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Abstract. We propose Cornucopia, a distributed randomness beacon
protocol combining accumulators and verifiable delay functions. Cornu-
copia extends the Unicorn protocol of Lenstra and Wesolowski, utilizing
an accumulator to enable efficient verification by each participant that
their randomness contribution has been included in the beacon output.
The security of this construction reduces to a novel property of accu-
mulators, insertion security. We first show that not all accumulators are
insertion-secure. We then prove that common constructions (Merkle trees
and RSA accumulators) are naturally insertion-secure. Finally, we give a
generic transformation from any universal accumulator (supporting non-
membership proofs) to an insertion-secure accumulator, albeit with an
efficiency loss proportional to the security parameter.

1 Introduction

The goal of distributed randomness beacons (DRBs) is to enable a group of n
mutually untrusting participants to jointly compute a random output (denoted
Ω) which cannot be predicted or biased by any participant or any coalition of
participants. Among many important applications of DRBs are cryptographi-
cally verifiable lotteries and leader election in distributed consensus protocols.

A classic approach to distributed randomness is commit-reveal [7]. First, all
participants publish a cryptographic commitment to a random value ri. Par-
ticipants then reveal their ri values, and the result is Ω = Combine(r1, . . . , rn)
for some suitable combination function (such as exclusive-or or a cryptographic
hash). Commit-reveal protocols are simple, efficient, and secure as long as at least
one participant chooses a random ri value and all participants always open their
commitments. However, the output can be biased via a so-called last-revealer
attack, in which the last participant to reveal observes all other ri values and
refuses to open if the impending value of Ω is not to their liking. The protocol
can either finish without the missing ri, or restart and remove them from future
protocol runs. Either way, the attacker obtains 1 bit of bias on Ω.

Most approaches to avoiding last-revealer attacks relax the security model
by assuming an honest majority of participants, giving the majority a means
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to recover a withholding participant’s contribution. However, this means that
a malicious majority can privately compute Ω early and potentially bias it.
Protocols of this type also often add significant overhead, with communication
and computation costs superlinear in n (though some amortize this over multiple
rounds). For details, we refer the reader to several surveys on DRBs [38,16,28].

A fundamentally different approach to constructing DRBs uses time-based
cryptography, specifically using delay functions to prevent manipulation. The
simplest example is Unicorn [30], a one-round protocol in which each participant
directly publishes (within a fixed time window) a random input ri to a public
bulletin board. The result is computed as Ω = Delay(Combine(r1, . . . , rn)). By
assumption, a participant cannot compute the Delay function before the deadline
to publish their contribution ri and therefore cannot predict Ω or choose ri in
such a way as to influence it. This protocol retains the strong n − 1 (dishonest
majority) security model of commit-reveal, but with no last-revealer attacks. It
is remarkably simple and, using modern verifiable delay functions [8], the result
can be efficiently verified. The downside is that Θ(n) elements must be posted
to the public bulletin board per protocol run.

Our approach.We introduce Cornucopia, which retains the security advantages
of Unicorn while reducing the overhead of storage (on the public bulletin board)
from Θ(n) to O(1). The essential idea is to use a cryptographic accumulator
(for example, a Merkle tree) to publish a succinct commitment to all users’
contributions. The overall structure of the protocol is as follows:

– Each participants sends their contribution ri to a coordinator before a time
deadline T0.

– The coordinator accumulates all of the contributions into a succinct com-
mitment R and publishes it to a public bulletin board. It sends each user a
proof πi that their value ri is included in R.

– After time t passes, the result Ω = Delay(R) is published as well as a proof
πΩ .

– Users should check both that their contribution was included in R and that
Ω was properly computed from R.

While this is a small change to Unicorn, it is powerful: individual users can
now be convinced that Ω is truly random with only sublinear verification costs.
Observe that since security requires only one honest participant, individuals only
need to verify that they themselves participated in the protocol (assuming they
trust that their own device has not been compromised). Any number of other
malicious participants in the protocol cannot undermine security.

This opens the door, for the first time, to massive open-participation random-
ness protocols. For example, every user buying a lottery ticket might contribute
randomness, or every user in a massively multi-player online (MMO) game might
contribute randomness to seed the game engine. These applications might include
millions of participants, which would not be feasible with an honest majority re-
quirement or linear verification costs per user. Cornucopia, by contrast, can offer
constant or logarithmic verification costs (depending on the choice of accumula-
tor) thus making planet-scale distributed randomness generation possible.
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To prove Cornucopia secure, we must develop a new security notion for accu-
mulators called insertion security, which may be of independent interest. Fortu-
nately, we prove that the most commonly used accumulator constructions either
naturally feature insertion security (Merkle trees) or need only trivial modifica-
tions to achieve it (RSA accumulators), meaning Cornucopia is practical today.

2 Preliminaries

To define Cornucopia, we first need to define verifiable delay functions (VDFs) [8]
and accumulators [4]. Both rely on public parameters pp which all functions take
implicitly, though we will typically omit this for brevity. We use λ to denote a
security parameter, and poly(λ) and negl(λ) to denote polynomial and negligible

functions of λ, respectively. We use
$←− (or

$−→) to denote the output of a ran-
domized algorithm, or sampling uniformly at random from a range. We use α
to denote an advice string passed from a precomputation algorithm to a later
online algorithm. We assume all adversaries are limited to running in probabilis-
tic polynomial time (PPT) in the security parameter λ; some adversaries are
further limited to running in σ(t) steps on at most p(t) parallel processors where
noted.

