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Abstract. Garbled circuit techniques that are secure in the adaptive
setting — where inputs are chosen after the garbled program is sent —
are motivated by practice, but they are notoriously difficult to achieve.
Prior adaptive garbling is either impractically expensive or encrypts the
entire garbled program with the output of a programmable random oracle
(PRO), a strong assumption.

We present a simple framework for proving adaptive security of garbling
schemes in the non-programmable random oracle (NPRO) model. NPRO
is a much milder assumption than PRO, and it is close to the assump-
tion required by the widely used Free XOR extension. Our framework is
applicable to a number of GC techniques.

As our main goal and as an application of the framework, we construct
and prove adaptively secure a garbling scheme for tri-state circuits, a
recently proposed circuit model that captures both Boolean circuits and
RAM programs (Heath et al., Crypto 2023). For a given TSC C, our
garbling of C is at most |C|-\ bits long, where A is the security parameter.
This implies both an adaptively secure garbled Boolean circuit scheme,
as well an adaptively secure garbled RAM scheme where the garbling of
T steps of a RAM program has size O(T - log® T - loglog T - \) bits.
Our scheme is concretely efficient: its Boolean circuit handling matches
the performance of half-gates, and it is adaptively secure from NPRO.

Keywords: Adaptive Garbling - Garbled RAM - Multi-Party Compu-
tation - Non-Programmable Random Oracles

1 Introduction

Yao’s Garbled Circuit (GC) [Yao86] is a powerful cryptographic technique that
allows two parties — a garbler G and an evaluator E — to securely evaluate
an arbitrary program P on their joint private inputs. GC is foundational to
secure two-party computation (2PC) and multiparty computation (MPC). The
technique is noteworthy because it allows 2PC and MPC protocols that use
only a small constant number of rounds, and because it relies almost entirely
only on fast symmetric-key cryptographic primitives. GC is the most efficient



secure computation approach in many settings, particularly those that involve
two parties; studying its power, performance, and underlying assumptions is
well-motivated by both theory and practice.

Garbled RAM. Typically, the evaluated program P is a Boolean circuit. While
Boolean circuits are powerful enough to represent any bounded function, the
representation is often inefficient, in the sense that many natural programs blow
up to large circuits. This is problematic because the cost of garbling typically
scales linearly in the size of the circuit. The common sources of this blow-up are
uses of complex looping/branching control flow and of complex data structures.

Garbled RAM (or GRAM, [LO13)) is a powerful GC extension that enables
garbling of random access machine (RAM) programs. The GRAM primitive
solves the above sources of blow-up, allowing for constant round 2PC/MPC
protocols that handle complex programs.

Recent work [HKO23] showed that there exists a relatively simple circuit
model — called tri-state circuits (TSCs) — that can efficiently emulate both
Boolean circuits and RAM programs. We construct a scheme that garbles tri-
state circuits, implying results for both garbled Boolean circuits and for garbled
RAM. We emphasize that our scheme’s handling of Boolean circuits matches the
cost of state-of-the-art half-gates garbling [ZRE15].%

Garbling schemes and selective security. For simplicity and modularity, GC tech-
niques are often formalized as garbling schemes [BHR12b]. A garbling scheme
factors evaluation of program P on joint secret input x into four steps:

1. The parties encode their joint input x into a garbled form Z. Z is given to
the GC evaluator F.

2. The GC garbler G encodes the program P as a garbled program P, and P
is also sent to E.

3. E evaluates P on the garbled input, yielding garbled output § Eval(73, z).

4. The parties decode the garbled output into its cleartext form y.

Of course, y should be equal to the result of simply running P(x) in cleartext.

Security of garbling schemes is typically considered in the so-called selective
setting. Security against (semi-honest) corrupted G is easy, as it essentially re-
duces to the security of Oblivious Transfer (OT). Security against corrupted FE
is more detailed. Consider the following interaction between G and E:

1. G garbles P to obtain P.

2. E sends a cleartext input x to G.

3. G sends to F the garbled input z, the garbled program P, and information
d needed to decode the output.

Security against a corrupted FE is proved by considering this interaction and
constructing a simulator that — from the program output y alone — can forge a

® [RR21] uses less communication than [ZRE15], but it uses significantly more com-
putation. We consider both techniques state-of-the-art.



garbled program, garbled input, and decoding information such that £ cannot
tell whether they are interacting with G or with the simulator. Existence of such
a simulator proves that E learns nothing beyond y from GC evaluation.

The crucial detail of the above interaction is that £ must select its input =
before it sees the garbled program P.

Adaptive security. Transmission of the garbled program P is the main bottle-
neck of GC. One common practical mitigation is to move GC generation and
transmission to the offline (or preprocessing) phase. In this way, we can do most
of the work “overnight”, before inputs are ready. Once the parties obtain their
inputs, they enter the online phase and quickly compute the desired output.

At first glance, garbling schemes seem ideal for the offline/online setting.
Indeed, G can simply garble the program and send P in advance; then, once
inputs become available, G quickly conveys garbled inputs to E, who evaluates
P on Z and learns the program output.

The security of such usage is not implied by our selective security game, so
we need an updated game, where E chooses the input = after P is sent over.
This is the adaptive security game:

1. G garbles P and sends P to E.

2. FE sends a cleartext input x to G.

3. G sends the garbled input Z to E, as well as information d needed to decode
the output.

Pushing transmission of P to the offline phase requires that the GC scheme is
secure in the context of this game.

Perhaps surprisingly, constructing garbling schemes that provably achieve
this second notion is notoriously difficult. At a high level, this difficulty comes
from the fact that £ can base its input = on the garbled program itself. Proving
this secure is a challenge, due to the nuanced nature of GC simulation.

Cost accounting of adaptive GC schemes. When constructing adaptively secure
garbling schemes, we consider the cost of the offline and the online phases sep-
arately. The most important metrics are the offline and online communication
costs. Ideally, offline phase communication should be as close as possible to the
cost in the selective security setting. Thus, we ideally want a scheme whose of-
fline communication is equal to the size of the underlying circuit representation,
multiplied by the security parameter A. In the online phase, we wish to pay
online in terms of the number of input/output bits of the program.

Computation overhead is, of course, also important, and the computation
used by both G and F should ideally be almost identical to their computation
in the selective security setting.

Summary of state-of-the-art adaptive GC. The insecurity of standard GC (or,
more precisely, the invalidity of existing GC selective-security proofs) when
may depend on P has been observed relatively recently [BHR12a]. A number of



solutions were proposed, which we review in detail in Section 1.3. Here, leading
up to Section 1.1 we highlight two main approaches:

One, based on one-way functions, requires high computational overhead (mul-
tiplicative factor O(w), where w is the width of the evaluated circuit) both in
online and offline phases [HJO116]. This effectively negates the benefit of offline
transmission in many settings.

The second is far more efficient, simply requiring to XOR the transmitted
circuit with an output of a Random Oracle (RO), as described by [BHR12a].
This roughly doubles the total computational cost vs standard selectively-secure
GC; however, the main issue is that the proof of adaptive security requires the
simulator to dynamically define, or program, the RO. This is a strong assumption,
which clearly cannot be met by any fixed function, and which is widely seen as
much stronger than non-programmable RO.

No prior tri-state circuit constructions with adaptive security were previously
proposed, although the above two approaches can undoubtedly be extended to
TSCs — with their corresponding shortcomings.

1.1 Owur Contribution

Garbled circuit adaptive security is a well motivated and intensely studied prob-
lem. As we discuss in Section 1.2, the current state of the art offers to practi-
tioners an unsatisfying menu of options when confronted with the need to use
GC in the adaptive setting.

Many practical GC techniques are easily implemented and are selectively
secure in the non-programmable random oracle (NPRO) model. As our main
contribution, we provide a framework that allows to prove that such schemes
are also adaptively secure, if they meet a simple condition. This condition is
satisfied by many standard schemes, including Free XOR, half-gates, and even
arithmetic techniques [BMR16]; see Appendix B. In short, our condition requires
that one can resample keys associated with a particular GC, such that the GC
still evaluates correctly with these fresh keys — the scheme should be rekeyable.
We highlight that this condition is easy to prove, which would facilitate the
adoption of our framework and indeed of the final protocols.

We apply our framework to the tri-state circuit model by (1) constructing a
natural NPRO-based garbling scheme and (2) using our framework to prove this
scheme achieves adaptive security. Thus, we obtain adaptively-secure garbling
of both Boolean circuits and RAM programs in the NPRO model.

Our adaptively-secure TSC scheme matches the cost of state-of-the-art se-
lectively secure schemes in terms of both communication and computation. Let
C denote a TSC with input x and output y. Let A be the security parameter,
which can be understood as the length of encryption keys (e.g. 128 bits). Our
offline communication cost is < |C| - A, where the actual cost depends on the
types of gates used. Our online communication cost is O((Jz| + |y|) - A), and is
independent of the size of the program. In terms of computation, both G and F
expend at most one call to the random oracle per tri-state gate.
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Fig. 1. (Left) A real-world protocol using RO. The real-world adversary interacts di-
rectly with the RO. (Center) A simulation in the non-programmable RO model. Here,
the simulator S interacts with the RO independently of A, so S cannot respond to
nor even learn A’s RO queries. (Right) A simulation in the programmable RO model.
Here, S directly responds to A’s oracle queries. See also [FLR10].

