
Practical Signature-Free Asynchronous Common Subset in
Constant Time

Sisi Duan

duansisi@tsinghua.edu.cn

Tsinghua University

Xin Wang

wangxin87@mail.tsinghua.edu.cn

Tsinghua University

Haibin Zhang

bchainzhang@aliyun.com

Beijing Institute of Technology

ABSTRACT
Asynchronous common subset (ACS) is a powerful paradigm en-

abling applications such as Byzantine fault-tolerance (BFT) and

multi-party computation (MPC). The most efficient ACS framework

in the information-theoretic (IT) setting is due to Ben-Or, Kelmer,

and Rabin (BKR, 1994). The BKR ACS protocol has been both theo-

retically and practically impactful. However, the BKR protocol has

an 𝑂 (log𝑛) running time (where 𝑛 is the number of replicas) due

to the usage of 𝑛 parallel asynchronous binary agreement (ABA)

instances, impacting both performance and scalability. Indeed, for

a network of 16∼64 replicas, the parallel ABA phase occupies about

95%∼97% of the total runtime in BKR. A long-standing open prob-

lem is whether we can build an ACS framework with 𝑂 (1) time

while not increasing the message or communication complexity of

the BKR protocol.

In this paper, we resolve the open problem, presenting the first

constant-time ACS protocol with 𝑂 (𝑛3) messages in the IT (and

signature-free) settings. Moreover, as a key ingredient of our new

ACS framework and an interesting primitive in its own right, we pro-

vide the first IT-secure multivalued validated Byzantine agreement

(MVBA) protocol with𝑂 (1) time and𝑂 (𝑛3) messages. Both results

can improve—asymptotically and concretely—various applications

using ACS and MVBA in the IT, quantum-safe, or signature-free

settings. As an example, we implement FIN, a BFT protocol instanti-

ated using our framework. Via a 121-server deployment on Amazon

EC2, we show FIN is significantly more efficient than PACE (CCS

2022), the state-of-the-art asynchronous BFT protocol of the same

type. In particular, FIN reduces the overhead of the ABA phase to

as low as 1.23% of the total runtime, and FIN achieves up to 3.41x

the throughput of PACE.

1 INTRODUCTION
Overview. This paper is about resolving a long-standing open

problem in fault-tolerant distributed computing and multi-party

computation (MPC). We present the first practical 𝑂 (1)-time and

𝑂 (𝑛3)-message asynchronous common subset (ACS) protocol [7,

9], while prior constructions either have 𝑂 (log𝑛) time and 𝑂 (𝑛3)
messages or fail to be practical due to 𝑂 (𝑛4) message complexity.

History. The concept of asynchronous common subset (ACS) is

due to Ben-Or, Canetti, and Goldreich (BCG) in the context of

asynchronous MPC—under a different name called agreement on

a core set [7]. BCG proposed an ACS construction using two core

building blocks in fault-tolerant distributed computing—reliable

broadcast (RBC) and asynchronous binary agreement (ABA). Soon

later, Ben-Or, Kelmer, and Rabin (BKR) presented a refined and

practical ACS construction using 𝑛 RBC and 𝑛 ABA instances [9].

Meanwhile, BKR renamed "agreement on a core set" as "agreement

on a common subset."

The ACS paradigm (BCG and BKR) has been enormously impact-

ful, empowering numerous applications as well as implementations,

such as MPC [6, 9, 10, 15, 19–22, 37], BFT [3, 10, 29, 36, 40, 52, 53],

distributed key generation [25, 27, 34], and proactive secret shar-

ing [31, 32, 49].

IT, signature-free, and quantum-safe settings. The ACS notion
has been historically associated with the information-theoretic (IT)

setting: as emphasized by Cachin et al. [12, Section 4], "the primitive

of agreement on a core set (which) is used in the information-

theoretic model." Indeed, ACS constructions typically rely on ideal

building primitives in distributed computing such as RBC, ABA,

and common coins, all of which can be realized in the IT-secure

manner [11, 16].

A closely related setting is the signature-free setting focusing on

protocols assuming the existence of common coins.
1
In particular,

the line of work for signature-free ABA—which is at the core of

practical ACS constructions—begins with the seminal work by Ra-

bin [47] and is followed by [24, 39, 42, 43, 50] being implemented

in various practical BFT and MPC systems [29, 36, 37, 40, 52, 53].

To summarize, these ACS protocols, by design, are IT-secure and

signature-free if assuming the existence of IT-secure common coins.

Moreover, both settings yield ACS protocols achieving the de-

sirable quantum safety property (but quantum liveness) as defined

in [33], where the safety of the system is always achieved even in

the presence of a quantum adversary.

The open problem. Almost all ACS implementations use the BKR

ACS construction, which runs 𝑛 parallel ABA instances, thereby

achieving 𝑂 (𝑛3) messages and 𝑂 (log𝑛) time. The ABA phase in-

volving 𝑛 parallel ABA instances is the well-known performance

and scalability bottleneck reported in various BFT implementa-

tions [29, 30, 50]. For example, the ABA phase in a network with

16∼64 replicas occupies about 95%∼97% of the total runtime in

BKR [30]. Recently, Zhang and Duan proposed a refined PACE ACS

framework [50]. In PACE ACS, the 𝑛 ABA instances are made fully

parallelizable to gain in improved performance, but the running

time remains 𝑂 (log𝑛)—remaining the critical bottleneck.

A long-standing open problem, ever since the 1990s, in ACS—or

generally in fault-tolerant distributed computing and cryptography—

is:

Can we build ACS—in the IT setting or signature-free setting—with

𝑂 (𝑛3) messages and 𝑂 (1) time?

Note the only known such ACS construction terminating in

constant time is due to Ben-Or and El-Yaniv [8], but the construction

1
Here we directly borrow the term from the line of work [42–44]; the setting may also

be called cryptography-free.

1

protocol messages time # (R)ABA

BKR variants [29, 36, 40] 𝑂 (𝑛3) 𝑂 (log𝑛) 𝑛

PACE [50] 𝑂 (𝑛3) 𝑂 (log𝑛) 𝑛

FIN (§7; this paper) 𝑂 (𝑛3) 𝑂 (1) 𝑂 (1)
Table 1: Comparison among ACS implementations relying
on common coins.

uses 𝑛2
RB instances with 𝑂 (𝑛4) messages (being prohibitively

expensive).

Our results and our approach. In this work, we resolve the open

problem, showing an ACS protocol with 𝑂 (𝑛3) messages and 𝑂 (1)
time. At a high level, we begin with a new multivalued validated

Byzantine agreement (MVBA) protocol [12] in the information-

theoretical setting with 𝑂 (𝑛3) and 𝑂 (1) time. Then we reduce the

ACS problem to MVBA and RBC.

Recall that the notion of MVBA is different from the conven-

tional multivalued Byzantine agreement in that MVBA assumes the

existence of a global predicate, and replicas only decide values satis-

fying the global predicate. To build an MVBA protocol towards our

goal, we use RBC, common coins, and reproposable ABA (RABA)—a

notion due to Zhang and Duan [50]. RABA, like ABA, can be readily

built from common coins and authenticated channels and termi-

nate in expected constant time. Our MVBA uses 𝑛 parallel RBC

instances and an expected constant number of RABA instances.

Our MVBA protocol is also the first IT-secure and signature-free

MVBA protocol—by directly assuming common coins—with 𝑂 (𝑛3)
messages and 𝑂 (1) time.

We also show that one can use a weaker RBC primitive to realize

a computation and bandwidth more efficient MVBA protocol while

still achieving 𝑂 (𝑛3) messages and 𝑂 (1) time.

Our transformation from MVBA to ACS is simple and efficient,

consisting of 𝑛 parallel RBC instances and a single MVBA instance.

Both our MVBA and ACS constructions are efficient, inheriting

the fast path in RABA enabling rapid termination.

Our contributions.We make the following contributions:

• We present the first IT-secure and signature-free ACS protocol

with 𝑂 (1) time and 𝑂 (𝑛3) messages, assuming ideal building

blocks only. In contrast to prior constructions, our ACS protocol

requires only an expected constant number of binary agreement

instances. Our protocol directly improves various ACS-enabled

applications such as asynchronous MPC [9, 15, 22, 37].

• As a core ingredient of our ACS construction and a primitive

that is interesting in its own right, we present the first signature-

free MVBA protocols with 𝑂 (1) time and 𝑂 (𝑛3) messages while

existing such MVBA protocols have 𝑂 (log𝑛) time and 𝑂 (𝑛3)
messages. Moreover, our MVBA protocols lead to instantiations

having lower communication than existing ones. We also show

an efficient and tailored MVBA construction, optimizing both

communication cost and computational efficiency.

• To demonstrate the efficiency of our ACS protocol, we instanti-

ate it with a practical BFT system called FIN (see Table 1 for a

comparison). We implement FIN and PACE, the state-of-the-art

ACS protocol of the same kind. Via a 121-instance deployment

on Amazon EC2, we show that FIN consistently and drastically

outperforms PACE for 𝑓 > 5. In particular, FIN significantly

reduces the overhead of the ABA phase to only 1.23%-5.22% of

the total runtime, in contrast to the 15.10%-83.66% overhead in

PACE. Moreover, when 𝑓 = 40, the peak throughput of FIN is

3.41x that of PACE.

2 RELATEDWORK
Interactive consistency and vector consensus. The ACS prob-
lem can be viewed as an asynchronous version of the interactive

consistency (IC) problem defined for synchronous systems by Pease,

Shostak, and Lamport [46]. Replicas in aynchronous IC reach an

agreement on a vector with the values proposed by all correct

replicas.

In contrast, the ACS abstraction (also called asynchronous IC by

Ben-Or and El-Yaniv [8]) naturally requires that the output of each

correct replica contains𝑛−𝑓 values such that at least𝑛−2𝑓 elements

are proposed by correct replicas. Namely, ACS requires only that

the majority of the values were proposed by correct replicas. Indeed,

it is impossible to guarantee that the vector has the values of all

correct replicas in asynchronous settings.

ACS is also called vector consensus in some literature [23, 28,

41, 45]. Note that ACS is different from set agreement [18] that

provides only an approximation of agreement.

ACS constructions (in IT and signature-free settings). BKR
ACS reduces asynchronous BFT to RBC and ABA [9]. In BKR ACS,

all replicas run an RBC phase to reliably broadcast their proposals.

Then they run an ABA phase with 𝑛 parallel ABA instances. The 𝑖-

th ABA instance agrees on if the proposal of 𝑝𝑖 has been delivered in

the RBC phase. Upon RBC delivery of a proposal from 𝑝 𝑗 , the replica

proposes 1 to the 𝑗-th ABA instance. If a correct replica 𝑝 𝑗 decides

1 for the 𝑖-th ABA instance, the proposal from 𝑝𝑖 is delivered. BKR

ACS requires if a replica has not received some proposals during

the RBC phase, the replica abstains from proposing 0 until 𝑛 − 𝑓

ABA instances terminate with 1. In PACE ACS, ABA instances are

replaced using RABA instances, and thus all RABA instances can

be run in a fully parallelizable manner [50]. Both BKR and PACE

ACS approaches require running 𝑛 (R)ABA instances terminating

in expected constant rounds, leading to expected 𝑂 (log𝑛) time in

total.

The ACS construction by Ben-Or and El-Yaniv [8] terminates

in expected constant time and uses 𝑛2
RBC instances with 𝑂 (𝑛4)

messages, which is prohibitively expensive.

Another line of ACS constructions reduces the ACS problem to

RBC andmultivalued Byzantine agreement (MBA) [23, 41]. The con-

struction requires running 𝑂 (𝑓) sequential multivalued Byzantine

agreement (MBA) instances, resulting in 𝑂 (𝑛) running time.

Our ACS approach is fundamentally different from existing ones,

reducing the ACS problem to IT-secure MVBA and then to RBC

and a constant number of RABA instances.

RBC. We use RBC (aka BRB) [11] to build our MVBA construction

and our ACS construction. For both our MVBA and ACS, RBC dom-

inates their communication. One could use any RBC constructions

to instantiate them. In this paper, we discuss constructions using

CT RBC [14] (using hashes), EFBRB [4] (IT-secure), and CCBRB [4]

(using hashes and online error correction coding [7]).

For our ACS implementation, we use CT RBC [14]. Internally in

our MVBA implementation, we show that one can use a tailored,

2

weaker RBC construction (using collision-resistant hashes only) to

build a concretely more efficient protocol.

RABA. The notion of reproposable ABA (RABA) is due to Zhang

and Duan [50]. RABA was originally proposed to solve a BKR

bottleneck to allow all ABA instances to run in parallel and remove

the two-subphase bottleneck. Later, such a primitive was used to

develop a quantum secure and adaptively secure asynchronous BFT

protocol without trusted setup [52], and to build an asynchronous

distributed key generation protocol without random oracles or

PKI [51].