2.1 Verifiable Delay Functions

Definition 1 (Verifiable delay function [8]) A verifiable delay function
(VDF) [8] is a tuple of algorithms (Setup,Eval,Verify) where:

VDF.Setup(λ, t)→ pp takes as input λ and a time parameter t and outputs public
parameters pp.

VDF.Eval(pp, x)→ (y, π) takes as input x and produces an output y and optional
proof π. This function should run in t sequential steps.

VDF.Verify(pp, x, y, π)→ {true, false} takes x, output y, and optional proof π,
and returns true if (y, π) is a genuine output of Eval.

VDFs must satisfy the following three properties:

Verifiability. The verification algorithm is efficient (at most polylogarithmic in
t and λ) and always accepts when given a genuine output from VDF.Eval.

Uniqueness. VDF evaluation must be a function, meaning that VDF.Eval is a
deterministic algorithm and it is computationally infeasible to find two pairs
(x, y), (x, y′) with y ̸= y′ that VDF.Verify will accept.

Sequentiality. VDFs must impose a computational delay. Roughly speaking,
computing a VDF successfully with non-negligible probability over a uni-
formly distributed challenge x should be impossible without executing t se-
quential steps. Formally (adapted from [8]):
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GsequentialA0,A1,t,VDF(λ)

pp
$←− VDF.Setup(λ, t)

α
$←− A0(pp)

x
$←− U

ỹ
$←− A1(α, x)

y, π ← VDF.Eval(pp, x)

return ỹ = y

GaccA,Acc(λ)

pp
$←− Acc.Setup(λ)

S, x, w
$←− A(pp)

A← Acc.Accumulate(S)

return

Acc.MemVer(A, x,w) ∧ x /∈ S

Fig. 1. VDF sequentiality (left) and accumulator security game (right).

Definition 2 (VDF sequentiality [8]) A VDF is (p, σ)-sequential if for all
randomized algorithms A0 which run in total time O(poly(t, λ)), and A1 which
run in parallel time σ(t) on at most p(t) processors:

Pr
[
GsequentialA0,A1,t,VDF(λ) = 1

]
≤ negl(λ)

where GsequentialA0,A1,t,VDF(λ) is defined in Figure 1.

2.2 Accumulators

Definition 3 (Accumulator [4,11]) Given a data universe U , an accumula-
tor [4] is a tuple of algorithms (Setup,Accumulate,GetMemWit,MemVer) where:

Acc.Setup(λ)→ pp takes as input λ and outputs public parameters pp.
Acc.Accumulate(S)→ A takes as input a set S ⊆ U to be accumulated. It outputs

A, an accumulator value for S.
Acc.GetMemWit(S,A, x)→ w takes as input a set S ⊆ U , an accumulator value

A for S, and an element x ∈ S. It outputs a membership witness w for x.
Acc.MemVer(A, x,w)→ {true, false} takes as input an accumulator value A, an

element x, and a membership proof (membership witness) w. It outputs true
if x is included in the accumulated set represented by A and false otherwise.

We describe here only the functionality necessary for our purposes; accumu-
lators generally also support an Update function to add additional elements to
the accumulated set and dynamic accumulators support a Delete function to
remove elements [11]. An accumulator is correct if MemVer always accepts for
elements included in honestly accumulated sets. The key security property of an
accumulator is that for an honestly generated accumulator value for some set S,
it is infeasible to find a membership proof for an element not in S:

Definition 4 (Accumulator security [11]) An accumulator Acc is secure if
no PPT adversary A can succeed with non-negligible probability in GaccA,Acc(λ) as
defined in Figure 1.
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A universal accumulator [31] also supports non-membership proofs; that is,
it supports two additional functions:

Acc.GetNonMemWit(S,A, x′)→ w′ takes as input a set S ⊆ U , an accumulator
value A for S, and an element x′ /∈ S. It outputs a non-membership witness
w′ for x′.

Acc.NonMemVer(A, x′, w′)→ {true, false} takes as input an accumulator value
A, an element x′, and a non-membership proof (non-membership witness)
w′. It outputs true if x′ is not included in the accumulated set represented
by A and false otherwise.

A universal accumulator is correct if, in addition to MemVer accepting for all
included elements, NonMemVer accepts for all non-included elements. Security
requires (in addition to basic accumulator security) that no adversary can find
valid membership and non-membership proofs for the same element:

Definition 5 (Universal accumulator security [31]) A universal accumu-
lator Acc is secure if for all PPT adversaries A:

Pr

pp
$←− Acc.Setup(λ)

A, x,w,w′ $←− A(pp)
Acc.MemVer(A, x,w) ∧ Acc.NonMemVer(A, x,w′)

 ≤ negl(λ)

3 Timed DRBs: Definitions and Constructions

We first define timed DRBs using a generalized syntax.4

Definition 6 (Timed DRBs) A timed DRB protocol is a tuple of algorithms
(Setup,Prepare,Post,Finalize,Verify) as follows:

Setup(λ, t)
$−→ pp: The setup algorithm can be run once and outputs public

parameters pp used for multiple protocol runs.

Prepare(pp)
$−→ ri: The prepare algorithm is run by each participant to produce

a randomness contribution ri. This contribution is submitted during the con-
tribution phase, which is bounded in length by the time parameter t.

