following, we specify how the two worlds to distinguish WR

and WI are instantiated in our particular setting. In both worlds, the adversary A has
access to a single primitive oracle OP and µ construction oracles denoted by OC1 , . . . ,OCµ .

6 Kirby: A Robust Permutation-Based PRF Construction

Let 1 ≤ s < 2b−κ, and x1 . . . , xs ∈ {0, 1}b−κ be pairwise distinct. Let Expandµ ∈ (J1, sK)µ

denote the array generated by repeating in order each element t ∈ J1, sK a number of times
equal to the value of the tth element of µ. Define the identifier of user m to be xExpandµ[m].

For m ∈ J1, µK, the oracle OCm
takes as input an element E ∈ {0, 1}b+. OP takes as

input a string in {0, 1}b, and a bit that denotes the direction of the query. Each of the
worlds is specified as follows:

• In the real world WR, P
$←− Perms(b), K1, . . . , Kµ

$←− Dkey, OCm
gives access to

Kirby construction based on the permutation P , the key Km, and the identifier idm,
while OP gives access to P ;

• In the ideal world WI , P
$←− Perms(b), OCm gives access to a random oracle ROm,

and OP gives access to P . We stress that the random oracles RO1, . . . ,ROµ are
independent.

Figure 2 illustrates the security game.

Metrics for queries. In this paragraph, we specify how the queries of the distinguisher
to the oracles are measured. Indeed, the primitive and construction queries are counted
separately, and in the real world one construction query has a practical cost which depends
on the length of the input block string E. More precisely, if E has ℓ blocks of b bits,
the associated construction query has a cost of ℓ + 1 (the extra call comes from the
initialization phase). Additionally, if a second construction query is made to the same
oracle with input E′ ∈ {0, 1}bℓ′ that has a common prefix of x blocks with E, then this
construction query has cost ℓ′ − x. We define M to be the total cost in terms of minimal
permutation evaluations that are required by construction queries in WR. In the example
above, M = ℓ + ℓ′ − x. To accurately capture this cost in the proof, we quantify the
adversarial resources as follows:

• N is the number of primitive queries;

• q is the number of construction queries;1

• M is the total number of permutation evaluations that would be required in the real
world from construction queries without considering duplicate queries evaluations
from repeated prefixes;

We now have all ingredients to define the security model. Let Dkey a distribution for
the key sampling procedure. Consider 1 ≤ s < 2b−κ, and µ = (µ1, . . . , µs) ∈ Ns be such
that

∑s
i=1 µi = µ. We define AdvPRF

PF−Kirby (N, M, µ,Dkey) as the maximum advantage
Adv(WR, WI)(A) over all distinguishers A such that:

• A has access to µ construction oracles in both the real world and the ideal world;

• In WR, keys are sampled according to Dkey, identifiers are partitioned according to
µ;

• The construction queries made by A are prefix-free set ;

• The construction queries would require in total M permutation queries in WR;

• A can make and at most N primitive queries.
1The quantity q does not appear in the security bound, yet this quantity is useful to refer to throughout

the proof.

Lefevre et al. 7

4.2 Security Bound of Kirby
Theorem 1. Let µ = (µ1, . . . , µs) ∈ Ns, and N, M ∈ N such that NM ≤ 2b−1. We have

AdvPRF
PF−Kirby (N, M, µ,Dkey) ≤ M(M − 1)

2b
+ 2NM

2b
+

∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) + N maxi µi

2Hmin(Dkey) .

Interpretation of the bound. This security bound captures a versatile number of use-cases
regarding the identifiers. In particular, when all identifiers are distinct, this translates to
µ = (1, . . . , 1), and the bound simplifies to

AdvPRF
PF−Kirby (N, M, µ,Dkey) ≤ M(M − 1)

2b
+ 2NM

2b
+ N

2Hmin(Dkey) . (1)

Taking Dkey to be uniform sampling, and assuming that each user has an online complexity
limited by 264, this translates to M ≤ µ264, and we obtain

AdvPRF
PF−Kirby (A) ≤ µ2

2b−128 + 2µN

2b−64 + N

2κ
.

One can reasonably assume that an adversary A has a computational power limited to
N ≪ 2128. Therefore, a key length satisfying κ ≥ 128 allow the rightmost term to be
negligible. Taking a small permutation width such as b = 256, the distinguishing advantage
remains negligible as long as the number of users stays way below 264 (note that given 264

users, κ cannot be larger than 192 due to the identifiers being encoded over 256− κ bits).
On the other hand, when no identifier is used, this means that µ = (µ), and the bound

becomes

AdvPRF
PF−Kirby (N, M, µ,Dkey) ≤ M(M − 1)

2b
+ 2NM

2b
+ µ(µ− 1)

2× 2Hcol(Dkey) + Nµ

2Hmin(Dkey) .