When we compile Boolean gates to tri-state gates, our scheme’s costs match
the cost of the popular selectively-secure half-gates garbling scheme [ZRE15] in
terms of both computation and communication. Note, T" steps of a RAM program
can be compiled to a tri-state circuit with O(T'-log® T'-loglog T) gates [HKO23].

1.2 Non-Programmable RO and Programmable RO

We discuss the relative strength of the PRO and NPRO assumptions and our
motivation for seeking to weaken the assumption. We feel that prior to our work,
the options for practical GC deployment were unsatisfying, and the system was
brittle. Practitioners had three options:

Option 1: Obey selective security, and perform all work in the online phase.
Even in settings where this is acceptable from the perspective of engineer-
ing/performance, delaying all work to the online phase is an undesirable con-
straint that is prone to be inadvertently violated. Indeed, envisioning larger
systems incorporating MPC/GC, even implemented and maintained by a MPC-
knowledgeable team, it is easy to foresee the temptation to modularize, optimize
and multi-thread execution, separating GC generation/transmission from OT ex-
ecution, eventually leading to order violation. We stress that such security errors
are insidious and hard to find.

Relatedly, garbled circuit is a simple, powerful, and convenient object for
standardization. There is already a preliminary effort by NIST to standardize
threshold schemes, including more complex objects such as GC [MPT20,MPT23].
Following discussion at the MPTS workshops, it seems impractical to standardize
many possible combinations of GC and OT. Rather, GC, OT, and other related
primitives are likely to be standardized separately. Clearly, a more robust, ver-
satile, and resilient GC primitive would be much preferable for standardization
than the more brittle one, subject to execution order constraints.

Option 2: Assume a programmable random oracle (PRO); mask GCs with PRO.
Namely, use the PRO-based technique of [BHR12a]. This option roughly doubles
the total computation cost, both for G and E, compared to selectively-secure
GC, and to our solution.



Most importantly, this assumes PRO. PRO is an unusually strong assump-
tion, in that it clearly cannot be satisfied by any fixed function. PRO violates sev-
eral impossibility results, e.g., enabling non-interactive non-committing encryp-
tion [Nie02] and adaptive GC with online phase independent of the program out-
put size [BHR12a]. Both are impossible in the standard model [Nie02,ATKW13].

In contrast, NPRO is a much milder assumption, which is widely used in
practical cryptography. For instance, the standardized RSA-OAEP encryption
scheme uses NPRO [BR95,FOPS01,FLR*10,MKJR16]. Notably, in the GC set-
ting, the widely used Free-XOR key homomorphism relies on circular correlation
robustness [CKKZ12], a slight weakening of the NPRO assumption.

NPRO and PRO are fundamentally different, and substantially stronger
objections are raised against the use of PRO. For example, as pointed out
in [CGH98], the NPRO assumption leaves open the possibility of seeking “rea-
sonable notions of implementation” of RO, relative to which one can show the
soundness of this methodology (at least, in some interesting cases). In particular,
one could consider a more general notion of implementation, as a compiler that
takes a scheme that works in the random oracle model and produces a scheme
that works in the standard model (i.e., without a random oracle). Such line of
work is ruled out in the PRO model.

Option 3: Implement adaptive GC in the standard model. The computational
overhead of this approach is multiplicative factor w, the width of the evaluated
circuit. In many practical settings (e.g., laptops on the 1Gbps LAN), the speed
of GC generation/evaluation is only about 3x faster than transmission. In this
scenario, the online phase of the adaptively secure GC will be factor ~ w/3 times
slower than the entire selective GC evaluation.

We remark that improving the current state of the art in adaptive GC from
just a PRF remains a challenge, and any results that improve the factor w
overhead would be highly surprising.

1.3 Related Work

Selective GC Security. Even proofs of selective GC security are subtle. The clas-
sic proof of selective security from a PRF [LP09] proceeds by a hybrid argument
where in each step we replace one real gate by a simulated gate. This simulated
gate is programmed such that it outputs a value consistent with real-world eval-
uation. Once each gate is replaced, the final distribution is statistically close to
simulation, which does not depend on the real-world input x.

One subtle, but central, aspect of this simulation is that we must replace
gates in a specific order. This is so that we can base the indistinguishability of
each hybrid (and hence the proof) on the PRF assumption. Indeed, wire values
(i.e., PRF keys) are used throughout the circuit, but PRF security only holds if
the key had not been used elsewhere.

Jumping ahead, we remark that in the adaptive setting [LP09]’s interme-
diate simulated gates should output values that depend on the input z, but



syntactically, x simply is not well defined at the time the simulated gate should
be programmed. Prior works resolve this problem, but at significant cost.

Adaptive Garbled Circuits. [BHR12a] were the first to thoroughly investigate
the problem of adaptive GC. They pointed out that existing GC schemes do not
seem to admit a proof of adaptive security.

[BHR12a] also gave two constructions that can be proven adaptively secure.
Their first construction should mostly be viewed as a proof of concept. It requires
that G one-time pad the GC C before sending it to E. Then, in the online
phase, G sends the one-time-pad mask to F, allowing E to decrypt the circuit
and evaluate normally. In terms of online cost, this construction is poor, as it
requires that G send a message proportional to the size of the garbled circuit.

This said, [BHR12a]’s one-time-pad-based construction does give important
insight into how adaptivity can be achieved. In short, the one-time-pad mask
allows G to equivocate the GC. Namely, G can unmask to E a (different) GC
that depends on E’s choice of input x. This capability is, of course, not used in
the real-world execution, but it is used by the simulator. Namely, in intermediate
steps of the proof, G uses its ability to equivocate to open to E intermediate
hybrid garbled circuits from the selective security proof [LP09]. In this way, the
one-time-pad-based scheme admits a natural proof of adaptive security.

[BHR12a] also constructed a scheme that they proved secure by using pro-
grammable RO. In short, the simulator programs the RO to equivocate the GC,
similar to the above. As already noted, this scheme circumvents a known lower
bound on online communication cost of adaptively secure GC [AIKW13]. In par-
ticular, [AIKW13] showed that any standard model adaptive garbling scheme
must have an online phase that scales at least with the size of the program’s
output, but [BHR12a]’s RO construction only sends information proportional to
the program’s input. In contrast, our simulator does not program the RO; in the
NPRO model, we cannot circumvent the [AIKW13] lower bound.

Adaptive garbling from one-way functions. [HJOT16] constructed an adaptive
GC scheme with online cost sublinear in the circuit size and that assumes only
the existence of one-way functions (OWFs). In particular, their online cost is
O(w - poly(A)), where w denotes the width of the target circuit.

Much like [BHR12a]’s above one-time-pad-based scheme, [HJO116]’s key idea
is to allow G to equivocate the GC. To improve the equivocation, [HJOT16] de-
fined and implemented a primitive called somewhere equivocal encryption. Some-
where equivocal encryption allows a sender to encrypt a long message, then later
send a short key that decrypts the message, except that the sender can change
the value of one secret position of the message. By encrypting a garbled circuit
2w times with different somewhere equivocal keys, G can equivocate on up to
2w gates. 2w gates is sufficient, because [HJOT16] can equivocate two full lay-
ers of the circuit. Once the second layer is equivocated, the proof can remove
equivocation from the first layer by changing the simulated gates to output O.
They then equivocate the next layer, and so on.



[HJO'16] also show a different order of equivocation that scales with the
circuit depth d, but this strategy has exponential security loss in d.

While [HJO116] is the state-of-the-art adaptive GC from OWFs, its online
communication cost remains high and — far worse — the computational overhead
imposed by the scheme is multiplicative. To evaluate each GC gate, F must in
the online phase decrypt that gate O(w) times!

Other Works in the Adaptive Setting. [JW16] showed that Yao’s basic garbling
scheme is adaptively secure for log-depth circuits. [JO20] pushed this result fur-
ther, showing that classic GC techniques for reducing offline cost of each gate
also work in the adaptive setting, making the total online cost closer to that of
a state-of-art garbling scheme. These techniques only work for circuits in NC!,
which is very limiting. [KKPW21] showed that in the adaptive setting, Yao’s
scheme must suffer exponential security loss wrt the depth of the circuit. Thus,
it seems log-depth circuits is the best possible for adaptive Yao’s, unless the
design is significantly changed.

[HJO'16,GOS18] demonstrate asymptotic improvement to adaptive GC in
the standard model, but they are concretely expensive as they use both public
key assumptions and non-black-box cryptography.

Garbled RAM. Garbled RAM [LO13] upgrades GC with the ability to handle
RAM programs rather than circuits. In short, a Garbled RAM scheme allows
the GC to perform oblivious random access to a large main memory where each
access incurs amortized sublinear cost. Ideally, the per-access overhead should
be at most polylogarithmic in the memory size.

