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Abstract. Committing security has gained considerable attention in the
field of authenticated encryption (AE). This can be traced back to a line
of recent attacks, which suggests that AE schemes used in practice should
not only provide confidentiality and authenticity, but also committing
security. Roughly speaking, a committing AE scheme guarantees that
ciphertexts will decrypt only for one key. Despite the recent research
effort in this area, the finalists of the NIST lightweight cryptography
standardization process have not been put under consideration yet. We
close this gap by providing an analysis of these schemes with respect to
their committing security. Despite the structural similarities the finalists
exhibit, our results are of a quite heterogeneous nature: We break four of
the schemes with effectively no costs, while for two schemes our attacks
are costlier, yet still efficient. For the remaining three schemes Isap,
Ascon, and (a slightly modified version of) Schwaemm, we give formal
security proofs. Our analysis reveals that sponges—due to their large
states—are more favorable for committing security compared to block-
ciphers.
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1 Introduction

The most fundamental cryptographic concept is symmetric encryption, allowing
two parties, Alice and Bob, which share some secret key, to securely exchange
messages. The initial goal—and still a cornerstone—is confidentiality which pre-
vents anyone but Alice and Bob from recovering the message from a ciphertext.
In modern cryptography, security requirements have been enhanced to also incor-
porate authenticity3 which ensures that no third party can produce a ciphertext
that Bob would accept as one generated by Alice. On that account, authenti-
cated encryption (AE), which encompasses both confidentiality and authenticity
was introduced and has, since then, become the gold standard [11, 48]. While
authenticated encryption has undergone some changes—from probabilistic over
IV-based to nonce-based—nowadays, the research community agrees on authen-
ticated encryption with associated data as the right approach. Such a scheme
generates a ciphertext C by encrypting a message M under a context (K,N,A),
consisting of a key K, a nonce N , and associated data A. Authenticity should
hold for both the associated data and the message. In contrast, confidentiality
is required only for the message.

The relevance of authenticated encryption is not only reflected by the con-
ducted research, but also by the fact that AE schemes are deployed ubiqui-
tously, e.g., in TLS 1.3 [51]. The CAESAR competition for authenticated encryp-
tion [11] and the recent NIST lightweight cryptography (LWC) standardization
process [48], both called specifically for AE schemes which are deemed secure if
they provide both confidentiality and authenticity.

However, a series of recent attacks [2,32,43] has shown that our understanding
of what a secure AE scheme is, has to change once again. The Facebook message
franking attack [32] enabled Alice, a malicious user, to send an offensive or even
illegal content to Bob. If Bob tries to report this, it will fail as Facebook will see
a harmless content—prepared by Alice as part of the attack—instead. Further
examples are the subscribe with Google attack [2] and the partitioning oracle
attack [43]. The latter allows for more efficient key recovery: The adversary
crafts a ciphertext that decrypts validly under multiple keys (for instance taken
from a leaked list of candidate keys) and sends it to the recipient; If the recipient
rejects the ciphertext as invalid, the adversary can rule out all keys which are
valid for the sent ciphertext.

In fact, these attacks can all be traced back to the same problem: The ex-
istence of ciphertexts that decrypt validly under more than one key. This is
neither prevented by confidentiality nor by authenticity, baring the need for
an additional security notion. To this end, committing security [9] was de-
fined by requiring each ciphertext to be a commitment to the key (CMTK)
or even to the whole context (CMT). The latter notion is the strongest one and
is formalized by the following security game: The adversary outputs two tu-
ples (K,N,A,M), (K,N,A,M), each consisting of key, nonce, associated data,

3 Otherwise attacks like the padding oracle attack [53], which exploits the absence of
any authentication mechanism, are possible.
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and message, and wins if their contexts differ, i.e., (K,N,A) ̸= (K,N,A), and
Ae.Enc(K,N,A,M) = Ae.Enc(K,N,A,M) holds, for Ae the scheme under
consideration.4

The aforementioned attacks demonstrate that the consequences of using non-
committing authenticated encryption can be severe. Considering that there are
most likely more attacks, which have yet to be discovered, it is important to
deal with this problem. One possibility would be to design protocols in such a
way that usage of non-committing authenticated encryption does not result in
attacks.5 However, this approach is ill-advised as it requires separate analysis
for the different protocols and simply puts the burden on the designers of a
protocol. A better approach is to design authenticated encryption schemes that
are committing which can then be used in different protocols without worrying
about committing attacks.

To this end, AE schemes used in practice need to be analyzed with respect to
committing security. This process has already begun and a number of commonly
used AE schemes (GCM, SIV, CCM, EAX, OCB3) have been examined [9,45].
A majority of them was shown to not achieve committing security. Arguably
among the most important AE schemes are the finalists of the NIST LWC stan-
dardization process. While these schemes have received significant analysis with
respect to confidentiality and authenticity [52], we are not aware of any re-
search with respect to their committing security. Despite the announcement of
the NIST that Ascon will be standardized, we consider all finalists relevant ob-
jects to study—especially considering that none of the finalists suffer from any
weaknesses regarding their claimed security levels [52].

1.1 Contribution

In this paper we analyze the committing security of the NIST LWC finalists
that are based on (tweakable) block-ciphers or sponges.6 More precisely, we
focus on the authenticated encryption mode of the schemes, while the underlying
primitives, i.e., (tweakable) block-ciphers or permutations, are assumed to be
ideal. We follow the example of [45], to define a boundary between committing
insecure and secure schemes. The line is drawn at 64-bit security, i.e., a scheme
providing at least 64-bit committing security is called secure, while all others are
called insecure. This number stems from the fact that the cost of a committing
attack is bounded below by the cost of finding colliding tags. As most present-
day schemes employ 128-bit tags, the latter can be done with about 264 queries
using a birthday attack.

We divide the NIST LWC finalists into two groups: Firstly, Elephant [16]
and Isap [29] follow the Encrypt-then-MAC (EtM) paradigm, as they start by

4 For tidy schemes [47], an equivalent characterization of the notion requires the
adversary to find (C, (K,N,A), (K,N,A)) such that (K,N,A) ̸= (K,N,A) and
Ae.Dec(K,N,A,C),Ae.Dec(K,N,A,C) ̸= ⊥ [9].

5 Note that the Facebook protocol was changed to prevent the message franking attack.
6 This covers all finalists except Grain-128aead [37].
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encrypting the message and then authenticate the resulting ciphertext along-
side the context. Secondly, Romulus [40], Gift-Cofb [3], Photon-Beetle [5],
Xoodyak [23], TinyJambu [56], Ascon [31], and Schwaemm [7] share a com-
mon structure, in the sense that all of them first process the context and then
the message. We refer to schemes of the second type as Context-pre-Processing
(CpP) schemes.

Surprisingly, even though the NIST finalists show strong structural similari-
ties, our results regarding their committing security are of a very heterogeneous
nature. As can be seen in Table 1, the results vary from attacks that require
essentially no queries7 to attacks that are costlier—while still using significantly
less than 264 queries—and proofs showing about 64-bit committing security. In
summary, there are four schemes we break completely, two schemes we break
efficiently, and three schemes8 for which we show committing security.

While our attacks exploit different vulnerabilities, some of them share the
same fundamental idea. This is the case for Romulus and Gift-Cofb, which
are both block-cipher-based AE schemes. Further, both feature a state-update-
function, which is invoked in an alternating manner with the block-cipher. The
attacks boil down to the fact that for a fixed ciphertext, key, and nonce, one
can find associated data such that the ciphertext decrypts validly under this
context. For this, starting from the target ciphertext, the component that pro-
cesses the message is inverted. Then the fact that associated data blocks are
XORed onto the whole state is used to connect the initial state with the state
obtained from the reverse computation. This attack strategy depends heavily on
the invertibility of the state-update-function. For Romulus, we show that such
an inversion is always possible, while for Gift-Cofb it works with a probability
of 1

2 . This implies that the attack cost for Gift-Cofb depends on the length of
the ciphertext, however, by choosing a short ciphertext we obtain a very efficient
attack. The XORing of an input onto the whole state is a vulnerability that is
also exploited in our attack on Elephant, a tweakable block-cipher-based AE
scheme. In contrast to Romulus and Gift-Cofb, Elephant is an Encrypt-
then-MAC scheme. This structure simplifies the committing attack as we only
need to find two different contexts that verify the ciphertext correctly—in this
case the decryption of Elephant will never return ⊥.9 Due to this, it suffices to
concentrate on the MAC and, more precisely, finding a tag collision. The latter
is easily achieved, as the associated data is XORed to the full state during the
tag generation of Elephant.

Except for these three schemes, none of the other NIST finalists carry out a
full-state XOR. Xoodyak arguably comes very close to this situation, as it is
based on a full-state sponge, which reserves only a few bits for padding, which
are not directly accessible via the inputs. Therefore, we are able to control most
of the state by a direct XOR, while for the remaining bits a birthday attack

7 More precisely, these attacks need only the minimal cost of computing the respective
encryption algorithm twice (once for each of the output tuples).

8 Note that we consider a slightly modified version of Schwaemm.
9 Menda et al. [45] coin this property as NoFailDecrypt.
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is applied. Similarly, the attack on TinyJambu, a block-cipher-based scheme,
also boils down to a birthday attack. We exploit that TinyJambu uses a tag of
just 64 bits (the shortest one among all finalists10), hence a tag collision can be
produced with reasonable cost.

Our attack on Photon-Beetle, a sponge-based AE scheme, exploits the
choice of the initial state. For most of the finalists, this state contains some
fixed initialization vector, whereas for Photon-Beetle it consists exclusively
of key and nonce. However, this implies that the initial state can be controlled
completely by a committing adversary, which will turn out to be the key ingredi-
ent of our attack. Simply speaking, the attack allows to choose an intermediate
state (outcome of the context-pre-processing) that results in the same cipher-
text. We can invert this intermediate state for different associated data and take
the outcome as the key-nonce pair.

None of these attacks are applicable to any of the sponge-based schemes
Isap, Ascon, and Schwaemm. We give security proofs for these three schemes,
showing that they achieve about 64-bit committing security. The high-level idea
of all proofs is similar: we show that the schemes can be viewed as plain sponge
constructions and give bounds for finding colliding tags, which directly translate
to bounds on the committing security. Some extra care is necessary when dealing
with the core features of the schemes—the re-keying mechanism deployed in Isap
and the state-/output-blinding applied in both Ascon and Schwaemm.

Our analysis reveals that sponges are better suited for achieving committing
authenticated encryption. Simultaneously, our attacks against Photon-Beetle
and Xoodyak show that sponges are not always committing: Full-state sponges
suffer from inherent weaknesses when it comes to committing security, regardless
of how often the full-state property occurs.11 To achieve security, a significant
part of the state has to be kept “out-of-reach” of the committing adversary,
meaning that it should not be affected by the inputs. Sponges are better suited
for this due to their significantly larger states (≥ 256 bits) compared to block-
ciphers that typically use smaller states (128 bits). Since a committing adversary
knows the key, the general advantage of block-ciphers—namely, the permutation
remains concealed from the adversary—vanishes.

1.2 Related Work

Committing security can be traced back to [1,33] where the focus was on public-
key encryption. In [34]—using the name key-robustness—Farshim et al. gave first
definitions of committing security for symmetric encryption. Recently, Bellare
and Hoang [9] introduced different variants of committing security for authenti-
cated encryption, covering the prior variants where a ciphertext is a commitment
to the key, but also stronger forms where a ciphertext is a commitment to all
inputs. Ultimately, Menda et al. [45] developed a framework for fine-grained com-
mitting security notions. Instead of just having a ciphertext being a commitment

10 Elephant uses 64-bit tags as well, but also gives a parameter set with 128-bit tags.
11 For Photon-Beetle only the initial state exhibits the full-state property.
12 The costs correlate with the length of the ciphertext.
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Table 1: Overview of results: a ✗ indicates a committing attack with essentially
no queries; a ✦ indicates a committing (CMT) attack with significantly less than
264 queries; and a ✓ indicates about 64-bit committing security.

Scheme CMT Theorem Section Illustration Pseudocode

Elephant [16] ✗ Theorem 3 Section 3.1 Fig. 5 Fig. 20
Romulus [40] ✗ Theorem 4 Section 3.2 Fig. 6 Fig. 22
Gift-Cofb [3] ✗12 Theorem 5 Section 3.3 Fig. 7 Fig. 24

Photon-Beetle [5] ✗ Theorem 6 Section 3.4 Fig. 8 Fig. 26
Xoodyak [23] ✦ Theorem 7 Section 3.5 Fig. 9 Fig. 27

TinyJambu [56] ✦ Theorem 8 Section 3.6 Fig. 10 Fig. 28
Isap [29] ✓ Theorem 9 Section 3.7 Fig. 12 Fig. 30

Ascon [31] ✓ Theorem 10 Section 3.8 Fig. 13 Fig. 32
Schwaemm [7] ✓ Theorem 11 Section 3.9 Fig. 14 Fig. 35

to either the key or all inputs, it allows for variants where it is a commitment
to, say, the key and the nonce. Along with these committing notions, they also
coin the term context discovery attacks. In contrast to committing attacks, which
require the adversary to find two contexts that decrypt the same ciphertext, con-
text discovery attacks require finding a context that decrypts a given ciphertext.
Concurrently to [45], Chan and Rogaway [20] also developed a more fine-grained
definitional framework for committing security, for instance, allowing for variants
where the adversary has to use honest keys, i.e., randomly sampled ones.

2 Authenticated Encryption and the NIST LWC Finalists

In this section, we first introduce some notation and recall the definitions of
authenticated encryption schemes and committing security. We then provide a
general classification of the NIST LWC finalists and high-level approaches for
the committing attacks.

2.1 Notation

Throughout this work, we write {0, 1}∗ for the set of bit strings with arbitrary
length. By {0, 1}≤r ({0, 1}≥r) we denote the set of bit string with length at most

r (at least r). For a bit string S of length n, we write ⌈S⌉r, ⌊S⌋c, and [S]
j
i for

the first r bits, the last c bits, and the i-th to j-th bits of S, respectively. For
bit strings X, Y , and Z, |X| describes the length of X and Y ∥ Z denotes the
concatenation of Y and Z. For an integer k, the set {1, . . . , k} is abbreviated

as [k]. We write X1, . . . , Xl
r←− X to denote that X is split into bit strings X1

to Xl s.t. |Xi| = r, for i ∈ [l − 1] and |Xl| ≤ r. Bit rotation/shift of x by k
bits to the left is written as x ≪ b / x ≪ b (≫/≫ denote the same in the
other direction). The encoding of x into one Byte is described by enc8(x). For
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sake of simplicity, we use ι as a generic value for domain separation in several
schemes as our results are independent of it. Standard cryptographic background
on sponges, block-ciphers (BC), and tweakable block-ciphers (TBC) as well as
some results needed for our proofs are given in Appendix A.

2.2 Definitions

We recall the relevant definitions of authenticated encryption schemes and com-
mitting security.

Definition 1. An authenticated encryption (AE) scheme with associated data
is a pair of two algorithms (Enc,Dec) such that

– Enc : K × N × A ×M → C takes a key K, a nonce N , associated data A,
and a message M as input and outputs a ciphertext (C, T ).

– Dec : K×N ×A×C →M∪{⊥} takes a key K, a nonce N , associated data
A, and a ciphertext (C, T ) as input and outputs a message M or a special
symbol ⊥.

The sets K, N , A, M, and C denote the key space, nonce space, associated
data space, message space, and ciphertext space, respectively. Throughout this
work, we consider these sets to be bit strings of certain length, more precisely,
K = {0, 1}κ, N = {0, 1}ν , A = {0, 1}∗,M = {0, 1}∗, and C = {0, 1}∗ × {0, 1}τ .
An AE scheme is called correct, if Dec(K,N,A,Enc(K,N,A,M)) = M , for
any (K,N,A,M). We note further that all considered schemes are tidy [47],
i.e., M = Dec(K,N,A,C) implies that C = Enc(K,N,A,M). Following the
nomenclature from [45], we call the triple (K,N,A) a context.

Simply speaking, committing security requires the adversary to find two
context-message pairs that encrypt to the same ciphertext. We recall some
weaker forms of committing security in Appendix A.

Definition 2. Let Ae = (Enc,Dec) be an authenticated encryption scheme
and the game CMT be defined as in Fig. 1. For any adversary A, its CMT
advantage is defined as

AdvCMT
Ae (A) := Pr[CMT(A)→ 1] .

2.3 NIST LWC Finalists

The NIST LWC standardization process [48] required the submitted AE schemes
to achieve the well-established notions of confidentiality and authenticity. For
the former, the requirement was to maintain security as long as nonces are
unique—security in case of repeating nonces can be mentioned as a special fea-
ture. Committing security is neither mentioned as a requirement nor a feature
to be advertised. However, it is important to note that the call for algorithms
was published the same year as the first attack [32] that exploited the absence

8



Game CMT (CMT-3 in [9])

1 : (K,N,A,M), (K,N,A,M)← A()

2 : if (K,N,A) = (K,N,A)

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Game CMT (CMT-4 in [9])

1 : (K,N,A,M), (K,N,A,M)← A()

2 : if (K,N,A,M) = (K,N,A,M)

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Fig. 1: Security game CMT. The version on the left requires the contexts to
differ, the one on the right requires the context-message pair to differ. Bellare
and Hoang [9] showed the notions to be equivalent due to correctness. We use
the version on the left side.

of committing security. Due to the more recent research in this area, it can be
expected that committing security will either become a requirement or at least
a feature considered relevant for cryptographic standards.13

The AE schemes that we study in this work are the NIST LWC finalists
that are based on (tweakable) block-ciphers or sponges.14 In the following, we
provide some more information about the schemes with regards to similarities
and differences. Table 2 gives an overview and details will be given in this section.
For each candidate we focus on the main parameter set as described in Table 3.

Classes of AE Schemes. The considered schemes can be divided into two
categories. The first class encompasses AE schemes that follow the Encrypt-
then-MAC (EtM) paradigm [10]. These schemes first encrypt the message and
subsequently authenticate the resulting ciphertext alongside the nonce and the
associated data. The second class comprises AE schemes that follow what we call
Context-pre-Processing (CpP). These schemes first process the context (K,N,A)
via a function EncC. The result is then processed together withM and optionally
K and N , yielding the ciphertext (C, T ) via a function EncM. The former (EtM)
is illustrated in Fig. 2, the latter (CpP) in Fig. 3. Out of the schemes that we
analyze in this work, Elephant and Isap follow the EtM paradigm, whereas
the others—Romulus, Photon-Beetle,Gift-Cofb,Xoodyak,TinyJambu,
Ascon, and Schwaemm—follow the CpP-approach.