Post({ri}) → (R, {πi}): The post algorithm is run by a coordinator immedi-
ately after the end of the contribution phase, producing a commitment R
to all users’ contributions and (optionally) a list of user-specific proofs πi.
Typically, this value R will be posted to a public bulletin board, whereas πi

will be made privately available.
Finalize(pp, R) → (Ω, πΩ): The finalize algorithm is run after the post algo-

rithm, evaluating a delay function on R to produce a final DRB output Ω
and (optionally) a proof πΩ. It is a deterministic algorithm running in time
(1 + ϵ)t for some small ϵ.

4 Note that our syntax here is specific to one-round timed DRBs. Some timed DRBs
such as Bicorn [15] have an optional second communication round.
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GunpredA,t,DRB(λ)

pp
$←− Setup(λ, t)

r1
$←− Prepare(pp)

α0
$←− A0(pp)

Ω̃, πΩ̃ , R, π1
$←− A1(α0, r1)

return Verify(pp, R, Ω̃, πΩ̃ , r1, π1)

GindistA,t,b,DRB(λ)

pp
$←− Setup(λ, t)

r1
$←− Prepare(pp)

α0
$←− A0(pp)

α1, R, π1
$←− A1(α0, r1)

Ω0, π0 ← Finalize(pp, R)

Ω1
$←− U

b′
$←− A2(α1, Ωb)

return b = b′

∧ Verify(pp, R,Ω0, π0, r1, π1)

Fig. 2. Security games for (p, σ)-unpredictability and (p, σ)-indistinguishability.

Verify(pp, R,Ω, πΩ , ri, πi) → {true, false}: Individual users should verify both
the final DRB output Ω as well as that their contribution ri was correctly
included, possibly with the help of an auxiliary user-specific proof πi.

A timed DRB has the following security properties (shown in Figure 2):

Definition 7 ((p, σ)-unpredictability) The (p, σ)-unpredictability game tasks
an adversary with predicting the final output Ω exactly, allowing it control of all
but a single honest participant (which publishes first). This adversary’s computa-
tion is broken into two phases. In the precomputation phase, before the adversary
sees the honest contribution r1, it may run an algorithm A0 that runs in time
poly(λ, t). This algorithm outputs some advice string. After seeing r1, the ad-
versary is limited to running for σ(t) steps on at most p(t) parallel processors,
exactly like the adversary for VDF sequentiality (Definition 2). The adversary’s

advantage is: AdvunpredA,t,DRB(λ) = Pr
[
GunpredA,t,DRB(λ) = 1

]
.

As the (p, σ)-unpredictability property does not guarantee the DRB output
is indistinguishable from random, we define a stronger (p, σ)-indistinguishability
property in which the adversary must distinguish an honest output from a ran-
dom output, again allowing the adversary control of all but one participant.

Definition 8 ((p, σ)-indistinguishability) The (p, σ)-indistinguishability game
is exactly like the (p, σ)-unpredictability game, except with an extra input bit b.
The challenger provides the adversary the genuine output of Finalize if b = 0 and
a random output if b = 1. The adversary must, after running for at most σ(t)
steps on at most p(t) parallel processors, output a guess b′ for which output it
received. We define the adversary’s advantage as:

AdvindistA,t,DRB(λ) =
∣∣Pr [GindistA,t,1,DRB(λ) = 1

]
− Pr

[
GindistA,t,0,DRB(λ) = 1

]∣∣
As observed by Boneh et al. [8], there is a generic transformation in the ran-

dom oracle model in which a timed DRB which satisfies (p, σ)-unpredictability



Cornucopia: Distributed randomness beacons at scale 7

Setup(λ, t)
$−→ pp

pp← VDF.Setup(λ, t)

Prepare()
$−→ ri

ri
$←− U

Post({ri})→ (R,∅)
R← {ri}

Finalize→ (Ω, πΩ)
Ω, πΩ ← VDF.Eval(H(R))

Verify(pp, R,Ω, πΩ , ri, πi)→ {true, false}
return ri ∈ R ∧ VDF.Verify(H(R), Ω, πΩ)

Fig. 3. The Unicorn timed DRB protocol [30]

can be transformed generically into one with (p, σ)-indistinguishability by ap-
plying the random oracle to the output.

3.1 Unicorn

As a warm-up, we describe Unicorn [30] succinctly as a timed DRB in our frame-
work in Figure 3. Note that the the original Unicorn proposal used the delay
function Sloth, which computes modular square roots modulo a prime. We de-
scribe Unicorn here using a modern VDF instead [8].

Intuitively, Unicorn is secure because every user can check that their value
is included in the posted set {ri}. A VDF is evaluated on a hash of this set.
A single honest user is enough to ensure this hashed value cannot have been
predicted and precomputed by the adversary. Lenstra and Wesolowski provide a
formal security proof for Unicorn (in a slightly different model) [30]. We omit one
here but note that its security is implied by our security proof for Cornucopia in
Theorem 1, as Unicorn is a special case using the “concatenation accumulator”
which simply concatenates all accumulated values together.

The primary downside of Unicorn is communication efficiency. As every user’s
value is posted, we have |R| = Θ(n). The goal of Cornucopia is to achieve the
same security as Unicorn while storing only Θ(1) data on the public bulletin
board.