Compared to (1), there is a security degradation in the key length compared to the case
where all identifiers are distinct. More precisely, targeting the same security strength, the
key length should be increased by log(µ), and the key length should be larger than 2 log(µ).
For example, with the same assumptions as previously, if aiming for an equivalent security
strength (ie., 128 bits), the key length should be increased to at least 192.

In Section 4.3 we discuss the tightness of the bound. The remainder of this section is
dedicated to the security proof.

PKm||idm S P

E1

P

E2

Z

S1 S2

Figure 3: Illustration of the intermediate states in the real world. For this particular exam-
ple, the tuples (m, S), (m, (E1), S1), (m, (E1, E2), S2) belong to the extended transcript T .

Transcript notation. In the following, we define the transcript induced by the interaction
between the distinguisher and the oracles. The transcript is an ordered list with N + q
elements. Each primitive query results in the addition of a tuple (X, Y, d) to the transcript,

8 Kirby: A Robust Permutation-Based PRF Construction

where d ∈ {fwd, inv} denotes the direction of the query, and Y = P (X). Similarly, each
construction query appends to the list a tuple (m, idm, path = E, Z), where 1 ≤ m ≤ µ
refers to the oracle called, idm is the identifier used, the path E is the input block sequence
absorbed, and Z is the output of the construction oracle.

For the sake of the proof, we allow the oracles to release additional information at
the end of the interaction, right before the distinguisher outputs its decision bit. More
precisely, in the extended transcript that we call T , the elements associated to primitive
queries are kept unchanged. Moreover, one construction query (m, idm, path = E, Z) is
split into following |E|+ 1 transcript elements:

• A construction initialization element: (m, path = ϵ, S)

• |E| different construction absorb elements. For instance if |E| = 4 we have

– (m, path = (E1), S)

– (m, path = (E1, E2), S)

– (m, path = (E1, E2, E3), S)

– (m, path = (E1, E2, E3, E4), S)

We call a path E final if the construction has presented an output Z for it. A path which
is not final is called intermediate.

Given (m, path = E, S) ∈ T , the sampling method for S varies depending on the
adversary’s world:

• In the real world, S is the state after having absorbed the path E with the key Km.
In particular, if E is intermediate, then S is called an intermediate state. Otherwise,
if E is a final path, S is the output of the construction Z.

• In the ideal world, S equals ROm(E).

To simplify the notation, when the path E equals ϵ, we omit it.
There maybe duplicates among the construction absorb elements and these are removed

from the transcript. There are at most µ construction initialization elements.
The construction absorb elements in the transcript can be arranged in a graph and

form a forest. Each construction init element is a root of a tree and its nodes are the
construction absorb element where the path is the sequence of edges one has to follow
to get to the root (in reverse order). Quite naturally, the blocks of the path E form
the labels of the edges. For example node [m, path = (E1, E2, E3)] is the parent of node
[m, path = (E1, E2, E3, E4)]. The nodes are labeled with the state S and we denote the
state of a node reached by following the path E in tree m by S[m, E]. We denote the
label of the parent of the node in position [m, E] by [m, par(E)] and the last block of a
path E by Elast. The minimum number of blocks that must be presented as input to the
construction is the number of edges in the graph. However, we also consider the identifiers
loaded in the init operation as input and therefore, M is the total number of nodes in the
graph.

One important remark is that every transcript that can be produced in the real world is
also reachable in the ideal world. However, the converse is not true as the ideal world can
produce intermediate states that do not conform to Kirby. Indeed, in the ideal world the
primitive queries and construction queries are independent, and the intermediate states are
generated randomly and uniformly, so that they might be incompatible with the bijectivity
of a permutation. These transcripts are referred to as permutation-inconsistent.

Lefevre et al. 9

Bad transcripts definition. We define here two bad events called respectively COL and
GUESS, each split into sub-events. To facilitate notation, in the following, we implicitly
assume the existence of the nodes listed at the beginning of each bad event.