Attacking Encrypt-then-MAC AE Schemes For the EtM schemes, we can fo-
cus on the underlying MAC. Once we have two contexts (K,N,A) ̸= (K,N,A)

13 This can be seen in other standardization processes by NIST. While additional se-
curity properties for signature schemes [21] have not been considered in the initial
NIST post-quantum cryptography standardization process [49], they are named as
desirable features in the very recent call for additional post-quantum signatures [50].

14 This covers all finalists except Grain-128aead [37] which does not fall into one of
these categories.
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EncM

EncT

M

N

K

A

C

T

Fig. 2: Illustration of Encrypt-then-MAC AE schemes. Both Elephant and Isap
follow this design.

that verify the same ciphertext (C, T ), we can immediately derive a committing
attack. This is the case because for the described contexts, the decryption algo-
rithm will return some messages M,M ̸= ⊥.15 Using the tidyness property, we
get Enc(K,N,A,M) = (C, T ) = Enc(K,N,A,M), which implies that we win
the game CMT.

EncC

EncM

A

N

K

M

S

(C, T )

Fig. 3: Illustration of Context-pre-Processing AE schemes. The dotted/dashed
arrows indicate that only some of the analyzed schemes exhibit these depen-
dencies: Photon-Beetle and Xoodyak have neither of the two; Gift-Cofb,
TinyJambu, Ascon, and Schwaemm have only the dashed line; and Romulus
has both lines.

Attacking Context-pre-Processing AE Schemes For the CpP schemes, we fo-
cus on the state S that is outputted by EncC and then fed into EncM. The
general idea is to generate the first context (K,N,A) and ciphertext (C, T )
at random. Then, we invert EncM for the same ciphertext (C, T ) and a dif-
ferent key K and nonce N , which yields the state S (along with the mes-
sage M). In the last step, we find associated data A such that EncC with
input (K,N,A) results in S, which ultimately yields a committing attack as
Enc(K,N,A,M) = EncM(K,N,EncC(K,N,A),M) = EncM(K,N, S,M) =
(C, T ). The step of finding A is essentially what was recently coined a context
discovery attack [45]. This is a stronger attack that easily translates to a commit-
ting attack as shown in [45]. Indeed our committing attacks against Romulus,
Gift-Cofb, Elephant and Photon-Beetle can easily be translated into con-
text discovery attacks; for the other committing attacks this is not the case.

15 The underlying decryption algorithm never returns ⊥, thus the AE scheme returns
⊥ iff the verification of the tag failed. For both Elephant and Isap, this is the case.
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State-Update-Function. Out of the nine finalists, Romulus, Gift-Cofb,
Photon-Beetle, and Schwaemm deploy a so-called state-update-function16.
This function takes as input a state S and some additional input data I, and
outputs a new state Y and additional output data O (cf. Fig. 4). The state-
update-functions work very similar for all four schemes: one of the outputs is
the XOR of the inputs whereas the other is the XOR of the input data I and
some underlying function—which depends on the respective scheme—applied to
the input states.

Typically, the state-update-function is used to process the associated data
and the message: The current state is used as the input state S while the asso-
ciated data or the message—more precisely, a block of it—is used as the input
data I. The output state Y is used as the new state while the output data O
yields the ciphertext or is simply discarded when the associated data is pro-
cessed. For decryption, the schemes use the inverse of ξ. Here it is important to
note that, inverse is to be understood only in relation to the output data, i.e.,
for any (S, I), ξ(S, I) = (Y,O)⇒ ξ−1(S,O) = (Y, I).

For our attacks against Romulus and Gift-Cofb, we need to invert the
state-update-function with respect to both outputs, which is not obviously pos-
sible from the specifications. Our committing attack against Photon-Beetle
is independent of the used state-update-function and for Schwaemm the state-
update-function is incorporated into the committing security proof.

ξ

S Y =


S ⊕ I

G̃(S)⊕ I

S ⊕ I

FeistelSwap(S)⊕ I

I O =


G(S)⊕ I

S ⊕ I

Shuffle(S)⊕ I

S ⊕ I

(Romulus)

(Gift-Cofb)

(Photon-Beetle)

(Schwaemm)

(Romulus)

(Gift-Cofb)

(Photon-Beetle)

(Schwaemm)

Fig. 4: Illustration of the state-update-function ξ for the different schemes. The
components G, G̃, Shuffle, and FeistelSwap—if relevant for our results—are de-
scribed along with the schemes in the respective sections.

Achieving Committing Security via Transformations. There are several
transformations that turn an arbitrary AE scheme into one that is committing.
Clearly, such transformations can be applied to the NIST LWC finalists to make
them committing. However, there are several reasons against this: Firstly, these
transformations often do not achieve CMT security as we target here but weaker

16 We adopt this name from [40], the other three finalists use different names.
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Table 2: Overview of the NIST LWC finalists regarding similarities and differ-
ences in their design. Here, CpP stands for Context-pre-Processing, EtM for
Encrypt-then-MAC, and (T)BC for (tweakable) block-cipher.

Scheme
Class of
scheme

Underlying
Primitive

State-update-
function

Elephant [16] EtM TBC No
Romulus [40] CpP TBC Yes
Gift-Cofb [3] CpP BC Yes

Photon-Beetle [5] CpP Sponge Yes
Xoodyak [23] CpP Sponge No

TinyJambu [56] CpP BC No
Isap [29] EtM Sponge No

Ascon [31] CpP Sponge No
Schwaemm [7] CpP Sponge Yes

Table 3: Parameters of the NIST LWC finalists. Values for rate and capacity are
only given for the sponge-based schemes. For Isap, the parameters are for the
version using Keccak-P, the version using Ascon-P has n = 320 and r = 64.
Note that forXoodyak and Isap, components of the schemes use rates deviating
from the ones given above: The EncC component in Xoodyak is a full-state
sponge and in Isap’s re-keying mechanism a minimal rate of 1 is used.

Scheme Key κ Nonce ν Tag τ State n Rate r Capacity c

Elephant [16] 128 96 64 160 - -
Romulus [40] 128 128 128 128 - -
Gift-Cofb [3] 128 128 128 128 - -

Photon-Beetle [5] 128 128 128 256 128 128
Xoodyak [23] 128 128 128 384 192 192

TinyJambu [56] 128 96 64 128 - -
Isap [29] 128 128 128 400 144 256

Ascon [31] 128 128 128 320 64 256
Schwaemm [7] 128 256 128 384 256 128
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notions [45]. Secondly, these transformations impose some overhead which—
especially considering the lightweight aspect of these schemes—might render
them impractical. Thirdly, consider, say, Isap, which comes with a formal secu-
rity proof incorporating side-channel leakage. Since none of the transformations
are analyzed w.r.t. side-channel leakage, applying them to Isap can render the
leakage security guarantees obsolete.

3 Security Analysis

Here, we analyze the CMT security of the NIST LWC finalists. For Elephant
(cf. Section 3.1), Romulus (cf. Section 3.2), Gift-Cofb (cf. Section 3.3), and
Photon-Beetle (cf. Section 3.4), we give attacks that break committing secu-
rity with essentially no cost—requiring the bare minimum of two encryptions. For
Xoodyak (cf. Section 3.5) andTinyJambu (cf. Section 3.6), we give committing
attacks requiring significantly less than 264 queries. For Isap (cf. Section 3.7),
Ascon (cf. Section 3.8), and Schwaemm (cf. Section 3.9), we give formal proofs
showing that the schemes achieve committing security of about 64-bit. For all
of the NIST schemes, we provide a figure illustrating the scheme as well as the
pseudocode. The figures are in the respective subsections of the present section,
while the pseudocodes can be found in Appendix B.

3.1 Elephant

The AE scheme Elephant [15, 16] is based on tweakable block-ciphers. More
precisely, it relies on a cryptographic permutation which gets masked using linear
feedback shift registers similar to the masked Even-Mansour construction [35].

Description of Elephant. The pseudocode of Elephant is given in Fig. 20
and further illustration is provided in Fig. 5. Elephant follows the Encrypt-
then-MAC paradigm, i.e., it first encrypts the message C ← EncM(K,N,M)
and afterwards computes the tag T ← EncT(K,N,A,C). Note that in EncT

the nonce and associated data are padded together, i.e., the first associated data
block contains the nonce and the first bits of the associated data. This is in
contrast to all other schemes, where the associated data blocks do not contain
the nonce. Furthermore, note that the underlying encryption is an involution,
i.e., to decrypt a ciphertext, we simply compute EncM(K,N,C).

Committing Attack against Elephant. Since Elephant follows the EtM
paradigm, we only need to focus on the underlying MAC EncT. If we can find
two contexts that verify a ciphertext-tag pair, applying EncM to the ciphertext
and each context, gives back two valid messages. The following attack, which
is the simplest one in this work, shows that Elephant [16] does not achieve
committing security.
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M1 Mµ

C1 Cµ

C1 CγA1 A2 Aα

. . . . . .

T

0, 1 µ−1, 1

1, 0 α−1, 0 0, 2 γ−1, 2

0, 0
S

Y

Fig. 5: Illustration of Elephant in terms of EncM (top) and EncT (bottom).
The states S and Y , marked in red, are used in our CMT attack.

Theorem 3. Consider Elephant illustrated in Fig. 5. Let TBC be modeled as
an ideal tweakable cipher Ẽ. Then there exists an adversary A, making q queries
to Ẽ, such that

AdvCMT
Elephant(A) = 1 ,

where q = 2µ+ 2γ + α+ α. Here, µ is the number of message blocks while com-
puting EncM and γ is the number of ciphertext blocks while computing EncT.

17

Furthermore, α and α are the number of associated data blocks for the two tuples
that A outputs.

Proof (sketch). The full proof is given in Appendix B.1, here we provide a sketch.
Adversary A generates a ciphertext (C, T ) by encrypting an arbitrary context-
message pair ((K,N,A),M). Then, it computes the states Y and S shown in
Fig. 5 for (C, T ), a fresh key K, and new associated data blocks A2,. . . ,Aα. It
sets the remaining associated data block A1 to the XOR of Y and S. Finally, A
extracts (N,A) from the associated data blocks, computesM ← EncM(K,N,C)
and outputs ((K,N,A,M), (K,N,A,M)). ⊓⊔

17 Note that µ and γ might not be the same.
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3.2 Romulus

Romulus [39, 40] is an authenticated encryption scheme based on tweakable
block-ciphers. For the concrete instantiation of the TBC, they use Skinny [8] and
the authenticated encryption mode bears similarities with Cofb [19]. Romulus
comes in three different variants Romulus-N, Romulus-M, and Romulus-T.
The former is the main candidate while the other two are designed with addi-
tional security guarantees in mind: Romulus-M achieves security against nonce-
misuse while Romulus-T is designed to maintain security even in the presence
of side-channel leakage. Throughout this work we only consider the main variant
Romulus-N, which we simply refer to as Romulus.

Description of Romulus. The pseudocode ofRomulus is given in Fig. 22. The
scheme is further illustrated in Fig. 6. It follows the CpP approach, i.e., it first
computes S ← EncC(K,N,A) and afterwards (C, T ) ← EncM(K,N, S,M).
Both EncC and EncM apply the tweakable block-cipher and the state-update-
function ξ in an alternating manner. The state-update-function

ξ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, ξ(S, I) = (S ⊕ I,G(S)⊕ I)

is an important component of Romulus and the matrix G it utilizes, is

G =


Gs 0 0 · · · 0
0 Gs 0 · · · 0
...

. . .
...

0 · · · 0 Gs 0
0 · · · 0 0 Gs

 , where Gs =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1


.

Committing Attack Against Romulus. We show that Romulus is inse-
cure with respect to committing security. The attack is stated in the following
theorem.

Theorem 4. Consider Romulus illustrated in Fig. 6. Let TBC be modeled as
an ideal tweakable cipher Ẽ. Then there exists an adversary A, making q queries
to Ẽ, such that

AdvCMT
Romulus(A) = 1 ,

where q = 2µ+
⌊
α
2

⌋
+
⌊
α
2

⌋
+2. Here, µ is the number of blocks for the message,

α is the number of blocks for the associated data of the first tuple, and α is the
number of blocks for the second tuple that A outputs.
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(·)
K

. . . ξ TBC
(·)
K

ξ

M1 Mµ−1 MµN N N 0n

C1 Cµ−1 Cµ T

Y∗

Fig. 6: Illustration of Romulus (for α an even number) in terms of EncC (top)

and EncM (bottom). The values that are input from the top into TBC
(·)
K are

used as tweaks (we drop the counters making the tweaks unique for simplicity).
The state Y∗, marked in red, is used in our CMT attack.

Proof (sketch). The full proof is given in Appendix B.2, here we provide a sketch.
A key ingredient of the proof is to show that the state-update-function is invert-
ible with respect to both the output and the state. Exploiting this, the following
committing attack is possible. The adversary A generates a ciphertext (C, T )
by encrypting an arbitrary context-message pair ((K,N,A),M). It then inverts
EncM for the ciphertext (C, T ), a new key K, and new nonce N , by inverting
the state-update-function and the block-cipher one by one, resulting in some
state S. Finally, it inverts EncC on S (using K, N , and new associated data
blocks A2, . . . , Aα) up to the state Y∗ (cf. Fig. 6). Setting the first associated
data block A1 to Y∗ then guarantees that A wins the game CMT by outputting
((K,N,A,M), (K,N,A,M)). ⊓⊔

3.3 Gift-Cofb

The AE scheme Gift-Cofb uses the Cofb mode [19] for authenticated encryp-
tion and instantiates the block-cipher using Gift [4].

Description of Gift-Cofb. The pseudocode of Gift-Cofb is given in Fig. 24
while Fig. 7 provides an illustration of it. Gift-Cofb follows the CpP ap-
proach, i.e., it first computes S ← EncC(K,N,A) and afterwards (C, T ) ←
EncM(K,S,M). The scheme features the state-update-function

ξ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, ξ(S, I) = (G̃(S)⊕ I, S ⊕ I)

that is invoked in an alternating manner with the block-cipher. This function
makes use of the following matrix G̃, which gets a bit string of length n, swaps
the two halves, and additionally applies a bit rotation to the (new) second half:

G̃ : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 × {0, 1}n/2, (S1, S2) 7→ (S2, S1 ≪ 1) .
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In between the state-update-function and the block-cipher, Gift-Cofb applies
some masking by XORing some value ∆ to the state.

BCK BCK BCK BCK

ξ ξ ξ

∆1 ∆α−1 ∆α

A1 A2 Aα

N

S BCK BCK BCK

ξ ξ ξ

∆α+1 ∆α+µ−1 ∆α+µ

M1

C1

M2

C2

Mµ

Cµ

T

. .
. .
. .
. .
.

. .
. .
. .
. .
.

S

Y∗S∗

Fig. 7: Illustration of Gift-Cofb in terms of EncC (top) and EncM (bottom).
The different indices for ∆ only indicate that the values are different—in the
pseudocode the value ∆ is constantly updated. The states S∗ and Y∗, marked in
red, are used in our CMT attack.

Committing Attack Against Gift-Cofb. The AE scheme Gift-Cofb does
not achieve committing security. The scheme is very similar to Romulus which
allows to apply the same attack strategy. However, Gift-Cofb uses a different
state-update-function ξ than Romulus. It turns out that we cannot always
invert ξ—inversion only works with probability 1

2 . This is the reason, why the
advantage depends on the number of ciphertext blocks.

Theorem 5. Consider Gift-Cofb illustrated in Fig. 7. Let BC be modeled as
an ideal cipher E. Then there exists an adversary A, making q queries to E, such
that

AdvCMT
Gift-Cofb(A) =

1

2µ
,

where q = 2µ + α + α + 2. Here, µ is the number of message blocks, α is the
number of associated data blocks for the first tuple, and α for the second tuple
that A outputs.
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Proof (sketch). The full proof is given in Appendix B.3, here we provide a sketch.
The gist is the same as for Romulus: generate a ciphertext, compute S∗ and Y∗
(cf. Fig. 7) for a new context, and set the associated data block A1 accordingly.
An important difference is that inverting ξ in Gift-Cofb works only with prob-
ability 1

2 . Another detail that has to be considered is the usage of the correct
masking values. ⊓⊔

3.4 Photon-Beetle

The authenticated encryption scheme Photon-Beetle [5] is a (duplex) sponge-
based AE scheme. It uses the Photon permutation [36] as the underlying per-
mutation and theBeetlemode of operation [18]. In contrast to the plain duplex,
the Beetle mode uses a feedback function to determine the next input to the
underlying permutation of the sponge.

Description of Photon-Beetle. Photon-Beetle is described in Fig. 26 and
illustrated in Fig. 8. It is a CpP scheme, i.e., it processes the context (K,N,A)
via the function EncC and subsequently processes the message together with
the output of EncC—an important property is that no part of the context is
input to EncM. In EncM, the permutation and the state-update-function are
applied in an alternating fashion. We omit the description of the latter, as our
CMT attack is independent of it.

ρ ρ ρ
N

K

S

. . .

. . .

A1 Aα

ρ ρ ρ ρ

ξ ξ

S

M1 C1 Mµ Cµ T

. . .

. . .

ι0

ι1

S∗

Fig. 8: Illustration of Photon-Beetle in terms of EncC (top) and EncM (bot-
tom). The state S∗, marked in red, is used in our CMT attack.
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Committing Attack Against Photon-Beetle. In this section, we show
that Photon-Beetle does not achieve committing security. The CMT attack
is given in Theorem 6 below.

Theorem 6. Consider Photon-Beetle illustrated in Fig. 8 Let ρ be modeled
as an ideal permutation. Then there exists an adversary A, making q queries to
ρ, such that

AdvCMT
Photon-Beetle(A) = 1 ,

where q = α + α. Here, α is the number of blocks for the associated data of the
first tuple, and α is the number of blocks for the second tuple that A outputs.

