
Fast Blind Rotation for Bootstrapping FHEs

Binwu Xiang⋆1,2,3
 

 

, Jiang Zhang2(�)
 

 

, Yi Deng1,3
 

 

, Yiran Dai1,2,3
 

 

, and
Dengguo Feng2

 

 

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China.

{xiangbinwu,deng,daiyiran}@iie.ac.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China.

zhangj@sklc.org,fengdg@263.net
3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China.

Abstract. Blind rotation is one of the key techniques to construct fully
homomorphic encryptions with the best known bootstrapping algorithms
running in less than one second. Currently, the two main approaches,
namely, AP and GINX, for realizing blind rotation are first introduced
by Alperin-Sheriff and Peikert (CRYPTO 2014) and Gama, Izabachene,
Nguyen and Xie (EUROCRYPT 2016), respectively.

In this paper, we propose a new blind rotation algorithm based
on a GSW-like encryption from the NTRU assumption. Our algorithm
has performance asymptotically independent from the key distributions,
and outperforms AP and GINX in both the evaluation key size and
the computational efficiency (especially for large key distributions). By
using our blind rotation algorithm as a building block, we present new
bootstrapping algorithms for both LWE and RLWE ciphertexts.

We implement our bootstrapping algorithm for LWE ciphertexts,
and compare the actual performance with two bootstrapping algorithms,
namely, FHEW/AP by Ducas and Micciancio (EUROCRYPT 2015) and
TFHE/GINX by Chillotti, Gama, Georgieva and Izabachène (Journal
of Cryptology 2020), that were implemented in the OpenFHE library.
For parameters with ternary key distribution at 128-bit security, our
bootstrapping only needs to store evaluation key of size 18.65MB for
blind rotation, which is about 89.8 times smaller than FHEW/AP and
2.9 times smaller than TFHE/GINX. Moreover, our bootstrapping can
be done in 112ms on a laptop, which is about 3.2 times faster than
FHEW/AP and 2.1 times faster than TFHE/GINX. More improvements
are available for large key distributions such as Gaussian distributions.
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1 Introduction

Fully homomorphic encryption (FHE) allows to perform computations on en-
crypted data without decryption and is one of the main cryptographic tools
for privacy computation. Currently, almost all known FHE constructions follow
the same paradigm introduced by Gentry [28]: 1) construct a somewhat homo-
morphic encryption (SHE) using noise-based encryptions (e.g., Regev encryp-
tion [42]) which typically can only support a limited number of homomorphic
operations due to the increase of noise size; 2) design a bootstrapping algorithm
that essentially homomorphically computes the decryption of SHE to reduce
the noise size of ciphertexts. The initial attempts [21,11,20,43,45,9,10,25] mainly
focus on the construction of SHEs supporting the evaluation of their own (aug-
mented) decryption circuits, and then use the bootstrapping theorem [28] to
convert SHEs into FHEs. As bootstrapping is the central component for almost
all existing FHEs and is much more complex than other elementary operations,
it has become the main efficiency bottleneck in practical implementations.

Essentially, the decryption algorithm for most existing FHEs is to compute
a function g(⟨c, s⟩ mod q) = g(

∑
i cisi mod q), where c = (c0, . . . , cn−1) ∈ Zn

q

is the ciphertext, s = (s0, . . . , sn−1) ∈ Zn
q is the secret key, and g is a simple de-

coding algorithm that may vary depending on specific schemes. The most costly
operation for bootstrapping is to homomorphically compute the modular func-
tion f(c, s) =

∑
i cisi mod q for some integer modulus q. There are mainly three

approaches to do this in practical implementations. The first approach focuses
on BGV ciphertext [10] with decryption function g(⟨c, s⟩ mod q) = (

∑
i cisi

mod q) mod p for some integer p (e.g., p = 2). The central idea of this approach
is to convert f(c, s) =

∑
i cisi mod q with a general q to f ′(c, s) =

∑
i cisi

mod q′ with a special modulus q′ = pr so that g(⟨c, s⟩ mod q) can be computed
by extracting the bit decompositions of ⟨c, s⟩ in base p [12,9,10,25,29,32,14]. The
second approach targets CKKS ciphertext [16] with decryption function g(⟨c, s⟩
mod q) =

∑
i cisi mod q for approximate numbers. The idea behind this ap-

proach is to use another math function, e.g., q
2π sin

(
2π
q ⟨c, s⟩

)
, to approximate

the modular function ⟨c, s⟩ mod q. Since this approach will inherently introduce
extra noises to the resulting ciphertext, the choice of the approximate math
functions significantly influences the computation performance and the qual-
ity of the result ciphertext [16,15,13,36,31,8]. To perform the bootstrapping,
both approaches above require to homomorphcially compute a polynomial (of
the secret key s) with relatively large degree, which not only need hundreds of
megabytes to several gigabytes to store the bootstrapping keys, but also require
tens/hundreds of seconds to bootstrap a single ciphertext.

The third approach is called blind rotation [5,22], which allows to fast boot-
strap a single ciphertext in less than one second. Basically, this approach uses two
layers of encryptions: the first layer is a simple Regev-like encryption [42] which
has very limited homomorphic capacity, and the second layer is a ring-based
GSW-like encryption [30] which is specially designed to homomorphically com-
pute the first-layer decryption algorithm. In more detail, let R = Z[X]/(XN +1)



Table 1. Asymptotic comparison of different blind rotations in the number #RQ of
RQ elements in the evaluation key and the number #mul of multiplications in RQ for
computation (where B is an integer in bit-decomposing the first-layer ciphertexts for
AP, and U is a public set in bit-decomposing the first-layer secret keys for GINX).

Method #RQ #mul
AP [5,22,41] 4d⌈logB q⌉(B − 1)n 4d⌈logB q⌉n
GINX [26,19] 4d|U |n 4d|U |n†

Lee et al. [37] 2d(2n+ q + 1) 2d(3n+ 2)

Ours d(n+ q) d(2n+ 1)

† Recently, Bonte et al. [7] reduced the computational
cost of GINX for the special case of ternary keys (i.e.,
|U | = 2) by a half, but still keep the evaluation key size
unchanged. See Section 1.3 for more discussions.

with q = 2N be the cyclotomic ring used in the second layer, then the modu-
lar function f(c, s) =

∑
i cisi mod q in the first-layer decryption can be easily

done in the exponent of the ring element X ∈ R because the order of X is ex-
actly q in R and Xf(c,s) = X

∑
i cisi mod q = X

∑
i cisi . By multiplying a rotation

polynomial r(X) =
∑q−1

i=0 iX
−i, one can easily decode

∑
i cisi mod q from the

exponent of X
∑

i cisi to the constant term of the polynomial r(X) ·X
∑

i cisi . The
blind rotation actually refers to the procedure of computing r(X) ·X

∑
i cisi from

a given ciphertext vector c = (c0, . . . , cn−1) and some encryptions of the secret
key s = (s0, . . . , sn−1). There are mainly two ways for realizing blind rotation,
namely, AP [5,22,41] and GINX [26,19]. The first one [5,22,41] has performance
asymptotically independent from the first-layer key distributions, but it has to
store very large evaluation keys (e.g., more than 1.6GB at 128-bit security [39]).
The second one [26,19,18] has performance linear in the bit-decomposition size of
the first-layer secret key, which only needs to store very small evaluation keys for
small key distributions (e.g., 54MB at 128-bit security for ternary key distribu-
tion [39]), but its evaluation keys will quickly increase to hundreds of megabytes
when the secret key s is chosen from a distribution with large bit-decomposition
size (e.g., Gaussian distributions as recommended in [1]). Recently, Lee et al. [37]
presented a new blind rotation algorithm which has performance asymptotically
independent from the first-layer key distributions as AP and outperforms GINX
for large first-layer key distributions.

1.1 Our results

In this work, we follow the two-layer framework to construct FHEs with fast
bootstrapping algorithms. First, we present a second-layer GSW-like encryption
based on the NTRU assumption, which supports very fast key-switching for ring
automorphisms. Then, we propose a new blind rotation algorithm by crucially
using ring automorphisms and its associated key-switchings. Our algorithm has
performance asymptotically independent from the first-layer key distribution and



Table 2. Experimental comparison of different blind rotations using parameters at
128-bit security (where the column “Key distrib.” denotes the key distributions used
for the first-layer encryption; the column “EVK” denotes the evaluation key size for
blind rotation; the last column “Timing” denotes the timing for running the whole
bootstrapping algorithm).