Early GRAM schemes, e.g. [LO13,GHL*14,GLO15,GLOS15], demonstrated
important feasibility results, but they were not concerned with polylog perfor-
mance factors, so their constructions are expensive. More recent constructions
[HKO22,PLS23,HKO23] target performance improvement, where the most re-
cent result [HKO23] garbles only O(log® n-loglogn) fan-in-two gates per access.

More interesting than [HKO23]’s cost is its formalism. [HKO23] shows that
RAM computation can be emulated by a relatively simple circuit model called
tri-state circuits (TSCs). To garble RAM, it suffices to garble tri-state gates.

Our result leverages the TSC model to achieve adaptively secure GRAM. We
review the TSC model in Section 2.

2 Preliminaries

2.1 Notation

— ) is a security parameter and can be understood as the length of GC labels.

— x =~ y denotes that distributions & and y are indistinguishable to a PPT
adversary.

— o =) y denotes that distributions x and y are indistinguishable, where
the advantage of the adversary is bounded by u(\).

— x = y denotes that distributions x and y are identical.



— O denotes a (non-programmable) random oracle.
— We refer to wire id w. When clear from context, we will overload w to also
mean the plaintext value on that wire.

2.2 Garbling Schemes

[BHR12b] defined the notion of a garbling scheme, which formalizes garbled
circuit techniques as cryptographic primitives. We formalize our construction
and our proof in the [BHR12b] framework.

Definition 1 (Garbling Scheme [BHR12b]). A garbling scheme for a
class of circuits C is a tuple of four procedures

(Garble, Eval, Eval, Decode)

with the following interface:

Garble(l’\,C) — (C‘,e,d) : Garble a circuit C € C, producing garbled circuit
C, input encoding string e, and output decoding string d.

— Encode(e, ) — &: Use the input encoding string e to encode input .

— Ewal(C,Z) — §: Evaluate C' on encoded input T, yielding encoded output §.
— Decode(d,§) — y: Use the output decoding string d to decode output §. If §
is not a valid encoding, then Decode outputs L.

A correct garbling scheme implements the semantics of the circuit class C:

Definition 2 (Garbling Scheme Correctness [BHR12b]). A garbling scheme
is correct if for all circuits C € C, all inputs x, and for security parameter \:

Decode(d, Eval(C, Encode(e,x))) = C(z)  where (C,e,d) < Garble(1*,C)

Typically, garbling schemes are shown to satisfy selective notions called obliv-
tousness and privacy. We consider adaptive variants of these; see next.

2.3 Definitions of Adaptive Security

We consider two notions of adaptivity as defined by [BHR12a]. The first — adap-
tive obliviousness — is the simpler of the two, and is accordingly easier to prove.
The second — adaptive privacy — is more directly applicable in the 2PC setting.
We prove both. Our definitions are adapted from [BHR12a] and [BHR12b].

Roughly speaking, adaptive obliviousness states the adversary A cannot dis-
tinguish a real garbled circuit from a simulated one, even when it is allowed to
choose its input adaptively.

Definition 3 (Adaptive Obliviousness). A garbling scheme satisfies adap-
tive obliviousness if for all circuits C € C and all stateful PPT adversaries A,
there exists a simulator S such that the following quantity is negligible in \:

obv

’Pr [Realﬁ)’vc(l’\) - 1] —Pr [IdealA’C(l)‘) - 1”

where Real, Ideal are as follows:



Real’y< (1Y) Ideal ¢ (11)

obv obv
1: (C,e,d) « Garble®(1*,0) 1: (C,%) + S8°(1*,0)
2: z+ A°(1Y0) 2: z+ A°(1Y0)
3: ¥ < Encode(e,z) 3: return A°(Z)

4: return Ao(afz)

Under this definition, A is not given output decoding information d. In-
tuitively, this means that the garbled circuit reveals nothing to A, not even
information about the circuit output.

In constrast, adaptive privacy roughly states that A cannot distinguish the
real garbled circuit from a simulated one, even when it is allowed to adaptively
choose its input, and even when it is given the string d that decodes the output.

Definition 4 (Adaptive Privacy). A garbling scheme satisfies adaptive
privacy if for all circuits C computing a function f and for all stateful PPT
adversaries A, there exists a stateful simulator S such that the following quantity
1s negligible in \:

prv prv

’Pr [RealA’C(lA) = 1] —Pr [IdealA’C(l)‘) = 1} ‘

where Real, Ideal are as follows:

Realé’vc(l)‘) Idealglr’vc (1*)

1: (C,e,d) + Garble® (1*,0) 1: C+ 8°(1*,0)
2: z+ A2 0) 2: z+ A2 0)
3: I < Encode(e,x) 3. y<« f(z)

4: return A°(Z,d) 4 (F,d) + S°(y)

5: return A°(Z,d)

Formally, adaptive obliviousness and adaptive privacy are incomparable; one
does not imply the other. However, informally speaking, for typical schemes
(including ours), privacy follows relatively easily once obliviousness is shown.
Looking forward, our proof of adaptive privacy is a relatively straightforward
extension of our proof of adaptive obliviousness.

2.4 Garbled RAM and Tri-State Circuits

We provide a framework for achieving adaptive security from NPRO. As part
of this contribution, we construct a scheme that captures much of the recent
advances in practical GC, and we prove this scheme’s security in our framework.

[HKO23] formalized a model of computation called tri-state circuits (TSCs).
TSCs are interesting for garbling because there exists an efficient (polylog over-
head) reduction from RAM programs to the TSC model. The TSC model is
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straightforward to garble, and hence TSCs lead to natural constructions of Gar-
bled RAM [LO13]. Our presented garbling scheme handles TSCs. Thus, we re-
view relevant definitions. All definitions in this section are adapted from [HKO23].

Definition 5 (Tri-state Circuit ). A tri-state circuit (TSC) is a circuit
allowing cycles (i.e., its graph need not be acyclic) with three gate types: XORs
(@), buffers (/), and joins (<1). Each wire carries a value in the set {0,1, Z, X}.
The semantics of each gate type are as follows:

®lZ 0 1 X /12 0 1 X M| Z 0 1 X
Zz 2z z X Z|lz z z X Zlz 0 1 X
0ojlz o 1 X 012 2 0 X 0j0 0 x X
12 1 0 X 112 2 1 X 11 x 1 X
X|x x x X X|x x x X X|x x x X

We assume each gate has some distinct gate ID gid. A TSC has n input wires
and m output wires. TSCs may use a distinguished wire, named 1, which carries
constant 1. Circuit execution on input x € {0,1}™ proceeds as follows: (1) Store
Z on each non-input wire, (2) store x on the input wires, (3) repeatedly and ar-
bitrarily choose some gate g and update g’s output wire according to g’s function
and input wires. Once there remains no gate whose execution would change a
wire, halt and output the state of the circuit output wires.

Buffer gates act as “switches”. Each buffer z/y has two inputs: a control wire
y and a data wire x. If the control wire y holds one, then the buffer “closes”,
connecting its data wire x to its output; if the control wire holds zero, the buffer
remains open, and the output wire is unassigned. Join gates allow us to connect
wires together. For instance, we can connect the output of two buffers such that
the joined output wire takes the value of whichever buffer is closed.

The tri-state value Z roughly denotes the idea “this wire does not have a
value” and the value X denotes “an error has occurred”. In this work we consider
a natural restriction of TSCs which requires that (1) no errors occur and (2) every
wire ultimately acquires a Boolean value:

Definition 6 (Total Tri-State Circuit). A tri-state circuit C is total if on
every input x, the following holds. Change the semantics of joins such that they
are multidirectional. To execute gate z + x >y, update the value of each wire
x,y,z with joined value (x < y X z). C is total if after completing circuit
execution with these semantics, every circuit wire is assigned a Boolean value.

The interesting capability of TSCs is that gates execute in data-dependent
orders. This capability is precisely what enables efficient RAM emulation. To
take advantage of this in the GC setting, we must inform the GC evaluator
of the order they should execute gates. [HKO23] show that to make this work,
it suffices to reveal to E every buffer control wire.

Revealing control wires to E complicates simulation of E’s view. We must
somehow argue that even though F learns all control wires, we can still simulate.
[HKO23] solve this by extending TSC input to additionally include specially

11



constructed randomness. The random part of the input can be used as masks on
control bits. With the addition of masks and careful circuit design, particular tri-
state circuits can then be shown to be oblivious, i.e. that the control wire values
can be simulated. We garble oblivious TSCs, so we give the relevant definitions:

Definition 7 (Randomized Tri-State Circuit). A randomized tri-state
circuit is a pair consisting of a tri-state circuit C and a distribution of bit-
strings D. The execution of a randomized tri-state circuit on input x is defined
by randomly sampling a string r from D, then running C on x and r:

(C,D)(z) = C(a;7r) where r <$ D

Definition 8 (Controls). Let C be a tri-state circuit with input x € {0,1}".
The controls of C on x, denoted controls(C, x) € {0,1}*, is the set of all buffer
control wire values (each labeled by its gate ID) after executing C(z).