3.2 Cornucopia

Cornucopia improves on Unicorn by having the coordinator accumulate all user
contributions into a succinct commitment R using a cryptographic accumulator
scheme (see Section 2.2). Because |R| does not grow with the number of par-
ticipants, Cornucopia makes it easy to scale to many users with low publishing
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Setup(λ, t)
$−→ pp

pp← (VDF.Setup(λ, t),Acc.Setup(λ))

Prepare()
$−→ ri

ri
$←− U

Post({ri})→ (R, {πi})
R← Acc.Accumulate({ri})
πi ← Acc.GetMemWit({rj}, R, ri)

Finalize→ (Ω, πΩ)
Ω, πΩ ← VDF.Eval(H(R))

Verify(pp, R,Ω, πΩ , ri, πi)→ {true, false}
return VDF.Verify(H(R), Ω, πΩ) ∧ Acc.MemVer(R, ri, πi)

Fig. 4. The Cornucopia protocol

GinsertA,Acc(λ)

pp
$←− Acc.Setup(λ)

A← A(pp)
x

$←− U
w ← A(pp, A, x)

return Acc.MemVer(A, x,w)

Fig. 5. Insertion security game

costs and low costs for users to verify that the beacon output Ω incorporates
their contribution ri. Our indistinguishability and unpredictability definitions
ensure that the protocol is secure as long as a single honest user contributes, so
any honest user can be convinced the final result is random as long as they are
convinced that their contribution was included.

4 Cornucopia Security

Towards proving that Cornucopia is a secure timed DRB, we first must prove a
novel security property for accumulators: insertion security :

Definition 9 An accumulator is insertion-secure if for any PPT algorithm A,
the probability of A winning the insertion security game (Figure 5) is negligible:

Pr
[
GinsertA,Acc(λ) = 1

]
≤ negl(λ)

To win the insertion security game (Figure 5), the adversary must produce an
accumulator value A such that it can supply a membership proof for a randomly
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chosen element with non-negligible probability. Note that the adversary is not
limited to producing A via the normal Accumulate function; it can produce A
using any procedure at all. We will prove this property holds for concrete accu-
mulators in Section 5, for now we will assume we have access to an accumulator
which satisfies this property.

We next prove two useful lemmas. The first is that if Cornucopia is con-
structed using an insertion-secure accumulator, an adversary cannot guess a
satisfactory R before seeing the randomness contribution r1. This is because in-
sertion security implies that it is difficult to precompute an accumulator value
for which one can provide a membership proof of a random element revealed
later. The second states that the adversary does not query R to the random or-
acle in its precomputation phase, it cannot output Ω̃ = VDF.Eval(H(R)). This
is because after the precomputation phase, the adversary is p, σ-sequential and
therefore cannot evaluate the VDF; thus, to prove this lemma we invoke VDF
sequentiality. In this proof, we allow the reduction to program the random oracle
as is standard in the random oracle model.

Lemma 1. Let E1 be the event that GunpredA,t,CC (λ) = 1 and A0 queried R to the
random oracle. If Cornucopia (CC) is instantiated with an insertion-secure ac-
cumulator, then Pr [E1] ≤ negl(λ).

Proof. Suppose for the sake of contradiction that for some constant c > 0,

Pr
[
GunpredA,t,CC (λ) = 1 ∧ A0 queried R to the random oracle

]
≥ 1

λc

We define an adversary B that breaks insertion security of the accumulator
scheme by simulating the challenger in GunpredA,t,CC and using A = (A0,A1). B
first receives Acc.pp in GinsertB,Acc (λ). It samples VDF.pp ← VDF.Setup(λ, t) and

passes pp = (Acc.pp,VDF.pp) to A0. B simulates the challenger in GunpredA,t,CC (λ)
and records the queries q1, . . . , qk that A0 makes to the random oracle. B also
receives α0 as the output of A0. B then chooses some query qi uniformly at ran-
dom from the queries made by A0 and outputs A = qi as its accumulator value
in GinsertB,Acc (λ). B then receives x from the challenger in GinsertB,Acc (λ), and it continues

simulating the GunpredA,t,CC (λ) challenger by passing α0 and r1 = x to A1. B receives

(Ω̃, R,w1) as the output of A1.
Since A succeeds with at least probability 1

λc , Pr[MemVer(R, x,w1) = true∧
A0 queried R to the random oracle] ≥ 1

λc . Let q(λ) be some polynomial upper
bounding the number of queries that A0 makes to the random oracle; this poly-
nomial must exist since A0 runs in polynomial time. Since B’s random choice of
qi is independent of A, Pr[MemVer(R, x,w1) = true ∧ A = R] ≥ 1

λc · 1
q(λ) which

is non-negligible. Thus, with non-negligible probability, GinsertB,Acc (λ) = 1. ⊓⊔

Lemma 2. Let E2 be the event that GunpredA,t,CC (λ) = 1 and A0 did not query R to
the random oracle. If CC is instantiated with an insertion-secure accumulator
and a (p, σ)-sequential VDF, then Pr [E2] ≤ negl(λ).
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Proof. Suppose for the sake of contradiction that for some constant c > 0,

Pr
[
GunpredA,t,CC (λ) = 1 ∧ A0 did not query R to the random oracle

]
≥ 1

λc

We define an adversary B = (B0,B1) that breaks (p, σ)-sequentiality of the

VDF by simulating the challenger and random oracle in GunpredA,t,CC and using A =
(A0,A1). When A evaluates the hash function it must query B. B responds in a
way that is indistinguishable (to A) from a random function.