Proof (sketch). The full proof is given in Appendix B.4, here we provide a sketch.
The attack targets the state right before applying the domain separation at the
end of EncC (the state S∗ marked in red in Fig. 8). Since the initial state of
Photon-Beetle is entirely dependent on the context, we can take an arbitrary
S∗, invert it for different associated data A and A, and take the results as the
key-nonce pairs (K,N) and (K,N). Since EncM only depends on the outcome
of EncC and the message M , A wins by outputting (K,N,A,M), (K,N,A,M)
for an arbitrary message M . ⊓⊔

3.5 Xoodyak

The authenticated encryption scheme Xoodyak [23] is an AE scheme based
on a full-state keyed duplex. Xoodyak uses the Xoodoo permutation [22] as
the underlying permutation and the Cyclist mode of operation. The latter
was introduced as part of the Xoodyak specification and is an adaption of the
Keyak mode [14] to the lightweight setting.

Description of Xoodyak. The pseudocode ofXoodyak is given in Fig. 27 and
further illustration is provided in Fig. 9. Xoodyak is a CpP scheme, i.e., first
S ← EncC(K,N,A) is computed, followed by the computation of ciphertext
and tag as (C, T ) ← EncM(S,M). In EncC, the inputs are XORed onto the
full-state (note that the last 32 bits are reserved for padding). In contrast to
this, EncM uses a rate of 192 bits for the computation of ciphertext and tag.

Xoodyak exhibits a form of padding, that is used by none of the other NIST
candidates and hence will be described shortly in the following: For a bit string
X of length at most 352 and p ∈ {0, 1}8 define

padC(X, p) = X ∥ 00000001 ∥ 0368−|X| ∥ p ,

which is used for padding the context blocks. Further, for M ∈ {0, 1}≤192, we
define padM(M) = M ∥ 00000001, which will be used to pad the message blocks.
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Fig. 9: Illustration of Xoodyak in terms of EncC (top) and EncM (bottom).
Here, K ∥ N = padC((K ∥ N ∥ enc8(|N)|), 00000010), Mi = padM(Mi),
A1 = padC(A1, 00000011), and for i = 2, . . . , α, Ai = padC(Ai, 0

8). In EncM,
the increased rate (r+8) is required for the padding padM which appends 8 bits
to the message blocks.

Committing Attack Against Xoodyak. We show that Xoodyak does not
achieve committing security. The attack is stated in the following theorem.

Theorem 7. Consider Xoodyak illustrated in Fig. 9 Let ρ be modeled as an
ideal permutation. Then there exists an adversary A that makes q = 217 + 1
queries to ρ and fulfills

AdvCMT
Xoodyak(A) ≥ 1

2
.

Proof (sketch). The full proof is given in Appendix B.5, here we provide a
sketch. The attack exploits the fact that EncM only depends on the output
of EncC and the message, i.e., two different contexts (K,N,A) ̸= (K,N,A)
with EncC(K,N,A) = EncC(K,N,A) easily yield a committing attack by out-
putting (K,N,A,M), (K,N,A,M) for an arbitrary M . Though Xoodyak is a
full-state sponge, one cannot simply choose contexts yielding a collision, as the
last 32 bits are reserved for padding. With a birthday attack, the adversary can
find a collision on the reserved bits and then choose the context accordingly. ⊓⊔

3.6 TinyJambu

TinyJambu [56] is a block-cipher-based authenticated encryption scheme. The
specification introduces the TinyJambu mode, which is a lightweight variant of
the Jambu mode [55]. The latter was part of the CAESAR competition [11].
For the permutation underlying TinyJambu, a keyed permutation based on
non-linear feedback shift registers is defined.
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Description of TinyJambu. The pseudocode ofTinyJambu is given in Fig. 28
and an illustration of the scheme can be found in Fig. 10. TinyJambu follows
the CpP approach, i.e., it first processes the context (K,N,A) via the function
EncC and then passes the output on to EncM, where it is processed together
with the message. Note that, as for Photon-Beetle, no part of the context is
directly given as input into EncM. TinyJambu uses two keyed permutations
BC1 and BC2, both based on the same keyed permutation that is applied 640
and 1024 times for BC1 and BC2, respectively.

ρ2 ρ1 ρ1 ρ1 ρ1 . . .0128 S

N1 N2 N3 A1 Aα

ιN ιN ιN ιA ιA

ρ2 ρ2 ρ2 ρ1. . .S

Tl Tr

M1 M2 MµC1 C2 Cµ

ιM ιM ιM ιT ιT

Fig. 10: Illustration of TinyJambu in terms of EncC (top) and EncM (bottom),
where ρ1 = BC1(K, ·) and ρ2 = BC2(K, ·).

Committing Attack Against TinyJambu. In this section, we show that
TinyJambu does not achieve CMT security. The attack exploits the short tag
length of 64 bits in TinyJambu, which enables an efficient deployment of the
birthday bound. In the security proof of TinyJambu (see [56, Section 6]), this
setting is modeled with only one permutation ρ. We adopt the same for the
TinyJambu attack given in the following.

Theorem 8. Consider TinyJambu illustrated in Fig. 10. Let BC1 and BC2

be modeled as an ideal cipher E. Then there exists an adversary A that makes q
queries to E such that

AdvCMT
TinyJambu(A) ≥ 3

8
.

Here, q = 2(232 + 1)(6 + α+ µ) for α and µ the number of associated data and
message blocks, respectively, that A outputs.

Proof (sketch). The full proof is given in Appendix B.6, here we provide a sketch.
The core idea is to apply a birthday attack against the tag, which requires about
232 queries due to the tag length of 64 bits. Some extra care is needed to ensure
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Fig. 11: Illustration of Isap.Rk.

that also the actual ciphertexts (and not just the tags) collide, as a tag collision is
not sufficient for a CMT attack. Since the ciphertext is the XOR of the message
and a keystream, this poses no hindrance to the attack, as the adversary can
simply choose the messages in a way that yields the same ciphertext. ⊓⊔

3.7 Isap

The authenticated encryption scheme Isap [28–30] is a sponge-based scheme de-
signed to withstand side-channel leakage. It features a re-keying approach that
guarantees that for each input a different session key is used. The re-keying func-
tion uses a small rate to prevent adversaries from obtaining too much leakage.

Description of Isap. The pseudocode of Isap is given in Fig. 30 and further
illustration is provided in Fig. 12. Isap follows the EtM approach, i.e., first the
message is encrypted via EncM resulting in a ciphertext C and afterwards, the
tag T is computed using EncT, which processes the context and the ciphertext.
Both EncM and EncT internally uses the re-keying function Isap.Rk to derive
the session key.

In Isap, the underlying permutation is applied several times between two
absorptions, the precise number depending on the position in the Isap sponge.
For Isap.Rk, for instance, more rounds are applied when the key is processed
and when the tag is generated, while fewer rounds are used in between. In sum-
mary, Isap uses four permutations ρK , ρH , ρB , and ρE , each based on the same
permutation but applied a different number of times.

Committing Security of Isap. We show that Isap achieves CMT security. In
the security proof for Isap [28], the two permutations used in Isap.Rk (namely
ρK and ρB) are modeled as one permutation. We adopt this for our proof and
denote the permutation used in Isap.Rk by ρ1 and the one used in EncT by
ρ2.

18 In conformity with this, the rate in Isap.Rk is denoted by r1 and the rate
in EncT by r2.

Further, we consider a slightly different domain separation in EncT, by XOR-
ing 1 ∥ 0∗ instead of 0∗ ∥ 1. This neither influences the security of Isap nor

18 The proof is independent of EncM which is why we do not need a third permutation.
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Fig. 12: Illustration of Isap in terms of EncM (top) and EncT (bottom), which
both rely on the re-keying function Isap.Rk. The values X and KA, marked in
red, are used in our CMT proof.

interferes with the purpose of the domain separation but it allows us to view
EncT as a sponge with increased rate of r + 1.19

Lastly, note that the scheme comes in two variants, using either Ascon-P or
Keccak-P as a permutation. The theorem given below holds for both instances,
considering for both of them the main parameter sets as described in Table 3.
Since for all parameter sets under consideration the key-length equals the tag-
length (κ = τ = 128), we exclusively use the variable κ in the following proof.

Theorem 9. Consider Isap illustrated in Fig. 12. Let ρ1 and ρ2 be modeled by
ideal permutations ρ1 and ρ2, respectively. Then for any adversary A making q1
and q2 queries to ρ1 and ρ2, respectively, it holds that

AdvCMT
Isap (A) ≤ q1(q1 − 1)

2κ
+

q1(q1 + 1)

2n−κ
+

q2(q2 − 1)

2κ
+

q2(q2 + 1)

2n−max{κ,r2+1} .

Proof (sketch). The full proof is given in Appendix B.7, here we provide a sketch.
The idea is to view EncT as a sponge-based hash function and leverage The-
orem 15 to upper bound the advantage of finding two distinct contexts and a
ciphertext that result in the same tag. For this, we adapt the rate in EncT in
a way, that allows us to absorb the nonce as the first input. With this technical
trick, we obtain sponges with constant initial states at the price of a decreased
capacity. Further, we model the usage of Isap.Rk in EncT by a suitable XOR-
operation with input denoted by Z. The proof is composed of two parts: Firstly,

19 The same argument was also used for the sponge-based AE scheme Slae [26] and is
also mentioned for Xoodyak in [23, Section 4.2.1].
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we consider the case that at least one of the inputs (nonce, associated data, and
Z—from the replacement of Isap.Rk) differs for the two tuples the adversary
outputs. Then, Theorem 15 provides an upper bound for the probability that the
hash values, i.e., the tags, agree. Secondly, we have to consider a special case, in
which all of the inputs (nonce, associated data, and Z) are the same across both
tuples.20 Such inputs do not constitute a collision of EncT and hence the above
argument does not apply. However, in this case we can show that the committing
adversary has found a collision in Isap.Rk. The latter can also be viewed as a
sponge-based hash function (by modifying the rate) and a second application of
Theorem 15 finishes the proof. ⊓⊔

3.8 Ascon

Ascon [31] is a sponge-based authenticated encryption scheme. The scheme
was chosen as the primary candidate for lightweight applications in the CAESAR
competition. Furthermore, Ascon was selected to be standardized as part of the
NIST LWC standardization process. As part of the CAESAR competition and
the NIST LWC standardization process, Ascon enjoys a long line of research,
in particular, with respect to the underlying permutation Ascon-P. For the
authenticated encryption mode, no formal security analysis existed until recently,
when Lefevre and Mennink [42] gave the first security proof for Ascon.21

Description of Ascon. The pseudocode of Ascon is given in Fig. 32 and
further illustration is provided in Fig. 13. Similar to the other schemes, Ascon
can be viewed as a CpP scheme which first processes the context using EncC

before the message is processed using EncM. A core feature of Ascon is that at
the very start (first permutation of EncC) and the very end (last permutation of
EncM), it uses more rounds of the underlying permutation for security (ρa and
ρb for a = 12 and b = 6). Note that Ascon XORs the key three additional times:
After the first permutation as well as before and after the last permutation. We
call the former two instances state-blinding and the latter output-blinding.

Committing Security of Ascon. We show that Ascon achieves CMT secu-
rity. We model the two permutations ρa and ρb by one ideal permutation ρ, as
we did in the committing security proof of Isap for the re-keying function. Fur-
ther, we consider a slightly different order of inputs at two points in the Ascon
encryption. Firstly, the initial state is changed by moving the initialization vec-
tor from the beginning of the state to the end. Secondly, the state-blinding is
changed so that it affects the first bits of the inner state rather than the last
bits.22 Note that these are cosmetic changes. They do not influence the overall

20 The careful reader might notice that in this case the CMT adversary outputs two
tuples that differ solely in the keys but result in the same session keys.

21 While an earlier work [41] argued that their proof covers Ascon, they actually only
show security for a simplified version (namely without the state-/output-blinding).

22 This only affects the first state-blinding; the second one is already of that form.
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Fig. 13: Illustration of Ascon in terms of EncC (top) and EncM (bottom).

security of Ascon but greatly simplify our proof, as we can capture the state-
blinding by considering a larger rate. Lastly, for sake of simplicity, we drop the
domain separation of Ascon in the proof. It can, however, be easily incorporated
by moving the domain separation to the first bits of the capacity, as we already
did for Isap.

Similarly to Isap, we could show committing security by leveraging The-
orem 15. However, for Ascon this would yield only about 32-bit committing
security. This is due to the short initialization vector of 64 bits, which corre-
sponds to a 64-bit capacity. By recasting the proof of Theorem 15, we can show
that this limitation is not inherent, i.e., a smaller capacity in just the first round
does not fundamentally affect the quality of the bound.

Theorem 10. Consider Ascon illustrated in Fig. 13. Let ρa and ρb be modeled
as a random permutation ρ. Then for any adversary A making q ≤ 2127 queries
to ρ, it holds that

AdvCMT
Ascon(A) ≤ 1− exp

(
−q(q − 1)

2128

)
+

q

263
+

q(q − 1)

2128
.

Proof (sketch). The full proof is given in Appendix B.8, here we provide a sketch.
The main idea is to adapt the proof of Theorem 15 to our particular setting.
While we structurally follow the original proof, several changes are necessary
and a more fine-grained analysis gives us a better bound.

The proof of Theorem 15 visualizes the attack via a graph, built from the
adversary’s queries. It defines colliding paths, which correspond to collisions in
the hash function, and so-called problematic paths. The collision resistance is
upper bounded by the probability of finding either (1) colliding paths that are
not problematic or (2) finding problematic paths.
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Our proof focuses on bounding the probability of finding colliding tags—
which directly yields a bound on the CMT security of Ascon. We define paths
in the adversary’s graph that correspond to Ascon evaluations and model tag
collisions by introducing the notion of colliding Ascon paths. Furthermore, we
define problematic Ascon paths and, using both the state- and output-blinding
deployed in Ascon, we give a bound on finding colliding Ascon paths that
are not problematic. It is left to bound the probability of finding problematic
paths. The gist of this part is to view Ascon paths as plain sponge paths, which
comes at the cost of an increased rate—for the first round of absorption, the
rate is increased to 256 while for the rest it is increased to 192. This allows us
to understand the state blinding as part of the normal absorption into the rate
part of the sponge. We then show that problematic Ascon paths translate to
problematic plain sponge paths and continue by giving a bound on finding the
latter. A careful analysis shows that the first absorption step is treated differ-
ently: The adversary has to hit the initialization vector with a query, whereas for
the other absorption steps, it has to find a collision. Thus, despite the very large
rate in the first round, we are still able to achieve about 64-bit of committing
security. ⊓⊔

3.9 Schwaemm

Schwaemm [6,7] is a sponge-based AE scheme. The permutation used to instan-
tiate Schwaemm is Sparkle which is inspired by the block-cipher Sparx [27].
The authentication mode is a variant of the Beetle mode [18].

Description of Schwaemm. The pseudocode of Schwaemm is given in Fig. 35
and further illustration is provided in Fig. 14. Schwaemm follows the CpP
approach, i.e., first the context is processed resulting in S ← EncC(K,N,A)
and afterwards the ciphertext is computed as (C, T ) ← EncM(K,S,M). In
Schwaemm the underlying permutation ρ is applied a varying number of times,
depending on the position in the sponge (ρa and ρb for a = 11 and b = 7), similar
to Isap and Ascon.

Like some of the other schemes, Schwaemm features a state-update-function
that is defined as follows:

ξ : {0, 1}r × {0, 1}r → {0, 1}r × {0, 1}r,
(S, I) 7→ (ξ1(S, I), ξ2(S, I)) = (FeistelSwap(S)⊕ I, S ⊕ I) .

for FeistelSwap : {0, 1}r → {0, 1}r, FeistelSwap(S) = S2 ∥ (S2 ⊕ S1) with
S1 = ⌈S⌉ r

2
and S2 = ⌊S⌋ r

2
. Furthermore, Schwaemm deploys a so-called rate-

whitening function, given by

ωc,r : {0, 1}c → {0, 1}r, ωc,r(I) = (I1, I2, I1, I2) for I1 = ⌈I⌉ c
2
, I2 = ⌊I⌋ c

2
.

In each round, it is applied between the state-update-function and the permu-
tation. After the final permutation, the last κ bits are XORed with the key to
yield the tag. As for Ascon, we refer to this as output-blinding.
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Fig. 14: Illustration of Schwaemm in terms of EncC (top) and EncM (bottom).

Committing Security of Schwaemm. We show that Schwaemm achieves
committing security. At the first glance, it looks like one can apply the same
attack used against Photon-Beetle: Invert EncC for some S and take the
result as the concatenation of key and nonce. However, Schwaemm deploys
output-blinding in EncM (the last XOR of the key in Fig. 14), that makes the
attack unlikely to succeed. Output-blinding is a feature we have also encountered
in Ascon, as one of the central properties making it committing secure. Despite
that, we cannot show committing security in the same way, as Schwaemm lacks
the state-blinding, that Ascon has, and Schwaemm’s initial state does not
contain a fixed component. However, we noticed that introducing an IV to
Schwaemm’s initial state suffices to obtain a committing secure scheme—despite
the weaker blinding mechanism. More precisely, we decrease the length of the
nonce from 256 to 128 bits23 and instead incorporate a fixed IV (of length 128
bit) into the initial state. For the resulting modified version of Schwaemm,
denoted by SchwaemmIV , we can show about 64-bit committing security. For
the proof, we model the two permutations ρa and ρb by one ideal permutation
ρ, as it was done for Isap and Ascon. We further drop the domain separation
in our proof for sake of simplicity. This part can easily be incorporated at the
cost of reducing the committing security by the number of bits required for the
domain separation.

Theorem 11. Consider Schwaemm illustrated in Fig. 14 and SchwaemmIV ,
its modified version described above. Let ρa and ρb be modeled as a random
permutation ρ. Then for any adversary A making q ≤ 2127 queries to ρ, it holds

23 Note that the modified scheme is still in accordance to the NIST requirements [48]
that nonces are at least 96 bits long.
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that

AdvCMT
SchwaemmIV

(A) ≤ 1− exp

(
−q(q − 1)

2128

)
+ ϵ ,

for ϵ > (1−2−256)q2+(1+2−256)q
2129 .