Definition 9 (Oblivious tri-state circuit). Let {(C;, D;) : i € N} denote a
family of randomized tri-state circuits. The family is considered oblivious if for
any two inputs x,y € {0,1}" the following holds:

{ controls(C,, (x;7)) | 7+$ D, } & { controls(C,, (y;7)) | r«s D, }

3 Technical Overview

This section explains our approach at a high level, providing sufficient detail for
informal understanding. Sections 4 and 5 formalize the ideas explained here.

3.1 Tri-State Circuit Construction

Our main contribution is a framework for proving adaptive security of garbling
schemes in the NPRO model. To make this contribution concrete, we formalize
a particularly useful garbling scheme, and we prove this scheme fits into our
framework. Our scheme garbles circuits from the recently proposed tri-state
circuit (TSC) model; see Section 2.4.

In short, a TSC includes three types of gates, and the gates execute in a data-
dependent order. This data-dependent execution is powerful enough to support
efficient emulation of RAM programs.

Wire keys. Our TSC handling starts with Free-XOR-based wire keys [KS08].
Namely, to garble a TSC C, the garbler G samples for each circuit wire w a
length-\ key k?u. This key encodes a logical zero on wire w. G then samples a
single length-\ global correlation A, and for each wire w, G defines the encoding
of logical one as follows:
ki =kl @A

Note that this means that if we overload the name of a wire with its runtime
value, at runtime F holds the following key:

k, =K @w- A
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Recall that TSCs also allow wires to hold a distinguished value Z. We encode
Z by E holding no key at all.

Gate handling. The function of each TSC gate-type was explained in Section 2.4.
Roughly, our garbling of gates is as follows:

— XOR gates are handled simply by XORing the input labels. This is the
Free XOR optimization [KS08].

— Buffers of the form z < z/y have two inputs: a control wire y and a data
wire . GG defines the key for the buffer’s output wire as follows:

k) = k2 @ O(k;, gid)

Here gid is a nonce. This use of RO ensures that E can compute a key for
the output wire iff the control wire y holds logical one.

— Joins of the form z < x 1y connect together the inputs x and y such that
if either wire is non-Z, the output wire acquires the non-Z input value. G
handles joins by simply setting the output key as kg = kg. This trivially
enables F to translate an = key to a z key. To allow E to translate a y key
to a z key, G includes in the GC the particular string k, © k,. 2 XORs this
difference with its y key to obtain an appropriate z key.

We refer the reader to Section 4 for further details on our TSC handling.

3.2 Proof of Security

Our main contribution shows that typical GC schemes built from a random
oracle are also adaptively secure in the NPRO model. For example, our above
basic TSC scheme is adaptively secure with no change in implementation.

On our (non-) use of programmability. Our proof of security observes that pro-
grammability is not needed for our construction. A main observation of our proof
is that it is okay to program the RO in intermediate hybrids of our proof, so
long as the real-world and ideal-world games do not program the oracle. Our
real-world and ideal-world handling of GC uses an RO as a uniformly sampled
function, and no programming is required. Hence, our construction is secure in
the NPRO model. In other words, our definition of security is formalized with
respect to an RO that cannot be programmed. This alone defines the security
properties of our scheme; the method by which we prove real-ideal indistin-
guishability is irrelevant.

Rekeying a Garbled Circuit. In a typical GC proof in the selective setting, we
would use a hybrid argument to rewrite parts of the GC to “hard-code” its
behavior, forcing GC gates to output keys consistent with evaluation under the
circuit input x; see e.g. [LP09]. In the adaptive setting, such a hybrid argument is
impossible: at the time the adversary receives the GC, the input z is not defined.
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Our proof of adaptive security observes that while we cannot use a hybrid
argument to change the GC, we can change the keys associated with the GC.
Consider garbled circuit C, and let K be the collection of wire keys chosen by G
while garbling C. In our TSC construction — and in many RO-based GC schemes
— it is possible to choose a fresh collection of keys K’ that are independent of
K and that preserve circuit semantics when executed with garbling C. We call
this process of replacing GC keys a rekeying of the GC.

For an example of rekeying, consider the following TSC join gate:

0 0 0 0
Eﬂ—cko Eﬂ—c K9
Ky KO @ (k2 @ K0)

On the left, we depict a join as garbled by G, where we label the input wires with
G’s keys kg, kg; the output wire is similarly labelled by kg. To enable evaluation
in all cases, G includes in C' the specific string kg &) kg. If E only holds a runtime
key k,, for the bottom input wire, they can use this string to translate that input

key to an appropriate output key:
(ky®y-A) @ (ki @k)) =kl By A

We start rekeying this gate by replacing its top input key kg. with some freshly
sampled key kg. Similarly, we replace the output wire key by kg. To complete
the rekeying, we must ensure the semantics of the gate are preserved. Namely, if
FE obtains some key on the bottom wire, it should be able to translate that input
key to an appropriate output key. To ensure this works, we rekey the bottom wire
as well, replacing kg by a key that is specifically chosen to preserve semantics:
Kok o kg). Thus, if E obtains a key on the bottom input wire y, it can use
the GC string to appropriately translate to an output key:

(Kek ak)) oy Adaklak)=k oy A

We can prove that this rekeying of the gate is indistinguishable from the original
keying of the gate, and by extending this strategy we can replace all GC keys.
The benefit of rekeying is that we can sample fresh GC keys K’ after the
adversary has chosen its input z, and this circumvents the main difficulty of the
adaptive setting. From here, in proving adaptive obliviousness, we use a hybrid
argument to show that the following four worlds are indistinguishable:

1. Real world: A sees the GC C and chooses its input . We encode z and
give the encoding to A.

2. A sees the GC C and chooses its input 2. We then rekey the GC and use
the new keys to encode z, programming the RO such that gates execute
consistently with the encoding of z. We give the rekeyed encoding of x to A.

3. A sees the GC C and chooses its input z. We then rekey the GC, ignore ,
and encode the all zeros input, programming the RO such that gates execute
consistently with the encoding of 0. We give the rekeyed encoding of 0 to A.
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4. Ideal world: A sees the GC C and chooses its input z. We ignore x, encode
the all zeros input, and give the encoding to A.

The above hybrid argument is relatively generic. In our formalism, we define
a procedure Rekey along with security properties on Rekey. Any garbling scheme
that satisfies these properties is adaptively secure. The above proof sketch sum-
marizes our proof of adaptive obliviousness (Definition 3); the proof of adaptive
privacy (Definition 4) is slightly more complex, but the main idea is unchanged.

4 Owur Garbling of Tri-State Circuits

This section formalizes our handling of tri-state circuits. Recall, we formalize
our approach as a garbling scheme (Definition 1). Section 5 proves this scheme
adaptively secure.

Construction 1 (Garbled TSCs from NPRO). Our garbling scheme is the col-
lection of algorithms
(Garble, Eval, Eval, Decode)

formalized in Figure 2 and described in the remainder of this section.

In short, our approach is arguably the natural garbling of TSCs [HKO23].
Our main contribution is proving that this natural scheme is adaptively secure.

Wire keys. Our scheme uses Free-XOR-style GC keys [KS08]. In non-Free-XOR-
based garbling, each wire is assigned two keys. Free XOR instead assigns only
one key, and then chooses a single global offset A:

A<+ {0,1}M 11

A is chosen by the garbler G and is hidden from the evaluator E.

For each circuit wire w, the G’ maintains a key k, € {0, 1}*. This key encodes
logical zero. The encoding of logical one is defined as ki = k% @ A. The advantage
of this encoding is that XOR gates can be garbled without any corresponding
garbled gate: XORs are “free”. Keys on input wires are sampled uniformly; all
other keys are derived from the input keys (and calls to the RO).

