
Almost Tight Multi-User Security under Adaptive
Corruptions & Leakages in the Standard Model

Shuai Han1,2 , Shengli Liu1,2,3(�) , and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. In this paper, we consider tight multi-user security under
adaptive corruptions, where the adversary can adaptively corrupt some
users and obtain their secret keys. We propose generic constructions for
a bunch of primitives, and the instantiations from the matrix decisional
Diffie-Hellman (MDDH) assumptions yield the following schemes:
(1) the first digital signature (SIG) scheme achieving almost tight strong

EUF-CMA security in the multi-user setting with adaptive corrup-
tions in the standard model;

(2) the first public-key encryption (PKE) scheme achieving almost tight
IND-CCA security in the multi-user multi-challenge setting with
adaptive corruptions in the standard model;

(3) the first signcryption (SC) scheme achieving almost tight privacy and
authenticity under CCA attacks in the multi-user multi-challenge
setting with adaptive corruptions in the standard model.

As byproducts, our SIG and SC naturally derive the first strongly se-
cure message authentication code (MAC) and the first authenticated
encryption (AE) schemes achieving almost tight multi-user security un-
der adaptive corruptions in the standard model. We further optimize
constructions of SC, MAC and AE to admit better efficiency.

Furthermore, we consider key leakages besides corruptions, as a natu-
ral strengthening of tight multi-user security under adaptive corruptions.
This security considers a more natural and more complete “all-or-part-
or-nothing” setting, where secret keys of users are either fully exposed
to adversary (“all”), or completely hidden to adversary (“nothing”), or
partially leaked to adversary (“part”), and it protects the uncorrupted
users even with bounded key leakages. All our schemes additionally sup-
port bounded key leakages and enjoy full compactness. This yields the
first SIG, PKE, SC, MAC, AE schemes achieving almost tight multi-user
security under both adaptive corruptions and leakages.

1 Introduction

Cryptography aims to provide two fundamental security guarantees: privacy
and authenticity. Centered around privacy and authenticity, a variety of crypto-
graphic primitives are developed, including public-key encryption (PKE), sym-
metric encryption (SE), digital signature (SIG), message authentication code

https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-0504-9538

(MAC), signcryption (SC), authenticated encryption (AE), etc. To rigorously
define security notions for these primitives, proper security models have to be
set up according to their working environments and the adversaries’ attacking
abilities. Along the path of proving security, PKE and SE are defined with in-
distinguishability under chosen plaintext/ciphertext attacks (IND-CPA/CCA),
SIG and MAC are defined with existential unforgeability under chosen message
attacks (EUF-CMA), and SC and AE with both privacy (Priv) and authenticity
(Auth). To prove a specific primitive construction achieves the security goals,
the most important technique is security reduction. Roughly speaking, a secu-
rity reduction establishes a link from an adversary A against the security of a
primitive to another adversary B solving a well-studied computationally hard
problem, such as the decisional Diffie-Hellman (DDH) and learning with errors
(LWE) problems, with approximately the same running time. The ratio of A’s
advantage εA to B’s advantage εB is defined as the loss factor ` := εA/εB, which
measures the quality of the security reduction.1 If ` is a small constant, we call the
reduction tight. Tight security is more desirable than non-tight one, since it en-
ables a theoretically-sound instantiation without the need to compensate a secu-
rity loss by increasing key lengths or group sizes, and allows universal key-length
recommendations for applications. Many works (e.g., [12, 18, 19, 24, 28, 21]) also
consider the tightness notion called almost tight, where ` depends at most lin-
early (or even better, logarithmically) on the security parameter λ. For ease of
exposition, we will use the term “tight” to denote “(almost) tight” as conven-
tionally did [18, 19, 24, 28, 21], but we will detail the security loss in the security
theorems and scheme comparisons to reflect almost tightness.

Tight Multi-User Security under Adaptive Corruptions (MUc). Cryp-
tographic primitives are usually deployed in multi-user settings. But most of the
security models for the primitives only consider single user. This is acceptable,
since single-user security generally implies multi-user security via a security re-
duction called hybrid argument. But the price is a large loss factor ` at least
nQ, where n is the number of users and Q the number of instances per user [6].
Considering billions of users and trillions of running instances over Internet, the
security loss ` can be as large as 260. Such a large loss factor does hurt and has to
be taken into account in the security parameter configuration during the deploy-
ment of primitives over Internet. To avoid a large loss factor that varies with the
number of users and/or the number of target instances, many works [23, 18, 19]
(to name a few) focus on primitive design with tight multi-user security.

Compared with a single-user setting, a multi-user environment becomes more
involved and leaves more opportunities to adversaries implementing new attacks.
An important attack is key corruption in that the adversary takes full control
of some users and of course their keys. This happens since some adversary may

1 Strictly speaking, the loss factor is defined as ` := (εA/εB) · (T(B)/T(A)), where
T(A) and T(B) denote the running time of A and B, respectively. For reductions
where T(A) and T(B) are approximately the same (as in many related works and
also in this work), the loss factor can be simplified to εA/εB.

2

snatch secrets from some user by system hacking or from key exposure due to
the user’s bad key management. Therefore, it is reasonable for us to consider
Multi-User security under corruptions, which we denote MUc or more precisely
MUc-XX with notion XX depending on the primitive.2 The existing works on
MUc indicates that pursuing tight MUc security is not easy, as shown below.

Technical Difficulties in Achieving Tight MUc Security. As pointed out
in [14, 21], there is a seemingly paradoxical technical problem needing to be
addressed for proving tight MUc-CMA security of SIG. On the one hand, the
security reduction algorithm has to know the signing keys of all users so that it
can successfully answer adversary’s adaptive corruption query without resorting
to a guessing strategy. On the other hand, the reduction algorithm should also be
able to extract an answer to the underlying computationally hard problem from
the adversary’s forged signature. However, if the reduction knows all the signing
keys, it should be able to forge a signature by itself without the adversary.

There exist similar technical problems in achieving tight MUc security for
other primitives. For example, to achieve tight MUc-CPA/CCA security for PKE,
the security reduction algorithm has to know the secret keys of all users to avoid
the loss factor incurred by a guessing strategy. On the other hand, it should also
be able to extract an answer from the adversary’s guessing of challenge bit. This
seems to lead to a similar paradox since the reduction can decrypt the challenge
ciphertexts to learn the challenge bit by itself if it knows all the secret keys.

Impossibility Results on Tight MUc Security. In fact, there is a line of
research which showed impossibility results on tight MUc security for a class of
PKE, SIG, MAC and AE schemes that meet certain conditions.

– PKE. Bader et al. [5] proved that there exists no tight security reduction
from MUc-CPA/CCA security of PKE to non-interactive assumptions, if the
relation between public key and secret key is “unique” or “re-randomizable”.

– SIG. The above impossibility result for PKE also applies to MUc-CMA
security of SIG, except that the relation is defined for the verification key
and signing key [5]. Alternatively, if the signing algorithm is a deterministic
one, there exists no tight security reduction from MUc-CMA security of SIG
to bounded-round assumptions [32].

– MAC. Morgan et al. [32] showed that if MAC is a deterministic one, then
there exists no tight security reduction from MUc-CMA security of MAC to
bounded-round assumptions.

– AE. Jager et al. [25] proved that if AE satisfies a minimal key uniqueness,
any reasonable reduction from MUc to single-user security is not tight.

These impossibility results indicate that it is not an easy job to obtain tight
MUc Security. However, it does not eliminate all hopes as long as we can find
ways bypassing the conditions leading to the impossibility results.

2 For primitives like PKE, SC, AE, we also consider Multi-User Multi-Challenge secu-
rity under corruptions to capture multiple challenge ciphertexts, denoted by MUMCc.

3

Possibility Results on Tight MUc Security. There are very few construc-
tions in the literature proved to have tight MUc security, even in the Random
Oracle (RO) model.

– PKE. To the best of our knowledge, only one PKE scheme in [29] is proved
to be tightly multi-user multi-challenge CCA secure under adaptive corrup-
tions (MUMCc-CCA). Its security proof relies on the RO model.

– SIG. Gjøsteen and Jager [20] and Pan and Wagner [35] proposed tightly
MUc-CMA secure SIG schemes in the RO model. Bader et al. [4] constructed
a tightly MUc-CMA secure SIG scheme in the standard model. Its tree-based
component makes the signature non-compact. Recently, Han et al. [21] de-
signed a new MUc-CMA secure SIG in the standard model. Their scheme
enjoys compact signature while having non-compact public parameters (con-
sisting of over a thousand group elements).

It is more desirable to pursue strong MUc-CMA security of SIG, which even
guarantees the hardness for adversary to forge a new signature for an already
signed message, thus additionally ensuring “non-malleablility” of signatures.
Strongly MUc-CMA secure SIG has important applications in building more
complex primitives such as SC [3] and authenticated key exchange (AKE)
[14], where it can help SC to achieve ciphertext integrity (authenticity) [7]
and AKE to achieve strong notion of “matching conversations” security [8]
(see more discussions in [14]). One may want to resort to the Generalized
Boneh-Shen-Waters (GBSW) transform [38] to convert a (non-strongly) se-
cure SIG scheme to a strongly secure one, with the help of chameleon hash
functions. However, the GBSW transform was originally proposed in the
single-user setting, and was recently extended to the multi-user setting in
[30], but without the consideration of corruptions. As noted in [30], it seems
difficult to show that the GBSW transform also works under corruptions
and preserves the tightness, i.e., converting a tightly MUc-CMA secure SIG
scheme to a tightly and strongly MUc-CMA secure one. The reason is, the
resulting SIG scheme contains the trapdoor of chameleon hash in its secret
key, thus corruption of secret key means revealing of trapdoor, which is not
supported by the security of chameleon hash [30].

Up to now, only one SIG scheme in a recent work [14] is proved to have
tight strong MUc-CMA security, based on the RO model.

– SignCryption(SC). In [9], Bellare and Stepanovs defined multi-user secu-
rity for SC to cover both insider and outsider security. Their security notions
are essentially multi-user CCA security under adaptive corruptions which
considers both privacy (MUMCc-Priv) and authenticity (MUMCc-Auth). They
also designed a SC scheme with security proved in the RO model.

– MAC and AE. Note that SIG naturally implies a MAC scheme and SC
implies an AE scheme. As far as we know there is no approach to tight MUc-
CMA security other than derived from SIG. Similar statement holds for AE.

Up to now, there exists no PKE scheme achieving tight MUMCc-CCA security,
no SIG and MAC achieving tight strong MUc-CMA security, and no SC and AE
achieving tight MUMCc-Priv&Auth in the standard model. The challenges are:

4

Can we fill the aforementioned blanks on tight MUc security in the standard
model? Can we step even forward by considering tight multi-user security under
not only adaptive corruptions but also key leakages?

1.1 Our Contributions

We propose generic constructions for a bunch of primitives and prove their tight
multi-user security under adaptive corruptions and key leakages.

• We propose generic constructions of SIG, PKE, SC, MAC, AE and prove
their MUc security with tight security reductions. The instantiations yield
the following concrete schemes from the matrix DDH (MDDH) assumptions
[17] (which corresponds to the standard DDH, k-Linear assumptions under
different parameters) over asymmetric pairing groups in the standard model:

– the first PKE scheme achieving almost tight MUMCc-CCA security in
the standard model;

– the first SIG scheme achieving almost tight strong MUc-CMA security in
the standard model;

– the first SC scheme achieving almost tight MUMCc-Priv&Auth security
in the standard model;

– the first MAC scheme achieving almost tight strong MUc-CMVA security
in the standard model;

– the first AE scheme achieving almost tight MUMCc-Priv&Auth security
in the standard model.

Moreover, all our schemes are fully compact, i.e., all the parameters, keys,
signatures, ciphertexts consist of only a constant number of group elements.

• We formalize stronger multi-user security notions for the primitives under
not only adaptive corruptions but also key leakages, denoted by MUc&l. In
addition to MUc, the MUc&l security protects the uncorrupted users even if
adversary also obtains bounded leakage information on their secret keys.

Key leakage [2, 34] is closely related to corruption, especially in the multi-
user setting, and MUc&l is a natural strengthening of MUc. The reason is as
follows. Existing MUc security considers an “all-or-nothing” setting, where
secret keys of users are either fully exposed to adversary (“all”) or completely
hidden to adversary (“nothing”), and it protects the uncorrupted users. In
realistic environments, there would naturally be users whose secret keys are
only partially leaked to adversary (“part”). These users sit in a situation that
is neither “all” nor “nothing”. The new MUc&l security additionally takes into
account the security of these users. Hence the new MUc&l security considers
a more natural and more complete setting of “all-or-part-or-nothing”.

Thanks to the leakage resilience property of the building blocks, the
almost tight MUc security of all our SIG, PKE, SC, MAC, AE schemes can
be further strengthened to support key leakage, thus achieving almost tight
MUc&l security.

5

• At the heart of our constructions is new technical tool called Publicly-
Verifiable Quasi-Adaptive Hash Proof System and a set of new properties
for it. These, together with our novel tight proof strategies for handling cor-
ruptions, help us circumvent the seemingly paradoxical technical problems.

We refer to Table 1 and Table 2 for comparisons of our SIG and PKE with
known schemes, respectively. We also show the size of parameters and compare
the compactness of the schemes in Table 5 and Table 6 in Appendix A.

In summary, our work shows that almost tight MUc security (and even to-
gether with full compactness) for SIG, PKE, SC, MAC and AE are achievable in
the standard model. Moreover, our MDDH-based schemes support bounded key
leakages as well, thus our work also provides the first schemes achieving almost
tight MUc&l security, no matter in the standard model or RO model.

Table 1. Comparison of signature (SIG) schemes that have (almost) tight MU-CMA
security under adaptive corruptions (MUc-CMA). The column Standard Model shows
whether the security is proved in the standard model. The column Strong Security
shows whether the scheme is proved strongly existentially unforgeable. The column
Corruption? asks whether the security is proved in the presence of adaptive corrup-
tions. The column Leakage? asks whether the security is proved additionally in the
presence of key leakages, and if so, a leakage rate (defined as the ratio of leakage amount
to secret key size) is presented. The column Full Compactness shows whether the
scheme is fully compact (i.e., all the public parameters pp, verification key vk, signing
key sk and signature σ consist of only a constant number of group elements or lattice
vectors), and if not, the non-compact part is presented. The column Security Loss
shows the security loss factor of the reductions, where λ denotes the security parameter.
The column Assumption shows the computational assumption on which the security
is based.

SIG Scheme
Standard

Model
Strong

Security
Corruption? Leakage? Full Compactness

Security
Loss

Assumption

BHJKL [4, 23] X – X – × (non-compact σ) O(1) MDDH

GJ [20] × – X – X O(1) DDH

DGJL [14] × X X – X O(1) DDH or φ-Hiding

HJKLPRS [21] X × X – × (non-compact pp) O(λ) MDDH

PW [35] × – X – × (non-compact vk) O(1) LWE

Our SIGMDDH X X X X (1
6 − o(1)) X O(log λ) MDDH

Table 2. Comparison of public-key encryption (PKE) schemes that have (almost) tight
MUMC-CCA security under adaptive corruptions (MUMCc-CCA) or key leakages. The
columns have similar meanings as those in Table 1.

PKE Scheme
Standard

Model
Corruption? Leakage? Full Compactness

Security
Loss

Assumption

HLLG [22] X – X (1
18 − o(1)) X O(log λ) MDDH

LLP [29] × X – X O(1) CDH

Our PKEMDDH X X X (1
3 − o(1)) X O(log λ) MDDH

6

2 Technical Overview

In this section, we provide a technical overview of our results. We show the main
ideas in our generic constructions of SIG and PKE, and give a high-level overview
of their tight MUc security proofs in Subsect. 2.1 and Subsect. 2.2, respectively.
We describe our SC, MAC and AE constructions and how to optimize them
in Subsect. 2.3. Then in Subsect. 2.4, we explain the instantiations from the
MDDH assumptions and explain why our aforementioned constructions support
key leakage and achieve tight MUc&l security. Finally, in Subsect. 2.5, we compare
our technique with existing techniques for tight MUc security.

2.1 Our SIG: Technical Overview

Our starting point is a useful tool called Quasi-Adaptive Hash Proof System
(QA-HPS), which was proposed by Han et al. [22] for achieving tight leakage
resilient security of PKE. QA-HPS generalizes HPS [13] with a collection L =
{Lρ}ρ of NP-languages (Lρ ⊆ X) and a family of projection functions α(·). The
projection key is determined by pk := αρ(sk), hence depends on language Lρ.
Meanwhile, QA-HPS has two ways of computing the hash value Λsk(x): the
public evaluation Pub(pk, x, w) for the instance x ∈ Lρ with witness w, and the
private evaluation Priv(sk, x) for x ∈ X . Its correctness requires Pub(pk, x, w) =
Priv(sk, x) = Λsk(x) for x ∈ Lρ. Moreover, the subset membership problem
(SMP) asks the computational indistinguishability of x←$ Lρ and x ←$ X .

Another technical tool is Quasi-Adaptive Non-Interactive Zero-Knowledge
argument (QA-NIZK) proposed by Jutla and Roy [26], where the common refer-
ence string crs depends on language Lρ. For tag-based QA-NIZK [27], there are
two ways of generating a proof π for x ∈ Lρ w.r.t. tag τ : Prove(crs, τ, x, w) using
a witness w for x ∈ Lρ, and the simulator Sim(crs, tdcrs, τ, x) using a trapdoor
tdcrs. With VrfyNIZK(crs, τ, x, π), one can verify whether π is a valid proof. Perfect
zero-knowledge requires that the proofs generated by Prove and Sim are iden-
tically distributed. Besides, unbounded simulation-soundness (USS) [37, 24, 1]
stipulates that a PPT adversary cannot prove a false statement x /∈ Lρ, even if
it can obtain multiple simulated proofs for instances not necessarily in Lρ.

QA-HPS and HPS have found wide applications in designing PKE [13], MAC
[15], etc. However, there are rarely applications in building SIG schemes, mainly
because the designated-verifier style inherent in (QA)HPS is insufficient to sup-
port public verification of SIG. To fill the gap, we propose a new tool.

Publicly-Verifiable QA-HPS. The core technical tool underlying our SIG
construction is a Publicly-Verifiable variant of QA-HPS, or PV-QA-HPS in short,
which enables public verification of hash values with an extra verification key.
We introduce a verification key generation function ν(·) to compute verification
key vk := ν(sk), and a verification algorithm VrfyHPS(vk, x, hv) to check whether
an element hv equals the hash value Λsk(x) of x with the help of vk.

We also define two important properties for PV-QA-HPS, which play essen-
tial roles in the tight security reduction of our SIG.

7

• Verification soundness. It is a computational property requiring that,
given all secret/verification key pairs {(ski, vki)}i∈[n], it is hard for any PPT
adversary to come up with an index i∗ ∈ [n], an instance x∗ ∈ X and a hash
value hv∗ which is false but passes the verification w.r.t. key pair (ski∗ , vki∗),
i.e., hv∗ 6= Λski∗ (x∗) but VrfyHPS(vki∗ , x

∗, hv∗) = 1.

• 〈L0,L 〉-One-Time(OT)-extracting. It is a statistical property param-
eterized by two language collections L0 = {Lρ0}ρ0 and L = {Lρ}ρ. It
demands that the hash value Λsk(x∗) for any x∗ ∈ Lρ ∈ L retains a large
enough min-entropy, even conditioned on the verification key vk = ν(sk)
and the projection key pkρ0 = αρ0(sk) w.r.t. language Lρ0 ∈ L0. This min-
entropy makes sure that any (unbounded) adversary is unable to guess the
correct hash value Λsk(x∗), except with a negligible probability.

Our SIG from PV-QA-HPS and QA-NIZK. The building blocks for our
SIG construction consists of a PV-QA-HPS scheme PVQAHPS = (α(·), ν(·),Pub,
Priv,VrfyHPS) for both language Lρ ∈ L and language Lρ0 ∈ L0

3, a tag-based
QANIZK = (Prove,VrfyNIZK,Sim) for Lρ and a collision-resistant hash function
H. The signing and verification keys of SIG are just the secret key sk and
verification key vk = ν(sk) of PVQAHPS. The signature for message m is

σ := (x ←$ Lρ, d := Priv(sk, x), π := Prove(crs, τ, x, w))4, with τ := H(vk,m).

The verification of SIG checks VrfyHPS(vk, x, d) = 1 and VrfyNIZK(crs, τ, x, π) = 1.
In the strong MUc-CMA security model, adversary A adaptively issues user-

message pairs (i,m) to the signing oracle and obtains valid signatures σ. It can
also issue corruption queries and get the corresponding signing keys. A tries to
output a fresh and valid forgery (i∗,m∗, σ∗) /∈ {(i,m, σ)} for an uncorrupted
user i∗.

Our tight strong MUc-CMA security proof goes with three steps. See also Fig.
1 for a graphical high-level overview.

Step 1. Switch language from Lρ to Lρ0 for signing queries. Through sign-
ing queries, A obtains a bunch of tuples (i,m, σ = (x, d, π)), where σ is a
valid signature of m under ski.

• According to the perfect zero-knowledge of QANIZK, the computation of
π by Prove can be replaced by Sim without any witness of x ∈ Lρ.

• By the hardness of (multi-fold) SMP, the samplings of all x can be
changed from x ←$ Lρ to x←$ Lρ0 .

• For x ∈ Lρ0 with witness w, d := Priv(ski, x) = Pub(αρ0(ski), x, w). So

σ =
(
x ←$ Lρ0 , d := Pub(αρ0(ski), x, w), π := Sim(crs, tdcrs, τ, x)

)
.

3 This means that PVQAHPS works correctly both for x ∈ Lρ with pk = αρ(sk) and
x ∈ Lρ0 with pk = αρ0(sk).

4 Here ρ is part of the public parameters of SIG and is chosen from the language
collection L by the setup algorithm of SIG, while w is a witness for x ∈ Lρ and is
picked along with x ←$ Lρ by the signing algorithm of SIG.

8

Step 1: SMP

Step 2: USS Step 3: OT-Extracting

<latexit sha1_base64="D5VsYXburkfVfKoBTqp7Eg3ubbA=">AAACF3icbVC7TsMwFHXKq7Q8AixILBYFialKGICxgoWBoUj0ITVV5LhOa9VxItupqKLwH+ysMLIyICFWRv6AH4AZp+1AW450paNz79G993gRo1JZ1qeRW1hcWl7JrxaKa+sbm+bWdl2GscCkhkMWiqaHJGGUk5qiipFmJAgKPEYaXv8i6zcGREga8hs1jEg7QF1OfYqR0pJr7t5Ch3LoBEj1MGLJVeomjuiFqWuWrLI1Apwn9oSUKgffz6+D4k/VNb+cTojjgHCFGZKyZVuRaidIKIoZSQtOLEmEcB91SUtTjgIi28nogxQeaqUD/VDo4gqO1L+OBAVSDgNPT2aXytleJk6tSDJFSF/+52jFyj9rJ5RHsSIcj9f7MYMqhFlIsEMFwYoNNUFYUP0BxD0kEFY6yoKOxp4NYp7Uj8v2Sdm61hmdgzHyYA/sgyNgg1NQAZegCmoAgzvwAB7Bk3FvvBhvxvt4NGdMPDtgCsbHL0hUpKk=</latexit>

x 2 L⇢

<latexit sha1_base64="HflX5RlZZPGAJoBSTFTWTKiECM0=">AAACGXicbVC7TsMwFHXKq7Q8AmywWBQkpiphAMYKFgaGItGH1FSR4zqtVceJbKeiiiLxH+ysMLEjFsTKxB/wAzDjtB1oy5GudHTuPbr3Hi9iVCrL+jRyC4tLyyv51UJxbX1j09zarsswFpjUcMhC0fSQJIxyUlNUMdKMBEGBx0jD619k/caACElDfqOGEWkHqMupTzFSWnLN3VvoUA6dAKkeRiy5St3EEb3QtVLXLFllawQ4T+wJKVUOvp9fB8Wfqmt+OZ0QxwHhCjMkZcu2ItVOkFAUM5IWnFiSCOE+6pKWphwFRLaT0Q8pPNRKB/qh0MUVHKl/HQkKpBwGnp7MbpWzvUycWpFkipC+/M/RipV/1k4oj2JFOB6v92MGVQizmGCHCoIVG2qCsKD6A4h7SCCsdJgFHY09G8Q8qR+X7ZOyda0zOgdj5MEe2AdHwAanoAIuQRXUAAZ34AE8gifj3ngx3oz38WjOmHh2wBSMj1+Kr6VM</latexit>

x 2 L⇢0

<latexit sha1_base64="lz/8SdsaSP5yBXPogGf+gz/OtRg=">AAACGXicbVC7TsMwFHXKq7Q8CmywWBQkxFAlDMBYwcLAUCT6kJoQOa7TWnWcyHYqqqgS/8HOChM7YkGsTPwBPwAzTtuBthzpSkfn3qN77/EiRqUyzU8jMze/sLiUXc7lV1bX1gsbmzUZxgKTKg5ZKBoekoRRTqqKKkYakSAo8Bipe93ztF/vESFpyK9VPyJOgNqc+hQjpSW3sH17cwhtyqEdINXBiCWXAzexRSccuIWiWTKHgLPEGpNiee/7+bWX/6m4hS+7FeI4IFxhhqRsWmaknAQJRTEjg5wdSxIh3EVt0tSUo4BIJxn+MID7WmlBPxS6uIJD9a8jQYGU/cDTk+mlcrqXihMrklQR0pf/OZqx8k+dhPIoVoTj0Xo/ZlCFMI0JtqggWLG+JggLqj+AuIMEwkqHmdPRWNNBzJLaUck6LplXOqMzMEIW7IBdcAAscALK4AJUQBVgcAcewCN4Mu6NF+PNeB+NZoyxZwtMwPj4BXpJpUU=</latexit>

x⇤ 2 L⇢
<latexit sha1_base64="FzUqGbPnM/1TtgzSe1n5yP2uCgQ=">AAACEnicbVC7TsNAEFzzDOFlSElzIkJCFJFNAXRE0FAGiTykxETnyzk55Xy27s6IyMpf0NPCL9AhWn6AP+AX6Dg7KUjCSCuNZne0u+PHnCntOF/W0vLK6tp6YaO4ubW9s2vv7TdUlEhC6yTikWz5WFHOBK1rpjltxZLi0Oe06Q+vs37zgUrFInGnRzH1QtwXLGAEayN17dLj/QnqMIE6IdYDgnnaGnftslNxcqBF4k5J+fInyFHr2t+dXkSSkApNOFaq7Tqx9lIsNSOcjoudRNEYkyHu07ahAodUeWl+/BgdGaWHgkiaEhrl6l9HikOlRqFvJrMT1XwvE2dWpJkiVaD+c7QTHVx4KRNxoqkgk/VBwpGOUJYP6jFJieYjQzCRzHyAyABLTLRJsWiiceeDWCSN04p7VnFunXL1CiYowAEcwjG4cA5VuIEa1IHACJ7hBV6tJ+vNerc+JqNL1tRTghlYn7+SV6Fi</latexit>

x⇤ 2 X

<latexit sha1_base64="Qnj+FG03+vzTQLh4Z+mThxzOw1g=">AAACMHicdVDLSgMxFM34tr6qLt0Eq6CbMinS1p3oxmUF+4BOGTJpxgnNPEgyQgnzHf6HC3euBP0FXYk7ca9rM62CFT0QOJxzby7neAlnUtn2kzU1PTM7N7+wWFhaXlldK65vtGScCkKbJOax6HhYUs4i2lRMcdpJBMWhx2nbG5zkfvuSCsni6FwNE9oL8UXEfEawMpJbRI52AplgQjVKVOZgngTY1Y4I4mxPDlzNsv2JgcwtluyybdsIIZgTVKvahhwe1iuoDlFuGZSOdt5v7i6XPhpu8dXpxyQNaaQIx1J2kZ2onsZCMcJpVnBSSc3/A3xBu4ZGOKSyp0fRMrhrlD70Y2FepOBI/bmhcSjlMPTMZIhVIH97uThxQueKkL78a6ObKr/e0yxKUkUjMj7vpxyqGObtwT4TlCg+NAQTwUwCSAIsMFGm44Kp5js//J+0KmVULR+cmY6OwRgLYAtsgz2AQA0cgVPQAE1AwBW4Bffgwbq2Hq1n62U8OmV97WyCCVhvn0QIsDM=</latexit>

{↵⇢(ski)}
<latexit sha1_base64="BFJEK+LE6OVY3M5P63Ky3sFZKrE=">AAACMnicdVDLSgMxFM34tr6qLt0EH6CbkqjYuhPduFSwVeiUIZNmnNDMgyRTKGE+xP8Qty7c6CfoTty4cKtrM62CFT0QOJxzby7n+KngSiP06IyMjo1PTE5Nl2Zm5+YXyotLDZVkkrI6TUQiL3yimOAxq2uuBbtIJSORL9i53zkq/PMuk4on8ZnupawVkcuYB5wSbSWvvOMaN1QpoczgVOcuEWlIPOPKMPFQvqk6nuH51tBI7pXXUAUhhDGGBcHVPWTJ/n5tG9cgLiyLtYP195u77szHiVd+ddsJzSIWayqIUk2MUt0yRGpOBctLbqaY/b9DLlnT0phETLVMP1wON6zShkEi7Ys17Ks/NwyJlOpFvp2MiA7Vb68Qh06YQpEqUH9tNDMd1FqGx2mmWUwH54NMQJ3Aoj/Y5pJRLXqWECq5TQBpSCSh2rZcstV854f/k8Z2Be9Vdk9tR4dggCmwAlbBJsCgCg7AMTgBdUDBFbgF9+DBuXaenGfnZTA64nztLIMhOG+flnOw1g==</latexit>

{↵⇢0(ski)}

<latexit sha1_base64="qigaDChGu5OaniTV89y6Ks8PRno=">AAACMHicdVDLSgMxFM3UV62vqks3oUWoVcqkSFsXYtGNywpWhU5bMmmmDc08SDJiGeYvBP/DvVv9BbsSd+JXmGkVVPRA4HDOvbmcYwecSWWaYyM1Mzs3v5BezCwtr6yuZdc3LqQfCkKbxOe+uLKxpJx5tKmY4vQqEBS7NqeX9vAk8S+vqZDM987VKKBtF/c95jCClZa6WdTrFOEhtFysBtKJGoJdxwU57EasU4z34E2nuAOtgQwwoREKVAyPutm8WTJNEyEEE4KqFVOTg4NaGdUgSiyNfD1n7d6O66NGN/tm9XwSutRThGMpW8gMVDvCQjHCaZyxQkn1/0Pcpy1NPexS2Y4m0WK4rZUedHyhn6fgRP2+EWFXypFr68lJhN9eIv44ESWKkI78a6MVKqfWjpgXhIp6ZHreCTlUPkzagz0mKFF8pAkmgukEkAywwETpjjO6mq/88H9yUS6hSmn/THd0DKZIgy2QAwWAQBXUwSlogCYg4A48gEfwZNwbz8aL8TodTRmfO5vgB4z3D+X0rEI=</latexit>

d⇤ = Priv(ski⇤ , x
⇤)?

<latexit sha1_base64="jVH2O2qgav+3NjpMzCvUFQPAoAw=">AAACQnicdVDLSgMxFM34tr6qLt0ERdAqZSKidSEW3bisaKvQaYdMmrGhmQdJRhzC/IU/4X+4d2v/QNyJWxdmWgUVvRA4OfeeeznHizmTyrb71sjo2PjE5NR0YWZ2bn6huLjUkFEiCK2TiEfiysOSchbSumKK06tYUBx4nF56vZO8f3lDhWRReKHSmLYCfB0ynxGsDOUWT5wAq670dUP4aebqr+9p7TzLNm56rmbtUrYNb9ulbdhplzbhIUTQ6coYE6pRrDJ45BbX7LJt2wghmAO0v2cbcHBQ2UEViPKWqbXqqrN116+mNbf47HQikgQ0VIRjKZvIjlVLY6EY4TQrOImkZn8PX9OmgSEOqGzpgdkMrhumA/1ImBcqOGC/KzQOpEwDz0wOvPzu5eSPEzpnhPTlX4pmovxKS7MwThQNyfC8n3CoIpjnCTtMUKJ4agAmghkHkHSxwESZ1Asmmi//8H/Q2CmjvfLumcnoGAxrCqyAVbABENgHVXAKaqAOCLgHj+AJ9K0H68V6td6GoyPWp2YZ/Cjr/QPRfbOV</latexit>

VrfyHPS(vki⇤ , x
⇤, d⇤) = 1?

<latexit sha1_base64="xCVerZKaiUWYCZokUPtY5gkMVaU=">AAACL3icdVDLSgMxFM34rPVVdekmVARFKImItguh6MZlBauFzlAyaaYNzWSGJCOUYf5C/A/3bvUXpBtxqX9hplWwohcuHM65l8M5fiy4NgiNnJnZufmFxcJScXlldW29tLF5raNEUdakkYhUyyeaCS5Z03AjWCtWjIS+YDf+4DzXb26Z0jySV2YYMy8kPckDTomxVKeE3BS6fR0TylIcmwzeDjocnkJXJnvawv1p1c06pR1UQQhhjGEO8MkxsqBWqx7iKsS5ZGenXnYP7kb1YaNTene7EU1CJg0VROs2RrHxUqIMp4JlRTfRzBoMSI+1LZQkZNpLx8kyuGuZLgwiZVcaOGZ/fqQk1HoY+vYyJKavf2s5OWWR5ozSgf7ro52YoOqlXMaJYZJO7INEQBPBvDzY5YpRI4YWEKq4TQBpnyhCja24aKv5zg//B9eHFXxcObq0HZ2ByRTANiiDPYDBCaiDC9AATUDBPXgET+DZeXBenFfnbXI643z9bIGpcT4+AS+SrH4=</latexit>{vki = ⌫(ski)}

Step 2: Verification Soundness

Forgery

Signing Queries

Verification Keys

Forgery fails since

Corruption Queries
<latexit sha1_base64="gVIeRZ/pGanLtUnW1cs/jU0tKd0=">AAACpnicdZHNahsxEMfl7UfS7ZfTHnsRCYFAjZFCSZybaS49lRTqOOBdXK121haWtIukTWLEPkGveZFe2yfJ21Rrt1C37oDgz39+w2hmskoK6wi570QPHj56vLP7JH767PmLl929V5e2rA2HES9laa4yZkEKDSMnnISrygBTmYRxtjhv8+NrMFaU+rNbVpAqNtOiEJy5YE27h4nHydxWjIOnlWuwXUzFppM08bR7QPqEEEopbgU9PSFBnJ0NjukA0zYV4mC4n7y9ux8uL6Z7HZHkJa8VaMcls3ZCSeVSz4wTXEITJ7WF0GLBZjAJUjMFNvWreRp8GJwcF6UJTzu8cv+s8ExZu1RZIBVzc/t3rjU3WvjWMbaw2yomtSsGqRe6qh1ovm5f1BK7Ercrw7kwwJ1cBsG4EWECzOfMMO7CYuM40XDDS6WYzn1iIG+wTxzcutW3J2aWpZ72SI80zSY6M7AFJT36L5rJeisa4KYJx/l9Afx/cXncpyf9d5/Cld6jdeyiN2gfHSGKTtEQfUAXaIQ4+oq+oe/oR3QUfYxG0XiNRp1fNa/RRkRffgIgHNZf</latexit>{ski }

<latexit sha1_base64="3qq+WosDGve3Y5UHeXvj5lTcL1Y=">AAACpnicdZHNbhMxEMed5aMlfKVw5GK1qhRCFNkVatNbBBdOKEikqZTdBK93NrXi9W5tb2lk7RNw5UV6LU/St8GbgEQgjGTpr//8RjOeiQspjCXkrhHcu//g4c7uo+bjJ0+fPW/tvTgzeak5jHguc30eMwNSKBhZYSWcFxpYFksYx4v3dX58BdqIXH22ywKijM2VSAVn1luz1mEy7eBQwSUOM2YvTOqGWlxVbbOYOTHtVF18Pe28nrUOSI8QQinFtaAnx8SL09P+Ee1jWqd8HAz2wzff7wbL4WyvIcIk52UGynLJjJlQUtjIMW0Fl1A1w9JAwfiCzWHipWIZmMit/lPhQ+8kOM21f8rilftnhWOZMcss9uRq6L9ztbnRwtWONqnZVjEpbdqPnFBFaUHxdfu0lNjmuF4ZToQGbuXSC8a18D/A/IJpxq1fbLPpt/eV51nGVOJCDUmFXWjh2q7Gnuh5HDnaJV1SVZvoXMMWlHTpv2gsy62oh6vKH+f3BfD/xdlRjx733n7yV3qH1rGLXqF91EYUnaAB+oCGaIQ4+oZu0C36EbSDj8EoGK/RoPGr5iXaiODLT9/Z1cw=</latexit>

d⇤ 6= Priv(ski⇤ , x
⇤)

Fig. 1. The high-level overview of our proof strategy for tight strong MUc-CMA security
of SIG. The black arrows illustrate language switches, and the blue arrows as well as
the blue brace show the applications of quasi-adaptive properties.

Now αρ0(ski) (out of the whole ski) suffices for generating σ.

Step 2. Restrict language from X to Lρ in the forgery. A’s forgery (i∗,m∗,
σ∗ = (x∗, d∗, π∗)) is successful if it is fresh and passes the validity check
VrfyHPS(vki∗ , x

∗, d∗) = 1∧VrfyNIZK(crs, τ∗, x∗, π∗) = 1 with τ∗ := H(vki∗ ,m
∗).

• By the verification soundness of PVQAHPS, the check of VrfyHPS(vki∗ , x
∗,

d∗) = 1 can be replaced by d∗ = Priv(ski∗ , x
∗).

• The USS property of QANIZK makes sure that x∗ ∈ Lρ in the forgery,
except with a negligible probability.

Strategy for corruptions in reductions. Note that in the above two steps,
when reducing to SMP or QANIZK, the reduction algorithms can choose all
users’ signing keys themselves. As for the verification soundness of PVQAHPS,
the reduction algorithm gets all users’ signing keys from its own challenger.
Therefore, all of them are able to handle A’s adaptive corruption queries.

Step 3. A’s forgery fails due to the 〈L0,L 〉-OT-extracting property.
Now all information about ski∗ that A learns from the signing queries is
limited to the projection key αρ0(ski∗) on language Lρ0 . On the other hand,
x∗ in A’s forgery is restricted in Lρ and A wins only if d∗ = Priv(ski∗ , x

∗).
By the 〈L0,L 〉-OT-extracting property of PVQAHPS, A hardly succeeds.

How we circumvent the seemingly paradoxical technical problem. Now
we conclude how we circumvent the paradoxical technical problem for achieving
tight strong MUc-CMA security of SIG: our proof goes with a constant number
of computationally indistinguishable changes to arrive at a final game where the
technical problem has turned into a statistical one.

(1) All the reduction algorithms to computational properties or problems possess
the signing keys of all users to handle adaptive corruption queries.

(2) After arriving at a statistical problem (〈L0,L 〉-OT-extracting property), it
is hard for the adversary to forge valid signature information-theoretically.

9

How we circumvent the existing impossibility results. Below we explain
how we circumvent the impossibility results on tight MUc security. Recall that
the impossibility results apply to a SIG scheme when the relation between the
verification key and the signing key is “unique” or “re-randomizable” [5], or the
signing algorithm is a deterministic one [32].

