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Abstract. Zero-knowledge elementary databases (ZK-EDBs) enable a
prover to commit a database D of key-value pairs and later prove that
“x belongs to the support of D and D(x) = v” or that “x does not
belong to the support of D,” without revealing any extra knowledge (in-
cluding the size of D). Recently, Libert et al. (PKC 2019) introduced
zero-knowledge expressive elementary databases (ZK-EEDBs) that sup-
port richer queries, e.g., range queries over the keys and values.

In this paper, we introduce a new notion called function queriable
ZK-EDBs, where the ZK-EDB prover can convincingly answer the query
that “Send all records (x, v) in D satisfying f(x, v) = 1 for any Boolean
circuit f ,” without revealing any extra knowledge (including the size of
D).

To construct function queriable ZK-EDBs, we introduce a new vari-
ation of zero-knowledge sets (ZKS) which supports verifiable set opera-
tions, and present a construction based on groups of unknown order. By
transforming the Boolean circuit over databases into the set operation
circuit/formula over sets, we present a construction of function queriable
ZK-EDBs from standard ZK-EDBs and ZKS supporting verifiable set
operations.

1 Introduction

Zero-knowledge sets (ZKS) are a valuable primitive introduced by Micali et al.
[MRK03], which enable a prover to commit a finite set S and later prove the
membership or non-membership of a certain element without revealing any extra
knowledge (including the size of the set). Elementary database (EDB) D is a set
with an additional property that each x in the set comes with a unique associated
value v = D(x). As pointed out in [MRK03], the notion of ZKS can be extended
to the one called zero-knowledge elementary databases (ZK-EDBs), which allows
a prover to commit an EDB D and later prove that “x belongs to the support
of D and D(x) = v” or that “x dose not belong to the support of D” in zero-
knowledge. Numerous studies on ZK-EDBs have since been developed, including
mercurial commitments [CHL+05], updatable ZK-EDBs [Lis05] and independent



ZK-EDBs [GM06]. However, because most constructions follow the paradigm
put forward by Chase et al. [CHL+05], relying on a Merkle tree and mercurial
commitment and making the support of richer queries difficult to achieve, only
a few studies have focused on queries supported by a ZK-EDB.

Libert et al. [LNTW19] recently introduced zero-knowledge expressive el-
ementary databases (ZK-EEDBs) supporting richer queries such as for a) all
records (x, v) ∈ D whose key x lies within the range [ax, bx] of a super-polynomial
length, b) all records (x, v) ∈ D whose value v lies within the range [ay, by] of
a super-polynomial length, and c) all records (x, v) ∈ D whose element x lies
within the range [ax, bx] of a super-polynomial length and value v lies within
the range [ay, by] of a polynomial length. Several more interesting queries such
as k-nearest neighbor and k-minimum/maximum can be implemented using the
above queries.

However, there are still numerous queries that remain unsupported by ZK-
EEDBs, for example, querying for all records (x, v) ∈ D whose last bit of value
v equals zero, or in a more generalized form,

Querying for all records (x, v) ∈ D satisfying f(x, v) = 1 for any Boolean
circuit f .

1.1 Our contribution

In this paper, we study the queries supported by ZK-EDBs, and introduce a
new notion called function queriable ZK-EDBs, which enable one to commit
an elementary database D of key-value pairs (x, v) ∈ {0, 1}l × {0, 1}l and then
convincingly answer the query “Send all records (x, v) ∈ D satisfying f(x, v) =
1 for any Boolean circuit f : {0, 1}2l → {0, 1}”, without revealing any extra
knowledge (including the size of D).

To construct a function queriable ZK-EDB, we additionally introduce a new
variation of ZKS, which allow one to commit to several sets {Si}i∈[m], and then
convincingly answer the extra queries that “Send all element x in Q(S1, · · · ,Sm)
for any ‘circuit’ Q of unions, intersections and set-differences”, without reveal-
ing any extra knowledge. We call this variety ZKS supporting verifiable set op-
erations. Building on the standard ZKS protocols constructed by Prabhakaran
and Xue [PX09, XLL07, XLL08], we construct a ZKS supporting verifiable set
operations based on groups of unknown order, which is secure in the random
oracle model and the generic group model.

From ZKS supporting verifiable set operations and standard ZK-EDBs, we
present a construction of function queriable ZK-EDBs. This is the first construc-
tion of ZK-EDBs enabling generalized queries. To the best of our knowledge,
prior to our approach, the richest queries achieved were only range queries over
the keys and values [LNTW19].

We additionally present a construction of standard ZK-EDBs from groups
of unknown-order in Appendix.D, which is the first construction achieving a
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constant commitment and proof size3. Applying this ZK-EDB and our ZKS
supporting verifiable set operations, the resulting function queriable ZK-EDB is
secure in the random oracle model and generic group model and its proof size is
only linear to l and the size of circuit f .

1.2 Related Work

Since the notion of ZK-EDB was first introduced by Micali et al.[MRK03], nu-
merous approaches concentrating on the performance, security, and functionality
of ZK-EDB have been developed.

In [CHL+05], Chase et al. introduced the notion of mercurial commitments
and presented a widely used paradigm of how to use such a commitment and
a Merkel tree to construct a ZK-EDB. Mercurial commitments (and thus ZK-
EDBs) can be constructed through one-way functions [CDV06], and efficient
mercurial commitments (and thus efficient ZK-EDBs) can be constructed through
DL, Factoring, RSA or LWE assumption [CDV06, Zhu09, LNTW19]. Catalano et
al. [CFM08] introduced the concept of q-mercurial commitments and compressed
the non-membership proof size of ZK-EDBs. Libert et al. [LY10] and Catalano
et al. [CF13] developed q-mercurial commitments and further compressed the
membership proof size of ZK-EDBs. Li et al. [LSY+21] introduced concise mer-
curial subvector commitments and achieved batch verifiable ZK-EDBs.

There are also several studies on developing the security definition of ZK-
EDBs or more generalized, database commitments. Gennaro and Micali [GM06]
introduced the notion of independent ZK-EDBs, which prevent the adversary
from correlating its set to that of a honest prover. Chase and Visconti [CV12]
introduced the notion of secure database commitments, which satisfy simula-
tion security in the real/ideal paradigm and achieve stronger verifier security
than ZK-EDBs. Prabhakaran and Xue [PX09] introduced statistically hiding
set, providing an information theoretic hiding guarantee, rather than one based
on efficient simulation. They provided the first construction that does not rely on
Chase’s paradigm. Following [PX09], [XLL07, XLL08] constructed ZKS achiev-
ing a constant commitment and proof size.

Another research point of ZK-EDBs is how to extend its functionality. Liskov
[Lis05] presented updatable ZK-EDBs in the random oracle model. Ghosh et
al. [GOT15] introduced zero-knowledge lists, which allow one to commit a list
and later answer order queries in a convincing manner. Libert et al. [LNTW19]
recently introduced ZK-EEDBs that support richer queries, e.g., range queries
over the keys and values.

Accumulators (e.g. [BdM93, CL02, CHKO08, Ngu05, DHS15]) are an ex-
tremely well-studied cryptography primitive related to ZKS. Accumulators al-
low one to represent a set using an accumulation value, and later provide (non-

3 Although [PX09] shows how to use a constant-size ZKS[PX09, XLL07, XLL08] to
implement a constant-size ZK-EDB, the resulting scheme is not a standard ZK-EDB
because the resulting scheme cannot ensure the uniqueness of the value associated
to any element.
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)membership proofs; however, hiding and zero-knowledge properties are not nec-
essary for accumulators. Although Ghosh et al. [GOP+16] and Zhang et al.
[ZKP17] presented the constructions of zero-knowledge accumulators supporting
set operations, their schemes only consider collision-freeness security, where the
adversary cannot cheat in a proof for an honestly generated accumulation value;
however, ZKS require the prevention of the adversary from cheating in a proof
even for a maliciously generated commitment. Boneh et al. [BBF19] recently
developed a batching technique for accumulators based on groups of unknown-
order. Agrawal and Raghuraman [AR20] presented a commitment construction
for databases of key-value pairs enabling (non-)membership proof and efficient
updating. Their scheme is also based on groups of unknown-order and does not
consider hiding or zero-knowledge properties.

An authenticated data structure (ADS) (e.g., [Tam03, PTT11, NZ15]) also al-
lows a trusted database owner to “commit” its database, and an untrusted server
can answer the queries on behalf of trusted database owners to any clients know-
ing the commitment. However, as a three-party scheme in which the committer
(database owner) is always trusted, ADS is incomparable to ZK-EDB.

1.3 Organization

In section 2 we provide an overview of our techniques. Preliminaries are described
in section 3. In section 4 we introduce and construct ZKS supporting verifiable
set operations. In section 5 we introduce the notion of function queriable ZK-
EDBs and present a concrete construction. Finally, in section 6, we provide some
concluding remarks.

2 Technique Overview

Zero-Knowledge Sets Supporting Verifiable Set Operations. ZKS sup-
porting verifiable set operations allow a committer to generate a sequence of
commitments {comi}i∈[t] to sets {Si}i∈[t]. Then for any general set operation Q,
i.e., a “circuit” of unions, intersections and set-differences, the committer can
output Soutput = Q({Si}i∈[t]) and a public verifiable proof π for the correctness
of result. In this paper, we require ZKS supporting verifiable set operations that
additionally satisfy functional binding and zero-knowledge properties.

To present a construction, we first construct a ZKS that supports a single set
operation (i.e., one union, intersection or set-difference) over two committed sets,
with the exclusion that, for any query, we now require the committer to output
a commitment to Soutput rather than output Soutput directly. Such a scheme can
be naturally extended to our target approach by invoking it iteratively in the
support of general set-operation formulas and opening the last commitment to
Soutput to obtain the set.

However, most ZKS constructions follow Chase’s paradigm which relies on
a Merkle tree and mercurial commitments, and makes set operations difficult
to conduct. We therefore decide to build our scheme on top of the ZKS(SHS)
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schemes of Prabhakaran and Xue [PX09, XLL07, XLL08], which are based on
RSA accumulators rather than Chase’s paradigm. For a set S = {xi}i∈[m], the
authors hash element xi into large a prime pi (i.e., pi = Hprime(xi)). A ZKS
commitment of S is then grΠi∈[m]pi , where g is a random element from an RSA
group and r is a random coin used to hide Πi∈[m]pi. It is easy to extend RSA
groups to generalized groups of unknown-order by using a proper Σ-protocol as
a (non-)membership proof.

Consider a single operation of intersections. Upon inputting two ZKS com-
mitments C0,C1 to the sets S0, S1, the prover needs to output a commitment CI
to the set I = S0∩S1 and an associated proof π. Note that to prove I = S0∩S1,
one only needs to show that a) I ⊂ S0, I ⊂ S1 and b) (S0\I)∩(S1\I) = ∅. Gener-
ate two commitments CJ0 ,CJ1 to the sets J0 = S0\I, J1 = S1\I. In a simple case
in which all random coins used in all of these commitments equal 1, the prover
can easily conclude the proof by showing that a) (CI ,CJ0 ,CS0

), (CI ,CJ1 ,CS1
)

are DDH tuples and b) the exponents of CJ0 and CJ1 are relatively prime. The
challenge comes from the generalized case in which the random coins are chosen
from a proper range, i.e., [0, B]. Luckily, we can let B be much smaller than these
representing primes, which means that a) (CI ,CJ0 ,CS0

) (and (CI ,CJ1 ,CS1
)) is

actually close to a DDH tuple and b) the great common division of the expo-
nents of CJ0 and CJ1 is small. We will show that the prover can still prove the
above two statements by relying on Boneh’s PoKE (Proof of knowledge of expo-
nent) protocol [BBF19] and a classic zero-knowledge proof for small exponents.
[CS97, FO97]. Other single set operations can also be similarly conducted.

Function Queriable Zero-knowledge Elementary Databases. Function
queriable ZK-EDBs allow one to commit a database D of key-value pairs and
later convincingly answer the query “Send all records (x, v) in D satisfying
f(x, v) = 1 for any Boolean circuit f”, without revealing any extra knowledge
(including the size of D). Function queriable ZK-EDBs should satisfy functional
binding and zero-knowledge properties.

In this paper, we present the construction of function queriable ZK-EDBs
from standard ZK-EDBs and ZKS supporting verifiable set operations. The main
idea here is to convert a Boolean circuit into a set-operation formula.