The crucial invariant of GC evaluation is that for each wire w, the evaluator
will hold only one key. In general, the evaluator cannot distinguish the zero-key
k? from the one-key k., forming the basis of GC security. We write k,, to mean
a key held by E corresponding to the logical value on wire wj; k,, could be either
k% or k. If we overload w as both the name of the wire and the Boolean value
on that wire, the following holds:

k, =k @w-A

Recall that in a TSC, wires can carry Boolean value, or they can carry value
Z or X. Following [HKO23], Z is encoded by E’s lack of a key. X denotes that
some error occurred in the circuit, and our construction only supports circuits
that are free of errors (Definition 6). Hence, we do not need to encode X.
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Garble® (1%, (C, D)) Eval®((C, D), C, &)
1: C « emptymap 1: for each nonrandom input wire w do
2: e, d <+ emptyvec 2: k., — Z[w]
3: As{0, 1}*‘1 |1 3: for each random input wire w do
4: r<«sD 4: k,, < 0
5: for each input wire w do 5: for (g,gid) € C where g is ready do
6 k% s {0,1} 6 if g=(z:=z/y) do
7 append (k) kY @ A) to e 7 ctrl + 1sb(k,) © Clgid)
8 : for each i-th random input w do || 8: if ctrl =1 do
9: K =7 - A 9: k. < O(k,, gid) Dk,
10: for (g,gid) € C do 10 : elseif g = (2 :=z~y) do
11: if g=(z:=z/y) do 11: if z is set dok, < k,
12 Clgid] + lsb(k, ) 12 else k, « k, & Clgid]
13 : k) O(K @ A, gid) @ K 13:  elseif g=(z:=z®y) do
14 : elseif g = (z :=zxy) do 14: k, <k, @k,
15 : C‘[gid] - kg ® kZ 15: g < emplyvec
16 : kg - kg 16 : for each output wire w do
17: elseif g=(z:=2zdy) do 17 appenfl ky to ¥
18 k(z) - kg S k2 18: return y
19 : for each i-th output wire w do
20 : append to d Decode(d, §)
21: (Isb(k,), O(KS,, i), O(KL,, 7)) 1: Yy < emplyvec
22 return (C,e, d) 2: for each i-th output label i
30 (p,k% k')« d[i]
Encode(e, z) a: if O(gli], i) = k® Alsb(g[i]) = p do
N 5 append 0 to y
1: I < emplyvec . o 1
2: for each i-th input z[i] 6 elseif O(gli),7) = k' do
01 . 7: append 1 to y
3: (k7  k )ee[z] .. olse
4: append k* to 7 o return L
5: return 10: returny

Fig. 2. Our NPRO-based garbling scheme for oblivious tri-state circuits (C, D). Our
scheme transmits one ciphertext per join gate and one bit per buffer; XOR gates are
“free” [KS08]. E evaluates gates in a data dependent order, choosing gates that are
ready (Definition 10). Our scheme is adaptively secure.

16



Point and Permute. Our global offset A has least significant bit (Isb) 1. This
ensures that for each wire w, the Isb of the zero-key kg} and of the one-key k?u eA
are different. This is useful because it allows us to view the Isb of the zero-key kg)
and the Isb of the active key k,, as an XOR secret share of w’s semantic value.
This arrangement is a classic trick called point and permute [BMR90].

Point and permute makes it simple for G to reveal particular wire values to
E. To reveal the value of some wire w, G simply attaches the bit lsb(k) to the
GC. At runtime, E computes the Isb of its key Isb(k) @w - A), XORs the result
with Isb(k?), and by construction obtains w.

Revealing particular wire values is central to the handling of TSCs. Specif-
ically, we reveal to E the value of each buffer’s control wire. Note when the
considered TSC is oblivious (Definition 9), it is safe to reveal these values: the
information E learns can be simulated.

Distribution sampling. Recall that an oblivious tri-state circuit (Definition 9)
consists of two parts: a circuit description C and a distribution on bits D. To
evaluate the circuit, we must sample D. This is straightforward: G locally sam-
ples 7 < D, then encodes r as keys which are attached to the garbling C.

Gate handling. Recall (from Section 2.4) that TSCs support three gate types:
XORs, buffers, and joins. We show how to handle each.

XORs. Consider an XOR, gate z := x @ y. Our handling of XOR gates is
straightforward, due to our use of Free-XOR-style keys. To start, G defines the
key for z as the XOR of the input keys:

k) = ki @ ky XOR Garble

At runtime and by our invariant, £ holds keys k, ©®z- A and k, ©y- A. E simply
XORs its keys together, yielding a correct encoding for wire z:

kyoz-A) @k y-A) =kl (@@ay) A XOR Evaluate

XOR gates are “free” in that the GC does not grow with XOR gates.

Buffers. Consider a buffer z := x/y. Here z is the buffer’s data wire, and
y is the control. If y holds a 1, then E should obtain a key on the output wire
that matches the data wire; if not, then the output should hold Z, so E should
obtain no key. Accordingly, G defines z’s output key as follows:
kY = (’)(kg ® A, gid) ® kg Buffer Garble

z

Here, gid is the buffer’s gate-specific nonce. In words, G encrypts the data
key k% with the control wire’s one-key.
At runtime and by our invariant, E holds keys kg ® - A and kg ey - A

If the control wire y holds one, E holds kg @ A, so E can compute the correct
encoding for the output wire z:

O(kg @A gid) Kl or A =koz A Buffer Evaluate
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If the control wire y holds zero — and because E does not know A — E cannot
decrypt the output key, and thus holds no key at all.

Note crucially that E’s evaluation is thus conditioned on the control wire
y. To correctly evaluate, F must know y, so G must allow F to decrypt y.
Accordingly, G attaches to the GC a single extra bit:

lsb(kg) Buffer GC String

Per our discussion of point and permute, F simply XORs this value with its own
key to decrypt the cleartext value of the control wire. Recall, E can learn all
buffer controls due to TSC obliviousness (Definition 9).

Joins. Consider a join z := x < y. By TSC semantics, E should learn an
encoding of the output if it holds an encoding for either input wire. To handle
this, G simply defines the key of the output wire as the key for input «:

k= kY Join Garble

(This choice is arbitrary; G could also set k) = kg.) G also includes in the GC a
length-\ ciphertext that allows E to translate y keys to z keys:

ky & ko Join GC String

At runtime, suppose E holds key kg @x-A, or E holds kg G y- A, or both. If
FE holds a key for a wire, we say that wire is set. E acts conditionally, depending
on which wire is set:

K@z A if z set
Koz A= xo@ . 0 0 1 e Join Evaluate
(ky ©k,) ©(ky,@y-A) ifyset

Note that it is impossible for x and y to hold mismatched Boolean values, as
this would imply the TSC is not total (Definition 6).

Order of evaluation. As described above, buffers sometimes place keys on their
output wires, and sometimes they do not. This means that in a TSC, the order
in which F evaluates the circuit can depend on the data in the wires. Indeed,
this data dependence is crucial in the efficient handling of RAM programs.

At each step of evaluation, F can choose any gate that is ready, and evaluate
that gate. Recall that a wire is set if F holds a key on that wire:

Definition 10 (Ready). A TSC gate g is ready if one of the following holds:

— g is an XOR z:=x @y where x and y are set and z is not set.
— g is a buffer z := x/y where x and y are set and z is not set.
— g is a join z := x <1y where x ory are set (or both) and z is not set.
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Offline/Online and Costs. In our construction, G sends the GC to E in the
offline phase. In the online phase, G simply sends (1) an encoding of the input
and (2) an output decoding table that allows to decode the output.

We summarize the communication and computation costs of each TSC gate:

| Comm. (bits) G queries to O E queries to O

XOR (@) 0 0 0
Buffer (/) 1 1 <1
Join () A 0 0

Thus, our total offline communication cost is < (|C| - A) bits. Our online cost
scales with the circuit’s number of inputs n and the number of outputs m.
Specifically, the online communication cost if O((n +m) - \).

Garbling scheme procedures. Our garbling scheme procedures (Figure 2) are
merely a formalization of the above handling. Garble describes G’s actions, and
Eval describes E’s actions. Encode formalizes how the circuit input should be
encoded, which by our use of Free-XOR-style labels simply maps each input x
to k% @ z - A for some uniform k2.

The decoding of outputs (formally, Decode) includes one additional detail:
we store in the output decoding string d not the output wire keys themselves, but
rather applications of the random oracle to the output wire keys. This is needed
to ensure the garbling scheme is authentic [BHR12b]. Namely, this choice of
Decode ensures that even a malicious E cannot forge output keys that correctly
decode, except by running Eval as intended. As a final detail, we include in
the output decoding string d the Isb of the zero key; this ensures the scheme is
perfectly correct; without this addition, there is some negligible probability that
the two output keys will hash to the same string.

5 Adaptive Security of Rekeyable Garbling Schemes

This section formalizes the notion of rekeyable garbling schemes, as well as
security properties on these schemes. Then, we show that (1) rekeyable garbling
schemes are adaptively secure and (2) our TSC-based construction (Section 4) is
rekeyable. In Appendix B, we discuss other garbling schemes that are rekeyable
(when compiled; see next). Namely, we Free XOR [KS08], half-gates [ZRE15],
and garbled arithmetic gadgets [BMR16] are rekeyable.

5.1 Additional Notation

We start with additional useful notation.

Recall that in adaptive GC we split evaluation into an offline and an online
phase. A has access to the RO even in the offline phase, when it has seen the
circuit garbling, but before we send the encoded input. To prove security, it is
convenient to seed the RO with some uniformly chosen seed s, and to only deliver
s to A in the online phase. This makes it easy to prove that A cannot issue useful
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queries in the offline phase, unless A is exceedingly lucky. We provide relevant
notation that seeds an RO with s, effectively producing a fresh RO:

Notation 1 (Seeded Random Oracle). Let O be a random oracle. Then for
some A-length string s, we say O[s] is the oracle seeded at s:

Ols](z) = O(s, z)

To accompany Notation 1, we present a (trivial) compiler that transforms
a garbling scheme by using a seeded oracle in place of an unseeded oracle. We
emphasize that this compilation is straightforward.