Firstly, the signing algorithm of our SIG is not a deterministic one since it
samples a random element x from Lρ with witness w.

Next, we show that the relation between the verification key vk = ν(sk) and
the signing key sk of our SIG is neither “unique” nor “re-randomizable”, by the
properties we defined for PV-QA-HPS.

– The relation is not “unique” due to the statistical 〈L0,L 〉-OT-extracting
property of PV-QA-HPS. Suppose, towards a contradiction, that the relation
is unique, then an (unbounded) adversary can uniquely determine sk from
ν(sk), and thus break the property easily by computing hv∗ = Λsk(x∗) for
any x∗ ∈ Lρ.

– The relation is not “re-randomizable” due to the verification soundness prop-
erty of PV-QA-HPS. Suppose, towards a contradiction, that the relation is
re-randomizable, then for any user i∗ ∈ [n], an adversary can resample an-
other sk′i∗ from vki∗ and ski∗ , such that vki∗ = ν(ski∗) = ν(sk′i∗). Then the
adversary picks x∗ from X uniformly, computes hv∗ = Λsk′

i∗
(x∗) using sk′i∗ ,

and outputs (i∗, x∗, hv∗). On the one hand, since vki∗ is also the verification
key of sk′i∗ , i.e., vki∗ = ν(sk′i∗), hv

∗ passes the verification w.r.t. vki∗ , i.e.,
VrfyHPS(vki∗ , x

∗, hv∗) = 1. On the other hand, we have sk′i∗ 6= ski∗ with
high probability (≥ 1/2, by the fact that the relation between vk and sk is
not unique, as shown above), thus hv∗ = Λsk′

i∗
(x∗) 6= Λski∗ (x∗) with high

probability. Consequently, the adversary breaks the verification soundness
with high probability.

Of course, being neither “unique” nor “re-randomizable” nor “deterministic”
is only a necessary condition for tight MUc security. To achieve tight MUc secu-
rity, the cooperation of PV-QA-HPS and QA-NIZK in the design of our SIG as
well as the nice properties of PV-QA-HPS play the most important roles.

2.2 Our PKE: Technical Overview

Our PKE is built upon the recent work [22], where the concept of QA-HPS
was proposed to construct PKE with tight leakage resilient security. That tight
security heavily relies on two statistical properties of QA-HPS: key-switching
and universal. Intuitively, 〈L ,L0〉-key-switching requires that conditioned on a
projection key αρ(sk) w.r.t. language Lρ ∈ L , the projection key αρ0(sk) w.r.t.
language Lρ0 ∈ L0 can be switched to αρ0(sk′) for an independent key sk′.

The PKE in [22] makes use of three QA-HPS schemes, one for masking the
message and the other two for proving the well-formedness of ciphertext. As
far as we understand, it is hard to prove the tight security of their PKE under
adaptive corruptions, since their proof strategy that increases the entropy in
secret keys gradually does not work in the presence of corruptions.

10

To support corruptions in the tight security, (1) we define new properties for
QA-HPS, (2) we use another approach: QA-HPS with new properties to mask
the message and QA-NIZK to prove the well-formedness of ciphertext, and (3)
we develop a new proof strategy to achieve tight MUMCc-CCA security.

QA-HPS with New Properties. We define two new properties for QA-HPS.

• Multi-language multi-fold SMP. This new type of SMP asks the compu-
tational indistinguishability of (xi,j ←$ Lρ)i∈[n],j∈[Q] and (xi,j ←$ L

ρ
(i)
0

)i∈[n],j∈[Q],

where Lρ ∈ L , and L
ρ
(1)
0
, ...,L

ρ
(n)
0
∈ L0 are n independent languages chosen

from L0. Jumping ahead, this new SMP enables us to switch the language
Lρ to different languages {L

ρ
(i)
0
}i∈[n] for different users in our tight proof.

• L0-Multi-key multi-extracting. It demands the pseudorandomness of
multiple hash values {Λski(xj)}i∈[n],j∈[Q] of multiple instances x1, ..., xQ ∈
Lρ0 under uniformly and independently chosen keys sk1, ..., skn.

Our PKE from QA-HPS with New Properties and QA-NIZK. The
secret and public keys of PKE are just the secret key sk and projection key
pk = αρ(sk) of QA-HPS for language Lρ. The ciphertext for plaintext m is

c := (x ←$ Lρ, d := Pub(pk, x, w) +m, π := Prove(crs, τ, x, w)), with τ := H(pk, d).

The decryption of c = (x, d, π) checks whether VrfyNIZK(crs, τ, x, π) = 1 and
recovers m := d− Priv(sk, x) after a successful check.

It is interesting to note that our PKE shares a similar design with our SIG.
However, their tight proofs are quite different.

In the MUMCc-CCA security model, adversary A adaptively issues encryption
queries (i∗,m0,m1) to encryption oracle and obtains challenge ciphertexts c∗ =
(x∗, d∗, π∗) that encrypts mβ under pki∗ , where β ←$ {0, 1} is the challenge bit.
It can issue corruption queries and get the corresponding secret keys, and issue
decryption queries (i, c = (x, d, π)) and obtain the decryption of c under ski.
Finally A outputs a guessing bit β′ and wins if β′ = β.

Our tight MUMCc-CCA security proof goes with five steps. See also Fig. 2 for
a graphical high-level overview.

Step 1. Switch language from Lρ to {L
ρ
(i∗)
0
}i∗∈[n] for encryption queries.

Through encryption queries (i∗,m0,m1), A obtains multiple challenge ci-
phertexts c∗ = (x∗, d∗, π∗).
• According to the perfect zero-knowledge of QANIZK, the computation of
π∗ by Prove can be replaced by Sim without any witness of x∗ ∈ Lρ.

• By the correctness of QAHPS, the computation of d∗ by Pub can be
replaced by d∗ := Priv(ski∗ , x

∗) +mβ , without any witness of x∗ ∈ Lρ.
• By the new multi-language multi-fold SMP, for each user i∗, the sam-

plings of all x∗ can be changed from x∗ ←$ Lρ to x∗ ←$ L
ρ
(i∗)
0

.

• For each user i∗, since x∗ ∈ L
ρ
(i∗)
0

with witness w∗, we have d∗ :=

Priv(ski∗ , x
∗) +mβ = Pub(α

ρ
(i∗)
0

(ski∗), x
∗, w∗) +mβ . Hence

11

Step 5: Multi-Key
Multi-Extracting

Step 3:
Key switching

Decryption Queries

Encryption Queries

Public Keys

Plaintexts are
hidden by

<latexit sha1_base64="UBic+B0a7iK8g4U/Optcf8BFZWA=">AAACOXicdVBNSwMxFMzW7/pV9egl+AF6KYmIVkEQvXhUsLbQLUs2zXZDs7shyQpl2f/ir/DiUfCqV4/exKvo2axVsKIDD4Z58xje+FJwbRB6dEojo2PjE5NT5emZ2bn5ysLihU5SRVmdJiJRTZ9oJnjM6oYbwZpSMRL5gjX83nGxb1wypXkSn5u+ZO2IdGMecEqMlbzKvptBN9SSUJZhaXIoex6HB9AlQobEy1wVJvmGtuLmsM/NvcoqqiKEMMawIHh3B1myt1fbwjWIi5XF6uHa2/Xt5fT7qVd5djsJTSMWGyqI1i2MpGlnRBlOBcvLbqqZDeiRLmtZGpOI6Xb2+WMO163SgUGi7MQGfqo/LzISad2PfOuMiAn1710hDkVkhaJ0oP+6aKUmqLUzHsvUsJgO4oNUQJPAokbY4YpRI/qWEKq4/QDSkChCjS27bKv5/h/+Ty62qninun1mOzoCA0yCZbACNgAGu+AQnIBTUAcUXIE7cA8enBvnyXl2XgbWkvN1swSG4Lx+AMH5sjU=</latexit>

{pki = ↵⇢(ski)}

Step 1:
Multi-language
multi-fold SMP Step 4: SMP

<latexit sha1_base64="8V8IzPa39LSan3FFwUosArnDHOo=">AAACNnicdVC7SgNBFJ2NrxhfUUubwQeoRdgRMUkXtLFUMFHIxmV2MpsdMvtgZjYQhv0Uf0PsbfUDbOxESxutnU0UVPTAhcO553K4x0s4k8q2H6zCxOTU9ExxtjQ3v7C4VF5eack4FYQ2ScxjceFhSTmLaFMxxelFIigOPU7Pvf5Rvj8fUCFZHJ2pYUI7Ie5FzGcEKyO55aqjoRPIBBOqUaIy6GCeBNjVjgjibFv2Xc0ud7OdX6bMLW/YFdu2EUIwJ6h6YBtSr9f2UA2ifGWw0dh8u74dzL2fuOUXpxuTNKSRIhxL2UZ2ojoaC8UIp1nJSSU1AX3co21DIxxS2dGjBzO4ZZQu9GNhJlJwpH6/0DiUchh6xhliFcjfu1z8EaFzRUhf/nXRTpVf62gWJamiERnH+ymHKoZ5h7DLBCWKDw3BRDDzASQBFpgo03TJVPP1P/yftPYq6KCyf2o6OgRjFMEaWAfbAIEqaIBjcAKagIArcAvuwL11Yz1aT9bz2FqwPm9WwQ9Yrx8lh7F3</latexit>

{↵⇢(ski⇤)}

<latexit sha1_base64="wp/qEbF4QtBHYzThyJo1NiiWDYE=">AAACHHicdVDLSgMxFM34rPU16lKEYBHqpiQitt0V3bisYKvQqUMmzdjQzIMkI5RhVn6HbsVt/QVxI24F/8Cdv2DGKqjogQuHc+7hco8XC640Qi/WxOTU9MxsYa44v7C4tGyvrLZVlEjKWjQSkTz1iGKCh6yluRbsNJaMBJ5gJ97gIPdPLphUPAqP9TBm3YCch9znlGgjufaGQ0TcJ27qyH7korO0jLezrKwGboqzbdcuoQpCCGMMc4Kre8iQer22g2sQ55ZBqVEtPdy8XY2arv3q9CKaBCzUVBClOhjFupsSqTkVLCs6iWIxoQNyzjqGhiRgqpt+vJHBLaP0oB9JM6GGH+r3REoCpYaBZzYDovvqt5eLP06kuSKVr/5KdBLt17opD+NEs5COz/uJgDqCeVOwxyWjWgwNIVRy8wGkfSIJ1abPoqnm63/4P2nvVPBeZffIdLQPxiiAdbAJygCDKmiAQ9AELUDBJbgFI3BnXVv31qP1NF6dsD4za+AHrOd3Rm6mLA==</latexit>

↵
⇢
(1)
0

(sk1)

<latexit sha1_base64="dH66LPyk4Zc6LaKNr5QY2N4MOLk=">AAACHHicdVDLSgMxFM34rPVVdSlCsAjtpiRF2roT3bhUsCq0dcikmTY0kxmSjFCGWfkduhW39RfEjbgV/AN3/oIZq6CiBy4czrmHyz1eJLg2CL04E5NT0zOzubn8/MLi0nJhZfVEh7GirElDEaozj2gmuGRNw41gZ5FiJPAEO/UG+5l/esGU5qE8NsOIdQLSk9znlBgruYWNNhFRn7hJW/VDF50nJVlO05IeuIlMy26hiCoIIYwxzAiu15AlOzuNKm5AnFkWxd168eHm7Wp06BZe292QxgGThgqidQujyHQSogyngqX5dqxZROiA9FjLUkkCpjvJxxsp3LJKF/qhsiMN/FC/JxISaD0MPLsZENPXv71M/HEiyRSlff1XohUbv9FJuIxiwyQdn/djAU0Is6ZglytGjRhaQqji9gNI+0QRamyfeVvN1//wf3JSreBaZfvIdrQHxsiBdbAJSgCDOtgFB+AQNAEFl+AWjMCdc+3cO4/O03h1wvnMrIEfcJ7fAQz6pqY=</latexit>

↵
⇢
(n)
0

(skn)
<latexit sha1_base64="76wYLpV62qHFBmMiSQtlyR6ZU1I=">AAACpXicdZHdihMxFMfT8WutX1299CZYZbtQSrLItnu36I03wgrb7kJnHDKZ0zY0kxmSjFpCXsB38Npb8U4fwHfwKXwFM62C1Xog8Od/foeTc05WSWEsId9b0ZWr167f2LvZvnX7zt17nf37E1PWmsOYl7LUlxkzIIWCsRVWwmWlgRWZhIts+bzJX7wBbUSpzu2qgqRgcyVmgjMbrLTzOGayWrDUxXpRpuS166lD73uxhtyZZeqUP/CHaadLBoQQSiluBB0ekyBOTkZHdIRpkwrRPR12v3388eHzWbrfEnFe8roAZblkxkwpqWzimLaCS/DtuDZQMb5kc5gGqVgBJnHrcTx+Epwcz0odnrJ47f5Z4VhhzKrIAlkwuzB/5xpzq4VrHG1mZlfFtLazUeKEqmoLim/az2qJbYmbjeFcaOBWroJgXIswAeYLphm3Ya/tdqzgLS+LgqncNWvz2MUW3tn1t6d6niWO9kmfeL+NzjXsQEmf/otmst6JBtj7cJzfF8D/F5OjAT0ePH0VrvQMbWIPPUSPUA9RNESn6AU6Q2PE0Xv0CX1BX6OD6GV0Hk02aNT6VfMAbUWU/gRv0ted</latexit>

↵
⇢
(n)
0

(sk0n)

<latexit sha1_base64="GDSk+omIDy56kLBSi3/sbKfw+7E=">AAACpXicdZHdihMxFMfT8WutX1299CZYZbtQSrLItnu36I03wgrb7kJnHDKZ0zY0kxmSjFpCXsB38Npb8U4fwHfwKXwFM62C1Xog8Od/foeTc05WSWEsId9b0ZWr167f2LvZvnX7zt17nf37E1PWmsOYl7LUlxkzIIWCsRVWwmWlgRWZhIts+bzJX7wBbUSpzu2qgqRgcyVmgjMbrLTzOGayWrDUxXpRpuS169FD73uxhtyZZeqoP/CHaadLBoQQSiluBB0ekyBOTkZHdIRpkwrRPR12v3388eHzWbrfEnFe8roAZblkxkwpqWzimLaCS/DtuDZQMb5kc5gGqVgBJnHrcTx+Epwcz0odnrJ47f5Z4VhhzKrIAlkwuzB/5xpzq4VrHG1mZlfFtLazUeKEqmoLim/az2qJbYmbjeFcaOBWroJgXIswAeYLphm3Ya/tdqzgLS+LgqncNWvz2MUW3tn1t6d6niWO9kmfeL+NzjXsQEmf/otmst6JBtj7cJzfF8D/F5OjAT0ePH0VrvQMbWIPPUSPUA9RNESn6AU6Q2PE0Xv0CX1BX6OD6GV0Hk02aNT6VfMAbUWU/gRpLdcj</latexit>

↵
⇢
(1)
0

(sk01)

<latexit sha1_base64="dECWKua70rxhtpT1EM6jYHYWnOs=">AAACwnicdZFLbxMxEMed5VW2PFI4crEoiIKiyK5Qm97K48CxSKStlF1WXu9s1sT7wPYWIuPPwzfgC3DmCuKDwBlvAhIpYSRLf/3nNxrPTNpIoQ0h33vBhYuXLl/ZuBpuXrt+42Z/69axrlvFYcxrWavTlGmQooKxEUbCaaOAlamEk3T2rMufnIHSoq5emXkDccmmlcgFZ8ZbSf9JZHFU6IZxsLQxDkdMNgVLbKSKOiFuJ1KQWT1LrHj9yD1wD8/RLkz622RICKGU4k7Q/T3ixcHBaJeOMO1SPrYP7/349Pls8+dRstUTUVbztoTKcMm0nlDSmNgyZQSX4MKo1eBbzNgUJl5WrAQd28WsDt/3TobzWvlXGbxw/66wrNR6XqaeLJkp9PlcZ660sJ2jdK7XVUxak49iK6qmNVDxZfu8ldjUuFsnzoQCbuTcC8aV8BNgXjDFuPFLD8Oogne8LktWZbbbpMM2MvDeLL49UdM0tnRABsS5VXSqYA1KBvRfNJXtWtTDzvnj/LkA/r843h3SveHjl/5KT9EyNtAddBftIIr20SF6gY7QGHH0EX1BX9G34HnwJngb6CUa9H7X3EYrEXz4Bc9I4yU=</latexit>

{↵⇢0(sk
0
i⇤)}

<latexit sha1_base64="N3iKY1HL7Gm5xqgtaotxm1ocdY8=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu734mdNkw2GZEy6wOsivhLDw4Ph729/v/44yrZ7PCk0qyUoxwS1dhqTyqWeGseZgKaf1BYqyi7oDKZBKirBpr4bpsG7wSlwqU14yuHO/T/DU2ntQuaBbFu21/9ac6WEbx1jS7spY1q78lXquapqB4oty5e1wE7jdl+44AaYE4sgKDM8TIDZnBrKXNhqv58o+My0lFQVYWtQNNgnDi5d1/bUzPLUxyMyIk2zis4MbEDJKF5Hc1FvRAPcHSe+fop1cbI/jl+OX3wIV3qNlrGFnqIdtIdidIAO0Vt0hCaIoS/oO/qJfkW70bvoY3S8RKPeVc4TtBJR+g+wb9X3</latexit>

x⇤ 2 L
⇢
(1)
0

<latexit sha1_base64="srrRtSIDihC82Ew94D3XHZGdvgA=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu731LOmyQZDMiZd4HURX4nh4cHw97e/X38cZds9nhSa1RKUY4JaO41J5VJPjeNMQNNPagsVZRd0BtMgFZVgU98N0+Dd4BS41CY85XDn/p/hqbR2IfNAti3b63+tuVLCt46xpd2UMa1d+Sr1XFW1A8WW5ctaYKdxuy9ccAPMiUUQlBkeJsBsTg1lLmy1308UfGZaSqqKsDUoGuwTB5eua3tqZnnq4xEZkaZZRWcGNqBkFK+juag3ogHujhNfP8W6ONkfxy/HLz6EK71Gy9hCT9EO2kMxOkCH6C06QhPE0Bf0Hf1Ev6Ld6F30MTpeolHvKucJWoko/Qcx4dY0</latexit>

x⇤ 2 L
⇢
(n)
0

<latexit sha1_base64="saOCg37AqPLhskTpKXOU0piivTY=">AAACnXicbZHdahNBFMcnWz9qqjatlwoOVkEkhFkR28tSEbwoUsE0hey6zM6eTYbOxzIz2zYMe+PTeKsXvoBP4YPotbNJL0yTAwN//vM7nK+8Etw6Qn53oo1bt+/c3bzX3br/4OF2b2f31OraMBgyLbQ5y6kFwRUMHXcCzioDVOYCRvn5u/Z/dAHGcq0+u1kFqaQTxUvOqAtW1nty9eUVTrjCiaRuyqjwx03mEzPVGWmy3h4ZkHngVRFfi73D539+/rrY+nuS7XR4UmhWS1COCWrtOCaVSz01jjMBTTepLVSUndMJjINUVIJN/XyMBr8IToFLbcJTDs/d/zM8ldbOZB7Itll78681l0r41jG2tOsyxrUrD1LPVVU7UGxRvqwFdhq3m8IFN8CcmAVBmeFhAsym1FDmwj673UTBJdNSUlWEfUHRYJ84uHLztsdmkqc+7pM+aZpldGJgDUr68Sqai3otGuCmPU588xSr4vT1IH47ePMpXOkILWITPUbP0EsUo310iD6gEzREDH1F39B39CN6Gr2PjqOPCzTqXOc8QksRjf4BsO3T5w==</latexit>

x⇤ 2 L⇢0

<latexit sha1_base64="EWQXBzKu6Lu0bt0MdSTmZ220Zh8=">AAACm3icbZHdahNBFMcn61dN1ab1ThEGqyASwq6I7WWxNyK9qGDaQnYNs7Nnk6HzscycbRuGBZ/GW73yBXwKH0SvnU16YZocGPjzn9/hfOWVFA7j+HcnunX7zt17G/e7mw8ePtrqbe+cOFNbDkNupLFnOXMghYYhCpRwVllgKpdwmp8ftv+nF2CdMPozzirIFJtoUQrOMFjj3pOrL69pKjRNFcMpZ9IfNWOf2qlpxr3deBDPg66K5FrsHrz48/PXxebf4/F2R6SF4bUCjVwy50ZJXGHmmUXBJTTdtHZQMX7OJjAKUjMFLvPzIRr6MjgFLY0NTyOdu/9neKacm6k8kG2r7uZfay6V8K1jXenWZYxqLPczL3RVI2i+KF/WkqKh7Z5oISxwlLMgGLciTED5lFnGMWyz2001XHKjFNNF2BYUDfUpwhXO2x7ZSZ75pB/346ZZRicW1qBxP1lFc1mvRQPctMdJbp5iVZy8GSTvBm8/hSu9J4vYIE/Jc/KKJGSPHJAP5JgMCSdfyTfynfyInkWH0cfoaIFGneucx2QpouE/I9jTRA==</latexit>

x⇤ 2 L⇢ …

Step 2: USS

<latexit sha1_base64="dEBMW6GHmoC5hvLTkxgI5XfJMWk=">AAACt3icdZHNbhMxEMed5aNlCzSFIxeLglSkKLIrlCa3Ci4ci0TaStnVyuudzVrxfmB7WyLLb8Jz8ABwhBfgQeCMNwGJlDCSpb/+8xuNZyZtpNCGkO+94NbtO3d3du+Fe/cfPNzvHzw613WrOEx5LWt1mTINUlQwNcJIuGwUsDKVcJEuXnf5iytQWtTVO7NsIC7ZvBK54Mx4K+mPIoujQjeMg6WNcThisilYYiNV1O5ILxIr3IsbiAuT/iEZEkIopbgT9GREvJhMxsd0jGmX8nF4+uzHpy9Xez/PkoOeiLKatyVUhkum9YySxsSWKSO4BBdGrQbfYsHmMPOyYiXo2K4GdPi5dzKc18q/yuCV+3eFZaXWyzL1ZMlMoW/mOnOjhe0cpXO9rWLWmnwcW1E1rYGKr9vnrcSmxt0OcSYUcCOXXjCuhJ8A84Ipxo3fdBhGFVzzuixZlfk1QuawjQx8MKtvz9Q8jS0dkAFxbhOdK9iCkgH9F01luxX1sHP+OH8ugP8vzo+HdDR8+dZf6RVaxy56gp6iI0TRCTpFb9AZmiKOPqLP6Cv6FkyCJMiDYo0Gvd81j9FGBO9/ATgi3uo=</latexit>

{↵⇢(ski)}
<latexit sha1_base64="gVIeRZ/pGanLtUnW1cs/jU0tKd0=">AAACpnicdZHNahsxEMfl7UfS7ZfTHnsRCYFAjZFCSZybaS49lRTqOOBdXK121haWtIukTWLEPkGveZFe2yfJ21Rrt1C37oDgz39+w2hmskoK6wi570QPHj56vLP7JH767PmLl929V5e2rA2HES9laa4yZkEKDSMnnISrygBTmYRxtjhv8+NrMFaU+rNbVpAqNtOiEJy5YE27h4nHydxWjIOnlWuwXUzFppM08bR7QPqEEEopbgU9PSFBnJ0NjukA0zYV4mC4n7y9ux8uL6Z7HZHkJa8VaMcls3ZCSeVSz4wTXEITJ7WF0GLBZjAJUjMFNvWreRp8GJwcF6UJTzu8cv+s8ExZu1RZIBVzc/t3rjU3WvjWMbaw2yomtSsGqRe6qh1ovm5f1BK7Ercrw7kwwJ1cBsG4EWECzOfMMO7CYuM40XDDS6WYzn1iIG+wTxzcutW3J2aWpZ72SI80zSY6M7AFJT36L5rJeisa4KYJx/l9Afx/cXncpyf9d5/Cld6jdeyiN2gfHSGKTtEQfUAXaIQ4+oq+oe/oR3QUfYxG0XiNRp1fNa/RRkRffgIgHNZf</latexit>{ski }

<latexit sha1_base64="bcQN4lhTZSNZmBD2oPv2SuUMAnc=">AAACknicbVFNbxMxEHWWrxK+EsqNi0WExCGKvBUCxIWWXjhwKBJpI2VXkdc7m1q1vSt7ljay9qdwLb+pP4Ub3k0PpMmTLD29eaN5nskqJR0ydtOL7t1/8PDR3uP+k6fPnr8YDF+eurK2AqaiVKWdZdyBkgamKFHBrLLAdabgLLs4butnv8A6WZqfuKog1XxpZCEFxyAtBsMrmkhDE83xXHDlZ81iMGIT1oFuk/iWjL78LTqcLIY9meSlqDUYFIo7N49ZhannFqVQ0PST2kHFxQVfwjxQwzW41HfZG/o2KDktShueQdqp/3d4rp1b6Sw424zubq0VN0b4VrGucLs65jUWn1IvTVUjGLEeX9SKYknb9dBcWhCoVoFwYWX4ARXn3HKBYYn9fmLgUpRac5P7xELeUJ8gXGEXe26XWerjMRuzptm0Li3ssLJxvG3NVL3TGsxNe5z47im2yenBJP4wef+DjQ6/kjX2yGvyhrwjMflIDsk3ckKmRJBL8ptckz/Rq+hzdBQdr61R77Znn2wg+v4P7jzOxQ==</latexit>

x 2 X
<latexit sha1_base64="qsXqSeTqICDZoPTRiMf+KAkHBYE=">AAACmXicbZHLbhMxFIad4dKScknLBqkbi4LEIopmUNWybGFTIRZFkLZSZhR5PGcSq76M7DOlkTU8DVtY8gI8BQ8CazxJF6TJkSz9+v0dnVteSeEwjn93ojt3793f2HzQ3Xr46PGT3vbOmTO15TDkRhp7kTMHUmgYokAJF5UFpnIJ5/nlu/b//AqsE0Z/xlkFmWITLUrBGQZr3Ht2TVOhaaoYTjmT/kMz9qmdmmbc24sH8TzoqkhuxN7Riz8/f11t/T0db3dEWhheK9DIJXNulMQVZp5ZFFxC001rBxXjl2wCoyA1U+AyPx+hoS+DU9DS2PA00rn7f4ZnyrmZygPZtupu/7XmUgnfOtaVbl3GqMbyTeaFrmoEzRfly1pSNLTdEi2EBY5yFgTjVoQJKJ8yyziGXXa7qYYv3CjFdBG2BUVDfYpwjfO2R3aSZz7px/24aZbRiYU1aNxPVtFc1mvRADftcZLbp1gVZ68HycFg/2O40luyiE2yS56TVyQhh+SInJBTMiScfCXfyHfyI9qNjqOT6P0CjTo3OU/JUkSf/gGrwNKo</latexit>

x 2 L⇢

<latexit sha1_base64="N3iKY1HL7Gm5xqgtaotxm1ocdY8=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu734mdNkw2GZEy6wOsivhLDw4Ph729/v/44yrZ7PCk0qyUoxwS1dhqTyqWeGseZgKaf1BYqyi7oDKZBKirBpr4bpsG7wSlwqU14yuHO/T/DU2ntQuaBbFu21/9ac6WEbx1jS7spY1q78lXquapqB4oty5e1wE7jdl+44AaYE4sgKDM8TIDZnBrKXNhqv58o+My0lFQVYWtQNNgnDi5d1/bUzPLUxyMyIk2zis4MbEDJKF5Hc1FvRAPcHSe+fop1cbI/jl+OX3wIV3qNlrGFnqIdtIdidIAO0Vt0hCaIoS/oO/qJfkW70bvoY3S8RKPeVc4TtBJR+g+wb9X3</latexit>

x⇤ 2 L
⇢
(1)
0

<latexit sha1_base64="srrRtSIDihC82Ew94D3XHZGdvgA=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu731LOmyQZDMiZd4HURX4nh4cHw97e/X38cZds9nhSa1RKUY4JaO41J5VJPjeNMQNNPagsVZRd0BtMgFZVgU98N0+Dd4BS41CY85XDn/p/hqbR2IfNAti3b63+tuVLCt46xpd2UMa1d+Sr1XFW1A8WW5ctaYKdxuy9ccAPMiUUQlBkeJsBsTg1lLmy1308UfGZaSqqKsDUoGuwTB5eua3tqZnnq4xEZkaZZRWcGNqBkFK+juag3ogHujhNfP8W6ONkfxy/HLz6EK71Gy9hCT9EO2kMxOkCH6C06QhPE0Bf0Hf1Ev6Ld6F30MTpeolHvKucJWoko/Qcx4dY0</latexit>

x⇤ 2 L
⇢
(n)
0

……

<latexit sha1_base64="dmgdT1WZZqfJvBtCEqExt4iLFiE=">AAACyXicdVFNbxMxEHWWrxI+msKRi0WLKFUU2RVK01sFl0pwKBJpK2W3K693NrGy693a3pJg+QL/h1/DhQOc+Q2c8CYgEQgjWXp6896MZyapcqENIV9awbXrN27e2rjdvnP33v3NztaDU13WisOQl3mpzhOmIRcShkaYHM4rBaxIcjhLpi+b/NkVKC1K+dbMK4gKNpYiE5wZT8Wd49DicKIrxsHSyjgcQlFN7E742tdI2Y6LbaggtXoaW3Gx5546tzu72Hu2asKhizvbpEcIoZTiBtCDPvHg8HCwTweYNikf20e0/+PDd9c9ibdaIkxLXhcgDc+Z1iNKKhNZpozgObh2WGvwLaZsDCMPJStAR3YxssNPPJPirFT+SYMX7J8Oywqt50XilQUzE/13riFXWtiGUTrT6xyj2mSDyApZ1QYkX7bP6hybEjdbxalQwE0+94BxJfwEmE+YYtz43bfboYR3vCwKJtPFOh22oYGZWXx7pMZJZGmXdIlzq9KxgjVS0qX/SpO8Xiv1Ytcc5/cF8P/B6X6P9nvP3/grvUDL2ECP0GO0iyg6QEfoGJ2gIeLoE/qMvqJvwavgMpgF75fSoPXL8xCtRPDxJ2s45Tk=</latexit>{⇤sk0
i⇤

(x⇤)}

Corruption Queries

<latexit sha1_base64="gVIeRZ/pGanLtUnW1cs/jU0tKd0=">AAACpnicdZHNahsxEMfl7UfS7ZfTHnsRCYFAjZFCSZybaS49lRTqOOBdXK121haWtIukTWLEPkGveZFe2yfJ21Rrt1C37oDgz39+w2hmskoK6wi570QPHj56vLP7JH767PmLl929V5e2rA2HES9laa4yZkEKDSMnnISrygBTmYRxtjhv8+NrMFaU+rNbVpAqNtOiEJy5YE27h4nHydxWjIOnlWuwXUzFppM08bR7QPqEEEopbgU9PSFBnJ0NjukA0zYV4mC4n7y9ux8uL6Z7HZHkJa8VaMcls3ZCSeVSz4wTXEITJ7WF0GLBZjAJUjMFNvWreRp8GJwcF6UJTzu8cv+s8ExZu1RZIBVzc/t3rjU3WvjWMbaw2yomtSsGqRe6qh1ovm5f1BK7Ercrw7kwwJ1cBsG4EWECzOfMMO7CYuM40XDDS6WYzn1iIG+wTxzcutW3J2aWpZ72SI80zSY6M7AFJT36L5rJeisa4KYJx/l9Afx/cXncpyf9d5/Cld6jdeyiN2gfHSGKTtEQfUAXaIQ4+oq+oe/oR3QUfYxG0XiNRp1fNa/RRkRffgIgHNZf</latexit>{ski }

Fig. 2. The high-level overview of our proof strategy for tight MUMCc-CCA security
of PKE. The black arrows illustrate language switches, and the blue arrows as well as
the blue brace show the applications of quasi-adaptive properties.

c∗ :=
(
x∗ ←$ L

ρ
(i∗)
0

, d∗ := Pub(α
ρ
(i∗)
0

(ski∗), x
∗, w∗) +mβ , π

∗ := Sim(crs, tdcrs, τ
∗, x∗)

)
.

Now {α
ρ
(i∗)
0

(ski∗)}i∗∈[n] (out of whole {ski∗}i∗∈[n]) suffices for generating c∗.

Step 2. Restrict language from X to Lρ for decryption queries. For query
(i, c = (x, d, π)), A obtains m := d− Priv(ski, x) if VrfyNIZK(crs, τ, x, π) = 1.
• The USS property of QANIZK makes sure that A obtains m only if
x ∈ Lρ in the decryption query, except with a negligible probability.

HenceA learns only {αρ(ski)}i∈[n] (out of {ski}i∈[n]) from decryption queries.

Step 3. Switch {ski∗}i∗∈[n] to new keys {sk′i∗}i∗∈[n] for encryption queries.
Note that to avoid trivial attacks, A is not allowed to corrupt those users
i∗ for which A issues encryption queries. Thus for such users i∗, after the
first two steps, A’s information about ski∗ can be summarized by αρ(ski∗)
(involved in public keys and decryption oracle) and α

ρ
(i∗)
0

(ski∗) (involved in

encryption oracle).
• According to the 〈L ,L0〉-key-switching property of QAHPS, α

ρ
(i∗)
0

(ski∗)

can be switched to α
ρ
(i∗)
0

(sk′i∗) to compute d∗ for encryption queries, with

sk′i∗ uniformly and independently chosen.
Though there are n switches, it does not lead to a loose security reduction,
since key-switching is a statistical property of QAHPS.
As a result, new independent secret keys {sk′i∗}i∗∈[n] are split from the orig-
inal {ski∗}i∗∈[n], and are only used for answering encryption queries.

Step 4. Switch languages {L
ρ
(i∗)
0
}i∗∈[n] to Lρ0 for encryption queries.

The argument is similar to step 1. As a result, the computation of d∗ :=
Pub(α

ρ
(i∗)
0

(sk′i∗), x
∗, w∗) + mβ is changed to d∗ := Pub(αρ0(sk′i∗), x

∗, w∗) +

mβ , which is equivalent to d∗ := Λsk′
i∗

(x∗) +mβ .

12

Step 5. Plaintexts mβ are perfectly hidden due to the L0-multi-key-
multi-extracting property. Note that the new keys {sk′i∗}i∗∈[n] are uni-
form and only used for computing d∗ := Λsk′

i∗
(x∗) +mβ .

• By the L0-multi-key-multi-extracting of QAHPS, the hash values Λsk′
i∗

(x∗)
are pseudorandom, so all the d∗’s can be replaced by random elements.

Hence d∗ perfectly hides mβ , and A has no advantage in guessing β.

Strategy for corruptions in reductions. Similar to the security reductions
for SIG, the reduction algorithms in steps 1, 2, 4, 5 can handle A’s adaptive
corruption queries by choosing all users’ secret keys themselves.

In particular, in step 5, new keys {sk′i∗}i∗∈[n] (for answering encryption
queries) have been split from {ski∗}i∗∈[n] (for answering adaptive corrup-
tions, decryption queries and generation of public keys). Thus the reduction
algorithm to the L0-multi-key-multi-extracting property of QAHPS is able
to implicitly set {sk′i∗}i∗∈[n] as the keys chosen by its own challenger, but
choose {ski∗}i∗∈[n] itself to deal with A’s adaptive corruption queries.

How we circumvent the seemingly paradoxical technical problem. Now
we conclude how we circumvent the paradoxical technical problem for achieving
tight MUMCc-CCA security of PKE: our proof goes with a constant number of
computationally indistinguishable changes, as well as n statistical changes, to
arrive at a final game where the challenge ciphertexts are no longer generated
by the users’ real secret keys.

(1) All the reduction algorithms to computational properties or problems possess
the secret keys of all users to handle adaptive corruption queries.

(2) With n statistical changes (〈L ,L0〉-key-switching), new and independent
secret keys (for generating challenge ciphertexts) have been split from real
secret keys (for corruption and other queries), ready for the final game.

(3) In the final game, the reduction algorithm (for L0-multi-key-multi-extracting)
can embed its challenge instances in the new secret keys to randomize chal-
lenge ciphertexts, and sample the real secret keys itself to handle adaptive
corruption queries from the adversary.

How we circumvent the existing impossibility results. Recall that the
impossibility results apply to a PKE scheme when the relation between the
public key and the secret key is “unique” or “re-randomizable” [5]. For reasons
similar to our SIG (as shown in Subsect. 2.1), we can show that the relation
between the public key pk = αρ(sk) and the secret key sk of our PKE is neither
“unique” nor “re-randomizable”, by the new properties we defined for QA-HPS.

2.3 Our SC, MAC and AE: Technical Overview

Our SC. There are a variety of constructions for building SignCryption (SC)
from SIG and PKE, encompassing “Encrypt-then-Sign”, “Sign-then-Encrypt”,
“Encrypt-and-Sign”, etc. [3, 9]. However, there is no SC available with tight

13

MUMCc-Priv&Auth (multi-user multi-challenge CCA privacy and authenticity
under corruptions) in the standard model. As far as we see, this is mainly due
to the missing of tightly strongly MUc secure SIG and tightly MUc secure PKE.

Our SIG and PKE constructions fill the blank and immediately lead to tightly
MUMCc-Priv&Auth secure SC.

Moreover, we can optimize the SC construction by taking advantage of the
similar structures and compatible underlying building blocks of our SIG and
PKE. In our optimized construction of SC, we integrate the ciphertext of PKE
and signature of SIG in a more efficient way of reusing the instance x ∈ Lρ and
the proof π of QANIZK, and the signcryption of message m is now given by

c := (x ←$ Lρ, d := Pub(pkr, x, w) +m, d̃ := Priv(s̃ks, x), π := Prove(crs, τ, x, w)),

where τ := H(ṽks, pkr, d, d̃), pkr is receiver’s public (encryption) key and s̃ks
sender’s secret (signing) key. The tight MUMCc-Priv&Auth security of our SC
can be proved similar to the tight MUc security of PKE and SIG.

Our MAC and AE. A SIG scheme is itself a MAC scheme and a SC scheme is
an AE scheme, when taking the secret key as the symmetric key. Therefore, our
SIG and SC constructions immediately lead to a strongly MUc-CMA secure MAC
and MUMCc-Priv&Auth secure AE. However, we can do more about MAC since
it does not need public verification. We provide a more efficient MAC following
our SIG construction but replacing the building block PVQAHPS by QAHPS
with new properties. Furthermore, the security of MAC can also be improved
to an even stronger notion, namely strong MUc-CMVA security, which considers
chosen verification attacks as well [15] in addition to strong MUc-CMA.

2.4 Instantiations from MDDH Assumptions and Leakage Resilience

Instantiations. We instantiate PV-QA-HPS and QA-HPS with new properties
from the MDDH assumptions. The associated language collections L and L0 are
independently generated linear subspaces [27]. The instantiations stem from the
DDH-based HPS proposed by Cramer and Shoup [13], and rely on pairing groups
to accomplish public verifiability of PV-QA-HPS, inspired by [27]. We provide
tight security proofs for the properties of PV-QA-HPS and QA-HPS based on
MDDH. Below we give a high-level overview of our PV-QA-HPS instantiation.
We rely on an asymmetric pairing group (G1,G2,GT , e) of prime order p with e :
G1×G2 −→ GT . We use implicit representation of group elements [17], namely,
using [·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups
G1,G2,GT .