Algorithms
Parameters Key EVK Timing

(n, q, d,N, log2 Q,B, |U |) distrib. (MB) (ms)

FHEW/AP [22,6]
STD128 [39]

(512,1024,4,1024,27,32,-)
Ternary 1674 359

TFHE/GINX [19,6]
STD128 [39]

(512,1024,4,1024,27,-,2)
Ternary 54 234

Ours

P128T
(512,1024,5,1024,19.9,-,-)

Ternary 18.65 112

P128G
(465,1024,5,1024,19.9,-,-)

Gaussian 17.90 100

outperforms AP and GINX in both the evaluation key size and the computation
efficiency. By using our blind rotation algorithm as a building block, we construct
new bootstrapping algorithms for both LWE-based and RLWE-based first-layer
ciphertexts. Finally, we implement our bootstrapping algorithm for LWE-based
first-layer ciphertexts, and the experiment shows that it can be efficiently done
in 112ms on a laptop for parameters at 128-bit security.4

In Table 1, we give a theoretical comparison of different blind rotations, where
n, q are the dimension and modulus for the first-layer encryption; N,Q are the
dimension and modulus of the ring RQ = ZQ[X]/(XN + 1) for the second-layer
GSW-like encryption; d is the bit-decomposition dimension for multiplying a
second-layer GSW-like ciphertext; |U | is the number of bits needed to represent
the full range of secret key samples, e.g. |U | = 2 for ternary secrets. Since
q is usually less than 2n for typically choices of parameters [39], one can see
from Table 1 that our blind rotation has asymptotically the best performance
in both evaluation key size and computational efficiency. We note that Lee et
al.’s blind rotation [37] also has similar asymptotically performance as ours, but
unlike us, they rely on an RLWE-based second-layer GSW-like encryption. Our
NTRU-based GSW-like encryption allows us to obtain improvements over Lee
et al. [37] by a factor about 2.7 times in the evaluation key size, and about 3
times in the computational efficiency.

In Table 2, we give an experimental comparison of different blind rotations.
All the figures are obtained by running the corresponding algorithms on the
4 We note that the timing of 13ms for a single GINX-like bootstrapping reported

in [19] is obtained using implementation with binary secret keys (i.e., |U | = 1) and
AVX2 instructions. The timing of their implementation using portable C language
on our laptop is actually 227ms for 128-bit security parameter, which is roughly 2
times slower than our algorithm, close to our theoretical estimation in Table 1.



same laptop using parameters providing at least 128-bit security. 5 The pa-
rameter STD128 for FHEW/AP [22] and TFHE/GINX [19] is the default pa-
rameter provided in the OpenFHE 0.9.1 library [6] and recommended in [39].
For comparison, we choose two sets of parameters P128T and P128G: P128T
is set to have the same parameters (n, q) and ternary key distribution with
STD128 for the first-layer LWE encryption; while P128G is set to use a Gaus-
sian key distribution with variance 4/3. From Table 2, one can see that we
only have to store an evaluation key of size 18.65MB for blind rotation using
parameter P128T, which is about 89.8 times smaller than FHEW/AP and 2.9
times smaller than TFHE/GINX. Moreover, our bootstrapping algorithm can be
done in 112ms, which is about 3.2 times faster than FHEW/AP and 2.1 times
faster than TFHE/GINX. When using P128G with Gaussian key distribution,
we can obtain an extra 10% improvements over P128T (while the performance
of TFHE/GINX will become worse by roughly a factor of 1.5 when using our
Gaussian key distribution).

1.2 Our Techniques

We now explain the techniques behind our results. Without loss of generality, a
first-layer ciphertext is assumed to have a form of (a, b =

∑n−1
i=0 aisi−noised(m)),

where a = (a0, . . . , an−1), s = (s0, . . . , sn−1) ∈ Zn
q are respectively the random-

ness and the secret key used to encrypt some plaintext m ∈ Zq. Our goal is to
homomorphically compute noised(m) =

∑n−1
i=0 aisi−b mod q. At a high level, we

want to remove the modulo q operation by choosing a ring RQ = ZQ[X]/(XN+1)
with N being a power of 2 and q = 2N such that the order of X in RQ is exactly
q and the modulo q operation can be done for free in the exponent of X:

Xnoised(m) = X
∑n−1

i=0 aisi−b mod q = X−bX
∑n−1

i=0 aisi .

Then, by multiplying a rotation polynomial r(X) =
∑q−1

i=0 iX
−i ∈ RQ we can ex-

tract the value noised(m) from Xnoised(m) to the constant term of the polynomial
r(X) ·X−bX

∑n−1
i=0 aisi , which is equal to

r(X) ·Xnoised(m) = noised(m) +
∑

i ̸=noised(m)

iXnoised(m)−i.

The above procedure is called blind rotation [5,22,26,19,41], which can be ex-
tended to any (q,N) with q|2N by multiplying a constant 2N/q in the exponent:

r(X
2N
q ) ·X

2N
q noised(m) = noised(m) +

∑
i ̸=noised(m)

iX
2N
q (noised(m)−i).

Note that s = (s0, . . . , sn−1) is the secret key, we can only compute

r(X
2N
q ) ·X

2N
q noised(m) = r(X

2N
q ) ·X− 2N

q bX
2N
q

∑n−1
i=0 aisi

5 Table 2 does not include the bootstrapping algorithms in [37,7] because the code
for [37] is not publicly available, and [7] did not use the recommended parameters
(See Section 1.3 for more discussions).



by using ciphertexts that encrypt s. Previously, this is done by either using the
AP method [5,22,41] which relies on the decompositions of ai =

∑
j ai,jB

j in
some base B and encrypts all possible values of ai,jsi ∈ Zq in the evaluation key,
or using the the GINX method [26,19] which relies on the bit decompositions
of si =

∑
u∈U si,uu for some public set U and encrypts all si,u ∈ {0, 1} in

the evaluation key. Unlike AP and GINX, we use the idea of Lee et al. [37]
to perform blind rotation by using ring automorphisms in RQ. Basically, given
a ciphertext c(X) ∈ RQ = Z[X] that encrypts Xsi using secret key f(X),
we can easily obtain a ciphertext c(Xai) that encrypts Xaisi by applying the
automorphism X → Xai to c(X) if ai ∈ Zq is coprime to 2N . One problem
is that c(Xai) is not a ciphertext under the original secret key f(X) but a
related secret key f(Xai). We need to perform a key-switching to convert c(Xai)
back to a ciphertext that encrypts Xaisi under the secret key f(X) to allow
further homomorphic computations (recall that we have to homomorphically
compute r(X

2N
q )·X− 2N

q bX
2N
q (

∑n−1
i=0 aisi)). The other problem is that each ai ∈ Zq

in a given ciphertext (a, b) can be an even integer (with probability 1/2) and
thus is not coprime to 2N . This means that c(Xai) may become an invalid
ciphertext if we directly replace X with Xai in c(X) for an even integer ai.
Fortunately, for most parameters used in practice [39] the requirement q|N is
satisfied, we can instead compute X

2N
q aisi = X( 2N

q ai+1)si−si = XwisiX−si ,
where wi =

2N
q ai + 1 < 2N is always an odd integer and thus is coprime to 2N

for all ai ∈ Zq (recall that N is a power of 2). Thus, we can compute

r(X
2N
q ) ·X− 2N

q bX
2N
q (

∑n−1
i=0 aisi) = r(X

2N
q ) ·X− 2N

q bX
∑n−1

i=0 wisiX−
∑n−1

i=0 si

by using ring automorphisms almost without introducing extra restrictions on
the choice of N . In the following, we first give an NTRU-based GSW-like en-
cryption for the second layer such that the key-switching for ring automorphisms
can be done as efficient as a single GSW-like homomorphic multiplication.