B0 first receives (λ,VDF.pp, t) from the VDF challenger in GsequentialB0,B1,t,VDF(λ).
B0 samples Acc.pp← Acc.Setup(λ) and passes pp = (VDF.pp,Acc.pp) to A0. B0
answers A0’s random oracle queries using uniformly random values. It records
these queries and their responses in a list Q. If any query is repeated, B0 answers
consistently with its previous response in Q. A0 outputs an advice string α0,
which B0 outputs as part of its advice string α = (α0, Q).

Now, the VDF challenger samples a random input x which is passed to
B1 along with VDF.pp and α. B1 passes α0 and a randomly-generated value

r1
$←− Prepare(pp) to A1. B1 then simulates the random oracle for A1, with one

key modification: B1 chooses an index i ≤ p(t) · t uniformly at random5 and
answers A1’s i

th random oracle query qi with x (provided that qi has not been
previously queried, otherwise it responds with the appropriate value from Q). It
answers any future repeated queries qi similarly. For all other queries, B1 answers
randomly the first time and then consistent with its stored responses in Q. When
A1 outputs (Ω̃, R,w1), B1 outputs Ω̃.

B properly simulates the random oracle.. Since x is a uniformly random
value and all other queries receive random responses, B1 does not change the
output distribution of the random oracle and hence does not affectA1’s behavior.

If A succeeds, B succeeds with non-negligible probability.. We now argue
that if A wins GunpredA,t,CC , B wins GsequentialB0,B1,t,VDF(λ) with non-negligible probability.
First, recall that if A wins, DRB.Verify holds. By uniqueness of the VDF, the
probability that A1 outputs a proof πΩ such that
VDF.Verify(VDF.pp, H(R), Ω̃, πΩ) = 1 yet Ω̃ ̸= VDF.Eval(H(R)) is negligible.
Thus, since DRB.Verify holds, A1 must have output Ω̃ = VDF.Eval(H(R)).

We now show that the fact that A1 outputs VDF.Eval(H(R)) implies that
B breaks (p, σ)-sequentiality of the VDF. Because the index i of the query to
be replaced was chosen uniformly and independently of A1, qi was chosen to
be the first instance that R was queried by A1 with probability at least 1

p(t)·t .

Since A0 did not query R, we can indeed make this replacement. Therefore, with
non-negligible probability B1 simulates the random oracle to answer R with x,
and Ω̃ = VDF.Eval(x) as desired.

Thus, for (Ω̃, R,w1) output by A1, it holds that

Pr
[
Ω̃ = VDF.Eval(H(R)) ∧ A0 did not query R to the random oracle

]
≥ 1

λc

5 We use p(t) · t as a generous upper bound on the number of random oracle queries
made by A1, if every processor queries the oracle in every time step.
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In the above, we assumed that A1 queried R to the random oracle. If A1 did not
query R to the random oracle, it has anyways succeeded in computing the VDF
output on H(R) which is a random value and identically distributed to x. ⊓⊔

Theorem 1 (Unpredictability of Cornucopia). Cornucopia is
(p, σ)-unpredictable when instantiated with an insertion-secure accumulator, a
(p, σ)-sequential VDF, and a hash function modeled as a random oracle.

Proof. Let E1 be the event that GunpredA,t,CC (λ) = 1 and A0 queried R to the random

oracle. Let E2 be the event that GunpredA,t,CC (λ) = 1 and A0 did not query R to the
random oracle.

Observe that Pr[GunpredA,t,CC (λ) = 1] = Pr[E1] + Pr[E2]. By Lemma 1, Pr[E1] ≤
negl(λ). By Lemma 2, Pr[E2] ≤ negl(λ). Therefore, Pr[GunpredA,t,CC (λ) = 1] ≤ negl(λ).

⊓⊔

Corollary 1. Cornucopia is (p, σ)-indistinguishable when a random oracle is
applied to its output.

5 Insertion-secure accumulators

We now turn to the question of instantiating accumulators satisfying insertion se-
curity (Definition 9). We consider Merkle trees, RSA accumulators and a generic
scheme here, we discuss other accumulators in Section 6.

5.1 Accumulators without insertion security

Given any secure accumulator scheme Acc, it is trivial to construct an accu-
mulator Acc’ which is not insertion-secure, but otherwise satisfies the stan-
dard security definitions of an accumulator. One approach is to add a special
symbol ϵ which is defined as the accumulation of the entire data universe U .
Acc’.MemVer(A, x,w) is defined to be 1 if A = ϵ (regardless of the value of x or
w), and otherwise is equal to Acc.MemVer(A, x,w). The scheme Acc’ can be used
exactly as Acc in normal operation, with the extra property that ϵ is a “shortcut”
to computing an accumulation of the entire data universe. RSA accumulators
naturally feature such a shortcut: ϵ = 1. A valid membership witness for any x
is w = 1, since wx = 1x = 1. Although we will prove RSA accumulators can
easily be made insertion-secure by disallowing an accumulator of 1, technically
they are not insertion-secure as commonly specified.

A second example, potentially of practical interest, is a range accumulator.
A range accumulator can be defined from any accumulator scheme and for any
data universe with a known total ordering (for example, any fixed subset of the
integers such as {0, 1}k). With a range accumulator, the value H(x, y) can be
accumulated, which is interpreted as adding a range [x, y] (the value H(x, x)
can be accumulated to add a single element x). Given any value z, proving
membership can be achieved by providing a witness w′ = (w, x, y) where w =
Acc.GetMemWit(S,A,H(x, y)) for x ≤ z ≤ y. This concept is quite natural and
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efficient, though it is also trivially not insertion-secure: an adversary can win
GinsertA,Acc(λ) with probability 1 by accumulating the value H(xmin, xmax) for the
smallest and largest data elements in U , effectively accumulating the entire data
universe in constant time.6

5.2 Merkle trees

Lemma 3. Any Merkle tree of bounded depth k = poly(n) using a hash function
modeled as a random oracle outputting ≥ λ bits is insertion-secure.