Consider a Boolean circuit f consisting of wires and gates. Upon inputting
a concrete (x, v) in D, each wire in circuit f will have a deterministic value in
{0, 1}. Now, let each wire associate two subsets of database D, the set of (x, v)
that makes this wire equal to 0 and the set of (x, v) that makes this wire equal
to 1. Then, for any gate in f , the sets associated with the output wire can be
represented as a set-operation formula over the sets associated with the input
wires. For example, consider an “AND” gate with two input wires a, b and an
output wire c. Denote by Ab (res. Bb, Cb) the set of (x, v) that makes wire a
(res. b, c) equal to b ∈ {0, 1}. We then have C0 = A0 ∪B0, C1 = A1 ∩B1. In this
way, we can write the set of (x, v) satisfying f(x, v) = 1 using the set-operation
formula over the sets associated with the input wire.

Therefore, we use ZKS supporting verifiable set operations to commit the
sets Si,b, where Si,b = {x|(x, v) ∈ D ∧ the i-th bit of x||v is b}. We also use a
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ZK-EDB scheme to commit D. Upon input a query f , the prover converts it
into a set-operation formula Q over Si,b, then outputs Soutput = Q({Si,b}) and
the corresponding proofs (for which we need a ZKS supporting set operations),
and finally opens each x ∈ Soutput using the ZK-EDB commitment to obtain the
associated value v.

3 Preliminaries

In this paper, we denote by λ the security parameter and by [m] the set {1, 2, · · · ,m}.
A non-negative function f : N → R is negligible if f(λ) = λ−w(1). We use the
standard abbreviation PPT to denote probabilistic polynomial time.

An elementary database D is a set of key-value pairs (x, v) ∈ {0, 1}l×{0, 1}l
such that if (x, v) ∈ D and (x, v′) ∈ D, then v = v′. Here l is a public polynomial
in λ. We denote by Sup(D) the support of D, i.e., the set of x ∈ {0, 1}l for which
∃v such that (x, v) ∈ D. We denote such unique v as D(x), and if x /∈ Sup(D), we
then also write D(x) =⊥. For consistency, for any set S of elements x ∈ {0, 1}l,
we write S(x) = 1 if x ∈ S and write S(x) =⊥ if x /∈ S.

3.1 Zero-Knowledge Elementary Databases and Sets

ZKS allow one to commit a set S and later prove the (non-)membership of
certain elements without revealing any extra knowledge. The notion of ZKS can
be extended to ZK-EDBs, which allow one to commit an elementary database
D. Because a ZKS can be seen as a special case of a ZK-EDB, where D(x) = 1
if x ∈ Sup(D), we skip the definition of ZKS here. Following [MRK03, GM06,
LNTW19], we present the following formal definition of ZK-EDBs:

Definition 1 (Zero-Knowledge Elementary Database). A zero-knowledge
elementary database consists of four algorithms (Setup, Com, Prove, Verify):

• δ ← Setup(1λ): On input the security parameter 1λ, Setup outputs a random
string (or a structured reference string) δ as the CRS.
• (com, τ)← Com(δ,D): On input the CRS δ and an elementary database D,

Com outputs a commitment of database com and an opening information τ .
• π ← Prove(δ, com, τ, x, v): On input the CRS δ, the pairing of the com-

mitment and opening information (com, τ), and a key x and its associated
value v (i.e., (x, v) ∈ D or x /∈ Sup(D), v =⊥), Prove outputs a proof π of
v = D(x)

• 0/1 ← Verify(δ, com, x, v, π): On input the CRS δ, commitment com, key-
value pair (x, v) and proof π, Verify either outputs 1 (denoting accept) or 0
(denoting reject).

It satisfies the following three properties:

• Completeness: For any elementary database D and any x,

Pr

[
Verify(δ, com, x, v, π) = 1

∣∣∣∣∣δ ← Setup(1λ); (com, τ)← Com(δ,D);

π ← Prove(δ, com, τ, x,D(x))

]
= 1
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• Soundness: For any PPT adversary A, there exists a negligible function
negl such that:

Pr

 v 6= v′ ∧
Verify(δ, com, x, v, π) = 1∧
Verify(δ, com, x, v′, π′) = 1

∣∣∣∣∣ δ ← Setup(1λ);

(com, x, v, v′, π, π′)← A(δ)

 ≤ negl(λ)

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

AProve(δ,com,τ,·,D(·))(δ, stateA, com) = 1

∣∣∣∣∣∣∣
δ ← Setup(1λ),

(D, stateA)← A(δ),

(com, τ)← Com(δ,D)

−
Pr

ASim(stateS ,·,D(·))(δ, stateA, com) = 1

∣∣∣∣∣∣∣
(δ, stateδ)← Sim(1λ),

(D, stateA)← A(δ),

(com, stateS)← Sim(δ, stateδ)


is negligible in λ.

3.2 Groups of Unknown-Order and Assumptions

In this paper, the schemes are constructed on groups of unknown order, for
which the order is difficult to compute for the committer. Groups of unknown
order are a useful tool in the construction of polynomial commitments, integer
commitments, and accumulators, among other aspects.

The strong RSA assumption is a useful assumption for groups of unknown
orders. We introduce it in the following.

Assumption 1 (Strong RSA Assumption)[BP97, AR20]. The strong RSA as-
sumption states that an efficient adversary cannot compute lth roots for a given
random group element, where l is an odd prime chosen by the adversary. Specif-
ically, it holds for GGen if for any probabilistic polynomial time adversary A,

Pr

[
ul = g and l is an odd prime

∣∣∣∣∣G← GGen(λ), g
$←G,

(u, l) ∈ G× N← A(G, g)

]
≤ negl(λ).

Generic group model. In this paper, we use the generic group model for
groups of unknown order as defined by Damgard and Koprowski[DK02], and as
used in [BBF19]. Portions of the definition of the generic group model are taken
verbatim from [BBF19].

In the generic group model, the group is parameterized by two public integers
A and B, and the group order is sampled uniformly from [A,B]. The group G
is defined by a random injective function σ : Z|G| → {0, 1}l for some l, where

2l � |G|. The group elements are σ(0), · · · , σ(|G|). A generic group algorithm A
is a probabilistic algorithm. Let L be a list that is initialized with the encodings

7



given to A as input. A can query two generic group oracles. The first oracle O1

samples a random r ∈ Z|G| and returns σ(r), which is appended to the list of
encodings L. The second oracle O2(i, j,±) takes two indices i, j ∈ [p], where p
is the size of L, as well as a sign bit, and returns σ(i± j), which is appended to
L. Note that herein A is not given the order of G.

As shown in [DK02], the strong RSA assumption holds in the generic group
model.

Proof of Knowledge of Exponent (PoKE). Recently, Boneh et al. [BBF19]
introduced a way to present an argument of knowledge protocol for the following
relation.

RPoKE := {(u,w ∈ G;x ∈ Z)|w = ux ∈ Z}
Let P be the prover and V be the verifier. Their protocol is as follows:

Protocol PoKE (Proof of knowledge of exponent)

Params: G← GGen(λ), g ∈ G; Input: u,w ∈ G; Witness: x ∈ Z
1. P sends z = gx ∈ G to V.
2. V samples l← Primes(λ) and sends l to P.
3. P finds the quotient q ∈ Z and residue r ∈ [l] such that x = ql + r.
P sends Q = uq, Q′ = gq, and r to V.

4. V accepts if r ∈ [l], Qlur = w, and Q′lgr = z.

Fig. 1: PoKE protocol [BBF19]

Theorem 1 ([BBF19] Theorem 3.). Protocol PoKE is an argument of knowl-
edge for the relation RPoKE in the generic group model.

In practice, there are two common methods used to instantiate groups of
unknown order.

RSA group: The multiplicative group Z∗n of integers modulo a product
n = pq of large primes p and q. Any efficient algorithm that calculates the order
can be transformed into an efficient algorithm factoring n. In addition, we need
to point out that it is difficult to generate the RSA group in a publicly verifiable
way without exposing the order. Therefore, we need a trusted party to generate
the group.

Class group: The class group of an imaginary quadratic order with discrim-
inant ∆ where −∆ is a prime and ∆ ≡ 1 mod 4. Aa an important property,
one can choose a security class group Cl(∆) by choosing the “good” discrim-
inant ∆ randomly without a trusted party. For more details, one can refer to
Buchmann and Hamdy’s survey[BH01] and Straka’s accessible blog post[Str19]
for more details.

At the end of this section, we provide several simple but widely used lemmas.
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Lemma 1. For any positive integers a, A, and B satisfying B > A, we have:

Dist({x← [a]}, {x mod a|x← [A,B]}) ≤ a

B −A

where Dist indicates the distance between distributions.

Lemma 2. For any integers s1,s2 and positive integers a,A,B satisfying B > A,
gcd(s1, s2) = 1, we have:

Dist({x← [a]}, {xs1 + ys2 mod a|x, y ← [A,B]}) ≤ 3a

B −A

where Dist indicates the distance between distributions.

Lemma 3. For any multiplicative group G and group elements g, h ∈ G, if there
exists coprime integers a, p satisfying ga = hp, then one can easily compute h′

satisfying g = h′p from a, p, g and h.

The proofs of the above three lemmas are shown in Appendix.A.

4 Zero-Knowledge Set with Verifiable Set Operations

In this section, we introduce the notion of ZKS supporting verifiable set opera-
tions, which is the key ingredient for our final goal, that is, function queriable
zero-knowledge elementary databases. We then give several weak zero-knowledge
argument of knowledge protocols4 for several special statements over groups of
unknown orders and finally present the construction of ZKS supporting verifiable
set operations.

4.1 Definition

Informally, ZKS supporting verifiable set operations allow one to commit to
several sets {Si}i∈[m], and then convincingly answer a) the (non-)membership
queries on each set and b) the queries in the form as “Send all records (x, v)
in Q(S1, · · · , Sm) for any set operation Q represented as a formula of unions,
intersections and set-differences,” without revealing any extra knowledge. The
formal definition of ZKS supporting verifiable set operations is as follows:

Definition 2 (ZKS Supporting Verifiable Set Operations). A ZKS sup-
porting verifiable set operations consists of six algorithms, (Setup, Com, Prove,
Verify,ProveS,VerifyS), where Setup, Com, Prove,Verify are in the same form as
a standard ZKS and

4 These zero-knowledge protocols only satisfy a type of special purpose knowledge
soundness, which are sufficient for our construction of ZKS supporting verifiable set
operations.
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• π ← ProveS(δ, c̃om, τ̃ ,Q, Soutput): On input the CRS δ, the list of set commit-
ments and the associated opening information c̃om = (com1, · · · , comm), τ̃ =
(τ1, · · · , τm) where (comi, τi) ∈ Com(δ, Si), a set operation Q represented as
a “circuit”/formula of unions, intersections and set-differences and the tar-
get output set Soutput. Prove outputs a proof π of Soutput = Q(S1, · · · , Sm).

• 0/1← VerifyS(δ, c̃om,Q, Soutput, π): On input the CRS δ, the list of commit-
ments c̃om, the set operation Q, the target output Soutput, and the proof π,
Verify either outputs 1 (denoting accept) or 0 (denoting reject).

and satisfies the following properties:

• (Non-)Membership Query Completeness: For any set S and any x,

Pr

[
Verify(δ, com, x, S(x), π) = 1

∣∣∣∣∣δ ← Setup(1λ); (com, τ)← Com(δ, S);

π ← Prove(δ, com, τ, x, S(x))

]
= 1

• Set Operation Query Completeness: For any sets {Si}i∈[m] and a set
operation Q which takes m sets as input and outputs one set, let Soutput =
Q(S1, · · · , Sm), and thus

Pr

VerifyS(δ, c̃om,Q, Soutput, π) = 1

∣∣∣∣∣∣∣
δ ← Setup(1λ);

∀i ∈ [m], (comi, τi)← Com(δ, Si);

π ← ProveS(δ, c̃om, τ̃ ,Q, Soutput)

 = 1

where c̃om = (com1, · · · , comm) and τ̃ = (τ1, · · · , τm).

• Functional Binding: For any PPT adversary A, the probability that A
wins the following game is negligible:

1. The challenger generates a CRS δ by running Setup(1λ) and gives δ to
the adversary A.

2. The adversary A outputs a set of commitments {comi}i∈[m] and the
following tuples:

(a) A series of (non-)membership query-proof tuples {(com′j , xj , vj , πj)}j∈[n1],
where com′j ∈ {comi}i∈[m] (suppose that com′j = comtj ).

(b) A series of set operation query-proof tuples {(c̃omj ,Qj , S′j , π′j)}j∈[n2],
where c̃omj is a list of commitments contained in {comi}i∈[m] (sup-
posing that c̃omj = (comtj1 , comtj2 , · · · )).