NTRU-based GSW-like encryption. Let f, f ′ ∈ RQ be two polynomials with
small coefficients that are invertible in RQ. Let (τ,∆) be two integer parameters
depending on the encoding of m in noised(m) of the first-layer encryption. We
define a scalar NTRU ciphertext that “encrypts” plaintext u ∈ RQ under secret
key f as follows:

NTRUQ,f,τ,∆(u) = τ · g/f +∆ · u/f ∈ RQ,

where g ∈ RQ is a noise polynomial with small coefficients. Noted that both
the noise term and the message are divided by f . This essentially requires by a
circular-secure/KDM-secure assumption on NTRU, which is also used in [7,35].
Let B be an integer and d = ⌈logB Q⌉, we also define a vector NTRU ciphertext
that “encrypts” plaintext v ∈ RQ under secret key f ′ as follows:

NTRU′
Q,f ′,τ (v) := (τ ·g0/f ′+v, τ ·g1/f ′+B ·v, · · · , τ ·gd−1/f

′+Bd−1 ·v) ∈ Rd
Q,

where {gi}0≤i≤d−1 are also noise polynomials with small coefficients. Given a
polynomial c ∈ RQ, let BitDecomB(c) be the deterministic function that converts



c =
∑d−1

i=0 ci · Bi into a d-dimensional vector (c0, c1, . . . , cd−1) ∈ Rd
B . Now, we

define the external product ⊙ between a polynomial c ∈ RQ and a vector NTRU
ciphertext c′ = NTRU′

Q,f ′,τ (v) as follows:

c⊙ c′ =

d−1∑
i=0

cic
′
i = τ ·

(
d−1∑
i=0

gici

)
/f ′ + cv,

where (c0, . . . , cd−1) = BitDecomB(c) ∈ Rd
B and c′ = (c′0, . . . , c

′
d−1) ∈ Rd

Q.
Note that if c = NTRUQ,f,τ,∆(u) is a scalar NTRU ciphertext with f ′ = f

and v ∈ RQ has small coefficients, we have that c ⊙ c′ =
∑d−1

i=0 cic
′
i = τ ·

g′/f +∆ · uv/f is a valid ciphertext NTRUQ,f,τ,∆(uv) that encrypts uv ∈ RQ

with g′ =
∑d−1

i=0 gici + gv. Moreover, in order to convert c = NTRUQ,f,τ,∆(u)
into a ciphertext ĉ = NTRUQ,f ′,τ,∆(u) that encrypts the same plaintext u under
another secret key f ′, it is sufficient to set v = f/f ′ and ĉ = c⊙c′ =

∑d−1
i=0 cic

′
i =

τ · ĝ/f ′+∆ ·u/f ′, where ĝ =
∑d−1

i=0 gici+g. This means that both homomorphic
multiplication and key-switching can be efficiently done by using a single external
product, which in turn only needs d multiplications in RQ.

Fast blind rotation with small key size. Recall that the goal of blind rotation is
to homomorphically compute

r(X
2N
q ) ·X− 2N

q bX
2N
q (

∑n−1
i=0 aisi) = r(X

2N
q ) ·X− 2N

q bX
∑n−1

i=0 wisiX−
∑n−1

i=0 si ,

where both r(X
2N
q )·X− 2N

q b ∈ RQ and wi =
2N
q ai+1 < 2N can be publicly com-

puted from the ciphertext (a, b =
∑n−1

i=0 aisi−noised(m)) that needs to be boot-
strapped. A key feature required for previous blind rotations [5,22,26,19,41,7] is
that r(X

2N
q ) · X− 2N

q b ∈ RQ can be naturally treated as a scalar “ciphertext”
(with zero noise), so that one can directly multiply it with a vector ciphertext
that encrypts X

2N
q (

∑n−1
i=0 aisi) by a single external product to obtain a (scalar)

ciphertext that encrypts r(X
2N
q )·X− 2N

q bX
2N
q (

∑n−1
i=0 aisi). However, this feature is

not satisfied for our NTRU-based GSW-like encryption, because a scalar NTRU
ciphertext that encrypts r(X

2N
q ) ·X− 2N

q b in our above scheme has the form of
τ · g/f +∆ · (r(X

2N
q ) ·X− 2N

q b)/f ∈ RQ, which cannot be publicly created even
using zero noise g = 0.

Fortunately, we can solve this problem almost for free by carefully designing
the evaluation key. Specifically, we create a set of ciphertexts that encrypts
s = (s0, . . . , sn−1) as follows:

evk0 = NTRU′
Q,f,τ (X

s0/f), evki = NTRU′
Q,f,τ (X

si) for 1 ≤ i < n,

evkn = NTRU′
Q,f,τ (X

−
∑n−1

i=0 si).

We also create a set of ciphertexts for the key-switchings associated with all the
needed ring automorphisms as follows:

kskj = NTRU′
Q,f,τ

(
f(Xj)/f(X)

)
for all j ∈ S =

{
2N

q
i+ 1 : 1 ≤ i ≤ q − 1

}
.



The evaluation key is defined as EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S). Since
each element in EVKτ,∆ has d elements in RQ, we only need to store d(n+ q)
RQ elements in total for the evaluation key.

Given EVKτ,∆ and a ciphertext (a, b =
∑n−1

i=0 aisi − noised(m)), we now
describe our new blind rotation algorithm. First, for each ai in a = (a0, . . . , an−1)
and wi =

2N
q ai+1, we compute w′

i = w−1
i mod 2N . We also set w′

n = 1 for ease

of presentation. Then, we compute c0(X) =
(
∆ · r(X

2N
q w′

0) ·X− 2N
q bw′

0

)
⊙evk0.

Since evk0 = NTRU′
Q,f,τ (X

s0/f), one can easily check that

c0(X) = NTRUQ,f,τ,∆(r(X
2N
q w′

0) ·X− 2N
q bw′

0Xs0).

By applying the automorphism X → Xw0w
′
1 to c0(X) (note that w0w

′
1 is always

coprime to 2N), we can obtain a ciphertext

c′0(X) = c0(X
w0w

′
1) = NTRU

Q,f(Xw0w′
1 ),τ,∆

(r(X
2N
q w′

1) ·X− 2N
q bw′

1Xw0w
′
1s0)

under secret key f(Xw0w
′
1). For our goal, we want to switch it back to a ciphertext

that encrypts the same plaintext r(X
2N
q w′

1) ·X− 2N
q bw′

1Xw0w
′
1s0 under secret key

f(X), which can be done by computing

ĉ0(X) =

{
c′0(X), if w0w

′
1 = 1;

c′0(X)⊙ kskw0w′
1
, otherwise.

Note that 2N/q is a factor of 2N and w0, w1 ∈ S∪{1}. This means that we always
have that w0w

′
1 ∈ S ∪ {1}, and that kskw0w′

1
= NTRU′

Q,f,τ

(
f(Xw0w

′
1)/f(X)

)
is included in the evaluation key EVKτ,∆. By the definition of external product
we have that ĉ0(X) = NTRUQ,f,τ,∆(r(X

2N
q w′

1) ·X− 2N
q bw′

1Xw0w
′
1s0).

Similarly, we can iteratively absorb Xsi for 1 ≤ i ≤ n − 1 as follows. First,
we compute ci(X) = ĉi−1(X) ⊙ evki = ĉi−1(X) ⊙ NTRU′

Q,f,τ (X
si) to obtain

ci(X) = NTRUQ,f,τ,∆(r(X
2N
q w′

i) ·X− 2N
q bw′

iX(
∑i−1

j=0 wjsj)w
′
i+si). Then, apply the

automorphism X → Xwiw
′
i+1 to ci(X) and obtain

c′i(X) = NTRU
Q,f(X

wiw
′
i+1 ),τ,∆

(r(X
2N
q w′

i+1) ·X− 2N
q bw′

i+1X(
∑i

j=0 wjsj)w
′
i+1).

Next, compute

ĉi(X) =

{
c′i(X), if wiw

′
i+1 = 1

c′i(X)⊙ kskwiw′
i+1
, otherwise,

to obtain ĉi(X) = NTRUQ,f,τ,∆(r(X
2N
q w′

i+1) ·X− 2N
q bw′

i+1X(
∑i

j=0 wjsj)w
′
i+1).

After the above iterative procedure, we compute and output ĉn−1(X)⊙evkn.
Since evkn = NTRU′

Q,f,τ (X
−

∑n−1
i=0 si) and w′

n = 1, we finally have that

ĉn−1(X)⊙ evkn = NTRUQ,f,τ,∆

(
r(X

2N
q ) ·X− 2N

q bX
∑n−1

j=0 wjsjX−
∑n−1

j=0 sj
)
,



which is the desired result for blind rotation. In all, our blind rotation only needs
at most n automorphisms and 2n + 1 external products (i.e., n + 1 for homo-
morphic multiplications and n for key switchings), which in turn only requires
at most d(2n + 1) multiplications in RQ (note that the automorphisms in RQ

can be done cheaply by permuting the coefficients of RQ elements with signs).