COLkey : [m] ̸= [m′] with IK[m] = IK[m′] ,

COLfwd1 : [m, E] ̸= [m′, E′] with S[m, par(E)]⊕ Elast = S[m′, par(E′)]⊕ E′
last ,

COLfwd2 : [m, E], [m′] with IK[m′] = S[m, par(E)]⊕ Elast ,

COLinv1 : [m, E] ̸= [m′, E′] with S[m, E]⊕ S[m, par(E)]⊕ Elast = S[m′, E′]⊕ S[m′, par(E′)]⊕ E′
last ,

COLinv2 : [m, E], [m′] with IK[m′]⊕ S[m′] = S[m, E]⊕ S[m, par(E)]⊕ Elast ,

COLinv3 : [m] ̸= [m′] with IK[m]⊕ S[m] = IK[m′]⊕ S[m′] ,

COLfwd : COLfwd1 ∨COLfwd2 ,

COLinv : COLinv1 ∨COLinv2 ∨COLinv3 ,

COL : COLkey ∨COLfwd ∨COLinv ,

GUESSkey : [m], (X, Y, fwd) with X = IK[m] ,

GUESSfwd : [m, E], (X, Y, fwd) with X = S[m, par(E)]⊕ Elast ,

GUESSinv1 : [m, E], (X, Y, inv) with Y = S[m, E]⊕ S[m, par(E)]⊕ Elast ,

GUESSinv2 : [m], (X, Y, inv) with Y = IK[m]⊕ S[m] ,

GUESSinv : GUESSinv1 ∨GUESSinv2 ,

GUESS : GUESSkey ∨GUESSfwd ∨GUESSinv .

SmPKm||idm P

E1

Z

A B C D

Sm′P P

E
′
1

Z
′

A′ B′
C′ D′

Km′ ||idm′

Figure 4: Illustration of the bad events in the real world. COLkey corresponds to A = A′,
COLfwd to C = C ′, C = A′, or C = A (not all cases listed), COLinv to D = D′, D = B,
D = B′, or B = B′ (not all cases listed). GUESSkey corresponds to (A, B, fwd) or
(A′, B′, fwd) ∈ T . GUESSfwd corresponds to (C, D, fwd) or (C ′, D′, fwd) ∈ T . Finally,
GUESSinv is set whenever either (A, B, inv), (A′, B′, inv), (C, D, inv), or (C ′, D′, inv) ∈
T .

In the real world COLkey is set when two different states are initialized with the same
key and same identifier. COLfwd (resp., COLinv) concerns the state right before (resp.,

10 Kirby: A Robust Permutation-Based PRF Construction

right after) a permutation evaluation, so that COL prevents collisions between intermediate
states (after data absorption). At a high-level view, the goal of COL is twofold. First, it
guarantees that every permutation call at the construction level associated to a path that
is not a prefix of another path has a new permutation call. Secondly, it prevents the ideal
world to release intermediate states that are permutation-inconsistent. On the other hand,
GUESS corresponds to the adversary in the real world being able to guess a permutation
evaluation that was used by the construction. More precisely, GUESSkey corresponds to
the adversary able to guess one of the initial states, and GUESSfwd (resp., GUESSinv)
corresponds to a forward (resp., inverse) successful primitive query. A transcript T is
called bad if it sets COL ∨GUESS. The bad events are illustrated in Figure 4.

Application of the H-coefficient technique. Denote by TReal (resp., TIdeal) the probability
distribution on transcripts induced by the real (resp., ideal) world, and let τ be a good
transcript. In particular the transcript is permutation-consistent, thus reachable in the real
world. Moreover, in the real world, every permutation call which does not correspond to a
repeated subpath is fresh. On the other side, in the ideal world, one transcript corresponds
to N permutation outputs, and M random intermediate states. Therefore,

Pr (TReal = τ)
Pr (TIdeal = τ) = (2b)N × (2b)M

(2b)M+N
≥ 1 .

Now, it remains to upper bound the probability to obtain a bad transcript in the
ideal world. One important remark for both COL and GUESS is that the adversary is
mostly non-adaptive for these events. Indeed, the proof relies on the randomness of the
intermediate states, which are generated and released only at the end of the interaction.
In particular, the adversary has to commit to the data to absorb before obtaining the
corresponding intermediate state.

We now proceed with the probability of COL. The only possibility for the adversary
to set this event during the interactive phase is to have two construction queries with
par(E) = par(E′). In this case COL (or more precisely COLinv) is set if and only if
Z ⊕ Z ′ = Elast ⊕ Elast. We can reason in a query-wise fashion, and conclude that this
event is set with probability at most q(q−1)

2b+1 . For the non-interactive case of COLinv,
there are M(M−1)−q(q−1)

2 candidate pairs in T , and for each pair the probability that it
sets COLinv is 1

2b . Therefore,

Pr
(
AWI sets COLinv

)
≤ M(M − 1)

2b+1 . (2)

For COLfwd, this event can be set only after the interaction phase, and there are at most
M(M−1)

2 pairs that can set this event. For each pair, COLfwd is set with probability 1
2b .