3. The adversary A wins the game if the following hold:

(a) For each j ∈ [n1], Verify(com′j , xj , vj , πj) = 1
(b) For each j ∈ [n2], Verify(c̃omj ,Qj , S′j , π′j) = 1.
(c) There do not exist sets {Si}i∈[m] satisfying Stj (xj) = vj for each j ∈

[n1] and Qj(S̃j) = S′j for each j ∈ [n2], where S̃j = (Stj1 , Stj2 , · · · ).
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• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

AOP (δ, stateA, {comi}i∈[m]) = 1

∣∣∣∣∣∣∣
δ ← Setup(1λ),

({Si}i∈[m], stateA)← A(δ),

for i ∈ [m], (comi, τi)← Com(δ, Si)

−
Pr

AOS (δ, stateA, {comi}i∈[m]) = 1

∣∣∣∣∣∣∣
(δ, stateδ)← Sim(1λ),

({Si}i∈[m], stateA)← A(δ),

({comi}i∈[m], stateS)← Sim(δ,m, stateδ)


is negligible in λ, where OP and OS are defined as follows:

OP : On input (comi, x) for some i ∈ [m], OP outputs π←Prove(δ, comi, τi, x, Si(x)).
On input (c̃om,Q) where c̃om = (comt1 , · · · , comtn) for some t1, · · · , tn ∈
[m], OP outputs π ← ProveS(δ, c̃om, τ̃ ,Q,Q(St1 , · · · , Stn)) where τ̃ =
(τt1 , · · · , τtn). In other cases, OP outputs ⊥.

OS: On input (comi, x) for some i ∈ [m], OS outputs π←Sim(δ, com, stateS , x, Si(x)).
On input (c̃om,Q) where c̃om = (comt1 , · · · , comtn) for some t1, · · · , tn ∈
[m], OS outputs π ← Sim(δ, c̃om, stateS ,Q,Q(St1 , · · · , Stn)). In other
cases, OS outputs ⊥.

4.2 Several Zero-Knowledge Protocols over Unknown-Order
Groups

In this section, we introduce several zero-knowledge protocols over the groups of
unknown order, which will be used in our main constructions.

Zero-knowledge protocol for bounded discrete-log. The classical sigma
protocol can be used to prove the discrete-log relation when the exponent is
small (i.e., RboundedDL = {(u,w, T ;x)|ux = w ∧ |x| ≤ T}). It only satisfies a
weak soundness, which is sufficient for our goal. Following [DF02, CS97, FO97],
the construction is as follows.

Protocol ZKboundedDL (Zero-knowledge protocol for RboundedDL)

Params: G← GGen(λ); Input: u,w ∈ G, T ∈ N; Witness: x ∈ Z
1. P samples r ← [22λT ] and sends z = ur ∈ G to V.
2. V sends challenge c← [2λ].
3. P computes s = r + cx and sends s to V.
4. V accepts if us = zwc and s ≤ 22λT .

Fig. 2: Protocol ZKboundedDL [CS97, FO97]
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Lemma 4. Protocol ZKboundedDL is an honest-verifier statistically zero-knowledge
protocol achieving a type of weak soundness defined as follows: There exists an
extractor such that for any polynomial p and any prover P∗ convincing verifier
of statement (u,w, T ) with probability p−1, the extractor can extract (x′, t) within
an expected polynomial time such that |x′| ≤ 22λT, |t| ≤ 2λ and ux

′
= wt.

proof sketch. The honest-verifier statistically zero-knowledge property directly
follows [DF02]. The weak knowledge soundness follows that: Suppose P∗ can
convince the verifier of the statement (u,w, T ), the extractor can then extract two
valid proofs with the same first message (i.e., (z, c, s) and (z, c′, s′)) by rewinding.
We then have us = zwc and us

′
= zwc

′
, and therefore, u∆s = w∆c, where

∆s = s− s′ ∈ [−22λT, 22λT ] and ∆c = c′ − c ∈ [−2λ, 2λ].

Zero-knowledge protocol for discrete-log. As we have shown, Boneh et
al. [BBF19] presented a proof of knowledge of exponent protocol. Combined
with the above protocol, we obtain a zero-knowledge protocol for the relation
RDL = {(u,w;x)|ux = w}. The construction is as follows:

Protocol ZKDL (Zero-knowledge protocol for RDL)

Params: G← GGen(λ), B ≥ |G|; Input: u,w ∈ G; Witness: x ∈ Z
1. P samples r ← [22λB] and sends z = ur ∈ G to V.
2. V sends challenge c← [2λ].
3. P computes s = r + cx.
4. P and V run PoKE(u, zwc; s).

Fig. 3: Protocol ZKDL

Lemma 5. In the generic group model, Protocol ZKDL is an honest-verifier
statistically zero-knowledge protocol achieving a type of special purpose knowl-
edge soundness defined as follows: There exists an extractor such that for any
polynomial p, for any prover P∗ convincing the verifier of statement (u,w) with
probability p−1, the extractor can extract (x′, t) within an expected polynomial
time such that |t| ≤ 2λ and ux

′
= wt.

Proof. Completeness is obvious. In addition, the special purpose knowledge
soundness follows Lemma.4 and the argument of knowledge property of PoKE
(which is used to extract s) directly.

The proof of honest-verifier statistically zero-knowledge property is as fol-
lows. The simulator is constructed in the following way: On input random
challenges c, l (where l is the challenge of PoKE) and statement (u,w = ux),
the simulator Sim chooses s ← [22λB] and computes z = us/wc. Then Sim
runs PoKE(u, us; s) with challenge l honestly to conclude the proof. Therefore,
for any fixed u,w, c, l, the distribution of the simulation transcript TranSim is

12



{((u,w), z = us/wc, c,TranPoKE)|s← [22λB]}, where TranPoKE = (gs, l, ubs/lc, gbs/lc,
s mod l). Similarly, for any fixed u,w, c, l, the distribution of the real world
transcript TranReal is {((u,w), z = ur = us/wc, c,TranPoKE)|r ← [22λB], s =
r + cx}, where TranPoKE = (gs, l, ubs/lc, gbs/lc, s mod l). Denote by Fu,w,c,l(s) =
((u,w), us/wc, c, (gs, l, ubs/lc, gbs/lc, s mod l)). We then have the following:

TranSim = {Fu,w,c,l(s)|s← [22λB]}
TranReal = {Fu,w,c,l(s)|r ← [22λB], s = r + cx}

As an important observation, Fu,w,c,l(s) = Fu,w,c,l(s mod l|G|). As a result, to

prove that TranSim
s
≈TranReal, we only need to prove that {s mod l|G| |s ←

[22λB]}
s
≈{s mod l|G| |r ← [22λB], s = r + cx}, which follows from Lemma.1

(note that l ≤ [2λ] and l|G|
22λB

≤ 2−λ, therefore, these two distributions are both
statistically indistinguishable from the uniform distribution over Zl|G|). ut

Above zero-knowledge protocol can be easily extended for the relationR2DL =
{(u, v,w;x1, x2)|ux1vx2 = w}. We call this ZK2DL. The construction is shown in
Fig.4.

Protocol ZK2DL (Zero-knowledge protocol for R2DL)

Params: G← GGen(λ), B ≥ |G|; Input: u, v,w ∈ G; Witness: x1, x2 ∈ Z
1. P samples r1, r2 ← [22λB] and sends z = ur1vr2 ∈ G to V.
2. V sends challenge c← [2λ].
3. P computes s1 = r1 + cx1, s2 = r2 + cx2 and sends us1 to V.
4. P and V run PoKE(u, us1 ; s1) and PoKE(v, zwc/us1 ; s2).

Fig. 4: Protocol ZK2DL

Lemma 6. In the generic group model, Protocol ZK2DL is an honest-verifier
statistically zero-knowledge protocol achieving a type of special purpose knowl-
edge soundness defined as follows: There exists an extractor such that for any
polynomial p, for any prover P∗ convincing the verifier of statement (u, v,w)
with probability p−1, then the extractor could extract (x′1, x

′
2, t) within an ex-

pected polynomial time such that |t| ≤ 2λ and ux
′
1vx

′
2 = wt.

To prove this lemma, one can use the same proof strategy for Lemma.5. We
skip this herein.

Zero-knowledge protocol for nearly-coprime exponents tuple. In this
paper, we need to prove the statement that the ZKS commitments u, v to the
set X,Y satisfy X ∩ Y = ∅. However, owing to the existence of randomness,
the exponents of u, v are not coprime. We only have the fact that the greatest
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common division of these exponents is small. Therefore, we call such a tuple
nearly coprime exponents tuple and denote it through the following relation:

Rprime =

{
(u, v, T ; a1, a2)

∣∣∣∣∣ gcd(a1, a2) ≤ T ∧
u = ga1 , v = ga2

}

The zero-knowledge protocol for Rprime is as follows.

Protocol ZKprime (Zero-knowledge protocol for Rprime)

Params: G← GGen(λ), B ≥ |G|; Input: u, v ∈ G, T ∈ Z; Witness:
a1, a2 ∈ Z

1. P finds integers t1, t2 such that t1a1 + t2a2 = gcd(a1, a2). P samples
r ← [2λB] and sends Q = gr gcd(a1,a2) = urt1vrt2 to V.

2. P and V run ZKboundedDL(g,Q, 2λBT ; r gcd(a1, a2)) and
ZK2DL(u, v,Q; rt1, rt2)

Fig. 5: Protocol ZKprime

Lemma 7. In the generic group model, ZKprime is an honest-verifier statis-
tically zero-knowledge protocol achieving a type of special purpose knowledge
soundness defined as follows: There exists an extractor such that for any poly-
nomial p, for any prover P ∗ convincing the verifier with probability p−1 over
statement (u, v, T ), the extractor can extract t1, t2, c ∈ Z such that |c| ≤ 22λBT
and ut1vt2 = gc.

Proof. Completeness is obvious.
Special purpose knowledge soundness follows from the weak knowledge

soundness of ZKboundedDL and ZK2DL. From the weak knowledge soundness of
ZKboundedDL, one can extract x, t ∈ Z satisfying that |x| ≤ 2λBT, |r′| ≤ 2λ and

Qr′ = gx. From the special purpose knowledge soundness of ZK2DL, one can

extract t′1, t
′
2, r
′′ ∈ Z satisfying |r′′| ≤ 2λ and Qr′′ = ut

′
1vt
′
2 . As a result, we have

ur
′t′1vr

′t′2 = gr
′′x. Setting t1 = r′t′1, t2 = r′t′2, c = r′′x, we then have ut1vt2 = gc

and |c| ≤ 22λBT .
The simulator Sim of the honest-verifier statistically zero-knowledge

property can be constructed as follows: Sim samples r1, r2 ← [2λB] and sets
Q = ur1vr2 . Sim then simulates the zero-knowledge protocol in Step 2.

Because both ZKboundedDL and ZK2DL are honest-verifier statistically zero-
knowledge, we only need to show that the distributions of (u, v,Q) generated
by the simulator and honest prover are statistically indistinguishable. In other
words, we need to show the following: For any fixed u = ga1 , v = ga2 , the distance
of the distributions {gr gcd(a1,a2)|r ← [2λB]} and {ur1vr2 = gr1a1+r2a2 |r1, r2 ←
[2λB]} are exponentially small.

14



Set b = Ord(ggcd(a1,a2)) ≤ B. From Lemma.1, {r mod b|r ← [2λB]} is ex-
ponentially close to the uniform distribution over Zb. Therefore the distribution
{gr gcd(a1,a2)|r ← [2λB]} = {(ggcd(a1,a2))r mod b|r ← [2λB]} is exponential close
to the distribution {(ggcd(a1,a2))r|r ← [b]}. From Lemma.2, {r1 · a1

gcd(a1,a2)
+

r2 · a1
gcd(a1,a2)

mod b|r1, r2 ← [2λB]} is exponentially close to the uniform dis-

tribution over Zb. Therefore, the distribution {gr1a1+r2a2 |r1, r2 ← [2λB]} =

{(ggcd(a1,a2))
r1· a1

gcd(a1,a2)
+r2· a1

gcd(a1,a2)
mod b|r1, r2 ← [2λB]} is also exponentially

close to the distribution {(ggcd(a1,a2))r|r ← [b]}, which concludes the lemma.

Zero-knowledge protocol for DDH-type tuples. In this paper, we need to
prove that the ZKS commitments u, v,w to the set A,B,C satisfy C = A ∪ B
and A ∩B = ∅. We have already shown how to prove A ∩B = ∅, and herein we
show how to prove C = A∪B. Here, we call such a tuple (u, v,w) as a DDH-type
tuple and denote it through the following relation:

RDDH−type =

(u, v,w, T ;x, y, a1, a2, a3)

∣∣∣∣∣∣∣
|a1|, |a2|, |a3| ≤ T ∧

gcd(xy,Π
2λ|G|
i=1 i) = 1 ∧

u = ga1x, v = ga2y,w = ga3xy

 .