Bootstrapping LWE-based first-layer ciphertexts. For ease of presentation, we
only consider the case that the plaintext m ∈ Zt is encoded in the higher bits
of noised(m) = e + m · ⌊ qt ⌉ for some noise e (but we note that our approach
also applies to other kinds of encodings). Specifically, the first-layer ciphertext
(in the secret-key setting) has a form of (a, b =

∑n−1
i=0 aisi − (e + m · ⌊ qt ⌉)) ∈

Zn
q × Zq, where a = (a0, . . . , an−1) and s = (s0, . . . , sn−1). Given an evalu-

ation key EVKτ,∆ with (τ,∆) = (1, ⌊Qt ⌉) as defined before, we can use the
above blind rotation algorithm to obtain a ciphertext c = NTRUQ,f,τ,∆(u) =

g/f +∆ · u/f , where u = r(X
2N
q ) ·X− 2N

q bX
∑n−1

j=0 wjsjX−
∑n−1

i=0 si = noised(m) +∑
i ̸=noised(m) iX

2N
q (noised(m)−i). We can actually further remove the noise e in

noised(m) almost for free by setting r(X) =
∑q−1

i=0 (⌊i/⌊q/t⌉⌉ mod t)X−i. Since
m = ⌊noised(m)/⌊q/t⌉⌉ mod t by the correctness of the first-layer encryption,
we have

u = m+
∑

i ̸=noised(m)

(⌊i/⌊q/t⌉⌉ mod t)X
2N
q (noised(m)−i).

Now, it suffices to show how to convert c = NTRUQ,f,τ,∆(u) = g/f + ∆ · u/f
into an LWE-based ciphertext that encrypts m under the original secret key
s. Let c = (c0, . . . , cN−1), f = (f0, . . . , fN−1),g = (g0, . . . , gN−1) ∈ ZN

Q be
the corresponding coefficient vectors of the polynomials c, f, g ∈ RQ. We have
that the constant term of the polynomial fc ∈ RQ is equal to g0 + ∆ · m ∈
ZQ, which in turn is equal to f0c0 −

∑N−1
i=1 cifN−i mod Q. By setting ĉ =

(c0,−cN−1, . . . ,−c1) ∈ ZN
Q , we have that 0 = ⟨ĉ, f⟩ − (g0 + ∆ ·m) ∈ ZQ. This

means that (ĉ, 0) ∈ ZN
Q × ZQ can actually be seen as an LWE-based ciphertext

that encrypts m under the secret key f ∈ ZN
Q and noise g0. Thus, we can finally

obtain a ciphertext in Zq that encrypts m under the original secret key s by first
making a key-switching from f to s and then a modulus switching from Q to q.

In summary, to bootstrap the ciphertext (a, b =
∑n−1

i=0 aisi− (e+m · ⌊ qt ⌉)) ∈
Zn
q × Zq, we only need to set the parameters such that g0/Q ≪ e/q and create

a key-switching key from f to s, which is essentially a set of ciphertexts that
encrypts f ∈ ZN under the secret key s ∈ Zn.

Bootstrapping RLWE-based first-layer ciphertexts. Let R̂q = Zq[X]/ (Xn + 1) be
the ring for the first-layer encryption. Given an RLWE ciphertext (a, b = a · s−
noised(m)) ∈ R̂q×R̂q, where s ∈ R̂q is the secret key. Let a = (a0, . . . , an−1), s =
(s0, . . . , sn−1),m = (m0, . . . ,mn−1) ∈ Zn

q be the corresponding coefficient vec-



tors of the polynomials a, s,m ∈ R̂q. By the fact that

a · s =
n−1∑
i=0

 i∑
j=0

sj · ai−j −
n−1∑

j=i+1

sj · ai−j+n

Xi ∈ R̂q,

we can actually get n LWE ciphertexts (ai, bi) that encrypts mi under the secret
key s for all 0 ≤ i ≤ n− 1, where ai = (ai, . . . , a0,−an−1, . . . ,−ai+1).

Then, for each LWE ciphertext (ai, bi), we run our blind rotation algorithm
to get an NTRU ciphertext ci = NTRUQ,f,τ,∆(ui) ∈ RQ such that the con-
stant coefficient of ui ∈ RQ is exactly mi. Let ci = (ci,0, ci,1, . . . , ci,N−1) ∈ ZN

Q

be the coefficient vector of ci ∈ RQ. Let ĉi = (ci,0,−ci,N−1, . . . ,−ci,1) ∈ ZN
Q ,

then (ĉi, 0) ∈ ZN
Q × ZQ is actually an LWE-based ciphertext that encrypts mi

under the secret key f = (f0, f1, . . . , fN−1) ∈ ZN
Q . Finally, we can directly use

the technique in [40] to pack the resulting LWE-based ciphertexts into a single
RLWE-based ciphertext.

1.3 Other related work and discussions

Bonte et al. [7] and Kluczniak [35] adapted the GINX-like blind rotation to
the NTRU setting with better efficiency, also based on new second-layer GSW-
like encryptions from the NTRU assumption, which are different from ours. In
particular, our GSW ciphertext is designed to have the form of (g + m)/f to
support fast key-switching for ring automorphisms, while the ciphertext in [7]
is g/f + m, and the ciphertext in [35] is e1 · g/f + e2 + m. It seems that the
NTRU-based GSW encryptions in both [7,35] do not support fast key-switching
for ring automorphisms, which is very critical for our improvement.

In terms of concrete efficiency, for binary key distribution the blind rotation
algorithms in [7,35] perform better than ours in terms of evaluation key size and
computational efficiency. For ternary key distribution, Bonte et al. [7] presented
a special CMux gate which results in a reduction of the computational efficiency
of GINX-like blind rotation by half, while maintaining the evaluation key size
unchanged. This makes the computational performance of their blind rotation
asymptotically two times faster than ours in the setting of ternary key distribu-
tion. For other key distributions such as Gaussian distribution, they [7,35] have to
use the general GINX approach to obtain blind rotations that have performance
linear in the bit-decomposition size of the secret keys, and thus is asymptotically
worse than ours (offering asymptotic overhead with factor |U | in runtime and
evaluation key size). For example, for uniform key distribution over [−2, 2] (that
is slightly larger than ternary distribution), the computational efficiency of our
blind rotation is already asymptotically 1.5 times faster than that in [7,35]. We
note that many existing FHE libraries, e.g., Helib, use small binary or ternary se-
crets for performance consideration. However, the literature has reported several
attacks on existing libraries using small secret keys [2,3,44,24]. In fact, there are
three types key distributions recommended in [1], namely, uniform, Gaussian,
and ternary distribution, which do not include the binary secrets for security



concerns [1]. Thus, it is of great theoretical and practical interest to improve the
bootstrapping performance for large secret keys.

More recently, Lee et al. [37] proposed the first blind rotation algorithm that
uses ring automorphisms. A key difference between [37] and ours is that their
construction is based on an existing RLWE-based GSW encryption, while we
have to carefully design a new GSW-like encryption from the NTRU assump-
tion. As discussed in Section 1.2 and above, the adaption from the RLWE setting
to the NTRU setting is non-trivial. In particular, unlike other known GSW en-
cryptions including the one in [37], our NTRU-based GSW ciphertexts designed
for fast key-switching cannot be publicly generated even for known plaintexts,
which requires a careful design to the generation of evaluation keys.

1.4 Organization

After giving some background in Sec. 2, we give an NTRU-based GSW-like
encryption in Sec. 3. In Sec. 4, we present our new blind rotation. We show
how to bootstrap LWE-based and RLWE-based first-layer ciphertexts in Sec. 5
and Sec. 6, respectively. Finally, we report our implementation for bootstrapping
LWE-based first layer ciphertexts in Sec. 7.

2 Preliminaries

2.1 Notation

The set of real numbers (integers) is denoted by R (Z, resp.). We use ← to
denote randomly choosing an element from some distribution (or the uniform
distribution over some finite set). Vectors are denoted by bold lower-case letters
(e.g., a). By ∥ · ∥2 and ∥ · ∥∞, we denote the ℓ2 and ℓ∞ norms. By ⌈·⌉, ⌊·⌋ and
⌊·⌉ we denote the ceiling, floor and round functions, respectively.