• Let us start with the Cramer-Shoup HPS [13]. We describe the MDDH-
based generalized version with k ≥ 1 the MDDH parameter (k = 1 cor-
responds to the original DDH-based version). The hashing key is sk = K ∈
Z(k+1)×(2k+1)
p and the projection key is pk = [KA]1 on a linear subspace

language Lρ = Span([A]1) =
{

[c]1
∣∣∃ w ∈ Zkp, s.t. [c]1 = [Aw]1

}
with

14

ρ = [A]1 ∈ G(2k+1)×k
1 . For an instance [c]1 = [Aw]1 ∈ Lρ, the HPS hash

value is given by [hv]1 =

(private evaluation) K · [c]1 = [KA]1 ·w (public evaluation).

• To support public verification, we resort to pairing technique, inspired by
the Kiltz-Wee QA-NIZK [27]. We use vk = [K>B]2 as the verification key

with matrix [B]2 ∈ G(k+1)×k
2 defined by the MDDH assumption. Then, the

correctness of hash value [hv]1
?
= [Kc]1 can be verified publicly via pairing:

e([hv>]1, [B]2)
?
= e([c>]1, [K

>B]2) (= [(Kc)>B]T).

Verification soundness. This is tightly implied by the Kernal Matrix DH
(KerMDH) assumption [33], which in turn is implied by the MDDH assump-
tion [33]. If the adversary is able to produce an incorrect hash value [hv]1 6=
[Kc]1 but passes the public verification e([hv>]1, [B]2) = e([c>]1, [K

>B]2),
then [hv−Kc]1 is a non-zero element such that e([(hv−Kc)>]1, [B]2) = [0]T ,
resulting in a solution to the KerMDH problem defined by [B]2.

〈L0,L 〉-OT-extracting. This holds information-theoretically, where Lρ0 =

Span([A0]1) ∈ L0 and Lρ = Span([A]1) ∈ L with ρ0 = [A0]1 ∈ G(2k+1)×k
1

chosen independently of ρ = [A]1. Note that A0 is (2k+1) by k, B is (k+1)
by k, and sk = K is (k + 1) by (2k + 1) matrices. Given the projection key
pkρ0 = [KA0]1 w.r.t. Lρ0 and vk = [K>B]2, the hashing key sk = K reserves
entropy in its projection on the kernel of A0 and B. Then for any (non-zero)
instance [c]1 ∈ Lρ = Span([A]1), [c]1 is outside Lρ0 = Span([A0]1), thus
the reserved entropy of sk = K is transmitted to the hash value [Kc]1 so
that the adversary can hardly guess [Kc]1 correctly. This holds even if some
extra (bounded) information of sk = K is leaked to the adversary.

The instantiation of tag-based QA-NIZK is adapted from the QA-NIZK
scheme proposed by Abe et al. [1], which has tight USS based on MDDH.

According to our generic constructions, the instantiations of PV-QA-HPS,
QA-HPS and tag-based QA-NIZK result in concrete SIG, PKE, SC, MAC, AE
schemes with tight MUc security from MDDH in the standard model.

Leakage resilience. Note that HPS is intrinsically leakage resilient [34]. The
leakage resilience can naturally extend to QA-HPS [22], and also to PV-QA-HPS.
More precisely, we define leakage-resilient-〈L0,L 〉-OT-extracting property for
PV-QA-HPS (cf. Sect. 4) and adopt the leakage-resilient-〈L ,L0〉-key-switching
for QA-HPS defined in [22], which are met by our MDDH-based instantiations.
This shows that all our SIG, PKE, SC, MAC, AE schemes not only have tight
MUc security but also support key leakage, thus achieving tight MUc&l security.

The tight MUc&l security protects our schemes from key leakages on the un-
corrupted users besides adaptive corruptions. When used in the construction of
more advanced protocols, the applications of our tightly MUc&l secure primitives
may also improve the security of the protocols to be leakage resilient ones. For

15

instance, we can always make a drop-in replacement of the tightly MUc secure
SIG with our tightly MUc&l secure SIG in the construction of tightly secure au-
thenticated key exchange (AKE) protocols [4, 31, 21] where the signing key of
SIG serves as the long-term secret key of AKE, and the resulting AKEs readily
augment their tight security with leakage-resilience.

Moreover, our tightly MUMCc&l-CCA secure PKE scheme has essential im-
provements in terms of leakage resilience beyond corruptions, compared with
the tightly leakage-resilient CCA-secure PKE scheme in [22]. See Table 2. Con-
cretely, (1) our leakage rate is 1

3−o(1) while theirs is 1
18−o(1); (2) our multi-user

leakage model is stronger than theirs, since their model [22, Appendix A.1] does
not allow any leakage queries to any user after the very first encryption query to
any user, while our model allows leakage queries for any particular user until the
first encryption query to that user (cf. Def. 16 and Remark 3 in Subsect. 6.1).
Informally speaking, our PKE achieves the stronger multi-user leakage resilience
mainly due to the introduction of multi-language multi-fold SMP, which helps to
switch Lρ to different and independently chosen languages {L

ρ
(i)
0
} for different

users, thus the leakages w.r.t. different users can be handled independently.

2.5 Comparison with Existing Techniques for Tight MUc Security

Most existing works on tight MUc security [4, 20, 29, 14] designed their schemes in
a “double encryption/signing” fashion (the only exception is [21]), and the secret
key of their schemes consists of only one key (say sk0) out of two possible keys
(say sk0, sk1). For example, in [4, 29], their PKE encrypts plaintext by running
a “sub-encryption procedure” twice (possibly in a correlated way), resulting in
a ciphertext containing two “sub-ciphertexts” of the plaintext, and there are
two decryption ways according to which possible key (sk0 or sk1) is used. In
their tight MUc security proofs, the reduction algorithms always possess the real
secret keys (sk0) of all users, while embed the challenges in the other possible
keys (sk1). With this strategy, their reductions can handle adaptive corruptions.

In contrast, all our constructions are different from the “double encryp-
tion/signing” design. For example, it is hard to split the ciphertext of our PKE
to two “sub-ciphertexts”. So the proof strategy in [4, 20, 29, 14] does not apply.

We develop two different novel proof strategies for tight strong MUc-CMA
security of SIG and tight MUMCc-CCA security of PKE (cf. Fig. 1 and Fig. 2),
respectively. At a high level, we do not “double” the secret key by construction,
but “split” the key during our tight proofs, which can be summarized as first
“switch the languages for different oracles” then “apply quasi-adaptive prop-
erties” (such as 〈L0,L 〉-OT-extracting, 〈L ,L0〉-Key-switching, L0-Multi-key
multi-extracting).

3 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1λ as an implicit

16

input. Let ∅ denote the empty set. If x is defined by y or the value of y is
assigned to x, we write x := y. For n ∈ N, define [n] := {1, 2, ..., n}. For a set X ,
denote by x ←$ X the procedure of sampling x from X uniformly at random.
If D is distribution, x ←$ D means that x is sampled according to D. All our
algorithms are probabilistic unless stated otherwise. We use y ←$ A(x) to define
the random variable y obtained by executing algorithm A on input x. We use
y ∈ A(x) to indicate that y lies in the support of A(x). If A is deterministic
we write y ← A(x). We also use y ← A(x; r) to make explicit the random
coins r used in the probabilistic computation. Denote by T(A) the running time
of A. “PPT” abbreviates probabilistic polynomial-time. Denote by poly some
polynomial function and negl some negligible function. By Pri[·] we denote the
probability of a particular event occurring in game Gi.

The syntax of digital signature (SIG), public-key encryption (PKE) and the
definition of collision-resistant hash functions are presented in Appendix B.

3.1 Language Distribution

We formalize a collection of NP-languages as a language distribution.

Definition 1 (Language Distribution). A language distribution L is a
probability distribution that outputs a language parameter ρ as well as a trapdoor
td in polynomial time. The language parameter ρ publicly defines an NP-language
Lρ ⊆ Xρ. For simplicity, we assume that the universe Xρ is the same for all pa-
rameters ρ output by all distributions L , and denoted by X . The trapdoor td
is required to contain enough information for efficiently deciding whether an in-
stance x ∈ X is in Lρ. We require that there are PPT algorithms for sampling
x←$ Lρ uniformly together with a witness w and sampling x ←$ X uniformly.

A language distribution is associated with a subset membership problem
(SMP), which asks whether an element is uniformly chosen from Lρ or X . SMP
can be extended to multi-fold SMP by considering multiple elements.

Definition 2 (SMP). The subset membership problem (SMP) related to a
language distribution L is hard, if for any PPT adversary A, it holds that
Advsmp

L ,A(λ) := |Pr[A(ρ, x) = 1] − Pr[A(ρ, x′) = 1]| ≤ negl(λ), where the proba-
bility is over (ρ, td) ←$ L , x←$ Lρ and x′ ←$ X .

Definition 3 (Multi-fold SMP). The multi-fold SMP related to a language
distribution L is hard, if for any PPT adversary A and any polynomial Q =
poly(λ), it holds that Advmsmp

L ,A,Q(λ) := |Pr[A(ρ, {xj}j∈[Q]) = 1]−Pr[A(ρ, {x′j}j∈[Q])
= 1]| ≤ negl(λ), where (ρ, td) ←$ L , x1, ..., xQ ←$ Lρ and x′1, ..., x

′
Q ←$ X .

3.2 Quasi-Adaptive Hash Proof System

Hash proof system (HPS) was proposed by Cramer and Shoup [13], and turned
out to be a powerful tool in a wide range of applications. Han et al. [22] general-
ized HPS in a quasi-adaptive setting, termed as Quasi-Adaptive HPS (QA-HPS),
by allowing the projection key to depend on the specific language Lρ for which
hash values are computed. We give the definition of QA-HPS according to [22].

17

Definition 4 (QA-HPS). A quasi-adaptive hash proof system (QA-HPS) scheme
QAHPS = (SetupHPS, α(·),Pub,Priv) for a language distribution L consists of
four PPT algorithms:

– ppHPS ←$ SetupHPS: The setup algorithm outputs a public parameter ppHPS,
which implicitly defines a hashing key space SK, a hash value space HV,
and a family of hash functions Λ(·) : X −→ HV indexed by hashing keys
sk ∈ SK, where X is the universe for languages output by L .

We require that Λ(·) is efficiently computable and there are PPT algorithms
for sampling sk ←$ SK uniformly and sampling hv ←$ HV uniformly. We
require ppHPS to be an implicit input of other algorithms.

– pkρ ← αρ(sk): Taking as input a hashing key sk ∈ SK, the projection algo-
rithm indexed by language parameter ρ outputs a projection key pkρ.

– hv ← Pub(pkρ, x, w): Taking as input a projection key pkρ = αρ(sk) specified
by ρ, an instance x ∈ Lρ and a witness w for x ∈ Lρ, the public evaluation
algorithm outputs a hash value hv = Λsk(x) ∈ HV.

– hv ← Priv(sk, x): Taking as input a hashing key sk and an instance x ∈ X ,
the private evaluation algorithm outputs a hash value hv = Λsk(x) ∈ HV.

Correctness requires that for all (ρ, td) ∈ L , ppHPS ∈ SetupHPS, sk ∈ SK, x ∈ Lρ
with witness w, pkρ := αρ(sk), it holds that Pub(pkρ, x, w) =Λsk(x) =Priv(sk, x).

We can naturally define QA-HPS for two language distributions L and L0,
by requiring correctness to hold not only for language parameters ρ output by
L , but also for language parameters ρ0 output by L0.

We recall a statistical property of QA-HPS from [22], parameterized by κ ∈ N
and two language distributions L , L0, called κ-leakage-resilient(LR)-〈L ,L0〉-
key-switching. Informally speaking, it stipulates that in the presence of a pro-
jection key αρ(sk) w.r.t. a language parameter ρ output by L and given κ bits
leakage information about sk, the projection key αρ0(sk) w.r.t. another language
parameter ρ0 output by L0 can be switched to αρ0(sk′) for an independent sk′.

Definition 5 (κ-LR-〈L ,L0〉-Key-Switching of QA-HPS). Let κ = κ(λ) ∈
N, and let L and L0 be a pair of language distributions. A QA-HPS scheme
QAHPS for L supports κ-LR-〈L ,L0〉-key-switching, if for any (possibly un-

bounded) adversary A, it holds that ε
lr-〈L,L0〉-ks
QAHPS,A,κ (λ) :=

∣∣Pr[Exp
lr-〈L,L0〉-ks
QAHPS,A,κ ⇒

1]− 1
2

∣∣ ≤ negl(λ), where the experiment Exp
lr-〈L,L0〉-ks
QAHPS,A,κ is specified in Fig. 3.

Remark 1. In the experiment Exp
lr-〈L,L0〉-ks
QAHPS,A,κ shown in Fig. 3, A is allowed to

obtain at most κ bits leakage information about sk through oracle OLeak: each
time A submits a function L and obtains L(sk) which outputs at least one bit.

Note that A is not allowed to query OLeak anymore after receiving the chal-
lenge (ρ0, ...) from OChal (guaranteed by the variable chal). This is necessary to
exclude the trivial attacks that after seeing ρ0, A can set L(·) to be the first few
bits of αρ0(·), thus trivially distinguish αρ0(sk) from αρ0(sk′).

18

Exp
lr-〈L,L0〉-ks
QAHPS,A,κ :

ppHPS ←$ SetupHPS, (ρ, td) ←$ L , (ρ0, td0) ←$ L0

sk, sk′ ←$ SK
b ←$ {0, 1} �Challenge bit

chal := false

b′ ←$ AOLeak(·),OChal()(ppHPS, ρ, αρ(sk))

If b′ = b: Return 1; Else: Return 0

OLeak(L): �at most κ leakage bits in total

If chal = true: Return ⊥
Return L(sk)

OChal(): �one query

chal := true

If b = 0: Return (ρ0, αρ0(sk));

Else b = 1: Return (ρ0, αρ0(sk′))

Fig. 3. The κ-LR-〈L ,L0〉-Key-Switching experiment Exp
lr-〈L,L0〉-ks
QAHPS,A,κ for QAHPS.

3.3 Tag-based Quasi-Adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive Non-Interactive Zero-Knowledge argument (QA-NIZK) was pro-
posed by Jutla and Roy [26], where the common reference string (CRS) may
depend on the specific language Lρ for which proofs are generated. We present
the formal definition of QA-NIZK in its tag-based variant following [27].

Definition 6 (Tag-based QA-NIZK). A tag-based quasi-adaptive non-interactive
zero-knowledge scheme QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for
a language distribution L with tag space T consists of five PPT algorithms:

– ppNIZK ←$ SetupNIZK: The setup algorithm outputs a public parameter ppNIZK,
which serves as an implicit input of other algorithms.

– (crs, tdcrs) ←$ CRSGen(ρ): Taking as input a language parameter ρ, the CRS
generation algorithm outputs a common reference string (CRS) crs and a
simulation trapdoor tdcrs.

– π ←$ Prove(crs, τ, x, w): Taking as input crs, a tag τ ∈ T , x ∈ Lρ and a
witness w for x ∈ Lρ, the proof generation algorithm outputs a proof π.

– 0/1 ← VrfyNIZK(crs, τ, x, π): Taking as input crs, a tag τ ∈ T , x ∈ X and
a proof π, the deterministic verification algorithm outputs a bit indicating
whether π is a valid proof.

– π ←$ Sim(crs, tdcrs, τ, x): Taking as input crs, a simulation trapdoor tdcrs, a
tag τ ∈ T and x ∈ X , the simulation algorithm outputs a simulated proof π.

Perfect completeness requires that for all (ρ, td) ∈ L , ppNIZK ∈ SetupNIZK,
(crs, tdcrs) ∈ CRSGen(ρ), τ ∈ T , x ∈ Lρ with witness w, π ∈ Prove(crs, τ, x, w),
it holds that VrfyNIZK(crs, τ, x, π) = 1.

Perfect zero-knowledge requires that for all (ρ, td) ∈ L , ppNIZK ∈ SetupNIZK,
(crs, tdcrs) ∈ CRSGen(ρ), τ ∈ T , x ∈ Lρ with witness w, the outputs of Prove(crs,
τ, x, w) and Sim(crs, tdcrs, τ, x) are identically distributed, where the probability
is over the inner coin tosses of Prove and Sim.

Below we define Unbounded Simulation-Soundness (USS) according to [24, 1].

Definition 7 (USS of Tag-based QA-NIZK). A tag-based QA-NIZK scheme
QANIZK for L has unbounded simulation-soundness (USS), if for any PPT ad-
versary A, it holds that AdvussQANIZK,A(λ) := Pr[ExpussQANIZK,A ⇒ 1] ≤ negl(λ),
where the experiment ExpussQANIZK,A is defined in Fig. 4.

19

ExpussQANIZK,A:

(ρ, td) ←$ L . ppNIZK ←$ SetupNIZK. (crs, tdcrs) ←$ CRSGen(ρ)

QSim := ∅ �Record the simulation queries

(τ∗, x∗, π∗) ←$ AOSim(·,·)(ρ, td, ppNIZK, crs)

If (x∗ /∈ Lρ) ∧ ((τ∗, x∗, π∗) /∈ QSim) ∧ (VrfyNIZK(crs, τ∗, x∗, π∗) = 1): Return 1;

Else: Return 0

OSim(τ, x):

π ←$ Sim(crs, tdcrs, τ, x)

QSim := QSim ∪ {(τ, x, π)}
Return π

Fig. 4. The Unbounded Simulation-Soundness experiment ExpussQANIZK,A for QANIZK.

We note that the above USS definition for tag-based QA-NIZK is stronger
than the usual one in [27, 18] in two aspects.

– Firstly, A is given the trapdoor td of the language parameter ρ. Recall that
td contains enough information for efficiently deciding whether or not an
instance x is in Lρ. This is stronger than the usual USS, but weaker than
the USS for witness-sampleable distributions defined in [24, 1], where A es-
sentially samples (ρ, td) itself and provides (ρ, td) to the experiment.

– Secondly, A is allowed to output a forgery with a reused tag.

In [1], Abe et al. proposed a QA-NIZK scheme with tight USS for witness-
sampleable distributions based on the MDDH assumptions. As noted in [1, Sub-
sect. 3.2], their scheme can be easily extended to a tag-based QA-NIZK scheme
with tight USS, by using collision-resistant hash functions. For completeness, we
present the tag-based QA-NIZK scheme with tight USS in Appendix I.5.

4 Publicly-Verifiable QA-HPS and New Properties

In this section, we propose a new variant of QA-HPS, called Publicly-Verifiable
QA-HPS (PV-QA-HPS), which additionally enables public verification of hash
values with an extra verification key. Then we formalize a set of computational
and statistical properties for PV-QA-HPS and QA-HPS serving different appli-
cations in subsequent sections.

– For PV-QA-HPS, we define a computational verification soundness and sta-
tistical properties including leakage-resilient one-time-extracting (LR-OT-
extracting) and verification key diversity (VK-diversity). PV-QA-HPS will
be an important building block for SIG in Sect. 5 and these properties help
SIG to achieve tight multi-user security under corruptions and leakages.

– For QA-HPS, we define a computational multi-key-multi-extracting and a
statistical projection key diversity (PK-diversity). We also define a multi-
language multi-fold SMP for language distributions. QA-HPS will be an im-
portant building block for PKE in Sect. 6, and these new properties help
PKE to achieve tight multi-user security under corruptions and leakages.

Jumping ahead, we will give instantiations of PV-QA-HPS and QA-HPS
based on the matrix DDH (MDDH) assumptions in Sect. 7 and Appendix I.

Firstly, we present the syntax of PV-QA-HPS.

20

Definition 8 (PV-QA-HPS). A publicly-verifiable QA-HPS (PV-QA-HPS)
scheme PVQAHPS = (SetupHPS, α(·), ν,Pub,Priv,VrfyHPS) for a language distri-
bution L consists of six PPT algorithms:

– (SetupHPS, α(·),Pub,Priv) is a QA-HPS scheme for L as per Definition 4.

– ppHPS ←$ SetupHPS: It outputs a public parameter ppHPS, which also defines
a verification key space VK besides (SK,HV, Λ(·)) as per Definition 4.

– vk ← ν(sk): Taking as input a hashing key sk ∈ SK, the verification key
generation algorithm outputs a verification key vk ∈ VK.

– 0/1 ← VrfyHPS(vk, x, hv): Taking as input a verification key vk = ν(sk) ∈
VK, an instance x ∈ X and a hash value hv ∈ HV, the deterministic verifi-
cation algorithm outputs a bit indicating whether hv = Λsk(x) or not.

Verification completeness requires that for all (ρ, td) ∈ L , ppHPS ∈ SetupHPS,
sk ∈ SK, x ∈ X , vk := ν(sk) and hv := Λsk(x), it holds VrfyHPS(vk, x, hv) = 1.

Remark 2 (Relations between PV-QA-HPS and QA-NIZK). PV-QA-
HPS can be viewed as a special kind of Designated-Prover (DP) QA-NIZK [1],
but with different properties. The pkρ of PV-QA-HPS can be viewed as the prov-
ing key of DP-QA-NIZK, sk as the simulation trapdoor and vk as the common
reference string (used for verification). With pkρ, the prover can prove x ∈ Lρ
with the help of a witness w via hv ← Pub(pkρ, x, w), where the hash value hv
can be viewed as a proof for x ∈ Lρ . With vk, the verifier can check whether hv is
a valid proof for x ∈ Lρ via VrfyHPS(vk, x, hv). Moreover, with sk, the simulator
can generate a proof for x without knowing a witness via hv ← Priv(sk, x).

Verification completeness of PV-QA-HPS corresponds to the perfect com-
pleteness of DP-QA-NIZK. Correctness of (PV-)QA-HPS guarantees Pub(pkρ, x,
w) = Priv(sk, x) for all x ∈ Lρ with witness w, thus corresponding to the perfect
zero-knowledge of DP-QA-NIZK.

On the other hand, PV-QA-HPS has its own features. Firstly, it has a projec-
tion function αρ(·) (which is inherent to HPS) and a verification key generation
function ν(·). Secondly, a set of properties of PV-QA-HPS and QA-HPS are built
upon functions αρ(·) and/or ν(·). For instance, the κ-LR-〈L ,L0〉-Key-Switching
(cf. Def. 5 in Subsect. 3.2) is closely associated with αρ(·).

Next we define a computational verification soundness for PV-QA-HPS in
the setting of multiple keys. Intuitively, it requires that for any (sk, vk) among
the multiple key pairs, a PPT adversary cannot find a tuple (x∗ ∈ X , hv∗) such
that hv∗ 6= Λsk(x∗) but VrfyHPS(vk, x∗, hv∗) = 1, even given all the key pairs.

Definition 9 (Verification Soundness of PV-QA-HPS). A PV-QA-HPS
scheme PVQAHPS for L has verification soundness, if for any PPT adver-
sary A and any polynomial n = poly(λ), it holds that Advvrfy-sndPVQAHPS,A,n(λ) :=

Pr[Expvrfy-sndPVQAHPS,A,n ⇒ 1] ≤ negl(λ), where Expvrfy-sndPVQAHPS,A,n is defined in Fig. 5.

21

Expvrfy-sndPVQAHPS,A,n:

ppHPS ←$ SetupHPS. For i ∈ [n]: ski ←$ SK, vki := ν(ski)

(i∗ ∈ [n], x∗ ∈ X , hv∗) ←$ A(ppHPS, (ski, vki)i∈[n])

If (hv∗ 6= Λski∗ (x∗)) ∧ (VrfyHPS(vki∗ , x
∗, hv∗) = 1): Return 1; Else: Return 0

Fig. 5. Verification Soundness experiment Expvrfy-sndPVQAHPS,A,n for PVQAHPS.

We formalize a statistical extracting property for (PV-)QA-HPS, param-
eterized by κ ∈ N and two language distributions L0, L , called κ-leakage-
resilient(LR)-〈L0,L 〉-one-time(OT)-extracting. Informally speaking, it demands
high min-entropy of Λsk(x) for any x ∈ Lρ with ρ output by L , when sk is uni-
formly chosen from SK, even in the presence of a projection key αρ0(sk) w.r.t. ρ0
output by L0 and given κ bits leakage information about sk. For PV-QA-HPS,
it requires the property to hold even in the presence of the verification key ν(sk).

Definition 10 (κ-LR-〈L0,L 〉-OT-Extracting of QA-HPS and PV-QA-
HPS). Let κ = κ(λ) ∈ N, and let L0 and L be a pair of language distribu-
tions. A (PV-)QA-HPS scheme (PV)QAHPS for L supports κ-LR-〈L0,L 〉-OT-

extracting, if for any (unbounded) adversary A, it holds that ε
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ(λ) :=

Pr[Exp
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ ⇒ 1]≤ negl(λ), where Exp

lr-〈L0,L〉-otext
(PV)QAHPS,A,κ is defined in Fig. 6.

Exp
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ:

ppHPS ←$ SetupHPS. (ρ0, td0) ←$ L0, (ρ, td) ←$ L . sk ←$ SK
(x∗, hv∗) ←$ AOLeak(·)(ppHPS, ρ0, ρ, αρ0(sk), ν(sk))

If (x∗ ∈ Lρ) ∧ (hv∗ = Λsk(x∗)): Return 1; Else: Return 0

OLeak(L): �at most κ leakage

�bits in total

Return L(sk)

Fig. 6. The κ-LR-〈L0,L 〉-OT-Extracting experiment Exp
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ for QAHPS

(without gray part) and Publicly-Verifiable PVQAHPS (with gray part).

Han et al. [22] proposed a computational property for QA-HPS, called L0-
multi-extracting, which demands the pseudorandomness of Λsk(xj) for multiple
instances xj ∈ Lρ0 (j ∈ [Q]) with ρ0 output by L0, when sk is uniformly chosen
from SK. We extend this property in the multi-key setting as follows.

Definition 11 (L0-Multi-Key-Multi-Extracting of QA-HPS). A QA-
HPS scheme QAHPS for L supports L0-multi-key-multi-extracting, if for any
PPT A, any polynomial n = poly(λ) and any polynomial Q = poly(λ), it holds

AdvL0-mk-mext
QAHPS,A,n,Q(λ) := |Pr[A(ppHPS, ρ0, {xj ,

∣∣{Λski(xj)}i∈[n] }j∈[Q]) = 1]

−Pr[A(ppHPS, ρ0, {xj ,
∣∣{hvi,j}i∈[n] }j∈[Q]) = 1]| ≤ negl(λ),

where ppHPS ←$ SetupHPS, (ρ0, td0) ←$ L0, sk1, ..., skn ←$ SK, x1, ..., xQ ←$ Lρ0
and hv1,1, ..., hvn,Q ←$ HV.

22

We formalize two statistical properties, called projection key diversity (PK-
diversity) and verification key diversity (VK-diversity), for QA-HPS and PV-
QA-HPS respectively. Intuitively, PK-diversity (resp. VK-diversity) expresses
statistical collision resistance of projection keys (resp. verification keys) under
different hashing keys.

Definition 12 (PK-Diversity of QA-HPS). A QA-HPS scheme QAHPS

for L has projection key diversity (PK-diversity), if εpk-divQAHPS(λ) := Pr[αρ(sk) =

αρ(sk
′)] ≤ negl(λ), where (ρ, td)←$ L , ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Definition 13 (VK-Diversity of PV-QA-HPS). A PV-QA-HPS scheme
PVQAHPS for L has verification key diversity (VK-diversity), if εvk-divPVQAHPS(λ) :=

Pr[ν(sk) = ν(sk′)] ≤ negl(λ), where ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Finally, we define a multi-language multi-fold SMP for language distributions.

Definition 14 (Multi-Language Multi-fold SMP). The multi-language
multi-fold SMP related to L is hard, if for any PPT adversary A, any polynomial
n = poly(λ) and any polynomial Q = poly(λ), it holds that Advml-msmp

L ,A,n,Q(λ) :=

|Pr[A({ρ(i), {x(i)j }j∈[Q]}i∈[n]) = 1]−Pr[A({ρ(i), {x′(i)j }j∈[Q]}i∈[n]) = 1]| ≤ negl(λ),

where for each i ∈ [n], (ρ(i), td(i))←$ L , x
(i)
1 , ..., x

(i)
Q ←$ Lρ(i) , x′(i)1 , ..., x

′(i)
Q ←$ X .

Multi-language multi-fold SMP can generally be reduced to SMP with a
security loss of nQ with n the number of languages and Q the number of folds
per language. For some language distributions, such as those for linear subspaces
based on the matrix DDH (MDDH) assumptions (cf. Appendix I.2), the hardness
of multi-language multi-fold SMP can be tightly reduced to that of SMP.

5 SIG with Tight Strong MUc&l-CMA Security

In this section, we present digital signature (SIG) schemes with tight strong
MUc&l-CMA security, by using Publicly-Verifiable QA-HPS (PV-QA-NIZK) for-
malized in Sect. 4 as a central building block.

In Subsect. 5.1, we define the strong MUc&l-CMA security of SIG. Then in
Subsect. 5.2, we present our generic construction of SIG.

5.1 Definition of Strong MUc&l-CMA Security

In [4], Bader et al. defined existential unforgeability for digital signatures under
chosen-message attacks (CMA) in a Multi-User setting with adaptive corruptions
of secret keys (MUc-CMA). Here we extend it to MUc&l-CMA, which considers
existential unforgeability under not only chosen-message attacks and adaptive
corruptions but also key leakages in the multi-user setting. Moreover, strong
MUc&l-CMA requires that the adversary cannot even forge a new signature for
a message that it has ever queried. Below we present the definition of strong
MUc&l-CMA and the non-strong version can be easily adapted accordingly.

23

Definition 15 (Strong MUc&l-CMA Security for SIG). Let κ = κ(λ) ∈ N.
A signature scheme SIG = (SetupSIG,Gen,Sign,VrfySIG) is strongly MUc&l-CMA
secure under κ bits leakage per user, if for any PPT adversary A and any poly-
nomial n, it holds that Advs-cma-c&l

SIG,A,n,κ(λ) := Pr[Exps-cma-c&l
SIG,A,n,κ ⇒ 1] ≤ negl(λ), where

the experiment Exps-cma-c&l
SIG,A,n,κ is defined in Fig. 7.

Exps-cma-c&l
SIG,A,n,κ:

ppSIG ←$ SetupSIG
For i ∈ [n]: (vki, ski) ←$ Gen(ppSIG)

QSign := ∅ �Record the signing queries

QCor := ∅ �Record the corruption queries

(i∗ ∈ [n],m∗, σ∗) ←$ AOSign(·,·),OCor(·),OLeak(·,·)(ppSIG, {vki}i∈[n])

If (i∗ /∈ QCor) ∧ ((i∗,m∗, σ∗) /∈ QSign) ∧ (VrfySIG(vki∗ ,m
∗, σ∗) = 1):

Return 1;

Else: Return 0

OSign(i,m):

σ ←$ Sign(ski,m)

QSign := QSign ∪ {(i,m, σ)}
Return σ

OCor(i):

QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

Return L(ski)

Fig. 7. The strong MUc&l-CMA security experiment Exps-cma-c&l
SIG,A,n,κ for SIG.

5.2 Generic Construction of SIG from PV-QA-HPS and QA-NIZK

We present a generic construction of strongly MUc&l-CMA secure SIG. Let M
be an arbitrary message space. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.
• A publicly-verifiable PVQAHPS = (SetupHPS, α(·), ν,Pub,Priv,VrfyHPS) for

both L and L0, with hashing key space SK and verification key space VK.
• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,

whose tag space is T .
• A family of collision-resistant hash functions H = {H : VK ×M −→ T }.

Our generic construction of SIG= (SetupSIG,Gen,Sign,VrfySIG) is shown in Fig. 8.
In Appendix E.1, we also discuss some alternative ways of setup.

ppSIG ←$ SetupSIG:

(ρ, td)←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs)←$ CRSGen(ρ).
H ←$ H.
Return ppSIG :=

(ρ, ppHPS, ppNIZK, crs, H).

(vk, sk)←$ Gen(ppSIG):

sk ←$ SK, vk := ν(sk).
Return (vk, sk).

σ ←$ Sign(sk,m):

x ←$ Lρ with witness w.
d := Priv(sk, x).
vk := ν(sk).
τ := H(vk,m) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return σ := (x, d, π).

0/1← VrfySIG(vk,m, σ):

Parse σ = (x, d, π).
τ := H(vk,m) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1
∧ VrfyHPS(vk, x, d) = 1:

Return 1.
Else: Return 0.

Fig. 8. Generic construction of SIG = (SetupSIG,Gen, Sign,VrfySIG) from PVQAHPS,
tag-based QANIZK and H. The message space is M.

24

Correctness of SIG follows directly from the verification completeness of
PVQAHPS and the perfect completeness of QANIZK.

Next, we show its strong MUc&l-CMA security. We stress that the projection
key pkρ = αρ(sk) is not published as part of SIG’s verification key, and this
is crucial to the security of SIG since otherwise one can publicly generate valid
signatures for any message via the Pub algorithm of PVQAHPS by using pkρ.

Theorem 1 (Strong MUc&l-CMA Security of SIG). Assume that (i) L
and L0 have hard SMPs, (ii) PVQAHPS is a publicly-verifiable QA-HPS for
both L and L0, having verification soundness, VK-diversity, and supporting κ-
LR-〈L0,L 〉-OT-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , sat-
isfying both perfect zero-knowledge and unbounded simulation-soundness, (iv)
H is collision-resistant. Then the proposed SIG scheme in Fig. 8 is strongly
MUc&l-CMA secure under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qs times of OSign queries, there exist adversaries B1, · · · ,B6, such that
T(B1) ≈ · · · ≈ T(B5) ≈ T(A) + (n+Qs) · poly(λ), with poly(λ) independent of
T(A), and

Advs-cma-c&l
SIG,A,n,κ(λ) ≤ Advvrfy-sndPVQAHPS,B1,n

(λ) + AdvcrH,B2
(λ) + Advmsmp

L ,B3,Qs
(λ) + Advmsmp

L0,B4,Qs
(λ)

+ AdvussQANIZK,B5
(λ) + n(n−1)

2 · εvk-divPVQAHPS(λ) + n · εlr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ).

We stress that only factors of computational reductions count when evaluat-
ing tight security reductions, while statistical losses are not taken into account
[4, 18, 19, 20, 29, 14, 21]. See Remark 4 in Appendix C for more discussions.

We refer to Subsect. 2.1 and Fig. 1 therein for an overview of the proof of
Theorem 1. The formal proof is postponed to Appendix C. Here we provide the
game sequence G0–G6 used in the formal proof in Table 3.

6 PKE with Tight MUMCc&l-CCA Security

In this section, we present public-key encryption (PKE) schemes with tight
MUMCc&l-CCA security, by using QA-HPS with new properties formalized in
Sect. 4 as a central building block.

In Subsect. 6.1, we define the MUMCc&l-CCA security of PKE. Then in Sub-
sect. 6.2, we present our generic construction of PKE.

6.1 Definition of MUMCc&l-CCA Security

In [29], Lee et al. defined indistinguishability for PKE schemes under chosen-
ciphertext attacks (CCA) in a Multi-User Multi-Challenge setting with adaptive
corruptions of secret keys (which was originally called MUC+ in [29] and is de-
noted by MUMCc-CCA in this paper). Here we extend it to MUMCc&l-CCA, which
also takes key leakages into account. Below we present the formal definition.

25

Table 3. Brief Description of Games G0-G6 for the strong MUc&l-CMA security proof
of SIG. Here column “OSign” suggests how a signature σ = (x, d, π) is generated: sub-
column “x from” refers to the language from which x is chosen; sub-column “d using”
indicates the keys that are used in the computation of d; sub-column “π via” indicates
the way (Prove or Sim) that π is computed. Columns “OCor” and “OLeak” show the
output returned by OCor and OLeak respectively. Column “Win’s additional check for
forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗))” describes the additional check that A’s forgery wins,
besides the routine check i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) =
1 ∧ VrfyHPS(vki∗ , x

∗, d∗) = 1, where τ∗ := H(vki∗ ,m
∗).

OSign(i,m)
OCor(i) OLeak(i, L)

Win’s additional check for forgery

(i∗,m∗, σ∗ = (x∗, d∗, π∗))
Remark/Assumption

x from d using π via

G0 Lρ ski Prove ski L(ski) The strong MUc&l-CMA experiment

G1 Lρ ski Prove ski L(ski) d∗ = Priv(ski∗ , x
∗) By verification soundness of PVQAHPS

G2 Lρ ski Prove ski L(ski) d∗ = Priv(ski∗ , x
∗)

Abort if verification keys collide:

by VK-diversity of PVQAHPS

G3 Lρ ski Sim ski L(ski) d∗ = Priv(ski∗ , x
∗) By perfect zero-knowledge of QANIZK

G4 Lρ ski Sim ski L(ski) d∗ = Priv(ski∗ , x
∗), (τ∗, x∗, π∗) /∈ QSim By collision-resistance of H

G5 Lρ0 ski Sim ski L(ski) d∗ = Priv(ski∗ , x
∗), (τ∗, x∗, π∗) /∈ QSim By multi-fold SMP of L and L0

G6 Lρ0 ski Sim ski L(ski)
d∗ = Priv(ski∗ , x

∗), (τ∗, x∗, π∗) /∈ QSim, By USS of QANIZK

x∗ ∈ Lρ Pr[Win] = negl in G6: by κ-LR-〈L0,L 〉-
OT-extracting of PVQAHPS

Definition 16 (MUMCc&l-CCA Security for PKE). Let κ = κ(λ) ∈ N. A
PKE scheme PKE = (SetupPKE,Gen,Enc,Dec) is MUMCc&l-CCA secure under
κ bits leakage per user, if for any PPT adversary A and any polynomial n, it
holds that Advcca-c&l

PKE,A,n,κ(λ) :=
∣∣Pr[Expcca-c&l

PKE,A,n,κ ⇒ 1] − 1
2

∣∣ ≤ negl(λ), where the

experiment Expcca-c&l
PKE,A,n,κ is defined in Fig. 9.

Expcca-c&l
PKE,A,n,κ:

ppPKE ←$ SetupPKE
For i ∈ [n]: (pki, ski) ←$ Gen(ppPKE)

QEnc := ∅ �Record the encryption queries

QCor := ∅ �Record the corruption queries

For i ∈ [n]: chali := false

β ←$ {0, 1} �Single challenge bit

β′ ←$ AOEnc(·,·,·),ODec(·,·),OCor(·),OLeak(·,·)(ppPKE, {pki}i∈[n])

If β′ = β: Return 1; Else: Return 0

OEnc(i∗,m0,m1):

If |m0| 6= |m1|: Return ⊥
If i∗ ∈ QCor: Return ⊥
chali∗ := true

c∗ ←$ Enc(pki∗ ,mβ)

QEnc := QEnc ∪ {(i∗, c∗)}
Return c∗

ODec(i, c):

If (i, c) ∈ QEnc: Return ⊥
Return Dec(ski, c)

OCor(i):

If (i, ·) ∈ QEnc: Return ⊥
QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

If chali = true: Return ⊥
Return L(ski)

Fig. 9. The MUMCc&l-CCA security experiment Expcca-c&l
PKE,A,n,κ for PKE.