Therefore,

Pr
(
AWI sets COLfwd

)
≤ M(M − 1)

2b+1 . (3)

Finally, regarding COLkey, a collision can only occur between keys that have the same
identifier. Therefore,

Pr
(
AWI sets COLkey

)
≤

∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) . (4)

Combining (2), (3), and (4) together, we obtain

Pr
(
AWI sets COL

)
≤ M(M − 1)

2b
+

∑s
i=1 µi(µi − 1)

2× 2Hcol(Dkey) . (5)

Lefevre et al. 11

We now focus on the probability of GUESS. This event can only be set at the end of
the interaction. Let Nfwd be the number of forward primitive queries, and Ninv be the
number inverse primitive queries, so that N = Nfwd + Ninv. We start with GUESSkey.
One forward primitive query of the adversary fixes the identifier, so that one query targets
at most maxi µi keys simultaneously. Therefore,

Pr
(
AWI sets GUESSkey

)
≤ Nfwd maxi µi

2Hmin(Dkey) . (6)

Now, regarding GUESSfwd, there are at most M states to guess. Note that these states
are not necessarily independent from each other. Indeed, if the adversary makes M
construction queries, each with only one block of data absorbed, then the set of states to
guess are of form S ⊕ Ei, where Ei is the ith block of data. In this (worst) case, each of
the states is uniformly random, and one failed attempt from the adversary eliminates at
most M states from the list of candidate forward queries. Therefore,

Pr
(
AWI sets GUESSfwd

)
≤ NfwdM

2b −MN
. (7)

For GUESSinv, we obtain similarly

Pr
(
AWI sets GUESSinv

)
≤ NinvM

2b −MN
. (8)

Thus combining (6), (7), and (8) together, we obtain

Pr
(
AWI sets GUESS

)
≤ 2NM

2b
+ N maxi µi

2Hmin(Dkey) , (9)

where we used NM ≤ 2b−1. We can therefore conclude by plugging (5) and (9) together,
which gives the probability that a bad transcript occurs in the ideal world.

4.3 Tightness of the Bound
The bound of Theorem 1 is tight when the number of blocks per construction query is small,
and in the case of uniform key sampling. Setting COL, GUESSfwd ∨GUESSinv, or
GUESSkey allows in a straightforward way to mount distinguishing attacks that succeeds
with high probability, and we describe them in the following.

Attack with M2 ≈ 2b/2. The following attack exploits COLfwd ∨COLinv, and uses
only one construction oracle.

1. Make ≈ 2b/2 construction queries with input (Di||0b||1), for Di
$←− {0, 1}b−1. In both

worlds, with high probability, there exists i ̸= j such that Zi = Zj ;

2. For every collision with Zi = Zj , make a construction query with input (Di||02b||1)
and (Dj ||02b||1). Denote the answers by respectively Z ′

i and Z ′
j .

3. If there exists a collision Z ′
i = Z ′

j from step 2, return 0, otherwise 1.

In the real world, it is likely that there exists a pair i ≠ j such that a collision occurs
after having absorbed Di||0 and Dj ||0, resulting in a collision Zi = Zj that carries over to
the construction query described in 2. In the ideal world, it is unlikely that the collision
carries over, so that the distinguisher almost always return 1 while interacting with the
ideal world.

12 Kirby: A Robust Permutation-Based PRF Construction

Attack with NM ≈ 2b. The following attack exploits directly GUESSfwd∨GUESSinv,
and uses only one construction oracle.

1. Make N inverse primitive queries and obtain (Xi, Yi, inv) ∈ T , with Yi sampled
uniformly at random without repetition;

2. Make M construction queries with input (Di||1), where Di is sampled uniformly at
random without repetition;

3. If there exists i, j such that Yi⊕Xi = Zj , let S = (Di||1)⊕Xi. Then S is a candidate
for the init state in the real world.

4. Take D ∈ {0, 1}b−1 which has not been sampled before. Make one construction
query with input (D||1), obtain Z, and make one forward primitive query with input
S ⊕ (D||1). Call the output Y , and if Z = Y ⊕ S ⊕ (D||1), return 0, otherwise 1.