Let n,N, q,Q be positive integers with n,N being powers of 2. By R (resp., R̂)
and RQ we denote the 2N -th (resp., 2n-th) cyclotomic ring R = Z[X]/

(
XN + 1

)
(resp., R̂) and its quotient ring RQ = R/QR (resp., R̂/qR̂). The norm of a ring
element a(X) ∈ R (or R̂) is defined as the norm of its coefficient vector. There are
N (resp., n) automorphisms ψt over R (resp., R̂) given by ψt : a(X)→ a(Xt) for
all t that is coprime to 2N (resp., 2n). Since ψt(a(X)) is essentially equivalent
to a permutation with signs on the coefficient vector of a(X), the norm of a
polynomial is invariant under those N (resp., n) automorphisms.

2.2 Hard Problems and Ciphertexts

In this subsection, we first recall some backgrounds on hard problems.
Definition 1 (Decisional LWE Problem [42]). For positive integers q and
n, let χ be a noise distribution over Z, the decisional LWE problem is to distin-
guish between (a, b = ⟨a, s⟩−e) ∈ Zn

q ×Zq and a pair uniformly chosen at random
from Zn

q × Zq, where a is drawn uniformly at random from Zn, s is drawn from
some key distribution over Zn, and e is drawn from χ.



Definition 2 (Decisional RLWE Problem [38]). For positive integers N
and Q, let R = Z[X]/(XN + 1) and RQ = ZQ[X]/(XN + 1). Let χ be a noise
distribution over R. The decisional RLWE problem is to distinguish between
(a, b = a · s − e) ∈ RQ × RQ from a pair uniformly chosen at random from
RQ × RQ, where a is drawn uniformly at random from RQ, s is drawn from
some key distribution over RQ, and e is drawn according to χ.

Definition 3 (Decisional NTRU Problem [34]). For positive integers N
and Q, let R = Z[X]/(XN + 1) and RQ = ZQ[X]/(XN + 1). Let χ be a noise
distribution over R. Let f, g ← χ and f has an inverse in RQ, the decisional
NTRU problem is to distinguish between g/f ∈ RQ and a uniform polynomial
drawn uniformly at random from RQ.

We also need a variant of the NTRU assumption, which we call Decisional
Vectorized-NTRU Problem.

Definition 4 (Decisional Vectorized-NTRU Problem ). For positive in-
tegers N and Q, let R = Z[X]/(XN + 1) and RQ = ZQ[X]/(XN + 1). Let χ be
a noise distribution over R. For a positive integer d, let f, g0, · · · , gd−1 ← χ and
f has an inverse in RQ, the decisional Vectorized-NTRU problem is to distin-
guish between (g0/f, · · · , gd−1/f) ∈ Rd

Q and a d-dimensional uniform polynomial
vector drawn uniformly at random from Rd

Q.

As commented in [27, Section 1.2], the above problem is merely a syntactic
extension of the standard NTRU problem and facilitates the encryption of longer
messages, without an essential change in the security assumption.

Definition 5 (LWE Ciphertexts). For positive integers q and n, an LWE-
based encryption of m ∈ Z under secret key s ∈ Zn is defined as

LWEq,s(m) := (a, b) = (a, ⟨a, s⟩ − noised(m)) ∈ Zn
q × Zq,

where a ← Zn
q is the randomness, and noised(m) ∈ Zq is an noised encoding of

m ∈ Z using some noise e ∈ Z chosen from some distribution χ over Z.

Definition 6 (RLWE ciphertexts). For positive integers Q and N , an RLWE-
based encryption of m ∈ R under secret key s ∈ R is defined as

RLWEQ,s(m) := (a, a · s− noised(m)) ∈ RQ ×RQ,

where a← RQ is the randomness, and noised(m) ∈ RQ is an noised encoding of
m ∈ R using some noise e ∈ R chosen from some distribution χ over R.

3 NTRU-based GSW-like Encryption

In this section, we give an NTRU-based GSW-like encryption that supports fast
key switching for ring automorphisms on (scalar) ciphertexts.



Definition 7 (scalar NTRU ciphertexts). Let τ,∆ be two integer parame-
ters that will be determined later. Our scalar NTRU encryption of u ∈ RQ under
a secret key f ∈ RQ (that is invertible in RQ) is defined as

NTRUQ,f,τ,∆(u) := τ · g/f +∆ · u/f ∈ RQ,

where both f, g ∈ RQ are polynomials with small coefficients, which are usually
taken from a ternary distribution in practice.

Looking ahead, we will set the two integer parameters (τ,∆) depending on
the encodings (namely, Regev-like [42], BGV-like [10], and CKKS-like [16]) of
m ∈ Zt in noised(m) of the first-layer encryption over Zq as follows:

(τ,∆) =


(
1,
⌊
Q
t

⌉)
, if noised(m) = e+

⌊
q
t

⌉
·m;

(t, 1), if noised(m) = t · e+m;

(1, 1), if noised(m) = e+m.

Definition 8 (vector NTRU ciphertexts). Let B be an integer parameter,
our vector NTRU encryption of v ∈ RQ under a secret key f ∈ R (that is
invertible in RQ) is defined as

NTRU′
Q,f,τ (v) := (τ · g0/f +B0 · v, · · · , τ · gd−1/f +Bd−1 · v) ∈ Rd

Q,

where f, g0, · · · , gd−1 ∈ RQ have small coefficients, and d = ⌈logB Q⌉.

For any a ∈ RQ, by BitDecomB(a) ∈ Rd
B we denote the decomposition

vector (a0, . . . , ad−1) ∈ Zd
B of a in base B such that a =

∑d−1
i=0 ai · Bi. Now,

we define the external product “⊙” between a polynomial c ∈ RQ and a vec-
tor NTRU ciphertext c′ = NTRU′

Q,f,τ (v) ∈ Rd
Q as the inner product between

BitDecomB(c) = (c0, . . . , cd−1) and c′ = (c′0, · · · , c′d−1):

c⊙ c′ = ⟨BitDecomB(c), c
′⟩ =

d−1∑
i=0

cic
′
i = τ ·

d−1∑
i=0

cigi/f + cv ∈ RQ

Note that if c ∈ NTRUQ,f,τ,∆(u) is a scalar NTRU ciphertext and v has small
coefficients, then we have that the result of c ⊙ c′ is a scalar NTRU ciphertext
that encrypts uv, namely,

c⊙ c′ = NTRUQ,f,τ,∆(u)⊙NTRU′
Q,f,τ (v) = NTRUQ,f,τ,∆(uv).

Formally, we have the following lemma.

Lemma 1 (Homomorphic Multiplication). Let c = NTRUQ,f,τ,∆(u) ∈ RQ

be a scalar NTRU ciphertext using some noise distribution with variance V ar(g).
Let c′ = NTRU′

Q,f,τ (v) be a vector NTRU ciphertext using some noise distribu-
tion with variance V ar(g′). Then, we have that ĉ = c⊙ c′ = τ · ĝ/f +∆ · uv/f
is a scalar NTRU ciphertext for uv, and the variance of ĝ satisfies

V ar(g′) ⩽ dN
B2

12
V ar(g′) + ∥v∥22 · V ar(g).



In particular, if v is a monomial with binary coefficient, then we have

V ar(g′) ⩽ dN
B2

12
V ar(g′) + V ar(g).

Proof. By definition, we have c = τ · g/f +∆ ·u/f = NTRUQ,f,τ,∆(u), and c′ =
(c′0, . . . , c

′
d−1) = NTRU′

Q,f,τ (v) for some c′i = τ ·gi/f+Bi ·v. Let (c0, · · · , cd−1) =

BitDecomB(c) be the decomposition of c in base B, i.e., c =
∑d−1

i=0 = ci · Bi.
Then, we have

ĉ = c⊙ c′ = ⟨BitDecomB(c), c
′⟩ =

d−1∑
i=0

ci(τ · gi/f +Bi · v)

= τ ·
d−1∑
i=0

cigi/f + cv = τ · (
d−1∑
i=0

cigi + gv)/f +∆ · uv/f

= τ · g′/f +∆ · uv/f ∈ RQ

where g′ =
∑d−1

i=0 cigi+gv. Hence ĉ is a scalar NTRU ciphertext for uv. Moreover,
since ∥ci∥∞ < B for all 0 ≤ i ≤ d − 1, by assumption that g has variance
V ar(g) and that all gi’s have the same variance V ar(g′), we have that V ar(ĝ) ⩽
V ar(

∑d−1
i=0 cigi) + V ar(gv) = dN B2

12 V ar(g
′) + ∥v∥22 · V ar(g).6 This proves the

first claim. The second claim directly follows from the fact that ∥v∥22 ≤ 1 for any
monomial v with binary coefficient. This completes the proof.
In the rest of this paper, we denote σ2

⊙ = dN B2

12 V ar(g
′) as the variance of the

increased noise (with respect to the input scalar NTRU ciphertext) for homo-
morphic multiplication.