Construction 2 (Seeded Oracle Rekeyable Garbling). Let IT be a garbling
scheme with Rekey. Then we give the seeded scheme Ilg:

Garbld® (1), C)

11 s+s{0,1}* Encodé ((s,e),x) := (s, Encode(e, z))
2: (Ce,d) « Garble®*(17,C) E'val'O(CN’7 (s,%)) := BvalP)(C, &)
s: return (C,(s,¢),d) Decodé'(d, ) := Decode(d, §)

For simplicity of notation, we allow the challenger to manage seeds s.

Remark 1. We note that seeding the oracle, in the most natural instantiation,
increases the input length of O. Depending on the specific scheme, this may
or may not impact concrete performance costs. We leave as future work find-
ing an efficient instantiation based on fixed-key AES, likely along the line of
work [GKWY20].

Next, recall that our approach to adaptive security requires that we can
rekey the GC. To ensure the GC continues to decrypt correctly even with freshly
chosen keys, our intermediate proof hybrids program entries of the RO. We define
appropriate notation for an RO that is programmed at particular rows:

Notation 2 (Explicitly Programmed Random Oracle). Let O be a random ora-
cle outputting strings in {0,1}*, and let & be a partial map from oracle queries to
oracle responses. The explicitly programmed oracle O° is defined as follows:

s.n T if (x,r) €9
O@) = {O(m) otherwise

Notation 3. By O, we mean programming the oracle O such that when the
oracle is later seeded with s, the resulting seeded oracle is programmed with §.
Namely, the following correctness condition holds:

(O¥)[s] = (Ols])°
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In our security games, we provide to A access to the unseeded oracle, which
A then seeds. Notation 3 allows us to discuss providing to the hybrid-world
adversary access to the unseeded programmed oracle, which is later seeded (by
A) and behaves according to the programming.

Our security properties of rekeyable garbling schemes rely on the ability to
rekey any fixed garbled circuit C' (we universally quantify over all GCs). To
properly formalize such notions, we will need the ability to talk about the set of

all possible garbled circuits from a particular garbling scheme:

Definition 11 (Garble Support). Let C € C be a circuit. Let Supp(Garble(C'))
denote the support of Garble on input C. Formally, Supp(Garble(C)) is the sup-
port of the distribution defined by the following procedure:

g\ C)
1: Sample random oracle O
2: (C,e,d) « Garble® (1*,0)

3: return C

5.2 Rekeyable Garbling Schemes

This section formalizes the notion of rekeyable garbling schemes, as well as their
security properties. We formalize the Rekey procedure for a rekeyable scheme:

Definition 12 (Rekey). Let I be a garbling scheme. A rekey procedure
Rekey for II is a procedure that outputs (1) a partial map § mapping oracle
queries to oracle responses, (2) an input encoding string e, and (3) an output
decoding string d. The correctness of Rekey is defined by the following experi-
ment: For all circuits C' € C, all inputs x, the following experiment outputs 1
with probability 1 — u(X), for some negligible function p:

RekeyCorrect(\, C, )

1:  Sample random oracles O1,Oq
2: (C,e,d) < Garble®(1*,C)

3: (6,¢,d) < Rekey(1*,C,C)

4: & ¢ Encode(e,x)

5: g](—EvalOg(é,:E)

6: return C(x) = Decode(d', )

In words, this definition states that a rekey procedure modifies GC keys
and oracle queries — but not the GC itself — such that the GC still correctly
evaluates. Note that our definition uses two different oracles @, and O,. This
ensures that the programming of the RO needed to enable correct evaluation is
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fully described by 4. In other words, Eval should not depend meaningfully on
queries to the non-programmed oracle inputs.

Our first security property on Rekey is Rekey Indistinguishability. In short,
this property states that the adversary should not be able to distinguish the keys
associated with a garbled circuit from a rekeying of the same garbled circuit.

The details here are relatively subtle, as to make a meaningful definition, we
need to fiz a particular garbled circuit C' and reason about the ability for the
adversary to distinguish keys associated with that GC. This becomes particularly
subtle when we consider that two calls to Garble might yield the same garbled
circuit C, but they might associate with that GC different keys, due to sampling
different randomness and using different random oracles. Our definition roughly
states that, given C, the keys generated by Garble (such that Garble output C)
are indistinguishable from resampled keys chosen by Rekey (on input C).

Definition 13 (Rekey Indistinguishability). Let IT be a garbling scheme
with rekey procedure Rekey. We say Rekey indistinguishably rekeys if for all
garbled circuits C' € Supp(Garble(C)), for all PPT adversaries A, the following
quantity is bounded from above by a negligible function pu(X):

Pr[A9(1*,e,d) = 1| (0, e,d) « Setup™(\,C) AC" = C]
—Pr [Aoé(l’\,e’,d’) =1[(0,6,¢,d') « Setup’ (A, C, é)}

where Setup®™, Setup’ are defined as follows:

Setup™ (X, C) Setup’ (X, C, C)

1:  Sample random oracle O 1:  Sample random oracle O
2: (C',e,d) « Garble®(1*,C) 2: (8,€,d) « Rekey(1*,C,C)
3: return (O,C’ e, d) 3: return (0,6,¢,d')

When A is unbounded and the above holds, we say that Rekey statistically
rekeys. If p is the zero function, we say that Rekey perfectly rekeys.

We point out that natural RO-based schemes tend to perfectly rekey. Infor-
mally, this is because natural schemes choose keys uniformly or by calling the
RO. We provide statistical and computational notions for completeness.

Rekey indistinguishability is not sufficient to prove adaptive security, and
even selective security combined with rekey indistinguishability seems insuffi-
cient to achieve adaptive security. Intuitively, it is not clear how to obtain rekey
obliviousness (see next), which is stated wrt a fixed GC, from GC obliviousness,
which is probabilistic over sampled GCs.

Recall from Section 2.3 that we consider two forms of adaptive security: obliv-
iousness and privacy. We define two corresponding security notions on rekeyable
schemes. Jumping ahead, we note that a scheme that supports rekey indistin-
guishability and that satisfies the following obliviousness notion (resp. privacy
notion) is adaptively oblivious (resp. private); see Theorems 1 and 2.
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Definition 14 (Rekey Obliviousness). Rekey obliviously rekeys if for all
circuits C' € C, all inputs x, all garbled circuits C' € Supp(Garble(C)), and all
PPT adversaries A:

{Real© % ()} RN {Ideal>“C (\)},

where () is a negligible function and where the games are defined as follows:

Real»“C= ()) Ideal“C ()

1:  Sample random oracle ©  1: Sample random oracle O
2: (6,e,d) < Rekey(1*,C,C) 2: (8,e,d) + Rekey(1*,C,C)
8: I <« Encode(e,x) 8: T < Encode(e,0)

s 5
4: return A° (1, %) 4: return A° (1%, %)

The above obliviousness definition corresponds to GC obliviousness, which
concerns an evaluator who sees a GC and input encoding Z. The GC privacy
game provides security against the evaluator who sees a GC, input encoding
Z, and output decoding table d. Correspondingly, we define rekey privacy as
a modification of rekey obliviousness. The requirement is that Rekey must be
compatible with a way to simulate a decoding table d’, which will allow to decode
to arbitrary output values. In standard schemes, such a decoding table simulation
is easily achieved simply by appropriately reassigning key-value correspondence.

Definition 15 (Rekey Privacy). Rekey privately rekeys if for all circuits
C € C computing some function f, there exists a simulator S s.t. for all z, for
all garbled circuits C € Supp(Garble(C)), and for all PPT adversaries A:

{RealA’C’é’I()\)} RN {IdealA’C’é()\)},

where () is a negligible function and the games are defined as follows.

Real*CC7 () Ideat*5C (\)
1:  Sample random oracle O  1: Sample random oracle O
2: (8,e,d) < Rekey(1*,C,C) 2: (b,e,d) < Rekey(1*,C,C)
8: I <« Encode(e,x)
4: return Aoé(l)‘,f,d) 4: d 80 f(z),d)

5
5: return A (1* &, d')

5]

Z < Encode(e, 0)

5.3 Adaptive Security

In this section, we show that any garbling scheme with an indistinguishable,
oblivious (resp. private) rekey procedure satisfies adaptive obliviousness (resp.
privacy), when the scheme is compiled with Construction 2.
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Theorem 1 (Adaptive Obliviousness from Rekeying). Let IT be a gar-
bling scheme that rekeys indistinguishably and obliviously (Definitions 13 and
14). The compiled (via Construction 2) scheme Heeq is adaptively oblivious.