Remark 3. In the experiment Expcca-c&l
PKE,A,n,κ, to avoid trivial attacks, adversary

A is not allowed to submit a same user index i to both OEnc and OCor.
Moreover, for any user i ∈ [n], A is not allowed to submit i to OLeak anymore

after receiving a challenge ciphertext c∗ w.r.t. user i (guaranteed by the variable
chali in Expcca-c&l

PKE,A,n,κ), since otherwise A could trivially win by setting L(·) to
be the first few bits of Dec(·, c∗) and submitting (i, L) to OLeak. We note this is
stronger than the multi-user leakage model defined in [22, Appendix A.1], where

26

A is not allowed to submit any leakage query w.r.t any user after receiving the
very first challenge ciphertext (no matter w.r.t. which user).

6.2 Generic Construction of PKE from QA-HPS and QA-NIZK

In this subsection, we present a generic construction of MUMCc&l-CCA secure
PKE. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.
• A QAHPS = (SetupHPS, α(·),Pub,Priv) for both L and L0, whose hashing

key space is SK, projection key space is PK and hash value space is HV. We
require HV to be an (additive) group. We stress that QAHPS is not required
to be publicly-verifiable.

• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,
whose tag space is T .

• A family of collision-resistant hash functions H = {H : PK ×HV −→ T }.
Our generic construction of PKE = (SetupPKE,Gen,Enc,Dec) is shown in Fig. 10.

ppPKE ←$ SetupPKE:

(ρ, td)←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs)←$ CRSGen(ρ).
H ←$ H.
Return ppPKE :=

(ρ, ppHPS, ppNIZK, crs, H).

(pk, sk) ←$ Gen(ppPKE):

sk ←$ SK, pk := αρ(sk).
Return (pk, sk).

c ←$ Enc(pk,m ∈ HV):

x ←$ Lρ with witness w.
d := Pub(pk, x, w) +m ∈ HV.
τ := H(pk, d) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return c := (x, d, π).

m/⊥ ← Dec(sk, c):

Parse c = (x, d, π).
pk := αρ(sk).
τ := H(pk, d) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1:

m := d− Priv(sk, x) ∈ HV.
Return m.

Else: Return ⊥.

Fig. 10. Generic construction of PKE = (SetupPKE,Gen,Enc,Dec) from QAHPS, tag-
based QANIZK and H. The message space is M := HV.

Correctness of PKE follows directly from the correctness of QAHPS and the
perfect completeness of QANIZK. Next, we show its MUMCc&l-CCA security.

Theorem 2 (MUMCc&l-CCA Security of PKE). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, and supporting both κ-LR-〈L ,L0〉-key-switching and L0-multi-key-
multi-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , satisfying both
perfect zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 10 is MUMCc&l-CCA secure
under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OEnc queries and Qd times of ODec queries, there exist ad-
versaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (n+Qe +Qd) ·
poly(λ), with poly(λ) independent of T(A), and

Advcca-c&l
PKE,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qe

(λ) + 2 · Advml-msmp
L0,B3,n,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

QAHPS,B6,n,Qe
(λ) + n(n−1)

2 · εpk-divQAHPS(λ) + 2n · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

27

We refer to Subsect. 2.2 and Fig. 2 therein for an overview of the proof of
Theorem 2. The formal proof is postponed to Appendix D. Here we provide the
game sequence G0–G8 used in the formal proof in Table 4.

Table 4. Brief Description of Games G0-G8 for the MUMCc&l-CCA security proof of
PKE. Here column “OEnc” suggests how a challenge ciphertext c∗ = (x∗, d∗, π∗) is
generated: sub-column “x∗ from” refers to the language from which x∗ is chosen; sub-
column “d∗ using” indicates the keys that are used in the computation of d∗; sub-
column “π∗ via” indicates the way (Prove or Sim) that π∗ is computed. Column “ODec’s
additional check” describes the additional check made by ODec upon a decryption query
(i, c = (x, d, π)), besides the routine check (i, c) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1,
where τ := H(pki, d); ODec outputs ⊥ if the check fails. Columns “OCor” and “OLeak”
show the output returned by OCor and OLeak respectively. Recall that it is not allowed
to query OEnc and OCor for a same user index i.

OEnc(i∗,m0,m1) ODec(i, c)’s

additional check
OCor(i) OLeak(i, L) Remark/Assumption

x∗ from d∗ using π∗ via

G0 Lρ pki∗ Prove ski L(ski) The MUMCc&l-CCA security experiment

G1 Lρ pki∗ Prove ski L(ski)
Abort if public keys collide:

by PK-diversity of QAHPS

G2 Lρ ski∗ Sim ski L(ski)
By correctness of QAHPS &

by perfect zero-knowledge of QANIZK

G3 Lρ ski∗ Sim (τ, x, π) /∈ QSim ski L(ski) By collision-resistance of H

G4 L
ρ
(i∗)
0

ski∗ Sim (τ, x, π) /∈ QSim ski L(ski)
By multi-fold SMP of L &

by multi-language multi-fold SMP of L0

G5 L
ρ
(i∗)
0

ski∗ Sim (τ, x, π) /∈ QSim, x ∈ Lρ ski L(ski) By USS of QANIZK

{G6.η}η∈[n] L
ρ
(i∗)
0

 sk′i∗ , if i∗ ≤ η
ski∗ , if i∗ > η

Sim (τ, x, π) /∈ QSim, x ∈ Lρ ski L(ski) By κ-LR-〈L ,L0〉-key-switching of QAHPS

G6.n L
ρ
(i∗)
0

sk′i∗ Sim (τ, x, π) /∈ QSim, x ∈ Lρ ski L(ski) –

G7 Lρ0 sk′i∗ Sim (τ, x, π) /∈ QSim, x ∈ Lρ ski L(ski)
By multi-language multi-fold SMP of L0 &

by multi-fold SMP of L0

G8 Lρ0 = rand Sim (τ, x, π) /∈ QSim, x ∈ Lρ ski L(ski)
By L0-multi-key-multi-extracting of QAHPS

Pr[Win] = 1
2 in G8

In Appendix E.2, we also discuss some potential variants of our PKE.

7 More Primitives and Instantiations from MDDH

Tightly MUc&l secure SC, MAC and AE. Our SIG and PKE immediately
lead to direct constructions of tightly MUMCc&l-Priv&Auth secure SC [3, 9]. By
fully exploiting the similar and composable components of our SIG and PKE,
we can obtain a more efficient SC construction, which is shown in Appendix F.
Since SIG naturally implies MAC and SC implies AE, we can also obtain the
constructions of tightly secure MAC and AE. We also give optimized MAC and
AE constructions in Appendix G and Appendix H, where PVQAHPS is replaced
with QAHPS. Our MAC achieves tight strong MUc&l-CMVA security, which also
considers chosen verification attacks [15] in addition to strong MUc&l-CMA.

Instantiations from MDDH. We give instantiations of SIG and PKE from
the matrix DDH (MDDH) assumptions over asymmetric pairing groups. Our
SC, MAC and AE can be similarly instantiated.

28

Firstly, we instantiate the building blocks needed in our generic constructions
(cf. Appendix I). More precisely, we give concrete instantiations of Publicly-
Verifiable QA-HPS in Appendix I.3 (with an overview in Subsect. 2.4) and QA-
HPS in Appendix I.4, built upon the MDDH-based QA-HPS schemes proposed in
[22], which are in turn generalizations of the well-known DDH-based HPS scheme
proposed by Cramer and Shoup in [13]. Then we instantiate tag-based QA-NIZK
with a tag-base variant of the QA-NIZK scheme proposed in [1] that has tight
USS based on MDDH, which is recalled in Appendix I.5 for completeness.

Next we instantiate the generic SIG construction in Sect. 5 with the above
building blocks. Let x · G denote x elements in G. Under MDDH parameters
`, k ∈ N where ` ≥ 2k + 1, the MDDH-based SIG scheme SIGMDDH has public
parameter ppSIG : (5k2 + 3k + `k) · G1 + (5k2 + 4k + 1 + 2`k) · G2, verification
key vk : (`k) · G2, signing key sk : `(k + 1) · Zp, and signature σ : (4k2 +
4k + 2 + `) · G1 + (2k2 + 3k + 1) · G2. By plugging the theorems regarding
the tight security of the MDDH-based PV-QA-HPS and QA-NIZK schemes in
Appendix I into Theorem 1, we have the following corollary showing the tight
strong MUc&l-CMA security of SIGMDDH based on the MDDH assumptions (as
well as the collision-resistance of hash functions).

Corollary 1 (Tight Strong MUc&l-CMA Security of SIGMDDH). Let ` ≥
2k + 1 and κ ≤ log p − Ω(λ). For any number n of users and any adversary A
who makes at most Qs times of OSign queries, there exist adversaries B1,B2 and
B3, such that T(B1) ≈ T(B2) ≈ T(B3) ≈ T(A) + (n+Qs) ·poly(λ), with poly(λ)
independent of T(A), and

Advs-cma-c&l
SIGMDDH,A,n,κ(λ) ≤ 2 · AdvcrH,B1

(λ) + (4kdlogQse+ `− k + 6) · Advmddh
D`,k,G1,B2

(λ)

+(2dlogQse+ 3) · Advmddh
Dk,G2,B3

(λ) + n+2dlogQseQs
p−1 + n(n−1)

2 · 1
pk`
.

Since Qs = poly(λ) for PPT adversaries, the security loss is in fact O(logQs) =
O(log λ), which is lower than O(λ). For k = 1 and ` = 3, we get a fully compact
SIG scheme with ppSIG : 11·G1+16·G2, vk : 3·G2, sk : 6·Zp and σ : 13·G1+6·G2.
The resulting SIG scheme has tight strong MUc&l-CMA security based on the
SXDH assumption (which requires the DDH assumption to hold both in G1 and
G2), and supports κ = log p−Ω(λ) bits leakage per user. The leakage rate (i.e.,

κ/ bit-length of sk) is log p−Ω(λ)
6 log p = 1

6 − o(1) asymptotically as p grows.
We also instantiate the generic PKE construction in Sect. 6. Under MDDH

parameters `, k ∈ N where ` ≥ 2k+ 1, the MDDH-based PKE scheme PKEMDDH

has public parameter ppPKE : (5k2+3k+`k) ·G1+(4k2+3k+1+2`k) ·G2, public
key pk : k ·G1, secret key sk : ` · Zp, and ciphertext c : (4k2 + 3k + 2 + `) ·G1 +
(2k2 + 3k+ 1) ·G2. By plugging the theorems regarding the tight security of the
MDDH-based QA-HPS and QA-NIZK schemes in Appendix I into Theorem 2,
we have the following corollary showing the tight MUMCc&l-CCA security of
PKEMDDH based on the MDDH assumptions (as well as the collision-resistance
of hash functions).

Corollary 2 (Tight MUMCc&l-CCA Security of PKEMDDH). Let ` ≥ 2k + 1
and κ ≤ log p − Ω(λ). For any number n of users and any adversary A who

29

makes at most Qe times of OEnc queries and Qd times of ODec queries, there
exist adversaries B1,B2 and B3, such that T(B1) ≈ T(B2) ≈ T(B3) ≈ T(A) +
(n+Qe +Qd) · poly(λ), with poly(λ) independent of T(A), and

Advcca-c&l
PKEMDDH,A,n,κ(λ) ≤ 2 · AdvcrH,B1

(λ) + (4kdlogQee+ `− k + 9) · Advmddh
D`,k,G1,B2

(λ)

+(2dlogQee+ 2) · Advmddh
Dk,G2,B3

(λ) + 2n+2dlogQeeQe
p−1 + n(n−1)

2 · 1
pk
.

For k = 1 and ` = 3, we get a fully compact PKE scheme with ppPKE : 11 ·G1 +
14 ·G2, pk : 1 ·G1, sk : 3 ·Zp and c : 12 ·G1 + 6 ·G2. The resulting PKE scheme
has tight MUMCc&l-CCA security based on the SXDH assumption, and supports

κ = log p−Ω(λ) bits leakage per user. The leakage rate is log p−Ω(λ)
3 log p = 1

3 − o(1)
asymptotically as p grows.

For an overview and comparison with other schemes, we refer to Table 1 and
Table 2 in the introduction, and Table 5 and Table 6 in Appendix A.

On tightness of our MDDH-based schemes. Our MDDH-based schemes
are the first ones achieving almost tight MUc/MUc&l security in the standard
model, and the security loss factor is O(log λ). Note that the security loss factor
O(log λ) depends only logarithmically on the security parameter λ, which is
close to full tightness O(1) compared to linear security loss factor O(λ). As an
example, in the security level of 256 bit, we have log λ = 8.

We stress that all our generic constructions are fully tightness-preserving, i.e.,
the MUc/MUc&l securities of the resulting SIG, PKE, SC, MAC, AE schemes are
tightly reduced to the security properties of the building blocks PV-QA-HPS,
QA-HPS and tag-based QA-NIZK, with constant security loss factors. More-
over, our instantiations of PV-QA-HPS and QA-HPS have fully tight securities,
and only the tag-based QA-NIZK instantiation has security loss factor O(log λ).
Therefore, our fully tightness-preserving generic constructions leave spaces for
even tighter (fully tight) MUc/MUc&l security, as long as we can find instantia-
tions of tag-based QA-NIZK with tighter security.

On efficiency of our MDDH-based schemes. Note that all our schemes
enjoy full compactness (i.e., all the parameters, keys, signatures and ciphertexts
consist of only a constant number of group elements). Though not as efficient
as those constructed in the RO model [20, 14, 29], our schemes are the first
ones achieving almost tight MUc security in the standard model, getting rid of
the ideal object RO that may not result in secure implementations in practice
[10]. We believe our fully compact schemes are good starts for almost tight MUc

security in the standard model and follow-up work might improve efficiency even
further.

Moreover, all our schemes additionally support bounded key leakages and
achieve almost tight MUc&l security, which is not known to hold for the aforemen-
tioned RO schemes. This suggests that our schemes are the first ones achieving
almost tight MUc&l security, no matter in the standard model or RO model.

Acknowledgments. We would like to thank the reviewers for their helpful
comments. Shuai Han and Shengli Liu were partially supported by National

30

Natural Science Foundation of China (Grant Nos. 62002223, 61925207), Guang-
dong Major Project of Basic and Applied Basic Research (2019B030302008), the
National Key R&D Program of China under Grant 2022YFB2701500, Shanghai
Sailing Program (20YF1421100), Young Elite Scientists Sponsorship Program
by China Association for Science and Technology (YESS20200185), and Ant
Group through CCF-Ant Research Fund (CCF-AFSG RF20220224). Dawu Gu
was partially supported by the National Key R&D Program of China under
Grant 2020YFA0712302.

References

[1] Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: ASIACRYPT 2019, pp. 669–699

[2] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: TCC 2009, pp. 474–495

[3] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: EUROCRYPT 2002, pp. 83–107

[4] Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: TCC 2015, pp. 629–658

[5] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: EUROCRYPT 2016, pp. 273–304

[6] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: EUROCRYPT 2000, pp. 259–274

[7] Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: ASIACRYPT 2000, pp.
531–545

[8] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
CRYPTO 1993, pp. 232–249

[9] Bellare, M., Stepanovs, I.: Security under message-derived keys: Signcryption in
iMessage. In: EUROCRYPT 2020, pp. 507–537

[10] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: STOC 1998, pp. 209–218

[11] Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
CRYPTO 2003, pp. 565–582

[12] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
CRYPTO 2013, pp. 435–460

[13] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: EUROCRYPT 2002, pp. 45–64

[14] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: PKC 2021, pp. 1–31

[15] Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
In: EUROCRYPT 2012, pp. 355–374

[16] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

[17] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: CRYPTO 2013, pp. 129–147

[18] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: EUROCRYPT 2016, pp. 1–27

31

[19] Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In:
CRYPTO 2017, pp. 133–160

[20] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: CRYPTO 2018, pp. 95–125

[21] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
CRYPTO 2021, pp. 670–700

[22] Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-
adaptive hash proof system. In: CRYPTO 2019, pp. 417–447, https://eprint.
iacr.org/2019/512

[23] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
CRYPTO 2012, pp. 590–607

[24] Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: ASIACRYPT 2018, pp. 190–220

[25] Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: Reductions are lossy. In: TCC 2017, pp. 409–441

[26] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
ASIACRYPT 2013, pp. 1–20

[27] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: EU-
ROCRYPT 2015, pp. 101–128

[28] Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In:
PKC 2019, pp. 436–465

[29] Lee, Y., Lee, D.H., Park, J.H.: Tightly CCA-secure encryption scheme in a multi-
user setting with corruptions. Des. Codes Cryptogr. 88(11), 2433–2452 (2020)

[30] Liu, X., Liu, S., Gu, D.: Tightly secure chameleon hash functions in the multi-user
setting and their applications. In: ACISP 2020, pp. 664–673, https://eprint.
iacr.org/2022/1258

[31] Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: ASIACRYPT 2020, pp. 785–814

[32] Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In:
ASIACRYPT 2020, pp. 724–753

[33] Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: ASIACRYPT 2016, pp. 729–758

[34] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In:
CRYPTO 2009, pp. 18–35

[35] Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and
more. In: PKC 2022. pp. 347–378

[36] Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002,
pp. 98–107

[37] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553

[38] Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In: CT-RSA 2007, pp. 357–371

32

https://eprint.iacr.org/2019/512
https://eprint.iacr.org/2019/512
https://eprint.iacr.org/2022/1258
https://eprint.iacr.org/2022/1258

Appendix

A Full Comparison Tables on the Full Compactness

Table 5. Comparison of signature (SIG) schemes that have (almost) tight MU-CMA security under adaptive corruptions (MUc-CMA).
The column Standard Model shows whether the security is proved in the standard model. The column Strong Security shows whether
the scheme is proved strongly existentially unforgeable. The column Corruption? asks whether the security is proved in the presence of
adaptive corruptions. The column Leakage? asks whether the security is proved additionally in the presence of key leakages, and if so, a
leakage rate (defined as the ratio of leakage amount to secret key size) is presented. The column Full Compactness shows whether the
scheme is fully compact (i.e., all the public parameters pp, verification key vk, signing key sk and signature σ consist of only a constant
number of group elements or lattice vectors), and if not, the non-compact part is presented. The columns |pp|, |vk|, |sk| and |σ| count
the size of public parameters pp, verification key vk, signing key sk and signature σ, respectively, in terms of numbers of group elements,
lattice vectors, exponents and bit-strings, where λ denotes the security parameter. The column Security Loss shows the security loss
factor of the reductions. The column Assumption shows the computational assumption on which the security is based.

SIG Scheme
Standard

Model
Strong

Security
Corruption? Leakage? Full Compactness |pp| |vk| |sk| |σ| Security

Loss
Assumption

BHJKL [4, 23] X – X – × (non-compact σ) O(1) O(1) O(1) O(λ) O(1) MDDH

GJ [20] × – X – X 1 2 1 7 O(1) DDH

DGJL [14] × X X – X 1 4 1 3 O(1) DDH or φ-Hiding

HJKLPRS [21] X × X – × (non-compact pp) 10λ+ 5 1 2 5 O(λ) MDDH

PW [35] × – X – × (non-compact vk) O(1) O(λ) O(λ) 6 O(1) LWE

Our SIGMDDH X X X X (1
6 − o(1)) X 27 3 6 19 O(log λ) MDDH

33

Table 6. Comparison of public-key encryption (PKE) schemes that have (almost) tight
MUMC-CCA security under adaptive corruptions (MUMCc-CCA) or key leakages. The
columns have similar meanings as those in Table 5, with pp the public parameters, pk
the public key, sk the secret key and c the ciphertext of PKE. .

PKE Scheme
Standard

Model
Corruption? Leakage?

Full
Compact.

|pp| |pk| |sk| |c| Security
Loss

Assumption

HLLG [22] X – X (1
18 − o(1)) X 6 4 18 8 O(log λ) MDDH

LLP [29] × X – X 1 4 2 4 O(1) CDH

Our PKEMDDH X X X (1
3 − o(1)) X 25 1 3 18 O(log λ) MDDH

B Additional Preliminaries

Definition 17 (SIG). A signature (SIG) scheme SIG = (SetupSIG,Gen,Sign,
VrfySIG) with message space M consists of four PPT algorithms:

– ppSIG ←$ SetupSIG: The setup algorithm outputs a public parameter ppSIG,
which serves as an implicit input of other algorithms.

– (vk, sk)←$ Gen(ppSIG): Taking ppSIG as input, the key generation algorithm
outputs a pair of verification key and signing key (vk, sk).

– σ ←$ Sign(sk,m): Taking as input a signing key sk and a message m ∈M,
the signing algorithm outputs a signature σ.

– 0/1 ← VrfySIG(vk,m, σ): Taking as input a verification key vk, a message
m ∈ M and a signature σ, the deterministic verification algorithm outputs
a bit indicating whether σ is a valid signature for m w.r.t. vk.

Correctness requires that for all ppSIG ∈ SetupSIG, (vk, sk) ∈ Gen(ppSIG), m ∈M,
σ ∈ Sign(sk,m), it holds that VrfySIG(vk,m, σ) = 1.

Definition 18 (PKE). A public-key encryption (PKE) scheme PKE = (SetupPKE,
Gen,Enc,Dec) with message space M consists of four PPT algorithms:

– ppPKE ←$ SetupPKE: The setup algorithm outputs a public parameter ppPKE,
which serves as an implicit input of other algorithms.

– (pk, sk)←$ Gen(ppPKE): Taking ppPKE as input, the key generation algorithm
outputs a pair of public key and secret key (pk, sk).

– c←$ Enc(pk,m): Taking as input a public key pk and a message m ∈ M,
the encryption algorithm outputs a ciphertext c.

– m/⊥ ← Dec(sk, c): Taking as input a secret key sk and a ciphertext c, the
deterministic decryption algorithm outputs either a message m ∈ M or a
special symbol ⊥ indicating the failure of decryption.

Correctness requires that for all ppPKE ∈ SetupPKE, (pk, sk) ∈ Gen(ppPKE), m ∈
M, c ∈ Enc(pk,m), it holds that Dec(sk, c) = m.

Definition 19 (Collision-resistant hash functions). A family of hash func-
tions H is collision-resistant, if for any PPT adversary A, it holds that

AdvcrH,A(λ) := Pr[H ←$ H, (x1, x2)←$ A(H) : x1 6= x2∧H(x1) = H(x2)] ≤ negl(λ).

34

C Proof of Theorem 1 (Strong MUc&l-CMA Security of
SIG)

Theorem 1 (Strong MUc&l-CMA Security of SIG) Assume that (i) L and
L0 have hard SMPs, (ii) PVQAHPS is a publicly-verifiable QA-HPS for both
L and L0, having verification soundness, VK-diversity, and supporting κ-LR-
〈L0,L 〉-OT-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , satisfy-
ing both perfect zero-knowledge and unbounded simulation-soundness, (iv) H is
collision-resistant. Then the proposed SIG scheme in Fig. 8 is strongly MUc&l-CMA
secure under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qs times of OSign queries, there exist adversaries B1, · · · ,B6, such that
T(B1) ≈ · · · ≈ T(B5) ≈ T(A) + (n+Qs) · poly(λ), with poly(λ) independent of
T(A), and

Advs-cma-c&l
SIG,A,n,κ(λ) ≤ Advvrfy-sndPVQAHPS,B1,n

(λ) + AdvcrH,B2
(λ) + Advmsmp

L ,B3,Qs
(λ) + Advmsmp

L0,B4,Qs
(λ)

+ AdvussQANIZK,B5
(λ) + n(n−1)

2 · εvk-divPVQAHPS(λ) + n · εlr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ).

Remark 4 (On the Tightness of SIG’s Strong MUc&l-CMA security).
According to Theorem 1, SIG has tight strong MUc&l-CMA security as long as
both the multi-fold SMPs related to L and L0 have tight reductions (e.g., to the
MDDH assumptions), PVQAHPS has a tight verification soundness and QANIZK
has a tight USS. We stress that only factors of computational reductions count
when evaluating whether the security is tight or not.

We also note that the statistical loss n(n−1)
2 · εvk-divPVQAHPS(λ) is quadratic in the

number n of users. This statistical loss exactly reflects the collision probability
of verification keys among n users. Such a quadratic statistical loss is inherent
to the MUc&l-CMA security (even to MUc) of all signature schemes, since if two
verification keys collide, an adversary can simply corrupt one user and use the
signing key to forge a signature for another user.

Proof of Theorem 1. We prove the theorem by defining a sequence of games
G0 –G6 and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 3 in Subsect. 5.2.

Game G0: This is the Exps-cma-c&l
SIG,A,n,κ experiment (cf. Fig. 7).

Let (vki, ski) denote the verification/signing key pair of user i ∈ [n]. In this
game, when answering an OSign query (i,m), the challenger samples x ←$ Lρ
with witness w, computes d := Priv(ski, x), τ := H(vki,m) and π ←$ Prove(crs, τ,
x, w). Then, the challenger returns σ := (x, d, π) to A and puts (i,m, σ) to set
QSign. For an OCor query i, the challenger returns ski to A and puts i to set
QCor. For an OLeak query (i, L), the challenger returns L(ski) to A.

At the end of the game, A outputs a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)). Let
Win denote the event that

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ VrfyHPS(vki∗ , x
∗, d∗) = 1,

35

where τ∗ := H(vki∗ ,m
∗). By definition, Advs-cma-c&l

SIG,A,n,κ(λ) = Pr0[Win].

Game G1: It is the same as G0, except that, the event Win is now defined as

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ d∗ = Priv(ski∗ , x
∗) .

Claim 1.
∣∣Pr0[Win]− Pr1[Win]

∣∣ ≤ Advvrfy-sndPVQAHPS,B1,n
(λ).

Proof. By InConsis denote the event that A’s forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗))
satisfying VrfyHPS(vki∗ , x

∗, d∗) = 1 ∧ d∗ 6= Priv(ski∗ , x
∗).

Clearly, G1 is identical to G0 unless InConsis occurs, thus
∣∣Pr0[Win]−Pr1[Win]

∣∣
≤ Pr1[InConsis]. It is straightforward to construct an adversary B1 against the

verification soundness of PVQAHPS, s.t. Pr1[InConsis] ≤ Advvrfy-sndPVQAHPS,B1,n
(λ).

(Since B1 is given the signing keys of all users, it can simulate G1 honestly for A,
output the (i∗, x∗, d∗) contained in A’s forgery and succeed as long as InConsis
occurs.) We also provide a full description of B1 in Appendix C.1.

Game G2: It is the same as G1, except that, after generating n pairs of verifi-
cation/signing keys {(vki, ski)}i∈[n], the challenger aborts immediately if there
are two verification keys that collide, i.e., ∃1 ≤ i < j ≤ n, s.t. vki = vkj .

Since ski and skj are independently and uniformly chosen from SK, by the
VK-diversity of PVQAHPS and by a union bound, it follows that

∣∣Pr1[Win] −
Pr2[Win]

∣∣ ≤∑1≤i<j≤n Pr[ν(ski) = ν(skj)] ≤ n(n−1)
2 · εvk-divPVQAHPS(λ).

Game G3: It is the same as G2, except that, when answering OSign(i,m), the
challenger computes π via the Sim algorithm of QANIZK by using the simulation
trapdoor tdcrs:

• π ←$ Sim(crs, tdcrs, τ, x).

Note that the witness w for x ∈ Lρ is no longer needed.
Since x is chosen from Lρ with witness w, by the perfect zero-knowledge of

QANIZK, the π in G3 is identically distributed as that in G2. Consequently, the
change is just conceptual and Pr2[Win] = Pr3[Win].

Game G4: It is the same as G3, except that, when answering OSign(i,m), the
challenger also puts (τ, x, π) to a set QSim, and for the forgery (i∗,m∗, σ∗ =
(x∗, d∗, π∗)) output by A, the event Win is now defined as

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim .

Claim 2.
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ AdvcrH,B2
(λ).

Proof. By Bad denote the event that A’s forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗))
satisfying ∃ (i,m, σ = (x, d, π)) ∈ QSign, s.t.

i∗ /∈ QCor ∧ (i∗,m∗, σ∗ = (x∗, d∗, π∗)) 6= (i,m, σ = (x, d, π))

∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) = (τ, x, π) ∈ QSim,

36

where τ∗ := H(vki∗ ,m
∗) and τ := H(vki,m). Clearly, G3 and G4 are the same

until Bad occurs, thus
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Pr4[Bad].
To bound Pr4[Bad], we divide Bad into the following two cases:

• Case 1: (i∗,m∗) = (i,m). Together with (i∗,m∗, σ∗ = (x∗, d∗, π∗)) 6=
(i,m, σ = (x, d, π)) ∧ (τ∗, x∗, π∗) = (τ, x, π), it follows that d∗ 6= d. However,
this contradicts d∗ = Priv(ski∗ , x

∗) = Priv(ski, x) = d. Therefore, this case
can never occur.

• Case 2: (i∗,m∗) 6= (i,m). Since there are no verification key collisions (due
to the game change in G2), (i∗,m∗) 6= (i,m) implies (vki∗ ,m

∗) 6= (vki,m).
Together with τ∗ = H(vki∗ ,m

∗) = H(vki,m) = τ , this case suggests a
collision of H. It is straightforward to construct an adversary B2 so that
Pr4[Bad] ≤ AdvcrH,B2

(λ). (B2 can sample all signing keys itself, simulate G4

honestly for A, and successfully find a collision as long as Bad happens.)

Overall,
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Pr4[Bad] ≤ AdvcrH,B2
(λ).

Game G5: It is the same as G4, except that, at the beginning of the game,
the challenger picks (ρ0, td0) ←$ L0 besides (ρ, td)←$ L , and for all the OSign

queries, the challenger samples x ←$ Lρ0 instead of x ←$ Lρ.

Claim 3.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ Advmsmp
L ,B3,Qs

(λ) + Advmsmp
L0,B4,Qs

(λ).

Proof. We introduce an intermediate Game G4.5 between G4 and G5, where the
challenger samples x ←$ X for all the OSign queries.

Since witness w for x is not used at all in G4, G4.5 and G5 (due to the game
change in G3), we can directly construct two adversaries B3 and B4 for solving the
multi-fold SMP related to L and the multi-fold SMP related to L0 respectively,
s.t.

∣∣Pr4[Win] − Pr4.5[Win]
∣∣ ≤ Advmsmp

L ,B3,Qs
(λ) and

∣∣Pr4.5[Win] − Pr5[Win]
∣∣ ≤

Advmsmp
L0,B4,Qs

(λ). The full description of B3 and B4 can be found in Appendix C.2.
(B3 and B4 can sample all signing keys themselves, simulate G4/G4.5/G5 honestly
for A depending on the challenges that B3 and B4 receive, and succeed as long
as A behaves differently in these games.)

Game G6: It is the same as G5, except that, the event Win is now defined as

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ ∈ Lρ .

Claim 4.
∣∣Pr5[Win]− Pr6[Win]

∣∣ ≤ AdvussQANIZK,B5
(λ).

Proof. By Forge denote the event that A’s forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗))
s.t. i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ /∈ Lρ.

G5 and G6 are the same unless Forge occurs, so
∣∣Pr5[Win]−Pr6[Win]

∣∣ ≤ Pr6[Forge].
Note that Forge implies VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ /∈

37

Lρ. Thus by the USS of tag-based QANIZK, we can build an adversary B5 such
that Pr6[Forge] ≤ AdvussQANIZK,B5

(λ). B5 can sample all signing keys itself, simu-
late G6 honestly for A (using its own oracle OSim defined in Fig. 4 to generate
simulated proofs π when answering OSign queries for A), output the (τ∗, x∗, π∗)
extracted from A’s forgery to its own challenger, and succeed as long as Forge
occurs. We also provide a full description of B5 in Appendix C.3.

Finally, we have the following claim regarding Pr6[Win].

Claim 5. Pr6[Win] ≤ n · εlr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ).

Proof. Let i∗ denote the user index contained in A’s forgery. In the case that
A corrupts user i∗ (i.e., i∗ ∈ QCor), Win does not occur, thus the claim trivially
holds. Next we prove the claim in the case that A never corrupts user i∗ (i.e.,
i∗ /∈ QCor). We analyze the information about ski∗ that A may obtain in G6.

• Firstly, the verification keys contain vki∗ = ν(ski∗).
• In OSign(i∗,m), since x ←$ Lρ0 , the behavior of OSign for user i∗ is com-

pletely determined by αρ0(ski∗).
• Since i∗ /∈ QCor, A never queries OCor(i∗).
• From OLeak(i∗, L), A obtains at most κ bits information about ski∗ .

Overall, the information about ski∗ that A learns in G6 is limited in ν(ski∗),
αρ0(ski∗) and at most κ bits leakage information.

Then we analyze the probability Pr6[Win]. For A’s forgery (i∗,m∗, σ∗ =
(x∗, d∗, π∗)), Win will not occur unless x∗ ∈ Lρ ∧ d∗ = Priv(ski∗ , x

∗). Intuitively,
by the κ-LR-〈L0,L 〉-OT-extracting property of publicly-verifiable PVQAHPS
(cf. Def. 10), we know that x∗ ∈ Lρ ∧ d∗ = Priv(ski∗ , x

∗) holds with only a
negligible probability, even in the presence of ν(ski∗), αρ0(ski∗) and at most κ
bits leakage about ski∗ . Hence Win hardly happens in G6.

Formally, we build an (unbounded) adversary B6 against the κ-LR-〈L0,L 〉-
OT-extracting property of publicly-verifiable PVQAHPS. B6 is given (ppHPS, ρ0, ρ,
αρ0(sk), ν(sk)), where sk ←$ SK is chosen by its own challenger, and has access

to the oracle OLeak defined in Fig. 6, which is denoted by O(PVQAHPS)
Leak below to

avoid confusing with the OLeak in SIG’s experiment. B6 will simulate G6 for A.
Intuitively, B6 will first guess the user index i∗ for which A forges a signature
(with a security loss n), implicitly set the signing key of user i∗ as the sk chosen
by its own challenger and explicitly define the verification key of user i∗ as the
ν(sk) contained in its input. For the remaining n− 1 users, B6 samples signing
keys itself, thus can honestly answer OSign, OCor and OLeak queries made by A
for these users. For user i∗, B6 can answer OSign queries using the projection key
αρ0(sk) contained in its own input (since x←$ Lρ0), answer OLeak queries via

its own O(PVQAHPS)
Leak oracle, and abort immediately if A corrupts i∗. Finally, B6

receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)) from A, and returns (x∗, d∗) to its
own challenger. Overall, B6 succeeds (i.e., x∗ ∈ Lρ ∧ d∗ = Priv(sk, x∗)) as long

as i∗ is correctly guessed and Win occurs, thus ε
lr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ) ≥ 1
n · Pr6[Win].

38

We also provide a full description of B6 in Appendix C.4.

Taking all things together, Theorem 1 follows. ut

C.1 Full Description of Reduction B1 for Claim 1

To bound Pr1[InConsis], we construct an adversary B1 against the verification
soundness of PVQAHPS (cf. Def. 9). The full description of B1 is as follows. B1
is given (ppHPS, (ski, vki)i∈[n]), where ski ←$ SK (i ∈ [n]) are chosen by its own
challenger and vki := ν(ski). B1 simulates G1 for A as follows.

• Firstly, B1 invokes (ρ, td)←$ L , ppNIZK ←$ SetupNIZK, (crs, tdcrs)←$ CRSGen(ρ),
H ←$ H, sets ppSIG := (ρ, ppHPS, ppNIZK, crs, H), and sends (ppSIG, {vki}i∈[n])
to A.
• B1 has the signing keys {ski}i∈[n] of all users, thus can honestly answer OSign

queries, OCor queries and OLeak queries made by A, the same way as G1.
Concretely, for an OSign query (i,m) made by A, B1 samples x←$ Lρ

with witness w, computes d := Priv(ski, x), τ := H(vki,m), and invokes
π ←$ Prove(crs, τ, x, w). Then, B1 returns σ := (x, d, π) toA and puts (i,m, σ)
to set QSign. For an OCor query i, B1 returns ski to A and puts i to set QCor.
For an OLeak query (i, L), B1 returns L(ski) to A.
• Finally, B1 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)) from A. B1 outputs

(i∗, x∗, d∗) to its own challenger.

It is clear to see that B1 simulates G1 perfectly for A, and B1’s output (i∗, x∗, d∗)
succeeds in the Expvrfy-sndPVQAHPS,B1,n

experiment (cf. Fig. 5) so that d∗ 6= Priv(ski∗ , x
∗)

∧ VrfyHPS(vki∗ , x
∗, d∗) = 1 as long as InConsis occurs. Thus, Pr1[InConsis] ≤

Advvrfy-sndPVQAHPS,B1,n
(λ) and Claim 1 follows.

C.2 Full Description of Reductions B3 and B4 for Claim 3

We introduce an intermediate game G4.5 between G4 and G5:

– Game G4.5: It is the same as game G4, except that, for all the OSign queries,
the challenger samples x←$ X .

Note that the witness w for x is not used at all in games G4, G4.5 and G5

(due to the game change in G3).
Below we construct two adversaries B3 and B4 for solving the multi-fold SMP

related to L and the multi-fold SMP related to L0 respectively, s.t.
∣∣Pr4[Win]−

Pr4.5[Win]
∣∣ ≤ Advmsmp

L ,B3,Qs
(λ) and

∣∣Pr4.5[Win]− Pr5[Win]
∣∣ ≤ Advmsmp

L0,B4,Qs
(λ).

We first provide the full description of B3 for solving the multi-fold SMP
related to L (cf. Def. 3). B3 is given (ρ, {xj}j∈[Qs]), where (ρ, td)←$ L , and B3
aims to decide whether x1, ..., xQs ←$ Lρ or x1, ..., xQs ←$ X . B3 will simulate
G4 or G4.5 for A, depending on the input that B3 receives.

39

• Firstly, B3 invokes ppHPS ←$ SetupHPS, ppNIZK ←$ SetupNIZK, (crs, tdcrs)←$

CRSGen(ρ), H ←$ H, and sets ppSIG := (ρ, ppHPS, ppNIZK, crs, H). Then for
each user i ∈ [n], B3 samples signing key ski ←$ SK itself and computes the
corresponding verification key vki := ν(ski). B3 sends (ppSIG, {vki}i∈[n]) to
A.
• For OSign queries, when answering the j-th (j ∈ [Qs]) OSign query (i,m),
B3 sets x as the xj in its own input, and computes d := Priv(ski, x), τ :=
H(vki,m) and π ←$ Sim(crs, tdcrs, τ, x), without knowing a witness of x. B3
returns σ := (x, d, π) to A, puts (i,m, σ) to QSign and puts (τ, x, π) to QSim.

In the case that x = xj is uniformly chosen from Lρ, B3 perfectly simulates
G4 for A; in the case that x = xj is uniformly chosen from X , B3 perfectly
simulates G4.5 for A.

• B3 uses {ski}i∈[n] to answer OCor and OLeak queries for A, the same way
as G4 and G4.5.

• Finally, B3 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)) from A. B3 uses the
signing keys {ski}i∈[n] to decide whether the event Win defined in G4 (which
is the same as that defined in G4.5 and G5) occurs, i.e.,

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QSign ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim.

B3 returns 1 to its own challenger if and only if Win occurs.

Overall, B3 simulates G4 for A in the case x1, ..., xQs ←$ Lρ and simulates G4.5

for A in the case x1, ..., xQs ←$ X , thus B3 successfully distinguishes the two
cases as long as the probability that Win occurs in G4 differs non-negligibly from
that in G4.5. Consequently, we have Advmsmp

L ,B3,Qs
(λ) ≥

∣∣Pr4[Win]− Pr4.5[Win]
∣∣.