3.1 Key Switching for Scalar NTRU Ciphertexts

In this subsection, we define a pair of algorithms (KSKGen,KS) for key switching
scalar NTRU ciphertexts as follows:

• KSKGen(f1, f2): Given two secret keys f1, f2 ∈ RQ that are invertible in RQ

as inputs, the key-switching key from f1 to f2 is defined as

kskf1,f2 = (τ · g0/f2 +B0 · f1/f2, · · · , τ · gd−1/f2 +Bd−1 · f1/f2).

Note that kskf1,f2 is essentially a vector NTRU ciphertext NTRU′
Q,f2,τ (f1/f2)

that encrypts f1/f2 under the secret key f2.
• KSf1→f2(c,kskf1,f2): Given a scalar ciphertext NTRUQ,f1,τ,∆(u) that en-

crypts u under the secret key f1, and a key-switching key kskf1,f2 as inputs,
compute and output

ĉ = c⊙ kskf1,f2 .

6 This formula uses a simplification assumption that each coefficient of ci is uniformly
distributed over [0, B − 1].



Clearly, the above key-switching algorithm only needs a single external prod-
uct, which is as efficient as a single homomorphic multiplication, and can be done
by using d multiplications in RQ. In the following lemma, we show that ĉ is in-
deed a scalar NTRU ciphertexts that encrypts u under the secret key f2.

Lemma 2 (Key Switching). Let c = NTRUQ,f1,τ,∆(u) ∈ RQ be a scalar
NTRU ciphertext that encrypts u using secret key f1 and some noise distribution
with variance V ar(g). Let kskf1,f2 = KSKGen(f1, f2) = NTRU′

Q,f2,τ (f1/f2) be
the key-switching key from f1 to f2 using some noise distribution with variance
V ar(g′). Then, we have that

ĉ = KSf1→f2(c,kskf1,f2) = c⊙ kskf1,f2 = τ · ĝ/f2 +∆ · u/f2

is a scalar NTRU ciphertext that encrypts u under the secret key f2, and the
variance of ĝ satisfies

V ar(ĝ) ⩽ dN
B2

12
V ar(g′) + V ar(g).

Proof. By definition, we have c = τ · g/f1 + ∆ · u/f1 = NTRUQ,f1,τ,∆(u), and
kskf1,f2 = (c′0, . . . , c

′
d−1) = NTRU′

Q,f2,τ (f1/f2) for some c′i = τ ·gi/f2+Bi·f1/f2.
Let (c0, · · · , cd−1) = BitDecomB(c) be the decomposition of c in base B, i.e.,
c =

∑d−1
i=0 = ci ·Bi. Then, we have

ĉ = NTRUQ,f1,τ,∆(u)⊙ kskf1,f2 =

d−1∑
i=0

ci(τ · gi/f2 +Bi · f1/f2)

= τ ·
d−1∑
i=0

cigi/f2 + cf1/f2 = τ · (
d−1∑
i=0

cigi + g)/f2 +∆ · u/f2

= τ · g′/f2 +∆ · u/f2 ∈ RQ

where g′ =
∑d−1

i=0 cigi + g. Hence ĉ is a scalar NTRU ciphertext that encrypts
u under secret key f2. Moreover, since ∥ci∥∞ < B for all 0 ≤ i ≤ d − 1, by
assumption that g has variance V ar(g) and that all gi’s have the same variance
V ar(g′), we have that V ar(g′) ⩽ dN B2

12 V ar(g
′) + V ar(g).7

By σ2
KS = dN B2

12 V ar(g
′) = σ2

⊙ we denote the variance of the increased noise
(with respect to the input scalar NTRU ciphertext) for key switching.

3.2 Automorphisms on Scalar NTRU Ciphertexts

Let N be a power of 2, and R = Z[X]/(XN + 1). Recall that there are N
automorphisms ψt : R → R given by a(X) → a (Xt) for all odd integers in
Z2N . In this subsection, we show how to apply automorphism ψt on a plaintext
7 Again, this formula uses a simplification assumption that each coefficient of ci is

uniformly distributed over [0, B − 1].



u ∈ RQ that is encrypted in a scalar NTRU ciphertext c = NTRUQ,f,τ,∆(u)
to get a new ciphertext ĉ = NTRUQ,f,τ,∆(ψt(u)) = NTRUQ,f,τ,∆(u(Xt)) that
encrypts ψ(u) under the same secret key f . Looking ahead, we will achieve this
by first applying ψt on c, and then making a key switching from ψt(f) = f(Xt)
to f(X) on the resulting ciphertexts ψt(c) = c(Xt). Formally, we define a pair
of algorithms (AutoKGen,EvalAuto) for automorphisms as follows:

• AutoKGen(t, f) : Given an odd integer t ∈ Z2N and a secret key f ∈ RQ,
compute kskt = KSKGen(ψt(f), f) = KSKGen(f(Xt), f(X)).

• EvalAutot(c,kskt): Given a scalar NTRU ciphertext c = NTRUQ,f,τ,∆(u)
that encrypts u ∈ RQ under the secret key f ∈ RQ, and an automorphism
key kskt, compute ψt(c) = c(Xt) and return

ĉ = KSf(Xt)→f(X)(c(X
t),kskt) = c(Xt)⊙ kskt.

Since the automorphism on ψt : X → Xt on the ciphertext c can be achieved
by simply permuting the coefficient vector of c ∈ RQ with signs, the cost of
the above automorphism algorithm is dominated by the single external product
for key switching. We now show that ĉ is a desired ciphertext that encrypts
ψt(u) = u(Xt) under the secret key f in the following lemma.

Lemma 3 (Automorphisms on Scalar NTRU Ciphertexts). Let N be
a power of 2, and let t be an odd integer. Let c = NTRUQ,f,τ,∆(u) ∈ RQ be
a scalar NTRU ciphertext that encrypts u using secret key f and some noise
with variance V ar(g). Let kskt = AutoKGen(t, f) = KSKGen(f(Xt), f(X)) be
the key-switching key from f(Xt) to f(X) using some noise distribution with
variance V ar(g′). Then, we have that

ĉ = EvalAutot(c,kskt) = KSf(Xt)→f(X)(c(X
t),kskt) = τ · ĝ/f +∆ · u(Xt)/f

is a scalar NTRU ciphertext that encrypts u(Xt) under the secret key f , and the
variance of ĝ satisfies

V ar(ĝ) ⩽ dN
B2

12
V ar(g′) + V ar(g).

Proof. By the definition of AutoKGen(t, f), we have that kskt is essentially a key-
switching key from f(Xt) to f(X). Thus, by Lemma 2, it suffices to show that
ψt(c) = c(Xt) is a ciphertext that encrypts u(Xt) under the secret key f(Xt)
with the same noise variance V ar(g) as c. Note that c = NTRUQ,f,τ,∆(u) =
τ · g/f +∆ ·u/f . By the property of the automorphism ψt, we have that ψt(c) =
c(Xt) = τ · g(Xt)/f(Xt) +∆ · u(Xt)/f(Xt). Clearly, c(Xt) is a ciphertext that
encrypts u(Xt) under secret key ψt(f) = f(Xt) and noise g(Xt). Since the
coefficient vector of g(Xt) is essentially a permutation of the coefficient vector of
g(X) with signs, we have V ar(g(Xt)) = V ar(g(X)). This completes the proof.