Zhang and Duan have argued that RABA could be useful as a

general and "first-class distributed computing primitive" [50]. Our

results bolster this point of view.

However, the way we use RABA in this paper is fundamentally

different from all these works. Indeed, existing protocols use RABA

in the BKR framework (style) and need to run 𝑛 parallel RABA

instances; in contrast, this paper only needs to run an expected con-

stant number of RABA instances, thereby developing the technique

of using RABA.

MVBA. The notion of MVBA was introduced by Cachin, Kursawe,

Petzold, and Shoup [12].

In the computational model (assuming—in addition to common

coins—cryptographic tools such as threshold signatures), Abra-

ham, Malkhi, and Spiegelman proposed an MVBA protocol [2]

with 𝑂 (𝐿𝑛2 + 𝜅𝑛2) communication, optimal word complexity, and

the quality property, where 𝐿 is the length of the input from each

replica. Lu et al. [38] reduced the communication from𝑂 (𝐿𝑛2+𝜅𝑛2)
to 𝑂 (𝐿𝑛 + 𝜅𝑛2) by additionally using constant-size vector commit-

ments [17].

In the IT and signature-free setting, the asynchronous distributed

key generation protocol by Das et al. [27] implies an MVBA, as

demonstrated in a recent work [25] that recasts the agreement phase

in [27] using the language of MVBA. The MVBA protocols [25, 27]

are IT-secure (assuming IT-secure common coins) and signature-

free if using IT-secure common coins, terminating in𝑂 (log𝑛) time.

TheMVBA proposed in this paper has the samemessage complexity

as those in [25, 27], but terminates in 𝑂 (1) time. Also, our MVBA

protocol can lead to instantiations having lower communication

than those from [25, 27].

Our MVBA protocol may also be used—possibly in a non-trivial

manner—in certain (but not all) protocols in [31, 32, 49] without

increasing the communication or making stronger assumptions.

MPC. Our results on ACS and MVBA directly improve a large num-

ber of asynchronous MPC protocols (with fairness and guaranteed

output delivery) [6, 9, 10, 15, 19–22, 37].

From atomic broadcast to ACS. There are asynchronous atomic

broadcast protocols without using ACS or MVBA (e.g., [33]). It is,

however, unclear how to efficiently transform an atomic broadcast

protocol to ACS which has direct and practical applications beyond

just BFT state machine replication (e.g., MPC, ADKG).

3 SYSTEM MODEL AND PROBLEM
STATEMENT

We consider a system with 𝑛 replicas, {𝑝1, · · · , 𝑝𝑛}, where 𝑓 out

of them may fail arbitrarily (Byzantine failures). A non-Byzantine

replica is called a correct replica. All protocols we consider assume

that 𝑓 ≤ ⌊𝑛−1

3
⌋, which is optimal. A (Byzantine) quorum is a set

of ⌈𝑛+𝑓 +1
2
⌉ replicas. Without loss of generality, this paper may

assume 𝑛 = 3𝑓 + 1 and a quorum size of 2𝑓 + 1. We assume the

existence of point-to-point authenticated channels between each

pair of replicas. We consider asynchronous networks making no

timing assumptions on message processing or transmission delays.

We consider both adaptive corruption and static corruption. In

adaptive corruption, the adversary can choose its set of corrupted

replicas at any moment during the execution of the protocol, based

on the information it has accumulated thus far. In contrast, in the

static adversary model, the adversary is restricted to choosing its set

of corrupted replicas at the beginning of the protocol. If all building

blocks satisfy adaptive security, then our protocol achieves adaptive

security. The ACS protocol implemented in this paper achieves

static security, just as in prior protocols [29, 37, 40, 50]; but it can

be made adaptively secure if using an adaptively secure common

coin protocol [5, 35].

Each protocol instance is associated with a unique tag 𝑖𝑑 . We

may omit the identifiers in the pseudocode when no ambiguity

arises. We may just use subscripts to denote the instance identifier;

for instance, RBC𝑖 denotes the RBC instance tagged with a unique

identifier 𝑖 and initiated by replica 𝑝𝑖 .

AsynchronousCommonSubset (ACS). In ACS [7, 9], each replica
holds an input and correct replicas reach an agreement on a set of

values. An ACS protocol is specified by acs-propose and acs-decide

events. ACS should satisfy the following properties:

• Validity: If a correct replica acs-decides a set v, then |v| ≥ 𝑛 − 𝑓

and v contains values acs-proposed by at least 𝑛 − 2𝑓 correct

replicas.

• Agreement: If a correct replica acs-decides v, then every correct

replicas acs-decides v.
• Termination: If all correct replicas acs-propose, then all correct

replicas acs-decide.

In this paper, we use the conventional validity notion. Note that

as argued in [50], for the validity property, the size of v (denoted |v|)
can be relaxed such that |v| ≥ 𝑓 + 1; namely, in many applications,

it suffices to ensure a weaker validity notion by requiring that v
contains values from at least one correct replica.

Multivalued validated Byzantine agreement (MVBA). MVBA

allows each replica that has an input to agree on a value that satisfies

a predicate𝑄 known by all replicas [12]. AnMVBAprotocol satisfies

the following properties:

• External validity: Every correct replica that terminates mvba-

decides 𝑣 such that 𝑄 (𝑣) holds.
• Agreement: If a correct replicamvba-decides 𝑣 , then any correct

replica that terminates mvba-decides 𝑣 .

• Integrity: If all replicas follow the protocol, and if a correct

replica mvba-decides 𝑣 such that 𝑄 (𝑣) holds, then some replica

mvba-proposed 𝑣 such that 𝑄 (𝑣) holds.
• Termination: If all correct replicas are activated and all mes-

sages sent among correct replicas have been delivered, then all

correct replicas mvba-decide.

3

The quality property was introduced by Abraham, Malkhi, and

Spiegelman to bound the probability that the decided value was

proposed by a correct replica [2]:

• Quality: The probability of mvba-deciding a value that was pro-

posed by a correct replica is at least 1/2.

In this paper, we first present an MVBA protocol without the

quality property and then show how to modify it to achieve the

quality property additionally. For our ACS construction, we only

need an MVBA protocol without the quality property though.

The way we present our MVBA protocol follows that of [25].

In particular, the MVBA formalization in [25] requires that the

predicate additionally uses some variable depending on the state of

each node, a property needed in [25] and our MVBA protocols.

Byzantine fault tolerance (BFT). In a BFT protocol, clients submit

transactions (requests) and replicas deliver them. The client obtains

a final response to the submitted transaction from the replica re-

sponses. In a BFT system with 𝑛 replicas, it tolerates 𝑓 ≤ ⌊𝑛−1

3
⌋

Byzantine failures. The correctness of a BFT protocol is specified

as follows:

• Safety: If a correct replica delivers a transaction 𝑡𝑥 before deliver-

ing 𝑡𝑥 ′, then no correct replica delivers a transaction 𝑡𝑥 ′ without
first delivering 𝑡𝑥 .

• Liveness: If a transaction 𝑡𝑥 is submitted to all correct replicas,

then all correct replicas eventually deliver 𝑡𝑥 .

4 BUILDING BLOCKS
We review the building blocks for our systems. To help understand

RABA [50], we first review the notion of ABA.

Asynchronous binary Byzantine agreement (ABA). An ABA

abstraction is specified by aba-propose and aba-decide. Each replica

proposes a binary value (aka a vote) and correct replicas will decide

on some value. ABA should satisfy the following properties:

• Validity: If all correct replicas aba-propose 𝑣 , then any correct

replica that terminates aba-decides 𝑣 .

• Agreement: If a correct replica aba-decides 𝑣 , then any correct

replica that terminates aba-decides 𝑣 .

• Termination: Every correct replica eventually aba-decides some

value.

• Integrity: No correct replica aba-decides twice.

ReproposableAsynchronousBinaryAgreement (RABA).RABA
is a new primitive introduced by Zhang and Duan [50]. In con-

trast to conventional ABA protocols, where replicas can vote once

only, RABA allows replicas to change their votes and vote twice.

A RABA protocol is specified by raba-propose, raba-repropose, and

raba-decide. For our purpose, RABA is “biased towards 1." A correct

replica that proposed 0 is allowed to change its mind and repro-

pose 1. A replica that proposed 1 is not allowed to repropose 0. If a

replica reproposes 1, it does so at most once. RABA (biased toward

1) satisfies the following properties:

• Validity: If all correct replicas raba-propose 𝑣 and never raba-

repropose 𝑣 , then any correct replica that terminates decides 𝑣 .

• Unanimous termination: If all correct replicas raba-propose 𝑣
and never raba-repropose 𝑣 , then all correct replicas eventually

terminate.

• Agreement: If a correct replica raba-decides 𝑣 , then any correct

replica that terminates raba-decides 𝑣 .

• Biased validity: If 𝑓 + 1 correct replicas raba-propose 1, then

any correct replica that terminates raba-decides 1.

• Biased termination: Let 𝑄 be the set of correct replicas. Let

𝑄1 be the set of correct replicas that raba-propose 1 and never

raba-repropose 0. Let 𝑄2 be correct replicas that raba-propose 0

and later raba-repropose 1. If𝑄2 ≠ ∅ and𝑄 = 𝑄1 ∪𝑄2, then each

correct replica eventually terminates.

• Integrity: No correct replica raba-decides twice.

We explain some differences between ABA and RABA. Validity

in RABA is slightly different from that for ABA, as we need to

modify it to accommodate the RABA syntax. Integrity in RABA is

used to ensure that RABA decides only once (even though we have

an additional raba-repropose event).

Unanimous termination and biased termination are defined to

ensure RABA termination in two different scenarios.

Biased validity in RABA requires that if 𝑓 + 1 replicas, not all

correct replicas, propose 1, then a correct replica that terminates de-

cides 1. We emphasize that the biased validity property was initially

defined to guarantee the PACE ACS framework [50] to have suffi-

cient transactions delivered (the ACS validity property); however,

in this paper, biased validity is essentially to ensure constant-time

termination for our ACS construction.

For our implementation, we use the Pisa RABA protocol due to

Zhang and Duan [50] assuming common coins and authenticated

channels.

Byzantine reliable broadcast (RBC). The RBC abstraction allows

a sender to reliably broadcast a message to the replicas. A RBC

protocol is specified by two events r-broadcast and r-deliver such

that the following properties hold:

• Validity: If a correct replica 𝑝 r-broadcasts a message𝑚, then 𝑝

eventually r-delivers𝑚.

• Agreement: If some correct replica r-delivers a message𝑚, then

every correct replica eventually r-delivers𝑚.

• Integrity: For any message𝑚, every correct replica r-delivers𝑚

at most once. Moreover, if a replica r-delivers a message𝑚 with

sender 𝑝𝑠 , then𝑚 was previously broadcast by replica 𝑝𝑠 .

For our ACS implementation, we use CT RBC due to Cachin and

Tessaro [14] that uses hash functions (with output length 𝜅) and

has a communication of O(𝑛 |𝑚 | + 𝜅𝑛2
log𝑛).

Common coins. Following prior works [9, 24, 42, 43, 50], we as-
sume our protocols are supplied by a common coin, an object that

is introduced by Rabin [47] which delivers the same sequence of

random coins to replicas. We use the common coin protocol for the

underlying random leader election protocol (denoted by Election())
and used it in the underlying RABA protocol.

For our implementation, we use the threshold PRF scheme by

Cachin, Kursawe, and Shoup [13].

5 OUR MVBA APPROACH
5.1 Overview
We present our signature-free MVBA protocol with 𝑂 (1) time and

𝑂 (𝑛3) messages. In particular, we reduce MVBA to RBC, random

leader election (via common coins), and RABA.