Next, we provide the description of B4 for solving the multi-fold SMP related
to L0 (cf. Def. 3). B4 is given (ρ0, {xj}j∈[Qs]), where (ρ0, td0)←$ L0, and B4
aims to decide whether x1, ..., xQs ←$ Lρ0 or x1, ..., xQs ←$ X . B4 simulates ex-
actly the same way as B3 does, except that, B4 samples (ρ, td) ←$ L itself to gen-
erate the ρ contained in ppSIG. In particular, when answering the j-th (j ∈ [Qs])
OSign query (i,m) made by A, B4 sets x as the xj in its own input. In the case
that x = xj is uniformly chosen from Lρ0 , B4 perfectly simulates G5 for A; in the
case that x = xj is uniformly chosen from X , B4 perfectly simulates G4.5 for A.
Therefore, B4 successfully distinguishes x1, ..., xQs ←$ Lρ0 from x1, ..., xQs ←$ X
as long as the probability that Win occurs in G5 differs non-negligibly from that
in G4.5. Consequently, we have Advmsmp

L0,B4,Qs
(λ) ≥

∣∣Pr4.5[Win]− Pr5[Win]
∣∣.

This completes the proof of Claim 3.

C.3 Full Description of Reduction B5 for Claim 4

To bound Pr6[Forge], we construct an adversary B5 against the USS of tag-
based QANIZK (cf. Def. 7). The full description of B5 is as follows. B5 is given
(ρ, td, ppNIZK, crs) and has access to the oracle OSim defined in Fig. 4. B5 simulates
G6 for A as follows.

40

• Firstly, B5 invokes ppHPS ←$ SetupHPS, samples H ←$ H, and sets ppSIG :=
(ρ, ppHPS, ppNIZK, crs, H). B5 also invokes (ρ0, td0)←$ L0. Then for each user
i ∈ [n], B5 samples signing key ski ←$ SK itself and computes the corre-
sponding verification key vki := ν(ski). B5 sends (ppSIG, {vki}i∈[n]) to A.

• For an OSign query (i,m) made by A, B5 samples x ←$ Lρ0 , computes d :=
Priv(ski, x) and τ := H(vki,m). Then B5 sends (τ, x) to its own OSim oracle
and obtains π, which is generated by OSim via π ←$ Sim(crs, tdcrs, τ, x). B5
returns σ := (x, d, π) to A, puts (i,m, σ) to QSign and puts (τ, x, π) to QSim.

• B5 uses {ski}i∈[n] to answer OCor and OLeak queries for A, the same as G6.
• Finally, B5 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)) fromA. B5 computes
τ∗ := H(vki∗ ,m

∗), and outputs (τ∗, x∗, π∗) to its own challenger.

It is clear to see that B5 simulates G6 perfectly for A, and B5 outputs a successful
forgery (τ∗, x∗, π∗) to its own challenger so that x∗ /∈ Lρ ∧ (τ∗, x∗, π∗) /∈
QSim ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 as long as Forge occurs. Thus, Pr6[Forge] ≤
AdvussQANIZK,B5

(λ) and Claim 4 follows.

C.4 Full Description of Reduction B6 for Claim 5

To bound Pr6[Win], we construct an (unbounded) adversary B6 against the κ-LR-
〈L0,L 〉-OT-extracting property of PVQAHPS (cf. Def. 10). The full description
of B6 is as follows. B6 is given (ppHPS, ρ0, ρ, αρ0(sk), ν(sk)), where sk ←$ SK is
chosen by its own challenger, and has access to the oracle OLeak defined in Fig.

6, which is denoted by O(PVQAHPS)
Leak below to avoid confusing with the OLeak in

SIG’s experiment. B6 simulates G6 for A as follows.

• Firstly, B6 invokes ppNIZK ←$ SetupNIZK, (crs, tdcrs)←$ CRSGen(ρ), samples
H ←$ H, and sets ppSIG := (ρ, ppHPS, ppNIZK, crs, H).

B6 samples an index î ←$ [n] uniformly, sets sk̂i := sk implicitly and

defines vk̂i := ν(sk) explicitly for user î, where sk is the hashing key chosen
by B6’s own challenger and ν(sk) is part of B6’s own input. For all other

users i ∈ [n] \
{
î
}

, B6 samples signing key ski ←$ SK itself and computes
vki := ν(ski). B6 sends (ppSIG, {vki}i∈[n]) to A.

• For an OSign query (i,m) made by A, B6 computes a signature σ as follows.

B6 first samples x ←$ Lρ0 with witness w. If i 6= î, B6 computes d :=

Priv(ski, x) using ski, the same as G6; if i = î, B6 computes d := Pub(αρ0(sk),
x, w) using the projection key αρ0(sk) contained in its own input, which is
also the same as G6 by the correctness of PVQAHPS. Then, B6 computes
τ := H(vki,m), invokes π ←$ Sim(crs, tdcrs, τ, x) and sets σ := (x, d, π).
B6 returns σ to A, puts (i,m, σ) to QSign and puts (τ, x, π) to QSim.

• For an OCor query i made by A, if i 6= î, B6 returns ski to A; if i = î, B6
aborts immediately.

• For an OLeak query (i, L) made by A, if i 6= î, B6 returns L(ski) to A; if i = î,

B6 submits L to its own O(PVQAHPS)
Leak oracle, obtains L(sk) from O(PVQAHPS)

Leak ,
and returns L(sk) to A.

41

• Finally, B6 receives a forgery (i∗,m∗, σ∗ = (x∗, d∗, π∗)) from A. If i∗ = î,

B6 outputs (x∗, d∗) to its own challenger; if i∗ 6= î, B6 aborts the game.

It is clear to see that if î = i∗ (which happens with probability 1
n) and A never

corrupts i∗, B6 simulates G6 perfectly for A, and B6’s output (x∗, d∗) succeeds

in the Exp
lr-〈L0,L〉-otext
PVQAHPS,B6,κ

experiment so that x∗ ∈ Lρ ∧ d∗ = Priv(sk, x∗) as long

as Win occurs. Thus, ε
lr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ) ≥ 1
n · Pr6[Win] and Claim 5 follows.

D Proof of Theorem 2 (MUMCc&l-CCA Security of PKE)

Theorem 2 (MUMCc&l-CCA Security of PKE) Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, and supporting both κ-LR-〈L ,L0〉-key-switching and L0-multi-key-
multi-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , satisfying both
perfect zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 10 is MUMCc&l-CCA secure
under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OEnc queries and Qd times of ODec queries, there exist ad-
versaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (n+Qe +Qd) ·
poly(λ), with poly(λ) independent of T(A), and

Advcca-c&l
PKE,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qe

(λ) + 2 · Advml-msmp
L0,B3,n,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

QAHPS,B6,n,Qe
(λ) + n(n−1)

2 · εpk-divQAHPS(λ) + 2n · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

Remark 5 (On the Tightness of PKE’s MUMCc&l-CCA security). Accord-
ing to Theorem 2, PKE has tight MUMCc&l-CCA security as long as both the
multi-fold SMP related to L and the multi-language multi-fold SMP related
to L0 have tight reductions, QAHPS has a tight L0-multi-key-multi-extracting
property and QANIZK has a tight USS.

Moreover, similar to Remark 4, the statistical loss n(n−1)
2 · εpk-divQAHPS(λ) exactly

reflects the collision probability of public keys among n users, and is inherent
to the MUMCc&l-CCA security (even to MUc-CPA) of all PKE schemes, since if
two public keys collide, an adversary can simply corrupt one user and use the
secret key to decrypt a challenge ciphertext for another user. Nevertheless, the
statistical loss does not affect the security tightness of PKE.

Proof of Theorem 2. We prove Theorem 2 by defining a sequence of games
G0 –G8 and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 4 in Subsect. 6.2.

Game G0: This is the Expcca-c&l
PKE,A,n,κ experiment (cf. Fig. 9). Let Win denote the

event that β′ = β. By definition, Advcca-c&l
PKE,A,n,κ(λ) = |Pr0[Win]− 1

2 |.
Let (pki, ski) denote the public/secret key pair of user i ∈ [n]. In this game,

when answering an OEnc query (i∗,m0,m1), the challenger samples x∗ ←$ Lρ

42

with witness w∗, computes d∗ := Pub(pki∗ , x
∗, w∗) + mβ , τ∗ := H(pki∗ , d

∗)
and π∗ ←$ Prove(crs, τ∗, x∗, w∗). Then, the challenger returns the challenge ci-
phertext c∗ := (x∗, d∗, π∗) to A and puts (i∗, c∗) to set QEnc. Upon an ODec

query (i, c = (x, d, π)), the challenger computes τ := H(pki, d), returns m :=
d−Priv(ski, x) to A if (i, c) /∈ QEnc∧VrfyNIZK(crs, τ, x, π) = 1 holds, and returns
⊥ otherwise. For an OCor query i, the challenger returns ski to A and puts i to
set QCor. For an OLeak query (i, L), the challenger returns L(ski) to A.

Game G1: It is the same as G0, except that, the challenger aborts immediately
if there are collisions in {pki}i∈[n], i.e., ∃1 ≤ i < j ≤ n, s.t. pki = pkj .

By the PK-diversity of QAHPS,
∣∣Pr0[Win]−Pr1[Win]

∣∣ ≤ n(n−1)
2 · εpk-divQAHPS(λ).

Game G2: It is the same as G1, except that, when answering OEnc(i∗,m0,m1),
the challenger computes d∗ and π∗ without using the witness w∗ for x∗ ∈ Lρ:

• d∗ := Priv(ski∗ , x
∗) +mβ , • π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗).

Since x∗ is chosen from Lρ with witness w∗, by the correctness of QAHPS
and by the perfect zero-knowledge of QANIZK, we have Pr1[Win] = Pr2[Win].

Game G3: It is the same as G2, except that, when answering OEnc(i∗,m0,m1),
the challenger also puts (τ∗, x∗, π∗) to a setQSim, and when answeringODec(i, c =
(x, d, π)), the challenger adds the following new rejection rule:

• If (τ, x, π) ∈ QSim, return ⊥ directly.

Clearly, G2 and G3 are the same unless that A ever queries ODec(i, c =
(x, d, π)) s.t.

∃ (i∗, c∗ = (x∗, d∗, π∗)) ∈ QEnc, s.t. (i, c = (x, d, π)) 6= (i∗, c∗ = (x∗, d∗, π∗))

∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) = (τ∗, x∗, π∗) ∈ QSim,

where τ := H(pki, d) and τ∗ := H(pki∗ , d
∗).

Note that by (i, c = (x, d, π)) 6= (i∗, c∗ = (x∗, d∗, π∗)) and (τ, x, π) =
(τ∗, x∗, π∗), it follows that (i, d) 6= (i∗, d∗) and τ = H(pki, d) = H(pki∗ , d

∗) =
τ∗. Since there are no public key collisions (due to the game change in G1),
(i, d) 6= (i∗, d∗) implies (pki, d) 6= (pki∗ , d

∗). Consequently, the above event sug-
gests a collision of H, and we have

∣∣Pr2[Win]− Pr3[Win]
∣∣ ≤ AdvcrH,B1

(λ).

Game G4: It is the same as G3, except that, at the beginning of the game, the

challenger picks (ρ
(i)
0 , td

(i)
0)←$ L0 independently for each user i ∈ [n] besides

(ρ, td)←$ L , and when answering OEnc(i∗,m0,m1), the challenger samples x∗

from the i∗-th language L
ρ
(i∗)
0

, i.e., x∗ ←$ L
ρ
(i∗)
0

, instead of x∗ ←$ Lρ.
By the multi-fold SMP related to L and by the multi-language multi-fold

SMP related to L0 (cf. Def. 14), we can first change G3 to an intermediate game
G3.5 where the challenger samples x∗ ←$ X for all the OEnc queries, then further
change G3.5 to G4. Overall, we have the following claim.

43

Claim 6.
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Advmsmp
L ,B2,Qe

(λ) + Advml-msmp
L0,B3,n,Qe

(λ).

We provide a proof for Claim 6 in Appendix D.1.

Game G5: It is the same as G4, except that, when answering ODec(i, c =
(x, d, π)), the challenger adds another new rejection rule:

• If x /∈ Lρ, return ⊥ directly.

Clearly, G4 and G5 are the same unless that A ever queries ODec(i, c =
(x, d, π)) s.t.

(i, c = (x, d, π)) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ Lρ.

This event implies VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ Lρ. Thus by
the USS of QANIZK, we have the following claim.

Claim 7.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ AdvussQANIZK,B5
(λ).

We provide a proof for Claim 7 in Appendix D.2. A subtlety is that B5 obtains
the language trapdoor td from its own challenger, thus can use td to efficiently
decide the membership of Lρ when answering ODec queries for A.

Game G6.η, 0 ≤ η ≤ n: It is the same as G5, except that, at the beginning of the
game, the challenger picks another sk′i ←$ SK besides ski for each user i ∈ [n].
Moreover, when answering OEnc(i∗,m0,m1) for users i∗ ≤ η, the challenger
switches ski∗ to the new secret key sk′i∗ in computing d∗:

• d∗ := Priv(sk′i∗ , x
∗) +mβ = Pub(α

ρ
(i∗)
0

(sk′i∗), x
∗, w∗) +mβ ,

where w∗ is a witness of x∗ ∈ L
ρ
(i∗)
0

. The challenger still uses {ski}i∈[n] to

compute the public keys for all users i ∈ [n], to answer OEnc queries for users
i∗ > η, and to answer ODec, OCor and OLeak queries for all users i ∈ [n].

It is clearly that G6.0 is identical to G5, thus Pr5[Win] = Pr6.0[Win].
For each η ∈ [n], note that the only difference between G6.η−1 and G6.η lies

in the OEnc oracle for user η: in G6.η−1, OEnc computes d∗ := Priv(skη, x
∗) +

mβ = Pub(α
ρ
(η)
0

(skη), x∗, w∗)+mβ using skη, while in G6.η, OEnc computes d∗ =

Priv(sk′η, x
∗) + mβ = Pub(α

ρ
(η)
0

(sk′η), x∗, w∗) + mβ using sk′η. Since x∗ ∈ L
ρ
(η)
0

with ρ
(η)
0 output by L0, by the κ-LR-〈L ,L0〉-key-switching property of QAHPS

(cf. Def. 5), the challenger can safely switch skη to sk′η when answering OEnc

for user η, and we have the following claim.

Claim 8. For each η ∈ [n], |Pr6.η−1[Win]− Pr6.η[Win]| ≤ 2 · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

We provide a proof for Claim 8 in Appendix D.3.

Game G7: It is the same as G6.n, except that, at the beginning of the game,

the challenger picks (ρ0, td0) ←$ L0 besides (ρ, td)←$ L and (ρ
(i)
0 , td

(i)
0)←$ L0

44

for each i ∈ [n], and when answering OEnc(i∗,m0,m1), the challenger always
samples x∗ ←$ Lρ0 independently of i∗, instead of x∗ ←$ L

ρ
(i∗)
0

.

By the multi-language multi-fold SMP related to L0 (cf. Def. 14) and by the
multi-fold SMP related to L0, we can first change G6.n to an intermediate game
where the challenger samples x∗←$X for all theOEnc queries, then change to G7.
Overall, we have

∣∣Pr6.n[Win]− Pr7[Win]
∣∣ ≤ Advml-msmp

L0,B3,n,Qe
(λ) + Advmsmp

L0,B4,Qe
(λ).

The proof is similar to that of Claim 6. A subtlety is that B3 and B4 sample
(ρ, td)←$ L themselves, thus can always use td to decide the membership of Lρ
when answering ODec queries for A.

Game G8: It is the same as G7, except that, for all the OEnc queries, the chal-
lenger samples d∗ ←$ HV uniformly, instead of computing using {sk′i}i∈[n].

Note that the only place that G7 differs from G8 lies in the computations of
d∗ in the OEnc oracle for all users i∗ ∈ [n], where d∗ := Priv(sk′i∗ , x

∗) +mβ in G7

while d∗ ←$ HV in G8. Since {sk′i}i∈[n] is used only in the computations of d∗

in OEnc, and x∗ in OEnc are uniformly chosen from Lρ0 , by the L0-multi-key-
multi-extracting property of QAHPS (cf. Def. 11), we have the following claim.

Claim 9.
∣∣Pr7[Win]− Pr8[Win]

∣∣ ≤ AdvL0-mk-mext
QAHPS,B6,n,Qe

(λ).

We provide a proof for Claim 9 in Appendix D.4.

Finally in G8, d∗ is uniformly chosen from HV regardless of the value of β,
thus the challenge bit β is completely hidden to A. Then Pr8[Win] = 1

2 .
Taking all things together, Theorem 2 follows. ut

D.1 Proof of Claim 6

Claim 6.
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ Advmsmp
L ,B2,Qe

(λ) + Advml-msmp
L0,B3,n,Qe

(λ).

Proof. We introduce an intermediate game G3.5 between G3 and G4:

– Game G3.5: It is the same as game G3, except that, for all the OEnc queries,
the challenger samples x∗ ←$ X .

Since witness w∗ for x∗ is not used at all in games G3, G3.5 and G4 (due to
the game change in G2), we can directly construct two adversaries B2 and B3 for
solving the multi-fold SMP related to L and the multi-language multi-fold SMP
related to L0 respectively, so that

∣∣Pr3[Win]−Pr3.5[Win]
∣∣ ≤ Advmsmp

L ,B2,Qe
(λ) and∣∣Pr3.5[Win] − Pr4[Win]

∣∣ ≤ Advml-msmp
L0,B3,n,Qe

(λ). (B2 and B3 can sample all secret
keys themselves, simulate G3/G3.5/G4 honestly forA depending on the challenges
that B2 and B3 receive, and succeed as long as A distinguishes these games.)

Here we provide the full description of B3 for solving the multi-language
multi-fold SMP related to L0 (cf. Def. 14), and B2 can be similarly described.

B3 is given ({ρ(i)0 , {x(i)j }j∈[Qe]}i∈[n]), where (ρ
(i)
0 , td

(i)
0)←$ L0, and B3 aims to

45

decide whether x
(i)
1 , ..., x

(i)
Qe
←$ L

ρ
(i)
0

(say b = 0) or x
(i)
1 , ..., x

(i)
Qe
←$ X (say b = 1),

for each i ∈ [n]. B3 will simulate G3.5 or G4 for A, depending on the value of b.

• Firstly, B3 invokes (ρ, td)←$ L , ppHPS ←$ SetupHPS, ppNIZK ←$ SetupNIZK,
(crs, tdcrs)←$ CRSGen(ρ), samples H ←$ H, and sets ppPKE := (ρ, ppHPS,
ppNIZK, crs, H). Then for each user i ∈ [n], B3 samples secret key ski ←$ SK
itself and computes the corresponding public key pki := αρ(ski). B3 sends
(ppPKE, {pki}i∈[n]) to A. B3 also picks a challenge bit β ←$ {0, 1} for A.

• B3 has the secret keys ski of all users, thus can honestly answer ODec queries,
OCor queries and OLeak queries made by A, the same way as G3.5 and G4.

• As forOEnc queries, when answering the j-th (j ∈ [Qe])OEnc query (i∗,m0,m1),

B3 sets x∗ as the x
(i∗)
j in its own input, and computes d∗ := Priv(ski∗ , x

∗) +
mβ , τ∗ := H(pki∗ , d

∗) and π∗ ←$ Sim(crs, tdcrs, τ
∗, x∗), without knowing a

witness of x∗. B3 returns c∗ := (x∗, d∗, π∗) to A, puts (i∗, c∗) to QEnc and
puts (τ∗, x∗, π∗) to QSim.

In the case b = 0, x∗ = x
(i∗)
j is uniformly random over L

ρ
(i∗)
0

, thus B3
perfectly simulates G4 for A; in the case b = 1, x∗ = x

(i∗)
j is uniformly

random over X , thus B3 perfectly simulates G3.5 for A.
• Finally, B3 receives a bit β′ from A and returns 1 to its own challenger if

and only if β′ = β.

Overall, B3 simulates G4 for A in the case b = 0 and simulates G3.5 for A in
the case b = 1, thus B3 successfully distinguishes b = 0 from b = 1 as long
as the probability that β′ = β in G4 differs non-negligibly from that in G3.5.
Consequently, we have Advml-msmp

L0,B3,n,Qe
(λ) ≥

∣∣Pr3.5[Win]− Pr4[Win]
∣∣.

This completes the proof of Claim 6.

D.2 Proof of Claim 7

Claim 7.
∣∣Pr4[Win]− Pr5[Win]

∣∣ ≤ AdvussQANIZK,B5
(λ).

Proof. By Forge denote the event that A ever queries ODec(i, c = (x, d, π)) s.t.

(i, c = (x, d, π)) /∈ QEnc ∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ Lρ.

G4 and G5 are the same until Forge occurs, so
∣∣Pr4[Win]−Pr5[Win]

∣∣ ≤ Pr5[Forge].
To bound Pr5[Forge], we construct an adversary B5 against the USS of tag-

based QANIZK as follows. B5 is given (ρ, td, ppNIZK, crs) and has access to the
oracle OSim defined in Fig. 4. B5 simulates G5 for A as follows.

• Firstly, B5 invokes ppHPS ←$ SetupHPS, samples H ←$ H, and sets ppPKE :=

(ρ, ppHPS, ppNIZK, crs, H). Then for each user i ∈ [n], B5 picks (ρ
(i)
0 , td

(i)
0)←$ L0,

samples secret key ski ←$ SK itself and computes the corresponding public
key pki := αρ(ski). B5 sends (ppPKE, {pki}i∈[n]) to A.

46

• For an OEnc query (i∗,m0,m1) made by A, B5 samples x∗ ←$ L
ρ
(i∗)
0

, com-

putes d∗ := Priv(ski∗ , x
∗) + mβ and τ∗ := H(pki∗ , d

∗). Then B5 sends
(τ∗, x∗) to its own OSim oracle and obtains π∗, which is generated by OSim via
π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗). B5 returns c∗ := (x∗, d∗, π∗) to A, puts (i∗, c∗)
to QEnc and puts (τ∗, x∗, π∗) to QSim.

• For an ODec query (i, c = (x, d, π)) made by A, B5 computes τ := H(pki, d),
checks whether (i, c) /∈ QEnc∧VrfyNIZK(crs, τ, x, π) = 1∧(τ, x, π) /∈ QSim, and
returns ⊥ to A if the check fails. Then B5 uses td to further check whether
x ∈ Lρ. If x /∈ Lρ, B5 returns ⊥ to A, the same as G5, and sends (τ, x, π) to
its own challenger as its forgery. If x ∈ Lρ, B5 returns m := d− Priv(ski, x)
to A, the same as G5.

• B5 uses {ski}i∈[n] to answer OCor and OLeak queries for A, the same as G5.

It is clear to see that B5 simulates G5 perfectly for A, and B5 outputs a successful
forgery (τ, x, π) to its own challenger so that VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈
QSim ∧ x /∈ Lρ as long as Forge occurs. Therefore, Pr5[Forge] ≤ AdvussQANIZK,B5

(λ)

and Claim 7 follows.

D.3 Proof of Claim 8

Claim 8. For each η ∈ [n], |Pr6.η−1[Win]− Pr6.η[Win]| ≤ 2 · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

Proof. Note that the only difference between G6.η−1 and G6.η lies in the OEnc

oracle for user η: in G6.η−1, OEnc computes d∗ := Priv(skη, x
∗) +mβ using skη,

while in G6.η, OEnc computes d∗ := Priv(sk′η, x
∗) +mβ using sk′η.

Let Corη denote the event that A corrupts user η, i.e., A ever queries OCor(η)
when (η, ·) /∈ QEnc and obtains skη. In the case that Corη occurs, η is appended
to QCor, thus A is not allowed to query OEnc(η,m0,m1) for user η, and G6.η−1
is identical to G6.η. Consequently,

|Pr6.η−1[Win]−Pr6.η[Win]| = |Pr6.η−1[Win∧¬Corη]−Pr6.η[Win∧¬Corη]|. (1)

To bound (1), we first analyze the information about skη (resp. skη and

sk′η) that A may obtain in G6.η−1 (resp. G6.η) in the case that ¬Corη occurs.

• Firstly, the public keys contain pkη = αρ(skη).
• In OEnc(η,m0,m1), since x∗ ←$ L

ρ
(η)
0

, the behavior of OEnc for user η is

completely determined by α
ρ
(η)
0

(skη) (resp. α
ρ
(η)
0

(sk′η)).

• In ODec(η, c), the challenger will not output m unless x ∈ Lρ (due to the
new rejection rule added in G5), thus the behavior of ODec for user η is
completely determined by αρ(skη).

• In the case that ¬Corη, A never queries OCor(η).
• From OLeak(η, L), A can obtain at most κ bits information about skη before

it issues the first encryption query OEnc(η, ·, ·) w.r.t user η.

47

Overall, the information about skη (resp. skη and sk′η) that A learns in G6.η−1

(resp. G6.η) is limited in αρ(skη), α
ρ
(η)
0

(skη) (resp. α
ρ
(η)
0

(sk′η)) and at most κ

bits leakage information of skη.

Then we analyze (1). Intuitively, by the κ-LR-〈L ,L0〉-key-switching prop-

erty of QAHPS (cf. Def. 5), α
ρ
(η)
0

(skη) is statistically close to α
ρ
(η)
0

(sk′η) , even

in the presence of αρ(skη) and at most κ bits leakage about skη. Thus, the OEnc

for user η in G6.η−1 (using skη) is statistically close to that in G6.η (using sk′η).

Formally, we build an (unbounded) adversary B7 against the κ-LR-〈L ,L0〉-
key-switching property of QAHPS. B7 is given (ppHPS, ρ, αρ(s̃k)), where s̃k ←$ SK
is chosen by its own challenger, and has access to the oracles OLeak and OChal

defined in Fig. 3, which are denoted by O(QAHPS)
Leak and O(QAHPS)

Chal below to avoid
confusing with the oracles in PKE’s experiment. Recall that B7 is not allowed to

access O(QAHPS)
Leak anymore once it queries O(QAHPS)

Chal (cf. Remark 1). B7 will sim-

ulate G6.η−1 (or G6.η) for A. B7 picks a challenge bit β ←$ {0, 1}. Intuitively,

B7 will implicitly set the secret key of user η as the s̃k chosen by its own chal-

lenger and explicitly define the public key of user η as the αρ(s̃k) contained in
its input. For the remaining n − 1 users i ∈ [n] \ {η}, B7 samples secret keys

ski, sk
′
i and the language parameters (ρ

(i)
0 , td

(i)
0)←$ L0 itself, thus can honestly

answer OEnc queries (sampling x∗ from L
ρ
(i)
0

), ODec queries (using brute force

to decide the membership of Lρ), OCor queries and OLeak queries made by A
for these users. For user η, B7 can answer ODec queries using the projection key

αρ(s̃k) contained in its own input (since ODec will output ⊥ unless x ∈ Lρ &
B7 can decide the membership of Lρ using brute force), answer OLeak queries

via its own O(QAHPS)
Leak oracle, and aborts immediately if A corrupts η. As for the

first OEnc query w.r.t. user η made by A, B7 queries its own O(QAHPS)
Chal oracle,

and obtains a challenge (ρ0, αρ0(s̃k)) if b = 0 or (ρ0, αρ0(s̃k
′
)) if b = 1 , where

(ρ0, td0) ←$ L0, s̃k
′ ←$ SK and b←$ {0, 1} (the challenge bit) are chosen by

B7’s own challenger. B7 will explicitly define the η-th language parameter ρ
(η)
0

as ρ0 and implicitly set sk′η as s̃k
′

for user η. To answer OEnc queries of user η,

B7 samples x∗ from Lρ0 , and uses the projection key αρ0(s̃k) (or αρ0(s̃k
′
)) con-

tained in its own challenge to compute d∗. After the first OEnc query w.r.t. user
η, A is not allowed to query OLeak for user η (cf. Remark 3), so B does not need

(and is in fact not allowed) to query its own O(QAHPS)
Leak oracle anymore. Finally, B7

receives a bit β′ from A and returns 1 to its own challenger as the guessing of b if
and only if β′ = β and ¬Corη occurs (i.e., A never corrupts user η). Overall, B7
simulates G6.η−1 perfectly for A if b = 0 and ¬Corη occurs, and simulates G6.η

perfectly for A if b = 1 and ¬Corη occurs. Therefore, B7 successfully distin-
guishes b = 0 from b = 1 as long as the probability that β′ = β in G6.η−1 differs

48

non-negligibly from that in G6.η in the case ¬Corη, and consequently, we have

ε
lr-〈L,L0〉-ks
QAHPS,B7,κ

(λ) ≥ 1
2 · |Pr6.η−1[Win∧¬Corη]−Pr6.η[Win∧¬Corη]|. Here the scalar

1
2 arises due to the definition style of the advantage function ε

lr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).
The full description of B7 is as follows.

• Given (ppHPS, ρ, αρ(s̃k)), B7 first invokes ppNIZK ←$ SetupNIZK, (crs, tdcrs)←$

CRSGen(ρ), samples H ←$ H, and sets ppPKE := (ρ, ppHPS, ppNIZK, crs, H). B7
also samples a challenge bit β ←$ {0, 1} for A.

For user η, B7 sets skη := s̃k implicitly and defines pkη := αρ(s̃k)

explicitly, where s̃k is the hashing key chosen by B7’s own challenger and

αρ(s̃k) is part of B7’s own input. For all other users i ∈ [n]\{η}, B7 samples

(ρ
(i)
0 , td

(i)
0)←$ L0, samples secret keys ski, sk

′
i ←$ SK itself and computes

pki := αρ(ski). B7 sends (ppPKE, {pki}i∈[n]) to A.
• When answering an OEnc query (i∗,m0,m1) for user i∗ 6= η made by A, B7

computes a challenge ciphertext c∗ the same way as G6.η−1 and G6.η.
More precisely, B7 samples x∗ ←$ L

ρ
(i∗)
0

, computes d∗ := Priv(sk′i∗ , x
∗) +

mβ using sk′i∗ if i∗ < η and computes d∗ := Priv(ski∗ , x
∗) +mβ using ski∗ if

i∗ > η. Then B7 computes τ∗ := H(pki∗ , d
∗), invokes π∗ ←$ Sim(crs, tdcrs, τ

∗,
x∗) and sets c∗ := (x∗, d∗, π∗).
B7 returns c∗ to A, puts (i∗, c∗) to QEnc and puts (τ∗, x∗, π∗) to QSim.

• When answering an OEnc query (η,m0,m1) for user η made by A, B7 com-
putes a challenge ciphertext c∗ as follows.

If this is the first OEnc query w.r.t. user η made by A, B7 queries its own

O(QAHPS)
Chal oracle, and obtains a challenge (ρ0, p̃kb), where (ρ0, td0)←$ L0,

p̃k0 := αρ0(s̃k), p̃k1 := αρ0(s̃k
′
) with s̃k

′ ←$ SK, b ←$ {0, 1} are chosen

by B7’s own challenger, and b is the challenge bit that B7 aims to guess. B7
defines ρ

(η)
0 := ρ0 explicitly and sets sk′η := s̃k

′
implicitly, where ρ0 is the

language parameter contained in B7’s challenge and s̃k
′

is the hashing key

chosen by B7’s own challenger to compute p̃k1.
B7 computes a challenge ciphertext c∗ for user η as follows. B7 samples

x∗ ←$ L
ρ
(η)
0

= Lρ0 with witness w∗, and computes d∗ := Pub(p̃kb, x
∗, w∗) +

mβ using the projection key p̃kb contained in B7’s challenge. Then B7 com-
putes τ∗ := H(pkη, d

∗), π∗ ←$ Sim(crs, tdcrs, τ
∗, x∗) and sets c∗ := (x∗, d∗, π∗).

B7 returns c∗ to A, puts (η, c∗) to QEnc and puts (τ∗, x∗, π∗) to QSim.
• For an ODec query (i, c = (x, d, π)) made by A, B7 decrypts as follows.

B7 computes τ := H(pki, d), checks whether (i, c) /∈ QEnc∧VrfyNIZK(crs, τ,
x, π) = 1 ∧ (τ, x, π) /∈ QSim, and returns ⊥ to A if the check fails. Then B7
uses brute force to further decide whether x ∈ Lρ. If x /∈ Lρ, B7 returns ⊥
to A. If x ∈ Lρ, B7 uses brute force to find a witness w for x ∈ Lρ, computes
m := d−Priv(ski, x) using ski if i 6= η and computes m := d−Pub(pkη, x, w)
using pkη and witness w if i = η, and returns m to A.

By the correctness of QAHPS, B7’s simulation of ODec oracle is the same
as G6.η−1 and G6.η.

49

• For an OCor query i made by A, if i 6= η, B7 returns ski to A; if i = η, B7
aborts immediately.

• For an OLeak query (i, L) made by A, if i 6= η, B7 returns L(ski) to A; if

i = η, B7 submits L to its own O(QAHPS)
Leak oracle, obtains L(s̃k) from O(QAHPS)

Leak ,

and returns L(s̃k) to A.
Note that after A’s first OEnc query w.r.t. user η, A is not allowed to query

OLeak for user η (cf. Remark 3). This perfectly matches the B7’s situation

in which B7 is not allowed to query its own O(QAHPS)
Leak oracle after B7 queries

O(QAHPS)
Chal (cf. Remark 1). Thus, B7 simulates OLeak perfectly for A.

• Finally, B7 receives a bit β′ from A, and outputs 1 to its own challenger as
the guessing of b if and only if β′ = β and A never corrupts η (i.e., ¬Corη).

It is clearly that B7 simulates oracles OEnc w.r.t. users i∗ 6= η, ODec and
OLeak perfectly for A, and simulates oracle OCor perfectly for A as well in the
case of ¬Corη. Next, we analyze B7’s simulation of oracle OEnc w.r.t. user η.

– If b = 0, B7’s challenge is (ρ0, p̃k0 = αρ0(s̃k)). Since B7 implicitly sets skη :=

s̃k, by the correctness of QAHPS and by the fact that x∗ ∈ Lρ0 with witness

w∗, it follows that d∗ := Pub(p̃k0, x
∗, w∗) + mβ = Priv(s̃k, x∗) + mβ =

Priv(skη, x
∗) +mβ , the same as G6.η−1.

– If b = 1, B7’s challenge is (ρ0, p̃k1 = αρ0(s̃k
′
)). Since B7 implicitly sets

sk′η := s̃k
′

, by the correctness of QAHPS and by the fact that x∗ ∈ Lρ0 with

witness w∗, it follows that d∗ := Pub(p̃k1, x
∗, w∗) + mβ = Priv(s̃k

′
, x∗) +

mβ = Priv(sk′η , x
∗) +mβ , the same as G6.η.

Overall, B7 simulates G6.η−1 perfectly for A in the case b = 0 and ¬Corη, and
simulates G6.η perfectly for A in the case b = 1 and ¬Corη. Therefore, we have

ε
lr-〈L,L0〉-ks
QAHPS,B7,κ

(λ) = |Pr[B7 ⇒ b]− 1
2 | = 1

2 · |Pr[B7 ⇒ 1|b = 0]− Pr[B7 ⇒ 1|b = 1]|
= 1

2 · |Pr[β′ = β ∧ ¬Corη|b = 0]− Pr[β′ = β ∧ ¬Corη|b = 1]|
= 1

2 · |Pr6.η−1[Win ∧ ¬Corη]− Pr6.η[Win ∧ ¬Corη]|.
(2)

Taking (1) and (2) together, Claim 8 follows.

D.4 Proof of Claim 9

Claim 9.
∣∣Pr7[Win]− Pr8[Win]

∣∣ ≤ AdvL0-mk-mext
QAHPS,B6,n,Qe

(λ).

Proof. The only place that G7 differs from G8 lies inOEnc. For anOEnc(i∗,m0,m1)
query, the challenger samples x∗ ←$ Lρ0 (due to the change in G7), and computes
d∗ := Priv(sk′i∗ , x

∗) +mβ in G7 while samples d∗ ←$ HV in G8.
Let us fix some notations. Let i∗j , x

∗
j , d

∗
j , mβ,j denote the i∗, x∗, d∗, mβ in

the j-th OEnc query, respectively, where j ∈ [Qe]. The difference between G7 and
G8 can be characterized by the following two distributions:

50

• G7:
(
x∗j ←$ Lρ0 , d∗j := Priv(sk′i∗j , x

∗
j) +mβ,j ∈ HV

)
j∈[Qe],

• G8:
(
x∗j ←$ Lρ0 , d∗j ←$ HV

)
j∈[Qe].

Since {sk′i}i∈[n] is used only in the computations of {d∗j}j∈[Qe] in OEnc, and
{x∗j}j∈[Qe] in OEnc are uniformly chosen from Lρ0 , by the L0-multi-key-multi-
extracting property of QAHPS (cf. Def. 11), the above two distributions are
computationally indistinguishable.

Formally, we build an adversary B6 against the L0-multi-key-multi-extracting
property of QAHPS by invokingA. B6 is given (ppHPS, ρ0, {xj , {hvi,j}i∈[n]}j∈[Qe]),
where (ρ0, td0)←$ L0, sk′1, ..., sk

′
n ←$ SK, and x1, ..., xQe ←$ Lρ0 . B6 aims to

decide whether hvi,j = Λsk′i(xj) for all i ∈ [n] and j ∈ [Qe] (say b = 0) or
hv1,1, ..., hvn,Q ←$ HV (say b = 1). B6 will simulate G7 or G8 for A, depending
on the value of b.

• Firstly, B6 invokes (ρ, td)←$ L , ppNIZK ←$ SetupNIZK, (crs, tdcrs)←$ CRSGen(ρ),
samples H ←$ H, and sets ppPKE := (ρ, ppHPS, ppNIZK, crs, H). Then for each
user i ∈ [n], B6 samples secret key ski ←$ SK itself and computes the cor-
responding public key pki := αρ(ski). B6 sends (ppPKE, {pki}i∈[n]) to A. B6
also picks a challenge bit β ←$ {0, 1} for A.

• B6 has the secret keys ski of all users, thus can honestly answer ODec queries
(using td to decide the membership of Lρ), OCor queries and OLeak queries
made by A, the same way as G7 and G8.

• As for OEnc queries, when answering the j-th (j ∈ [Qe]) OEnc query (i∗j ,m0,j ,
m1,j), B6 sets x∗j as the xj in its own input, and computes d∗j := hvi∗j ,j +

mβ,j using the hvi∗j ,j in its input. Then B6 computes τ∗j := H(pki∗j , d
∗
j)

and π∗j ←$ Sim(crs, tdcrs, τ
∗
j , x
∗
j), without knowing a witness of x∗j . B6 returns

c∗j := (x∗j , d
∗
j , π
∗
j) to A, puts (i∗j , c

∗
j) to QEnc and puts (τ∗j , x

∗
j , π
∗
j) to QSim.

In the case b = 0, hvi∗j ,j = Λsk′
i∗
j

(xj) = Λsk′
i∗
j

(x∗j) = Priv(sk′i∗j , x
∗
j), thus B6

perfectly simulates G7 for A; in the case b = 1, hvi∗j ,j is uniformly random
over HV, and so is d∗j , thus B6 perfectly simulates G8 for A.

• Finally, B6 receives a bit β′ from A and returns 1 to its own challenger if
and only if β′ = β.