Proof (Sketch). The full proof is given in Appendix B.9, here we provide a sketch.
The idea is to view SchwaemmIV as a plain sponge and show that it is hard
to find colliding tags, which, in turn, yields that it is hard to break committing
security. Due to the output-blinding, tag collisions are not equal to collisions of
the plain sponge, as the keys—used to blind the output—can be different. To
deal with that, we define shifted collisions, which encompass these tag collisions
for the plain sponge. We conclude the proof by utilizing the indifferentiability
of the plain sponge from a random function and providing a bound on finding
shifted collisions for the latter. ⊓⊔

4 Conclusion

Out of the nine considered NIST finalists, we have shown that six do not achieve
committing security while the remaining three do. For the former, we gave con-
crete attacks, while the others are backed up by formal security proofs. For
Elephant, Gift-Cofb, and Romulus, the attacks can be traced back to
the fact that inputs are XORed onto the entire state (we call this full-state
XOR). Similarly to this, Xoodyak exhibits the same property as part of it
(EncC) is a full-state sponge: The whole state—except for a few bits reserved
for padding—can be influenced by the adversary. Furthermore, also the attack
against Photon-Beetle, which exploits the scheme’s context-dependent ini-
tial state, can be regarded as a “full-state-attack”. For this, note that an initial
state that can be controlled entirely by the adversary, can easily be represented
as a full-state XOR of some input onto the all-zero string. Our attack against
TinyJambu is based on the scheme’s short tag, which enables an efficient de-
ployment of the birthday attack. Note that in order to obtain 64-bit committing
security, a tag length of at least 128 bits is necessary.24

Overall, we observe that all block-cipher-based NIST finalists are broken
with respect to committing security. At the same time, the three schemes for
which we formally prove committing security are all sponge-based. This suggests
that sponges are better suited to building committing authenticated encryption
schemes, whereas block-cipher-based schemes seem to exhibit some inherent vul-
nerabilities. However, note that full-state sponges—which have proven to yield
AE schemes that achieve confidentiality and authenticity [46]—are also vulner-
able with respect to committing security. Our overall insight, i.e., that sponges
are more favorable than block-ciphers when designing committing AE schemes,
is also supported by prior results: While there is a number of committing attacks

24 Though, longer tags are not sufficient to obtain CMT security for TinyJambu.
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against block-cipher-based schemes [9,38,45], we are not aware of any committing
attacks against sponge-based schemes. Moreover, very recently, positive results
regarding committing AE from sponges emerged [24,25].

Looking at the positive results (Isap, Ascon, and Schwaemm), a common
feature is that a significant part of the state is “out-of-reach” for the adversary,
i.e., not manipulable by the input. All of these schemes have a capacity of at
least 128 bits. Interestingly, TinyJambu features a similar design in the sense
that a part of its state (96 bits) is unaffected by the inputs. However, due to
the common, but comparably small, block size of n = 128, it is not possible for
TinyJambu to achieve 64-bit committing security. This would require the entire
128-bit state to not be affected by the inputs throughout the whole scheme, which
would render it pointless. In contrast to this, sponge constructions typically
rely on permutations over much larger states: Ascon-P (n = 320), Keccak-P
(n = 400), Sparkle (n = 384), Xoodoo (n = 384), and Photon (n = 256).
These allow for efficient constructions while maintaining a large part of the state
unaffected by the inputs, which is favorable for committing security.
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A Additional Preliminaries

In Appendix A.1 we describe the used paddings and define more security no-
tions. We give some background on (tweakable) block-ciphers and sponges in
Appendix A.2 and Appendix A.3, respectively. Finally, in Appendix A.4, we
provide some results that are relevant for our attacks and proofs.

A.1 Paddings and Security Notions

The authenticated encryption schemes considered in this work, use common
paddings which we recall below. The one-zero padding pad10∗(·, r), appends a 1,
followed by 0s until the desired length r is reached. Simply padding with 0s to
length r is denoted by pad0∗(·, r). By padL(·, r), we denote the padding which
appends 0, followed by appending the length of the input.

Below we define collision resistance of a hash function.

Definition 12. Let H : {0, 1}∗ → {0, 1}w be a hash function with output length
w. For any adversary A, its CR advantage is defined as

AdvCR
H (A) := Pr[H(X1) = H(X2) ∧X1 ̸= X2 | (X1, X2)← A()] .

Menda et al. [45] defined several variants of committing security. These variants
require different parts of the contexts to disagree (and sometimes also others to
agree). Below we recall their security notions.25

Definition 13. Let Ae = (Enc,Dec) be an authenticated encryption scheme
and the games CMTX and CMT⋆

X for X ∈ {K,N,A} be defined as in Fig. 1. For
any adversary A, its CMTX and CMT⋆

X advantages are defined as

AdvCMTX

Ae (A) := Pr[CMTX(A)→ 1] , Adv
CMT⋆

X

Ae (A) := Pr[CMT⋆
X(A)→ 1] .

Next, we define the advantage of finding colliding tags. At its core, this is a
weakened version of committing security as the ciphertexts are not required to
agree. We use this to bound the committing security of Ascon and Schwaemm.

Definition 14. Let Ae = (Enc,Dec) be an authenticated encryption scheme
and the game TagColl be defined as in Fig. 16. For any adversary A, its TagColl
advantage is defined as

AdvTagColl
Ae (A) := Pr[TagColl(A)→ 1] .

25 Note, however, that CMTK originates from [9].

34



Game CMTK

1 : (K,N,A,M), (K,N,A,M)← A()

2 : if K = K

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Game CMT⋆
K

1 : ((K,K), N,A, (M,M))← A()

2 : if K = K

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Game CMTN

1 : (K,N,A,M), (K,N,A,M)← A()

2 : if N = N

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Game CMT⋆
N

1 : (K, (N,N), A, (M,M))← A()

2 : if N = N

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Game CMTA

1 : (K,N,A,M), (K,N,A,M)← A()

2 : if A = A

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Game CMT⋆
A

1 : (K,N, (A,A), (M,M))← A()

2 : if A = A

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return ((C, T ) = (C, T ))

Fig. 15: Security games CMTK, CMTN, CMTA, CMT⋆
K, CMT⋆

N, and CMT⋆
A for au-

thenticated encryption schemes. Here, ((K,K), N,A, (M,M)) is an abbreviation
for (K,N,A,M), (K,N,A,M), likewise used for the other context components.

Game TagColl

1 : (K,N,A,M), (K,N,A,M)← A()

2 : if (K,N,A) = (K,N,A)

3 : return 0

4 : (C, T )← Enc(K,N,A,M)

5 : (C, T )← Enc(K,N,A,M)

6 : return (T = T )

Fig. 16: Security Game TagColl for authenticated encryption schemes used in the
proof of Theorem 10.
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A.2 (Tweakable) Block-Ciphers

A block-cipher BC : {0, 1}κ×{0, 1}n → {0, 1}n takes as input a key K of length
κ and a message M of length n, and outputs a ciphertext C of the same length
as the message. For every K ∈ {0, 1}κ, BC(K, ·) is a permutation over {0, 1}n. A
tweakable block-cipher [44] TBC : {0, 1}κ×T ×{0, 1}n → {0, 1}n takes as input
a key K of length κ, a tweak T (from some set of tweaks T ), and a message M
of length n, and outputs a ciphertext C of the same length as the message. For
every pair (K,T ) ∈ {0, 1}κ×T , TBC(K,T, ·) is a permutation over {0, 1}n. We
also use TBCT (K, ·) as an alternative notation for TBC(K,T, ·).

For our results, we model the block-ciphers BC and tweakable block-ciphers
TBC by an ideal cipher E and ideal tweakable cipher Ẽ, respectively.

BCK TBC
(·)
KM MC C

T

Fig. 17: Block-cipher (left) and tweakable block-cipher (right). For tweakable
block-ciphers, the black bar indicates that the incoming arrow (T ) is used as a
tweak.

A.3 Sponges

Sponges [13] are a versatile tool for cryptographic primitives. Rather than just
being relevant for cryptographic hash functions—as was their main design goal—
they turned out to be more powerful as one can construct numerous crypto-
graphic primitives from sponges.

The underlying component of a sponge is a permutation ρ : {0, 1}n → {0, 1}n.
Here, n is the size of the sponge state. The sponge operates in a round-wise
fashion, where each round it absorbs a part of the input and applies ρ. The
rate r describes how many bits of the input can be absorbed in each round by
XORing them to the first r bits of the sponge state. The higher the rate the
faster the sponge as fewer rounds, hence fewer invocations of ρ, are required to
absorb the input. The part of the sponge state that is not affected by the input
absorption is called the inner state and its size is denoted by the capacity c, thus
we have r + c = n. The capacity is related to the security of the sponge, the
higher the capacity the better the security of the sponge.

We refer to sponges of the form described above by plain sponges and provide
an illustration in Fig. 18. It was shown that—especially in the context of AE
schemes—one can also deploy full-state sponges and duplex sponges. The former
XORs the input to the entire state, i.e., r = n and c = 0. The latter absorbs and
squeezes in each round, in contrast to the plain sponge which squeezes only after
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the absorption is finished. Xoodyak uses a full-state sponge, while a duplex
sponge is used, for instance, by Ascon.

Below we recall two results for the plain sponge construction that we will use
later: First, a bound on the collision resistance of a simple sponge-based hash
function and, second, the indifferentiability of sponges from a random function.

Theorem 15 ([17, Theorem 8.6]). Let H be a hash function obtained from
a permutation ρ : {0, 1}n → {0, 1}n, with capacity c, rate r (so n = r + c), and
output length w ≤ r. For every adversary A, if the number of ideal permutation
queries plus the number of r-bit blocks in the output of A is bounded by q, it
holds that

AdvCR
H (A) ≤ q(q − 1)

2w
+

q(q + 1)

2c
.

Theorem 16 ([12, Theorem 2]). Let H be a (padded) sponge construction
obtained from a permutation ρ : {0, 1}n → {0, 1}n, with capacity c and rate r (so
n = r+ c). Then, for any adversary A, making significantly less than 2c queries
to ρ, H is indistinguishable from a random oracle F, except with probability at

most (1−2−256)q2+(1+2−256)q
2129 .

ρ ρ ρ ρ ρ0n

X1 X2 X3 X4 Y3 Y4

r
/

r
/

r
/

r
/

r
/

≤ r
/

c
/

c
/

c
/

c
/

c
/

absorb squeeze

Fig. 18: Illustration of a plain sponge construction with four rounds of absorbing
and two rounds of squeezing

A.4 Existing Results

The theorem below gives both upper and lower bounds on finding collisions for
independent random variables.

Theorem 17 ([17, Theorem B.1]). LetM be a set of size n and X1, . . . , Xk

be k independent random variables uniform in M. Let C be the event that for
some distinct i, j ∈ {1, . . . , k} we have that Xi = Xj. Then

Pr[C] ≥ 1− exp

(
−k(k − 1)

2n

)
≥ min

{
−k(k − 1)

4n
, 0.63

}
and

Pr[C] ≤ 1− exp

(
−k(k − 1)

n

)
when k <

n

2
.
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We use the formulation of the birthday problem presented in [54], but provide
a more formal description using Theorem 17.

Lemma 18. Consider two lists L1, L2 of elements drawn uniformly and inde-
pendently at random from {0, 1}τ . We denote the size of L1 and L2 by l1 and
l2, respectively, and define l = l1 + l2. Then one finds xk ∈ L1 and xj ∈ L2 such
that xk ⊕ xj = 0 with a probability of at least(

1− exp

(
−l(l − 1)

2τ+1

))
· 2 l1l2
l2 − l

.

Proof. Consider the concatenation of the two lists L = L1 ∥ L2 and write
x1, . . . , xl for its elements. Denote by C the event that xk = xj holds for some
k ̸= j. Since the xi are drawn uniformly and independently, Theorem 17 yields

the bound Pr[C] ≥ 1−exp
(

−l(l−1)
2τ+1

)
. However, this probability also counts inter-

nal collisions of L1 and L2, respectively. For two elements of L, the probability
that they are not both from either L1 or L2 is l1

l
l2
l−1 +

l2
l

l1
l−1 = 2 l1l2

l2−l . Taking this
into account, the probability that xk = xj holds for some xk ∈ L1 and xj ∈ L2

is thus bounded above by
(
1− exp

(
−l(l−1)
2τ+1

))
· 2 l1l2

l2−l . ⊓⊔

The following lemma contains two technical results needed for the committing
security proof of Ascon (Theorem 10). While the computations are not hard,
we give them here to provide a complete presentation.

Lemma 19. Let n, c ∈ N such that c ≤ n and IV ∈ {0, 1}c. Let further ρ be a
random permutation over {0, 1}n and A be an adversary making queries to ρ.
Consider the following events:

1. Event Et (target hitting query):
A makes a query Y to ρ such that ⌊ρ(Y )⌋64 = IV or A makes a query S to
ρ−1 such that

⌊
ρ−1(S)

⌋
64

= IV .

2. Event Ec (colliding queries):
A makes queries Y ̸= Y to ρ such that ⌊ρ(Y )⌋128 =

⌊
ρ(Y )

⌋
128

or A makes

queries Y to ρ and S to ρ−1 such that ⌊ρ(Y )⌋128 =
⌊
ρ−1(S)

⌋
128

.

If A makes q ≤ 2n−1 queries, then

Pr[Et] ≤
q

2c−1
.

and

Pr[Ec] ≤
q(q − 1)

2c
.

Proof. We start with the bound for Et. Let Xi be the event that A triggers event
Et with its i-th query. It holds that

Pr[Et] ≤
q∑

i=1

Pr[Xi] =

q∑
i=1

2r

2n − i+ 1
≤ 2rq

2n − q
≤ 2rq

2n−1
=

q

2c−1
,
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where q ≤ 2n−1 is used for the last inequality. Next, we bound event Ec. Let
Xij be the event that the j-th query by A forms a collision with the i-th query.
Then it holds that

Pr[Ec] ≤
q∑

j=i

j−1∑
i=1

Pr[Xij ] ≤
q∑

j=1

(j − 1)2r

2n − j + 1
≤ 2r

(
q(q − 1)

2 (2n − q)

)
,

and using q ≤ 2n−1 again, we obtain

Pr[Ec] ≤ 2r
(
q(q − 1)

2n

)
=

q(q − 1)

2c
,

which finishes the proof. ⊓⊔
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B Deferred Proofs

B.1 Proof of Theorem 3 (Elephant)

Proof. We construct a CMT adversary A against Elephant as shown in Fig. 19.
As a first step it samples a key K, a nonce N , associated data A, and a mes-
sage M at random from the respective sets. It computes the ciphertext C ←
EncM(K,N,M) and the tag T ← EncT(K,N,A,C). The ciphertext is parsed

into blocks C1, . . . , Cγ
n←− pad10∗(C, n). Next, the adversary samples a second,

different key K ←$K\{K} and associated data blocks A2, . . . , Aα ←$ {0, 1}n.26
The adversary then computes the state

S ←
α⊕

i=2

(Ẽ(K, (i− 1, 0), Ai))⊕
γ⊕

i=1

(Ẽ(K, (i− 1, 2), Ci)) ,

shown in Fig. 5. The value Y is computed by querying Ẽ−1 on K, (0, 0), and T
(padded with 0s to length n). Adversary A then computes A1 as the XOR of S
and Y . Together with the other associated data blocks, A computes (N,A) ←
pad−1

10∗(A1 ∥ . . . ∥ Aα), i.e., removes the padding. It remains to compute the
message M to which the ciphertext C decrypts under the context (K,N,A).
This can easily be achieved by setting M ← EncM(K,N,C). Finally, A outputs
(K,N,A,M), (K,N,A,M). Observe that A wins the game CMT, as we have

Elephant.Enc(K,N,A,M) = (C, T ) = Elephant.Enc(K,N,A,M) .

As for the queries to Ẽ, A makes µ queries to compute C and α+ γ to compute
T . Additionally, A makes µ queries to compute M and α+γ queries to compute
S and Y , totalling up to q = 2µ+ 2γ + α+ α queries. ⊓⊔

The gist of the attack, is finding a second associated data A which yields
the target ciphertext. The attack easily extends to a context discovery attack
(CDY⋆

A) [45]. Hence, we can conclude that Elephant is also vulnerable with re-
spect to the weaker security notions CMTK and CMTN by using [45, Corollar 3].
Furthermore, the attack can be translated to one against CMTA by observing
that the adversary can choose A to differ from A at some point (note that A

can freely choose all but one block). Finally, the attack is also extendable to the
more restricted notion CMT⋆

A by choosing the second key-nonce pair (K,N) not
at random but equal to the first pair (K,N).27

26 We assume that A chooses the last block to exhibit a valid padding.
27 In this case, the adversary needs to target a different associated data block, which

grants the freedom to choose the nonce N .
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Elephant adversary A

1 : K,N,A,M ←$K ×N ×A×M
2 : C ← EncM(K,N,M)

3 : T ← EncT(K,N,A,C)

4 : C1, . . . , Cγ
n←− pad10∗(C, n)

5 : K ←$K \ {K}
6 : A2, . . . , Aα ←$ {0, 1}n

7 : S ← B(C1, . . . , Cγ , A2, . . . , Aα)

8 : Y ← Ẽ−1(K, (0, 0), pad0∗(T, n))

9 : A1 ← Y ⊕ S

10 : (N,A)← pad
−1
10∗(A1, . . . , Aα)

11 : M ← EncM(K,N,C)

12 : return (K,N,A,M), (K,N,A,M)

B(C1, . . . , Cγ , A2, . . . , Aα)

13 : S ← 0n

14 : for i = 1, . . . , γ

15 : S ← S ⊕ Ẽ−1(K, (i− 1, 2), Ci)

16 : for i = 2, . . . , α

17 : S ← S ⊕ Ẽ−1(K, (i− 1, 0), Ai)

18 : return S

Fig. 19: Elephant adversary A from Theorem 3.