Roughly, a DDH-type tuple (u, v,w, T ) satisfies that, if a prime p > T di-
vides loggu or loggv, then p also divides loggw. Building on Boneh’s (NI-)PoDDH
protocol, a zero-knowledge protocol for DDH-type tuples is as follows:

Protocol ZKDDH−type (Zero-knowledge protocol for RDDH−type)

Params: G← GGen(λ), B ≥ |G|; Input: u, v,w ∈ G, T ; Witness:
a1, a2, a3, x, y ∈ Z

1. P samples r1, r2 ← [22λB] and sends
u′ = gr1x, v′ = gr2y,w′ = gr1r2xy to V.

2. V sends l1 ← Primes(λ), l2 ← Primes(λ).
3. P finds the quotient q1, q2 ∈ Z and residue t1 ∈ [l1], t2 ∈ [l2] such

that r1x = q1l1 + t1 and r2y = q2l2 + t2. P sends Q1 = gq1 , Q′1 = v′q1

and Q2 = gq2 , t1 and t2 to V.
4. V checks t1 ∈ [l1], t2 ∈ [l2], Ql1

1 gt1 = u′, Ql1
1 v′t1 = w′, and Ql2

2 gt2 = v′.
5. P samples ru, rv, rw ← [2λB] and sends

u′′ = ur1ru , v′′ = vr2ry ,w′′ = wr1r2rw to V.
6. P and V run ZKboundedDL(u, u′′, 23λB2; r1ru),

ZKboundedDL(u′, u′′, 2λBT ; a1ru), ZKboundedDL(v, v′′, 23λB2; r2rv),
ZKboundedDL(v′, v′′, 2λBT ; a2rv), ZKboundedDL(w,w′′, 25λB3; r1r2rw)
and ZKboundedDL(w′,w′′, 2λBT ; a3rw).

Fig. 6: Protocol ZKDDH−type
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Lemma 8. In the generic group model, ZKDDH−type is an honest-verifier sta-
tistically zero-knowledge protocol achieving a type of special purpose knowledge
soundness defined as follows: There exists an extractor such that for any polyno-
mial p, for any prover P∗ convincing the verifier with probability p−1 over state-
ment (u, v,w, T ), the extractor can extract x, y, a1, a2, a3, c1, c2, c3 ∈ Z such that
|a1|, |a2|, |a3| ≤ 22λBT |c1|, |c2| ≤ 24λB2, |c3| ≤ 26λB3, and uc1 = ga1x, vc2 =
ga2y,wc3 = ga3xy.

Proof. Completeness is obvious.
Special purpose knowledge soundness roughly follows from the weak

knowledge soundness of ZKboundedDL and the same knowledge extractor in PoKE.
In fact, step 2 through step 4 are the PoDDH protocol provided by Boneh et al.
in [BBF19], which roughly consists of two PoKE protocols. Using the knowl-
edge extractor provided in [BBF19], one can extract x, y satisfying u′ = gx,
v′ = gy and w′ = gxy. Using the extractor of ZKboundedDL, one can extract
au, cu, a

′
u, c
′
u from the first two ZKboundedDL protocols, satisfying |cu|, |c′u| ≤

2λ, |au| ≤ 23λB2, |a′u| ≤ 2λBT and uau = u′′cu , u′a
′
u = u′′c

′
u . Therefore, we have

uauc
′
u = ga

′
ucux. Denoting by c1 = auc

′
u, a1 = a′ucu, then |c1| ≤ 24λB2, |a1| ≤

22λBT and uc1 = ga1x. Using the same strategy, one can extract c2, c3, a2, a3,
thus meeting our goal.

The simulator Sim of honest-verifier statistically zero-knowledge prop-
erty can be constructed as follows: Sim samples r1, r2 ← [22λB] and sets u′ =
gr1 , v′ = gr2 ,w′ = gr1r2 . In step 3, Sim finds the quotient q1, q2 ∈ Z and
residue t1, t2 such that r1 = q1l1 + t1 and r2 = q2l2 + t2, and then applies
the same action as an honest prover. Then, Sim samples ru, rv, rw ← [2λB], sets
u′′ = ur1ru , v′′ = vr2rv ,w′′ = wr1r2rw , and simulates the ZKboundedDL protocols
to conclude the simulation.

Owning to the honest-verifier statistically zero-knowledge of ZKboundedDL,
we only need to show that for any fixed statement (u, v,w, T ) and challenges
l1, l2, the distributions of (u′, v′,w′,Q1,Q

′
1,Q2, t1, t2, u

′′, v′′,w′′) generated by the
simulator and prover are exponentially close. We denote these two distributions
by Dsim and DP . Then, for any fixed statement (u, v,w, T ) and challenges l1, l2,
we have the following:

Dsim ={(gr1 , gr2 , gr1r2 , gbr1/l1c, (gr2)br1/l1c, gbr2/l2c, r1 mod l1,

r2 mod l2, u
r1ru , vr2rv ,wr1r2rw)|r1, r2 ← [22λB], ru, rv, rw ← [2λB]}

DP ={(gr1x, gr2y, gr1r2xy, gbr1x/l1c, (gr2y)br1x/l1c, gbr2y/l2c, r1x mod l1,

r2y mod l2, u
r1ru , vr2rv ,wr1r2rw)|r1, r2 ← [22λB], ru, rv, rw ← [2λB]}

For any fixed u, v,w, l1, l2, denote f(r1, r2, ru, rv, rw) = (gr1 , gr2 , gr1r2 , gbr1/l1c,
(gr2)br1/l1c, gbr2/l2c, r1 mod l1, r2 mod l2, u

r1ru , vr2rv ,wr1r2rw). As a key observa-
tion, f(r1, r2, ru, rv, rw) = f(r1 mod l1|G|, r2 mod l2|G|, ru mod |G|, rv mod |G|, rw
mod |G|). We then have Dsim = {f(r1 mod l1|G|, r2 mod l2|G|, ru mod |G|, rv
mod |G|, rw mod |G|)|r1, r2 ← [22λB], ru, rv, rw ← [2λB]}. Set x′ (resp. y′) the
element in Z|G| satisfying xx′ ≡ 1 mod G (resp. yy′ ≡ 1 mod G) (where x′
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and y′ exist owing to gcd(xy, |G|) = 1). Then, DP = {f(r1x mod l1|G|, r2y
mod l1|G|, rux′ mod |G|, rvy′ mod |G|, rwx′y′ mod |G|)|r1, r2 ← [22λB], ru, rv, rw ←
[2λB]}. From Lemma.1 and the fact that gcd(x, l1|G|) = 1, gcd(y, l2|G|) = 1, we
haveDsim andDP being exponentially close to the distribution {f(r1, r2, ru, rv, rw)|r1,←
Zl1|G|, r2 ← Zl2|G|, ru, rv, rw ← Z|G|}, which concludes the proof.

Non-interactive zero-knowledge protocols. Note that all of the above
protocols are constant-round public-coin protocols. One can use the Fiat-Shamir
heuristic to obtain the non-interactive version of these zero-knowledge protocols.
These non-interactive protocols satisfy zero-knowledge property and the same
special purpose knowledge soundness property in the random oracle model. We
use NI-ZKboundedDL, NI-ZKDL, NI-ZK2DL, NI-ZKprime, and NI-ZKDDH−type to
represent these protocols.

4.3 Construction of Zero-Knowledge Set with Verifiable Set
Operations

In this subsection, we present a ZKS supporting verifiable set operations. Our
scheme builds on Prabhakaran and Xue’s ZKS scheme [PX09, XLL07, XLL08].
We denote by Hprime a hash function that upon inputting a string, outputs
a large prime. The construction of Prabhakaran and Xue’s ZKS scheme (with
proper modification) is shown below.

Theorem 2. The protocol constructed in Fig.7 is a ZKS scheme in the generic
group model and random oracle model.

The proof follows from [PX09, XLL07, XLL08]. We present a detailed proof in
Appendix.B

Remark 1. One can use the batch technique put forward in [BBF19] to batch
the (non-)membership proofs. For example, to prove that x′1, · · · , x′t ∈ S, the
prover hashes them into primes p′1, · · · p′t by Hprime and then generates the proof

π ← NI-ZKDL(gΠi∈[t]p
′
i ,C; rΠi∈[m]pi/Πi∈[t]p

′
i). To prove that x′1, · · · , x′t /∈ S, the

prover hashes them into primes p′1, · · · p′t by Hprime and finds a, b ∈ Z such that

aΠi∈[t]p
′
i + brΠi∈[m]pi = 1, and then outputs π ← NI-ZK2DL(gΠi∈[t]p

′
i ,C, g; a, b).

Set Operations. In this paper, we denote a set operation Q by a “circuit” of
intersection “∩”, union “∪”, and set-difference “\”. As described in the technique
overview, we first demonstrate how to prove a single set operation (a “∩”, “∪”
or “\”) over committed sets.

Algorithm for Intersection. Here we present a non-interactive protocol to
prove that a commitment CI commits to the intersection of two sets committed
in CS1

and CS2
. Our protocol can roughly ensure the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CI , the extractor can generate membership proofs showing
that x belongs to the set committed in CS1

and CS2
.
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Standard zero-knowledge set scheme

Setup(1λ): On input the security parameter 1λ, Setup generates the
description of an unknown-order group G← GGen(λ) and a random
group element g ← G. Suppose B is the upper bound of G (i.e.,
B ≥ |G|). Sample the description of a hash function Hprime that on
input a string, outputs a random prime larger than Bprime > 26λB3.
Output CRS δ = (G, g, B,Hprime).

Commit(δ, S): On input the set S = {x1, · · · , xm}, Commit hashes them
into large primes, i.e., for i ∈ [m], pi ← Hprime(xi). Then Commit
samples r ← [2λB], and outputs the commitment C = grΠi∈[m]pi and
the open information τ = (r, p1, · · · , pm, S).

Prove(δ, (C, τ), x, S(x)): Parse the input τ as (r, p1, · · · , pm, S).
a) If S(x) = 1, which means that x ∈ S, p = Hprime(x) ∈ {p1, · · · , pm},

Prove outputs the proof π ← NI-ZKDL(gp,C; rΠi∈[m]pi/p).
b) If S(x) =⊥, which means that x /∈ S, p = Hprime(x) /∈ {p1, · · · , pm}

and gcd(p, rΠi∈[m]pi) = 1, Prove finds a, b such that
ap+ brΠi∈[m]pi = 1 and outputs π ← NI-ZK2DL(gp,C, g; a, b).

Verify(δ,C, x, S(x), π): If S(x) = 1, check whether π is a valid NI-ZKDL
proof for statement (gp,C) ∈ RDL. If S(x) = 0, check whether π is a
valid NI-ZK2DL proof for statement (gp,C, g) ∈ R2DL. Verify outputs 1 if
the check passes and outputs 0 otherwise.

Fig. 7: Protocol ZKS

– If one can generate a non-membership proof showing that x does not belong
to the set committed in CI , the extractor can generate a non-membership
proof showing that x does not belong to the set committed in CS1

or CS2
.

Follow the fact that, for any S1 and S2, to prove that I = S1 ∩ S2, one only
needs to show that I is a subset of S1 and S2 and J1 = S1\I, J2 = S2\I are
disjointed. We construct the zero-knowledge protocol NI-ZK∩ shown in Fig. 8. For
any set S = {x1, · · · , xm}, we denote byHprime(S) = {Hprime(x1), · · · ,Hprime(xm)}.

Lemma 9. NI-ZK∩ is a statistically zero-knowledge protocol achieving a type of
special purpose knowledge soundness defined as follows: There exists an extractor
E = (E1, E2) such that for any polynomial p, for any prover P∗ convincing the
verifier with probability p−1 over statement (δ,CS1 ,CS2 ,CI), E

P∗
1 can extract w

in expected polynomial time such that the following holds:

1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 26λB3 and CI = gpa,
E2(w, (ga, p)) can output gb and gc such that CS1

= gpb and CS2
= gpc .
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Protocol NI-ZK∩

Input: δ = (G, g, B,Hprime), CS1 ,CS2 ,CI ; Witness: S1, S2, I, τS1 , τS2 , τI
satisfying that (CS1 , τS1) ∈ Commit(δ, S1); (CS2 , τS2) ∈ Commit(δ, S2);
(CI , τI) ∈ Commit(δ, I) and S1 ∩ S2 = I.

Prover:
1. Generate the commitments CJ1 and CJ2 to the sets J1 = S1\I and
J2 = S2\I.