Proof. In short, the properties on Rekey are precisely what is needed to show
obliviousness. In more detail, recall that the definition of adaptive obliviousness
requires existence of a simulator (Definition 3). Our simulator is straightforward:

S9(1*0)
1: (C,e,d) + Garble®(1*,C)
2: I < Encode(e, 0)

3: return (C, %)

Now, we must show that the real-world and ideal-world experiments are indis-
tinguishable. We restate the experiments, inlining the handling of our simulator
and of our seeded oracle compiler (Construction 2):

Real%(\) Idealy S (\)
1: Sample random oracle O 1: Sample random oracle O
2: s+4s{0,1}* 2: s+{0,1}*
3: (C,e,d) < Garble® (1*,0) 3: (C,e,d) + Garble® (1%, C)
1: z+ AN C) 1: z+ A% C)
5: & < Encode(e, z) 5: & <« Encode(e, 0)
6: return A°(1%,s, %) 6: return A°(1%, s, &)

To show indistinguishability, we proceed by a hybrid argument. We formalize
the two hybrids needed to complete our proof:

B30 TRE
1: Sample random oracle O 1: Sample random oracle O

2: s+¢s{0,1}* 2: s<s{0,1}*

3: (C,e,d) < Garble®l(1*,0) 3: (C,e,d) + Garble® (1%, C)
1z« A2 0) 1 x4+ A9 0)

5: s «s{0,1}" 5: s «s{0,1}"

6: (8,¢,d)« Rekey(1*,C,C) 6: (,¢,d) + Rekey(1*,C,C)
7: & < Encode(e’,x) 7: & < Encode(e’,0)

8: return AOS[S,] (1%, s, &) 8: return AOJ[S/] (1, s, )

Our intermediate hybrids (1) sample fresh RO seeds s, (2) rekey the garbled
circuit, and (3) give to the adversary the rekeyed input, as well as access to a

24



seeded, programmed RO O°[5']. Using a fresh seed s’ makes it easy to argue that
the adversary cannot issue useful queries in the offline phase, since nothing A
sees in the offline phase is related to s’. When A does not know a seed s, s, it is
as if A does not yet have access to the RO.

Now, we argue indistinguishability as follows: We show the real-world game
is indistinguishable from Hopy, g, and we show that the ideal-world game is in-
distinguishable from Hgpy,s. To complete the proof, we show Hepy, g is indistin-
guishable from Hopy,g.

Game-Hybrid Steps. We first argue the following;:
{Realyp (V) = {H p(V} and - {Tdealp7(V)} =~ {(H0 (V)

obv obv

The main difference between Realgy,, and Idealyy, from the respective Hey,y
games is the addition of the line

(6,¢',d") + Rekey(1*,C, C),

as well as the use of ¢/ instead of e, d’ instead of d, and ©°*'][s'] instead of O[s].
That is, all we need to prove is that the hybrid distribution (05[5/] [s'],€,d") is
indistinguishable from game distribution (O[s], e, d), i.e. that a PPT distinguisher
with corresponding oracle access cannot distinguish (e,d) from (e’,d’). If we
ignore information gleaned from the offline phase, this immediately follows from
rekey indistinguishability (Definition 13).

Of course, we must account for the offline phase. A gains no advantage from
it if A does not make queries related to the seeds s or s’. Since the seeds are
uniformly sampled strings, A has negligible probability of guessing s or s’ in the
offline phase, so it is as if A is not given the oracle until the online phase. Thus,
the above argument based on rekey indistinguishability goes through.

Hybrid-Hybrid Step. We now show:
{HA RO} ~ {(HE (V)

Since the garbled circuit C' comes from the same distribution in both games,
consider the two hybrids on some fixed C' € Supp(Garble(C)). Because C' is
fixed, A’s choice of input z must come from the same distribution in both worlds.
Therefore, we can apply rekey obliviousness (Definition 14) to show that lines
6 and 7 of each hybrid are indistinguishable. A’s distinguishing advantage is at
most the p(A) advantage from rekey obliviousness.

Thus, the considered garbling scheme is adaptively oblivious. O

Our considered properties on rekeyable garbling schemes also imply adaptive
privacy. The proofs and techniques are very similar to those in Theorem 1. Any
garbling scheme that rekeys indistinguishably and privately is adaptively private.
We prove the following in Appendix A.

Theorem 2 (Adaptive Privacy from Rekeying). Let I be a garbling
scheme that rekeys indistinguishably and privately (Definitions 18 and 15). Then
compiled scheme Igeeq is an adaptively private garbling scheme (Definition 4).
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Rekeyrgo (17, (C, D), C
SC

1: r<+sD

2: A+s{0,1}*" 1

3: while not all keys are assigned do

4: arbitrarily select some unassigned wire and uniformly assign one of its keys,
5 subject to the following constraints:

6: for each join z < x >y with C string row : (k% = k%) A (k2 @ kg = row)

7 for each buffer z « x/y with C bit p : lsb(kg) =p

8: for each XOR z <~z @y : k, =k, Dk,

9: for each i-th randomized input wire w : k., = r[i] - A
10 : for each wire w: k% @kl = A

11 : for each i-th input wire w do append to e (kO K & A)

12: for each i-th output wire w do append to d (O(k>,,4), Ok} ® A, 1))
13: for each buffer z < z/y do append to § ((k;, gid), k% @ k?)

14: return (J,e,d)

Fig. 3. The Rekey procedure for Construction 1. In short, our rekeying uniformly sam-
ples keys, subject to linear constraints imposed by the garbled circuit. The procedure
outputs (1) a programming string §, (2) an input encoding string e, and (3) an output
decoding string d. It is straightforward that the rekeying can be computed in linear
time; at each step we (1) pick an arbitrary wire with an unassigned key, (2) uniformly
sample the unconstrained bits of that unassigned key, and (3) use the chosen key to
propagate constraints (by setting appropriate key bits) through connected gates.

5.4 Tri-State Circuit Rekeying

We show that our TSC garbling scheme (Construction 1), can be rekeyed (per-
fectly) indistinguishably, obliviously, and privately. For simplicity, we refer to
Construction 1 as IITsc. Combined with the results in this section, Theorems 1
and 2 imply that IITsc is an adaptively oblivious and private garbling scheme.

Rekeying. Recall that the TSC garbler G produces zero-keys for wires as follows:

— Input wires: G uniformly samples the key.

— Buffer wires: G chooses the output key based on an RO query.

— XOR output wires: G defines the output key as XOR of the input keys.
Join output wires: G defines the output key as one of the input keys.

To choose the one-keys, recall that G samples A.

Recall that to rekey a GC C, we must sample fresh keys consistent with
the GC and a (programmed) oracle. In the context of the TSC construction,
this means that our new keys must respect linear constraints imposed by the
GC itself. Our garbling of TSCs includes three types of strings that our rekey
procedure must respect (see Figure 2):
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— Joins: For each join gate with input keys kw7 ! C includes the string k0 @ko

— Buffers: For each buffer with control key k , C includes the bit lsb(ko)

— Random inputs: For each random input ere w corresponding to sampled
input bit r, C includes the key k?u Qr- A

In short, our construction’s Rekey procedure simply uniformly samples a fresh
correlation A, then uniformly samples keys, subject to the above constraints.
Recall, our construction works with oblivious T'SCs, so it takes as input a TSC
C and a distribution D. Figure 3 lists the full procedure.

Theorem 3 (Rekeying Garbled Tri-State Circuits). Let (C;, D;) be an
oblivious and total tri-state circuit. Rekeyrge (Figure 3) rekeys with perfectly
indistinguishability, obliviousness, and privacy.

Proof. We prove each property.
Correctness is verified by inspection: the GC evaluates to the correct value.

Perfect Indistinguishability. Given some fixed garbled circuit C, Garble and
Rekey sample keys from the same distribution.

A is identically distributed by construction. Further, each zero-key is also
identically distributed. Indeed, the only difference between the two procedures
is that Garble chooses keys from start to finish by calling O and constructing
C, whereas Rekey works backwards from €' and chooses keys. Because the RO
is not in scope for rekey indistinguishability, keys in both worlds are uniformly
distributed, other than constraints imposed by C'. But all constraints imposed by
C are linear, so it does not matter if C is chosen with respect to the keys, or if keys
are chosen with respect to C. Thus, Rekey satisfies perfect indistinguishability.

Obliviousness. Recall that obliviousness (Definition 3) states that the evaluator
cannot distinguish a rekeying of a garbled circuit used to encode a chosen input
z from a rekeying used to encode the all-zeros string.

During evaluation, one key on each wire will be revealed to the evaluator
(due to tri-state circuit totality, Definition 6). By inspection, we find that we
can compute the collection of every GC key K from C, C, A, and the control
bits Controls(C, x) (resp. Controls(C,0)). (In more detail, the controls are de-
termined by x or 0 together with some randomly sampled r <$ D; the rekey
procedure chooses a fresh r.) In other words, the only information that can pos-
sibly be used to distinguish these two worlds is A and the control bits; all other
information is fixed or can be derived. But A is uniform in both worlds, and our
above indistinguishability argument shows that any A could have produced C.
Thus, only the control bits can be used to distinguish. But the tri-state circuit
is oblivious (Definition 9), so the controls are statistically close between these
worlds. Thus, Rekey satisfies obliviousness.

Privacy. Privacy (Definition 4) is satisfied in the same manner as obliviousness,
except that we also find that d can be derived from y = C(z) and all keys K.
Thus, Rekey satisfies privacy. O
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Appendices

A Proof of Adaptive Privacy

We provide the deferred proof of Theorem 2:

Theorem 2 (Adaptive Privacy from Rekeying). Let IT be a garbling scheme
that rekeys indistinguishably and privately (Definitions 13 and 15). The compiled
(via Construction 2) scheme I eeq is adaptively private.