Elephant.Enc(K,N,A,M)

1 : C ← EncM(K,N,M)

2 : T ← EncT(K,N,A,C)

3 : return (C, T )

EncM(K,N,M)

4 : M1, . . . ,Mµ
n←− pad0∗(M,n)

5 : for i = 1, . . . , µ

6 : Ci ←Mi ⊕TBC(i−1,1)(K,N)

7 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

8 : return C

EncT(K,N,A,C)

9 : A1, . . . , Aα
n←− pad10∗(N ∥ A,n)

10 : C1, . . . , Cγ
n←− pad10∗(C, n)

11 : T ← A1

12 : for i = 2, . . . , α

13 : T ← T ⊕TBC(i−1,0)(K,Ai)

14 : for i = 1, . . . , γ

15 : T ← T ⊕TBC(i−1,2)(K,Ci)

16 : T ← TBC(0,0)(K,T )

17 : return ⌈T ⌉τ

Fig. 20: Pseudocode of Elephant [16] in terms of EncM and EncT.
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B.2 Proof of Theorem 4 (Romulus)

For the proof of Theorem 4, we formulate and prove two lemmas. Firstly, we
show that the state-update-function ξ is invertible (Lemma 20). Secondly, we
prove that we can invert both EncC and EncM (Lemma 21 and Lemma 22),
where, for the latter, we make use of the invertibility of ξ.

Recall that the state-update-function ξ of Romulus maps a state S and an
input I to a new state Y and an output O. In Romulus.Dec, the inverse of ξ is
considered, however, inverse is understood only in relation to the output data.
This means that the inverse function will not invert the state. When looking at
Romulus, one can see that the output of ξ is discarded in EncC—a fact that
will be exploited later. For our attack against EncM, this no longer works, as we
have to invert the output of ξ while maintaining equal ciphertexts. The following
lemma shows that we can invert ξ with respect to both its output and state. We
write M for the input and C for the output of ξ (instead of I and O), which is
the case for our scenario.

Lemma 20. Let ξ be the state-update-function of Romulus. Let further Aξ be
the algorithm displayed in Fig. 21. Then for any (Y,C) ∈ {0, 1}n × {0, 1}n, it
holds that

ξ(Aξ(Y,C)) = (Y,C) .

Proof. We first observe that the matrix G works block-wise on blocks of 8 bits.
Since Aξ splits the state and ciphertext into blocks of 8 bits each and runs AG

(cf. Fig. 21) on each of these blocks, we merely need to show that AG correctly
inverts an 8-bit block.

Let (Y,C) ∈ {0, 1}8 × {0, 1}8 and (S,M) ← AG(Y,C). For i ∈ {1, . . . , 8},
denote the i-th bit of Y , C, S, and M by Y [i], C [i], S [i], and M [i], respectively.
Algorithm AG first computes S[1] ← Y [8] ⊕ C[8] and M [1] ← Y [1] ⊕ S[1].
Subsequently, for i ∈ {2, . . . , 8}, it computes S[i] ← M [i − 1] ⊕ C[i − 1] and
M [i] ← Y [i] ⊕ S[i]. Denote the output of ξ on input (S,M) by (Y,C). By
construction we have:

Y = M ⊕ S

= (M [1]⊕ S[1]) ∥ . . . ∥ (M [8]⊕ S[8])

= (Y [1]⊕ S[1]⊕ S[1]) ∥ . . . ∥ (Y [8]⊕ S[8]⊕ S[8])

= Y [1] ∥ . . . ∥ Y [1]

= Y
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and

C = M ⊕Gs(S)

= (M [1]⊕ S[2]) ∥ . . . ∥ (M [7]⊕ S[8]) ∥ (M [8]⊕ S[8]⊕ S[1])

= (M [1]⊕M [1]⊕ C[1]) ∥ . . . ∥ (M [7]⊕M [7]⊕ C[7]) ∥ (M [8]⊕ S[8]⊕ S[1])

= C[1] ∥ . . . ∥ C[7] ∥ (M [8]⊕ S[8]⊕ S[1])

= C[1] ∥ . . . ∥ C[7] ∥ (M [8]⊕M [7]⊕ C[7]⊕ S[1])

= C[1] ∥ . . . ∥ C[7] ∥ (M [8]⊕M [7]⊕ C[7]⊕ Y [8]⊕ C[8])

= C[1] ∥ . . . ∥ C[7] ∥ (Y [8]⊕ S[8]⊕M [7]⊕ C[7]⊕ Y [8]⊕ C[8])

= C[1] ∥ . . . ∥ C[7] ∥ (Y [8]⊕M [7]⊕ C[7]⊕M [7]⊕ C[7]⊕ Y [8]⊕ C[8])

= C[1] ∥ . . . ∥ C[7] ∥ C[8]

= C .

Thus we obtain ξ(Aξ(Y,C)) = ξ(S,M) = (Y,C) = (Y,C), which concludes the
proof. ⊓⊔

Next, we give an adversary that inverts EncC, i.e., for a given output S of EncC

and a partial context (K,N), it finds matching associated data. We exploit the
fact that the associated blocks are XORed to the full state in EncC.

Lemma 21. Consider Romulus described in Fig. 22. There exists an adversary
AC, making q queries to Ẽ such that for any (K,N, S) ∈ K × N × {0, 1}n, it
holds that

Pr[EncC(K,N,A) = S | A← AC(K,N, S)] = 1 .

The number of ideal tweakable cipher queries by AC is q =
⌊
α
2

⌋
+ 1 for α being

the number of associated data blocks that AC outputs.

Proof. We construct AC as shown in Fig. 21. As input it receives (K,N, S). It
chooses an arbitrary even number of associated data block α and chooses all
except the first block at random, i.e., A2, . . . , Aα ← $ {0, 1}n.28 In addition, A
sets Aα+1 ← 0n.29 Then A proceeds by inverting S using the ideal tweakable
cipher to obtain Y . For i ∈ {1, . . . , α

2 }, A first computes S ← Y ⊕A2i+1 followed

by computing Y ← Ẽ−1(K,A2i, S), inverting the state-update-function ξ and
the ideal tweakable cipher. Denote the resulting state by Y∗ (see also the state
marked in red in Fig. 6). Adversary A sets the first associated data as A1 ← Y∗
which ensures that EncC(K,N,A) = S.

The number of queries to the ideal tweakable cipher Ẽ by A is
⌊
α
2

⌋
+ 1: the

initial one plus
⌊
α
2

⌋
for the for loop. ⊓⊔

We now give an adversary that inverts EncM, i.e., for a given ciphertext (C, T )
and a partial input (K,N), it finds a matching pair of state S and message M .
The attack relies heavily on the invertibility of ξ as shown in Lemma 20.

28 We assume that these blocks are chosen to exhibit a valid padding.
29 This corresponds to the input of the last application of ξ in the upper part of Fig. 6.
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Lemma 22. Consider Romulus as described in Fig. 22. There exists an adver-
sary AM, making q queries to Ẽ such that for any (K,N, (C, T )) ∈ K ×N × C,
it holds that

Pr[EncM(K,N, S,M) = (C, T ) | (S,M)← AM(K,N, (C, T ))] = 1 .

The number of ideal tweakable cipher queries by AM is q = µ for µ being the
number of ciphertext blocks that AM receives as input.

Proof. We construct adversary AM as shown in Fig. 21. AM gets as input
(K,N, (C, T )). For ease of exposition, we assume that the length of C is a mul-

tiple of the block size n.30 Let C1, . . . , Cγ
n←− C. The adversary AM first sets

Y ← T and then computes S ← G−1(Y ). For i ∈ {1, . . . , γ}, AM computes

Y ← Ẽ−1(K,N, S)31 followed by the computation of (S,Mi) ← Aξ(Y,Ci) from
Lemma 20. Finally, AM outputs (S,M), whereM = M1 ∥ . . . ∥Mγ . By construc-
tion, it holds that EncM(K,N, S,M) = (C, T ) as AM inverted all invocations

of Ẽ and ξ during EncM—using Aξ from Lemma 20 for the latter.

A queries the ideal tweakable cipher Ẽ a total of µ times. ⊓⊔

Having established Lemma 20, Lemma 21, and Lemma 22, we can now prove
Theorem 4.

Proof (of Theorem 4). We construct the following adversary A againstRomulus
as shown in Fig. 21. It samples a context (K,N,A) together with a message M at
random and computes the ciphertext (C, T ) ← Romulus.Enc(K,N,A,M). It
then samples (K,N) at random, computes (S,M) ← AM(K,N, (C, T )), and
A ← AC(K,N, S). Finally, A outputs (K,N,A,M), (K,N,A,M). By using
Lemma 21 and Lemma 22, we obtain

Romulus.Enc(K,N,A,M) = EncM(K,N,EncC(K,N,A),M)

= EncM(K,N, S,M) (Lemma 21)

= (C, T ) (Lemma 22)

= Romulus.Enc(K,N,A,M) .

As for the number of queries to the ideal tweakable cipher Ẽ, A makes µ+
⌊
α
2

⌋
+1

while computing the ciphertext (C, T ) for the first tuple and additionally µ and⌊
α
2

⌋
+ 1 queries while running AM and AC, respectively. This accumulates to

q = 2µ+
⌊
α
2

⌋
+
⌊
α
2

⌋
+ 2 queries in total and concludes the proof. ⊓⊔

The attack easily extends to CMTK, CMTN, CMTA, and CMT⋆
A attacks. The

reasoning follows the one given for Elephant.

30 This is justified by letting A choose a message satisfying this.
31 Note that we drop the counter which is part of the tweak for simplicity.
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Romulus adversary A()

1 : (K,N,A,M)←$K ×N ×A×M
2 : (C, T )← Enc(K,N,A,M)

3 : (K,N)←$K ×N
4 : (S,M)← AM(K,N, (C, T ))

5 : A← AC(K,N, S)

6 : return (K,N,A,M), (K,N,A,M)

Aξ(Y,C)

7 : Y1, . . . , Yn
8

8←− S

8 : C1, . . . , Cn
8

8←− C

9 : for i = 1, . . . , n
8
do

10 : (Si,Mi)← AG(Yi, Ci)

11 : S ← S1 ∥ . . . ∥ Sn
8

12 : M ←M1 ∥ . . . ∥Mn
8

13 : return (S,M)

AG(Y,C)

14 : Y [1], . . . , Y [8]
1←− Y

15 : C[1], . . . , C[8]
1←− C

16 : S[1]← Y [8]⊕ C[8]

17 : M [1]← Y [1]⊕ S[1]

18 : for i = 2, . . . , 8 do

19 : S[i]←M [i− 1]⊕ C[i− 1]

20 : M [i]← Y [i]⊕ S[i]

21 : S ← S1 ∥ . . . ∥ S8

22 : M ←M1 ∥ . . . ∥M8

23 : return (S,M)

EncC adversary AC(K,N, S)

24 : α←$ 2N
25 : A2, . . . , Aα ←$ {0, 1}n

26 : Aα+1 ← 0n

27 : Y ← Ẽ−1(K,N, S)

28 : for i = α
2
, . . . , 1 do

29 : S ← Y ⊕A2i+1

30 : Y ← Ẽ−1(K,A2i, S)

31 : A1 ← Y

32 : A← A1 ∥ . . . ∥ Aα

33 : return A

EncM adversary AM(K,N, (C, T ))

34 : C1, . . . , Cγ
n←− C

35 : Y ← T

36 : S ← G−1(Y )

37 : for i = µ, . . . , 1 do

38 : Y ← Ẽ−1(K,N, S)

39 : (S,Mi)← Aξ(Y,Ci)

40 : M ←M1 ∥ . . . ∥Mµ

41 : return (S,M)

Fig. 21: Romulus adversary A from Theorem 4 and the state-update-function
adversary Aξ from Lemma 20.
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Romulus.Enc(K,N,A,M)

1 : S ← EncC(K,N,A)

2 : (C, T )← EncM(K,N, S,M)

3 : return (C, T )

EncC(K,N,A)

4 : A1, . . . , Aα
n←− padL(A,n)

5 : S ← 0n

6 : for i = 1, . . . ,
⌊
α
2

⌋
7 : (Y, ·)← ξ(S,A2i−1)

8 : S ← TBCA2i(K,Y )

9 : V ← 0n

10 : if α mod 2 ̸= 0

11 : V ← Aα

12 : (Y, ·)← ξ(S, V )

13 : S ← TBCN (K,Y )

14 : return S

EncM(K,N, S,M)

15 : M1, . . . ,Mµ
n←− padL(M,n)

16 : S ← S

17 : for i = 1, . . . , µ− 1

18 : (Y,Ci)← ξ(S,Mi)

19 : S ← TBCN (K,Y )

20 : (Y,Cµ)← ξ(S,Mµ)

21 : S ← TBCN (K,Y )

22 : (·, O)← ξ(S, 0n)

23 : T ← ⌈O⌉τ
24 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

25 : return (C, T )

ξ(S, I)

26 : Y ← S ⊕ I

27 : O ← G(S)⊕ I

28 : return (Y,O)

Fig. 22: Pseudocode of Romulus [40] in terms of EncC and EncM. For sake of
simplicity, we drop the counter that is part of the tweak.
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B.3 Proof of Theorem 5 (Gift-Cofb)

For the proof of Theorem 5 we drop the XOR of the masking values. This avoids
some very cumbersome and tedious bookkeeping. Subsequent to the proof, we
discuss why the results also hold if the masking values are used.

Before giving the proof of Theorem 5, we give three lemmas that we will
use to prove it. The first lemma, Lemma 23, shows that there is an algorithm
that inverts the state-update-function of Gift-Cofb for random outputs with
probability 1

2 . The second lemma, Lemma 24, shows that EncC can be inverted,
i.e., given an arbitrary key K, a nonce N , and an output state S, there is an
algorithm that outputs associated data A, such that EncC(K,N,A) = S. The
third lemma, Lemma 25, shows that there is an algorithm that inverts EncM.
The latter relies heavily on Lemma 23 which is why the success probability drops
exponentially in the number of ciphertext blocks.

Lemma 23. Let ξ be the state-update-function of Gift-Cofb. Let further Aξ

be the algorithm displayed in Fig. 23. Let C be an arbitrary bit string of length
n. Then for Y ←$ {0, 1}n, it holds that

Pr[ξ(Aξ(Y,C)) = (Y,C)] =
1

2
.

Proof. We start by describing the algorithm Aξ that is displayed in Fig. 23. We
divide C and Y in two n

2 -sized blocks, denoted by C1, C2 and Y1, Y2, respectively.
Further, we denote the bits of C1⊕Y1⊕C2⊕Y2 by z1, . . . , zn

2
. Then, we randomly

sample a bit s1 and set si ← si−1⊕zi−1 for all i = 2, . . . , n
2 . By S1 we denote the

bit string resulting from concatenating the si’s. Next, we define S2 ← C1⊕Y1⊕S1

and S ← S1 ∥ S2, which will be the first output of Aξ. Further, we set M1 ←
Y1 ⊕ S2 and M2 ← Y2 ⊕ (S1 ≪ 1). The concatenated bit string M ←M1 ∥M2

is the second output of Aξ, i.e., Aξ(Y,C) = (S,M).
Next, we check that ξ(Aξ(Y,C)) = (Y,C) holds with probability 1

2 . By defini-
tion of the state-update-function, the first component of ξ(Aξ(Y,C)) = ξ(S,M)
is given by

G̃(S)⊕M = (S2, S1 ≪ 1)⊕M

= (S2 ⊕M1, (S1 ≪ 1)⊕M2)

= (Y1, Y2) = Y .

The second component of ξ(Aξ(Y,C)) = ξ(S,M) computes as

M ⊕ S = (M1 ⊕ S1,M2 ⊕ S2)

= (Y1 ⊕ S2 ⊕ S1, Y2 ⊕ (S1 ≪ 1)⊕ S2) .

Note that this expression is equal to C if and only if S1 ⊕ (S1 ≪ 1) = C1 ⊕
Y1 ⊕C2 ⊕ Y2, which results from solving C1 = Y1 ⊕ S2 ⊕ S1 for S2 and plugging
the result into C2 = Y2 ⊕ (S1 ≪ 1) ⊕ S2. Breaking down this equation to the
bit-level, yields

(s1, s2, . . . , sn
2
)⊕ (s2, s3, . . . , sn

2
, s1) = (z1, . . . , zn

2
) .
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This gives the following equations

s1 ⊕ s2 = z1

s2 ⊕ s3 = z2

...

sn
2 −1 ⊕ sn

2
= zn

2 −1

sn
2
⊕ s1 = zn

2

of which the first n
2 − 1 equations hold by construction of the algorithm Aξ.

Finally, we need to determine in which cases the last equation holds. For this,
we replace sn

2
by sn

2 −1 ⊕ zn
2 −1 which we get from the second to last equation.

Then, in turn, we replace sn
2 −1 with sn

2 −2⊕zn
2 −2 and continue this process until

we get an equation depending only on the zi’s and s1, namely

zn
2 −1 ⊕ . . . z2 ⊕ z1 ⊕ s1 ⊕ s1 = zn

2
,

which is equivalent to zn
2
⊕zn

2 −1⊕. . . z2⊕z1 = 0. Thus we get ξ(Aξ(Y,C)) = (·, C)
if and only if C1 ⊕ Y1 ⊕ C2 ⊕ Y2 = z1 ∥ . . . ∥ zn

2
contains an even number of 1s.

Since Y is chosen uniformly at random, this is the case with probability 1
2 . This

finishes the proof of the claim. ⊓⊔

Lemma 24. Consider Gift-Cofb as described in Fig. 24. There exists an ad-
versary AC, making q queries to the ideal cipher E such that for any (K,N, S) ∈
K ×N × {0, 1}n, it holds that

Pr[EncC(K,N,A) = S | A← AC(K,N, S)] = 1 .

The number of ideal cipher queries by AC is q = α + 1 for α being the number
of associated data blocks that AC outputs.

Proof. We construct the following adversary AC against Gift-Cofb as shown in
Fig. 23. Its input is (K,N, S). First, AC randomly picks associated data blocks
A2, . . . , Aα, i.e., all except the first one.32 Next, AC computes both S∗ and Y∗
(cf. Fig. 7): For the former, AC computes S∗ ← E(K,N) and for the latter, AC

consecutively inverts the ideal cipher E (starting from the input S) and the state-

update-function ξ (by XORing an associated data block and inverting G̃—note

that we merely need to invert G̃ as the output of ξ is discarded). Finally, AC

computes A1 ← S∗ ⊕ Y∗ and outputs A. By construction, it holds that

EncC(K,N,A) = S .