4

protocol

communication

(threshold PRF)

time assumption

CKPS [12] 𝑂 (𝐿𝑛2 + 𝜅𝑛2 + 𝑛3) 𝑂 (1) threshold sig

AMS [2] 𝑂 (𝐿𝑛2 + 𝜅𝑛2) 𝑂 (1) threshold sig

Dumbo-MVBA [38] 𝑂 (𝐿𝑛 + 𝜅𝑛2) 𝑂 (1) threshold sig; vc

DYX+ MVBA [27] 𝑂 (𝐿𝑛2 + 𝜅𝑛3
log𝑛) 𝑂 (log𝑛) hash

DXKR MVBA [25] 𝑂 (𝐿𝑛2 + 𝜅𝑛3
log𝑛) 𝑂 (log𝑛) hash

Our MVBA (Sec. 5.2) + CT RBC [14] 𝑂 (𝐿𝑛2 + 𝜅𝑛3
log𝑛) 𝑂 (1) hash

Our MVBA (Sec. 5.2) + EFBRB [4] 𝑂 (𝐿𝑛2 + 𝜅𝑛2 + 𝑛3
log𝑛) 𝑂 (1) none

Our MVBA (Sec. 5.2)+ CCBRB [4] 𝑂 (𝐿𝑛2 + 𝜅𝑛3) 𝑂 (1) hash

Our tailored MVBA (Sec. 5.4) 𝑂 (𝐿𝑛2 + 𝜅𝑛3) 𝑂 (1) hash

Table 2: Comparison of the MVBA protocols using common coins. Here we examine the communication cost of protocols by
using threshold PRF [13] to generate common coins. 𝐿 is the length of the input from each replica and 𝜅 is a security parameter.
The "assumption" column means the additional assumption besides common coins and authenticated channels. "vc" stands for
a constant-size vector commitment which typically requires trusted setup and pairing assumptions. Our protocols lead to the
first 𝑂 (1)-time MVBA protocols without threshold signatures. In addition, instantiating our MVBA (Sec. 5.2) with EFBRB [4]
leads to an MVBA protocol achieving lower communication than any instantiations from [25, 27], as our MVBA uses only 𝑂 (1)
RABA and 𝑂 (1) common coin instances—𝑂 (𝜅𝑛2) bits using threshold PRF.

MVBA

Input: value 𝑣𝑖 such that a global predicate 𝑄 (𝑣𝑖) holds
Output: value 𝑣𝑘 (proposed by 𝑝𝑘)

Initialization: 𝑟 ← 0

01 upon event mvba-propose(𝑣𝑖)
02 r-broadcast 𝑣𝑖 for RBC𝑖 {� RBC phase}

{every replica verifies whether 𝑄 (𝑣𝑖) holds upon receiving 𝑣𝑖
before participating in RBC𝑖 }

03 wait for 𝑛 − 𝑓 RBC instances to complete {� Iteration phase}

04 repeat
05 𝑘 ← Election()
06 if some value is r-delivered in RBC𝑘

07 raba-propose 1 for RABA𝑟
08 else
09 raba-propose 0 for RABA𝑟
10 if later some value is r-delivered in RBC𝑘

11 raba-repropose 1 for RABA𝑟
12 if RABA𝑟 outputs 1
13 wait for RBC𝑘 to r-deliver value 𝑣𝑘
14 terminate the protocol and mvba-decide(𝑣𝑘)
15 𝑟 ← 𝑟 + 1

Figure 1: Our MVBA protocol with a predicate𝑄 . Code for 𝑝𝑖 .

At a high level, our MVBA protocol works as follows. First,

each replica 𝑝𝑖 runs RBC𝑖 to disseminate its proposal, resulting

in 𝑛 parallel RBC instances. We aim to have replicas agree on the

value r-delivered by exactly one of the 𝑛 RBC instances. A crucial

observation is that if 𝑛 − 𝑓 correct replicas complete 𝑛 − 𝑓 RBC

instances, then at least 𝑓 + 1 correct replicas have r-delivered some

values for 𝑓 + 1 RBC instances. If we know this set 𝐼 of the 𝑓 + 1

RBC instances, then we are almost done. In particular, all we need

to do is to pick any of the RBC instances in 𝐼 , say, RBC𝑘 , and

correspondingly, replicas run a RABA instance by proposing 1 once

they r-delivered some value for the RBC𝑘 instance. To see why this

intuitively works, first note that the agreement property in RBC

and the biased termination property in RABA together guarantee

termination, and meanwhile, the biased validity property ensures

that even if only 𝑓 + 1 correct replicas, not all correct replicas,

propose 1, correct replicas that terminate will decide 1. Observing

|𝐼 | ≥ 𝑓 + 1, if we take a random guess among all 3𝑓 + 1 replicas,

then with a probability of at least 1/3, we can hit a good 𝑘 ∈ 𝐼 .

Thus, our MVBA protocol will terminate in expected constant time.

Throughout the process, we use ideal building blocks—RBC, RABA,

and common coins—no cryptographic primitives such as threshold

signatures.

We comment that external validity can be trivially enforced, as

long as the predicate is publicly verifiable. Namely, we have treated

it as a general predicate. Note, however, that if removing external

validity, our MVBA protocol does not directly lead to a multivalue

Byzantine agreement (MBA) protocol (e.g., [44]); this is because it

does not satisfy the validity property in MBA.
2

In this section, we first build MVBAwithout the quality property,

satisfying all the security properties defined in CKPS [12]. We will

show this MVBA protocol suffices to build our ACS protocol with

𝑂 (1) time and 𝑂 (𝑛3) messages. Then we show that by including

two additional communication rounds (using a variant of HotStuff

technique [2, 48]), we can build MVBA with the quality property.

Last, we demonstrate a highly efficient MVBA protocol that opti-

mizes concrete communication cost and computational efficiency.

Such an MVBA protocol benefits from a core observation that we

may not necessarily need a fully-fledged RBC to construct MVBA.

5.2 Our MVBA Protocol
We present the psuedocode of our MVBA protocol in Figure 1. As

illustrated in Figure 2a, the protocol has two phases: an RBC phase

2
Validity in MBA requires that if all correct replicas propose 1, then all replicas that

terminate decide 1.

5

(a) MVBA without the quality property. (b) MVBA with the quality property.

Figure 2: Our MVBA protocols.

with 𝑛 parallel RBC instances; an iteration phase with only one

RABA instance for each iteration.

RBC phase (lines 01-02). In the RBC phase, each replica 𝑝𝑖 holds

an input 𝑣𝑖 that it proposes for the MVBA protocol such that 𝑄 (𝑣𝑖)
holds. Upon the event mvba-propose(𝑣𝑖), replica 𝑝𝑖 r-broadcasts 𝑣𝑖
for an RBC instance RBC𝑖 . Upon receiving value 𝑣𝑖 r-broadcast by 𝑝𝑖
in RBC𝑖 , every replica waits until 𝑄 (𝑣𝑖) holds before participating
in RBC𝑖 .

Note that there are up to 𝑛 parallel RBC instances, and every

correct replica 𝑝𝑖 verifies the predicate for all RBC instances run-

ning. As usual, we require that the predicate 𝑄 is verifiable across

all correct replicas. Meanwhile, in certain applications, we may also

require that the predicate 𝑄 depends on the internal state st of a

particular replica. Namely, it is possible that𝑄 (𝑣, st) for some 𝑣 and

some replica fails to hold at the beginning, but 𝑄 (𝑣, st) will hold at

some point, all depending on st of the replica.

Iteration phase (lines 03-15). Each replica then waits until it

r-delivers 𝑛 − 𝑓 RBC instances before it enters the iteration phase.

In each iteration, replicas run the Election() function and a RABA

instance until a RABA instance outputs 1.

Concretely, in each iteration 𝑟 , replicas query the Election()
function and obtain a random 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛 (line 05). At

lines 06-07, if a replica has previously r-delivered some value in

RBC𝑘 , it raba-proposes 1 for the RABA instance denoted RABA𝑟 3

in iteration 𝑟 . Otherwise, at lines 08-09, the replica raba-proposes 0.

If a replica originally raba-proposes 0 but later r-delivers some value

in RBC𝑘 , 𝑝𝑖 raba-reproposes 1 (at lines 10-11), ensuring protocol

termination.

After each replica provides some input to RABA𝑟 , it waits for
the output of RABA𝑟 . If 𝑝𝑖 raba-decides 0, the replica continues to

the next iteration 𝑟 + 1 (line 15). If 𝑝𝑖 raba-decides 1, it waits for the

output of RBC𝑘 denoted as 𝑣𝑘 (line 13). Then it mvba-decides 𝑣𝑘
and terminates the protocol (line 14).

Complexity and instantiations. To understand the time com-

plexity of our MVBA protocol, we first observe that at the end of

the RBC phase, for at least 𝑓 + 1 instances, at least 𝑓 + 1 correct

replicas have r-delivered some values (see Lemma 5.4 in this sec-

tion). Second, the biased validity property of RABA guarantees that

for any of these 𝑓 + 1 instances, replicas will raba-decide 1. As the

3
Note that if we assume the Election() function is a random permutation instead of a

random function, then we can also use RABA𝑘 to uniquely and unambiguously denote

the RABA instance.

Election() function selects any of the 𝑓 + 1 instances with at least

a probability of 1/3, the protocol terminates in expected 𝑂 (1) time.

Unlike prior signature-free MVBA constructions [25, 27] that

terminate in expected 𝑂 (log𝑛) time (summarized in Table 2), our

MVBA protocols have expected 𝑂 (1) time.

Both the message complexity and the communication complexity

of our MVBA are bounded by the 𝑛 parallel RBC instances. As each

RBC instance has 𝑂 (𝑛2) messages, our MVBA construction has

𝑂 (𝑛3) messages.

Table 2 summarizes the communication cost of our protocols as-

suming a threshold PRF [13]. For instance, if we use EFBRB [4] (an

IT-secure RBC), we obtain an MVBA protocol assuming common

coins only. If we use CCBRB [4], we obtain a protocol using hashes

and common coins and having lower communication than instanti-

ations from [25, 27]. In particular, our MVBA protocol with CCBRB

results in a protocol with 𝑂 (𝐿𝑛2 + 𝜅𝑛2 + 𝑛3
log𝑛) communication

(the term𝑂 (𝜅𝑛2) is due to the cost of common coins in𝑂 (1) RABA
and Election() instances); in contrast, [25, 27] with CCBRB lead to

MVBA protocols with 𝑂 (𝐿𝑛2 + 𝜅𝑛3 + 𝑛3
log𝑛) communication.

We comment that if the underlying RBC and common coin pro-

tocols are instantiated using IT-secure protocols, then our MVBA

protocols are also IT-secure.

Proof of our MVBA. We show that the MVBA protocol presented

in Sec. 5.2 achieves external validity, agreement, integrity, and

termination.

Theorem 5.1 (External validity). Every correct replica that

terminates mvba-decides 𝑣 such that 𝑄 (𝑣) holds.

Proof. If any correct replicamvba-decides 𝑣 , it has raba-decided

1. Hence, according to the validity property of RABA, at least one

correct replica has raba-proposed 1 or raba-reproposed 1. If the

correct replica raba-proposes 1 or raba-reproposes 1, it has r-delivered

𝑣 in the corresponding RBC instance. In the RBC instance, according

to our specification of MVBA, every replica verifies whether 𝑄 (𝑣)
holds upon receiving any value from another replica in the RBC

phase. If a correct replica r-delivered 𝑣 in an RBC instance, then

at least one correct replica has previously received 𝑣 and verified

that 𝑄 (𝑣) holds. Hence, if one correct replica mvba-decides 𝑣 , then

at least one correct replica has verified that 𝑄 (𝑣) holds. As 𝑄 (𝑣)
is verifiable across all correct replicas, every correct replica that

mvba-decides 𝑣 must have that 𝑄 (𝑣) holds. □

6

Theorem 5.2 (Agreement). If a correct replica mvba-decides 𝑣 ,

then any correct replica that terminates mvba-decides 𝑣 .

Proof. Assume a correct replica 𝑝𝑖 mvba-decides 𝑣 . Then 𝑝𝑖
must have raba-decided 1 in some RABA𝑟 for iteration 𝑟 > 0, and

for any iteration 𝑟 < 𝑟 , it holds that RABA𝑟 outputs 0.
Now we assume another correct 𝑝 𝑗 mvba-decides 𝑣 ′. We now

prove by contradiction that 𝑣 ′ = 𝑣 . We distinguish two cases for

𝑝 𝑗 : 𝑝 𝑗 mvba-decides in iteration 𝑟 ′ = 𝑟 ; 𝑝 𝑗 mvba-decides in iteration

𝑟 ′ ≠ 𝑟 .

Case 1: 𝑝 𝑗 mvba-decides 𝑣 ′ in round 𝑟 . In this case, we assume that

𝑝 𝑗 obtains 𝑘
′
from the Election() function and RBC𝑘 ′ outputs 𝑣

′
.

As Election() outputs a common coin for the same input 𝑟 , it must

hold that 𝑘 = 𝑘′. Hence, if 𝑣 ≠ 𝑣 ′, the agreement property of RBC

would be violated.

Case 2: If 𝑟 ′ > 𝑟 , then according to our protocol, 𝑝 𝑗 raba-decides 1

in RABA𝑟 ′ and raba-decides 0 for any lower iteration 𝑟 ′, including
𝑟 . This violates the agreement property of RABA𝑟 . Similarly, the

argument holds for the case 𝑟 ′ < 𝑟 . □

Theorem 5.3 (Integrity). If all replicas follow the protocol, and

if a correct replica mvba-decides 𝑣 such that 𝑄 (𝑣) holds, then some

replica mvba-proposed 𝑣 such that 𝑄 (𝑣) holds.