2. Run π1 ← NI-ZKDDH−type(CI ,CJ1 ,CS1
, 2λB) and

π2 ← NI-ZKDDH−type(CI ,CJ2 ,CS2
, 2λB) with a proper witness

contained in the opening information.
(This step shows that I ⊂ S1 and I ⊂ S2.)

3. Run π3 ← NI-ZKprime(CJ1 ,CJ2 , 2
λB) with a proper witness

contained in the opening information.
(This step shows that the sets J1 = S1\I, J2 = S2\I are disjointed.)

4. Output π = (CJ1 ,CJ2 , π1, π2, π3)

Verifier: Output 1 iff. the proofs contained in π are valid.

Fig. 8: Protocol NI-ZK∩

2. On input w and a, b, p ∈ Z such that prime p ≥ 26λB3 and CaI · gbp = g,

E2(w, (a, b, p)) can output a′, b′ ∈ Z such that Ca
′

S1
· gb′p = g or Ca

′

S2
· gb′p = g.

Proof. Because S1∩S2 = I, J1 = S1\I, we have I ∪J1 = S1 and I ∩J1 = ∅. This
means that Hprime(I)∪Hprime(J1) = Hprime(S1) and Hprime(I)∩Hprime(J1) =
∅ (otherwise, the collision-resistant property of Hprime is broken). Therefore, it is
true that (Πpi∈Hprime(I)pi) · (Πpi∈Hprime(J1)pi) = Πpi∈Hprime(S1)pi, which means

that (CI ,CJ1 ,CS1
, 2λB) ∈ RDDH−type. For the same reason, (CI ,CJ2 ,CS2

, 2λB) ∈
RDDH−type is also a DDH-type tuple. Similarly, because J1∩, J2 = ∅, we have
(CJ1 ,CJ2 , [2

λB]) ∈ Rprime, which concludes the completeness.

The simulator of the statistically zero-knowledge property only needs
to generate CJ1 = gr1 and CJ2 = gr2 by sampling r1, r2 ← [2λB], and gen-
erate π1, π2, π3 using the simulator of NI-ZKDDH−type and NI-ZKprime. Then
the statistically zero-knowledge property follows from the fact that the distri-
butions of CJ1 ,CJ2 generated by the simulator are statistically indistinguishable
from those of the honest prover and the statistically zero-knowledge property of
NI-ZKDDH−type and NI-ZKprime.

The proof of the special purpose knowledge soundness is as follows.

From the special purpose knowledge soundness of NI-ZKDDH−like, E1 can ex-
tract w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 23λB2, |c1|, |c2| ≤
24λB2, |c3| ≤ 26λB3, and Cc1I = ga1x,Cc2J1 = ga2y,Cc3S1

= ga3xy; and w2 =

(x′, y′, a′1, a
′
2, a
′
3, c′1, c

′
2, c
′
3) such that |a′1|, |a′2|, |a′3| ≤ 23λB2, |c′1|, |c′2| ≤ 24λB2,

|c′3| ≤ 26λB3,and C
c′1
I = ga

′
1x
′
,C

c′2
J2

= ga
′
2y
′
,C

c′3
S2

= ga
′
3x
′y′ . From the special pur-
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pose knowledge soundness of NI-ZKprime, E1 can extract w3 = (t1, t2, c) such
that c ≤ 23λB2 and Ct1J1Ct2J2 = gc. Here, E1 outputs w = (CJ1 ,CJ2 , w1, w2, w3).

For the construction of E2 suppose that (ga, p) satisfies p ≥ 26λB3 and
CI = gpa. Because Cc1I = ga1x, we have gc1pa = ga1x. We claim that p|a1x otherwise
from Lemma.3 one can easily find a p-root of g and break the strong RSA
assumption. Because p > a1, we know that p|x. Denote xp = x/p ∈ Z. Then
Cc3S1

= ga3xy = (ga3xpy)p. As gcd(p, c3) = 1, E2 can easily compute gb such that
CS1

= gpb . In addition, E2 can compute gc from Lemma.3 such that CS2
= gpc in

the same manner.
Suppose that a, b, p ∈ Z satisfies p as a prime larger than 26λB3 and CaI ·gbp =

g. Consider the case that gcd(p, y) = 1. Because Cc1I = ga1x, we have gcd(p, x) =
1, otherwise one can find a p-root of g (from Lemma.3, one can find h such
that hp = CI , and therefore we have (ha · gb)p = g) and break the strong RSA
assumption. Then, because gcd(p, y) = 1, we have gcd(p, a3xy) = 1, and E2 can
easily find integers α, β such that αp+ βa3xy = 1. Therefore, from Cc3S1

= ga3xy,

we have Cβc3S1
gαp = g. Setting a′ = βc3 and b′ = α, then Ca

′

S1
· gb′p = g. Similarly,

in the case that gcd(p, y′) = 1, E2 can compute a′, b′ ∈ Z such that Ca
′

S2
·gb′p = g.

Now, we only need to consider the case in which gcd(p, y) 6= 1, gcd(p, y′) 6= 1.

Because p is prime, we have p|y and p|y′. Then, from Cc2J1 = ga2y,C
c′2
J2

= ga
′
2y
′

and
Lemma.3, one can easily compute h1 and h2 satisfying CJ1 = hp1 and CJ2 = hp2.
From Ct1J1Ct2J2 = gc, one can find a p-root of g directly and break the strong RSA
assumption, which concludes the proof.

Algorithm for Union. Similarly, herein we present a non-interactive protocol
to prove that a commitment CU commits to the union of two sets committed in
CS1 and CS2 . Roughly, our protocol can ensure the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CU , the extractor can generate a membership proof showing
that x belongs to the set committed in CS1 or CS2 .

– If one can generate a non-membership proof showing that x does not belong
to the set committed in CI , the extractor can generate non-membership
proofs showing that x does not belong to the set committed in CS1 and CS2 .

We construct the zero-knowledge protocol NI-ZK∪ in Fig. 9.

Lemma 10. NI-ZK∪ is a statistically zero-knowledge protocol achieving a type of
special purpose knowledge soundness defined as follows: There exists an extractor
E = (E1, E2) such that for any polynomial p, for any prover P ∗ convincing the
verifier with probability p−1 over the statement (δ,CS1

,CS2
,CI), E

P∗

1 can extract
w within an expected time such that the following hold:

1. On input w and ga ∈ Z and prime p satisfying p ≥ 26λB3 and CU = gpa,
E2(w, (ga, p)) can output gb such that CS1

= gpb or CS2
= gpb .

2. On input w and a, b, p ∈ Z such that prime p ≥ 26λB3 and CaU · gbp = g,

E2(w, (a, b, p)) can output a′, b′, a′′, b′′ ∈ Z such that Ca
′

S1
· gb

′p = g and

Ca
′′

S2
· gb′′p = g.
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Protocol NI-ZK∪

Input: δ = (G, g, B,Hprime), CS1 ,CS2 ,CU ; Witness: S1, S2, U, τS1 , τS2 , τU
satisfying that (CS1 , τS1) ∈ Commit(δ, S1); (CS2 , τS2) ∈
Commit(δ, S2); (CU , τU ) ∈ Commit(δ, U) and S1 ∪ S2 = U .

Prover
1. Generates the commitment CI ,CJ1 ,CJ2 to the sets
I = S1 ∩ S2, J1 = U\S1, J2 = U\S2.

2. Run π1 ← NI-ZKDDH−type(CI ,CJ1 ,CS2
, 2λB) with a proper witness

contained in the opening information.
3. Run π2 ← NI-ZKDDH−type(CS1 ,CJ1 ,CU , 2

λB) and
π3 ← NI-ZKDDH−type(CS2 ,CJ2 ,CU , 2

λB) with a proper witness
contained in the opening information.

4. Output π = (CI ,CJ1 ,CJ2 , π1, π2, π3)

Verifier: Output 1 iff. the proofs contained in π are valid.

Fig. 9: Protocol NI-ZK∪

The proof of this lemma is similar to Lemma.9. We defer it to Appendix.C.

Algorithm for Set-Difference. We present a non-interactive protocol to prove
that a commitment CD commits to the difference of two sets committed in CS1

and CS2 . Roughly, our protocol can ensure the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CD, the extractor can generate a membership proof showing
that x belongs to the set committed in CS1 and a non-membership proof
showing that x doesn’t belong to the set committed in CS2 .

– If one can generate a non-membership proof showing that x does not belong
to the set committed in CD, the extractor can generate a non-membership
proof showing that x does not belong to the set committed in CS1

and a
membership proof showing that x belongs to the set committed in CS2

.

We construct the zero-knowledge protocol NI-ZK\ in Fig. 10.

Lemma 11. NI-ZK\ is a statistically zero-knowledge protocol achieving a type of
special purpose knowledge soundness defined as follows: There exists a extractor
E = (E1, E2) such that for any polynomial p, for any prover P ∗ convincing the
verifier with probability p−1 over statement (δ,CS1

,CS2
,CD), EP

∗

1 can extract w
such that the following holds:

1. On input w, ga ∈ G and prime p ∈ Z such that p ≥ 26λB3 and CD = gpa,
E2(w, (ga, p)) can output gb and a, b such that CS1

= gpb and CaS2
gpb = g.

2. On input w and a, b, p ∈ Z such that prime p ≥ 26λB3 and CaD · gbp = g,

E2(w, (a, b, p)) can output a′, b′ ∈ Z or ga ∈ G such that Ca
′

S1
· gb′p = g or

CS2
= gpa.
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Protocol NI-ZK\

Input: δ = (G, g, B,Hprime), CS1 ,CS2 ,CD; Witness:
S1, S2, SD, τS1 , τS2 , τD satisfying that (CS1 , τS1) ∈
Commit(δ, S1); (CS2

, τS2
) ∈ Commit(δ, S2); (CD, τD) ∈ Commit(δ,D) and

S1\S2 = D.

Prover:
1. Generate the commitments CI ,CJ to the sets I = S1 ∩ S2, J = S2\I.
2. Run π1 ← NI-ZKDDH−type(CI ,CD,CS1

, 2λB) and
π2 ← NI-ZKDDH−type(CI ,CJ ,CS2

, 2λB) with a proper witness
contained in the opening information.

3. Run π3 ← NI-ZKprime(CD,CS2 , 2
λB) with a proper witness

contained in the opening information.
4. Output π = (CI ,CJ , π1, π2, π3)

Verifier: Output 1 iff. the proofs contained in π are valid.

Fig. 10: Protocol NI-ZK\

The proof of this lemma is similar to Lemma.9, and we defer it to Appendix.C.

Algorithm for Set Operations. Using above algorithms, we now construct the
ProveS and VerifierS algorithms to conclude the construction of ZKS supporting
verifiable set operations. Note that a set operation Q over the inputs can be
regard as a “circuit” consisting of wires and nodes. Each input wire is related to
an input set, each node is related to a set operation and its output wire is related
to a set that results in this set operation being applied on the sets related to its
input wires. Without loss of generality, let the output wire of the last node also
be the output wire of this “circuit”. The protocol is shown as follows:

Theorem 3. The ZKS in Fig.7 together with the algorithms in Fig.11 is a ZKS
supporting verifiable set operations in the generic group model and random oracle
model.

Proof. Completeness is oblivious.
To prove the functional binding property, we will show the existence of a

extractor E satisfying that, for any PPT adversary A generating a series of valid
query-proof tuples with a notice property, E can extract a series of sets satisfying
all queries or breaking the strong RSA assumption. Here, E is constructed as
follows.

1. First, E invokes A to obtain m commitments, C1, · · · ,Cm. Then, E ini-
tializes 2m + 1 sets, S0, S1, S

′
1, · · · , Sm, S′m. Here, S0 is used to record the

keys/elements x appearing in the answer to the queries (including the keys
appearing in membership and non-membership proofs, and set operation
queries). In addition, for any i ∈ [m], Si is the sets of keys that, believed
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Algorithm for Verifiable Set Operations

ProveS(δ, c̃om, τ̃ ,Q, Soutput): On input the CRS δ, the list of
commitments and the associated opening information
c̃om = (C1, · · · ,Cm), τ̃ = (τ1, · · · , τm) where (Ci, τi) ∈ Com(δ, Si), a set
operation Q and the target output set Soutput. ProveS runs as follows.

1. Recover the sets {Si}i∈[m] from the opening information. Regard Q
as a “circuit” and let l be the number of nodes. Run Q(S1, · · · , Sm)
to obtain the set S′1, · · · , S′l corresponding to the output wires of l
nodes in Q (note that S′l = Soutput). Generate the commitments
C′1, · · · ,C

′
l to the sets S′1, · · · , S′l .