Overall, B6 simulates G7 for A in the case b = 0 and simulates G8 for A in
the case b = 1, thus B6 successfully distinguishes b = 0 from b = 1 as long
as the probability that β′ = β in G7 differs non-negligibly from that in G8.
Consequently, we have AdvL0-mk-mext

QAHPS,B6,n,Qe
(λ) ≥

∣∣Pr7[Win]− Pr8[Win]
∣∣.

This completes the proof of Claim 9.

E Discussions on Potential Variants of Our Constructions

E.1 Discussions on Setup of Our SIG and PKE

In our SIG constructed in Fig. 8 and our PKE constructed in Fig. 10, the setup
algorithms SetupSIG and SetupPKE produce ρ and crs along with trapdoors td and

51

tdcrs, via (ρ, td)←$ L and (crs, tdcrs)←$ CRSGen(ρ). Note that the trapdoors
are not used at all in the other algorithms of SIG and PKE. The reason why
we make the trapdoors explicit in our constructions is just to ease the security
proofs (of Theorem 1 and Theorem 2). Note that the related works (e.g. [4, 21])
also produce trapdoors in their setup algorithms (though implicitly), so that
their security reductions can use trapdoors for simulation.

Alternatively, we can define variants of L and CRSGen, say L̃ and ˜CRSGen,

that only output ρ and crs, i.e., ρ ←$ L̃ and crs ←$ ˜CRSGen(ρ), respectively. We

require the indistinguishability of the ρ output by L and L̃ , and the indistin-

guishability of the crs output by CRSGen and ˜CRSGen. A trivial implementation

of L̃ is just to invoke (ρ, td)←$ L and output ρ, and similarly, ˜CRSGen sim-

ply invokes (crs, tdcrs) ←$ ˜CRSGen(ρ) and outputs crs. There might exist other

non-trivial ways of implementing L̃ and ˜CRSGen depending on the concrete

instantiations.5 Consequently, by invoking L̃ and ˜CRSGen instead of L and
CRSGen, we obtain SIG and PKE whose setup algorithms SetupSIG and SetupPKE
do not produce trapdoors explicitly. During the security proofs, we can then
switch to L and CRSGen that produce trapdoors used for simulation, assuming
the indistinguishability of those variants.

E.2 Discussions on Potential Variants of Our PKE

Here we discuss some potential variants of our PKE constructed in Fig. 10. One
potential variant might be moving the sampling of (ρ, td)←$ L from SetupPKE
to Gen, and putting the language parameter ρ into the public key of PKE. For
this PKE variant, each user has its own ρ in the public key, and consequently,
the MUMCc&l-CCA security proof will start with many languages (one per user).
One might think that this would nullify the need of the new property “multi-
language multi-fold SMP” (defined in Def. 14) by using the “multi-fold SMP”
(defined in Def. 3) directly, thus simplifying the analysis.

However, as far as we understand, the “multi-fold SMP” is not sufficient to
prove the tight MUMCc&l-CCA security of this PKE variant, and it seems that
the new property “multi-language multi-fold SMP” is still a natural requirement.
The reason is as follows.

– Necessity of Multiple Language Changes. Suppose there are n users,
and the language parameter for user i is ρ(i), i ∈ [n]. According to our tight
security proof strategy (cf. a high-level overview in Subsect. 2.2 and Fig.
2 and a formal proof in Appendix D), we need to separate the languages

5 As an example, for our MDDH-based instantiation in Appendix I, the language
distribution LD`,k in Appendix I.2 samples A ←$ D`,k and outputs (ρ := [A]1 ∈
G`×k1 , td := A ∈ Z`×kp), where td is the discrete logarithm of ρ. The variant L̃D`,k
could sample ρ from G`×k1 directly according to appropriate distribution, without
knowing its discrete logarithm. For instance, in the case that D`,k is the uniform

distribution U`,k over Z`×kp , L̃D`,k can simply sample ρ uniformly from G`×k1 .

52

involved in encryption ({Lρ(i)}i∈[n]) from the languages involved in decryp-
tion ({Lρ(i)}i∈[n]), so that the secret keys used for encryption can then be
switched to independent ones to randomize the challenge ciphertexts via the
key-switching property of QAHPS. As a result, we need to change the mul-
tiple languages ({Lρ(i)}i∈[n]) involved in encryption to some newly sampled
multiple languages (say {Lρ′(i)}i∈[n]), in a tight way.

– Insufficiency of “Multi-fold SMP”. “Multi-fold SMP” can only deal
with a single language, hence it is hard for us to rely only on “multi-fold
SMP” to change {Lρ(i)}i∈[n] to {Lρ′(i)}i∈[n] tightly and generically, without
the loss of the number of languages.

– Sufficiency of “Multi-language Multi-fold SMP”. Our new property
“multi-language multi-fold SMP” is a natural choice for the multiple lan-
guage changes. By “multi-language multi-fold SMP”, we can first change the
multiple languages involved in encryption ({Lρ(i)}i∈[n]) to X , then change
to the newly sampled multiple languages ({Lρ′(i)}i∈[n]).

– Other Possible Approach. It might be also possible to accomplish the
tight security proof by considering other PKE variants and requiring some
other properties from the language distribution, instead of the “multi-language
multi-fold SMP”. For example, another potential PKE variant would be
setting the language parameters {ρ(i)}i∈[n] of different users as some “re-
randomized versions” of a same ρ. To define this PKE variant formally,
one need to formalize an additional algorithm to support “language re-
randomization” along with some new properties to support tight reduction.
As far as we see, contrary to the expected simplification of the analysis, this
approach seems to make the PKE construction and its security analysis more
complicated.

Besides, moving the sampling of (ρ, td)←$ L from SetupPKE to Gen might
lead to another subtlety. Note that in QANIZK, crs might depend on ρ, i.e., crs is
generated by (crs, tdcrs)←$ CRSGen(ρ), so the generation of crs has to be moved
from SetupPKE to Gen along with ρ for the PKE variant. Consequently, each user
has its own crs in addition to ρ, and the multi-user security proof involves not
only many languages but also many CRSs. To prove the tight MUMCc&l-CCA
security for this PKE variant, a stronger requirement like “multi-CRS version of
USS” would be needed from the building block QANIZK.

Lastly, moving the sampling of (ρ, td)←$ L from SetupPKE to Gen might
lead to a less efficient signcryption (SC) construction, when combining the PKE
variant with our SIG proposed in Sect. 5. Jumping a bit ahead, we propose an
optimized SC construction in Appendix F by taking advantage of the similar
structures and compatible underlying building blocks of our SIG and PKE (see
also Subsect. 2.3 for an overview). In particular, we reuse the language parameter
ρ in the Setup algorithms (SetupSIG and SetupPKE), and based on this, we further
integrate the ciphertext of PKE and signature of SIG by reusing the instance
x ∈ Lρ and the proof π of QANIZK (see Fig. 13 in Appendix F.2). If using the
above PKE variant instead, it seems hard for us to reuse the language parameter

53

ρ, since our SIG’s ρ is generated in Setup while the above PKE variant’s ρ
is moved to Gen, unless one moves the sampling of ρ from SetupSIG to Gen
for the SIG as well, which will encounter similar subtleties as described above.
Consequently, the inconsistent ways of generating ρ will lead to less compatible
structures in PKE and SIG and might bring more obstacles for the optimization
of SC.

F Signcryption with Tight MUMCc&l-Priv&Auth Security

In this section, we present signcryption (SC) schemes with tight privacy (MUMCc&l-
Priv) and authenticity (MUMCc&l-Auth), in the multi-user multi-challenge (MUMC)
setting under CCA attacks, adaptive corruptions and key leakages.

In Appendix F.1, we define the syntax of SC and its MUMCc&l-Priv and
MUMCc&l-Auth security. Then in Appendix F.2, we present our generic con-
struction of SC from PV-QA-HPS, QA-HPS and QA-NIZK.

F.1 Signcryption and Its MUMCc&l-Priv&Auth Security

Definition 20 (SC). A signcryption (SC) scheme SC = (SetupSC,Gen,SignEnc,
VrfyDec) with message space M consists of four PPT algorithms:

– ppSC ←$ SetupSC: The setup algorithm outputs a public parameter ppSC, which
serves as an implicit input of other algorithms.

– (pk, sk)←$ Gen(ppSC): Taking ppSC as input, the key generation algorithm
outputs a pair of public key and secret key (pk, sk).

– c←$ SignEnc(sks, pkr,m): Taking as input a sender’s secret key sks, a re-
ceiver’s public key pkr and a message m ∈ M, the signcryption algorithm
outputs a ciphertext c.

– m/⊥ ← VrfyDec(pks, skr, c): Taking as input a sender’s public key pks, a
receiver’s secret key skr and a ciphertext c, the deterministic unsigncryption
algorithm outputs either a message m ∈M or a special rejection symbol ⊥.

Correctness requires that for all ppSC ∈ SetupSC, (pks, sks), (pkr, skr) ∈ Gen(ppSC),
m ∈M, c ∈ SignEnc(sks, pkr,m), it holds that VrfyDec(pks, skr, c) = m.

Remark 6. Note that our syntax of SC above is slightly simplified. More pre-
cisely, we do not explicitly take identities of users (e.g., Alice, Bob) into account,
while implicitly use the indices i ∈ [n] of users (e.g., s, r) to represent their iden-
tities. Jumping a bit ahead, our generic construction of SC later in Appendix F.2
can naturally handle explicit user identities, and even support associated data
as well, by simply putting them inside the collision-resistant hash function H
when computing τ . To better illustrate our core ideas and techniques, we choose
to use a slightly simplified syntax to present our SC construction later.

Bellare and Stepanovs [9] defined the syntax of SC with a multi-receiver
version, since they focused on security proof of SC schemes used in Apple iMes-
sage system. Meanwhile, they formalized privacy and authenticity for SC in

54

a multi-user and multi-challenge (MUMC) setting, capturing both insider and
outsider security by allowing user corruptions. Their formalization unifies differ-
ent security notions via so-called relaxing relations, hence covering attacks like
CCA/gCCA2[3]/RCCA[11] attacks and ciphertext/plaintext integrity [7]. Here
we define the syntax of SC in the common case of single receiver. We choose the
strongest security notion that considers CCA attacks and ciphertext integrity,
and formalize them as MUMCc&l-Priv and MUMCc&l-Auth, which asks ciphertext
indistinguishability and ciphertext integrity, respectively, under CCA attacks,
adaptive corruptions as well as key leakages, in the MUMC setting. Below we
present the formal definition.

Definition 21 (MUMCc&l-Priv and MUMCc&l-Auth for SC). Let κ = κ(λ) ∈
N. A signcryption scheme SC is MUMCc&l-Priv secure (resp. MUMCc&l-Auth se-
cure) under κ bits leakage per user, if for any PPT adversary A and any poly-

nomial n, it holds that Advpriv-c&l
SC,A,n,κ(λ) :=

∣∣Pr[Exppriv-c&l
SC,A,n,κ ⇒ 1] − 1

2

∣∣ ≤ negl(λ)

(resp. Advauth-c&l
SC,A,n,κ(λ) := Pr[Expauth-c&l

SC,A,n,κ ⇒ 1] ≤ negl(λ)), where the experiments

Exppriv-c&l
SC,A,n,κ and Expauth-c&l

SC,A,n,κ are defined in Fig. 11 and Fig. 12 respectively.

Exppriv-c&l
SC,A,n,κ:

ppSC ←$ SetupSC
For i ∈ [n]: (pki, ski) ←$ Gen(ppSC)

QSignEnc := ∅ �Record the signcryption queries

QCor := ∅ �Record the corruption queries

For i ∈ [n]: chali := false

β ←$ {0, 1} �Single challenge bit

β′ ←$ AO(ppSC, {pki}i∈[n])

If β′ = β: Return 1; Else: Return 0

OSignEnc(s∗ ∈ [n], r∗ ∈ [n],m0,m1):

If |m0| 6= |m1|: Return ⊥
If r∗ ∈ QCor: Return ⊥
chalr∗ := true

c∗ ←$ SignEnc(sks∗ , pkr∗ ,mβ)

QSignEnc := QSignEnc ∪ {(s∗, r∗, c∗)}
Return c∗

OVrfyDec(s ∈ [n], r ∈ [n], c):

If (s, r, c) ∈ QSignEnc: Return ⊥
Return VrfyDec(pks, skr, c)

Oreal
SignEnc(s ∈ [n], r ∈ [n],m):

Return SignEnc(sks, pkr,m)

OCor(i):

If (·, i, ·) ∈ QSignEnc: Return ⊥
QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

If chali = true: Return ⊥
Return L(ski)

Fig. 11. The MUMCc&l-Priv security experiment Exppriv-c&l
SC,A,n,κ for SC, where the ad-

versary A has access to oracles O = {OSignEnc(·, ·, ·, ·),Oreal
SignEnc(·, ·, ·),OVrfyDec(·, ·, ·),

OCor(·),OLeak(·, ·)}. We note that besides challenge ciphertexts return by OSignEnc, A
can also obtain honestly generated ciphertexts via Oreal

SignEnc.

F.2 Generic Construction of Signcryption

We present a generic construction of MUMCc&l-Priv&Auth secure signcryption
(SC). The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.

• A QAHPS = (SetupHPS, α(·),Pub,Priv) for both L and L0, whose hashing
key space is SK, projection key space is PK and hash value space is HV.
We require HV to be an (additive) group.

55

Expauth-c&l
SC,A,n,κ:

ppSC ←$ SetupSC
For i ∈ [n]: (pki, ski) ←$ Gen(ppSC)

QSignEnc := ∅ �Record the signcryption queries

QCor := ∅ �Record the corruption queries

Win := false

⊥ ←$ AO(ppSC, {pki}i∈[n])
If Win = true: Return 1; Else: Return 0

OSignEnc(s ∈ [n], r ∈ [n],m):

c ←$ SignEnc(sks, pkr,m)

QSignEnc := QSignEnc ∪ {(s, r, c)}
Return c

OVrfyDec(s∗ ∈ [n], r∗ ∈ [n], c∗):

m∗ ← VrfyDec(pks∗ , skr∗ , c
∗)

If (s∗ /∈ QCor) ∧ ((s∗, r∗, c∗) /∈ QSignEnc) ∧ (m∗ 6= ⊥):

Win := true

Return m∗

OCor(i):

QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage bits per user i

Return L(ski)

Fig. 12. The MUMCc&l-Auth security experiment Expauth-c&l
SC,A,n,κ for SC, where the adver-

sary A has access to oracles O = {OSignEnc(·, ·, ·),OVrfyDec(·, ·, ·),OCor(·), OLeak(·, ·)}.

• A publicly-verifiable PVQAHPS = (S̃etupHPS, α̃(·), ν̃, P̃ub, P̃riv, ṼrfyHPS) for

both L and L0, whose hashing key space is S̃K, verification key space is
ṼK and hash value space is H̃V.

• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,
whose tag space is T .

• A family of collision-resistant hash functions H = {H : ṼK×PK×HV×H̃V
−→ T }.

Our generic construction of SC = (SetupSC,Gen,SignEnc,VrfyDec) from QAHPS,
PVQAHPS, QANIZK and H is shown in Fig. 13. The message space isM := HV.

ppSC ←$ SetupSC:

(ρ, td)←$ L .
ppHPS ←$ SetupHPS.

p̃pHPS ←$ S̃etupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs) ←$ CRSGen(ρ).
H ←$ H.
Return ppSC :=

(ρ, ppHPS, p̃pHPS, ppNIZK, crs, H).

(pk, sk) ←$ Gen(ppSC):

sk ←$ SK, pk := αρ(sk).

s̃k ←$ SK, ṽk := ν̃(s̃k).

Return (pk := (pk, ṽk), sk := (sk, s̃k)).

c←$ SignEnc(sks, pkr,m ∈ HV):

Parse sks = (sks, s̃ks).

Parse pkr = (pkr, ṽkr).
x←$ Lρ with witness w.
d := Pub(pkr, x, w) +m ∈ HV.

d̃ := P̃riv(s̃ks, x).

ṽks := ν̃(s̃ks).

τ := H(ṽks, pkr, d, d̃) ∈ T .
π ←$ Prove(crs, τ, x, w).

Return c := (x, d, d̃, π).

m/⊥ ← VrfyDec(pks, skr, c):

Parse pks = (pks, ṽks).

Parse skr = (skr, s̃kr).

Parse c = (x, d, d̃, π).
pkr := αρ(skr).

τ := H(ṽks, pkr, d, d̃) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1

∧ ṼrfyHPS(ṽks, x, d̃) = 1:
m := d− Priv(skr, x) ∈ HV.
Return m.

Else: Return ⊥.

Fig. 13. Generic construction of SC = (SetupSC,Gen, SignEnc,VrfyDec) from QAHPS,
PVQAHPS, tag-based QANIZK and H. The message space is M := HV.

Intuitively, our SC in Fig. 13 can be viewed as an integration of the SIG and
PKE constructed in Subsect. 5.2 and Subsect. 6.2, but in a way different from the
straightforward Encrypt-then-Sign method. We reuse the instance x and the QA-
NIZK proof π, in order to obtain a more efficient construction. This is possible

56

thanks to the similar structures and compatible building blocks of our SIG and
PKE. As a result, compared with SIG, our SC adds only one more component d
to provide privacy; compared with PKE, our SC adds only one more component
d̃ to provide authenticity. Actually, our SC is more efficient than using existing
generic constructions for building SC from SIG and PKE, such as “Encrypt-
then-Sign”, “Sign-then-Encrypt”, “Encrypt-and-Sign”, etc. [3, 9].

Correctness of SC follows directly from the correctness of QAHPS, the veri-
fication completeness of PVQAHPS and the perfect completeness of QANIZK.

Next, we show its MUMCc&l-Priv and MUMCc&l-Auth security. As noted above,
our SC can be viewed as an integration of the SIG and PKE in Subsect. 5.2 and
Subsect. 6.2, by reusing the instance x and the QA-NIZK proof π. Moreover,

the PKE part (pkr, d) and the SIG part (ṽks, d̃) are bound together via the
collision-resistant hash function H, in order to avoid a trivial CCA attack. The
MUMCc&l-Priv security of SC follows from a similar proof as the MUMCc&l-CCA
security of PKE shown in Subsect. 6.2 and the MUMCc&l-Auth security of SC
follows from a similar proof as the strong MUc&l-CMA security of SIG shown
in Subsect. 5.2, with additional cares to the analysis of H’s collision-resistance.
Formally, we have two theorems below, followed by the proof sketches of them.

Theorem 3 (MUMCc&l-Priv Security of SC). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, and supporting both κ-LR-〈L ,L0〉-key-switching and L0-multi-key-
multi-extracting, (iii) PVQAHPS is a publicly-verifiable QA-HPS for both L
and L0, having VK-diversity, (iv) QANIZK is a tag-based QA-NIZK for L ,
satisfying both perfect zero-knowledge and unbounded simulation-soundness, (v)
H is collision-resistant. Then the proposed SC scheme in Fig. 13 is MUMCc&l-Priv
secure under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OSignEnc queries and Qd times of OVrfyDec queries, there exist
adversaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (n + Qe +
Qd) · poly(λ), with poly(λ) independent of T(A), and

Advpriv-c&l
SC,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qe

(λ) + 2 · Advml-msmp
L0,B3,n,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

QAHPS,B6,n,Qe
(λ) + n(n−1)

2 · (εpk-divQAHPS(λ) + εvk-divPVQAHPS(λ)) + 2n · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

Theorem 4 (MUMCc&l-Auth Security of SC). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, (iii) PVQAHPS is a publicly-verifiable QA-HPS for both L and L0,
having verification soundness, VK-diversity, and supporting κ-LR-〈L0,L 〉-OT-
extracting, (iv) QANIZK is a tag-based QA-NIZK for L , satisfying both per-
fect zero-knowledge and unbounded simulation-soundness, (v) H is collision-
resistant. Then the proposed SC scheme in Fig. 13 is MUMCc&l-Auth secure
under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OSignEnc queries and Qd times of OVrfyDec queries, there exist

57

adversaries B1, · · · ,B6, such that T(B1) ≈ · · · ≈ T(B5) ≈ T(A) + (n + Qe +
Qd) · poly(λ), with poly(λ) independent of T(A), and

Advauth-c&l
SC,A,n,κ(λ) ≤ Advvrfy-sndPVQAHPS,B1,n

(λ) + AdvcrH,B2
(λ) + Advmsmp

L ,B3,Qe
(λ) + Advmsmp

L0,B4,Qe
(λ)

+ AdvussQANIZK,B5
(λ) + n(n−1)

2 · (εpk-divQAHPS(λ) + εvk-divPVQAHPS(λ)) + nQd · εlr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ).

Remark 7 (On the Tightness of SC’s MUMCc&l-Priv&Auth Security).
According to Theorem 3 and Theorem 4, SC has both tight MUMCc&l-Priv and
tight MUMCc&l-Auth security, as long as the multi-fold SMPs related to L and
L0 and the multi-language multi-fold SMP related to L0 have tight reductions,
QAHPS has a tight L0-multi-key-multi-extracting property, PVQAHPS has a
tight verification soundness and QANIZK has a tight USS.

Proof Sketch of Theorem 3. The proof for the MUMCc&l-Priv security of SC
is essentially the same as that for the MUMCc&l-CCA security of PKE shown in
Subsect. 6.2, with additional cares to the analysis of H’s collision-resistance.

The security proof goes with a sequence of games G0–G8, which are essentially
the same as those defined in the proof of Theorem 2 for PKE.

Game G0: This is the Exppriv-c&l
SC,A,n,κ experiment (cf. Fig. 11). Let Win denote the

event that β′ = β. By definition, Advpriv-c&l
SC,A,n,κ(λ) = |Pr0[Win]− 1

2 |.
Let (pki = (pki, ṽki), ski = (ski, s̃ki)) denote the public/secret key pair of

user i ∈ [n]. In this game, when answering an OSignEnc query (s∗, r∗,m0,m1), the
challenger samples x∗ ←$ Lρ with witness w∗, computes d∗ := Pub(pkr∗ , x

∗, w∗)+

mβ , d̃∗ := P̃riv(s̃ks∗ , x
∗), τ∗ := H(ṽks∗ , pkr∗ , d

∗, d̃∗), and invokes π∗ ←$ Prove(crs,

τ∗, x∗, w∗). Then, the challenger returns the challenge ciphertext c∗ := (x∗, d∗, d̃∗,
π∗) to A and puts (s∗, r∗, c∗) to set QSignEnc.

When answering an Oreal
SignEnc query (s, r,m), the challenger samples x ←$ Lρ

with witness w, computes d := Pub(pkr, x, w) + m, d̃ := P̃riv(s̃ks, x), τ :=

H(ṽks, pkr, d, d̃), and invokes π ←$ Prove(crs, τ, x, w). Then, the challenger re-

turns the honestly generated ciphertext c := (x, d, d̃, π) to A.

Upon an OVrfyDec query (s, r, c = (x, d, d̃, π)), the challenger computes

τ := H(ṽks, pkr, d, d̃), returns m := d−Priv(skr, x) to A if (s, r, c) /∈ QSignEnc ∧
VrfyNIZK(crs, τ, x, π) = 1∧ ṼrfyHPS(ṽks, x, d̃) = 1 holds, and returns ⊥ otherwise.

For an OCor query i, the challenger returns ski = (ski, s̃ki) to A and puts i to set

QCor. For an OLeak query (i, L), the challenger returns L(ski) = L(ski, s̃ki) to A.

Game G1: It is the same as G0, except that, the challenger aborts immediately

if there are collisions in {pki}i∈[n] or collisions in {ṽki}i∈[n], i.e., ∃1 ≤ i < j ≤ n,

s.t. pki = pkj ∨ ṽki = ṽkj .
By the PK-diversity of QAHPS and by the VK-diversity of PVQAHPS, we

have that
∣∣Pr0[Win]− Pr1[Win]

∣∣ ≤ n(n−1)
2 · (εpk-divQAHPS(λ) + εvk-divPVQAHPS(λ)).

Game G2: It is the same as G1, except that, when answering OSignEnc(s∗, r∗,m0,
m1), the challenger computes d∗ and π∗ without using the witness for x∗ ∈ Lρ:

58

• d∗ := Priv(skr∗ , x
∗) +mβ , • π∗ ←$ Sim(crs, tdcrs, τ

∗, x∗).

Since x∗ is chosen from Lρ with witness w∗, by the correctness of QAHPS
and by the perfect zero-knowledge of QANIZK, we have Pr1[Win] = Pr2[Win].

Game G3: It is the same as G2, except that, when answering OSignEnc(s∗, r∗,m0,
m1), the challenger also puts (τ∗, x∗, π∗) to a set QSim, and when answering

OVrfyDec(s, r, c = (x, d, d̃, π)), the challenger adds a new rejection rule:

• If (τ, x, π) ∈ QSim, return ⊥ directly.

Clearly, G2 and G3 are the same unless that A ever queries OVrfyDec(s, r, c =

(x, d, d̃, π)) s.t.

∃ (s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗)) ∈ QSignEnc, s.t.

(s, r, c = (x, d, d̃, π)) 6= (s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗)) ∧ VrfyNIZK(crs, τ, x, π) = 1

∧ ṼrfyHPS(ṽks, x, d̃) = 1 ∧ (τ, x, π) = (τ∗, x∗, π∗) ∈ QSim,

where τ := H(ṽks, pkr, d, d̃) and τ∗ := H(ṽks∗ , pkr∗ , d
∗, d̃∗).

Note that by (s, r, c = (x, d, d̃, π)) 6= (s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗)) and (τ, x, π)

= (τ∗, x∗, π∗), it follows that (s, r, d, d̃) 6= (s∗, r∗, d∗, d̃∗) and τ = H(ṽks, pkr, d, d̃)

= H(ṽks∗ , pkr∗ , d
∗, d̃∗) = τ∗. Since there are no collisions among {pki}i∈[n] and

no collisions among {ṽki}i∈[n] (due to the game change in G1), (s, r, d, d̃) 6=
(s∗, r∗, d∗, d̃∗) implies (ṽks, pkr, d, d̃) 6= (ṽks∗ , pkr∗ , d

∗, d̃∗). Thus the above event
suggests a collision of H, and we have

∣∣Pr2[Win]− Pr3[Win]
∣∣ ≤ AdvcrH,B1

(λ).

Game G4: It is the same as G3, except that, at the beginning of the game, the

challenger picks (ρ
(i)
0 , td

(i)
0) ←$ L0 independently for each user i ∈ [n] besides

(ρ, td) ←$ L , and when answering OSignEnc(s∗, r∗,m0,m1), the challenger sam-
ples x∗ from the r∗-th language L

ρ
(r∗)
0

, i.e., x∗ ←$ L
ρ
(r∗)
0

, instead of x∗ ←$ Lρ.
By the multi-fold SMP related to L and by the multi-language multi-fold

SMP related to L0,
∣∣Pr3[Win]−Pr4[Win]

∣∣ ≤ Advmsmp
L ,B2,Qe

(λ) +Advml-msmp
L0,B3,n,Qe

(λ).

Game G5: It is the same as G4, except that, when answering OVrfyDec(s, r, c =

(x, d, d̃, π)), the challenger adds another new rejection rule:

• If x /∈ Lρ, return ⊥ directly.

Clearly, G4 and G5 are the same unless that A ever queries OVrfyDec(s, r, c =

(x, d, d̃, π)) s.t.

(s, r, c = (x, d, d̃, π)) /∈ QEnc ∧ ṼrfyHPS(ṽks, x, d̃) = 1

∧ VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ Lρ.

This event implies VrfyNIZK(crs, τ, x, π) = 1 ∧ (τ, x, π) /∈ QSim ∧ x /∈ Lρ. Thus
by the USS of QANIZK, we have that

∣∣Pr4[Win]−Pr5[Win]
∣∣ ≤ AdvussQANIZK,B5

(λ).

59

Game G6.η, 0 ≤ η ≤ n: It is the same as G5, except that, at the beginning
of the game, the challenger picks another sk′i ←$ SK besides ski for each user
i ∈ [n]. Moreover, when answering OSignEnc(s∗, r∗,m0,m1) for receivers r∗ ≤ η,
the challenger computes d∗ using sk′r∗ instead of using skr∗ :

• d∗ := Priv(sk′r∗ , x
∗) +mβ .

The challenger still uses {ski}i∈[n] to compute the public keys for all users i ∈
[n], to answer OSignEnc queries for receivers r∗ > η, and to answer Oreal

SignEnc,
OVrfyDec, OCor and OLeak queries for all users i ∈ [n].

It is clearly that G6.0 is identical to G5, thus Pr5[Win] = Pr6.0[Win].
For each η ∈ [n], by the κ-LR-〈L ,L0〉-key-switching property of QAHPS,

the challenger can safely switch skη to sk′η when answering OSignEnc for receiver

η. We have that |Pr6.η−1[Win]− Pr6.η[Win]| ≤ 2 · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ) following a sim-
ilar reduction as that in the proof of Claim 8 for PKE (cf. Appendix D.3). Note

that B7 can sample all hashing keys {s̃ki}i∈[n] of PVQAHPS and handle all parts
related to PVQAHPS by itself. In particular, to answer an OLeak query (η, L) for

user η made by A, B7 sends L(·, s̃kη) to its own leakage oracle and returns the
answer to A.

Game G7: It is the same as G6.n, except that, at the beginning of the game, the

challenger picks (ρ0, td0)←$ L0 besides (ρ, td)←$ L and (ρ
(i)
0 , td

(i)
0) ←$ L0 for

each i ∈ [n], and when answering OSignEnc(s∗, r∗,m0,m1), the challenger always
samples x∗ ←$ Lρ0 independently of r∗, instead of x∗ ←$ L

ρ
(r∗)
0

.

By the multi-language multi-fold SMP related to L0 and by the multi-fold
SMP related to L0,

∣∣Pr6.n[Win]−Pr7[Win]
∣∣ ≤ Advml-msmp

L0,B3,n,Qe
(λ)+Advmsmp

L0,B4,Qe
(λ).

Game G8: It is the same as G7, except that, for all the OSignEnc queries, the
challenger samples d∗ ←$ HV uniformly, instead of computing d∗ with {sk′i}i∈[n].

Since {sk′i}i∈[n] is used only in the computations of d∗ in OSignEnc, and x∗ in
OSignEnc are uniformly chosen from Lρ0 , by the L0-multi-key-multi-extracting

property of QAHPS, we have
∣∣Pr7[Win]− Pr8[Win]

∣∣ ≤ AdvL0-mk-mext
QAHPS,B6,n,Qe

(λ).

Finally in G8, d∗ is uniformly chosen from HV regardless of the value of β,
thus the challenge bit β is perfectly hidden from A. Then Pr8[Win] = 1

2 .
Taking all things together, Theorem 3 follows. ut

Proof Sketch of Theorem 4. The proof for the MUMCc&l-Auth security of
SC is similar to the proof for the strong MUc&l-CMA security of SIG shown in
Subsect. 5.2, with additional cares to the analysis of H’s collision-resistance.

The security proof goes with a sequence of games G0 –G8, which are similar
to the games defined in the proof of Theorem 1 for SIG.

Game G0: This is the Expauth-c&l
SC,A,n,κ experiment (cf. Fig. 12). Let Win denote the

event that Win = true. By definition, Advauth-c&l
SC,A,n,κ(λ) = Pr0[Win].

60

Let (pki = (pki, ṽki), ski = (ski, s̃ki)) denote the public/secret key pair of
user i ∈ [n]. In this game, when answering an OSignEnc query (s, r,m), the
challenger samples x←$ Lρ with witness w, computes d := Pub(pkr, x, w) +m,

d̃ := P̃riv(s̃ks, x), τ := H(ṽks, pkr, d, d̃) and π ←$ Prove(crs, τ, x, w). Then, the

challenger returns c := (x, d, d̃, π) to A and puts (s, r, c) to set QSignEnc. For an

OCor query i, the challenger returns ski = (ski, s̃ki) to A and puts i to set QCor.

For an OLeak query (i, L), the challenger returns L(ski) = L(ski, s̃ki) to A.

Upon an OVrfyDec query (s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗)), the challenger com-

putes τ∗ := H(ṽks∗ , pkr∗ , d
∗, d̃∗), setsm∗ := d∗−Priv(skr∗ , x

∗) if VrfyNIZK(crs, τ∗,
x∗, π∗) = 1∧ ṼrfyHPS(ṽks∗ , x

∗, d̃∗) = 1 holds, and sets m∗ := ⊥ otherwise. Then,
the challenger returns m∗ to A, and sets Win := true if and only if

s∗ /∈ QCor ∧ (s∗, r∗, c∗) /∈ QSignEnc ∧ m∗ 6= ⊥. (3)

For simplicity and without loss of generality, we assume that the challenger
terminates the interactions with A immediately once Win is set to true.

Game G1: It is the same as G0, except that, when answering OSignEnc(s, r,m),
the challenger also puts (s, r,m, c) to a set QSignEncWithMsg, and when answering
OVrfyDec(s∗, r∗, c∗), the challenger adds the following new rule:

• If (s∗, r∗, c∗) ∈ QSignEnc, find (s∗, r∗,m, c∗) ∈ QSignEncWithMsg and return
m∗ := m directly (and keep Win = false).

By the correctness of SC, those (s∗, r∗, c∗) ∈ QSignEnc generated by OSignEnc

always unsigncrypt to the m contained in (s∗, r∗,m, c∗) ∈ QSignEncWithMsg, thus
m∗ = m holds both in G0 and G1 for such queries. The change is just conceptual
and we have Pr0[Win] = Pr1[Win].

Game G2: It is the same as G1, except that, when answering OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) where (s∗, r∗, c∗) /∈ QSignEnc, the challenger adds the follow-
ing new rejection rule:

• If d̃∗ 6= P̃riv(s̃ks∗ , x
∗), return m∗ := ⊥ directly (and keep Win = false).

Clearly, G1 and G2 are the same unless that A ever queries OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) s.t.

(s∗, r∗, c∗) /∈ QSignEnc ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ ṼrfyHPS(ṽks∗ , x
∗, d̃∗) = 1 ∧ d̃∗ 6= P̃riv(s̃ks∗ , x

∗).

This event implies ṼrfyHPS(ṽks∗ , x
∗, d̃∗) = 1 ∧ d̃∗ 6= P̃riv(s̃ks∗ , x

∗). Thus by the

verification soundness of PVQAHPS,
∣∣Pr1[Win]−Pr2[Win]

∣∣ ≤ Advvrfy-sndPVQAHPS,B1,n
(λ).

61

Game G3: It is the same as G2, except that, the challenger aborts immediately

if there are collisions in {pki}i∈[n] or collisions in {ṽki}i∈[n], i.e., ∃1 ≤ i < j ≤ n,

s.t. pki = pkj ∨ ṽki = ṽkj .
By the PK-diversity of QAHPS and by the VK-diversity of PVQAHPS, we

have that
∣∣Pr2[Win]− Pr3[Win]

∣∣ ≤ n(n−1)
2 · (εpk-divQAHPS(λ) + εvk-divPVQAHPS(λ)).

Game G4: It is the same as G3, except that, when answering OSignEnc(s, r,m),
the challenger computes d and π without using the witness w for x ∈ Lρ:

• d := Priv(skr, x) +m, • π ←$ Sim(crs, tdcrs, τ, x).

Since x is chosen from Lρ with witness w, by the correctness of QAHPS and
by the perfect zero-knowledge of QANIZK, we have Pr3[Win] = Pr4[Win].

Game G5: It is the same as G4, except that, when answering OSignEnc(s, r,m),
the challenger also puts (τ, x, π) to a set QSim, and when answering OVrfyDec(s∗,
r∗, c∗ = (x∗, d∗, d̃∗, π∗)) where (s∗, r∗, c∗) /∈ QSignEnc, the challenger adds a
second new rejection rule:

• If (τ∗, x∗, π∗) ∈ QSim, return m∗ := ⊥ directly (and keep Win = false).

Clearly, G4 and G5 are the same unless that A ever queries OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) s.t.

∃ (s, r, c = (x, d, d̃, π)) ∈ QSignEnc, s.t.

(s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗)) 6= (s, r, c = (x, d, d̃, π)) ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ ṼrfyHPS(ṽks∗ , x
∗, d̃∗) = 1 ∧ d̃∗ = P̃riv(s̃ks∗ , x

∗) ∧ (τ∗, x∗, π∗) = (τ, x, π) ∈ QSim,

where τ∗ := H(ṽks∗ , pkr∗ , d
∗, d̃∗) and τ := H(ṽks, pkr, d, d̃).

Note that by (s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗)) 6= (s, r, c = (x, d, d̃, π)) and (τ∗, x∗,
π∗) = (τ, x, π), it follows that (s∗, r∗, d∗, d̃∗) 6= (s, r, d, d̃) and τ∗ = H(ṽks∗ , pkr∗ ,

d∗, d̃∗) = H(ṽks, pkr, d, d̃) = τ . Since there are no collisions among {pki}i∈[n] and

no collisions among {ṽki}i∈[n] (due to the game change in G3), (s∗, r∗, d∗, d̃∗) 6=
(s, r, d, d̃) implies (ṽks∗ , pkr∗ , d

∗, d̃∗) 6= (ṽks, pkr, d, d̃). Thus the above event sug-
gests a collision of H, and we have

∣∣Pr4[Win]− Pr5[Win]
∣∣ ≤ AdvcrH,B2

(λ).

Game G6: It is the same as G5, except that, at the beginning of the game, the
challenger picks (ρ0, td0)←$ L0 besides (ρ, td)←$ L , and for all the OSignEnc

queries, the challenger samples x ←$ Lρ0 instead of x←$ Lρ.
By the multi-fold SMP related to L and by the multi-fold SMP related to

L0, we have that
∣∣Pr5[Win]− Pr6[Win]

∣∣ ≤ Advmsmp
L ,B3,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ).

Game G7: It is the same as G6, except that, when answering OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) where (s∗, r∗, c∗) /∈ QSignEnc, the challenger adds a third new
rejection rule:

62

• If x∗ /∈ Lρ, return m∗ := ⊥ directly (and keep Win = false).

Clearly, G6 and G7 are the same unless that A ever queries OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) s.t.

(s∗, r∗, c∗) /∈ QSignEnc ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ ṼrfyHPS(ṽks∗ , x
∗, d̃∗) = 1

∧ d̃∗ = P̃riv(s̃ks∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ /∈ Lρ.

This event implies VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ /∈ Lρ.
Thus by the USS of QANIZK, we have

∣∣Pr6[Win]−Pr7[Win]
∣∣ ≤ AdvussQANIZK,B5

(λ).

Game G8: It is the same as G7, except that,when answering OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) where (s∗, r∗, c∗) /∈ QSignEnc, the challenger adds a fourth
new rejection rule:

• If s∗ /∈ QCor, return m∗ := ⊥ directly (and keep Win = false).

Clearly, G7 and G8 are the same unless that A ever queries OVrfyDec(s∗, r∗, c∗

= (x∗, d∗, d̃∗, π∗)) s.t.

(s∗, r∗, c∗) /∈ QSignEnc ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ ṼrfyHPS(ṽks∗ , x
∗, d̃∗) = 1

∧ d̃∗ = P̃riv(s̃ks∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ ∈ Lρ ∧ s∗ /∈ QCor.