Proof. We work in the random oracle model, supposing that the Merkle tree
uses a random oracle O : {0, 1}2n → {0, 1}n. Suppose for the sake of contradic-
tion that an adversary A succeeds in constructing A such that with probability
at least 1

poly(λ) , for a random x ∈ {0, 1}n, the adversary can provide a verify-

ing witness w = (w1, . . . , wk) for x. That is, O(wk|| . . .O(w2||O(w1||x))) = A.
With overwhelming probability (over choice of x), no query to O involved in the
witness verification was made by the adversary in step 2 of GinsertA,Acc(λ).

This can be shown by induction. Let a1, . . . , aℓ be the adversary’s queries to
the random oracle in step 2. Let b1, . . . , bk be the queries to the random oracle in
the Merkle membership proof verification; that is, bi = wi||O(wi−1|| . . .). Observe
first that Pr[b1 = qj for some j] = ℓ

2λ
since x is chosen at random. Assume that

the probability that bi is equal to any qj is at most i·ℓ
2λ
. If this event does not

occur, then bi+1 = O(bi||O(bi−1)) is a freshly random value, and the probability
that bi+1 = qj for any j is ℓ

2λ
.

Pr [bi+1 = qj for some j] ≤ ℓ

2λ
Pr [bi ̸= qj for all j] + Pr [bi = qj for some j]

≤ ℓ

2λ
+

i · ℓ
2λ

=
(i+ 1) · ℓ

2λ

since Pr[bi = qj for some j] ≤ i·ℓ
2λ

by assumption. Therefore, the probability that
any of the k = O(poly) queries involved in witness verification was queried in
step 2 is at most k·ℓ

2λ
≤ negl(λ).

In order for witness verification to pass, the last query must match the root;
that is, O(wk|| . . .O(w2||O(w1||x))) = A. Since the above argument shows that
(wk|| . . .O(w2||O(w1||x))) was never queried in step 2, at the end of which A
outputs A, O(wk|| . . .O(w2||O(w1||x))) is a uniformly random value independent
of A and equals A with only negligible probability. ⊓⊔

5.3 RSA accumulators

In a standard RSA accumulator [11,32], Setup(λ) generates a random group of
unknown order and a generator g for this group using some group generation

6 The adversary can in fact win with non-negligible probability by accumulating any
range whose size is a constant fraction of |U |.
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algorithm GenGroup. The data universe is Πλ, the set of all λ-bit primes. The
accumulator value for a set S is A = g

∏
x∈S x, and the witness w for an element

x for the value A is w = g
∏

x′∈S\{x} x′
= A1/x. Add(At, x) outputs At+1 = Ax

t .
Thus, the accumulator value for a set S can be obtained by starting with the
value A0 = 1 and adding each xi ∈ S to Ai=1 to obtain Ai, repeating until we
reach A|S|. UpdWit(At, x, w

′
t) outputs w′

t+1 = (w′
t)

x. MemVer(A, x,w) outputs
1 if and only if wx = A. A non-membership witness for x with respect to A =
g
∏

s∈S s is {a,B} where a and b are Bézout coefficients for (x,
∏

s∈S s), and

B = gb. NonMemVer(A, {a,B}, x) outputs 1 if and only if AaBx = g.

We make a small modification to make RSA accumulators insertion-secure:
MemVer(A, x,w) now outputs 1 if and only if wx = A and A ̸= 1. This require-
ment that A ̸= 1 is necessary for our proof of insertion security; observe that if
the adversary outputs an accumulator value A = 1, then for all x it is easy to
find w such that wx = A: just let w = 1. This matches the requirement in the
Adaptive Root Assumption that ul = v ̸= 1.

Assumption 1 (Adaptive Root Assumption [9])

Pr


G $←− GenGroup(λ)

(v, st)← A0(G)

ul = v ̸= 1 : l
$←− Πλ = Primes(λ)

u ← A1(v, l, st)

 ≤ negl(λ)

Lemma 4. Suppose a standard RSA accumulator is modified so that the algo-
rithm MemVer(A, x,w) outputs 1 if and only if wx = A and A ̸= 1. The modified
RSA accumulator is insertion-secure if the Adaptive Root Assumption holds for
the group generation algorithm GenGroup.

Proof. Suppose that there exists a PPT adversary A that wins InsertGame with
probability at least 1

poly(λ) when the data universe is Πλ, the set of all λ-bit

primes. We construct a pair of adversaries B0,B1 that uses A to break the

Adaptive Root Assumption. B0 draws G $←− GenGroup(λ). B0 passes G to A and
obtains an accumulator value A. B0 outputs v = A and st as its current state.

B1 draws a random l
$←− Πλ and passes x = l to A. A outputs an alleged witness

wx which B1 outputs directly as u in the Adaptive Root Game.