In the real world, with high probability the adversary will guess correctly the key, while
in the ideal world, having in step item 4 the construction query matching the primitive
query is highly unlikely.

Attack when
∑

i µi(µi − 1) ≈ 2κ. The adversary makes a constant number of con-
struction queries to each oracle (for example 10 queries to each oracle), and if there exists
m ≠ m′ such that the outputs are all the same, then the adversary is in the real world
with high probability.

Attack with N ≈ 2κ/ maxi µi. One can directly exploit GUESSkey to mount an
attack, by making forward queries with the identifier associated to the largest number of
users. The attack is then similar to the attack exploiting GUESSfwd ∨GUESSinv.

5 Building a Deck Function from Kirby
In this section we define a construction on top of Kirby to build a deck function [DHAK18].
This allows using Kirby for the wide variety of deck function modes [BDH+22]. The most
straightforward application is the generation of a keystream for stream encryption, with a
diversifier as input.

Our deck function makes use of two mappings that we specify in the following sections.
In Section 5.1 we specify an injective mapping that encodes a sequence of arbitrary-

length strings to single string. In Section 5.2 we specify a mapping that encodes pairs
of a string and an integer to b-bit block string sequences such that its codomain forms a
prefix-free set. In Section 5 we specify our deck function mode on top of Kirby using these
two mappings.

We denote the length in bytes of a bytestring M by bytelen(M), the encoding of an
integer x in the range [0, 255] in a byte by encByte(x) and the encoding of an integer x in
the range [0, 28B − 1] in a B-byte block encBlockB(x).

5.1 Injective Mapping from String Sequences to a Single String
The encoding takes a non-empty sequence of an arbitrary number of strings, each of
arbitrary length and returns a single string. It does this by concatenating strings, where
each string is followed by an encoding of its byte length. The latter is decodable starting
from the end of the string and this makes the full string decodable.

We first specify the length encoding in Algorithm 2. It encodes a length as a sequence
of bytes . . . b−2b−1b0. All bytes except the first, namely the one with the smallest index,
have their most significant bit (MSB) set to 1. This allows determining the first byte of

Lefevre et al. 13

the length encoding string. The value represented by a string b1−n . . . b−2b−1b0 is given by
ℓ =

∑
0<i≤n(bi−n mod 27)27i

Algorithm 2 Length encoding L← encodeLength(ℓ)
Input: integer ℓ
Output: byte string L encoding the integer
x← ℓ mod 27

ℓ← (ℓ− x)/27

L← encByte(x)
while ℓ > 0 do

x← ℓ mod 27

ℓ← (ℓ− x)/27

L← L|| encByte(x + 27)
end while
return L

We now specify our injective encoding function SequenceToString() in Algorithm 3. It
is injective as the input strings Mi can be recovered one by one from the back. It suffices
the recover the length ℓ from the end of D, and we can isolate the last input byte string.
This can be done recursively for all other input byte strings.

Algorithm 3 Injective encoding SequenceToString(M0, ..., Mm−1)
Input: non-empty sequence of byte strings M0, M1, . . . Mm−1
Output: string D
D ← ϵ
for all strings Mi do

D ← D||Mi||encodeLength(bytelen(Mi))
end for
return D

5.2 Prefix-Free Encoding

We specify our prefix-free encoding function Prefix() in Algorithm 4. It pads the input
byte sequence to a multiple of B bytes with b = 8B + ℓ and 0 < ℓ ≤ 8. It then splits
in B-byte blocks and appends to each block 0ℓ forming the blocks of the output E that
we call the string blocks. Subsequently, it encodes the counter value in a B-byte block,
appends 10ℓ−1 to form the last block of E, called the counter block. Clearly the codomain
forms a prefix-free set as there is domain separation between last blocks and the other
blocks.

5.3 Kirby-DECK

We define Kirby-DECK in Algorithm 5.
The deck mode can be efficiently implemented by the fact that the Kirby inputs E only

differ in their last block, the counter block. The Kirby state after the absorbing the string
blocks of E can be cached and then the output sequence can be computed by applying the
transformation F to the bitwise sum of that state and the counter block. Hence the total
number of calls to F for a deck function call is the number of string blocks plus ⌈n/B⌉.