By the κ-LR-〈L0,L 〉-OT-extracting property of PVQAHPS, the event that

x∗ ∈ Lρ ∧ d̃∗ = P̃riv(s̃ks∗ , x
∗) ∧ s∗ /∈ QCor can happen with only a negligible

probability. We have that |Pr7[Win]− Pr8[Win]| ≤ nQd ·εlr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ) follow-
ing a similar reduction as that in the proof of Claim 5 for SIG (cf. Appendix C.4).
Intuitively, B6 will randomly guess the user index s∗ ∈ [n] to embed the hashing

key chosen by its own challenger into s̃ks∗ of user s∗. Besides, B6 can sample all
hashing keys {ski}i∈[n] of QAHPS and handle all parts related to QAHPS itself.
In particular, to answer an OLeak query (s∗, L) for user s∗ made by A, B6 sends
L(sks∗ , ·) to its own leakage oracle and returns the answer to A. At the end of re-

duction, B6 will randomly pick an OVrfyDec query (s∗, r∗, c∗ = (x∗, d∗, d̃∗, π∗))

among all the Qd queries made by A, and return the extracted pair (x∗, d̃∗) to
its own challenger. Overall, B6 succeeds as long as s∗ is correctly guessed and
the above event occurs exactly in the OVrfyDec query chosen by B6. Thus, the

security loss to ε
lr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ) is nQd.

Finally in G8, for any OVrfyDec query, the challenger always sets and returns
m∗ := ⊥ to A in the case of s∗ /∈ QCor ∧ (s∗, r∗, c∗) /∈ QSignEnc. Thus, by the
definition of Win, cf. (3), Win can never be set to true in G8, and Pr8[Win] = 0.

Taking all things together, Theorem 4 follows. ut

G MAC with Tight Strong MUc&l-CMVA Security

In this section, we present probabilistic message authentication code (MAC)
schemes with tight strong MUc&l-CMVA security. We note that the strongly

63

MUc&l-CMA secure SIG constructed in Subsect. 5.2 directly implies a strongly
MUc&l-CMVA secure MAC [15]. Here we provide a new generic construction of
MAC from QA-HPS (which is not necessarily publicly-verifiable) and QA-NIZK,
admitting more efficient instantiations from MDDH.

In Appendix G.1, we define the syntax of MAC and its strong MUc&l-CMVA
security. Then in Appendix G.2, we present our new generic construction of
MAC from QA-HPS and QA-NIZK.

G.1 MAC and Its Strong MUc&l-CMVA Security

Definition 22 (MAC). A message authentication code (MAC) scheme MAC =
(SetupMAC,Gen,Tag,VrfyMAC) with message space M consists of four PPT algo-
rithms:

– ppMAC ←$ SetupMAC: The setup algorithm outputs a public parameter ppMAC,
which serves as an implicit input of other algorithms.

– sk ←$ Gen(ppMAC): Taking ppMAC as input, the key generation algorithm out-
puts a symmetric key sk.

– σ ←$ Tag(sk,m): Taking as input a key sk and a message m ∈ M, the
(possibly probabilistic) tag generation algorithm outputs a tag σ.

– 0/1 ← VrfyMAC(sk,m, σ): Taking as input a key sk, a message m ∈ M
and a tag σ, the deterministic verification algorithm outputs a bit indicating
whether σ is a valid tag for m.

Correctness requires that for all ppMAC ∈ SetupMAC, sk ∈ Gen(ppMAC), m ∈ M,
σ ∈ Tag(sk,m), it holds that VrfyMAC(sk,m, σ) = 1.

The standard security notion for MAC is EUF-CMA (existential unforge-
ability under chosen message attacks). In [15], Dodis et al. formalized a stronger
notion called EUF-CMVA, by additionally allowing chosen verification attacks
(CVA). The CVA attacks enable the adversary to adaptively submit any polyno-
mial number of pairs (m∗, σ∗) as forgery and learn the results whether they pass
the verification of MAC. The adversary wins as long as there exists one fresh pair
(m∗, σ∗) passing the verification. As noted in [15], there exist MAC schemes that
are EUF-CMA secure but not EUF-CMVA secure, thus EUF-CMVA is strictly
stronger than EUF-CMA.

Here we extend EUF-CMVA security to the Multi-User setting, and addition-
ally allow adaptive corruptions and key leakages. We formalize such security as
MUc&l-CMVA. Moreover, strong MUc&l-CMVA requires that the adversary cannot
even forge a new tag for a message that it has ever queried. Below we present
the definition of strong MUc&l-CMVA and the non-strong version can be easily
adapted accordingly.

Definition 23 (Strong MUc&l-CMVA Security for MAC). Let κ = κ(λ) ∈
N. A MAC scheme MAC is strongly MUc&l-CMVA secure under κ bits leakage
per user, if for any PPT adversary A and any polynomial n, it holds that
Advs-cmva-c&l

MAC,A,n,κ(λ) := Pr[Exps-cmva-c&l
MAC,A,n,κ ⇒ 1] ≤ negl(λ), where the experiment

Exps-cmva-c&l
MAC,A,n,κ is defined in Fig. 14.

64

Exps-cmva-c&l
MAC,A,n,κ:

ppMAC ←$ SetupMAC

For i ∈ [n]: ski ←$ Gen(ppMAC)

QTag := ∅ �Record the tagging queries

QCor := ∅ �Record the corruption queries

Win := false

⊥ ←$ AOTag(·,·),OVrfy(·,·,·),OCor(·),OLeak(·,·)(ppMAC)

If Win = true: Return 1; Else: Return 0

OTag(i,m):

σ ←$ Tag(ski,m)

QTag := QTag ∪ {(i,m, σ)}
Return σ

OVrfy(i∗,m∗, σ∗):

b∗ ← VrfyMAC(ski∗ ,m
∗, σ∗)

If (i∗ /∈ QCor) ∧ ((i∗,m∗, σ∗) /∈ QTag) ∧ (b∗ = 1):

Win := true

Return b∗

OCor(i):

QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage bits per user i

Return L(ski)

Fig. 14. The strong MUc&l-CMVA security experiment Exps-cmva-c&l
MAC,A,n,κ for MAC.

G.2 Generic Construction of MAC from QA-HPS and QA-NIZK

We present a generic construction of strongly MUc&l-CMVA secure MAC. LetM
be an arbitrary message space. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.
• A QAHPS = (SetupHPS, α(·),Pub,Priv) for both L and L0, whose hashing

key space is SK and projection key space is PK. We stress that QAHPS is
not required to be publicly-verifiable.

• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,
whose tag space is T .

• A family of collision-resistant hash functions H = {H : PK ×M −→ T }.
Our generic construction of MAC = (SetupMAC,Gen,Tag,VrfyMAC) is shown in
Fig. 15.

ppMAC ←$ SetupMAC:

(ρ, td)←$ L .
(ρ0, td0)←$ L0.
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs)←$ CRSGen(ρ).
H ←$ H.
Return ppMAC :=

(ρ, ρ0, ppHPS, ppNIZK, crs, H).

sk ←$ Gen(ppMAC):

sk ←$ SK.
Return sk.

σ ←$ Tag(sk,m):

x ←$ Lρ with witness w.
d := Priv(sk, x).
pk0 := αρ0(sk).
τ := H(pk0,m) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return σ := (x, d, π).

0/1← VrfyMAC(sk,m, σ):

Parse σ = (x, d, π).
pk0 := αρ0(sk).
τ := H(pk0,m) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1
∧ d = Priv(sk, x):

Return 1.
Else: Return 0.

Fig. 15. Generic construction of MAC = (SetupMAC,Gen,Tag,VrfyMAC) from QAHPS,
tag-based QANIZK and H. The message space is M.

The MAC construction resembles the SIG construction shown in Fig. 8 in
Subsect. 5.2. From a high-level view, our MAC construction can be considered as
replacing the building block PV-QA-HPS in SIG with a (not necessarily publicly-
verifiable) QA-HPS. However, there are two main differences.

65

– Firstly, the VrfyMAC algorithm of MAC checks d = Priv(sk, x) directly using
sk, while the VrfySIG algorithm of SIG checks VrfyHPS(vk, x, d) = 1 publicly
using vk = ν(sk).

– Secondly, unlike SIG, vk is not available any more in our MAC, so it cannot
serve as part of input for the collision-resistant hash function H. Neither
can pk := αρ(sk) since pk cannot be published or leaked for the sake of
security of MAC (for similar reasons as the security of SIG, cf. the paragraph
before Theorem 1 & the proof of Claim 5). We stress that as an input of
H, vk := ν(sk) plays an important role in differentiating users by the VK-
diversity (see the proof of Claim 2 in the proof of Theorem 1 for SIG).
Without the help of vk for H, the security proof of MAC will be affected.

To solve the problem of lacking vk in MAC, we exploit a new technical trick
by taking advantage of the quasi-adaptive property of QAHPS again. More
precisely, we project sk on another public language Lρ0 with ρ0 independent
of ρ, and put the corresponding projection key pk0 := αρ0(sk) in the input
of H. In the security proof of MAC, we can safely take care of the leakage
on sk from αρ0(sk) (similar to the proof of Claim 5 for SIG). Meanwhile,
different users have different pk0 (with overwhelming probability), then a
security proof similar to that of Theorem 1 can go soundly for MAC.

Correctness of MAC follows directly from the perfect completeness of QANIZK.
Next, we show its strong MUc&l-CMVA security. According to the above dis-
cussion, the underlying building block QAHPS is additionally required to have
PK-diversity for language parameters ρ0 output by L0 (instead of ρ output by

L as in Def. 12), i.e., εpk-divQAHPS(λ) := Pr[αρ0(sk) = αρ0(sk′)] ≤ negl(λ), where

(ρ0, td0) ←$ L0, ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Theorem 5 (Strong MUc&l-CMVA Security of MAC). Assume that (i) L
and L0 have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having
PK-diversity for L0 and supporting κ-LR-〈L0,L 〉-OT-extracting, (iii) QANIZK
is a tag-based QA-NIZK for L , satisfying both perfect zero-knowledge and un-
bounded simulation-soundness, (iv) H is collision-resistant. Then the proposed
MAC scheme in Fig. 15 is strongly MUc&l-CMVA secure under κ bits leakage per
user.

Concretely, for any number n of users and any adversary A who makes at
most Qt times of OTag queries and Qv times of OVrfy queries, there exist ad-
versaries B1, · · · ,B5, such that T(B1) ≈ · · · ≈ T(B4) ≈ T(A) + (n+Qt +Qv) ·
poly(λ), with poly(λ) independent of T(A), and

Advs-cmva-c&l
MAC,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qt

(λ) + Advmsmp
L0,B3,Qt

(λ) + AdvussQANIZK,B4
(λ)

+ n(n−1)
2 · εpk-divQAHPS(λ) + nQv · εlr-〈L0,L〉-otext

QAHPS,B5,κ
(λ).

Remark 8 (On the Tightness of MAC’s Strong MUc&l-CMVA security).
According to Theorem 5, MAC has tight strong MUc&l-CMVA security as long
as both the multi-fold SMPs related to L and L0 have tight reductions and
QANIZK has a tight USS.

66

Table 7. Brief Description of Games G0-G7 for the strong MUc&l-CMVA security proof
of MAC. Here column “OTag” suggests how a tag σ = (x, d, π) is generated: sub-
column “x from” refers to the language from which x is chosen; sub-column “d using”
indicates the keys that are used in the computation of d; sub-column “π via” indicates
the way (Prove or Sim) that π is computed. Columns “OCor” and “OLeak” show the
output returned by OCor and OLeak respectively. Column “OVrfy’s additional check”
describes the additional check made by OVrfy upon a verification query (i∗,m∗, σ∗ =
(x∗, d∗, π∗)), besides the routine check VrfyNIZK(crs, τ∗, x∗, π∗) = 1∧d∗ = Priv(ski∗ , x

∗),
where τ∗ := H(pk0,i∗ ,m

∗); OVrfy sets b∗ := 1 if the check passes and sets Win := true
if i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QTag ∧ b∗ = 1.

OTag(i,m)
OCor(i) OLeak(i, L)

OVrfy(i∗,m∗, σ∗ = (x∗, d∗, π∗))’s

additional check
Remark/Assumption

x from d using π via

G0 Lρ ski Prove ski L(ski) The strong MUc&l-CMVA experiment

G1 Lρ ski Prove ski L(ski)
OVrfy sets b∗ := 1 directly if

(i∗,m∗, σ∗) ∈ QTag: by correctness of MAC

G2 Lρ ski Prove ski L(ski)
Abort if projection keys w.r.t. ρ0 collide:

by PK-diversity for L0 of QAHPS

G3 Lρ ski Sim ski L(ski) By perfect zero-knowledge of QANIZK

G4 Lρ ski Sim ski L(ski) (τ∗, x∗, π∗) /∈ QSim By collision-resistance of H
G5 Lρ0 ski Sim ski L(ski) (τ∗, x∗, π∗) /∈ QSim By multi-fold SMP of L and L0

G6 Lρ0 ski Sim ski L(ski) (τ∗, x∗, π∗) /∈ QSim, x∗ ∈ Lρ By USS of QANIZK

G7 Lρ0 ski Sim ski L(ski)
(τ∗, x∗, π∗) /∈ QSim, x

∗ ∈ Lρ, By κ-LR-〈L0,L 〉-OT-extracting of QAHPS

i∗ ∈ QCor
Pr[Win] = 0 in G7: since b∗ = 1 contradicts

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QTag

The proof of Theorem 5 mainly follows the proof of Theorem 1 for the SIG
construction in Subsect. 5.2 and the proof of Theorem 4 for the SC construction
in Appendix F.2. Here we provide a proof sketch.

Proof Sketch of Theorem 5. We prove the theorem by defining a sequence of
games G0 –G7 and showing adjacent games indistinguishable. A brief description
of differences between adjacent games is summarized in Table 7.

Game G0: This is the Exps-cmva-c&l
MAC,A,n,κ experiment (cf. Fig. 14). Let Win denote the

event that Win = true. By definition, Advs-cmva-c&l
MAC,A,n,κ(λ) = Pr0[Win].

Let ski denote the key of user i ∈ [n], and define by pk0,i := αρ0(ski)
its corresponding projection key w.r.t. ρ0, where ρ0 is the language parameter
contained in ppMAC = (ρ, ρ0, ppHPS, ppNIZK, crs, H).

In this game, when answering an OTag query (i,m), the challenger samples
x←$ Lρ with witness w, computes d := Priv(ski, x), τ := H(pk0,i,m), and
invokes π ←$ Prove(crs, τ, x, w). Then, the challenger returns σ := (x, d, π) to A
and puts (i,m, σ) to set QTag. For an OCor query i, the challenger returns ski
to A and puts i to set QCor. For an OLeak query (i, L), the challenger returns
L(ski) to A.

Upon an OVrfy query (i∗,m∗, σ∗ = (x∗, d∗, π∗)), the challenger computes
τ∗ := H(pk0,i∗ ,m

∗), sets b∗ := 1 if VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ d∗ = Priv(ski∗ ,
x∗) holds, and sets b∗ := 0 otherwise. Then, the challenger returns b∗ to A, and

67

sets Win := true if and only if

i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QTag ∧ b∗ = 1. (4)

For simplicity and without loss of generality, we assume that the challenger
terminates the interactions with A immediately once Win is set to true.

Game G1: It is the same as G0, except that, when answering OVrfy(i∗,m∗, σ∗),
the challenger adds the following new rule:

• If (i∗,m∗, σ∗) ∈ QTag, return b∗ := 1 directly (and keep Win = false).

By the correctness of MAC, those (i∗,m∗, σ∗) ∈ QTag generated by OTag al-
ways pass the verification, thus b∗ = 1 holds both in G0 and G1 for such queries.
The change is just conceptual and we have Pr0[Win] = Pr1[Win].

Game G2: It is the same as G1, except that, after generating n keys {ski}i∈[n],
the challenger computes their corresponding projection keys {pk0,i := αρ0(ski)}i∈[n]
w.r.t. ρ0, and aborts immediately if there are collisions in {pk0,i}i∈[n], i.e.,
∃1 ≤ i < j ≤ n, s.t. pk0,i = pk0,j .

By the PK-diversity for L0 property of QAHPS,
∣∣Pr1[Win] − Pr2[Win]

∣∣ ≤
n(n−1)

2 · εpk-divQAHPS(λ).

Game G3: It is the same as G2, except that, when answering OTag(i,m), the
challenger computes π without using the witness w for x ∈ Lρ:

• π ←$ Sim(crs, tdcrs, τ, x).

Since x is chosen from Lρ with witness w, by the perfect zero-knowledge of
QANIZK, the change is just conceptual, and we have Pr2[Win] = Pr3[Win].

Game G4: It is the same as G3, except that, when answeringOTag(i,m), the chal-
lenger also puts (τ, x, π) to a set QSim, and when answering OVrfy(i∗,m∗, σ∗ =
(x∗, d∗, π∗)) where (i∗,m∗, σ∗) /∈ QTag, the challenger adds the following new
rejection rule:

• If (τ∗, x∗, π∗) ∈ QSim, return b∗ := 0 directly (and keep Win = false).

Clearly, G3 and G4 are the same unless that A ever queries OVrfy(i∗,m∗, σ∗ =
(x∗, d∗, π∗)) s.t.

∃ (i,m, σ = (x, d, π)) ∈ QTag, s.t.

(i∗,m∗, σ∗ = (x∗, d∗, π∗)) 6= (i,m, σ = (x, d, π)) ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) = (τ, x, π) ∈ QSim,

where τ∗ := H(pk0,i∗ ,m
∗) and τ := H(pk0,i,m). There are two cases.

68

• Case 1: (i∗,m∗) = (i,m). Together with (i∗,m∗, σ∗ = (x∗, d∗, π∗)) 6=
(i,m, σ = (x, d, π)) ∧ (τ∗, x∗, π∗) = (τ, x, π), it follows that d∗ 6= d. However,
this contradicts d∗ = Priv(ski∗ , x

∗) = Priv(ski, x) = d. Therefore, this case
can never occur.

• Case 2: (i∗,m∗) 6= (i,m). Since there are no collisions among {pk0,i}i∈[n]
(due to the game change in G2), (i∗,m∗) 6= (i,m) implies (pk0,i∗ ,m

∗) 6=
(pk0,i,m). Together with τ∗ = H(pk0,i∗ ,m

∗) = H(pk0,i,m) = τ , this case
suggests a collision of H.

Overall, we have
∣∣Pr3[Win]− Pr4[Win]

∣∣ ≤ AdvcrH,B1
(λ).

Game G5: It is the same as G4, except that, for all the OTag queries, the chal-
lenger samples x ←$ Lρ0 instead of x ←$ Lρ, where ρ0 is the language parameter
contained in ppMAC = (ρ, ρ0, ppHPS, ppNIZK, crs, H).

By the multi-fold SMP related to L and by the multi-fold SMP related to
L0, we have that

∣∣Pr4[Win]− Pr5[Win]
∣∣ ≤ Advmsmp

L ,B2,Qt
(λ) + Advmsmp

L0,B3,Qt
(λ).

Game G6: It is the same as G5, except that, when answering OVrfy(i∗,m∗, σ∗ =
(x∗, d∗, π∗)) where (i∗,m∗, σ∗) /∈ QTag, the challenger adds a second new rejec-
tion rule:

• If x∗ /∈ Lρ, return b∗ := 0 directly (and keep Win = false).

Clearly, G5 and G6 are the same unless that A ever queries OVrfy(i∗,m∗, σ∗ =
(x∗, d∗, π∗)) s.t.

(i∗,m∗, σ∗ = (x∗, d∗, π∗)) /∈ QTag ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ /∈ Lρ.

This event implies VrfyNIZK(crs, τ∗, x∗, π∗) = 1 ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ /∈ Lρ.
Thus by the USS of QANIZK, we have

∣∣Pr5[Win]−Pr6[Win]
∣∣ ≤ AdvussQANIZK,B4

(λ).

Game G7: It is the same as G6, except that, when answering OVrfy(i∗,m∗, σ∗ =
(x∗, d∗, π∗)) where (i∗,m∗, σ∗) /∈ QTag, the challenger adds a third new rejection
rule:

• If i∗ /∈ QCor, return b∗ := 0 directly (and keep Win = false).

Clearly, G6 and G7 are the same unless that A ever queries OVrfy(i∗,m∗, σ∗ =
(x∗, d∗, π∗)) s.t.

(i∗,m∗, σ∗ = (x∗, d∗, π∗)) /∈ QTag ∧ VrfyNIZK(crs, τ∗, x∗, π∗) = 1

∧ d∗ = Priv(ski∗ , x
∗) ∧ (τ∗, x∗, π∗) /∈ QSim ∧ x∗ ∈ Lρ ∧ i∗ /∈ QCor.

By the κ-LR-〈L0,L 〉-OT-extracting property of QAHPS, the event that
x∗ ∈ Lρ ∧ d∗ = Priv(ski∗ , x

∗) ∧ i∗ /∈ QCor can happen with only a negligible

probability. We have that |Pr6[Win]− Pr7[Win]| ≤ nQv ·εlr-〈L0,L〉-otext
QAHPS,B5,κ

(λ) follow-
ing a similar reduction as that in the proof of Claim 5 for SIG (cf. Appendix C.4).

69

Intuitively, B5 will randomly guess the user index i∗ ∈ [n] to embed the hash-
ing key chosen by its own challenger into the key ski∗ of user i∗. At the end
of reduction, B5 will randomly pick an OVrfy query (i∗,m∗, σ∗ = (x∗, d∗, π∗))
among all the Qv queries made by A, and return the contained (x∗, d∗) to its own
challenger. Overall, B5 succeeds as long as i∗ is correctly guessed and the above
event occurs exactly in the OVrfy query chosen by B5. Therefore, the security

loss to ε
lr-〈L0,L〉-otext
QAHPS,B5,κ

(λ) is nQv.

Finally in G7, for any OVrfy query, the challenger always sets and returns
b∗ := 0 to A in the case of i∗ /∈ QCor ∧ (i∗,m∗, σ∗) /∈ QTag. Thus, by the
definition of Win, cf. (4), Win can never be set to true in G7, and Pr7[Win] = 0.

Taking all things together, Theorem 5 follows. ut

H AE with Tight MUMCc&l-Priv&Auth Security

In this section, we present probabilistic authenticated encryption (AE) schemes
with tight privacy (MUMCc&l-Priv) and integrity/authenticity (MUMCc&l-Auth),
in the multi-user multi-challenge (MUMC) setting under CCA attacks, adaptive
corruptions and key leakages.

Recall that in Subsect. 6.2 and in Appendix G.2, we proposed generic con-
structions of MUMCc&l-CCA secure PKE (which can be used as an symmetric
encryption (SE) scheme) and strongly MUc&l-CMVA secure MAC. By the stan-
dard Encrypt-then-MAC method [7], we can immediately obtain an AE scheme
that achieves both MUMCc&l-Priv and MUMCc&l-Auth security. A ciphertext of
the resulting AE scheme consists of a PKE (SE) ciphertext c = (x, d, π) and a

MAC tag σ = (x̃, d̃, π̃).
Here we provide a more efficient generic construction of AE, by optimizing

the Encrypt-then-MAC method with similar ideas in our SC construction in
Appendix F.2. Intuitively, thanks to the similar structures and the same building
blocks of our PKE (SE) and MAC constructions, we can reuse the instance x
and the QA-NIZK proof π, and the resulting ciphertext of our new AE consists
of only (x, d, d̃, π), thus saving one instance x̃ and one QA-NIZK proof π̃.

As a result, compared with our MAC, the new AE scheme adds only one
more component d to provide privacy; compared with our PKE (SE), the new

AE scheme adds only one more component d̃ to provide integrity/authenticity.
The rest of this section is organized as follows. In Appendix H.1, we define

the syntax of AE and its MUMCc&l-Priv and MUMCc&l-Auth security. Then in
Appendix H.2, we present our new generic construction of AE.

H.1 Authenticated Encryption and Its MUMCc&l-Priv&Auth
Security

Definition 24 (AE). An authenticated encryption (AE) scheme AE = (SetupAE,
Gen,Enc,Dec) with message space M consists of four PPT algorithms:

70

– ppAE ←$ SetupAE: The setup algorithm outputs a public parameter ppAE, which
serves as an implicit input of other algorithms.

– sk←$ Gen(ppAE): Taking ppAE as input, the key generation algorithm outputs
a symmetric key sk.

– c←$ Enc(sk,m): Taking as input a key sk and a message m ∈M, the (pos-
sibly probabilistic) encryption algorithm outputs a ciphertext c.

– m/⊥ ← Dec(sk, c): Taking as input a key sk and a ciphertext c, the deter-
ministic decryption algorithm outputs either a message m ∈ M or a special
symbol ⊥ indicating the failure of decryption.

Correctness requires that for all ppAE ∈ SetupAE, sk ∈ Gen(ppAE), m ∈ M,
c ∈ Enc(sk,m), it holds that Dec(sk, c) = m.

Remark 9. Note that our syntax of AE above can be extended to AE with As-
sociated Data (AEAD) [36], by allowing the Enc and Dec algorithms additionally
take an associated data as input. Jumping a bit ahead, our generic construction
of AE later in Appendix H.2 can naturally support associated data, by simply
putting it inside the collision-resistant hash function H when computing τ . We
choose to use a slightly simplified syntax to better illustrate the core ideas and
techniques in our AE construction.

The primary security goals of AE include privacy and integrity/authenticity.
In [25], Jager et al. formalized privacy and integrity/authenticity for AE in a
multi-user and multi-challenge (MUMC) setting under adaptive corruptions, via
a general definition framework. Here we choose a strong variant that consid-
ers CCA attacks and ciphertext integrity. Our formalization of privacy and in-
tegrity/authenticity, denoted by MUMCc&l-Priv and MUMCc&l-Auth, like those
defined for SC in Appendix F.1, ask ciphertext indistinguishability and cipher-
text integrity, respectively, under CCA attacks, adaptive corruptions as well as
key leakages, in the MUMC setting. Below we present the formal definition.

Definition 25 (MUMCc&l-Priv and MUMCc&l-Auth for AE). Let κ = κ(λ) ∈
N. An AE scheme AE is MUMCc&l-Priv secure (resp. MUMCc&l-Auth secure)
under κ bits leakage per user, if for any PPT adversary A and any polyno-
mial n, it holds that Advpriv-c&l

AE,A,n,κ(λ) :=
∣∣Pr[Exppriv-c&l

AE,A,n,κ ⇒ 1] − 1
2

∣∣ ≤ negl(λ)

(resp. Advauth-c&l
AE,A,n,κ(λ) := Pr[Expauth-c&l

AE,A,n,κ ⇒ 1] ≤ negl(λ)), where the experiments

Exppriv-c&l
AE,A,n,κ and Expauth-c&l

AE,A,n,κ are defined in Fig. 16 and Fig. 17 respectively.

H.2 Generic Construction of AE from QA-HPS and QA-NIZK

In this subsection, we present a generic construction of MUMCc&l-Priv&Auth
secure AE. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.
• A QAHPS = (SetupHPS, α(·),Pub,Priv) for both L and L0, whose hashing

key space is SK, projection key space is PK and hash value space is HV. We
require HV to be an (additive) group. We stress that QAHPS is not required
to be publicly-verifiable.

71

Exppriv-c&l
AE,A,n,κ:

ppAE ←$ SetupAE
For i ∈ [n]: ski ←$ Gen(ppAE)

QEnc := ∅ �Record the encryption queries

QCor := ∅ �Record the corruption queries

For i ∈ [n]: chali := false

β ←$ {0, 1} �Single challenge bit

β′ ←$ AOEnc(·,·,·),Oreal
Enc(·,·),ODec(·,·),OCor(·),OLeak(·,·)(ppAE)

If β′ = β: Return 1; Else: Return 0

OEnc(i∗,m0,m1):

If |m0| 6= |m1|: Return ⊥
If i∗ ∈ QCor: Return ⊥
chali∗ := true

c∗ ←$ Enc(ski∗ ,mβ)

QEnc := QEnc ∪ {(i∗, c∗)}
Return c∗

ODec(i, c):

If (i, c) ∈ QEnc: Return ⊥
Return Dec(ski, c)

Oreal
Enc(i,m):

Return Enc(ski,m)

OCor(i):

If (i, ·) ∈ QEnc: Return ⊥
QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

If chali = true: Return ⊥
Return L(ski)

Fig. 16. The MUMCc&l-Priv security experiment Exppriv-c&l
AE,A,n,κ for AE. We note that be-

sides challenge ciphertexts return by OEnc, A can also obtain honestly generated ci-
phertexts via Oreal

Enc.

Expauth-c&l
AE,A,n,κ:

ppAE ←$ SetupAE
For i ∈ [n]: ski ←$ Gen(ppAE)

QEnc := ∅ �Record the encryption queries

QCor := ∅ �Record the corruption queries

Win := false

⊥ ←$ AOEnc(·,·),ODec(·,·),OCor(·),OLeak(·,·)(ppAE)

If Win = true: Return 1; Else: Return 0

OEnc(i,m):

c ←$ Enc(ski,m)

QEnc := QEnc ∪ {(i, c)}
Return c

ODec(i∗, c∗):

m∗ ← Dec(ski∗ , c
∗)

If (i∗ /∈ QCor) ∧ ((i∗, c∗) /∈ QEnc) ∧ (m∗ 6= ⊥):

Win := true

Return m∗

OCor(i):

QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage bits per user i

Return L(ski)

Fig. 17. The MUMCc&l-Auth security experiment Expauth-c&l
AE,A,n,κ for AE.

72

• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,
whose tag space is T .

• A family of collision-resistant hash functions H = {H : PK ×HV −→ T }.

Our generic construction of AE = (SetupAE,Gen,Enc,Dec) is shown in Fig. 18.

ppAE ←$ SetupAE:

(ρ, td)←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs)←$ CRSGen(ρ).
H ←$ H.
Return ppAE :=

(ρ, ppHPS, ppNIZK, crs, H).

sk ←$ Gen(ppAE):

sk, s̃k ←$ SK.

Return sk := (sk, s̃k).

c←$ Enc(sk,m ∈ HV):

Parse sk = (sk, s̃k).
x ←$ Lρ with witness w.
d := Priv(sk, x) +m ∈ HV.

d̃ := Priv(s̃k, x).
pk := αρ(sk).
τ := H(pk, d) ∈ T .
π ←$ Prove(crs, τ, x, w).

Return c := (x, d, d̃, π).

m/⊥ ← Dec(sk, c):

Parse sk = (sk, s̃k).

Parse c = (x, d, d̃, π).
pk := αρ(sk).
τ := H(pk, d) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1:

∧ d̃ = Priv(s̃k, x):
m := d− Priv(sk, x) ∈ HV.
Return m.

Else: Return ⊥.

Fig. 18. Generic construction of AE = (SetupAE,Gen,Enc,Dec) from QAHPS, tag-based
QANIZK and H. The message space is M := HV.

Correctness of AE follows directly from the perfect completeness of QANIZK.
Next, we show its MUMCc&l-Priv and MUMCc&l-Auth security.

Theorem 6 (MUMCc&l-Priv Security of AE). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, and supporting both κ-LR-〈L ,L0〉-key-switching and L0-multi-key-
multi-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , satisfying both
perfect zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed AE scheme in Fig. 18 is MUMCc&l-Priv secure under
κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OEnc queries and Qd times of ODec queries, there exist ad-
versaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (n+Qe +Qd) ·
poly(λ), with poly(λ) independent of T(A), and

Advpriv-c&l
AE,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qe

(λ) + 2 · Advml-msmp
L0,B3,n,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

QAHPS,B6,n,Qe
(λ) + n(n−1)

2 · εpk-divQAHPS(λ) + 2n · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

Theorem 7 (MUMCc&l-Auth Security of AE). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity and supporting κ-LR-〈L0,L 〉-OT-extracting, (iii) QANIZK is a tag-
based QA-NIZK for L , satisfying both perfect zero-knowledge and unbounded
simulation-soundness, (iv) H is collision-resistant. Then the proposed AE scheme
in Fig. 18 is MUMCc&l-Auth secure under κ bits leakage per user.

73

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OEnc queries and Qd times of ODec queries, there exist ad-
versaries B1, · · · ,B5, such that T(B1) ≈ · · · ≈ T(B4) ≈ T(A) + (n+Qe +Qd) ·
poly(λ), with poly(λ) independent of T(A), and

Advauth-c&l
AE,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qe

(λ) + Advmsmp
L0,B3,Qe

(λ)

+ AdvussQANIZK,B4
(λ) + n(n−1)

2 · εpk-divQAHPS(λ) + nQd · εlr-〈L0,L〉-otext
QAHPS,B5,κ

(λ).

Remark 10 (On the Tightness of AE’s MUMCc&l-Priv&Auth Security).
According to Theorem 6 and Theorem 7, AE has both tight MUMCc&l-Priv and
tight MUMCc&l-Auth security, as long as the multi-fold SMPs related to L and
L0 and the multi-language multi-fold SMP related to L0 have tight reductions,
QAHPS has a tight L0-multi-key-multi-extracting property and QANIZK has a
tight USS.

The proofs of Theorem 6 and Theorem 7 for AE almost verbatim follow the
proofs of Theorem 3 and Theorem 4 for SC shown in Appendix F.2. Hence we
omit them.

I Instantiations of PV-QA-HPS, QA-HPS and QA-NIZK

In this section, we present the instantiations of the building blocks PV-QA-HPS,
QA-HPS and QA-NIZK needed in our generic constructions from the matrix
DDH (MDDH) assumptions over asymmetric pairing groups.

More precisely, in Appendix I.1, we recall the definitions of asymmetric pair-
ing groups and MDDH assumptions. In Appendix I.2, we present the instantia-
tions of the language distributions L and L0, whose (multi-language) multi-fold
SMPs have tight reductions to the MDDH assumptions. Then we give concrete
instantiations of Publicly-Verifiable QA-HPS in Appendix I.3 and QA-HPS in
Appendix I.4 from the MDDH assumptions. Finally, in Appendix I.5, we in-
stantiate tag-based QA-NIZK with a tag-base variant of the QA-NIZK scheme
proposed in [1] that has tight USS based on the MDDH assumptions.

I.1 Pairing Groups and MDDH Assumptions

Let PGGen be a PPT algorithm outputting a description of pairing group gpar =
(G1,G2,GT , p, e, P1, P2, PT), where G1, G2 and GT are additive cyclic groups of
order p, p is a prime number of bit-length at least λ, e : G1 × G2 −→ GT is a
non-degenerated bilinear pairing, and P1, P2, PT are generators of G1,G2,GT ,
respectively, with PT := e(P1, P2). We assume that the operations in G1, G2, GT
and the pairing e are efficiently computable. We consider Type-III asymmetric
pairing group, where G1 6= G2 and there is no efficient homomorphism between
them. We require gpar to be an implicit input of other algorithms.

We use implicit representation of group elements as in [17]. For s ∈ {1, 2, T}
and a ∈ Zp, denote by [a]s = aPs ∈ Gs as the implicit representation of a in

74

Gs. Similarly, for a matrix A = (ai,j) ∈ Zn×mp we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar|r ∈ Zmp } ⊆ Znp denotes the linear
span of A, and similarly Span([A]s) := {[Ar]s|r ∈ Zmp } ⊆ Gns . Ker(A) :=

{a|a>A = 0} ⊆ Znp denotes the left kernal space of A, and similarly Ker([A]s) :=

{a|a>[A]s = [0]s} ⊆ Znp . Note that given A, [B]s, [C]s and D with matching
dimensions, one can efficiently compute [AB]s, [B + C]s, [CD]s, and given [A]1
and [B]2, one can efficiently compute [AB]T := e([A]1, [B]2).

Let `, k ∈ N be integers with ` > k. A probabilistic distribution D`,k is
called a matrix distribution, if it outputs matrices in Z`×kp of full rank k in
polynomial time. Without loss of generality, we assume that the first k rows
of A←$ D`,k form an invertible matrix. Let Dk := Dk+1,k. Denote by U`,k the
uniform distribution over all matrices in Z`×kp . Let Uk := Uk+1,k.

In the following, we recall the Matrix DDH (MDDH), Q-fold MDDH and Ker-
nal Matrix DH (KerMDH) assumptions, parameterized by a matrix distribution
D`,k, as well as the random self-reducibility of the MDDH assumptions. The
advantage functions for an adversary A against the D`,k-MDDH, Q-fold D`,k-
MDDH and D`,k-KerMDH assumptions over group Gs (which is G1 or G2) are

denoted by Advmddh
D`,k,Gs,A(λ), AdvQ-mddh

D`,k,Gs,A(λ) and Advkmdh
D`,k,Gs,A(λ), respectively.

MDDH Assumptions. The D`,k-Matrix DDH (D`,k-MDDH) problem over
group Gs is to distinguish the two distributions ([A]s, [Aw]s) and ([A]s, [u]s),
where A ←$ D`,k, w ←$ Zkp and u ←$ Z`p.

Definition 26 (D`,k-MDDH Assumption). Let s ∈ {1, 2}. The D`,k-MDDH
assumption holds over group Gs, if for any PPT adversary A, it holds that
Advmddh

D`,k,Gs,A(λ) :=
∣∣Pr[A([A]s, [Aw]s) = 1] − Pr[A([A]s, [u]s) = 1]

∣∣ ≤ negl(λ),

where the probability is over A←$ D`,k, w ←$ Zkp and u ←$ Z`p.

MDDH assumption covers many well-studied assumptions, such as the DDH
and the k-Linear (k-LIN) assumptions, by specifying the matrix distribution as

LIN 1 and LIN k respectively [17], where LIN k : A =


a1

. . .
ak

1 · · · 1

 ∈ Z(k+1)×k
p .

Several relations among MDDH assumptions parameterized by different ma-
trix distributions were established in [17, 18].

Lemma 1 (D`,k-MDDH ⇒ Uk-MDDH [17] ⇒ U`′,k-MDDH [18]). For
any adversary A, there exists an adversary B such that T(B) ≈ T(A) and
Advmddh

Uk,Gs,A(λ) ≤ Advmddh
D`,k,Gs,B(λ).

For any adversary A, there exists an adversary B such that T(B) ≈ T(A)
and Advmddh

U`′,k,Gs,A(λ) ≤ Advmddh
Uk,Gs,B(λ).

Consequently, for any ` > k, U`,k-MDDH assumption is tightly implied by
the k-LIN assumption (i.e., LIN k-MDDH).

For Q ≥ 1, consider the Q-fold D`,k-MDDH problem over group Gs, which is
to distinguish two distributions ([A]s, [AW]s) and ([A]s, [U]s), where A ←$ D`,k,

75

W ←$ Zk×Qp and U ←$ Z`×Qp . The distinguishing advantage of an adversary A is

denoted by AdvQ-mddh
D`,k,Gs,A(λ) := |Pr[A([A]s, [AW]s) = 1]−Pr[A([A]s, [U]s) = 1]|,

where A ←$ D`,k, W ←$ Zk×Qp and U ←$ Z`×Qp . The Q-fold D`,k-MDDH as-

sumption over Gs assumes that AdvQ-mddh
D`,k,Gs,A(λ) ≤ negl(λ) for any PPT A.

D`,k-MDDH problem is random self-reducible [17], namely Q-fold and (1-
fold) D`,k-MDDH problems can be tightly reduced to each other. In particular,
for the uniform distribution U`,k, the reduction is even tighter.

Lemma 2 (Random Self-Reducibility of MDDH [17]). Let Q > `− k.
For any adversary A, there exists an adversary B, such that T(B) ≈ T(A) +

Q · poly(λ) with poly(λ) independent of T(A), and AdvQ-mddh
D`,k,Gs,A(λ) ≤ (` − k) ·

Advmddh
D`,k,Gs,B(λ) + 1/(p− 1).