2. For each node i, suppose Sai , Sbi are the sets associated to its input
wires and Sci is the set associated to its output wire.
(a) If the node is related to “interaction”, ProveS runs

πi ← NI-ZK∩(δ,Cai ,Cbi ,Cci).
(b) If the node is related to “union”, ProveS runs

πi ← NI-ZK∪(δ,Cai ,Cbi ,Cci).
(c) If the node is related to “set-difference”, ProveS runs

πi ← NI-ZK\(δ,Cai ,Cbi ,Cci).
3. Output π = (C′1, · · · ,C

′
l, π1, · · · , πl, τ ′l ), where τ ′l is the opening

information of C′l.

VerifyS(δ, c̃om,Q, Soutput, π): Parse π as (C′1, · · · ,C
′
l, π1, · · · , πl, τ ′l ).

Regard Q as a “circuit” in the same way as the prover. For each node i,
suppose Cai ,Cbi are the commitments committing to the sets
associated to the input wires and Cci is the commitment committing to
the set associated to the output wire. If this node is related to
“interaction” (resp. “union”, “set-difference”), check whether πi is a
valid NI-ZK∩ (resp. NI-ZK∪,NI-ZK\) proof over the statement
δ,Cai ,Cbi ,Cci . Use τ ′l to check whether C′l is a commitment to the set
Soutput. Output 1 iff. all checks pass.

Fig. 11: Protocol for Verifiable Set Operations

by E, are contained in the set committed in Ci; S
′
i is the sets of keys that,

believed by E, not contained in the set committed in Ci. Here, E invokes A
to obtain the query-proof tuples and the keys x appearing in the answer to
the queries and adds the keys to S0.

2. For each membership proof proving that x belongs to the set committed in
Ci, E adds x to Si, and extracts and records (x, gx, p,Ci) such that gpx = Ci,
where p = Hprime(x) (we skip the extraction because such proceedings have
appeared several times herein). For each non-membership proof proving that
x does not belong to the set committed in Ci, E adds x to S′i, and extracts
and records (x, a, b, p,Ci) such that Cai gpb = g. For each set operation query-
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proof tuple, E uses the extractors E1 of NI-ZK∩, NI-ZK∪ and NI-ZK\ to
extract the corresponding w.

3. For each element x ∈ S0, E applies the following. For each set operation
query-proof tuple, if x belongs to the output set, one can then find a tuple
(x, gx, p,C

′
l) such that gpx = C′l and Hprime(x) = p. Then, from the special

purpose knowledge soundness of NI-ZK∩, NI-ZK∪, and NI-ZK\, one can ex-
tract one or two tuples regarding its input wires. Here, E recursively applies
the same action to these wires, and can finally find a set of tuples for the
input wires. If x does not belong to the output set, E can apply the similar
actions. As a result, for each tuple of the form (x, g′, p,Ci), E adds x to Si,
and for each tuple of the form (x, a, b, p,Ci), E adds x to S′i.

4. If a contradiction (i.e., for some key x and i ∈ [m], x ∈ Si ∧ x ∈ S′i,)
does not exist, then E outputs S1, · · · , Sm. If there exists a contradiction,
it means that there exists (x, gx, p,Ci) and (x, a, b, p,Ci) such that gpx = Ci
and Cai gpb = g, which breaks the strong RSA Assumption.

Now we only need to show that the sets S1, · · · , Sm outputted by E satisfy
all queries. From step 2, we can see that these sets already satisfy the (non-
)membership queries. As for set operation queries, we need to show that: For
each set operation query-proof (Ct1 , · · · ,Ctk ,Q, Soutput, π) and each x ∈ S0,
Q(Sxt1 , · · · , S

x
tk

) = Sxoutput, where Sxi = {x} ∩ Si and Sxoutput = {x} ∩ Soutput.
We run Q(Sxt1 , · · · , S

x
tk

) to obtain the set Sxm+1, · · · , Sxm+l corresponding to
the output wires of l nodes in Q (we further require that the input sets of nodes j
belong to {Si}i<j). Suppose {Ci}i∈[m+1,m+l] are the commitments contained in
π, committing the sets associated to internal wires. Remind that E will extract
several tuples for each wire inQ in step 3. Here, we recursively prove the following
statements are true for each i ∈ [m+ l]:

For each extracted tuple of the form (x, g′, p,Ci), x ∈ Sxi ; And for each
extracted tuple of the form (x, a, b, p,Ci), x /∈ Sxi .

From the description of S1, · · · , Sm, above statements are true for i ∈ [m].
Suppose the statements are true for i ≤ [m + k − 1]. Then for node k with
inputs Si, Sj , if the node is related to “interactive” and (x, ga, p,Ck) (resp.
(x, a, b, p,Ck)) is extracted, then from the knowledge soundness of NI-ZK∩, (x, gb, p,Ci)
and (x, gc, p,Cj) (resp. (x, a′, b′,Ci) or (x, a′, b′,Cj)) are extracted by E, which
means that x ∈ Si, x ∈ Sj (resp. x /∈ Si or x /∈ Sj), and therefore x ∈ Sk = Si∩Sj
(resp. x /∈ Sk = Si ∩ Sj). The case that node k is related to “union” or “set-
difference” can be proved similarly. Therefore above statement is also true for
i = k. Recursively, the above statements are true for each i ∈ [m + l]. Note
that Sxm+l is the output set. Remind that if x ∈ Sxoutput (resp. x /∈ Sxoutput), E
will extract (x, g′, p,Cl+m) (resp. (x, a, b, p,Cl+m)), which means that x ∈ Sxm+l

(resp. x /∈ Sxm+l). Therefore we have Sxm+l = Sxoutput, which concludes the proof
of functional binding.

For the zero-knowledge property, because the distribution of the ZKS com-
mitment is statistically indistinguishable from {gr|r ← [2λB]}, the simulator can
sample element from {gr|r ← [2λB]} as the commitments and then use the sim-
ulators of NI-ZK∩, NI-ZK∪ and NI-ZK\ to conclude the simulations.
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Remark 2. One can use the randomness r′l applied in the commitment C′l to
replace the opening information τ ′l , which is also sufficient to check whether C′l
is a commitment to Soutput. Then the proof size is only linear to the size of set
operation Q, the length of elements in S.

5 Function Queriable Zero-Knowledge Elementary
Databases

In this section, we introduce the notion of function queriable zero-knowledge
elementary databases, and then show how to construct it from standard ZE-
EDBs and ZKS supporting verifiable set operation.

5.1 Definition

Informally, a function queriable zero-knowledge elementary database allows one
to commit a key-value database D = {(x, v)} and later convincingly answer the
queries in the form of “Send all records (x, v) in D satisfying f(x, v) = 1 for any
Boolean circuit f”. Here we write the output database as D(f) and regard the
membership queries (supported by the standard ZK-EDB) as a type of special
functional query.

Definition 3 (Function Queriable Zero-Knowledge Elementary Database).
A function queriable zero-knowledge elementary database consists of four algo-
rithms (Setup, Com, ProveF, VerifyF),

• δ ← Setup(1λ): On input a security parameter 1λ, Setup outputs a random
string (or a structured reference string) δ as the CRS.
• (com, τ) ← Com(δ,D): On input a CRS δ and an elementary database D,

Com outputs a commitment of database com and opening information τ .
• π ← Prove(δ, com, τ, f,Doutput): On input the CRS δ, the database commit-

ment and the associated opening information (com, τ), a Boolean circuit f ,
and the target database Doutput, Prove outputs a proof π for Doutput = D(f).
• 0/1 ← Verify(δ, com, f,Doutput, π): On input the CRS δ, the commitment
com, the boolean circuit f , the target output Doutput and the proof π, Verify
accepts or rejects.

It satisfies the following three properties:

• Completeness: For any elementary database D and any x,

Pr

[
Verify(δ, com, f,D(f), π) = 1

∣∣∣∣∣δ ← Setup(1λ); (com, τ)← Com(δ,D);

π ← Prove(δ, com, τ, f,D(f))

]
= 1

• Functional binding: For any PPT adversary A, the probability that A wins
in the following game is negligible:
1. The challenger generates a CRS δ by running Setup(1λ) and gives δ to

adversary A.
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2. The adversary A outputs a commitment com and a series of function
query-proof tuples {(fi, Di, πi)}i∈[n].

3. The adversary A wins the game if the following hold: a) For each i ∈
[n], Verify(com, fi, Di, πi) = 1 and b) there does not exist a database D
satisfying D(fi) = Di for each i ∈ [n].

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

AProve(δ,com,τ,·,D(·))(δ, stateA, com) = 1

∣∣∣∣∣∣∣
δ ← Setup(1λ),

(D, stateA)← A(δ),

(com, τ)← Com(δ,D)

−
Pr

ASim(stateS ,·,D(·))(δ, stateA, com) = 1

∣∣∣∣∣∣∣
(δ, stateδ)← Sim(1λ),

(D, stateA)← A(δ),

(com, stateS)← Sim(δ, stateδ)


is negligible in λ.

5.2 Construction

In this section, we present a construction of the function queriable ZK-EDB
from a standard ZK-EDB (SetupD,ComD,ProveD,VerifyD) and a ZKS support-
ing verifiable set operations (SetupS ,ComS ,ProveS ,VerifyS ,ProveSS ,VerifySS).
Before we present the construction, we first introduce a deterministic algorithm
that transform a Boolean circuit f into a circuit of set operations Q.

Algorithm Q ← Tran(f): On input the boolean circuit f : {0, 1}n → {0, 1},
Tran(f) outputs Q, a circuit of set operations having an input of 2n sets (S0

1 , S
1
1 ,

· · · , S0
n, S

1
n), and outputs a set S′. Here, Q is constructed as follows:

Tran first associates the i-th input wires of f with two sets (S0
i , S

1
i ). Supposing

that f contains l gates (n1, · · · , nl), without loss of generality, we require the
input wires of ni to be either the input wires of f or the output wires of gates
(n1, · · · , ni−1), and the output of gate nl is also the output of f . Then for i from
1 to l, we have the following:

1. If gate ni is “AND” gate, and the sets associated with the two input wires
are (S0

input1, S1
input1), (S0

input2, S
1
input2), then denote the sets associated with

the output wire as (S1
input1 ∩ S1

input2, S
0
input1 ∪ S0

input2).
2. If gate ni is “OR” gate, and the sets associated with the two input wires are

(S0
input1, S1

input1), (S0
input2, S

1
input2), then denote the sets associated with the

output wire as (S1
input1 ∪ S1

input2, S
0
input1 ∩ S0

input2).
3. If gate ni is “NOT” gate, and the sets associated with the two input wires

are (S0
input, S

1
input), then denote the sets associated with the output wire as

(S1
input, S

0
input).

Supposing that (S0, S1) are the sets associated with the output wire of gate nl,
Q outputs S1.
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Denote by Sup the algorithm that on input a key-value database D =
{(x1, v1), · · · , (xm, vm)}, outputs the set of keys belonging to D, i.e., Sup(D) =
{x1, · · · , xm}. We then have the following:

Lemma 12. Tran is a deterministic algorithm satisfying that for any Boolean
circuit f and any key-value databases D,

Q(S0
1 , S

1
1 , · · · , S0

n, S
1
n) = Sup(D(f))

where Sbi = {x ∈ Sup(D)| the i-th bit of “x||v” is b}, and D(f) = {(x, v) ∈
D|f(x, v) = 1}.

The correctness of Lemma. 12 can be directly checked.
The construction of the function queriable ZK-EDB is shown in Fig.12.

Function queriable ZK-EDB

Setup(1λ): On input the security parameter 1λ, Setup generates
δD ← SetupD(1λ) and δS ← SetupS(1λ). Output CRS δ = (δD, δS).

Commit(δ,D): On input the database D and δ = (δD, δS), Commit runs
(CD, τD)← ComD(δD, D). For each b ∈ {0, 1}, i ∈ [2l], denote by
Sbi = {x ∈ Sup(D)| the i-th bit of x||v is b}. Commit Sbi using the ZKS
scheme, i.e., (Cbi , τ

b
i )← ComS(δS ,Sbi ). Output the commitment

C = (CD, {Cbi}b∈{0,1},i∈[2l]) and the open information

τ = (τD, {τ bi }b∈{0,1},i∈[2l]).

Prove(δ, C, τ, f,D(f)): Prover transforms Boolean circuit f into a circuit
of set operations Q using thealgorithm Tran. Run
πQ ← ProveSS(δS , {Cbi}, {τ bi },Q, Sup(D(f))). For each x ∈ Sup(D(f)),
run πx ← ProveD(δD, CD, τD, x, (D(x)) and for b ∈ {0, 1}, i ∈ [2l], run
πbx,i ← ProveS(δS ,C

b
i , τ

b
i , x,Sbi (x)). Output

π = (πQ, {πx, πbx,i}x∈Sup(D(f)),b∈{0,1},i∈[2l]).