Proof. If a correct replica 𝑝𝑖 mvba-decides 𝑣 , it raba-decides 1 in

some RABA𝑟 and r-delivers 𝑣 in RBC𝑘 where 𝑘 is the corresponding

common coin. According to the integrity property of RBC, 𝑣 was

previously broadcast by replica 𝑝𝑘 . □

Lemma 5.4. If all correct replicas enter the iteration phase, then

for at least 𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have

r-delivered some values.

Proof. Instead of directly bounding the number of correct repli-

cas that have r-delivered some values, we bound the number of

instances where fewer than 𝑓 + 1 correct replicas have r-delivered

some values. First, we observe that all correct replicas r-deliver some

values for (2𝑓 + 1) (2𝑓 + 1) RBC instances in total. As there are at

most (3𝑓 +1) (2𝑓 +1) instances for correct replicas, the total number

of instances where correct replicas do not r-deliver some values are

upper bounded by (3𝑓 +1) (2𝑓 +1)−(2𝑓 +1) (2𝑓 +1) = 2𝑓 2+ 𝑓 . Hence,
the number of RBC instances where fewer than 𝑓 +1 correct replicas

have r-delivered some values is bounded by
2𝑓 2+𝑓
𝑓 +1 <

2𝑓 2+2𝑓
𝑓 +1 = 2𝑓 .

That is, the number of RBC instances where at least 𝑓 + 1 correct

replicas have r-delivered some values is at least 𝑓 + 1. □

We comment that PACE observed a similar claim that works in

a context with a different goal.

Theorem 5.5 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas start the protocol, then according

to the validity property of RBC, every correct replica completes at

least 𝑛 − 𝑓 RBC instances. During the iteration phase, we first show

that any iteration 𝑟 will complete and then show that eventually,

some RABA𝑟 will output 1. For each iteration 𝑟 , we assume that 𝑘

is returned by the Election() function in iteration 𝑟 .

We first show that every iteration 𝑟 will complete. For each

iteration 𝑟 , we distinguish three cases: 1) all correct replicas have

r-delivered some value in RBC𝑘 ; 2) at least one correct replica has

r-delivered some value in RBC𝑘 , and at least one correct replica has

not r-delivered any value in RBC𝑘 ; 3) none of the correct replicas

have r-delivered any value in RBC𝑘 .

Case 1: Due to the unanimous termination property, it holds that

RABA𝑟 terminates.

Case 2: If at least one correct replica has r-delivered some value

in RBC𝑘 , then from the agreement property of RBC, any correct

replica eventually r-delivers some value. According to our protocol,

any correct replica that provides 0 as RABA input (in which case

it has not r-delivered any value in RBC𝑘 when the iteration be-

gins) will eventually raba-repropose 1. Thus, the biased termination

condition of RABA will eventually be satisfied. Hence, RABA𝑟 will
terminate, and iteration 𝑟 will eventually complete.

Case 3: If none of the correct replicas r-deliver any value in RBC𝑘 ,

iteration 𝑟 will complete due to the unanimous termination property

of RABA. Otherwise, if at least one correct replica later r-delivers

some value in RBC𝑘 , then according to case 2, iteration 𝑟 will

complete (due to the biased termination of RABA).

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1, so the protocol will terminate. From Lemma 5.4, for at least

𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have r-delivered

some value after they enter the iteration phase. Let 𝐼 be the set of the

𝑓 + 1 RBC instances. Due to the biased validity property of RABA,

RABA𝑟 outputs 1. As Election() outputs a uniformly random coin

for each iteration, we have that with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, it holds

that 𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the out-

put of RBC𝑘 . If RABA𝑟 outputs 1, at least one correct replica has

raba-proposed 1 or raba-reproposed 1. (Otherwise, the unanimous

termination property of RABA would be violated.) Therefore, at

least one correct replica has r-delivered some value in RBC𝑘 . From

the agreement property of RBC, every correct replica eventually

r-delivers some value in RBC𝑘 and then mvba-decides. □

Theorem 5.6. Our MVBA protocol has expected 𝑂 (1) running
time.

Proof. From Lemma 5.4, for at least 𝑓 +1 RBC instances, at least

𝑓 + 1 correct replicas have r-delivered some value after they enter

the iteration phase. Due to the biased validity property of RABA,

RABA𝑟 outputs 1. Since Election() outputs a uniformly distributed

random coin for each iteration, it holds that with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, we have𝑘 ∈ 𝐼 . Therefore, the protocol has expected𝑂 (1) running

time. □

5.3 MVBA with the Quality Property
We show that by adding two additional communication steps, we

can build MVBA with the quality property. As illustrated in Fig-

ure 2b, we introduce an echo and reply procedure between the RBC

phase and the iteration phase. In pseudocode, all we need to do is

to replace line 03 in Figure 1 using the lines of code in Figure 3.

Each replica 𝑝𝑖 now additionally maintains one vector𝑊𝑖 used

to track the set of completed RBC instances. After 𝑝𝑖 completes

7

MVBA with quality property

Initialization: 𝑊𝑖 ← [0]𝑛

replace line 03 in Figure 1 using the following lines:

01 upon r-delivering 𝑣 𝑗 for RBC𝑗

02 𝑊𝑖 [𝑗] ← 1

03 wait for 𝑛 − 𝑓 RBC instances to complete

04 send (Echo,𝑊𝑖) to all replicas

05 upon (Echo,𝑊𝑗) from 𝑝 𝑗 such that there are 𝑛 − 𝑓 1’s in𝑊𝑗

06 if for any𝑊𝑗 [𝑙] = 1, RBC𝑙 outputs some value

07 send (Rep, 𝑖) to 𝑝 𝑗
08 wait for 𝑛 − 𝑓 (Rep) messages

Figure 3: Our MVBA protocol with the quality property. The
code for 𝑝𝑖 .

RBC𝑗 , it sets𝑊𝑖 [𝑗] as 1 (lines 01-02). When 𝑝𝑖 completes 𝑛 − 𝑓

RBC instances, it broadcasts the𝑊𝑖 vector to all replicas (03-04).

It then expects to receive 𝑛 − 𝑓 (Rep) messages from the replicas,

representing that 𝑛 − 𝑓 replicas have also r-delivered some values

for the same 𝑛 − 𝑓 RBC instances. To achieve this goal, for each

replica 𝑝𝑖 , upon receiving𝑊𝑗 from 𝑝 𝑗 , 𝑝𝑖 first checks whether the

vector contains 𝑛 − 𝑓 1’s. Then for each𝑊𝑗 [𝑙] = 1, 𝑝𝑖 waits until

some value is r-delivered in RBC𝑙 (lines 06-07). After that, 𝑝𝑖 sends

a (Rep) message to 𝑝 𝑗 (line 08). Upon receiving 𝑛− 𝑓 (Rep) messages,

𝑝𝑖 enters the iteration phase.

The protocol achieves quality, mainly because upon receiving

a vector𝑊𝑗 , each replica verifies whether it has r-delivered some

value in each RBC𝑙 instance for 𝑊𝑗 [𝑙] = 1. Hence, if a correct

replica 𝑝 𝑗 receives 𝑛 − 𝑓 (Rep) messages, at least 𝑛 − 𝑓 replicas

must have r-delivered the same values in the same set of 𝑛 − 𝑓

RBC instances due to the agreement property of RBC. Hence, with

probability
2𝑓 +1
3𝑓 +1 ≈

2

3
, replicas mvba-decide a value from a correct

replica. The protocol thus achieves quality.

The way of achieving quality can be viewed as using the tech-

nique from [2, 48] and using the agreement property in RBC. We

show the correctness of the MVBA in this subsection in Appen-

dix B.

5.4 Tailored MVBA fromWeak RBC
While we can use EFBRB and CCBRB for low communication cost

in our MVBA protocol, both of them rely on online error correcting

(OEC) code and may suffer some degraded performance during fail-

ures (due to the "trial-and-error" OEC pattern). Additionally, EFBRB

has significantly more steps than the classic RBC protocols [11, 14].

In this section, we provide a more practical MVBA construction

that achieves 𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication. While its communi-

cation is the same as that of using CCBRB, our protocol in this

subsection outperforms the CCBRB instantiation (in Sec. 5.2) in

terms of both concrete communication cost and computational

efficiency. First, the construction in this subsection does not use

erasure coding or online error correcting code. Hence, the hidden

constant in the bulk data term 𝐿𝑛2
is 1 (namely 1𝐿𝑛2

) instead of 3

(at least 3𝐿𝑛2
or more if using erasure coding or error correcting

code). Namely, for a large 𝐿, the communication cost of this con-

struction is about 1/3 of that of CCBRB-based MVBA. Second, as

the construction in this subsection uses hashes only and does not

use online error correction, it is computationally more efficient in

both gracious and uncivil executions.

A Practical MVBA Construction

Input: Value 𝑣𝑖 such that a global predicate 𝑄 (𝑣𝑖) holds
Output: Value 𝑣𝑘 proposed by 𝑝𝑘
Initialization: 𝑟 ← 0,𝑇𝑖 ← [⊥]𝑛

01 upon event mvba-propose(𝑣𝑖)
02 wr-broadcast(𝑣𝑖) for WRBC𝑖 {�WRBC phase}

03 wait for 𝑛 − 𝑓 WRBC instances to complete {� Iteration phase}

04 repeat
05 𝑘 ← Election()
06 if some value is wr-delivered inWRBC𝑘

07 raba-propose 1 for RABA𝑟
08 else
09 raba-propose 0 for RABA𝑟
10 if later some value is r-delivered in RBC𝑘

11 raba-repropose 1 for RABA𝑟
12 if RABA𝑟 outputs 1
13 wait forWRBC𝑘 to wr-deliver value ℎ𝑘
14 if 𝑇𝑖 [𝑘] ≠ ⊥
15 broadcast (Value,𝑇𝑖 [𝑘])
16 else
17 wait for (Value, 𝑣𝑘) such that 𝐻𝑎𝑠ℎ(𝑣𝑘) = ℎ𝑘
18 𝑇𝑖 [𝑘] ← 𝑣𝑘
19 terminate the protocol and mvba-decide(𝑇𝑖 [𝑘])
20 𝑟 ← 𝑟 + 1

21 upon event wr-broadcast(𝑣 𝑗) for instanceWRBC𝑗

22 {replica 𝑝 𝑗 broadcasts (Send, 𝑣 𝑗)}

23 upon receiving (Send, 𝑣 𝑗) from 𝑝 𝑗
24 if 𝑄 (𝑣 𝑗) holds
25 𝑇𝑖 [𝑗] ← 𝑣

26 broadcast (Echo, 𝐻𝑎𝑠ℎ(𝑣 𝑗))
28 else
29 store the message until 𝑄 (𝑣 𝑗) holds
30 upon receiving 𝑛 − 𝑓 matching (Echo, ℎ)

31 broadcast (Ready, ℎ)

32 upon receiving 𝑓 + 1 matching (Ready, ℎ) and (Ready) message

has not been sent yet

33 broadcast (Ready, ℎ)

34 upon receiving 𝑛 − 𝑓 matching (Ready, ℎ)

35 if 𝐻𝑎𝑠ℎ(𝑇𝑖 [𝑗]) ≠ ℎ

36 𝑇𝑖 [𝑗] ← ⊥
37 wr-deliver ℎ

Figure 4: A Practical MVBA protocol. Code is for 𝑝𝑖 .

We show our tailored MVBA construction in Figure 4. The pro-

tocol relies on a weak RBC primitive, which we call WRBC. The

workflow of WRBC (lines 21-37) is similar to the 3-phase Bracha’s

broadcast, but we only use hashes in the second and the third

phases. (WRBC appears implicitly and partly used in, e.g., [26],

and we claim no novelty about WCBC itself.) Concretely, at lines

21-37, the sender 𝑝 𝑗 in each WRBC𝑗 first broadcasts its input 𝑣 𝑗 in

8

(send) messages. Upon receiving the value 𝑣 𝑗 from 𝑝 𝑗 , each replica

𝑝𝑖 verifies whether the predicate𝑄 (𝑣 𝑗) holds. If so, 𝑝𝑖 updates𝑇𝑖 [𝑗]
as 𝑣 𝑗 and then broadcasts a (Echo, 𝐻𝑎𝑠ℎ(𝑣 𝑗)) message (lines 25-26).