The number of ideal cipher queries by AC is α+ 1. ⊓⊔
32 We assume that AC picks the blocks such that they exhibit a valid padding according

to Gift-Cofb.
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Lemma 25. Consider Gift-Cofb described in Fig. 24. There exists an adver-
sary AM, making q queries to the ideal cipher E such that

Pr[EncM(K,N, S,M) = (C, T ) | (S,M)← AM(K,N, (C, T ))] =
1

2µ
,

holds for any (K,N, (C, T )) ∈ K × N × C. The number of ideal cipher queries
by AM is q = µ for µ being the number of ciphertext blocks that AM receives as
input.

Proof. We construct an adversary AM against Gift-Cofb as shown in Fig. 23.
It gets (K,N, (C, T )) as input. For ease of exposition, we assume that the length

of C is a multiple of the block size n, hence C1, . . . , Cµ
n←− C yields µ full blocks

of length n. First, Adversary AM sets S ← T . Next, AM consecutively inverts
the ideal cipher Y ← E−1(K,S) and computes (S,Mi) ← Aξ(Y,Ci). Finally, it
sets M ←M1 ∥ . . . ∥Mµ and outputs (S,M). Provided that Aξ correctly inverts
ξ, we obtain

EncM(K,N, S,M) = (C, T ) .

By Lemma 23—using Y is uniformly random due to E being an ideal cipher—
every inversion of ξ succeeds with probability 1

2 . Since Aξ is run µ times by AM,
we get

Pr[EncM(K,N, S,M) = (C, T ) | (S,M)← AM(K,N, (C, T ))] =
1

2µ
.

The number of queries to the ideal cipher E by AM is µ. ⊓⊔

We are now ready to give the proof of Theorem 5.

Proof (of Theorem 5). We construct A against Gift-Cofb as displayed in
Fig. 23. It starts by sampling a context (K,N,A) together with a message M
at random and computes (C, T )← Gift-Cofb.Enc(K,N,A,M). Next, it sam-
ples a fresh key-nonce pair (K,N), computes (S,M) ← AM(K,N, (C, T )), and
A← AC(K,N, S). Finally, A outputs (K,N,A,M), (K,N,A,M).

By Lemma 24 and Lemma 25, we have the following equalities with proba-
bility 1

2µ :

Gift-Cofb.Enc(K,N,A,M) = EncM(K,N,EncC(K,N,A),M)

= EncM(K,N, S,M) (Lemma 24)

= (C, T ) (Lemma 25)

= Gift-Cofb.Enc(K,N,A,M) .

This yields

AdvCMT
Gift-Cofb(A) =

1

2µ
.

Adversary A makes a total of q = 2µ + α + α + 2 queries to E: µ + α + 1 for
computing the first tuple, µ for inverting EncM, and α+ 1 for inverting EncC.

⊓⊔
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When considering the masking values, inverting EncM might seem to be a prob-
lem, as the adversary needs to invert the function using the correct masking
values. We observe that the masking values depend on the key, the nonce, and
the length of associated data and message/ciphertext. In particular, they are
independent of the exact values of A, M , and C. Thus, when inverting EncM,
the adversary merely has to choose how long the associated data will be, as this
allows to use the correct masking values.

The attack easily extends to CMTK, CMTN, CMTA, and CMT⋆
A attacks,

following the argument we gave for Elephant.

Gift-Cofb adversary A()

1 : (K,N,A,M)←$K ×N ×A×M
2 : (C, T )← Enc(K,N,A,M)

3 : (K,N)←$K ×N
4 : (S,M)← AM(K,N, (C, T ))

5 : A← AC(K,N, S)

6 : return (K,N,A,M), (K,N,A,M)

EncC adversary AC(K,N, S)

7 : A2, . . . , Aα ←$ {0, 1}n

8 : S∗ ← E(K,N)

9 : Y ← E−1(K,S)

10 : for i = α, . . . , 2

11 : S ← G̃−1(Y ⊕Ai)

12 : Y ← E−1(K,S)

13 : Y∗ ← Y

14 : A1 ← G̃(S∗)⊕ Y∗

15 : A← A1 ∥ . . . ∥ Aα

16 : return A

EncM adversary AM(K,N, (C, T ))

17 : S ← T

18 : for i = µ, . . . , 1

19 : Y ← E−1(K,S)

20 : (S,Mi)← Aξ(Y,Ci)

21 : M ←M1 ∥ . . . ∥Mµ

22 : return (S,M)

Aξ(Y,C)

23 : C1, C2

n
2←− C

24 : Y1, Y2

n
2←− Y

25 : z1, . . . , zn
2

1←− C1 ⊕ Y1 ⊕ C2 ⊕ Y2

26 : s1 ←$ {0, 1}
27 : for i = 2, . . . , n

2
do

28 : si ← si−1 ⊕ zi−1

29 : S1 ← s1 ∥ . . . ∥ sn
2

30 : S2 ← C1 ⊕ Y1 ⊕ S1

31 : S ← S1 ∥ S2

32 : M1 ← Y1 ⊕ S2

33 : M2 ← Y2 ⊕ (S1 ≪ 1)

34 : M ←M1 ∥M2

35 : return (S,M)

Fig. 23: Gift-Cofb adversary A from Theorem 5 and the state-update-function
adversary Aξ from Lemma 23.
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Gift-Cofb.Enc(K,N,A,M)

1 : (S,∆)← EncC(K,N,A)

2 : (C, T )← EncM(K, (S,∆),M)

3 : return (C, T )

EncM(K, (S,∆),M)

4 : M1, . . . ,Mµ
n←− pad10∗(M,n)

5 : for i = 1, . . . , µ− 1

6 : ∆← 2∆

7 : (Y,Ci)← ξ(S,Mi)

8 : Y ← Y ⊕ (∆ ∥ 0n/2)

9 : S ← BC(K,Y )

10 : if |M | mod n = 0

11 : ∆← 3∆

12 : if |M | mod n ̸= 0

13 : ∆← 32∆

14 : (Y,Cµ)← ξ(S,Mµ)

15 : Y ← Y ⊕ (∆ ∥ 0n/2)

16 : S ← BC(K,Y )

17 : T ← ⌈S⌉τ
18 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

19 : return (C, T )

EncC(K,N,A)

20 : Y ← N

21 : S ← BC(K,Y )

22 : ∆← ⌈S⌉n/2

23 : A1, . . . , Aα
n←− pad10∗(A,n)

24 : for i = 1, . . . , α− 1

25 : ∆← 2∆

26 : (Y, ·)← ξ(S,A)

27 : Y ← Y ⊕ (∆ ∥ 0n/2)

28 : S ← BC(K,Y )

29 : if |A| mod n = 0

30 : ∆← 3∆

31 : j ← 1

32 : if |A| mod n ̸= 0

33 : ∆← 32∆

34 : j ← 2

35 : (Y, ·)← ξ(S,Aα)

36 : Y ← Y ⊕ (∆ ∥ 0n/2)

37 : S ← BC(K,Y )

38 : return (S,∆)

ξ(S, I)

39 : Y ← G̃(S)⊕ I

40 : O ← S ⊕ I

41 : return (Y,O)

Fig. 24: Pseudocode of Gift-Cofb [3] in term of EncC and EncM.
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B.4 Proof of Theorem 6 (Photon-Beetle)

Proof. We construct the following CMT adversary A against Photon-Beetle
as shown in Fig. 25. It chooses (K,N,A) uniformly at random from the respective
sets and computes S ← EncC(K,N,A). Let S∗ denote the state before the do-
main separation is applied (see Fig. 8). AdversaryA then chooses different associ-
ated data A and inverts EncC starting from S∗ up to the initial state. This initial
state is then used as the concatenation of nonce N and key K.33 As the final
step, A picks a message M at random and outputs ((K,N,A,M), (K,N,A,M)).
By construction, we have (K,N,A) ̸= (K,N,A) and it holds that

Photon-Beetle.Enc(K,N,A,M) = EncM(EncC(K,N,A),M)

= EncM(S∗,M)

= EncM(EncC(K,N,A),M)

= Photon-Beetle.Enc(K,N,A,M) ,

thus A wins the game CMT.
A makes α queries to compute S∗ and additional α queries to compute

(K,N), resulting in q = α+ α queries in total. ⊓⊔

The attack is by construction also a valid CMTA attack as the associated data are
chosen to be different. While the adversary does not choose the key K and nonce
N for the second tuple, it is clear that the attack easily extends to CMTK and
CMTN—if (K,N) = (K,N), the adversary simply chooses different associated
data A and repeats the attack until the keys and nonces differ.

Photon-Beetle adversary A

1 : (K,N)←$K ×N
2 : S ← N ∥ K
3 : A←$A
4 : A1, . . . , Aα

r←− pad10∗(A, r)

5 : for i = 1, . . . , α do

6 : S ← ρ(S)

7 : S ← S ⊕ (Ai ∥ 0c)
8 : S∗ ← S

9 : A←$A\{A}
10 : (K,N)← B(S∗, A)

11 : M ←$M
12 : return ((K,N,A,M), (K,N,A,M))

B(S∗, A)

13 : A1, . . . , Aα
r←− pad10∗(A, r)

14 : for i = α, . . . , 1 do

15 : S∗ ← S∗ ⊕ (Ai ∥ 0c)
16 : S∗ ← ρ−1(S∗)

17 : N ∥ K ← S∗

18 : return (K,N)

Fig. 25: Photon-Beetle adversary A from Theorem 6.

33 Note that these are likely to be different than K and N but not guaranteed to be.
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Photon-Beetle.Enc(K,N,A,M)

1 : S ← EncC(K,N,A)

2 : (C, T )← EncM(S,M)

3 : return (C, T )

EncM(S,M)

4 : M1, . . . ,Mµ
r←− pad10∗(M, r)

5 : for i = 1, . . . , µ

6 : S ← ρ(S)

7 : (⌈S⌉r , Ci)← ξ(⌈S⌉r ,Mi)

8 : S ← S ⊕ (0r ∥ ι1)
9 : S ← ρ(S)

10 : T ← ⌈S⌉τ
11 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

12 : return (C, T )

EncC(K,N,A)

13 : S ← N ∥ K

14 : A1, . . . , Aα
r←− pad10∗(A, r)

15 : for i = 1, . . . , α

16 : S ← ρ(S)

17 : S ← S ⊕ (Ai ∥ 0c)
18 : S ← S ⊕ (0r ∥ ι0)
19 : return S

ξ(S, I)

20 : O ← Shuffle(S)⊕ I

21 : Y ← S ⊕ I

22 : return (Y,O)

Fig. 26: Pseudocode of Photon-Beetle [5] in terms of EncC and EncM. Here,

Shuffle(S) = S2 ∥ (S1 ≫ 1) for S1, S2

r
2←− S.
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B.5 Proof of Theorem 7 (Xoodyak)

Proof. We construct a CMT adversary A against Xoodyak. It uses a birthday
attack to find a collision in the last 32 bits of the sponge state after the first
application of ρ. For this, q = 217 + 1 different keys and q nonces are sampled
randomly. For i ∈ [q], we denote them by Ki and Ni and write Ki ∥ Ni =
padC((Ki ∥ Ni ∥ enc8(Ni)), 00000010) for their padded concatenation. Further,
we consider the following random function

f : {0, 1}384 → {0, 1}32, f(X) = ⌊ρ(X)⌋32 ,

and compute f(Ki ∥ Ni) for each i ∈ [q]. By the birthday attack [17, Sec-
tion 8.3]34, a collision of f is found with probability at least 1

2 . Assume that such a

collision has been found and write (K,N) and (K,N) for the key-nonce pairs that
lead to it, i.e., have ⌊ρ(K ∥N)⌋32 =

⌊
ρ(K ∥N)

⌋
32
, where K ∥N and K ∥N

denote the corresponding padded values. Next, adversary A picks A ∈ {0, 1}352
at random and computes A ←

⌈
ρ(K ∥N)

⌉
352
⊕ ⌈ρ(K ∥N)⌉352 ⊕ A. Together

with the collision on the last 32 bits, A has produced a collision on the whole
state. Then, the adversary wins the game CMT against Xoodyak by out-
putting (K,N,A,M) and (K,N,A,M) for M some randomly sampled mes-
sage. This is the case, as (K,N,A) ̸= (K,N,A) and the states after the associ-
ated data is absorbed agree, after which point only the same input (namely M)
is processed for both tuples. Hence, we obtain Xoodyak.Enc(K,N,A,M) =
Xoodyak.Enc(K,N,A,M) and in total have shown that A wins with proba-
bility at least 1

2 for q = 217 + 1 queries. ⊓⊔

Note that, using the same strategy as presented above, we obtain an attacker
that wins with probability 1 after making 232 + 1 queries. Further, the above
attack is by construction also a valid CMTK and CMTN attack as keys and
nonces, respectively, are chosen to be different. Moreover, it can be shown to be
a CMTA attack: The same associated data blocks are only chosen if the states
after the first application of ρ already coincide in their rate part. Since they agree
in the last 32 bits by construction, this would constitute a full-state collision of
ρ, which is impossible for a permutation.

34 Note that the prerequisite, regarding the size of domain and codomain of f , is fulfilled
as 2384 ≥ 100 · 232.
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Xoodyak.Enc(K,N,A,M)

1 : S ← EncC(K,N,A)

2 : (C, T )← EncM(S,M)

3 : return (C, T )

EncC(K,N,A)

4 : S ← 0n

5 : X ← K ∥ N ∥ enc8(|N |)

6 : Y ← S ⊕ padC(X, 06 ∥ 10)
7 : S ← ρ(Y )

8 : A1, . . . , Aα
352←−− A

9 : Y ← S ⊕ padC(A1, 0
6 ∥ 11)

10 : for i = 2, . . . , α

11 : S ← ρ(Y )

12 : Y ← S ⊕ padC(Ai, 0
8)

13 : S ← Y

14 : return S

EncM(S,M)

15 : Y ← S ⊕ (0r+8 ∥ ι1)

16 : M1, . . . ,Mµ
r←−M

17 : for i = 1, . . . , µ

18 : Mi ← padM(Mi)

19 : S ← ρ(Y )

20 : Y ← S ⊕ (Mi ∥ 0c−8)

21 : Ci ← ⌈Y ⌉r
22 : Y ← Y ⊕ (0r+8 ∥ ι2)
23 : S ← ρ(Y )

24 : T ← ⌈S⌉τ
25 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

26 : return (C, T )

Fig. 27: Pseudocode of Xoodyak [23] in terms of EncC and EncM.
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B.6 Proof of Theorem 8 (TinyJambu)

Proof. We construct a CMT adversary A against TinyJambu as follows: First,
we randomly choose two different keys K ̸= K and a target ciphertext C. Note
that, due to the structure of TinyJambu, the context produces a key stream
which is XORed with the message to obtain the ciphertext. Hence, for a ran-
dom context it is always possible to find a M such that the TinyJambu en-
cryption results in the initially chosen target ciphertext C. In the following, we
will implicitly consider this “matching” message for each context that occurs.
Hence it suffices to find two different contexts that—together with their match-
ing message—yield colliding tags.

We start by building two lists of tags, where for one we use K as key and in
the other K. For this, sample pairwise different (Ni, Ai) for i ∈ {1, . . . , 232 + 1}
and compute the corresponding tags Ti using the key K. We then set L =
(Ti)i∈[232+1]. Analogously, we sample pairwise different (N i, Ai)

35 for i ∈ [232+1]

and write the corresponding tags T i (computed using K) into the list L̄ =
(T i)i∈[232+1]. Building the two lists, takes a total of q = 2(232 + 1)(6 + α + µ)
queries to ρ.

For the context (K,Ni, Ai), denote the states before the second to last per-
mutation application (see Fig. 10) by Si, and analogously for (K,N i, Ai) by Si.
Note that for a fixed key, TinyJambu can be considered a sponge-based func-
tion with rate 32 and capacity 96. Therefore, the event Si = Sj for i ̸= j (and
analogously Si ̸= Sj for i ̸= j), constitutes an inner collision, which is—for a
sponge with capacity 96—highly unlikely36. As we model both BC1 and BC2 by
an ideal cipher E and the states Si (and respectively Si) collide with negligible
probability, we can assume the list elements to be distributed uniformly and
independently.

This puts us in the situation of Lemma 18 (for l1 = l2 = 232+1 and τ = 64),
hence we obtain the following lower bound for finding a collision Ti = T j :(

1− exp

(
−(233 + 2)(233 + 1)

265

))
· 2 · (232 + 1)2

(233 + 2)2 − (233 + 2)
(1)

Since

−(233 + 2)(233 + 1)

265
≤ −2

33 · 233

265
= −2 ,

the first factor in Eq. (1) can be bounded below by 1− exp
(

−(233+2)(233+1)
265

)
≥

1−e−2 ≥ 3
4 . The second factor in Eq. (1) simplifies to 232+1

233+1 which is lower bound

by 1
2 . In total, the probability for finding a tag collision (and hence winning the

game CMT) is at least 3
8 . ⊓⊔

35 For sake of simplicity, we assume that A chooses all associated data to have the same
number of blocks α.

36 More precisely, the probability is q(q+1)

297
− q(q−1)

2129
[13].
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The attack exploits the fact that TinyJambu uses a very short tag (64 bits)
compared to the other schemes—the only other scheme with a 64-bit tag is
Elephant, though they also provide a parameter set with a larger tag. In-
creasing the tag length of TinyJambu would render our attack impractical.
Note, however, that increasing the tag length to 128 does not make TinyJambu
committing secure. For such a variant of TinyJambu, we can similarly apply
a birthday attack to find a collision on the capacity part, while the associated
data is processed. Such a 96-bit collision can be found with about 248 queries
and, by properly choosing the associated data, results in a full collision. One can
modify the parameters such that a 127-bit collision has to be found—though
this variant is impractical as the inputs would have to be processed bit by bit.

By construction, the above attack is a CMTK attack, asK andK were chosen
to be different. Moreover, by requiring not only the tuples (Ni, Ai) to differ for
all i, but the individual nonces and associated data, we also obtain a CMTN and
a CMTA attack.