Verify(δ, C, f,D(f), π): Parse C as (CD, {Cbi}b∈{0,1},i∈[2l]), parse the

input π as (πQ, {πx, πbx,i}x∈Sup(D(f)),b∈{0,1},i∈[2l]) and run Q = Tran(f).
Output 1 iff. the following checks pass:
1. VerifySS(δS , {Cbi},Q, Sup(D(f)), πQ) = 1
2. For each x ∈ Sup(D(f)), VerifyD(δD, CD, x,D(x), πx) = 1.
3. For each x ∈ Sup(D(f)) and b ∈ {0, 1}, i ∈ [2l],

VerifyS(δS ,C
b
i , x,Sbi (x), πbx,i) = 1

Fig. 12: Functional queriable ZK-EDB
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Theorem 4. The scheme shown in Fig.12 is a function queriable zero-knowledge
elementary database scheme.

Proof. The completeness follows from Lemma.12 directly.
To prove the functional binding property, we will show that, supposing

there exists a PPT adversary A that on input a random CRS δ, outputs a
commitment C and a series of valid query-proof tuples {fi, Di, πfi}i∈[t] such
that Verify(δ, C, fi, Di, πfi) = 1 with noticeable property. Then D = ∪i∈[t]Di is
a database satisfying D(fi) = Di.

First, we claim that D is indeed a database (for each x belonging to the sup-
port of D, there is at most one value v satisfying (x, v) ∈ D), otherwise, one can
break the soundness of the ZK-EDB scheme (SetupD,ComD,ProveD,VerifyD).

Second, we claim that for each i ∈ [t], D(fi) = Di. Denote by Sbi = {x ∈
Sup(D)| the i-th bit of x||v is b}. From the functional binding of ZKS with ver-
ifiable set operations, we know that there exists sets S′bi satisfying the first and
third checks of the verifier in each proof, which means the following:

1. Qi(S′01 , S′11 , · · · , S′0n , S′1n ) = Sup(Di) where Qi = Tran(fi).

2. For each i ∈ [2l] and x ∈ Sup(D), x ∈ S′bx,ii and x /∈ S′1−bx,ii where bx,i is
the i-th bit of x||D(x).

From the second property above, we have Sbi = S′bi ∩ Sup(D). Now, from the
first property, we have that Qi(S0

1 , S
1
1 , · · · , S0

2l, S
1
2l) = Qi(S′01 ∩ Sup(D), S′11 ∩

Sup(D), · · · , S′02l∩Sup(D), S′12l∩Sup(D)) = Di∩Sup(D) = Di. From Lemma.12,
we have D(fi) = Di, which concludes the proof.

The zero-knowledge property directly follows the zero-knowledge property
of ZK-EDB and ZKS supporting verifiable set operations.

6 Conclusion

In this paper, we introduced the notion of function queriable zero-knowledge
elementary databases and showed that it can be constructed from standard ZK-
EDBs and a new variation of ZKS that support verifiable set operations. We
presented a concrete construction of ZKS supporting verifiable set operations
based on unknown-order group. Such a scheme is secure in the random oracle
model and generic group model.

A construction of standard constant-size ZK-EDB from groups of unknown-
order is presented in Appendix.D. Instantiated this ZK-EDB scheme and our
ZKS scheme supporting verifiable set operations, the resulting function queriable
ZK-EDB scheme is secure in the Random Oracle model and Generic Group
model and its proof size is only linear to l (length of each record in database)
and the size of circuit f .
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Appendix

A The proofs of Lemma.1, Lemma.2 and Lemma.3

Lemma. 1 For any positive integers a, A and B satisfying that B > A, we have
that:

Dist({x← [a]}, {x mod a|x← [A,B]}) ≤ a

B −A
where Dist means the distance between distributions.

Proof. For any integer t ∈ a, we have that Pr[x = t|x ← [a]] = 1/a and

Pr[x mod a = t|x← [A,B]] = b(B−A)/ac
B−A or b(B−A)/ac+1

B−A ∈ [ 1a −
1

B−A ,
1
a + 1

B−A ].
Therefore we have that Dist({x← [a]}, {x mod a|x← [A,B]}) = Σt∈[a]|Pr[x =
t|x← [a]]− Pr[x mod a = t|x← [A,B]]| ≤ a

B−A . ut

Lemma. 2 For any integers s1,s2 and positive integers a, A, B satisfying that
B > A, gcd(s1, s2) = 1, we have that:

Dist({x← [a]}, {xs1 + ys2 mod a|x, y ← [A,B]}) ≤ 3a

B −A

where Dist means the distance between distributions.

Proof. For any t ∈ Zb, denote by St the set of pairs (x, y) ∈ Z2
a satisfying that

xs1+ys2 ≡ t mod a. Due to that gcd(s1, s2) = 1, there exists integers b1, b2 such
that b1s1 + b2s2 = 1. Therefore, for each i ∈ Za, (tb1 + is2 mod a)s1 + (tb2− is1
mod a)s2 ≡ t mod a. And for any i, j ∈ Za, if (tb1 + is2 mod a, tb2 − is1
mod a) = (tb1 + js2 mod a, tb2 − js1 mod a), then (i − j)s2 ≡ (i − j)s1 ≡ 0
mod a⇒ (i−j)(b1s1 +b2s2) ≡ 0 mod a⇒ i−j ≡ 0 mod a⇒ i = j. Therefore
we have that, for any t ∈ Zb, {(tb1 + is2 mod a, tb2 − is1 mod a)}i∈Za ⊂ St
and |St| ≥ a. Due to that |Z2

a| = a2, we have that t2 ≤ Σt∈Za |St| ≤ |Z2
a| = a2.

Therefore, for any t ∈ Za, |St| = a.
Now, for any t ∈ a, we have that Pr[xs1 + ys2 mod a = t|x, y ← [A,B]] =

Σ(x,y)∈St Pr[xs1 + ys2 mod a = t|x, y ← [A,B]] ∈ [a( 1
a −

1
B−A )2, a( 1

a + 1
B−A )2].

Therefore we have that Dist({x ← [a]}, {xs1 + ys2 mod a|x, y ← [A,B]}) =
Σt∈[a]|Pr[x = t|x ← [a]] − Pr[xs1 + ys2 mod a = t|x, y ← [A,B]]| ≤ 2a

B−A +

( a
B−A )2. If B−A > a, then we have that Dist({x← [a]}, {xs1+ys2 mod a|x, y ←

[A,B]}) ≤ 2a
B−A + ( a

B−A )2 ≤ 3a
B−A ; if B − A < a, then we have that Dist({x ←

[a]}, {xs1 + ys2 mod a|x, y ← [A,B]}) ≤ 1 ≤ 3a
B−A . The lemma is conclude. ut

Lemma. 3 For any multiplicative group G and group elements g, h ∈ G, if there
exists coprime integers a, p satisfying that ga = hp, then one can easily compute
h′ satisfying that g = h′p from a, p, g and h.

Proof. Due to that gcd(a, p) = 1, one could easily compute integers t1, t2 such
that t1a + t2p = 1. Then we have that ga = hp ⇒ gat1 = hpt1 ⇒ gat1+pt2 =
hpt1gpt2 ⇒ g = (ht1gt2)p. Then, set h′ = ht1gt2 and we have that g = h′p. ut
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B The proof of Theorem.2

Proof. Completeness is obvious.
Soundness follows that: Suppose there exists an adversary A breaking the

soundness property, which means that, upon inputting a random CRS δ, A can
output (C, x, v, v′, π, π′) such that with a noticeable probability, v 6= v′ (without
loss of generality, we assume that v = 1 and v′ =⊥) and Verify(δ,C, x, v, π) =
Verify(δ,C, x, v′, π′) = 1.

Let p = Hprime(x). Then, from the special purpose knowledge soundness
of NI-ZKDL, one can extract (a, t) such that |t| ≤ 2λ and (gp)a = Ct. Be-
cause gcd(p, t) = 1, one can find integers α, β such that αp + βt = 1, and then
(gaβCα)p = C. From the special purpose knowledge soundness of NI-ZK2DL,

one can extract (a′, b′, t′) such that |t′| ≤ 2λ and (gp)a
′
Cb
′

= gt
′
. We therefore

have (ga
′
(gaβCα)b

′
)p = gt

′
. Setting c = ga

′
(gaβCα)b

′
, then cp = gt

′
. Again, be-

cause gcd(p, t′) = 1, one can find α′, β′ such that α′p + β′t′ = 1, and therefore
(cβ
′
gα
′
)p = g which breaks the strong RSA assumption and concludes the sound-

ness property. (Note that the strong RSA assumption holds in the generic group
model [DF02].)

Zero-knowledge property follows the zero-knowledge property of NI-ZKDL
and NI-ZK2DL. Upon inputting a random CRS δ, the simulator Sim samples r ←
[2λB] and outputs the commitment C = gr. To simulate the proof, Sim directly
runs the simulator of NI-ZKDL and NI-ZK2DL. From Lemma.1, the distribution of
simulated commitment {gr|r ← [2λB]} is statistically indistinguishable from the
uniform distribution over group 〈g〉. In addition, for any set S = {x1, · · · , xm}
and (p1, · · · , pm) = (Hprime(x1), · · · ,Hprime(xm)), the distribution of honest
commitment {grΠi∈[m]pi |r ← [2λB]} is also statistically indistinguishable from
the uniform distribution over group 〈g〉 (note that gcd(Πi∈[m]pi, Ord(g)) = 1,

and therefore gΠi∈[m]pi is still a generator of the group 〈g〉). As a result, the
distributions of the simulated and honest commitments are statistically indis-
tinguishable. Together with the statistical zero-knowledge property of NI-ZKDL
and NI-ZK2DL, no adversary can tell the simulator apart from the honest com-
mitter and prover, which concludes the proof.

C The proof of Lemma.10 and Lemma.11

In this section, we prove the security of protocols NI-ZK∪ and NI-ZK\.

Proof of Lemma.10:
The proof of Lemma.10 follows the same strategy of Lemma.9.
Because S1 ∪ S2 = U, S1 ∩ S2 = I, J1 = U\S1 and J2 = U\S2, we have

I∪J1 = S2, I∩J1 = ∅. This means thatHprime(I)∪Hprime(J1) = Hprime(S2) and
Hprime(I)∩Hprime(J1) = ∅ (otherwise, the collision-resistant property of Hprime

is broken). Therefore, it is true that (Πpi∈Hprime(I)pi) · (Πpi∈Hprime(J1)pi) =

Πpi∈Hprime(S2)pi, which means that (CI ,CJ1 ,CS2
, 2λB) ∈ RDDH−type. For the

same reason, because S1 ∪ J1 = U, S1 ∩ J1 = ∅ and S2 ∪ J2 = U, S2 ∩ J2 = ∅,

33



(CS1 ,CJ1 ,CU , 2
λB) and (CS2 ,CJ2 ,CU , 2

λB) are also DDH-type tuples, which
concludes the completeness.

The simulator of the statistically zero-knowledge property only needs to
generate CJ1 = gr1 , CJ2 = gr2 and CI = gr3 by sampling r1, r2, r3 ← [2λB],
and generate π1, π2, π3 using the simulator of NI-ZKDDH−type. Then the statis-
tically zero-knowledge property follows from the fact that the distributions of
CJ1 ,CJ2 ,CI generated by the simulator are statistically indistinguishable from
those of the honest prover and the statistically zero-knowledge property of
NI-ZKDDH−type.

The proof of the special purpose knowledge soundness is as follows.

From the special purpose knowledge soundness of NI-ZKDDH−like, E1 can ex-
tract w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 23λB2, |c1|, |c2| ≤
24λB2, |c3| ≤ 26λB3, and Cc1I = ga1x,Cc2J1 = ga2y,Cc3S2

= ga3xy; w2 = (x′, y′, a′1, a
′
2, a
′
3,

c′1, c
′
2, c
′
3) such that |a′1|, |a′2|, |a′3| ≤ 23λB2, |c′1|, |c′2| ≤ 24λB2, |c′3| ≤ 26λB3,and

C
c′1
S1

= ga
′
1x
′
,C

c′2
J1

= ga
′
2y
′
,C

c′3
U = ga

′
3x
′y′ ; and w3 = (x′′, y′′, a′′1 , a

′′
2 , a
′′
3 , c′′1 , c

′′
2 , c
′′
3)

such that |a′′1 |, |a′′2 |, |a′′3 | ≤ 23λB2, |c′′1 |, |c′′2 | ≤ 24λB2, |c′′3 | ≤ 26λB3,and C
c′′1
S2

=

ga
′′
1 x
′′
,C

c′′2
J2

= ga
′′
2 y
′′
,C

c′′3
U = ga

′′
3 x
′′y′′ . Here, E1 outputs w = (CJ1 ,CJ2 ,CU , w1, w2, w3).