Otherwise, 𝑝𝑖 stores the (Send) message and processes it until𝑄 (𝑣 𝑗)
holds (lines 28-29). Upon receiving 𝑛 − 𝑓 (Echo, ℎ) messages with

the same hash value ℎ, each replica broadcasts a (Ready, ℎ) mes-

sage (lines 30-31). If a replica 𝑝𝑖 receives 𝑓 + 1 (Ready, ℎ) messages

but has not sent a (Ready) message, 𝑝𝑖 also broadcasts a (Ready, ℎ)

message (lines 32-33). Upon receiving 2𝑓 + 1 (Ready, ℎ) messages,

𝑝𝑖 wr-delivers ℎ (line 37). If some ℎ is wr-delivered but the hash of

𝑇𝑖 [𝑗] is not ℎ, 𝑝 𝑗 sets 𝑇𝑖 [𝑗] as ⊥ (lines 35-36).

We now describe our tailored MVBA protocol. There are two

major changes on top of our MVBA protocol in Sec. 5.2. First, in the

RBC phase, we use WRBC instead of the standard RBC, where for

each WRBC𝑗 , the sender 𝑝 𝑗 wr-broadcasts a value 𝑣 𝑗 and correct

replicas wr-deliver ℎ 𝑗 = 𝐻𝑎𝑠ℎ(𝑣 𝑗). Second, as each WRBC instance

outputs the hash of the value instead of the original value broadcast

by the sender, we need to retrieve the value after replicas reach an

agreement in the iteration phase. In particular, in some iteration

𝑟 where 𝑘 is the output of the Election() function, after RABA𝑟
outputs 1, each replica first waits forWRBC𝑘 to output some value

ℎ𝑘 and then starts the retrieval (lines 13-18). If 𝑝𝑖 has some value in

𝑇𝑖 [𝑘], it broadcasts a (Value,𝑇𝑖 [𝑘]) to all replicas. If 𝑝𝑖 does not hold
a 𝑇𝑖 [𝑘] value, it waits to receive a (Value, 𝑣𝑘) such that 𝐻𝑎𝑠ℎ(𝑣𝑘) =
ℎ𝑘 and then sets𝑇𝑖 [𝑘] as 𝑣𝑘 . After 𝐻𝑎𝑠ℎ(𝑇𝑖 [𝑘]) = ℎ𝑘 , 𝑝𝑖 terminates

the protocol and mvba-decides 𝑇𝑖 [𝑘] (line 19).
The communication bottleneck of this protocol is the WRBC

phase, as the communication cost for other steps (including the

retrieval step) is𝑂 (𝜅𝑛2). For eachWRBC instance, the sender broad-

casts a message (length 𝐿), and replicas exchange hashes of val-

ues in the second phase and the third phase, so each instance has

𝑂 (𝑛2) messages and 𝑂 (𝐿𝑛 + 𝜅𝑛2) communication. As there are 𝑛

parallel WRBC instances, our practical MVBA construction has

𝑂 (𝐿𝑛2 + 𝜅𝑛3) communication. The correctness of our protocol is

similar to that of our MVBA in Sec. 5.2. In particular, each WRBC

protocol WRBC𝑗 can guarantee that if a correct replica wr-delivers

some value ℎ, every correct replica eventually wr-delivers ℎ. Fur-

thermore, at least 𝑓 + 1 correct replicas must set their𝑇𝑖 [𝑗] as value
𝑣 such that𝐻𝑎𝑠ℎ(𝑣) = ℎ. Hence, the value 𝑣 can be retrieved by any

correct replicas. We prove the correctness of this tailored MVBA

construction in Appendix C.

6 OUR ACS APPROACH
6.1 Overview
We now present our ACS protocol with 𝑂 (1) time and 𝑂 (𝑛3) mes-

sages. At the core of our ACS protocol is the reduction of ACS to our

MVBA construction with a specific predicate. In particular, we use 𝑛

parallel RBC instances for replicas to disseminate their acs-proposed

values. Then each replica mvba-proposes a vector of 𝑛 − 𝑓 bits, rep-

resenting the 𝑛 − 𝑓 completed RBC instances. Crucially, we define

the global predicate of MVBA as the following: given a proposal

with 𝑛 − 𝑓 bits, each replica considers the proposal valid only if it

has completed the same 𝑛 − 𝑓 RBC instances. (As we commented

earlier, the predicate depends on the state of a particular replica: it

is possible that the predicate does not hold at the beginning, but will

hold at some point.) In this way, we can guarantee that the output

of ACS consists of at least 𝑛 − 𝑓 acs-proposed values, satisfying the

validity property of ACS. As our MVBA component completes in

expected 𝑂 (1) time, our ACS protocol also terminates in expected

constant time.

Figure 5: Our ACS protocol.

ACS

Input: value 𝑣𝑖
Output: 𝑛 − 𝑓 values v, among which at least 𝑛 − 2𝑓 are proposed

by correct replicas

Initialization: 𝑟 ← 0,𝑊 ← [0]𝑛 , v← ⊥
Let 𝑄 be the following predicate for MVBA:

Given value𝑊𝑗 mvba-proposed by some replica 𝑝 𝑗 , 𝑄 (𝑊𝑗 ,𝑊) ≡
(|𝑊𝑗 | = 𝑛 and for at least 𝑛 − 𝑓 𝑙 such that 1 ≤ 𝑙 ≤ 𝑛,𝑊𝑗 [𝑙] = 1

and𝑊𝑗 ⊆𝑊)

01 upon event acs-propose(𝑣𝑖)
02 r-broadcast 𝑣𝑖 for RBC𝑖 {� RBC phase}

03 upon r-delivering 𝑣 𝑗 for RBC𝑗

04 𝑊 [𝑗] ← 1

05 wait for 𝑛 − 𝑓 RBC instances to complete {�MVBA phase}

06 𝑊𝑖 ←𝑊

07 mvba-propose(𝑊𝑖) with predicate 𝑄 (𝑊𝑗 ,𝑊)
08 upon event mvba-decide(𝑊𝑘)
09 for every𝑊𝑘 [𝑗] = 1

10 wait for RBC𝑗 to r-deliver value 𝑣 𝑗
11 v← v ∪ 𝑣 𝑗
12 terminate the protocol and acs-decide(v)

Figure 6: The ACS protocol. Code is for 𝑝𝑖 .

6.2 The ACS Protocol
We describe our ACS protocol in Figure 5 and the pseudocode in

Figure 6. Our ACS protocol has two phases: an RBC phase and an

MVBA phase.

RBC phase (lines 02-04). Each replica 𝑝𝑖 holds an input 𝑣𝑖 . Upon

the event acs-propose(𝑣𝑖), 𝑝𝑖 r-broadcasts 𝑣𝑖 . Upon completing an

RBC instance RBC𝑗 , 𝑝𝑖 sets𝑊 [𝑗] as 1 (lines 03-04), where𝑊 is a

global map used to track the status of the RBC instances.

MVBA phase (lines 05-12). Replica 𝑝𝑖 enters the MVBA phase

after completing 𝑛 − 𝑓 RBC instances. Each replica 𝑝𝑖 sets𝑊𝑖 as𝑊

and uses𝑊𝑖 as input for MVBA with a predicate 𝑄 (𝑊𝑗 ,𝑊) (lines
9

06-07). Note that the 1’s in𝑊 for each 𝑝𝑖 continue to grow as more

RBC instances complete. The value mvba-proposed by each 𝑝𝑖 is a

snapshot of𝑊𝑖 with at least 𝑛 − 𝑓 RBC instances completed.

We define a global predicate 𝑄 (𝑊𝑗 ,𝑊) for each value𝑊𝑗 mvba-

proposed by 𝑝 𝑗 as follows. First, each𝑊𝑗 is a 𝑛-bit vector. Second,

𝑊𝑗 consists of at least 𝑛− 𝑓 1’s, representing the 𝑛− 𝑓 RBC instances

that replica 𝑝 𝑗 has completed. Third,𝑊𝑗 ⊆ 𝑊 . Namely, for each

𝑊𝑗 [𝑙] = 1, replica 𝑝𝑖 must wait until it has r-delivered some value

in RBC𝑙 . Hence, in MVBA, every replica may need to wait until the

global predicate is satisfied for each mvba-proposed message. As

discussed previously in Sec. 5, the predicate depends on the internal

state𝑊 of each replica 𝑝𝑖 ; it is possible that 𝑄 (𝑊𝑗 ,𝑊) fails to hold

when 𝑝𝑖 receives themvba-proposed value by 𝑝 𝑗 , but𝑄 (𝑊𝑗 ,𝑊) will
hold at some point as 𝑝𝑖 r-delivers more RBC instances.

After 𝑝𝑖 provides some input to MVBA, it waits for the output

of MVBA (line 08). According to the integrity property of MVBA,

the output of MVBA𝑊𝑘 must be proposed by some replica such

that 𝑄 (𝑊𝑘 ,𝑊) is satisfied. At lines 09-11, for each𝑊𝑘 [𝑗] = 1, 𝑝𝑖
waits for the output of RBC𝑗 , 𝑣 𝑗 . Then 𝑣 𝑗 is added to a set v. After
all such RBC instances complete, 𝑝𝑖 acs-decides v (line 12).

Complexity and discussion. Our ACS protocol terminates in

expected constant time, as the underlying MVBA protocol runs in

expected 𝑂 (1) time. Moreover, our ACS protocol clearly has 𝑂 (𝑛3)
messages. The communication cost of our ACS protocol depends on

the underlying RBC protocol, as the input length to MVBA is only 𝑛.

For instance, our ACS protocol with CT RBC has𝑂 (𝐿𝑛2 +𝜅𝑛3
log𝑛)

communication.

In contrast to BKR ACS and the state-of-the-art PACE ACS that

terminate in 𝑂 (log𝑛) time and need 𝑛 (R)ABA instances, our ACS

protocol has 𝑂 (1) time and uses only 𝑂 (1) (R)ABA instances.

Note that as the input of MVBA indicates that at least 𝑛 − 2𝑓

acs-proposed values from correct replicas will eventually be acs-

decided, we do not need the quality property for the underlying

MVBA protocol.

We prove the correctness of our ACS protocol in Appendix D.

7 A PRACTICAL ACS INSTANTIATION
We use CT RBC as the underlying RBC protocol in ACS. We use

our tailored MVBA protocol in Sec. 5.4 as our MVBA protocol. Our

tailored MVBA protocol internally uses the hash-based WRBC pro-

tocol in Sec. 5.4 and Pisa RABA protocol [50]. We call the resulting

instantiation FIN.

8 IMPLEMENTATION AND EVALUATION
We implemented FIN in Golang. To make a fair comparison, we

implemented PACE [50] in the same library, the most efficient ACS

construction of the same type. Our implementation involves around

9,000 LOC for the protocols and about 1,000 LOC for evaluation.

We use gRPC as the communication library. We use HMAC to

realize the authenticated channel and use SHA256 as the underlying

hash function. We implement threshold PRF [13] to realize common

coins for RABA and the random leader election protocol. We use a

Golang-based erasure coding library [1] to implement CT RBC.

We evaluate the performance of our protocols onAmazon EC2 us-

ing up to 121 virtual machines (VMs).We usem5.xlarge instances for

our evaluation. The m5.xlarge instance has four virtual CPUs and

16GB memory. We deploy our protocols in the WAN setting, where

replicas are evenly distributed across different regions: us-west-2

(Oregon, US), us-east-2 (Ohio, US), ap-southeast-1 (Singapore), and

eu-west-1 (Ireland).

We conduct the experiments under different network sizes and

batch sizes.We use 𝑓 to denote the network size; in each experiment,

we use 3𝑓 + 1 replicas in total. We use 𝑏 to denote the batch size,

where each replica proposes 𝑏 transactions in each epoch (i.e., one

ACS instance). For each experiment, we run five epochs and report

the average performance (for both throughput and latency). The

default transaction size is 250 bytes. We also additionally evaluate

the performance using a transaction size of 100 bytes and report

the performance in Appendix A.

We summarize our main evaluation results as follows.

• We evaluate throughput vs. latency, and the peak throughput

varying 𝑓 from 1 to 40. Throughput is the number of transactions

processed in each second. Latency is the consensus latency at

the replica side, from the time when a replica acs-proposes to

the time it acs-decides. Our results show that the performance

of FIN is marginally lower than PACE for 𝑓 ≤ 5. When 𝑓 is

larger than 5, FIN consistently outperforms PACE, achieving

higher throughput and lower latency. The performance difference

between the two protocols drastically increases as 𝑓 grows. For

instance, when 𝑓 = 40, the peak throughput of FIN is 3.41x that

of PACE.

• The latency breakdown experiments that we carefully designed

explain well why FIN outperforms PACE. In particular, we show

that the RABA phase for FIN (with constant RABA instances)

occupies only 1.23%-5.22% of the overall latency, in sharp contrast

to PACE, where its RABA phase (with 𝑛 parallel RABA instances)

occupies 15.10%-83.66% of the total runtime.