14 Kirby: A Robust Permutation-Based PRF Construction

Algorithm 4 Prefix-free encoding Prefix(D, cnt)
Input: string D and counter value i ∈ N
Output: sequence of b-bit blocks E0, E1, . . . Et−1
ℓ← b mod 8
if ℓ = 0 then

ℓ← 8
end if
B ← (b− ℓ)/8
i← 0
Pad D with 10∗ padding up to a multiple of B bytes
while bytelen(D) ≥ 0 do

Ei ← first B bytes of D
Ei ← Ei||0ℓ

Remove first B bytes of D
i← i + 1

end while
Ei+1 ← encBlockB(cnt)||10ℓ−1

Algorithm 5 Kirby-DECK(M, n)
Input: sequence of string M = M0, M1, . . . , Mm−1 and requested output byte length
n ∈ N
Output: n-bit string Z
D ← SequenceToString(M0, ..., Mm−1)
Z ← ϵ
cnt← 0
while bytelen(Z) < n do

E ← Prefix(D, cnt)
Z = Z||Kirby(E)
cnt← cnt +1

end while
Truncate Z to its first n bytes
return Z

Lefevre et al. 15

6 Acknowledgements
We thank Bart Mennink for useful discussions. Charlotte Lefevre is supported by the
Netherlands Organisation for Scientific Research (NWO) under grant OCENW.KLEIN.435.
Yanis Belkheyar is supported by Intel through the Crypto FrontiersResearch Center. Joan
Daemen is supported by the European Research Council under the ERC advanced grant
agreement under grant ERC-2017-ADG Nr. 788980 ESCADA.

References
[BBN22] Arghya Bhattacharjee, Ritam Bhaumik, and Mridul Nandi. A sponge-based

PRF with good multi-user security. IACR Cryptol. ePrint Arch., page 1146,
2022.

[BDH+22] Norica Bacuieti, Joan Daemen, Seth Hoffert, Gilles Van Assche, and
Ronny Van Keer. Jammin’ on the deck. In Shweta Agrawal and Dongdai Lin,
editors, Advances in Cryptology - ASIACRYPT 2022 - 28th International
Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II, volume
13792 of Lecture Notes in Computer Science, pages 555–584. Springer, 2022.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Farfalle: parallel permutation-based cryptography. IACR
Cryptol. ePrint Arch., page 1188, 2016.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the sponge: Single-pass authenticated encryption and other applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography
- 18th International Workshop, SAC 2011, Toronto, ON, Canada, August
11-12, 2011, Revised Selected Papers, volume 7118 of Lecture Notes in
Computer Science, pages 320–337. Springer, 2011.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
Keccak reference. SHA-3 competition (round 3), 2011. https://keccak.
team/papers.html.

[BDPVA12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
Directions in Authenticated Ciphers, pages 159–170, 2012.

[Ber08] Daniel J. Bernstein. The salsa20 family of stream ciphers. In Matthew
J. B. Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science,
pages 84–97. Springer, 2008.

[CLMP21] Yu Long Chen, Atul Luykx, Bart Mennink, and Bart Preneel. Systematic
security analysis of stream encryption with key erasure. IEEE Trans. Inf.
Theory, 67(11):7518–7534, 2021.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference

https://keccak.team/papers.html
https://keccak.team/papers.html

16 Kirby: A Robust Permutation-Based PRF Construction

on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in
Computer Science, pages 327–350. Springer, 2014.

[Dam89] Ivan Damgård. A design principle for hash functions. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–
427. Springer, 1989.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. J. Cryptol.,
34(3):33, 2021.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The
design of xoodoo and xoofff. IACR Trans. Symmetric Cryptol., 2018(4):1–38,
2018.

[DM23] Christoph Dobraunig and Bart Mennink. Generalized initialization of the
duplex construction. IACR Cryptol. ePrint Arch., page 924, 2023.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state keyed duplex
with built-in multi-user support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, vol-
ume 10625 of Lecture Notes in Computer Science, pages 606–637. Springer,
2017.

[Mer89] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard,
editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science, pages 428–
446. Springer, 1989.

[Pat08] Jacques Patarin. The "coefficients h" technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography,
15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers, volume 5381 of Lecture Notes in
Computer Science, pages 328–345. Springer, 2008.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Douglas R. Stinson, edi-
tor, Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993,
Proceedings, volume 773 of Lecture Notes in Computer Science, pages 368–
378. Springer, 1993.

	Introduction
	Preliminaries
	Specification and Design Rationale
	Kirby Specification
	Design Rationale

	Security Analysis of Kirby
	Security Model
	Security Bound of Kirby
	Tightness of the Bound

	Building a Deck Function from Kirby
	Injective Mapping from String Sequences to a Single String
	Prefix-Free Encoding
	Kirby-DECK

	Acknowledgements