4 Fast Blind Rotation in the NTRU setting

Given an LWE-based first-layer ciphertext LWEq,s(m) = (a, b) ∈ Zn
q × Zq that

encrypts some plaintext m ∈ Zq under the secret key s ∈ Zn
q , a rotation poly-

nomial r(X) ∈ RQ = ZQ[X]/(XN + 1), the goal of blind rotation is to create a
second-layer (scalar) NTRU ciphertext that encrypts r(Y ) · Y −b+⟨a,s⟩ ∈ RQ for
some monomial Y ∈ RQ of order exactly q.

In this paper, we will set the parameter N such that N is a power of 2

and q|N . In this setting, the monomial Y = X
2N
q has an order of exactly

q. Before giving our construction of blind rotation, we first define a set S ={
2N
q i+ 1 : 1 ≤ i ≤ q − 1

}
⊂ Z2N of size q−1 that will be used later. Since q|N ,

it is easy to check that all the numbers in S are odd integers, and thus have
inverses in Z2N . Moreover, we have that S ∪{1} is actually a multiplicative sub-
group of Z2N . In fact, given any two numbers w, ŵ ∈ S ∪{1}, we have that their
inverses w−1, ŵ−1 ∈ Z2N and their multiplication wŵ ∈ Z2N are also in the set
S ∪ {1}. This is because we always have w−1 = ŵ−1 = wŵ = 1 mod 2N

q . Now,
we are ready to give our blind rotation construction.

4.1 The Construction

Let τ,∆ be two integers depending on the encoding of m in the first-layer cipher-
text. We define two algorithms (BRKGen,BREval) for blind rotation as follows:

• BRKGen(s, f): Given a secret key s = (s0, . . . , sn−1) ∈ Zn
q for the first-

layer encryption, and a secret key f ∈ RQ for the second-layer NTRU-based
GSW-like encryption, the algorithm first computes a set of ciphertexts:

evk0 = NTRU′
Q,f,τ (X

s0/f), evki = NTRU′
Q,f,τ (X

si) for 1 ≤ i < n,

evkn = NTRU′
Q,f,τ (X

−
∑n−1

i=0 si).

Then, it computes a set of ciphertexts for automorphisms as follows:

kskj = AutoKGen(j, f) = NTRU′
Q,f,τ

(
f(Xj)/f(X)

)
for all j ∈ S.

Finally, the algorithm outputs EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S) as
the evaluation key for blind rotation.

• BREval((a, b), r,EVKτ,∆): Given an LWE-based ciphertext LWEq,s(m) =
(a, b) ∈ Zn

q × Zq, a rotation polynomial r(X) ∈ RQ and an evaluation key
EVKτ,∆ at inputs, computes and returns ACC as described in algorithm 1.

In Theorem 1, we show that the output ACC of the blind rotation is indeed
a scalar NTRU ciphertext that encrypts r(X

2N
q ) ·X

2N
q (−b+

∑n−1
i=0 aisi).

Theorem 1 (Correctness of Blind Rotation). Let LWEq,s(m) = (a, b) ∈
Zn
q × Zq be an LWE-based ciphertext under secret key s = (s1, . . . , sn−1) ∈ Zn

q ,
where a = (a0, . . . , an−1) ∈ Zn

q . Let N be a power of 2 and q|N . Let r(X) ∈



Algorithm 1 BREval((a, b), r,EVKτ,∆)

Input:
An LWE ciphertext LWEs,q(m) = (a = (a0, . . . , an−1), b) ∈ Zn+1

q ;
A rotation polynomial r(X) ∈ RQ;
An evaluation key EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S) ∈ R

d(n+q)
Q .

Output:
An NTRU ciphertext NTRUQ,f,τ,∆

(
r(X

2N
q ) ·X

2N
q

(−b+
∑n−1

i=0 aisi)
)

.
1: for i = 0; i < n; i = i+ 1 do
2: wi =

2N
q
ai + 1

3: w′
i = w−1

i mod 2N
4: end for
5: w′

n = 1

6: ACC ← ∆ · r(X
2N
q

w′
0) ·X− 2N

q
bw′

0

7: for i = 0; i < n; i = i+ 1 do
8: ACC ← ACC ⊙ evki

9: If wiw
′
i+1 ̸= 1

10: ACC ← EvalAutowiw
′
i+1

(ACC,kskwiw
′
i+1

)

11: end for
12: ACC ← ACC ⊙ evkn

13: return ACC

RQ = ZQ[X]/(XN + 1) be any rotation polynomial. Let f ∈ RQ be a poly-
nomial that is invertible in RQ. Then, for any EVKτ,∆ = BRKGen(s, f), and
ACC = BREval((a, b), r,EVKτ,∆), we have that ACC is a scalar NTRU cipher-
text NTRUQ,f,τ,∆(r(X

2N
q ) ·X

2N
q (−b+

∑n−1
i=0 aisi)).

We can prove Theorem 1 following the sketch idea from Section 1.2 and we defer
the proof to Appendix A.

4.2 Analysis and Comparisons

In this subsection, we analyze the performance of our blind rotation, and give a
comparison with AP [22,5,41], GINX [19,26], and Lee et al.’s blind rotation [37].

Note that the evaluation key EVKτ,∆ for our blind rotation consists of n+1
vector NTRU ciphertexts for encrypting s and q−1 vector NTRU ciphertexts for
automorphisms. This leads to a total n+ q vector NTRU ciphertexts, and thus
d(n + q) RQ elements in the evaluation key. Moreover, it is easy to check that
starting from the initial value ACC = ∆ ·r(X

2N
q w′

0) ·X− 2N
q bw′

0 in Algorithm 1, we
need n+ 1 homomorphic multiplications and at most n automorphisms for the
whole blind rotation. Since each automorphism consists of a permutation on the
coefficient vector of the input ciphertext (with signs) and an external product,
we need at most 2n+1 external products, which leads to a total up to d(2n+1)
multiplications in RQ. Finally, let σ2

e be the noise variance for the second-layer
GSW-like encryption. By Lemma 2 and Lemma 3, the variance of the increased
noise introduced by a homomorphic multiplication is σ2

⊙ = dN B2

12 σ
2
e and by an



automorphism is equal to σ2
KS = σ2

⊙ = dN B2

12 σ
2
e . By the fact that the initial

value ACC essentially has zero noise, we have that the final ciphertext of our blind
rotation contains a noise with variance σ2

BR = (2n+ 1)σ2
⊙ = (2n+ 1)dN B2

12 σ
2
e .
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Fig. 1. Comparison of blind rotations using different first-layer key distributions

In Table 1, we give a comparison of our blind rotation with AP/FHEW
[22,5,41], GINX/TFHE [19,26], and Lee et al.’s blind rotation [37] in terms of
the number #RQ of RQ elements in the evaluation key and the number #mul of
multiplications inRQ for computation, where n, q are the dimension and modulus
for the first-layer encryption; N,Q are the dimension and modulus of the ring
RQ = ZQ[X]/(XN + 1) for the second-layer GSW-like encryption; d is bit-
decomposition dimension for multiplying a second-layer GSW-like ciphertext; B
is a base parameter in bit-decomposing the first-layer ciphertexts for AP; and |U |
denote the size of the public set U in bit-decomposing the first-layer secret keys
for GINX. Since q is usually less than 2n for typically choices of parameters [39],
and |U | ≥ 1 for all key distributions, one can see from Table 1 that our blind
rotation has asymptotically the best performance in both evaluation key size
and computational efficiency.

In Figure 1, we give a comparison of different blind rotations using differ-
ent first-layer key distributions. As in [39,37], we fix all other parameters, and
only consider the use of different key distributions for the first-layer encryption.
Specifically, we fix the parameters (n, q, d) = (512, 1024, 4) for AP, GINX and
Lee et al. that is recommended in STD128 [39] and (n, q, d) = (512, 1024, 5)
for our blind rotation using parameter P128T. We consider three types of key
distributions, namely, binary distribution, ternary distribution, and Gaussian
distribution. In Figure 1, “Gauss Pract.” and “Gauss. Theor.” refer to Gaussian
key distributions with standard deviation σ = 3.19 and σ =

√
n, respectively.

We bound the size of an element chosen from Gaussian key distribution by using
12σ as in [39], which leads to a basis set U with size |U | = 7 and |U | = 10
corresponding to “Gauss Pract.” and “Gauss. Theor.” for GINX, respectively.



Table 3. Estimation of noise variance for different blind rotations.