• We evaluate the performance of the protocols under different

failure scenarios. Our results show that FIN is highly robust

against various failures.

• We additionally evaluate the performance with a smaller trans-

action size of 100 bytes, where we find that FIN outperforms

PACE in a more significant manner. For instance, when 𝑓 = 20,

the throughput of FIN with 100-byte transactions is 2.14x that of

PACE.

Throughput vs. Latency, peak throughput, and scalability.
We report the throughput vs. latency results for 𝑓 = 1, 10, 20, 30, 40

in Figure 7a-7e. For 𝑓 = 1, FIN has only marginally higher latency

and slightly lower throughput than PACE; in particular, the peak

throughput of FIN is only 1.3% lower than PACE for 𝑓 = 1. The

reason why PACE is slightly more efficient than FIN for 𝑓 = 1 is

that FIN involves two phases of RBC (one for ACS and one inside

MVBA), while the 𝑛 = 4 parallel RABA instances do not bottleneck

the performance in PACE for such a small 𝑓 . When 𝑓 > 5, FIN con-

sistently outperforms PACE in terms of latency, peak throughput,

and latency vs. throughput. The performance gain for FIN is clearly

due to the constant-time termination and the constant number of

RABA instances in FIN.

We report the peak throughput of PACE and FIN in Figure 7f.

As shown in Figure 7f, FIN consistently outperforms PACE for 𝑓 ≥
10. The performance difference between FIN and PACE becomes

increasingly significant as 𝑓 increases. For instance, when 𝑓 = 30,

10

0 10 20 30 40

0

2

4

6

8

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(a) Latency vs. throughput for 𝑓 = 1.

0 20 40 60 80 100

0

2

4

6

8

10

12

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(b) Latency vs. throughput for 𝑓 = 10.

0 20 40 60 80 100

0

5

10

15

20

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(c) Latency vs. throughput for 𝑓 = 20.

0 20 40 60 80

0

10

20

30

40

50

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(d) Latency vs. throughput for 𝑓 = 30.

0 20 40 60 80

0

20

40

60

80

100

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(e) Latency vs. throughput for 𝑓 = 40.

𝑓 = 1 𝑓 = 5 𝑓 = 10 𝑓 = 20 𝑓 = 30 𝑓 = 40

0

20

40

60

80

100

120

39.44

59.54

83.88
85.13

35.74

23.22

38.71

56.52

108.32

100.08

86.62

79.27

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

PACE FIN

(f) Peak throughput as 𝑓 grows.

0 1 2 3 4 5

PACE (b=10k)

FIN (b=10k)

PACE (peak)

FIN (peak)

Latency breakdown (Sec)

RBC1 RBC2 RABA

(g) Latency breakdown for 𝑓 = 1.

0 1 2 3 4 5 6

PACE (b=10k)

FIN (b=10k)

PACE (peak)

FIN (peak)

Latency breakdown (Sec)

RBC1 RBC2 RABA

(h) Latency breakdown for 𝑓 = 10.

0 2 4 6 8 10 12 14 16 18

PACE (b=10k)

FIN (b=10k)

PACE (peak)

FIN (peak)

Latency breakdown (Sec)

RBC1 RBC2 RABA

(i) Latency breakdown for 𝑓 = 20.

0 5 10 15 20 25 30 35

PACE (b=10k)

FIN (b=10k)

PACE (peak)

FIN (peak)

Latency breakdown (Sec)

RBC1 RBC2 RABA

(j) Latency breakdown for 𝑓 = 30.

0 10 20 30 40 50 60 70

PACE (b=10k)

FIN (b=10k)

PACE (peak)

FIN (peak)

Latency breakdown (Sec)

RBC1 RBC2 RABA

(k) Latency breakdown for 𝑓 = 40.

𝑓 = 1 𝑓 = 10 𝑓 = 20

0

50

100

150

200

250

39.44

83.88 85.13

69.67

154.76

94.48

38.71

108.32

100.08

57.55

190.7

203.05

P
e
a
k
t
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

PACE (250 bytes) PACE (100 bytes)

FIN (250 bytes) FIN (100 bytes)

(l) Performance with different transaction
sizes.

Figure 7: Evaluation results of FIN and PACE.

the peak throughput of FIN is 2.42x that of PACE. When 𝑓 = 40, the

peak throughput of FIN is 3.41x that of PACE. We also observe that

as 𝑓 increases, the peak throughput of both PACE and FIN increases

and decreases. Indeed, as 𝑓 increases, the number of transactions

delivered for both protocols increases, but when 𝑓 further increases,

the network bandwidth consumption dominates the performance.

In our experiments, FIN achieves its highest throughput when

𝑓 = 10, while PACE achieves its peak when 𝑓 = 20.

11

Latency breakdown. To help understand why FIN outperforms

PACE, we report the latency breakdown for the experiments. In FIN,

there are three phases: the RBC phase for ACS (denoted as RBC1),

the RBC phase inside MVBA (denoted as RBC2), and the iteration

phase with a random leader election and one RABA instance at a

time (denoted as RABA). In contrast, PACE has an RBC phase (the

same as that in FIN, denoted as RBC1) and a RABA phase with 𝑛

parallel RABA instances (denoted as RABA). Here the latency of

RBC phase is measured from the beginning of the first RBC instance

to the completion of the𝑛−𝑓 -th RBC instance.Moreover, the latency

of the RABA phase for PACE is measured from the beginning of

the first RABA instance to the time ACS completes. Finally, the

latency of the RABA phase for FIN is measured from the beginning

of the iteration phase to the time when ACS completes. The latency

breakdown experiments can explain why FIN outperforms PACE,

help identify the bottleneck of the two protocols, and assist in

understanding the scalability results.

Figure 7g-7k reports the latency breakdown for FIN and PACE.

We test two settings: a fixed one with 𝑏 = 10,000, and the smallest

batch size where both protocols achieve their peak throughput. We

first observe that the RBC1 phases in the two protocols share almost

the same latency. This is not surprising, as the RBC1 phase is the

only phase that carries bulk data for both protocols, and we use

CT RBC for both of them. Additionally, the latency percentage for

the RBC2 phase in FIN is comparatively very low. This is because

the RBC2 phase does not have any bulk data, and its input size is

small (𝑛 bits). Hence, the RBC2 phase in FIN does not incur much

overhead to the protocol.

In all cases, the RABA latency in PACE is much higher than that

for FIN. For 𝑓 =1 to 40, the latency of the RABA phase in PACE is

15.10%-83.66% of the overall latency. In contrast, the RABA phase

in FIN occupies only 1.23%-5.22% of the total runtime.

Moreover, the latency percentage of the RABA phase within the

overall PACE latency becomes increasingly larger as 𝑓 increases,

but the RABA latency percentage in FIN remains steady despite an

increasing 𝑓 . Indeed, when 𝑓 = 40, the RABA phase occupies 83.66%

of the overall consensus latency for PACE. In contrast, the latency

of the RABA phase in FIN is only 1.23% of the overall latency. In

fact, even if we consider the latency caused by RBC2 and RABA (i.e.,

MVBA) in FIN, it only occupies 11.45% of the overall latency. This

observation explains well why the performance difference between

FIN and PACE becomes increasingly larger as 𝑓 increases. Indeed,

FIN only needs an expected constant number of RABA instances.

Performance under failures. To assess the robustness of FIN,

we report the performance of FIN and PACE under various failure

scenarios. Following prior works [50, 52], we consider the following

scenarios, where the 𝑓 faulty replicas are evenly distributed in the

EC2 regions we use.

• 𝑆0: (failure-free) In this scenario, all replicas are correct.

• 𝑆1: (crash) In this scenario, we let 𝑓 replicas crash by not partic-

ipating in the protocols.

• 𝑆2: (Byzantine; keep voting 0) In this scenario, we fail 𝑓 repli-

cas and let them keep voting for 0 in each step of RABA.

• 𝑆3: (Byzantine; flipping the RABA input) In this scenario, we

fail 𝑓 replicas and ask them to always vote for a flipped value in

RABA.

P
A
C
E

F
IN

0

20

40

60

80

59.54

56.5256.61

48.73

45.01

47.96

40.8
39.4

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

𝑆0: ff 𝑆1: crash

𝑆2: zero 𝑆3: flip

(a) 𝑓 = 5.

P
A
C
E

F
IN

0

20

40

60

80

100

120

83.52

106.89

77.8

85.19

48.65

83.67

54.7

84.12

T
h
r
o
u
g
h
p
u
t
(
k
t
x
/
s
e
c
)

𝑆0: ff 𝑆1: crash

𝑆2: zero 𝑆3: flip

(b) 𝑓 = 10.

Figure 8: Throughput of the protocols in failure scenarios
for 𝑏 = 30,000.

We fix 𝑏 to 30,000 and present the throughput for 𝑓 = 5 in

Figure 8a and 𝑓 = 10 in Figure 8b. We choose these two settings

because they are the settings where the two protocols share similar

performance. First, for the crash failure scenario, the performance

of both protocols degrades only slightly. For both Byzantine scenar-

ios, the percentage for the performance degradation of FIN is lower

than that of PACE. The performance of FIN in Byzantine scenarios

degrades by 15.1%-30.2% compared to the failure-free scenario. In

contrast, the performance of PACE degrades by 24.39%-41.74%. No-

tably, for 𝑓 = 10, FIN under all failure scenarios outperforms PACE

in its failure-free scenario.

Performance with different transaction sizes. We addition-

ally evaluate the performance with a smaller transaction size of

100 bytes as shown in Figure 7l. In this setting, FIN outperforms

PACE in a more significant manner. For instance, when 𝑓 = 20,

the throughput of FIN with 100 bytes transactions is 2.14x that of

PACE, while for 250-bytes transactions, the throughput of FIN is

only 17.56% higher. We also find that the throughput of FINwith 100

bytes transactions is roughly 2x that with 250-bytes transactions.

9 CONCLUSION
We present the first IT-secure and signature-free ACS protocol with

𝑂 (1) time and 𝑂 (𝑛3) messages, resolving a long-standing open

problem in fault-tolerant distributed computing and cryptography.

As a core ingredient in our ACS construction and a primitive of

12

independent interests, we present the first signature-free MVBA

protocols with 𝑂 (1) time and 𝑂 (𝑛3) messages. In contrast, exist-

ing signature-free MVBA protocols have 𝑂 (log𝑛) time and 𝑂 (𝑛3)
messages. From the practical side, we implement a practical ACS

protocol called FIN, and we demonstrate that FIN significantly out-

performs the state-of-the-art BFT protocol of the same kind—PACE.

REFERENCES
[1] 2021. Reed-Solomon library. https://github.com/klauspost/reedsolomon. (2021).

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

Optimal Validated Asynchronous Byzantine Agreement. In PODC. ACM, 337–

346.

[3] Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. 2022. State

Machine Replication under Changing Network Conditions. In Asiacrypt.

[4] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Zhuolun XiangMayank Varia,

and Haibin Zhang. 2022. Balanced Byzantine Reliable Broadcast with Near-

Optimal Communication and Improved Computation. PODC.

[5] Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Threshold

BLS Signature Scheme. In ACM CCS.

[6] Michael Backes, Fabian Bendun, Ashish Choudhury, and Aniket Kate. 2014.

Asynchronous MPC with a strict honest majority using non-equivocation. In

Proceedings of the 2014 ACM symposium on Principles of distributed computing.

10–19.

[7] Michael Ben-Or, Ran Canetti, and Oded Goldreich. 1993. Asynchronous secure

computation. In STOC. ACM, 52–61.

[8] Michael Ben-Or and Ran El-Yaniv. 2003. Resilient-Optimal Interactive Consis-

tency in Constant Time. Distrib. Comput. (2003).

[9] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous secure com-

putations with optimal resilience. In Proceedings of the 13th annual symposium

on Principles of distributed computing. ACM, 183–192.

[10] Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. 2020. Always have a backup

plan: fully secure synchronous MPC with asynchronous fallback. In Annual

International Cryptology Conference. Springer, 707–731.

[11] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information

and Computation 75, 2 (1987), 130–143.

[12] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International

Cryptology Conference. Springer, 524–541.

[13] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in

Constantinople: Practical asynchronous Byzantine agreement using cryptogra-

phy. Journal of Cryptology 18, 3 (2005), 219–246.

[14] Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information

dispersal. In SRDS. IEEE, 191–201.

[15] Ran Canetti. 1996. Studies in secure multiparty computation and applications.

Scientific Council of The Weizmann Institute of Science (1996).

[16] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. In STOC, Vol. 93. Citeseer, 42–51.

[17] Dario Catalano and Dario Fiore. 2013. Vector commitments and their applications.

In International Workshop on Public Key Cryptography. Springer, 55–72.