Proof. In short, the properties of Rekey are exactly what is needed to show
privacy. The following proof is very similar to that of Theorem 1.

Recall that the difference between obliviousness and privacy is that in the lat-
ter, A is given access to an output decoding string d, which allows A to observe
the garbled circuit outputting some specific value. To achieve indistinguishabil-
ity, the GC output must be consistent with A’s adaptively chosen input z; A
must see C(x). This is not hard to arrange, as we send the decoding string d
only after A chooses its input, so in the ideal world we simply use a simulator
to program d to output the appropriate value. Other details of the proof are
essentially identical to that of Theorem 1.

In more detail, recall that the definition of adaptive privacy requires existence
of a (stateful) simulator. Our simulator is straightforward:

S§°(1*,C)
1: (C,e,d) « Garble®(1*,C)
2: return C
3: // Insecond call S (y) for C(z) = y.
4: & < Encode(e, 0)
5: d « S,(17,y,d)

6: return (Z,d)

Now, we must show that the real-world and ideal-world experiments are indis-
tinguishable. We restate the experiments, inlining the handling of our simulator
and of our seeded oracle compiler (Construction 2):

RealZt&(\) Ideals:7 ¢ (\)
1: Sample random oracle O 1: Sample random oracle O
2: 5+¢s5{0,1}" 2: s+s{0,1}*
3: (C,e,d) < Garble® (1*,0) 3: (C,e,d) + Garble® (1%, 0)
1: x4+ A9(1,C) 1: x4+ A0 0)
5: & < Encode(e, z) 5: & < Encode(e, 0)
6: return A°(1%,s,7,d) 6: d « S,(1%, f(x),d)

7: return Ao(l’\,s,i’,d/)
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To show indistinguishability, we proceed by a hybrid argument. We formalize
the two hybrids needed to complete our proof:

HAC L (A) H0wC (\)

1: Sample random oracle O 1: Sample random oracle O

2: s+4s{0,1}* 2: s+¢s{0,1}*

3: (Ce,d) « Garble®®I(1*,C) 3. (C,e,d) « Garble®(1*, C)
4: z+ AN 0) 1: z+ AN C)

5: s «s{0,1}" 5: 8 «s{0,1}"

6: (6,¢,d)+« Rekey(1*,C,C) 6 (6,€,d") + Rekey(1*,C, C)
7: & < Encode(¢’, ) 7: & < Encode(e’,0)

8: return AOMS/] (1, s',z,d) 8 d" « 8,(1", f(x),d)

9: return AOJ[S/] (1)‘7 s &,d")

As in Theorem 1, our hybrids (1) sample fresh seeds s’, (2) rekey the garbled
circuit, and (3) give to the adversary the rekeyed input, as well as access to a
seeded, programmed RO.

Game-Hybrid Step. We first argue the following:

{RealC ()} = {HAC (N} {Idealie®C ()} ~ {H 0% (\)}

The argument as to why this indistinguishability holds is identical to the
Game-Hybrid reasoning argument in the obliviousness proof (Theorem 1).

Hybrid-Hybrid Step. Finally, we argue:

(HACL (0} = {HASRC ()

Since the garbled circuit C' comes from the same distribution in both games,
consider the two hybrids on some fixed C' € Supp(Garble(C)). Because C is
fixed, A’s choice of input z must come from the same distribution in both worlds.
Therefore, we can apply rekey privacy (Definition 15) to show that lines 6 and 7
in Hyrv, g and lines 6 through 8 in Hy,., s are indistinguishable. The adversary’s
distinguishing advantage is at most the u(\) advantage of rekey privacy.

Thus, the considered garbling scheme is adaptively private. O

B Popular Existing Schemes are Rekeyable

As another application of our framework, we argue that a range of existing GC
schemes are adaptively secure, if their underlying hash function is implemented
with an NPRO.
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B.1 Free XOR is Rekeyable

We show that the Free XOR construction [KS08], as written, is rekeyable. The
Free XOR scheme is relatively straightforward.

First, the handling of wire keys is the same as described in Section 4. In
particular, for each input wire and each AND gate output wire w, the scheme
samples a uniformly random label k?u +${0,1}*. Additionally, the garbler sam-
ples a global offset A <s {0,1}*~! || 1, and for each wire w, the garbler sets
ki, =k @ A.

For each XOR gate z <— x @ y, the garbler sets the output wire key kg =
kg, @ kg. For each AND gate z < x -y, the garbler generates four garbled rows®,
which are added to the garbled circuit:

o
(@)
(@)
@

ko, kY, gid
Ky, ky, gid
Ky, ky, gid
Ky, k. gid

ok
okl
o k?

(
(
(
( o k;

— — ~— ~—

Lemma 1. Let IT denote the garbling scheme of [KS08] described above, com-
piled by applying Construction 2. I supports a rekey procedure that with perfect
indistinguishability, obliviousness, and privacy.

Proof Sketch. The roadmap to proving that (the compiled via Construction 2
version of) Free-XOR is rekeyable is similar to that of rekeyability of TSC (The-
orem 3), but with even simpler steps. The rekey procedure simply chooses wire
keys in the same manner as garble: sample a fresh A, uniformly sample a zero-
key on each input wire and each AND gate output, and compute the zero-key
on each XOR gate output by XORing the input keys. From here, the rekey pro-
cedure programs the RO in the obvious way, ensuring that each combination of
AND gate input keys decrypts to the appropriate output key.

Perfect rekey indistinguishability thus comes for free: the keys are clearly
drawn from the same distribution in the garbling and the rekeying. The proof
that this rekey procedure satisfies rekey obliviousness and privacy is almost
identical to the proof given in Theorem 3, except that the proof is arguably
simpler, since we need not concern ourselves with tri-state circuit obliviousness.
Thus, the [KS08] scheme (when compiled with Construction 2) is adaptively
secure if their hash function is modeled by a NPRO. O

B.2 Half-Gates is Rekeyable

The popular half-gates scheme [ZRE15] first demonstrated how to garble AND
gates for only two ciphertexts. The scheme is rekeyable, given the hash function
is modeled as an NPRO:

5 For simplicity, we list the rows in an unpermuted order; the full scheme would
permute the rows according to point-and-permute bits. The permutation of rows
is not relevant to our current discussion.
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Lemma 2. Let I denote the garbling scheme of [ZRE15], compiled by applying
Construction 2. I supports a rekey procedure that with perfect indistinguishabil-
ity, obliviousness, and privacy.

Proof Sketch. The proof that the half-gates technique of [ZRE15] is rekeyable is
very similar to the above Free XOR proof, and to our TSC proof. Indeed, TSCs in
some sense formally capture the exact procedures of the half-gates scheme. This
was shown in [HKO23], where they give an oblivious AND gate construction
that uses exactly two join gates, matching the cost of half-gates (indeed, the
underlying handling is the same as half-gates).

Rather than meticulously proving that half-gates is rekeyable, we simply
point out that its rekeyability is implied by Theorem 3. Thus, the [ZRE15]
scheme (when compiled with Construction 2) is adaptively secure if its hash
function is modeled by a NPRO. O

B.3 Arithmetic Gadgets is Rekeyable

[BMR16] demonstrated interesting garbling techniques for a limited class of
arithmetic circuits. In particular, they generalize the Free XOR technique to
small prime fields. Their construction allows wires over various moduli Z, for
prime p, and to do this, they sample a Free XOR correlation for each modulus p,
each consisting of repeated Z, elements, such that each such A has ~ A bits of
entropy. For simplicity, we henceforth simply say Zf; where ¢ denotes the number
of Z,, elements needed to acquire X bits of entropy.

To select keys for wires containing a Z, element, [BMR16] choose the zero-
key uniformly from Zf); the one-key, two-key, three-key, ..., p — 1-key are chosen
by adding multiples of the appropriate correlation A.

[BMR16] provide three operations on wires: addition (modulo p), scaling by
a constant (modulo p), and projection. The projection operation allows mapping
each of the p possible keys to some specified output key, potentially in a different
modulus. The projection operation is implemented simply by hashing the input
key, and using the hash to encrypt the respective output key, then including
that ciphertext in the garbled circuit (these ciphertexts are shuffled according
to point and permute).

Lemma 3. Let IT denote the garbling scheme of [BMR16], compiled by applying
Construction 2. II supports a rekey procedure that with perfect indistinguishabil-
ity, obliviousness, and privacy.

Proof Sketch. Similar to our discussion of Free XOR, it is clear that this scheme
is rekeyable. Indeed, all keys are either uniformly sampled, combined in a linear
manner, or encrypted under RO. Thus, we can construct a Rekey procedure
that resamples arithmetic keys uniformly, while respecting the constraints im-
posed by addition gates and scalar gates. The fact that this Rekey procedure is
perfectly indistinguishable, oblivious, and private is proved in almost the exact
same manner as Free XOR.

Thus, the [BMR16] scheme (when compiled with Construction 2) is adap-
tively secure if their hash function is modeled by a NPRO. O
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