TinyJambu.Enc(K,N,A,M)

1 : S ← EncC(K,N,A)

2 : (C, T )← EncM(K,S,M)

3 : return (C, T )

EncC(K,N,A)

4 : N1, N2, N3
32←− N

5 : A1, . . . , Aα
32←− pad0∗(A, 32)

6 : S ← 0128

7 : S ← BC2(K,S)

8 : for i = 1, . . . , 3

9 : S ← S ⊕ (064 ∥ ιN )

10 : S ← BC1(K,S)

11 : S ← (⌈S⌉32 ⊕Ni) ∥ ⌊S⌋96
12 : for i = 1, . . . , α

13 : S ← S ⊕ (064 ∥ ιA)
14 : S ← BC1(K,S)

15 : S ← (⌈S⌉32 ⊕Ai) ∥ ⌊S⌋96
16 : return S

EncM(K,S,M)

17 : M1, . . . ,Mµ
32←− pad0∗(M, 32)

18 : for i = 1, . . . , µ

19 : S ← S ⊕ (064 ∥ ιM )

20 : S ← BC2(K,S)

21 : S ← (⌈S⌉32 ⊕Mi) ∥ ⌊S⌋96
22 : Ci ← [S]6433

23 : S ← S ⊕ (064 ∥ ιT )
24 : S ← BC2(K,S)

25 : Tl ← [S]6433

26 : S ← S ⊕ (064 ∥ ιT )
27 : S ← BC1(K,S)

28 : Tr ← [S]6433
29 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

30 : T ← Tl ∥ Tr

31 : return (C, T )

Fig. 28: Pseudocode of TinyJambu [56] in terms of EncC and EncM. If the last
block of associated data or message is not of full length, TinyJambu XORs the
respective lengths into the last bits (as part of ιA and ιM ).
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B.7 Proof of Theorem 9 (Isap)

Proof (of Theorem 9). Let A be a CMT adversary against Isap with output
denoted by (K,N,A,M), (K,N,A,M). Further note that IV denotes the ini-
tialization vector used in Isap. We assume that A makes queries to ρ1 and ρ2
that correspond to its output, i.e., querying all states that occur during the eval-
uation of Isap for the two output tuples of A. This assumption is without loss
of generality, as we can easily transform any adversary into one that runs A to
obtain (K,N,A,M), (K,N,A,M) and—before outputting the same—makes all
queries to ρ corresponding to (K,N,A,M), (K,N,A,M).

The authentication component EncT uses a session key denoted byKA (resp.
KA), which results from an application of Isap.Rk to the key K (resp. K) and
the intermediate state X (resp. X) computed during EncT. We consider the
event E that (N,A) = (N,A) and KA = KA. Using this, the CMT advantage
can be divided up as follows

AdvCMT
Isap (A) = Pr[CMT(A)→ 1]

= Pr[E ∧ CMT(A)→ 1] + Pr[¬E ∧ CMT(A)→ 1] .

We start by giving an upper bound for the second summand. For this, we con-
struct a CR (see Definition 12) adversary B against a sponge hash function
H2 obtained from the permutation ρ2 with rate r2 = max{κ, r2 +1}37, capacity
c2 = n−r2, and output length κ. Further 0κ ∥ IV is chosen as the initial state of
H2. First, B runs A, which outputs (K,N,A,M), (K,N,A,M). For every query
that A makes to ρ2, the adversary B makes the same query to its own permuta-
tion and sends the response back to A. Further, Adversary B simulates ρ1 for A.
Using this, B computes for both output tuples of A, the state in EncT after the
associated data and the ciphertext blocks are absorbed. We denote the states for
the first tuple and second tuple by X and X, respectively and the session keys
for EncT by KA and KA, respectively (cf. Fig. 29). The states obtained after
XORing these together are denoted by Z = X ⊕KA and Z = X ⊕KA.

38

Let A1, . . . , Aα
r2←− pad10∗(A, r2) and A1, . . . , Aα

r2←− pad10∗(A, r2) be the
division of A and A into blocks of length r2. Analogously, the ciphertext C =
EncM(K,N,M) = EncM(K,N,M) is parsed as C1, . . . , Cγ

r2←− pad10∗(C, r2).
The adversary B then outputs

O = (N ∥ 0∗, A1 ∥ 0∗, . . . , Aα ∥ 0∗, C1 ∥ 1 ∥ 0∗, . . . , Cγ ∥ 0∗, Z ∥ 0∗)
O = (N ∥ 0∗, A1 ∥ 0∗, . . . , Aα ∥ 0∗, C1 ∥ 1 ∥ 0∗, . . . , Cγ ∥ 0∗, Z ∥ 0∗) ,

37 The definition of the rate over the maximum ensures that the argument works for
both Isap variants (Isap-K and Isap-A). More precisely, it guarantees that all inputs
can still be fully absorbed after the adjustment of the rate.

38 Note that B can compute these values by looking up the queries and responses from
A’s queries—using the assumption that it makes permutation queries corresponding
to its output. Thus, this step does not require any additional permutation queries
by B.
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where ∥ 0∗ denotes the padding with 0s up to length r. A visualization for this
is provided in Fig. 29. We show that if A wins the game CMT against Isap and
the event ¬E holds, then the constructed adversary B wins the game CR against
H2. Note that A winning the game CMT implies that (K,N,A) ̸= (K,N,A)
and EncT(K,N,A,C) = T = EncT(K,N,A,C). Hence, the output tuples of
B are mapped to the same result under H2 (namely T ) and it is only left to
check that O ̸= O to guarantee a collision. As event ¬E holds, we know that
(N,A) ̸= (N,A) or KA ̸= KA. In the case that (N,A) ̸= (N,A), we have O ̸= O.
Hence, we can assume from now on that (N,A) = (N,A). Next, consider the
case that KA ̸= KA. As (N,A) = (N,A), we know that X = X and hence
Z = ⌈X⌉κ ⊕KA ̸=

⌈
X
⌉
κ
⊕KA = Z. Thus, O ̸= O is also given in this case. We

have shown that

Pr[¬E ∧ CMT(A)→ 1] ≤ Pr[CR(B)→ 1] ≤ q2(q2 − 1)

2κ
+

q2(q2 + 1)

2n−r2
,

where the last inequality holds by Theorem 15, which bounds the probability of
finding a collision in a general sponge hash function. Here, we exploit the fact
that B makes the same number of queries to ρ2 as A.

Next, we give a bound for the first summand Pr[E∧CMT(A)→ 1]. For this,
construct a CR adversary C against a sponge hash function H1 obtained from
the permutation ρ1 with rate r1 = κ, capacity c1 = n− r2 and output length κ.
Further its initial state is given by 0κ ∥ IV . The adversary C starts by running
A, which outputs (K,N,A,M), (K,N,A,M). For every query that A makes to
ρ1, the adversary C makes the same query to its own permutation and sends the
response back to A. Further, adversary C simulates ρ2 for A. Then, it computes

X and X (analoguously to adversary B), and we write X1, . . . , Xκ
1←− X and

X1, . . . , Xκ
1←− X. Lastly, adversary C outputs (K,X1 ∥ 0κ−1, . . . , Xκ ∥ 0κ−1)

and (K,X1 ∥ 0κ−1, . . . , Xκ ∥ 0κ−1). Next, we show that if A wins the game
CMT against Isap and event E holds, then the constructed adversary C wins the
game CR against H1. First observe that A winning the game CMT, implies that
(K,N,A) ̸= (K,N,A), and Isap.Enc(K,N,A,M) = Isap.Enc(K,N,A,M). If
at the same time event E holds, i.e., (N,A) = (N,A) and KA = KA hold, then
K ̸= K, as otherwise A would not be a valid CMT adversary. Further note that
X = X as (N,A) = (N,A). Hence, C wins the game CR, because the tuples
he outputs are different, but their image under H1 agrees (as KA = KA). This
implies that

Pr[E ∧ CMT(A)→ 1] ≤ Pr[CR(C)→ 1] ≤ q1(q1 − 1)

2κ
+

q1(q1 + 1)

2n−κ
,

where the last inequality holds by Theorem 15. Using r2 = max{κ, r2 + 1}, we
obtain in total

AdvCMT
Isap (A) ≤ q1(q1 − 1)

2κ
+

q1(q1 + 1)

2n−κ
+

q2(q2 − 1)

2κ
+

q2(q2 + 1)

2n−max{κ,r2+1} ,

which finishes the proof of the theorem. ⊓⊔
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Fig. 29: Illustration of a proof step for Isap (Theorem 9).. Here, r2 =
max{κ, rH + 1} (i.e., 129 for Isap-A and 145 for Isap-K) and c2 = n − r2;
further write N = N ∥ 0∗, Ai = Ai ∥ 0∗, C1 = C1 ∥ 1 ∥ 0∗ and Ci = Ci ∥ 0∗ for
i ∈ {2, . . . , γ}.

The dominant term in the bound from Theorem 9 is q1(q1−1)
2κ + q2(q2−1)

2κ , thus
by increasing κ (i.e., the tag and key length), we can increase the committing
security. Note however, that—for Isap-A—we can only increase κ up to 160 as

for larger values the other term q1(q1+1)
2n−κ + q2(q2+1)

2n−max{κ,r2+1} becomes the dominant
term. This would result in about 80-bit committing security. A similar argument
applies for Isap-K, which deploys Keccak-P as the underlying permutation.
For this variant, we have n = 400 which allows to increase κ up to 200, allowing
for about 100-bit committing security.
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Isap.Enc(K,N,A,M)

1 : C ← EncM(K,N,M)

2 : T ← EncT(K,N,A,C)

3 : return (C, T )

EncT(K,N,A,C)

4 : A1, . . . , Aα
r2←− pad10∗(A, r2)

5 : C1, . . . , Cγ
r2←− pad10∗(C, r2)

6 : Y ← N ∥ IV
7 : S ← ρH(Y )

8 : for i = 1, . . . , α

9 : Y ← S ⊕ (Ai ∥ 0c2)
10 : S ← ρH(Y )

11 : S ← S ⊕ 0n−1 ∥ 1
12 : for i = 1, . . . , γ

13 : Y ← S ⊕ (Ci ∥ 0c2)
14 : S ← ρH(Y )

15 : KA ← Isap.Rk(K, ⌈S⌉κ)
16 : S ← ρH(KA, ⌈S⌉κ)
17 : T ← ⌈S⌉τ
18 : return T

EncM(K,N,M)

19 : M1, . . . ,Mµ
r2←− pad0∗(M, r2)

20 : KE ← Isap.Rk(K,N)

21 : S ← KE ∥ N
22 : for i = 1, . . . , µ

23 : S ← ρE(S)

24 : Ci ← ⌈S⌉r2 ⊕Mi

25 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

26 : return C

Isap.Rk(K,X)

27 : X1, . . . , Xz
r1←− X

28 : Y ← K ∥ IV
29 : S ← ρK(Y )

30 : for i = 1, . . . , z − 1

31 : Y ← S ⊕ (Xi ∥ 0n−r1)

32 : S ← ρB(Y )

33 : Y ← S ⊕ (Xz ∥ 0n−r1)

34 : S ← ρK(Y )

35 : return ⌈S⌉κ

Fig. 30: Pseudocode of Isap [29] in terms of EncM and EncT.
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B.8 Proof of Theorem 10 (Ascon)

Proof (of Theorem 10). Let A be a CMT adversary against Ascon with output
denoted by (K,N,A,M), (K,N,A,M). Further note that IV denotes the initial-
ization vector used in Ascon. As a first step, we observe that finding different
inputs to the Ascon encryption that give the same ciphertext is easy due to the
duplex construction used in the sponge. The difficulty in breaking CMT security
for Ascon lies in finding a tag collision, which is why we focus our attention on
this task. An adversary that wins the game CMT against Ascon, in particular
finds a tag collision, i.e., it wins the game TagColl (see Fig. 16), which allows the
following reduction step

AdvCMT
Ascon(A) ≤ AdvTagColl

Ascon (A) .

To bound the advantage on the right, we adapt the proof of Theorem 15 to fit
our particular needs.

We build a directed graphG from the ideal permutation queries the adversary
makes, in the following way: The nodes in G are the 2320 bit strings of length 320
and an edge from Y to S is added if A makes a query of the form ρ(Y ) = S or
ρ−1(S) = Y (the graph starts with no edges). The edges resulting from ρ queries
are called forward edges and the ones resulting from ρ−1 queries are referred to
as backward edges.

We assumeA to make queries to ρ that correspond to its output, i.e., querying
all states that occur during the evaluation of Ascon for the two output tuples of
A. This assumption is without loss of generality, as we can easily transform any
adversary into one that runs A to obtain (K,N,A,M), (K,N,A,M) and—before
outputting the same—makes all queries to ρ corresponding to (K,N,A,M) and
(K,N,A,M). Additionally, we assume A to make no redundant queries, i.e.,
once two values (Y, S) are known to be connected via an edge, no further ρ
queries are made on Y and no further ρ−1 queries are made on S.

For this graph, we define a special kind of path, the A-path, which models
an Ascon evaluation. An A-path Pa of length l39 is a sequence of 2l nodes

Y0, S1, Y1, S2, . . . , Sl−1, Yl−1, Sl

with

1. Y0 = K ∥ N ∥ IV ,

2. ⌊Y1⌋256 = ⌊S1⌋256 ⊕ (K ∥ 0128) and ⌊Yl−1⌋256 = ⌊Sl−1⌋256 ⊕ (K ∥ 0128),
3. ⌊Yi⌋256 = ⌊Si⌋256 for all i ∈ {2, . . . , l − 2}, and
4. G contains edges from Yi−1 to Si for all i ∈ {1, . . . , l},

for some K,N ∈ {0, 1}128. We define the input of an A-path Pa as I :=
(K,N,X1, . . . , Xl−1) ∈ {0, 1}128×{0, 1}128×{0, 1}64 · · ·×{0, 1}64 for K ∥ N :=

39 Note that l ≥ 3, as Ascon involves at least three applications of ρ (in case both
associated data and message consist of a single block).
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⌈Y0⌉256 and Xi = ⌈Si⌉64 ⊕ ⌈Yi⌉64 for all i ∈ {1, . . . l − 1}. The result of Pa is
defined as R = ⌊Sl⌋128 ⊕ K. By construction, this models the tag generation
of Ascon for key K, nonce N , and the tuple of associated data and message
(A,M) = (X1, . . . , Xl−1). As a notation for A-paths that incorporates the input,
we write

(K ∥ N)|Y0 → · · · → Sl−2|Xl−2|Yl−2 → Sl−1|Xl−1|Yl−1 → Sl .
40

Next, we define two properties a pair (Pa, P a) of A-paths can have. For this,
denote the nodes in P a by Y 0, S1, Y 1, . . . , Y l−1, Sl. Firstly, the paths Pa and P a

are colliding if their inputs differ but their results agree. Secondly, the paths Pa

and P a are problematic if their inputs differ and

1. Yl−1 = Y l−1 or

2. at least one of the edges in P or P is a backward edge.

We are interested in the event CP that A finds a pair of colliding paths.
Note that finding such paths means that A wins the game TagColl. In order to
compute the probability of CP, we define the auxiliary event PPa that A finds a
pair of problematic A-paths. Using this, we obtain

AdvTagColl
Ascon (A) = Pr[CP] ≤ Pr[CP ∧ ¬PPa] + Pr[PPa] ,

and proceed by deriving upper bounds for both of the above summands.
We start with the easier case, which is giving an upper bound for the proba-

bility that CP∧¬PPa holds, i.e., that A finds a pair of colliding A-paths that is
not problematic. Hence, A finds two different inputs I = (K,N,X1, . . . , Xl−1)
and I = (K,N,X1, . . . , X l−1) such that the corresponding A-paths

Y0, S1, Y1, S2, . . . , Sl−1, Yl−1, Sl

Y 0, S1, Y 1, S2, . . . , Sl−1, Y l−1, Sl

fulfill Yl−1 ̸= Y l−1 and have equal results, i.e., ⌊ρ(Yl−1)⌋128 ⊕ K = R = R =⌊
ρ(Y l−1)

⌋
128
⊕K. By definition of an A-path, this implies

⌊
ρ(Sl−1 ⊕ (Xl−1∥K∥0128))

⌋
128
⊕K =

⌊
ρ(Sl−1 ⊕ (X l−1∥K∥0

128))
⌋
128
⊕K .

(2)

Since ρ is a random permutation and A only used forward queries (as ¬PPa

holds), finding such a collision is unlikely. We assume—to the benefit of the
adversary A—that it can choose Sl−1, Sl−1 ∈ {0, 1}

128 freely, i.e., it must not be
part of an A-path for some input. The probability of A finding (Sl−1, Xl−1,K),

40 While not visible in this representation, by definition of A-paths, Y1 and S1 (respec-
tively Yl−1 and Sl−1) differ not only in their first 64 bits but also from bit 65 to 192,
where the key is XORed.
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(Sl−1, X l−1,K)41 such that Yl−1 ̸= Y l−1 and Eq. (2) holds with q queries, equals
the probability of finding a collision in a list of q uniformly distributed elements.
Using Theorem 17 for q ≤ 2127, the latter can be bounded from above by

1− exp

(
−q(q − 1)

2128

)
.

Next, we turn our attention to deriving an upper bound for Pr[PPa]. We
will see that finding problematic paths is hard, even for a plain sponge with-
out Ascon’s blinding mechanisms, which is why we reduce to this setting. We
consider a sponge-based hash function H obtained from the permutation ρ with
rate 256 for the first round of absorption and rate 196 for all remaining ones.
Further, its initial state is given by 0256 ∥ IV and the output produced by H has
length 128. Analogously to A-paths, we also model evaluations of H by paths in
the directed graph G. For s ≥ 1, a PS-path of length s is a sequence of 2s nodes

Y0, S1, Y1, S2, . . . , Ss−1, Ys−1, Ss

with

1. ⌊Y0⌋64 = IV ,

2. ⌊Yi⌋128 = ⌊Si⌋128 for all i ∈ {1, . . . , s− 1}, and
3. G contains edges from Yi−1 to Si for all i ∈ {1, . . . , s}.

We define the input of a PS-path as I := (Z0, . . . , Zs−1) ∈ {0, 1}256×{0, 1}192×
· · ·×{0, 1}192 for Z0 = ⌈Y0⌉256 and Zi = ⌈Si⌉192⊕⌈Yi⌉192 for all i ∈ {1, . . . , s−1}.
As a notation for PS-paths that incorporates the input, we write

Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss .

The notion of problematic A-paths can be directly transferred to PS-paths. The
event that A finds a pair of problematic PS-paths is denoted by PPps.