[18] Soma Chaudhuri. 1993. More choices allow more faults: Set consensus problems

in totally asynchronous systems. Information and Computation 105, 1 (1993),

132–158.

[19] Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. 2021. On communication-

efficient asynchronous MPC with adaptive security. In Theory of Cryptography

Conference. Springer, 35–65.

[20] Ashish Choudhury and Nikhil Pappu. 2020. Perfectly-Secure Asynchronous

MPC for General Adversaries. In International Conference on Cryptology in India.

Springer, 786–809.

[21] Ashish Choudhury and Arpita Patra. 2015. Optimally resilient asynchronous

MPC with linear communication complexity. In Proceedings of the 2015 Interna-

tional Conference on Distributed Computing and Networking. 1–10.

[22] Ashish Choudhury and Arpita Patra. 2017. An Efficient Framework for Uncon-

ditionally Secure Multiparty Computation. IEEE Transactions on Information

Theory 63, 1 (2017), 428–468.

[23] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2006. From Con-

sensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without

Signatures. Comput. J. 49, 1 (2006), 82–96.

[24] Tyler Crain. 2020. Two More Algorithms for Randomized Signature-Free Asyn-

chronous Binary Byzantine Consensus with t<n/3 and O(n
2
) Messages and O(1)

Round Expected Termination. CoRR abs/2002.08765 (2020). arXiv:2002.08765

https://arxiv.org/abs/2002.08765

[25] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2022. Practi-

cal Asynchronous High-threshold Distributed Key Generation and Distributed

Polynomial Sampling. Cryptology ePrint Archive (2022).

[26] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemi-

nation and Its Applications. In CCS.

[27] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation.

In IEEE Symposium on Security and Privacy. IEEE, 2518–2534.

[28] Assia Doudou and André Schiper. 1998. Muteness detectors for consensus with

Byzantine processes. In Proceedings of the seventeenth annual ACM symposium

on Principles of distributed computing. 315.

[29] Sisi Duan, Michael K Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

made practical. In CCS. ACM, 2028–2041.

[30] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols.. In CCS.

[31] Christoph U. Günther, Sourav Das, and Lefteris Kokoris-Kogias. 2022. Practical

Asynchronous Proactive Secret Sharing and Key Refresh. Cryptology ePrint

Archive, Paper 2022/1586. (2022).

[32] Bin Hu, Zongyang Zhang, Han Chen, You Zhou, Huazu Jiang, and Jianwei Liu.

2022. DyCAPS: Asynchronous Proactive Secret Sharing for Dynamic Committees.

Cryptology ePrint Archive, Paper 2022/1169. (2022).

[33] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All You Need is DAG. In PODC. ACM, 165–175.

[34] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures.. In ACM CCS. 1751–1767.

[35] Benoît Libert, Marc Joye, and Moti Yung. 2016. Born and raised distributively:

Fully distributed non-interactive adaptively-secure threshold signatures with

short shares. Theoretical Computer Science 645 (2016), 1–24.

[36] Chao Liu, Sisi Duan, and Haibin Zhang. 2020. EPIC: Efficient Asynchronous BFT

with Adaptive Security.. In DSN.

[37] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket

Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical

Asynchronous MPC and Its Application to Anonymous Communication. In ACM

CCS.

[38] Y. Lu, Z. Lu, Q. Tang, and G. Wang. 2020. Dumbo-MVBA: Optimal Multi-Valued

Validated Asynchronous Byzantine Agreement, Revisited. In PODC.

[39] Ethan MacBrough. 2018. Cobalt: BFT governance in open networks. arXiv

preprint arXiv:1802.07240 (2018).

[40] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In ACM CCS. 31–42.

[41] Henrique Moniz, Nuno Ferreria Neves, Miguel Correia, and Paulo Verissimo.

2008. RITAS: Services for randomized intrusion tolerance. IEEE transactions on

dependable and secure computing 8, 1 (2008), 122–136.

[42] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-

free asynchronous byzantine consensus with t< n/3 and o (n 2) messages. In

Proceedings of the ACM symposium on Principles of distributed computing. ACM,

2–9.

[43] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-

Free Asynchronous Binary Byzantine Consensus with t < n/3, O(n2) Messages,

and O(1) Expected Time. J. ACM 62, 4 (2015), 31:1–31:21.

[44] Achour Mostéfaoui and Michel Raynal. 2017. Signature-free asynchronous

Byzantine systems: from multivalued to binary consensus with t< n/3, O(n
2
)

messages, and constant time. Acta Informatica 54, 5 (2017), 501–520.

[45] Nuno Ferreira Neves, Miguel Correia, and Paulo Verissimo. 2005. Solving vector

consensus with a wormhole. IEEE Transactions on Parallel and Distributed Systems

16, 12 (2005), 1120–1131.

[46] M. Pease, R. Shostak, and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. J. ACM 27, 2 (1980), 228–234.

[47] Michael O Rabin. 1983. Randomized byzantine generals. In 24th Annual Sympo-

sium on Foundations of Computer Science. IEEE, 403–409.

[48] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In 38th

ACM symposium on Principles of Distributed Computing (PODC).

[49] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. 2022. Long Live The

Honey Badger: Robust Asynchronous DPSS and its Applications. Cryptology

ePrint Archive, Paper 2022/971. (2022).

[50] Haibin Zhang and Sisi Duan. 2022. PACE: Fully Parallelizable BFT from Repro-

posable Byzantine Agreement. In CCS.

[51] Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng, Shengli Liu, Yong

Yu, Fangguo Zhang, and Liehuang Zhu. 2022. Practical Asynchronous Distributed

Key Generation: Improved Efficiency, Weaker Assumption, and Standard Model.

Cryptology ePrint Archive, Paper 2022/1678. (2022).

[52] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. 2022. WaterBear: Prac-

tical Asynchronous BFT Matching Security Guarantees of Partially Synchronous

BFT. Cryptology ePrint Archive, Paper 2022/021. (2022).

[53] Haibin Zhang, Chao Liu, and Sisi Duan. 2022. How to achieve adaptive security

for asynchronous BFT? J. Parallel and Distrib. Comput. 169 (2022), 252–268.

13

https://github.com/klauspost/reedsolomon
http://arxiv.org/abs/2002.08765
https://arxiv.org/abs/2002.08765

A ADDITIONAL EVALUATION RESULTS
In Figure 9, we present the throughput vs. latency results for the

transaction size of 100 bytes for 𝑓 = 1, 10, 20. While the trend in

this setting is similar to that with the transaction size of 250 bytes,

FIN outperforms PACE in a more drastic way. Despite the case for

𝑓 = 1 where the peak throughput of FIN is 17.4% lower than that of

PACE, FIN achieves 1.23x and 2.14x the peak throughput of PACE,

for 𝑓 = 10 and 𝑓 = 20, respectively.

B PROOF OF OUR MVBA PROTOCOLWITH
QUALITY

We show that the MVBA protocol presented in Sec. 5.3 addition-

ally achieves the quality property. All the other properties except

termination follow from our MVBA without the quality property.

Therefore, we prove quality and termination in this section.

Lemma B.1. If a correct replica enters the iteration phase, then

for at least 2𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have

r-delivered some values.

Proof. If a correct replica 𝑝𝑖 enters the iteration phase, it re-

ceives 𝑛 − 𝑓 (Rep) message. Prior to that, 𝑝𝑖 has broadcast (Echo,𝑊𝑖)

where𝑊𝑖 consists of at least𝑛−𝑓 1’s, i.e., 𝑝𝑖 has completed𝑛−𝑓 RBC
instances. Each replica 𝑝 𝑗 replies with a (Rep) message only if for

any𝑊𝑖 [𝑙] = 1, 𝑝 𝑗 has also r-delivered some value in RBC𝑙 . Hence,

for any𝑊𝑖 [𝑙] = 1, at least 𝑓 + 1 correct replicas have r-delivered

some value. □

Theorem B.2 (Quality). The probability of mvba-deciding a

value that was proposed by a correct replica is at least 1/2.

Proof. According to LemmaB.1, for at least 2𝑓 +1 RBC instances,

at least 𝑓 + 1 correct replicas have r-delivered some value. From the

biased validity property of RABA, if any of the 2𝑓 +1 RBC instances

is selected by the Election() function, RABA will output 1. So every

correct replica then mvba-decides. Therefore, the probability that

the decided value was proposed by an adversary is bounded by

𝑓 +1
3𝑓 +1 . As the probability of deciding a value proposed by a faulty

replica is at most Σ∞
𝑘=1
(1/3)𝑘 = 1/2, the probability of deciding a

value that was proposed by a correct replica is at least 1/2. □

Theorem B.3 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas are activated, each correct replica

starts one RBC instance. According to the validity property of RBC,

at least 𝑛− 𝑓 RBC instances started by the 𝑛− 𝑓 correct replicas will
eventually complete. Then, each correct replica 𝑝𝑖 sends a (Echo,𝑊𝑖)

message, every replica replies only if it has r-delivered some value

in RBC𝑙 for any𝑊𝑖 [𝑙] = 1. According to the agreement property

of RBC, we know that for the message sent by 𝑝𝑖 , every correct

replica eventually replies with a (Rep) message. Accordingly, every

correct replica eventually enters the iteration phase.

During the iteration phase, we first prove that every iteration 𝑟

completes and then show that eventually some RABA𝑟 outputs 1.
For each iteration 𝑟 , 𝑘 is returned by the Election() function.

The proof that every iteration 𝑟 completes is similar to that for

the protocol without quality. We include one additional echo-and-

reply procedure, where every replica sends its𝑊𝑖 to all replicas and

proceeds to the next phase if it receives 𝑛 − 𝑓 replies. According

to the agreement property of RBC, we know that every correct

replicas eventually r-delivers some values in the same set of RBC

instances in𝑊𝑖 . Thus, every correct replica completes each epoch.

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1, so the protocol terminates. From Lemma B.1, for at least

2𝑓 + 1 RBC instances, at least 𝑓 + 1 correct replicas have r-delivered

some value after they enter the iteration phase. Let 𝐼 be the set of

the 2𝑓 + 1 RBC instances. Due to the biased validity property of

RABA, RABA𝑟 outputs 1. So with probability
2𝑓 +1
3𝑓 +1 ≈

2

3
, it holds

that 𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the output

of RBC𝑘 . Note that if RABA𝑟 outputs 1, at least one correct replica

has raba-proposeed 1 or raba-reproposed 1. This is due to the unani-

mous termination property of RABA. Therefore, at least one correct

replica has r-delivered some value in RBC𝑘 . Due to the agreement

property of RBC, every correct replica eventually r-delivers some

value in RBC𝑘 and then mvba-decides. □

C PROOF OF OUR TAILORED MVBA
In this section, we prove the correctness of our tailored MVBA

protocol. We first show a few lemmas about WRBC and then show

the correctness of our tailored MVBA construction. As external

validity is the same as the MVBA protocol presented in Sec. 5.2, we

focus on agreement, integrity, and termination in this section.

Lemma C.1. If a correct replica wr-delivers ℎ and another correct

replica wr-delivers ℎ′, then ℎ = ℎ′.

Proof. If a correct replica 𝑝𝑖 wr-delivers ℎ, it receives 𝑛 − 𝑓

(Ready, ℎ). If another correct replica 𝑝 𝑗 wr-delivers ℎ
′
, it receives

𝑛 − 𝑓 (Ready, ℎ′). Therefore, at least one correct replica has sent
both (Ready, ℎ) and (Ready, ℎ′), a contradiction to the fact that every

correct replica only sends a (Ready) message once. □

Lemma C.2. If a correct replica wr-broadcasts a value 𝑣 , every

correct replica eventually wr-delivers ℎ such that ℎ = 𝐻𝑎𝑠ℎ(𝑣).

Proof. For any WRBC instance, if the sender is correct, it is

straightforward to see that every correct replica receives the same

(Send, 𝑣) message, broadcasts a (Echo,𝑚)essage, and receives 𝑛 − 𝑓

(Echo, 𝐻𝑎𝑠ℎ(𝑣)) messages. Then every correct replica eventually

sends (Ready, 𝐻𝑎𝑠ℎ(𝑣)) and will never receive 𝑓 +1 (Ready) messages

with a value different from 𝐻𝑎𝑠ℎ(𝑣). Hence, every correct replica

eventually wr-delivers ℎ = 𝐻𝑎𝑠ℎ(𝑣). □

LemmaC.3. For anyWRBC instance, if a correct replica wr-delivers

some value ℎ, any correct replica eventually wr-delivers some value.

Proof. If a correct replicawr-deliversℎ, it receives𝑛−𝑓 (Ready, ℎ)
messages, among which are least 𝑓 + 1 are sent by correct replicas.