For any adversary A, there exists an adversary B, such that T(B) ≈ T(A) +

Q·poly(λ) with poly(λ) independent of T(A), and AdvQ-mddh
U`,k,Gs,A(λ) ≤ Advmddh

U`,k,Gs,B(λ)

+1/(p− 1).

We also define the D`,k-Kernal Matrix DH (D`,k-KerMDH) assumption ac-
cording to [33] which is a natural search variant of the D`,k-MDDH assumption.

Definition 27 (D`,k-KerMDH Assumption). Let s ∈ {1, 2}. The D`,k-
KerMDH assumption holds over group Gs, if for any PPT adversary A, it holds
that Advkmdh

D`,k,Gs,A(λ) := Pr
[
[x]3−s ∈ G`3−s ←$ A([A]s) : x>A = 0 ∧ x 6= 0

]
≤

negl(λ), where the probability is over A ←$ D`,k.

The following lemma shows that the D`,k-KerMDH assumption is tightly
implied by the D`,k-MDDH assumption, since one can use a non-zero [x]3−s
satisfying x>A = 0 to test membership in Span([A]s).

Lemma 3 (D`,k-MDDH ⇒ D`,k-KerMDH [33]). For any adversary A,

there exists an adversary B such that T(B) ≈ T(A) and Advkmdh
D`,k,Gs,A(λ) ≤

Advmddh
D`,k,Gs,B(λ) + 1/(p− 1).

I.2 Instantiations of Language Distribution for Linear Subspaces

Let gpar = (G1,G2,GT , p, e, P1, P2, PT) be a description of asymmetric pairing
group. For any matrix distribution D`,k, it naturally gives rise to a language
distribution LD`,k for linear subspaces over group G1:

– LD`,k invokes A ←$ D`,k and outputs (ρ := [A]1, td := A).

The language parameter ρ = [A]1 ∈ G`×k1 defines a linear subspace language

Lρ := Span([A]1)\{[0]1} =
{

[c]1
∣∣∃ w ∈ Zkp \ {0}, s.t. [c]1 = [Aw]1

}
6

76

with universe X := G`1 \ {[0]1}. The trapdoor td = A can be used to decide
whether an instance [c]1 is in Lρ efficiently: one can first compute a basis of the

left kernel space of A, namely A⊥ ∈ Z`×(`−k)p satisfying (A⊥)> ·A = 0, then
check whether (A⊥)> · [c]1 = [0]1 holds.

Instantiations of L and L0. Let ` ≥ 2k + 1. Let D`,k be an (arbitrary)
matrix distribution and U`,k the uniform distribution. We designate the language
distributions L and L0 as follows.

• L := LD`,k , which invokes A←$ D`,k and outputs (ρ = [A]1, td = A).

• L0 := LU`,k , which invokes A0 ←$ U`,k and outputs (ρ0 = [A0]1, td0 = A0).

Clearly, the (multi-fold) SMP related to L (resp., L0) corresponds to the
(multi-fold) D`,k-MDDH (resp., U`,k-MDDH) assumptions over G1. By the ran-
dom self-reducibility of D`,k-MDDH and U`,k-MDDH (cf. Lemma 2), we have
the following lemma.

Lemma 4 (D`,k/U`,k-MDDH ⇒ Multi-fold SMP related to L /L0).
Let Q > ` − k. For any adversary A, there exists an adversary B such that
T(B) ≈ T(A)+Q·poly(λ) with poly(λ) independent of T(A), and Advmsmp

L ,A,Q(λ) ≤
(`−k)·Advmddh

D`,k,G1,B(λ)+2/(p−1). For any adversary A, there exists an adversary

B such that T(B) ≈ T(A) +Q · poly(λ) with poly(λ) independent of T(A), and
Advmsmp

L0,A,Q(λ) ≤ Advmddh
U`,k,G1,B(λ) + 2/(p− 1).

Next, we show that the multi-language multi-fold SMP related to L0 can be
tightly reduced to the Uk-MDDH assumption.

Lemma 5 (Uk-MDDH ⇒ Multi-language multi-fold SMP related to
L0). Let nQ > n` − k. For any adversary A, there exists an adversary B
such that T(B) ≈ T(A) + nQ · poly(λ) with poly(λ) independent of T(A), and

Advml-msmp
L0,A,n,Q(λ) ≤ Advmddh

Uk,G1,B(λ) + 2/(p− 1).

Proof of Lemma 5. Firstly, we construct an adversary B′ against the nQ-
fold Un`,k-MDDH over G1, so that Advml-msmp

L0,A,n,Q(λ) ≤ AdvnQ-mddh
Un`,k,G1,B′(λ). Then by

the random self-reducibility of Un`,k-MDDH (i.e., Lemma 2) and Uk-MDDH ⇒
Un`,k-MDDH (i.e., Lemma 1), Lemma 5 follows.

Given a challenge ([B]1, [U]1), B′ wants to distinguish [U]1 = [BW]1 from

[U]1 ←$ G(n`)×(nQ)
1 , where B←$ Un`,k and W ←$ Zk×(nQ)

p .

Let us fix some notations used in this proof. We parse B ∈ Z(n`)×k
p as B =

B(1)

B(2)

...
B(n)

 with each B(i) ∈ Z`×kp , parse W ∈ Zk×(nQ)
p as W =

(
W(1) W(2) · · ·W(n)

)

6 For technical reasons (more precisely, for the κ-LR-OT-extracting property of the
QA-HPS schemes constructed later), the zero vector [0]1 must be excluded from Lρ
and X . For the sake of simplicity, we forgo making this explicit in the sequel.

77

with each W(j) ∈ Zk×Qp , and parse U ∈ Z(n`)×(nQ)
p as U =


U

(1)
(1) U

(1)
(2) · · · U

(1)
(n)

U
(2)
(1) U

(2)
(2) · · · U

(2)
(n)

...
...

...

U
(n)
(1) U

(n)
(2) · · · U

(n)
(n)


with each U

(i)
(j) ∈ Z`×Qp . We also denote by W(j)|m ∈ Zkp the m-th column of

W(j) and by U
(i)
(j)|m ∈ Z`p the m-th column of U

(i)
(j), where m ∈ [Q].

B′ is constructed by invoking A as follows. B′ sets ρ(i) := [B(i)]1 ∈ G`×k1 for

each i ∈ [n], and sets x
(i)
m := [U

(i)
(i)|m]1 ∈ G`1 for each i ∈ [n] and m ∈ [Q]. Then

B′ invokes A({ρ(i), {x(i)m }m∈[Q]}i∈[n]), and returns to its own challenger whatever
A outputs.

Next, we analyze the advantage of B′.

– Since B←$ Un`,k, each B(i) is independently and uniformly random over
Z`×kp . Thus, each ρ(i) = [B(i)]1 exactly follows the language parameter dis-
tribution output by LU`,k = L0.

– In the case that [U]1 = [BW]1, for each i ∈ [n], we have [U
(i)
(i)]1 = [B(i)W(i)]1

∈ G`×Q1 , and for each m ∈ [Q], we have x
(i)
m = [U

(i)
(i)|m]1 = [B(i)W(i)|m]1 ∈

G`1, which is independently and uniformly random over Span([B(i)]1) =
Lρ(i) , due to the randomness of W(i)|m.

– In the case that [U]1 ←$ G(n`)×(nQ)
1 , for each i ∈ [n], U

(i)
(i) is uniformly

random over G`×Q1 , and for each m ∈ [Q], x
(i)
m = [U

(i)
(i)|m]1 is uniformly

random over G`1 = X .

Therefore, B′ successfully distinguishes [U]1 = [BW]1 from [U]1 ←$ G(n`)×(nQ)
1 ,

as long as A solves the multi-language multi-fold SMP related to L0. Conse-
quently, we get Advml-msmp

L0,A,n,Q(λ) ≤ AdvnQ-mddh
Un`,k,G1,B′(λ), as desired. This completes

the proof of Lemma 5. ut

I.3 Instantiation of PV-QA-HPS from MDDH

In this subsection, we present a PV-QA-HPS scheme PVQAHPSMDDH based on
the MDDH assumptions over asymmetric pairing groups.

Let L = LD`,k and L0 = LU`,k be the language distributions specified in
Appendix I.2. Formally, the MDDH-based PVQAHPSMDDH = (SetupHPS, α(·), ν,
Pub,Priv,VrfyHPS) for L is presented in Fig. 19. It is straightforward to check
the correctness of PVQAHPSMDDH for both L and L0 and the verification com-
pleteness of PVQAHPSMDDH.

Through the following theorems, we prove the verification soundness, VK-
diversity, and κ-LR-〈L0,L 〉-OT-extracting of PVQAHPSMDDH, as needed for
the strong MUc&l-CMA security of our SIG in Subsect. 5.2 (cf. Theorem 1) and
the MUMCc&l-Priv and MUMCc&l-Auth security of our SC in Appendix F.2 (cf.
Theorem 3 and Theorem 4).

78

ppHPS ←$ SetupHPS:

gpar = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen.

B←$ Dk, where B ∈ Z(k+1)×k
p .

Return ppHPS := (gpar, [B]2), which implicitly defines

(SK := Z(k+1)×`
p , HV := Gk+1

1 , VK := G`×k2 , Λ(·)),
where Λsk([c]1) := K · [c]1 for sk = K ∈ SK and [c]1 ∈ X .

pkρ ← αρ(sk = K ∈ SK), where ρ = [A]1 ∈ G`×k1 :

Return pkρ := [P]1 := K · [A]1 ∈ G(k+1)×k
1 .

vk ← ν(sk = K ∈ SK):

Return vk := K> · [B]2 ∈ G`×k2 .

[hv]1 ← Pub(pkρ = [P]1, [c]1,w ∈ Zkp),

where [c]1 ∈ Lρ for ρ = [A]:

Return [hv]1 := [P]1 ·w ∈ Gk+1
1 .

[hv]1 ← Priv(sk = K ∈ SK, [c]1 ∈ X):

Return [hv]1 := K · [c]1 ∈ Gk+1
1 .

0/1← VrfyHPS(vk, [c]1 ∈ X , [hv]1):

Parse vk = [K>B]2 ∈ G`×k2 .

If e([c>]1, [K
>B]2) = e([hv>]1, [B]2):

Return 1;
Else: Return 0.

Fig. 19. The MDDH-based publicly-verifiable QA-HPS scheme PVQAHPSMDDH.

Theorem 8 (Tight Verification Soundness of PVQAHPSMDDH). If the Dk-
KerMDH assumption holds over G2, then the proposed PVQAHPSMDDH in Fig.
19 has verification soundness. Concretely, for any adversary A and any n, there
exists an adversary B, such that T(B) ≈ T(A) + n · poly(λ) with poly(λ) inde-

pendent of T(A), and Advvrfy-sndPVQAHPSMDDH,A,n(λ) ≤ Advkmdh
Dk,G2,B(λ).

Proof of Theorem 8. We construct an adversary B against the Dk-KerMDH
over G2 by simulating the experiment Expvrfy-sndPVQAHPS,A,n (defined in Fig. 5) for A.

Given a challenge [B]2 where B←$ Dk, B is constructed as follows.

• B sets ppHPS := (gpar, [B]2). For each i ∈ [n], B samples ski = Ki ←$ Z(k+1)×`
p

itself, and computes vki := K>i · [B]2.
• Then B invokes A(ppHPS, (ski, vki)i∈[n]) and obtains (i∗, [c∗]1 ∈ G`1, [hv

∗]1 ∈
Gk+1

1) from A.
• Finally, B computes [x]1 := [hv∗ −Ki∗c

∗]1 ∈ Gk+1
1 from [hv∗]1, Ki∗ and

[c∗]1, and outputs [x]1 to its own challenger.

Clearly, B simulates the experiment Expvrfy-sndPVQAHPS,A,n perfectly for A.

Now we show that B succeeds, i.e., B’s output [x]1 := [hv∗ −Ki∗c
∗]1 sat-

isfies x 6= 0 and x>B = 0, as long as A succeeds. Suppose that A succeeds in
Expvrfy-sndPVQAHPS,A,n, i.e., [hv∗]1 6= Λski∗ ([c∗]1) but VrfyHPS(vki∗ , [c

∗]1, [hv
∗]1) = 1.

– The former [hv∗]1 6= Λski∗ ([c∗]1) ⇐⇒ [hv∗]1 6= Ki∗ [c
∗]1 ⇐⇒ [x]1 =

[hv∗ −Ki∗c
∗]1 6= [0]1, so x is non-zero.

– The latter VrfyHPS(vki∗ , [c
∗]1, [hv

∗]1) = 1 ⇐⇒ e([c∗>]1, [K
>
i∗B]2) = e([hv∗>]1,

[B]2) ⇐⇒ e([x>]1, [B]2) = e([hv∗> − c∗>K>i∗]1, [B]2) = [0]T , so x>B = 0.

Thus, B successfully breaks the Dk-KerMDH assumption. Consequently, we get
Advvrfy-sndPVQAHPSMDDH,A,n(λ) ≤ Advkmdh

Dk,G2,B(λ) and complete the proof. ut

Theorem 9 (VK-Diversity of PVQAHPSMDDH). The proposed PVQAHPSMDDH

in Fig. 19 has VK-diversity with εvk-divPVQAHPSMDDH
(λ) = 1/pk`.

79

Proof of Theorem 9. For B←$ Dk chosen in ppHPS ←$ SetupHPS and for

sk = K←$ Z(k+1)×`
p and sk′ = K′ ←$ Z(k+1)×`

p , the event ν(sk) = ν(sk′) ⇐⇒
K> · [B]2 = K′> · [B]2 ⇐⇒ (K − K′)> · B = 0 ⇐⇒ ∀i ∈ [`],Ki − K′i ∈
Ker(B), where Ki (resp. K′i) denotes the i-th column of K (resp. K′). Since

B ∈ Z(k+1)×k
p output by Dk has rank k, the left kernal Ker(B) has rank 1. So

the probability that each Ki−K′i ∈ Ker(B) is p1/pk+1 = 1/pk, by the uniformity
of Ki−K′i over Zk+1

p . Taking all i ∈ [`] into account, this shows the VK-diversity

of PVQAHPSMDDH with εvk-divPVQAHPSMDDH
(λ) = 1/pk`. ut

Before presenting the κ-LR-〈L0,L 〉-OT-extracting of PVQAHPSMDDH, we
define the notations of min-entropy and average min-entropy, and recall a useful
lemma from [16]. Let X and Y be two random variables. The min-entropy of X
is defined as H∞(X) := − log(maxx Pr[X = x]), and the average min-entropy

of X conditioned on Y is defined as H̃∞(X |Y) := − log
(
Ey←$Y

[
maxx Pr[X =

x |Y = y]
])

, where E denotes the mathematical expectation.

Lemma 6 ([16]). Let X,Y, Z be three (possibly correlated) random variables.

If Z has at most 2κ possible values, then H̃∞(X |Y, Z) ≥ H̃∞(X |Y)− κ.
Theorem 10 (κ-LR-〈L0,L 〉-OT-Extracting of PVQAHPSMDDH). Let ` ≥
2k + 1 and κ ≤ log p − Ω(λ). The proposed PVQAHPSMDDH in Fig. 19 sup-

ports κ-LR-〈L0,L 〉-OT-extracting with ε
lr-〈L0,L〉-otext
PVQAHPSMDDH,A,κ(λ) ≤ 2−Ω(λ) for any

(unbounded) adversary A.

Proof of Theorem 10. Let (ρ = [A]1 ∈ G`×k1 , td)←$ L and (ρ0 = [A0]1 ∈
G`×k1 , td0)←$ L0. With overwhelming probability 1−2−Ω(λ), the matrix (A,A0)
∈ Z`×2kp is of full column rank, and in this case, Span([A]1) ∩ Span([A0]1) =
{[0]1}. In the following analysis, we take it for granted.

Firstly, we prove the κ-LR-〈L0,L 〉-OT-extracting property in the case κ =

0, i.e., there is no leakage at all. For sk = K←$ Z(k+1)×`
p , we will show that in

the presence of ppHPS = (gpar, [B]2), ρ0 = [A0]1, ρ = [A]1, αρ0(sk) = [KA0]1
and ν(sk) = [K>B]2, the hash value Λsk([c∗]1) = [Kc∗]1 has entropy at least
log p for any [c∗]1 ∈ Lρ = Span([A]1) \ {[0]1}, i.e.,

H̃∞([Kc∗]1 | gpar, [B]2, [A0]1, [A]1, [KA0]1, [K
>B]2) ≥ log p. (5)

Therefore, any (unbounded) adversary A is able to output ([c∗]1, [hv
∗]1) such

that [c∗]1 ∈ Lρ ∧ [hv∗]1 = Λsk([c∗]1) holds with probability at most 1/p.
We prove the high entropy of Λsk([c∗]1) = [Kc∗]1 (i.e., (5)) as follows. Let

a⊥0 ∈ Z`p (resp. b⊥ ∈ Zk+1
p) be an arbitrary non-zero vector in the left kernel

space of A0 (resp. B) such that (a⊥0)>A0 = 0 (resp. (b⊥)>B = 0) holds. For

the convenience of our analysis, we sample sk = K←$ Z(k+1)×`
p equivalently via

sk = K := K̃ + µ · b⊥ · (a⊥0)> ∈ Z(k+1)×`
p ,

where K̃←$ Z(k+1)×`
p and µ←$ Zp. Consequently, we have

αρ0(sk) = [KA0]1 = [K̃A0]1, ν(sk) = [K>B]2 = [K̃>B]2,

80

which may leak K̃, but the value of µ is completely hidden. Besides,

Λsk([c∗]1) = [Kc∗]1 = [K̃c∗]1 + [µ · b⊥ · (a⊥0)> · c∗]1 .

By the facts Span([A]1) ∩ Span([A0]1) = {[0]1} and [c∗]1 ∈ Lρ = Span([A]1) \
{[0]1}, it follows that [c∗]1 /∈ Span([A0]1), and consequently, there always exists
an a⊥0 ∈ Z`p such that [(a⊥0)> · c∗]1 6= [0]1 holds. As a result, conditioned on
ppHPS = (gpar, [B]2), ρ0 = [A0]1, ρ = [A]1, αρ0(sk) = [KA0]1 and ν(sk) =
[K>B]2, the term [µ · b⊥ · (a⊥0)> · c∗]1 has entropy log p due to the randomness
of µ, and so does Λsk([c∗]1) = [Kc∗]1. This finishes the proof of (5).

Next, we prove the κ-LR-〈L0,L 〉-OT-extracting property for any κ ≤ log p−
Ω(λ). In this case, the adversary can obtain at most κ bits leakage informa-
tion about sk through oracle OLeak. We note that A can query oracle OLeak

adaptively and each time submit a leakage functions L(·) which may arbitrar-
ily depend on all the information that A obtains. Nevertheless, we denote by
Leakall the overall leakage information, which is at most κ bits. By Lemma 6
and (5), it follows that even additionally in the presence of Leakall, the hash
value Λsk([c∗]1) = [Kc∗]1 still has entropy at least log p − κ ≥ Ω(λ) for any
[c∗]1 ∈ Lρ = Span([A]1) \ {[0]1}, i.e.,

H̃∞([Kc∗]1 | gpar, [B]2, [A0]1, [A]1, [KA0]1, [K
>B]2, Leak

all)

≥ H̃∞([Kc∗]1 | gpar, [B]2, [A0]1, [A]1, [KA0]1, [K
>B]2)− κ

≥ log p− κ ≥ Ω(λ).

Therefore, A is able to output ([c∗]1, [hv
∗]1) such that [c∗]1 ∈ Lρ ∧ [hv∗]1 =

Λsk([c∗]1) with probability at most 2−Ω(λ).
This completes the proof of κ-LR-〈L0,L 〉-OT-extracting. ut

I.4 Instantiation of QA-HPS from MDDH

In this subsection, we instantiate QA-HPS with (a slightly simplified variant of)
the MDDH-based QA-HPS scheme QAHPSMDDH proposed in [22, Subsect. 5.3],
which is in turn a generalization of the well-known DDH-based HPS scheme
proposed by Cramer and Shoup in [13].

Let L = LD`,k and L0 = LU`,k be the language distributions specified in
Appendix I.2. Formally, we present the MDDH-based scheme QAHPSMDDH =
(SetupHPS, α(·),Pub,Priv) for L in Fig. 20. It is straightforward to check the
correctness of QAHPSMDDH for both L and L0.

Through the following theorems, we show the PK-diversity, κ-LR-〈L ,L0〉-
key-switching and L0-multi-key-multi-extracting of QAHPSMDDH, as needed for
the MUMCc&l-CCA security of our PKE in Subsect. 6.2 (cf. Theorem 2) and the
MUMCc&l-Priv security of our AE in Appendix H.2 (cf. Theorem 6).

Theorem 11 (PK-Diversity of QAHPSMDDH). The proposed QAHPSMDDH

in Fig. 20 has PK-diversity with εpk-divQAHPSMDDH
(λ) = 1/pk.

81

ppHPS ←$ SetupHPS:

gpar = (G1,G2,GT , p, e, P1, P2, PT)←$ PGGen.
Return ppHPS := gpar, which implicitly defines

(SK := Z`p, HV := G1, Λ(·)),
where Λsk([c]1) := k> · [c]1 ∈ G1 for sk = k ∈ SK and [c]1 ∈ X .

pkρ ← αρ(sk), where ρ = [A]1 ∈ G`×k1 :

Parse sk = k ∈ Z`p.
[p>]1 := k> · [A]1 ∈ G1×k

1 .
Return pkρ := [p]1.

[hv]1 ← Pub(pkρ, [c]1,w ∈ Zkp),

where [c]1 ∈ Lρ for ρ = [A]:

Parse pkρ = [p]1 ∈ Gk1 .
Return [hv]1 := [p>]1 ·w ∈ G1.

[hv]1 ← Priv(sk, [c]1 ∈ X):

Parse sk = k ∈ Z`p.
Return [hv]1 := k> · [c]1 ∈ G1.

Fig. 20. The MDDH-based QA-HPS scheme QAHPSMDDH.

Proof of Theorem 11. For (ρ = [A]1, td = A)←$ L where A ←$ D`,k and for
sk = k ←$ Z`p and sk′ = k′ ←$ Z`p, the event αρ(sk) = αρ(sk

′) ⇐⇒ k> · [A]1 =

k′> · [A]1 ⇐⇒ (k−k′)> ·A = 0 ⇐⇒ k−k′ ∈ Ker(A). Since A ∈ Z`×kp output
by D`,k has rank k, the left kernal Ker(A) has rank ` − k. So the probability
that k − k′ ∈ Ker(A) is p`−k/p` = 1/pk, by the uniformity of k − k′ over Z`p.
This shows the PK-diversity of QAHPSMDDH with εpk-divQAHPSMDDH

(λ) = 1/pk. ut
We note that the PK-diversity of QAHPSMDDH also holds for language pa-

rameters ρ0 = [A0]1 output by L0 = LU`,k , since A0 ∈ Z`×kp output by U`,k has

rank k with overwhelming probability 1− 2−Ω(λ).

The κ-LR-〈L ,L0〉-key-switching of QAHPSMDDH is shown in [22, Theorem
3]. Here we recall the result in the following theorem.

Theorem 12 (κ-LR-〈L ,L0〉-Key-Switching of QAHPSMDDH [22, Theo-
rem 3]). Let ` ≥ 2k + 1 and κ ≤ log p − Ω(λ). The proposed QAHPSMDDH in

Fig. 20 supports κ-LR-〈L ,L0〉-key-switching with ε
lr-〈L,L0〉-ks
QAHPSMDDH,A,κ(λ) ≤ 2−Ω(λ)

for any (unbounded) adversary A.

In [22, Theorem 2], the L0-Multi-Extracting of QAHPSMDDH in a single-key
setting is tightly reduced to the Uk-MDDH assumption over G1. Due to the
random self-reducibility of Uk-MDDH, the L0-Multi-Key-Multi-Extracting of
QAHPSMDDH also holds with a tight reduction to Uk-MDDH, as shown in the
following theorem.

Theorem 13 (Tight L0-Multi-Key-Multi-Extracting of QAHPSMDDH).
If the Uk-MDDH assumption holds over G1, then the proposed QAHPSMDDH in
Fig. 20 supports L0-multi-key-multi-extracting. Concretely, for any adversary
A, any n and any Q, there exists an adversary B, such that T(B) ≈ T(A) +
nQ · poly(λ) with poly(λ) independent of T(A), and AdvL0-mk-mext

QAHPSMDDH,A,n,Q(λ) ≤
Advmddh

Uk,G1,B(λ) + 1/(p− 1).

Proof of Theorem 13. Firstly, we construct an adversary B′ against the Q-
fold Uk+n,k-MDDH over G1, so that AdvL0-mk-mext

QAHPSMDDH,A,n,Q(λ) ≤ AdvQ-mddh
Uk+n,k,G1,B′(λ).

82

Then by the random self-reducibility of Uk+n,k-MDDH (i.e., Lemma 2) and Uk-
MDDH ⇒ Uk+n,k-MDDH (i.e., Lemma 1), Theorem 13 follows.

Let us fix some notations. For any matrix X consisting (k + n) rows, denote

by X the upper k rows of X, X the lower n rows of X, and X(i) the i-th row of
X (which is also the the (k + i)-th row of X) for any i ∈ [n].

Given a challenge ([B]1, [U]1), B′ wants to distinguish [U]1 = [BW]1 from

[U]1 ←$ G(k+n)×Q
1 , where B←$ Uk+n,k and W ←$ Zk×Qp . For each j ∈ [Q],

denote by [uj]1 ∈ Gk+n1 the j-th column of [U]1. B′ is constructed as follows.

• B′ chooses V ←$ Z`×kp uniformly, computes [A0]1 := V[B]1 ∈ G`×k1 and sets
ρ0 := [A0]1 as the language parameter.

• For each i ∈ [n], B′ implicitly sets ski = ki ←$ Z`p with k>i · [A0]1 = [B(i)]1.

• For each j ∈ [Q], B′ computes [cj]1 := V[uj]1 ∈ G`1.
• For each i ∈ [n] and each j ∈ [Q], B′ computes [hvi,j]1 := [uj

(i)]1 ∈ G1.

• Finally, B′ submits
(
ρ0,

{
[cj]1, {[hvi,j]1}i∈[n]

}
j∈[Q]

)
to A, and outputs

whatever A outputs.

Clearly, [A0]1 is uniformly distributed over G`×k1 , due to the randomness
of V. Thus B′’s simulation of ρ0 = [A0]1 is perfect. Meanwhile, B′’s implicit
simulation of ski = ki is also perfect for each i ∈ [n], since ki is uniformly

random as long as B(i) ∈ Z1×k
p is.

– If [U]1 = [BW]1, for each j ∈ [Q], [uj]1 = [Bwj]1 with wj ←$ Zkp, and
consequently:
• [cj]1 := V[uj]1 = [VBwj]1 = [A0wj]1, thus is uniformly distributed

over Span([A0]1) = Lρ0 ;

• for each i ∈ [n], [hvi,j]1 := [uj
(i)]1 = [B(i)wj]1 = k>i · [A0wj]1 =

k>i · [cj]1 = Λski([cj]1).

– If [U]1 ←$ G(k+n)×Q
2 , for each j ∈ [Q], [uj]1 ←$ Gk+n2 , and consequently:

• [cj]1 := V[uj]1 = [VBB
−1

uj]1 = [A0B
−1

uj]1, thus is also uniformly

distributed over Span([A0]1) = Lρ0 with witness B
−1

uj ;
• for each i ∈ [n], [hvi,j]1 := [uj

(i)]1 ∈ G1, which is uniformly distributed

over HV = G1 (and in particular, is independent of [cj]1).

Consequently, we get AdvL0-mk-mext
QAHPSMDDH,A,n,Q(λ) ≤ AdvQ-mddh

Uk+n,k,G1,B′(λ), as desired.
This completes the proof of Theorem 13. ut

We also show the κ-LR-〈L0,L 〉-OT-extracting of QAHPSMDDH, which to-
gether with the PK-diversity (for L0) are needed for the strong MUc&l-CMVA
security of our MAC in Appendix G.2 (cf. Theorem 5) and the MUMCc&l-Auth
security of our AE in Appendix H.2 (cf. Theorem 7).

Theorem 14 (κ-LR-〈L0,L 〉-OT-Extracting of QAHPSMDDH). Let ` ≥
2k + 1 and κ ≤ log p − Ω(λ). The proposed QAHPSMDDH in Fig. 20 supports

κ-LR-〈L0,L 〉-OT-extracting with ε
lr-〈L0,L〉-otext
QAHPSMDDH,A,κ(λ) ≤ 2−Ω(λ) for any (unbounded)

adversary A.

83

The proof of Theorem 14 is similar to that of Theorem 10, by simply ignoring
the parts related to verification key. Hence we omit it.

I.5 Instantiation of Tag-Based QA-NIZK from MDDH

In this subsection, we instantiate tag-based QA-NIZK with a tag-based variant
of the MDDH-based QA-NIZK scheme proposed in [1, Subsect. 3.2]. The original
scheme in [1] is not tag-based. As noted by Abe et al. [1], their scheme can be
easily adapted to tag-based QA-NIZK by putting the tag τ inside a collision-
resistant hash function.

Let L = LD`,k be the language distribution specified in Appendix I.2. Let T
be an arbitrary tag space. We present the tag-based variant of the MDDH-based
QA-NIZK scheme in [1, Subsect. 3.2], QANIZKMDDH = (SetupNIZK,CRSGen,Prove,
VrfyNIZK,Sim) for L , as follows. The scheme QANIZKMDDH is built upon a
NIZK scheme Πor = (Πor.CRSGen, Πor.Prove, Πor.Vrfy) for OR-languages as sub-
procedures, and uses a family of collision-resistant hash functions H′ with range
Zp. We present QANIZKMDDH with tag space T and it sub-procedures Πor in
Fig. 21. It is straightforward to check the perfect completeness of QANIZKMDDH.

ppNIZK ←$ SetupNIZK:

gpar = (G1,G2,GT , p, e, P1, P2, PT) ←$ PGGen.
Return ppNIZK := gpar.

(crs, tdcrs) ←$ CRSGen(ρ = [A]1 ∈ G`×k1):

A0,A1 ← D2k,k, B← Dk, H ′ ←$ H′.
crsor ← Πor.Gen([A0]1, [A1]1).

K ←$ Z2k×(k+1)
p , K0,K1 ←$ Z`×(k+1)

p .

P := A>0 K ∈ Zk×(k+1)
p .

[P0]1 := [A>K0]1, [P1]1 := [A>K1]1.
C := KB, C0 := K0B, C1 := K1B.
crs := (crsor, [A0]1, [P]1, [P0]1, [P1]1, [B]2, [C]2,

[C0]2, [C1]2, H
′).

tdcrs := (K0,K1).
Return (crs, tdcrs).

π ←$ Prove(crs, τ, [c]1,w) : �Prove c = Aw

r ←$ Zkp, [t]1 := [A0]1r.
πor ←$ Πor.Prove(crsor, [t]1, r).
t := H ′([c]1, [t]1, πor, τ) ∈ Zp.
[u]1 := w>([P0]1 + t[P1]1) + r>[P]1.
Return π := ([t]1, [u]1, πor).

0/1← VrfyNIZK(crs, τ, [c]1, π):

t := H ′([c]1, [t]1, πor, τ) ∈ Zp.
If Πor.Vrfy(crsor, [t]1, πor) = 0: Return 0.

If e([u]1, [B]2) = e([c>]1, [C0 + tC1]2)

+e([t>]1, [C]2): Return 1;
Else: Return 0.

π ←$ Sim(crs, tdcrs, τ, [c]1):

r ←$ Zkp, [t]1 := [A0]1r.
πor ←$ Πor.Prove(crsor, [t]1, r).
t := H ′([c]1, [t]1, πor, τ) ∈ Zp.
[u]1 := [c>(K0 + tK1)]1 + r>[P]1.
Return π := ([t]1, [u]1, πor).

Sub-procedures:
crsor ←$ Πor.CRSGen([A0]1, [A1]1):

D← Dk, z ←$ Zk+1
p \ Span(D).

Return crsor := ([D]2, [z]2).

πor ←$ Πor.Prove(crsor, [t]1, r):

Let j ∈ {0, 1} s.t. [t]1 = [Aj]1r.

v ←$ Zkp.
[z1−j]2 := [D]2v, [zj]2 := [z]2 − [z1−j]2.

S0,S1 ←$ Zk×kp .

[Gj]2 := Sj [D]>2 + r[zj]
>
2 .

[Πj]1 := [Aj]1Sj .

[G1−j]2 := S1−j [D]>2 .

[Π1−j]1 := [A1−j]1S1−j − [t]1v
>.

Return πor := ([z0]2, ([Gi]2, [Πi]1)i∈{0,1}).

0/1← Πor.Vrfy(crsor, [t]1, πor):

[z1]2 = [z]2 − [z0]2.
If for all i ∈ {0, 1}, it holds that

e([Ai]1, [Gi]2) = e([Πi]1, [D
>]2)

+e([t]1, [z
>
i]2): Return 1;

Else: Return 0.

Fig. 21. The MDDH-based tag-based QA-NIZK scheme QANIZKMDDH in [1].

84

In [1], Abe et al. proved the tight USS for witness-sampleable distributions
from MDDH assumptions. Formally, we recall the following theorem from [1].

Theorem 15 (Tight USS of QANIZKMDDH [1, Theorem 1, Theorem 2]).
If the D2k,k-MDDH assumption holds in G1, Dk-MDDH assumption holds in
G2, Dk-KerMDH assumption holds in G1 and H′ is a collision-resistant hash
family, then the proposed QANIZKMDDH in Fig. 21 has perfect zero-knowledge
and unbounded simulation-soundness.

Concretely, for any adversary A who makes at most Qs times of OSim queries,
there exist adversaries B1, · · · ,B4 such that T(B1) ≈ · · · ≈ T(B4) ≈ T(A) +Qs ·
poly(λ) with poly(λ) independent of T(A), and

AdvussQANIZKMDDH,A(λ) ≤AdvcrH′,B1
(λ) + (4kdlogQse+ 2) · Advmddh

D2k,k,G1,B2
(λ)

+ (2dlogQse+ 2) · Advmddh
Dk,G2,B3

(λ) + Advkmdh
Dk,G1,B4

(λ) + 2−Ω(λ).

By Lemma 3, Dk-MDDH⇒ Dk-KerMDH. Hence, Theorem 15 indicates that
the QANIZKMDDH scheme in Fig. 21 has a tight USS based on the MDDH assump-
tions, with a security loss O(logQs). Since Qs = poly(λ) for PPT adversaries,
the security loss is in fact O(logQs) = O(log λ), which is lower than O(λ).

85

Table of Contents

1 Introduction . 1
1.1 Our Contributions . 5

2 Technical Overview . 7
2.1 Our SIG: Technical Overview . 7
2.2 Our PKE: Technical Overview . 10
2.3 Our SC, MAC and AE: Technical Overview 13
2.4 Instantiations from MDDH Assumptions and Leakage Resilience . . 14
2.5 Comparison with Existing Techniques for Tight MUc Security . . . 16

3 Preliminaries . 16
3.1 Language Distribution . 17
3.2 Quasi-Adaptive Hash Proof System . 17
3.3 Tag-based Quasi-Adaptive Non-Interactive Zero-Knowledge 19

4 Publicly-Verifiable QA-HPS and New Properties 20
5 SIG with Tight Strong MUc&l-CMA Security . 23

5.1 Definition of Strong MUc&l-CMA Security . 23
5.2 Generic Construction of SIG from PV-QA-HPS and QA-NIZK . . 24

6 PKE with Tight MUMCc&l-CCA Security . 25
6.1 Definition of MUMCc&l-CCA Security . 25
6.2 Generic Construction of PKE from QA-HPS and QA-NIZK 27

7 More Primitives and Instantiations from MDDH 28
A Full Comparison Tables on the Full Compactness 33
B Additional Preliminaries . 34
C Proof of Theorem 1 (Strong MUc&l-CMA Security of SIG) 35
D Proof of Theorem 2 (MUMCc&l-CCA Security of PKE) 42
E Discussions on Potential Variants of Our Constructions 51
F Signcryption with Tight MUMCc&l-Priv&Auth Security 54
G MAC with Tight Strong MUc&l-CMVA Security . 63
H AE with Tight MUMCc&l-Priv&Auth Security . 70
I Instantiations of PV-QA-HPS, QA-HPS and QA-NIZK 74

I.1 Pairing Groups and MDDH Assumptions . 74
I.2 Instantiations of Language Distribution for Linear Subspaces . . . 76
I.3 Instantiation of PV-QA-HPS from MDDH . 78
I.4 Instantiation of QA-HPS from MDDH . 81
I.5 Instantiation of Tag-Based QA-NIZK from MDDH 84

	 Almost Tight Multi-User Security under Adaptive Corruptions & Leakages in the Standard Model
	Introduction
	Our Contributions

	Technical Overview
	Our SIG: Technical Overview
	Our PKE: Technical Overview
	Our SC, MAC and AE: Technical Overview
	Instantiations from MDDH Assumptions and Leakage Resilience
	Comparison with Existing Techniques for Tight MUc Security

	Preliminaries
	Language Distribution
	Quasi-Adaptive Hash Proof System
	Tag-based Quasi-Adaptive Non-Interactive Zero-Knowledge

	Publicly-Verifiable QA-HPS and New Properties
	SIG with Tight Strong MUc&l-CMA Security
	Definition of Strong MUc&l-CMA Security
	Generic Construction of SIG from PV-QA-HPS and QA-NIZK

	PKE with Tight MUMCc&l-CCA Security
	Definition of MUMCc&l-CCA Security
	Generic Construction of PKE from QA-HPS and QA-NIZK

	More Primitives and Instantiations from MDDH
	Full Comparison Tables on the Full Compactness
	Additional Preliminaries
	Proof of Theorem 1 (Strong MUc&l-CMA Security of SIG)
	Full Description of Reduction B1 for Claim 1
	Full Description of Reductions B3 and B4 for Claim 3
	Full Description of Reduction B5 for Claim 4
	Full Description of Reduction B6 for Claim 5

	Proof of Theorem 2 (MUMCc&l-CCA Security of PKE)
	Proof of Claim 6
	Proof of Claim 7
	Proof of Claim 8
	Proof of Claim 9

	Discussions on Potential Variants of Our Constructions
	Discussions on Setup of Our SIG and PKE
	Discussions on Potential Variants of Our PKE

	Signcryption with Tight MUMCc&l-Priv & Auth Security
	Signcryption and Its MUMCc&l-Priv & Auth Security
	Generic Construction of Signcryption

	MAC with Tight Strong MUc&l-CMVA Security
	MAC and Its Strong MUc&l-CMVA Security
	Generic Construction of MAC from QA-HPS and QA-NIZK

	AE with Tight MUMCc&l-Priv & Auth Security
	Authenticated Encryption and Its MUMCc&l-Priv & Auth Security
	Generic Construction of AE from QA-HPS and QA-NIZK

	Instantiations of PV-QA-HPS, QA-HPS and QA-NIZK
	Pairing Groups and MDDH Assumptions
	Instantiations of Language Distribution for Linear Subspaces
	Instantiation of PV-QA-HPS from MDDH
	Instantiation of QA-HPS from MDDH
	Instantiation of Tag-Based QA-NIZK from MDDH