We next observe that a pair of problematic A-paths, can also be considered
as a pair of problematic PS-paths, i.e., in particular the event PPa implies the
event PPps. Let (Pa, P a) be a pair of problematic A-paths, i.e.,

Pa =(K ∥ N)|Y0 → · · · → Sl−2|Xl−2|Yl−2 → Sl−1|Xl−1|Yl−1 → Sl

P a =(K ∥ N)|Y 0 → · · · → Sl−2|X l−2|Y l−2 → Sl−1|X l−1|Y l−1 → Sl .

By defining

Z0 = K ∥ N ∈ {0, 1}256 Z0 = K ∥ N ∈ {0, 1}256

Z1 = X1 ∥ K ∈ {0, 1}192 Z1 = X1 ∥ K ∈ {0, 1}192

Zi = Xi ∥ 0128 ∈ {0, 1}192 Zi = Xi ∥ 0128 ∈ {0, 1}192

Zl−1 = Xl−1 ∥ K ∈ {0, 1}192 Zl−1 = X l−1 ∥ K ∈ {0, 1}
192

41 Note that, A must choose (Sl−1, Xl−1,K) ̸= (S
l−1

, X
l−1

,K) to ensure Yl−1 ̸= Y
l−1

.
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we obtain the following presentation of (Pa, P a) as PS-paths:

Pps =Z0|Y0 → · · · → Sl−2|Zl−2|Yl−2 → Sl−1|Zl−1|Yl−1 → Sl

P ps =Z0|Y 0 → · · · → Sl−2|Zl−2|Y l−2 → Sl−1|Zl−1|Y l−1 → Sl .

Visualization for this is provided in Fig. 31. As we neither change (Yl−1, Y l−1)

nor any of the edges, the paths (Pps, P ps) form a pair of problematic PS-paths.
Thus, we have shown that PPa implies PPps, hence Pr[PPa] ≤ Pr[PPps]. This
allows us to focus on the plain sponge setting for the rest of the proof. More
precisely, we show that it is hard to find a pair of problematic PS-paths, i.e., we
derive an upper bound for Pr[PPps].

For this, we define the following auxiliary events:

1. Event Et (target hitting query):
A makes a query Y to ρ such that ⌊ρ(Y )⌋64 = IV or A makes a query S to
ρ−1 such that

⌊
ρ−1(S)

⌋
64

= IV .

2. Event Ec (colliding queries):
A makes queries Y ̸= Y to ρ such that ⌊ρ(Y )⌋128 =

⌊
ρ(Y )

⌋
128

or A makes

queries Y to ρ and S to ρ−1 such that ⌊ρ(Y )⌋128 =
⌊
ρ−1(S)

⌋
128

.

Next, we show that if A triggers PPps, then it triggers one of the events defined
above.

For the proof assume that PPps holds and denote the problematic paths A

finds by (Pps, P ps). We first consider the case that there is at least one backward
edge in (Pps, P ps). We assume w.l.o.g. that Pps contains at least one backward
edge. Note that for each PS-path that contains at least one backward edge, we
can define a corresponding minimal PS-path containing exactly one backward
edge. To do this—starting from the end of the path—all edges are removed, until
the last edge of the path is a backward edge and all other edges (if any remain)
are forward edges. For sake of simplicity, we write Pps also for the minimal path
corresponding to Pps in the following and write it as

Pps =Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss .

We further distinguish the following two sub-cases:

Case 1: s = 1
The path is simply Z0|Y0 → S1 and A queried S1 to ρ−1. By construction,
we have ⌊Y0⌋64 = IV and ρ−1(S1) = Y0, hence in particular

⌊
ρ−1(S1)

⌋
64

=
⌊Y0⌋64 = IV . Thus A’s query triggered event Et.

Case 2: s ≥ 2
The path is Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss. Ex-
cept for the last edge, all edges are forward edges. By construction, we have
⌊Ss−1⌋128 = ⌊Ys−1⌋128. Furthermore, Ss−1 is the result of querying Ys−2 to
ρ (forward edge) and Ys−1 is the result of querying Ss to ρ−1 (backward
edge). This yields that these two queries trigger event Ec.
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We now consider the case that the penultimate states Ys−1 and Y s−1 are equal,
but Pps and P ps contain no backward edges. For such a pair of paths (Pps, P ps),
we define the corresponding minimal pair of PS-paths by choosing s+s minimal
such that (Z0, . . . , Zs−1) ̸= (Z0, . . . , Zs−1) and Ys−1 = Y s−1 still hold. We
consider the minimal pair of paths corresponding to (Pps, P ps) and—for sake
of simplicity—also denote them by (Pps, P ps). As before we use the following
representation

Pps =Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss

P ps =Z0|Y 0 → · · · → Ss−2|Zs−2|Y s−2 → Ss−1|Zs−1|Y s−1 → Ss .

Without loss of generality, we further assume s ≤ s and distinguish between the
following three sub-cases:

Case 1: s = 1 ∧ s = 1
The paths are simply Z0|Y0 → S1 and Z0|Y 0 → S1. By construction, we
have ⌈Y0⌉r = Z0 and

⌈
Y 0

⌉
r
= Z0 which leads to a contradiction as Z0 ̸= Z0

(recall that problematic paths have different inputs) but Y0 = Y 0. Thus, this
case cannot occur.

Case 2: s = 1 ∧ s ≥ 2
The paths are

Z0|Y0 → S1

Z0|Y 0 → · · · → Ss−2|Zs−2|Y s−2 → Ss−1|Zs−1|Y s−1 → Ss .

We have ⌊Y0⌋64 = IV by construction and Y0 = Y s−1 by assumption. This
allows to deduce

⌊
Ss−1

⌋
64

= IV . Since Ss−1 is the result of querying Y s−2

to ρ, this query triggered event Et.

Case 3: s ≥ 2 ∧ s ≥ 2
The paths are

Z0|Y0 → · · · → Ss−2|Zs−2|Ys−2 → Ss−1|Zs−1|Ys−1 → Ss

Z0|Y 0 → · · · → Ss−2|Zs−2|Y s−2 → Ss−1|Zs−1|Y s−1 → Ss .

Consider the penultimate edges of both paths, i.e., the edges from Ys−2 to
Ss−1 and from Y s−2 to Ss−1, which are both forward edges. By assumption,
Ys−1 = Y s−1 holds. We have to distinguish two more cases based on the
inputs Zs−1 and Zs−1:
Case 3.1: Zs−1 = Zs−1

From Ys−1 = Y s−1 and Zs−1 = Zs−1, we can conclude that Ss−1 = Ss−1.
Then, however, one can obtain a pair of shorter paths by dropping the
last edges of both P and P while maintaining the desired property. Thus
this case is impossible as it contradicts the minimality of the paths.

Case 3.2: Zs−1 ̸= Zs−1

As Ys−1 = Y s−1 and Zs−1 ̸= Zs−1, we can deduce Ss−1 ̸= Ss−1 and
⌊Ss−1⌋128 =

⌊
Ss−1

⌋
128

. Then Ys−2 ̸= Y s−2 and the queries on Ys−2 and

Y s−2 triggered event Ec.
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Collecting the above, yields

Pr[PPa] ≤ Pr[Et ∨ Ec] ≤ Pr[Et] + Pr[Ec] .

We apply Lemma 19 for c = 264 and obtain Pr[Et] ≤ q
263 and once again for

c = 2128, which gives Pr[Ec] ≤ q(q−1)
2128 . In total, we have shown

AdvCMT
Ascon(A) ≤ AdvTagColl

Ascon (A)

≤ Pr[CP ∧ ¬PPa] + Pr[PPa]

≤ Pr[CP ∧ ¬PPa] + Pr[Et] + Pr[Ec]

≤ 1− exp

(
−q(q − 1)

2128

)
+

q

263
+

q(q − 1)

2128
,

which finishes the proof. ⊓⊔
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Fig. 31: Illustration of a proof step for Ascon (Theorem 10).
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Ascon.Enc(K,N,A,M)

1 : S ← EncC(K,N,A)

2 : (C, T )← EncM(K,S,M)

3 : return (C, T )

EncC(K,N,A)

4 : A1, . . . , Aα
r←− pad10∗(A, r)

5 : Y ← IV ∥ K ∥ N
6 : S ← ρa(Y )

7 : S ← S ⊕ 0n−κ ∥ K
8 : for i = 1, . . . , α

9 : Y ← S ⊕ (Ai ∥ 0c)

10 : S ← ρb(Y )

11 : S ← S ⊕ 0n−1 ∥ 1
12 : return S

EncM(K,S,M)

13 : M1, . . . ,Mµ
r←− pad10∗(M, r)

14 : Y ← S ⊕ (M1 ∥ 0c)
15 : C1 ← ⌈Y ⌉r
16 : for i = 2, . . . , µ

17 : S ← ρb(Y )

18 : Y ← S ⊕ (Mi ∥ 0c)
19 : Ci ← ⌈Y ⌉r
20 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

21 : Y ← Y ⊕ (0r ∥ K ∥ 0c−κ)

22 : S ← ρa(Y )

23 : T ← ⌊S⌋τ ⊕K

24 : return (C, T )

Fig. 32: Pseudocode of Ascon [31] in terms of EncC and EncM.
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B.9 Proof of Theorem 11 (Schwaemm)

Proof. Firstly, we observe that finding different inputs to SchwaemmIV .Enc
that result in the same ciphertext is easy. However, breaking CMT security also
includes finding colliding tags, which is what we focus on in the following. An
adversary A that wins the game CMT against SchwaemmIV its output denoted
by (K,N,A,M), (K,N,A,M), in particular finds a tag collision, i.e., wins the
game TagColl (see Fig. 16). Hence we can deduce

AdvCMT
SchwaemmIV

(A) ≤ AdvTagColl
SchwaemmIV

(A) .

As a next step, we pass over to a plain sponge construction. For this, we con-
struct a ShiftedColl128 adversary B against a sponge hash function H obtained
from the permutation ρ with rate 256, capacity 128 and output length 128.
Further, its initial state is given by 0256 ∥ IV . First, B runs A, which outputs
(K,N,A,M), (K,N,A,M). For every query that A makes to ρ, the adversary B

makes the same query to its own permutation and sends the response back to A.
Then B computes the state Si (and respectively Si) after the i-th application of
the permutation in SchwaemmIV evaluated in (K,N,A,M) (and respectively
(K,N,A,M)). Denote by Si,r and Si,c (and respectively Si,r and Si,c) the rate
and the capacity part of the state Si (and respectively Si). The adversary B

then outputs

X = K ∥ N ∥
(S1,r ⊕ ξ2(S1,r, A1)⊕ ωc,r(S1,c)) ∥ . . . ∥
(Sα,r ⊕ ξ2(Sα,r, Aα)⊕ ωc,r(Sα,c)) ∥
(Sα+1,r ⊕ ξ2(Sα+1,r,M1)⊕ ωc,r(Sα+1,c)) ∥ . . . ∥
(Sα+µ,r ⊕ ξ2(Sα+µ,r,Mµ)⊕ ωc,r(Sα+µ,c)

X = K ∥ N ∥
(S1,r ⊕ ξ2(S1,r, A1)⊕ ωc,r(S1,c)) ∥ . . . ∥
(Sα,r ⊕ ξ2(Sα,r, Aα)⊕ ωc,r(Sα,c)) ∥
(Sα+1,r ⊕ ξ2(Sα+1,r,M1)⊕ ωc,r(Sα+1,c)) ∥ . . . ∥
(Sα+µ,r ⊕ ξ2(Sα+µ,r,Mµ)⊕ ωc,r(Sα+µ,c) ,

which guarantees that H(X) (and respectively H(X)) models SchwaemmIV

evaluated on (K,N,A,M) (and (K,N,A,M), respectively). More precisely, in-
stead of the state-update-function and rate-whitening applied in SchwaemmIV ,
for H we XOR a suitable value which imitates these operations. A visualization
for this is provided in Fig. 33.

Next, we show that if A wins the game TagColl against SchwaemmIV , then
the constructed adversary B wins the game ShiftedColl128 against H. First ob-
serve that A winning implies that (K,N,A,M) ̸= (K,N,A,M) and the corre-
sponding tags T, T—computed with SchwaemmIV —agree. Note that the lat-
ter implies that Sα+µ+1,c ⊕ K = Sα+µ+1,c ⊕ K, hence by choice of X and
X it holds that H(X) ⊕ ⌈X⌉128 = H(X) ⊕

⌈
X
⌉
128

. Further, the fact that
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(K,N,A) ̸= (K,N,A), implies that X ̸= X: for (K,N) ̸= (K,N) this is ob-
vious while for (K,N) = (K,N) and A ̸= A, a simple analysis shows that X
and X differ at the point where the associated data blocks differ for the first
time. This implies that B wins the game ShiftedColl128.

Using the indifferentiability of sponges (cf. Theorem 16), we can replace H
by a random function F, as there exists an efficient simulator for the underlying
permutation such that A cannot distinguish between H and F. This yields

AdvShiftedColl128
H (A) ≤ AdvShiftedColl128

F (A) + ϵ ,

for ϵ > (1−2−256)q2+(1+2−256)q
2129 , which results from the application of Theorem 16.

As a last step, we observe that for a random oracle F : {0, 1}≥128 → {0, 1}128,
it is unlikely that B wins the game ShiftedColl128. For this, note that an adversary
that wins the game ShiftedColl128 against F with q queries, finds a collision in
the following list of uniformly distributed elements

L = {F(X1)⊕ ⌈X1⌉128 ,F(X2)⊕ ⌈X2⌉128 , . . . ,F(Xq)⊕ ⌈Xq⌉128} ,

for Xi ∈ {0, 1}≥128 being the inputs B queries to F. By Theorem 17, the prob-
ability for this is bounded above by

1− exp

(
−q(q − 1)

2128

)
,

for q ≤ 2127. In total, we obtain

AdvShiftedColl128
H (A) ≤ AdvShiftedColl128

F (A) + ϵ

≤ 1− exp

(
−q(q − 1)

2128

)
+ ϵ ,

which finishes the proof of the theorem. ⊓⊔
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N ∥ K (S1,r ⊕ ξ2(S1,r, A1)⊕ ωc,r(S1,c))

Fig. 33: Illustration of a proof step for SchwaemmIV (Theorem 11).
SchwaemmIV is represented as a plain sponge as is shown for the first XOR in
the above figure.

Game ShiftedCollκ

1 : X,X ← A()

2 : if X = X

3 : return 0

4 : return (F(X)⊕ F(X) = ⌈X⌉κ ⊕
⌈
X
⌉
κ
)

Fig. 34: Security game ShiftedCollκ defined for a function F : {0, 1}≥κ → {0, 1}κ
and used in the proof for SchwaemmIV (Theorem 11).
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Schwaemm.Enc(K,N,A,M)

1 : S ← EncC(K,N,A)

2 : (C, T )← EncM(K,S,M)

3 : return (C, T )

EncC(K,N,A)

4 : A1, . . . , Aα
r←− pad10∗(A, r)

5 : Y ← K ∥ N
6 : S ← ρa(Y )

7 : for i = 1, . . . , α− 1

8 : (X, ·)← ξ(⌈S⌉r , Ai)

9 : Y ← (X ⊕ ω(⌊S⌋c)) ∥ ⌊S⌋c
10 : S ← ρb(Y )

11 : (X, ·)← ξ(⌈S⌉r , Aα)

12 : Y ← X ∥ (⌊S⌋c ⊕ ιA)

13 : Y ← (⌈Y ⌉r ⊕ ω(⌊Y ⌋c)) ∥ ⌊Y ⌋c
14 : S ← ρa(Y )

15 : return S

EncM(K,S,M)

16 : M1, . . . ,Mµ
r←− pad10∗(M, r)

17 : for i = 1, . . . , µ− 1

18 : (X,Ci)← ξ(⌈S⌉r ,Mi)

19 : Y ← (X ⊕ ω(⌊S⌋c)) ∥ ⌊S⌋c
20 : S ← ρb(Y )

21 : (X,Cµ)← ξ(⌈S⌉r ,Mµ)

22 : Y ← X ∥ (⌊S⌋c ⊕ ιM )

23 : Y ← (⌈Y ⌉r ⊕ ω(⌊Y ⌋c)) ∥ ⌊Y ⌋c
24 : C ← ⌈C1 ∥ . . . ∥ Cµ⌉|M|

25 : S ← ρa(Y )

26 : T ← ⌈S⌉τ ⊕K

27 : return (C, T )

ξ(S, I)

28 : Y ← FeistelSwap(S)⊕ I

29 : O ← S ⊕ I

30 : return (Y,O)

Fig. 35: Pseudocode of Schwaemm [7] in terms of EncC and EncM.

72


	Introduction
	Contribution
	Related Work

	Authenticated Encryption and the NIST LWC Finalists
	Notation
	Definitions
	NIST LWC Finalists
	Classes of AE Schemes.
	State-Update-Function.
	Achieving Committing Security via Transformations.


	Security Analysis
	Elephant
	Description of Elephant
	Committing Attack Against Elephant

	Romulus
	Description of Romulus
	Committing Attack Against Romulus

	GIFT-COFB
	Description of GIFT-COFB
	Committing Attack Against GIFT-COFB

	PHOTON-Beetle
	Description of PHOTON-Beetle
	Committing Attack Against PHOTON-Beetle

	Xoodyak
	Description of Xoodyak
	Committing Attack Against Xoodyak

	TinyJAMBU
	Description of TinyJAMBU
	Committing Attack Against TinyJAMBU

	ISAP
	Description of ISAP
	Committing Security of ISAP

	Ascon
	Description of Ascon
	Committing Security of Ascon

	Schwaemm
	Description of Schwaemm
	Committing Security of Schwaemm


	Conclusion
	References
	Additional Preliminaries
	Paddings and Security Notions
	(Tweakable) Block-Ciphers
	Sponges
	Existing Results

	Deferred Proofs
	Proof of Theorem 3 (Elephant)
	Proof of Theorem 4 (Romulus)
	Proof of Theorem 5 (GIFT-COFB)
	Proof of Theorem 6 (PHOTON-Beetle)
	Proof of Theorem 7 (Xoodyak)
	Proof of Theorem 8 (TinyJAMBU)
	Proof of Theorem 9 (ISAP)
	Proof of Theorem 10 (Ascon)
	Proof of Theorem 11 (Schwaemm)