Recall that if A wins InsertGame, it means that MemVer(A, x,wx) = true.
For RSA accumulators, MemVer(A, x,wx) = true if and only if (wx)

x = A and
A ̸= 1. This implies that ul = v where v ̸= 1, and (B0,B1) win the Adaptive
Root Game. Since A wins with probability at least 1

poly(λ) , (B0,B1) win with

probability at least 1
poly(λ) , violating the Adaptive Root Assumption. ⊓⊔

Corollary 2. The modified RSA accumulator is insertion-secure in the Alge-
braic Group Model (AGM), since the Adaptive Root Assumption holds in the
AGM [21].
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5.4 From generic universal accumulators

Finally, we show how to construct an insertion-secure accumulator scheme Acc′

from any universal accumulator scheme Acc, albeit one only offering computa-
tional correctness. The core idea to map each element x to two pseudorandom
sets (S+

x , S−
x ), each a subset of the data universe U . Proving membership of x

for Acc′ in requires showing inclusion of all elements of S+
x in Acc and exclusion

of all elements of S−
x in Acc. Intuitively, breaking insertion security by accumu-

lating the entire data universe in Acc does not work because it will make the
required non-membership proofs impossible. The best attacker strategy is to ac-
cumulate a random subset of half the elements of U , but this will mean that each
item S+

x is wrongly excluded with probability 1
2 and each item S−

x is wrongly
included with probability 1

2 . By setting ensuring the sizes of S+
x , S−

x , we can
amplify security to ensure such an adversary has only a negligible probability of
correctly showing inclusion of a random element.

In more detail, let Acc be a universal accumulator scheme for data universe U .
Here, we let the data universe for Acc′ be U ′ = {0, 1}λ, although one can use any
superpolynomially-large set that supports the following hash functionH. LetH :
[λ]×U ′ → U (where [λ] denotes {1, . . . , λ}) be a hash function that we will model
as a random oracle. For any x ∈ U ′, let S+

x :=
{
y : H(i, x) = y for i ∈ [λ2 ]

}
, and

let S−
x :=

{
y : H(i, x) = y for i ∈

{
(λ2 + 1), . . . , λ

}}
(assume for convenience

that λ is even).

Setup: Acc′ uses the same setup function as Acc.
Accumulate: Let S′ ⊆ U ′. Let S =

⋃
x∈S′ S+

x . We define Acc′.Accumulate(S′) to
output A = Acc.Accumulate(S).

GetMemWit: Acc′.GetMemWit(S′, A, x) outputs a vector of witnessesw of length
λ where:
– For i ≤ λ

2 , wi = Acc.GetMemWit(S,A,H(i, x)) is a membership proof
for H(i, x)

– For i > λ
2 , wi = Acc.GetNonMemWit(S,A,H(i, x)) is a non-membership

proof for H(i, x)
MemVer: Acc′.MemVer(A, x,w) = true if and only if the following holds for all

i ∈ [λ]:
– For i ≤ λ

2 , Acc.MemVer(A,H(i, x), wi) = true.

– For i > λ
2 , Acc.NonMemVer(A,H(i, x), wi) = true.

Lemma 5. If Acc is a secure universal accumulator and H is modeled as a
random oracle, Acc′ is insertion-secure.

Proof. Suppose for the sake of contradiction that Acc′ is not insertion-secure,
and let A be an adversary that wins the insertion game with probability at least
1
λc for some constant c > 0, conditioned on the event that it does not query x
before it outputs A. (Since A is polynomially-bounded, this event fails to occur
with only negligible probability). Thus, treating H as a random oracle, H(x) is
a λ-length tuple of truly random independent values yi ∈ U , where y1, . . . , yλ

2

should be included, and yλ
2 +1, . . . , yλ should be excluded.
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Equivalently, we can think of drawing y = y1, . . . , yλ (uniform and i.i.d. from
U) and subsequently drawing a uniformly random vector b of Hamming weight
λ
2 , where yi should be included if and only if bi = 1.

By an averaging argument, we must have that for a non-negligible fraction
of y ∈ X, A succeeds with non-negligible probability over subsequent choice of
b ∈ {0, 1}λ. Let E [A,y,b,w] denote the event that Acc.MemVer(A, yi, wi) = true
for all i such that bi = 1, and Acc.NonMemVer(A, yi, wi) = true for all i such
that bi = 0. The success of A in GinsertA,Acc′(λ) implies that E [A,y,b,w] occurs for
its choice of A and w, and the random choice of y,b. Thus,

Pr
pp

$←−Setup(λ)
y

[
A outputs A such that

Prb [w← A∧ E [A,y,b,w]] ≥ 1
λc

]
≥ 1

λc

We now construct an adversary B that breaks universal security of Acc by
producing an accumulator value, an element, and both membership and non-
membership proofs for that element. Let B first generate setup parameters and
run A on these parameters to obtain an accumulator value A. Let B choose y
as above and b1,b2 uniformly random vectors of Hamming weight λ

2 . B runs A
on inputs (y,b1) and (y,b2) to obtain w1 and w2 respectively. With probabil-
ity at least 1

λc , B chose pp and y such that Prb [w← A∧ E [A,y,b,w]] ≥ 1
λc .