For the construction of E2, suppose that the input (ga, p) satisfies p ≥ 26λB3

and CU = gpa. Because C
c′3
U = ga

′
3x
′y′ , we have g

c′3p
a = ga

′
3x
′y′ . We claim that

p|a′3x′y′ otherwise from Lemma.3 one can easily find a p-root of g and break the
strong RSA assumption. Because p > a1, we know that p|x′ or p|y′. In the case

of p|x′, denote xp = x′/p ∈ Z. Then C
c′1
S1

= ga
′
1x
′

= (ga
′
1xp)p. As gcd(p, c′1) = 1,

E2 can easily compute gb such that CS1
= gpb . In the case of p|y′, E2 can similarly

compute gc such that CJ1 = gpc . Again, from Cc2J1 = ga2y, we have gc2pc = ga2y.
We claim that p|a2y otherwise from Lemma.3 one can easily find a p-root of
g and break the strong RSA assumption. Because p > a1, we know that p|y.
Denoting yp = y/p, we have Cc3S2

= ga3xy = (ga3xyp)p. As gcd(p, c3) = 1, E2 can
easily compute gd such that CS2

= gpd.

Suppose that the input a, b, p ∈ Z satisfies p as a prime larger than 26λB3

and CaU · gbp = g. Because C
c′3
U = ga

′
3x
′y′ , we have gcd(p, x′) = 1, otherwise one

can find a p-root of g (from Lemma.3, one can find h such that hp = CU , and
therefore we have (ha · gb)p = g) and break the strong RSA assumption. Then,

from C
c′1
S1

= ga
′
1x
′

and p > a′1, we have gcd(p, a′1x
′) = 1, and E2 can easily find

integers α, β such that αp+ βa′1x
′ = 1, and then C

c′1β
S1

gαp = g. Setting a′ = βc′1

and b′ = α, then Ca
′

S1
·gb′p = g. In the same strategy, E2 can compute a′′, b′′ such

that Ca
′′

S2
· gb′′p = g, which concludes the proof. ut

Proof of Lemma.11:

The proof of Lemma.11 follows the same strategy of Lemma.9.

Because S1\S2 = D,S1 ∩ S2 = I and J = S2\S1, we have I ∪ D =
S1, I ∩ D = ∅. This means that Hprime(I) ∪ Hprime(D) = Hprime(S1) and
Hprime(I)∩Hprime(D) = ∅ (otherwise, the collision-resistant property of Hprime

is broken). Therefore, it is true that (Πpi∈Hprime(I)pi) · (Πpi∈Hprime(D)pi) =
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Πpi∈Hprime(S1)pi, which means that (CI ,CD,CS1 , 2
λB) ∈ RDDH−type. For the

same reason, because I∪J = S1, I∩J = ∅, (CI ,CJ ,CS1
, 2λB) is also a DDH-type

tuple. Similarly, because D ∩ S2 = ∅, we have (CD,CS2
, 2λB) ∈ Rprime, which

concludes the completeness.

The simulator of the statistically zero-knowledge property only needs
to generate CI = gr1 and CJ = gr2 by sampling r1, r2 ← [2λB], and gen-
erate π1, π2, π3 using the simulator of NI-ZKDDH−type and NI-ZKprime. Then
the statistically zero-knowledge property follows from the fact that the distri-
butions of CI ,CJ generated by the simulator are statistically indistinguishable
from those of the honest prover and the statistically zero-knowledge property of
NI-ZKDDH−type and NI-ZKprime.

The proof of the special purpose knowledge soundness is as follows.

From the special purpose knowledge soundness of NI-ZKDDH−like, E1 can ex-
tract w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 23λB2, |c1|, |c2| ≤
24λB2, |c3| ≤ 26λB3, and Cc1I = ga1x,Cc2D = ga2y,Cc3S1

= ga3xy; and w2 =

(x′, y′, a′1, a
′
2, a
′
3, c′1, c

′
2, c
′
3) such that |a′1|, |a′2|, |a′3| ≤ 23λB2, |c′1|, |c′2| ≤ 24λB2,

|c′3| ≤ 26λB3,and C
c′1
I = ga

′
1x
′
,C

c′2
J = ga

′
2y
′
,C

c′3
S2

= ga
′
3x
′y′ . From the special pur-

pose knowledge soundness of NI-ZKprime, E1 can extract w3 = (t1, t2, c) such
that c ≤ 23λB2 and Ct1DCt2S2

= gc. Here, E1 outputs w = (CD,CS2
, w1, w2, w3).

For the construction of E2 suppose that the input (ga, p) satisfies p ≥ 26λB3

and CD = gpa. Because Cc2D = ga2y, we have gc2pa = ga2y. We claim that p|a2y
otherwise from Lemma.3 one can easily find a p-root of g and break the strong
RSA assumption. Because p > a2, we know that p|y. Denote yp = y/p ∈ Z.
Then Cc3S1

= ga3xy = (ga3xpy)p. As gcd(p, c3) = 1, E2 can easily compute gb such

that CS1
= gpb . At the same time, because Ct1DCt2S2

= gc, we have gt1pa Ct2S2
= gc.

Because C
c′3
S2

= ga
′
3x
′y′ , we have gcd(p, a′3x

′y′) = 1 (Otherwise, p|a′3x′y′ and one

have (gt1a ga
′
3x
′y′t2/p)p = gc. From Lemma.3, one can find a p-root of g directly

and break the strong RSA assumption. ). E2 can efficiently find α, β ∈ Z such

that αp + βa′3x
′y′ = 1, and then C

βc′3
S2

gαp = g. Setting a′ = βc′3, b
′ = α, then

Ca
′

S2
gb
′p = g.

Suppose that the input a, b, p ∈ Z satisfies p as a prime larger than 26λB3

and CaD · gbp = g. Because Cc2D = ga2y, we have gcd(p, y) = 1, otherwise one
can find a p-root of g (from Lemma.3, one can find h such that hp = CD, and
therefore we have (ha · gb)p = g) and break the strong RSA assumption. There
are two cases, p - x or p|x. In the first case that p - x, from Cc3S1

= ga3xy and
gcd(p, a3xy) = 1, E2 can efficiently compute α, β ∈ Z such that αp + βa3xy,

and then Cβc3S1
gαp = g. Setting a′ = βc′3, b

′ = α, then Ca
′

S2
gb
′p = g. In the second

case that p|x, denoting xp = x/p, from Cc1I = ga1x = (ga1xp)p and Lemma.3, E2

can efficiently compute ga such that CI = gpa. From C
c′1
I = ga

′
1x
′
, g

c′1p
a = ga

′
1x
′
.

We have p|a′1x′ otherwise from Lemma.3 one can find a p-root of g directly and
break the strong RSA assumption. Because p is a prime larger than a′1, we have

p|x′. Denote x′p = x′/p. From C
c′3
S2

= ga
′
3x
′y′ = (ga

′
3x
′
py
′
)p and Lemma.3, E2 can

efficiently compute gb such that CS2
= gpb , which concludes the proof. ut
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D Constant-Size Zero-Knowledge Elementary Databases

In this section, we present a standard ZK-EDB scheme achieving constant com-
mitment and proof size from groups of unknown orders.

Standard zero-knowledge elementary database scheme

Setup(1λ): On input the security parameter 1λ, Setup generates the
description of an unknown-order group G← GGen(λ) and a random
group element g← G. Suppose B is the upper bound of G (i.e.,
B ≥ |G|). Sample the description of a hash function Hprime that on
input a string, outputs a random prime larger than Bprime > 2λB.
Output CRS δ = (G, g, B,Hprime).

Commit(δ,D): On input the set D = {(x1, v1), · · · , (xm, vm)}, Commit
hashes them into large primes, i.e., for i ∈ [m], pi ← Hprime(xi).
Denote by t = Σi∈[m]vi ·Πj 6=ipj · (Πj 6=ip

−1
j mod pi) such that t

mod pi = vi. Sample r, r′ ← [2λB], and output the commitment
C = (c1, c2) = (grΠi∈[m]pi , gt+r

′Πi∈[m]pi) and the open information
τ = (r, r′, p1, · · · , pm, D).

Prove(δ, (C, τ), x,D(x)): Parse the input τ as (r, r′, p1, · · · , pm, D). If
D(x) = v 6=⊥, which means that p = Hprime(x) ∈ {p1, · · · , pm}, Prove
outputs the proof π = (NI-ZKDL(gp, c1; rΠi∈[m]pi/p),
NI-ZKDL(gp, c2 · g−v; (t+ rΠi∈[m]pi − v)/p)). If D(x) =⊥, which means
that p = Hprime(x) /∈ {p1, · · · , pm} and gcd(p, rΠi∈[m]pi) = 1, Prove
finds a, b such that ap+ brΠi∈[m]pi = 1 and outputs
π = (ZK2DL(gp, c1, g; a, b)).

Verify(δ, C, x,D(x), π): If D(x) = v 6=⊥, check whether π consists of two
valid NI-ZKDL proofs for statement (gp, c1) and (gp, c2 · g−v). If
D(x) =⊥, check whether π is a valid ZK2DL proof for statement
(gp, c2, g) ∈ R2DL. Output 1 iff. the check pass.

Fig. 13: Protocol ZK-EDB

Theorem 5. The protocol constructed in Fig.13 is a secure ZK-EDB scheme in
the generic group model and random oracle model.

proof sketch. The proof of the above theorem is similar to that of Theorem.2.
The completeness is oblivious and the zero-knowledge property follows the
zero-knowledge property of ZKDL and ZK2DL and the fact that the distribution
of c1, c2 is statistically indistinguishable from the uniform distribution over group
〈g〉.
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Because c1 is actually a ZKS for set Sup(D), from the soundness of ZKS
scheme, no adversary can prove that x ∈ Sup(D) and x /∈ Sup(D) simulta-
neously. Now, suppose there exists an adversary that can simultaneously prove
(x, v) ∈ D and (x, v′) ∈ D, and v 6= v′. It then means that the adversary can
generate two valid proofs ZKDL for statements (gp, c2 ·g−v), (gp, c2 ·g−v

′
), where

p = Hprime(x). From the soundness of ZKDL, one can extract (a, b), (a′, b′)

such that b, b′ ≤ 2λ, gpa = (c2 · g−v)b and gpa
′

= (c2 · g−v
′
)b
′
. We then have

(gab
′−a′b)p = g−vbb

′+v′bb′ . Furthermore, because gcd(p,−vbb′ + v′bb′), one can
easily find a p-root of g from above equality, which breaks the strong RSA as-
sumption and concludes the proof.

Remark 3. One can use the batch technique put forward in [BBF19] to batch
the (non-)membership proofs. We show how to batch the ZKS proof in Re-
mark.1.Because the above ZK-EDB scheme consists of a ZKS scheme and an
“encoding” scheme showing the values associated with the keys, we only need
to batch the proof for (x, v) ∈ D. To prove that (x′1, v

′
1), · · · , (x′t, v′t) ∈ D,

the prover hashes the keys into primes p′1, · · · p′t by Hprime and generates the

proof π ← NI-ZKDL(gΠi∈[t]p
′
i ,C; rΠi∈[m]pi/Πi∈[t]p

′
i),NI-ZKDL(gp, c2 · g−ṽ; (t +

rΠi∈[m]pi − ṽ)/Πi∈[t]p
′
i)) where ṽ is the least integer that satisfies ṽ ≡ v′i

mod Πi∈[t]p
′
i) for each i ∈ [t].

Proof size analysis of function queriable ZK-EDB. As shown in Fig.12, the
proof for query f consists of a set operation proof of the ZKS, |D(f)|membership
proofs of the ZK-EDB and 2l|D(f)| (non-)membership proofs of the ZKS. When
using the ZKS described in Section.4, the size of the set operation proof is linear
to the size of Q (therefore the size of f) and l (Remark.2). In addition, as we
show in (Remark.1), we can batch the 2l|D(f)| (non-)membership proofs of the
ZKS into 2l proofs, the size of which is linear to l. Using the ZK-EDB constructed
above, on can batch the proofs into constant group elements. Therefore the proof
size of the function queriable ZK-EDB scheme is only linearly to the size of f
and l (the size of the elements of D).
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