Thus, any correct replica that receives 𝑓 + 1 (Ready, ℎ) messages

but has not sent any (Ready) message will also send a (Ready, ℎ).

Therefore, every correct replica eventually receives 𝑛 − 𝑓 (Ready, ℎ)

messages and wr-delivers. □

14

0 20 40 60

0

2

4

6

8

10

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(a) Latency vs. throughput for 𝑓 = 1.

0 50 100 150 200

0

5

10

15

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(b) Latency vs. throughput for 𝑓 = 10.

0 50 100 150 200

0

2

4

6

8

10

12

Throughput (ktx/sec)

L
a
t
e
n
c
y
(
S
e
c
)

PACE FIN

(c) Latency vs. throughput for 𝑓 = 20.

Figure 9: Evaluation results for transaction size of 100 bytes.

LemmaC.4. If a correct replica wr-delivers some valueℎ inWRBC𝑗 ,

at least 𝑓 + 1 correct replica receives (Send, 𝑣) such that 𝐻𝑎𝑠ℎ(𝑣).

Proof. If a correct replicawr-deliversℎ, it receives𝑛−𝑓 (Ready, ℎ),
among which are least 𝑓 + 1 are sent by correct replicas. Any of

the correct replicas receive 𝑛 − 𝑓 (Echo, ℎ), among which at least

𝑓 + 1 are sent by correct replicas. The correct replicas must have

received (Send, 𝑣) from 𝑝 𝑗 such that 𝐻𝑎𝑠ℎ(𝑣) = ℎ. □

For completeness, below, we provide self-contained proof for

agreement, integrity, and termination. Note that the proof is very

similar to that for our MVBA protocol in Sec. 5.2.

Theorem C.5 (Agreement). If a correct replica mvba-decides 𝑣 ,

then any correct replica that terminates mvba-decides 𝑣 .

Proof. If a correct replica 𝑝𝑖 mvba-decides 𝑣 , we assume it has

raba-decided 1 in RABA𝑟 for some iteration 𝑟 > 0 and for any

iteration 𝑟 < 𝑟 , RABA𝑟 outputs 0. Furthermore, if 𝑘 is returned

by the Election() function in iteration 𝑟 , WRBC𝑘 outputs ℎ and

𝑝𝑖 receives some 𝑣 (from 𝑝𝑘 or from a (Value) message) such that

𝐻 (𝑣) = ℎ.

We assume that another correct replica 𝑝 𝑗 mvba-decides 𝑣 ′ ≠ 𝑣

and prove the theorem by contradiction. We consider two cases: 𝑝 𝑗
mvba-decides in iteration 𝑟 ; 𝑝 𝑗 mvba-decides in iteration 𝑟 ′ ≠ 𝑟 .

Case 1: If 𝑝 𝑗 mvba-decides 𝑣 ′ in round 𝑟 , it obtains 𝑘′ from Election()
function and WRBC𝑘 ′ outputs ℎ

′
. Then 𝑝 𝑗 either receives value

𝑣 ′ from 𝑝𝑘 ′ such that 𝐻𝑎𝑠ℎ(𝑣 ′) = ℎ′ or receives 𝑣 ′ from another

replica in a (Value) message. As Election() outputs a common coin,

it must hold that 𝑘 = 𝑘′. Thus, if 𝐻𝑎𝑠ℎ(𝑣) ≠ ℎ′, 𝑝 𝑗 wr-delivers
ℎ′ ≠ ℎ, a violation of Lemma C.1. Furthermore, if 𝑣 ≠ 𝑣 ′, the
collision resistance property of the hash function is violated.

Case 2: Without loss of generality, we assume 𝑟 ′ > 𝑟 . According

to our protocol, 𝑝 𝑗 raba-decides 1 in RABA𝑟 ′ and raba-decides 0

for any iteration lower than 𝑟 ′, including 𝑟 . This would violate the

agreement property of RABA. □

Theorem C.6 (Integrity). If all replicas follow the protocol, and

if a correct replica mvba-decides such that 𝑄 (𝑣) holds, then some

replica mvba-proposed such that 𝑄 (𝑣) holds.

Proof. If a correct replica 𝑝𝑖 mvba-decides 𝑣 , it raba-decides 1

in some RABA𝑟 and wr-delivers ℎ = 𝐻 (𝑣) in WRBC𝑘 where 𝑘 is

the output of the Election() function. According to our protocol,

at least 𝑛 − 𝑓 replicas have sent (Ready, ℎ) messages, among which

at least one is sent by a correct replica. The correct replica has

received 𝑛 − 𝑓 (Echo, ℎ) messages, where at least 𝑓 + 1 message are

sent by correct replicas. The correct replicas must have received a

(Send, 𝑣) message from 𝑝𝑖 such that 𝐻𝑎𝑠ℎ(𝑣) = ℎ. □

Lemma C.7. If all correct replica enter the iteration phase, then

for at least 𝑓 + 1 WRBC instances, at least 𝑓 + 1 correct replicas have

wr-delivered some values.

Proof. Correctness of the lemma is the same as that in Lemma 5.4,

except that RBC is now WRBC. □

Theorem C.8 (Termination). If all correct replicas are activated

and all messages sent among correct replicas have been delivered, then

all correct replicas mvba-decide.

Proof. If all correct replicas start the protocol, each correct

replica starts one WRBC instance. According to Lemma C.2, any

correct replica completes a WRBC instance started by a correct

replica. Thus, every correct replica completes at least 𝑛 − 𝑓 WRBC

instances.

During the iteration phase, we consider each iteration 𝑟 where

𝑘 is the corresponding output of the Election() function. We first

show that every iteration 𝑟 completes and then eventually some

RABA𝑟 outputs 1.
We first show that every iteration 𝑟 completes. For each iteration

𝑟 , there are three cases: 1) all correct replicas havewr-delivered some

value in WRBC𝑘 ; 2) at least one correct replica has wr-delivered

some value inWRBC𝑘 and at least one correct replica has not wr-

delivered any value inWRBC𝑘 ; 3) none of the correct replicas have

r-delivered any value in WRBC𝑘 .

Case 1: According to the unanimous termination property, RABA𝑟
terminates.

Case 2: If at least one correct replica has wr-delivered some value in

WRBC𝑘 , then according to Lemma C.3, any correct replica even-

tually wr-delivers some value. Note that any correct replica that

provides 0 as the RABA input (it has not wr-delivered any value in

WRBC𝑘 when the iteration begins) will eventually raba-repropose 1.

Thus, the biased termination condition of RABA is satisfied. RABA𝑟
will terminate and iteration 𝑟 will complete.

15

Case 3: If none of the correct replicas wr-deliver any value in

WRBC𝑘 , iteration 𝑟 completes due to the unanimous termination

property of RABA. Otherwise, if at least one correct replica later

wr-delivers some value in WRBC𝑘 , then according to the case 2,

iteration 𝑟 completes due to the biased termination property of

RABA.

We now prove that eventually, in some iteration 𝑟 , RABA𝑟 out-
puts 1 so the protocol terminates. From Lemma C.7, for at least

𝑓 + 1 WRBC instances, at least 𝑓 + 1 correct replicas have wr-

delivered some value after they enter the iteration phase. Let 𝐼 be

the 𝑓 +1 WRBC instances. According to the biased validity property

of RABA, RABA𝑟 outputs 1. So with probability
𝑓 +1

3𝑓 +1 ≈
1

3
, we have

𝑘 ∈ 𝐼 .
After RABA𝑟 outputs 1, every correct replica waits for the output

ofWRBC𝑘 . We also know that if RABA𝑟 outputs 1, then at least one

correct replica has raba-proposed 1 or raba-reproposed 1. Otherwise,

the unanimous termination of RABA is violated. Therefore, at least

one correct replica has wr-delivered some value ℎ inWRBC𝑘 . From

Lemma C.3 and Lemma C.1, every correct replica eventually r-

delivers ℎ inWRBC𝑘 . From Lemma C.4, at least 𝑓 +1 correct replicas

receive (Send, 𝑣) from 𝑝𝑖 and set their𝑇𝑖 [𝑘] as 𝑣 such that𝐻𝑎𝑠ℎ(𝑣) =
ℎ. The correct replicas will send (Value, 𝑣) to all replicas. Therefore,

any correct eventually receives 𝑣 and then mvba-decides. □

D PROOF OF OUR ACS PROTOCOL
Theorem D.1 (Validity). If a correct replica acs-decides a set v,

then |v| ≥ 𝑛− 𝑓 and v contains values acs-proposed by at least 𝑛− 2𝑓

correct replicas.

Proof. According to the protocol, every correct replica 𝑝𝑖 first

mvba-decide(𝑊𝑘) and then obtains v. The predicate of 𝑄 (𝑊𝑘 ,𝑊)
specifies that there are at least 𝑛 − 𝑓 1’s in the𝑊𝑗 vector. Then

𝑝𝑖 waits for each RBC𝑗 to output some 𝑣 𝑗 for each𝑊𝑘 [𝑗] = 1 and

includes 𝑣 𝑗 in v. As there are 𝑛 − 𝑓 values in v, corresponding to

𝑛 − 𝑓 RBC instances, it holds that |v| ≥ 𝑛 − 𝑓 . Since there are at

most 𝑓 faulty replicas, at least 𝑛 − 2𝑓 values are acs-proposed by

correct replicas. □

Theorem D.2 (Agreement). If a correct replica acs-decides v,
then every correct replicas outputs v.

Proof. If a correct replica 𝑝𝑖 acs-decides v, it first mvba-decides

𝑊𝑘 . Then for each𝑊𝑘 [𝑗] = 1, 𝑣 𝑗 is r-delivered by RBC𝑗 and 𝑣 𝑗 is

included in v. We assume that another correct replica 𝑝 𝑗 acs-decides

v′ ≠ v and then prove the theorem by contradiction.

If 𝑝 𝑗 acs-decides v′, it mvba-decides𝑊 ′
𝑘
. According to the agree-

ment property of MVBA, it must hold that𝑊𝑘 =𝑊 ′
𝑘
. Then for each

𝑊 ′
𝑘
[𝑗] = 1, 𝑝 𝑗 obtains the output of RBC𝑗 𝑣

′
𝑗
and includes 𝑣 ′

𝑗
in v′.

If for any 𝑗 , 𝑣 𝑗 ∈ v and 𝑣 ′
𝑗
∈ v′ and 𝑣 𝑗 ≠ 𝑣 ′

𝑗
, the agreement property

of RBC is violated. Hence, we have v = v′. □

Theorem D.3 (Termination). If all correct replicas acs-propose,

then all correct replicas acs-decide.

Proof. If all correct replicas acs-propose, every correct replica

𝑝𝑖 starts RBC𝑖 . Due to the validity property of RBC, every correct

replica r-delivers in RBC𝑖 . Therefore, every correct replica eventu-

ally completes 𝑛 − 𝑓 RBC instances. Then each correct replica 𝑝𝑖

mvba-proposes𝑊𝑖 . For each𝑊𝑖 [𝑗] = 1, we know that 𝑝𝑖 r-delivers

some value in RBC𝑗 . From the agreement property of RBC, ev-

ery correct replica eventually r-delivers some value in RBC𝑗 . Thus,

the predicate 𝑄 (𝑊𝑖 ,𝑊) eventually holds at every correct replica.

Namely, for each 𝑊𝑖 [𝑙] = 1, each correct replica 𝑝 𝑗 eventually

r-delivers some value in RBC𝑙 , so 𝑄 (𝑊𝑖 ,𝑊) eventually holds at 𝑝 𝑗 .

According to the termination property of MVBA, every correct

replica eventually mvba-decides some value𝑊𝑘 . Furthermore, from

the integrity property and external validity property of MVBA,

𝑄 (𝑊𝑘 ,𝑊) eventually holds, so for each𝑊𝑘 [𝑗] = 1, at least one

correct replica r-delivers some value in RBC𝑗 . Due to the agreement

property of RBC, every correct replica eventually r-delivers some

value 𝑣 𝑗 for each RBC𝑗 . Thus, every correct replica includes each

𝑣 𝑗 in its output. □

16

	Abstract
	1 Introduction
	2 Related Work
	3 System Model and Problem Statement
	4 Building Blocks
	5 Our MVBA Approach
	5.1 Overview
	5.2 Our MVBA Protocol
	5.3 MVBA with the Quality Property
	5.4 Tailored MVBA from Weak RBC

	6 Our ACS Approach
	6.1 Overview
	6.2 The ACS Protocol

	7 A Practical ACS Instantiation
	8 Implementation and Evaluation
	9 Conclusion
	References
	A Additional Evaluation Results
	B Proof of our MVBA Protocol with Quality
	C Proof of our Tailored MVBA
	D Proof of our ACS Protocol