In this event, the probability that both w1 and w2 verify is at least 1
λ2c . As

b1 = b2 with only negligible probability (since
(

n
n/2

)
≥ 2n/2), with over-

whelming probability there is some i such that (b1)i ̸= (b2)i. However, we
have (without loss of generality) both that Acc.MemVer(A, yi, (w1)i) = true
and Acc.NonMemVer(A, yi, (w2)i) = true. This happens with probability at least
1
λc · 1

λ2c ·
(
1− 1

2λ

)
, which is non-negligible. This contradicts universal security of

Acc. ⊓⊔

Correctness. Accumulators typically require correctness, which says that given
an honestly-generated accumulator value for a set, an honestly-generated mem-
bership proofs for elements in that set should verify for MemVer; similarly,
honestly-generated non-membership proofs for elements not in that set should
verify for NonMemVer. We note that Acc′ has only computational correctness,
since there may be some x1, x2 for which the same y is included in S+

x1
and

S−
x2
. This is problematic, since the membership proofs for x1, x2 would require

a membership proof and a non-membership proof for y (with respect to Acc),
which should be difficult by security of Acc, and hence x1 and x2 cannot both be
included in the accumulator. This might be problematic for Cornucopia if, for
example, one user chooses x1 and expects a membership proof for y and another
user chooses x2 and expects a non-membership proof for y. The coordinator
could not satisfy both users.

Fortunately, collision resistance of H ensures that actually finding such x1, x2

is computationally hard: finding x1, x2 such that y ∈ S+
x1

and y ∈ S−
x2

would
involve finding i1 ̸= i2 such that y = H(i1, x1) = H(i2, x2), which yields a
collision of H. Computational correctness is sufficient for use in Cornucopia
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(and most other applications), as polynomially-bounded users would not be able
to find x1 and x2 resulting in the above issue.

6 Other accumulators

Accumulators can also be constructed from bilinear pairings [34,41]. While we
conjecture these are insertion-secure, they require public parameters linear in the
maximum number of items that can be accumulated. Hence we consider them a
poor fit for Cornucopia, where we hope to support millions of participants. Sim-
ilarly, we might try to build accumulators from polynomial commitments [27],
but the popular KZG construction also requires linear-sized public parameters.

Vector commitments for exponentially large message spaces [13] can be used
to construct an insertion-secure accumulator for sets of bounded size ≤ s. The
data universe consists of index-message pairs (i,m). To accumulate a list of
index-message pairs (i,m) for distinct indices i, we generate a commitment to
the vector that sets index i to m for each pair in the list. The membership proof
for (i,m) is an opening proof for (i,m). The accumulator value A is the vector
commitment value.

Note that binding property of vector commitments7 ensures that for any i′,
it is computationally feasible to find only one m∗ such that a proof of opening
for (i′,m′) holds with respect to the commitment value A. For a randomly cho-
sen m′, the probability that m′ = m∗ is negligible (since the message space is
exponentially large). Therefore, the adversary can provide a membership proof
for a random (i′,m′) with only negligible probability.

However, this accumulator from vector commitments does not satisfy cor-
rectness, since users can request (i,m) and (i,m′) for m ̸= m′. This issue can be
easily solved for use in Cornucopia by assigning each user a unique index. It is
tempting to use the hash function trick from Section 5.4 to obtain computational
correctness by letting (i,m) be computed as the output of a hash function on a
λ-length binary string. However, the space of possible indices i has polynomial
size and it is not hard to find two inputs to the hash function yielding (i,m) and
(i,m′) for different m,m′.

7 Related Work

There is a large and growing literature on randomness beacons, dating to the
seminal proposal by Rabin [37] and foundational work on distributed coin toss-
ing [17,2,3,23,19,26,25]. Several recent surveys cover modern DRBs [38,16,28].
Most of this work is orthogonal, working without the benefit of delay functions
and hence assuming honest majorities [42,14,12,6,22,24,40,18,5,20] or economic

7 Binding says that it is infeasible for a PPT adversary to come up with any vector
commitment C, distinct messages m,m′, an index i, and accepting proofs π, π′ for
(i,m) and (i,m′).
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incentives [1,36,44]. Unicorn [30] introduced delay-based DRBs. Several exten-
sions to Unicorn work in a similar model to ours. Bicorn [15] extends Unicorn
with a fast optimistic case, avoiding the delay function if all participants are
honest. RandRunner [39] also enables avoiding a delay function per beacon out-
put although it does not support flexible participation and allows a withholding
leader to affect the protocol. Finally, HeadStart [29] is perhaps the most similar
to ours, using Merkle trees and a multi-round pipelined protocol to scale up
Unicorn. Our work primarily differs in offering a generic construction from any
accumulator and developing precise security notions required of accumulators
for use with DRBs.

8 Concluding Discussion

We introduce Cornucopia, a simple but powerful framework for VDF-based
DRBs, using accumulators to scale to millions of users in participatory ran-
domness beacon protocols. Our work shows that this paradigm is secure, but
leaves open many practical questions about optimal deployments. First, there is
an interesting performance trade-off between the Merkle trees and RSA accu-
mulators. RSA accumulators offer constant-sized proofs which should be shorter
than Merkle tree proofs for more than ≈ 210 users, a regime we hope to support.
However, RSA proofs are much more expensive for the coordinator to generate,
which may become prohibitive for very large deployments. RSA proofs are rela-
tively poorly supported by today’s smart contract platforms like EVM, but we
observe that these only ever need to be verified off-chain by users. There may
also be interesting optimizations when combining RSA accumulators with RSA-
based VDFs [35,43], such as offering a single combined proof of membership
and correct exponentiation. Finally, practical RSA deployments must consider
which group to use [9], with traditional RSA groups (Z/N)∗ offering better con-
crete performance and better-understood security parameters, but class groups
of imaginary quadratic order [10,33] avoiding the need for trusted setup.
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