Methods Noise variance Ratio

AP [22,5,41] drdnN
B2

6
σ2
e

2drn
2n+1

≈ dr

GINX [19,26] |U |dnN B2

3
σ2
e

4|U|n
2n+1

≈ 2|U |
Lee et al. [37] (3n+ 2)dN B2

12
σ2
e

3n+2
2n+1

≈ 1.5

Ours (2n+ 1)dN B2

12
σ2
e ⧹

As shown in Figure 1, our bind rotation has performance asymptotically better
than others for all key distributions.

In Table 3, we give a comparison of different blind rotations in terms of noise
variance (i.e., the variance of the noise contained in the ciphertext output by
the blind rotation). For AP, GINX and Lee et al.’s blind rotation, we use the
formula given in [37]:

σ2
AP = drdnN

B2

6
σ2
e , σ

2
GINX = 2|U |dnN B2

6
σ2
e , andσ

2
Lee = (3n+ 2)dN

B2

12
σ2
e .

Here dr = ⌈logBr
q⌉ for some integer parameter Br in bit-decomposing the first-

layer ciphertexts for AP. The column “Ratio” denotes the ratio between the
considered blind rotation in that row and ours. As shown in Table 3, our blind
rotation has the smallest noise variance, which makes it possible to use smaller
parameters (e.g., N,Q) for the second-layer GSW-like encryption.

5 Bootstrapping LWE-based First-layer Ciphertexts

In this section, we describe how to apply our new blind rotation to bootstrap
an LWE-based first-layer ciphertext. Our bootstrapping has a similar high-level
structure as that in [22,5,41,19,26,37], which can be described as follows:

LWEq,s(m)
BREval−−−−→
Alg .1

ACC
Ext−−→
[33]

LWEQ,f (m)
ModSwitch+KeySwitch−−−−−−−−−−−−→
Lemma 4+Lemma 5

LWEq,s(m).

Given an LWE ciphertext (a, b) = (a, ⟨a, s⟩ − noised(m)) ∈ Zn
q × Zq, where

noised(m) = e+ ⌊ qt ⌉m (here we take Regev-like ciphertexts [42] as an example,
the same idea can be extended to BGV-like [10] and CKKS-like [16] ciphertexts
by using different choice of (τ,∆) and rotation polynomial r(X) ∈ RQ). By first
applying our blind rotation in Algorithm 1, we get a scalar NTRU ciphertext c =
ACC that encrypts r(X

2N
q ) ·X

2N
q noised(m) under secret key f ∈ RQ. Let r(X) =∑q−1

i=0 (⌊i/⌊q/t⌉⌉ mod t)X−i, one can easily check that the constant coefficient of
r(X

2N
q ) ·X

2N
q noised(m) is m by the correctness of the first-layer encryption that

m = ⌊noised(m)/⌊q/t⌉⌉. Let c = (c0, . . . , cN−1), f = (f0, . . . , fN−1) ∈ ZN
Q be the

coefficient vectors of the polynomials c, f ∈ RQ. Then, we can directly set ĉ =
(c0,−cN−1, . . . ,−c1) ∈ ZN

Q the same as the LWE sample extraction algorithm
Ext in [33] to get a ciphertext LWEQ,f (m) = (ĉ = (c0,−cN−1, . . . ,−c1), 0) that
encrypts m under the secret key f ∈ ZN

Q . Finally, we can use modulus-switching
and key-switching to convert LWEQ,f (m) to a desired LWEq,s(m).



5.1 Modulus Switching for LWE-based Ciphertexts

The modulus switching from Q to q can be easily achieved by multiplying the
targeted ciphertext with q/Q, and rounding the results to the nearest integer.

Lemma 4 (Modulus switching for LWE, adapted from [22]). Given a
ciphertext LWEQ,f (m) = (a, b = ⟨a, f⟩ − (e + ⌊Qt ⌉m)) ∈ ZN

Q × ZQ using some
key distribution with variance V ar(f) and some noise distribution with variance
V ar(e) and a targeted modulus q, define the modulus switching as

(a′, b′) = ModSwitch(LWEQ,f (m), q) =

⌊
LWEQ,f (m) · q

Q

⌉
mod q.

Then, (a′, b′) is an LWE ciphertext that encrypts the same m under the same
secret key f ∈ ZN . Moreover, the noise variance of the resulting ciphertext (a′, b′)
is bounded by q2

Q2V ar(e) +
1+NV ar(f)

12 .

We denote σ2
MS = 1+NV ar(f)

12 as the variance of the increased noise (with
respect to the input ciphertext) for modulus switching.

5.2 Key Switching for LWE-based Ciphertexts

In this subsection, we define a pair of two algorithms (LWE_KSKG, LWE_KS)
for key switching LWE ciphertexts as follows:

• LWE_KSKG(f , s, q, Bks): Given two vectors f = (f0, . . . , fN−1) ∈ ZN
q , s =

(s0, . . . , sn−1) ∈ Zn
q and two integers q,Bks as inputs, the algorithm first

computes dks = ⌈logBks
q⌉. Then, it creates a set of ciphertexts:

lkski,j,v = (ai,j,v, bi,j,v = ⟨ai,j,v, s⟩ − ei,j,v − vBj
ksfi) ∈ Zn

q × Zq

for all i ∈ ZN , j ∈ Zdks
, 1 ≤ v < Bks by randomly choosing ai,j,v ← Zn

q

and noise ei,j,v from some noise distribution over Z. Finally, it outputs
LKSKf ,s,q,Bks

= {lkski,j,v}i∈ZN ,j∈Zdks
,1≤v<Bks

as the key-switching key.
• LWE_KS((â, b̂),LKSKf ,s,q,Bks

): Given as inputs a ciphertext LWEq,f (m) =

(â, b̂ = ⟨â, f⟩− (ê+⌊ qt ⌉m)) ∈ ZN
q ×Zq for some â = (â0, . . . , âN ) ∈ ZN

q and a
key-switching key LKSKf ,s,q,Bks

= {lkski,j,v}i∈ZN ,j∈Zdks
,1≤v<Bks

for some
lkski,j,v = (ai,j,v, bi,j,v) as inputs, the algorithm first decomposes each âi =∑dks−1

j=0 vi,jB
j
ks into a vector (vi,0, . . . , vi,dks−1) ∈ Zdks

Bks
. Then, it computes

â′ =

N−1∑
i=0

dks−1∑
j=0,vi,j ̸=0

ai,j,vi,j
, b̂′ =

N−1∑
i=0

dks−1∑
j=0,vi,j ̸=0

bi,j,vi,j
+ b̂.

Finally, it outputs (â′, b̂′) ∈ Zn
q × Zq.



Lemma 5 (Key Switching for LWE Ciphertexts). Let f ∈ ZN
q , s ∈ Zn

q

be two vectors. Let LWEq,f (m) = (â, b̂) ∈ ZN
q × Zq be a ciphertext that en-

crypts m ∈ Zq under the secret key f ∈ ZN
q . Then, for any LKSKf ,s,q,Bks

=

LWE_KSKG(f , s, q, Bks), we have that (â′, b̂′) = LWE_KS((â, b̂),LKSKf ,s,q,Bks
) ∈

Zn
q × Zq is a ciphertext that encrypts m ∈ Zq under the secret key s ∈ Zn

q .
Moreover, if the variance of the noise in (â, b̂) is V ar(ê), and the variance of

the noise distribution used in generating LKSKf ,s,q,Bks
is V ar(e), we have that

the variance V ar(ê′) of the noise ê′ in (â′, b̂′) is upper bounded by V ar(ê′) ⩽
NdksV ar(e) + V ar(ê), where dks = ⌈logBks

q⌉.

We defer the proof of lemma 5 to Appendix B, as it is also presented in [22].
Similarly, we use the symbol σ2

LKS = NdksV ar(e) to denote the variance of the
increased noise (with respect to the input ciphertext) for LWE key-switching.

5.3 The Bootstrapping Algorithm

In this section, we give the full description of our bootstrapping algorithm for
LWE-based first-layer ciphertexts in Algorithm 2 (note that we use a modulus
switching from Q to Qks for some q < Qks < Q before key-switching to optimize
the parameters for generating the LWE key-switching key).

Algorithm 2 Bootstrapping LWE-based First-layer Ciphertexts
Input:

An LWE ciphertext LWEq,s(m) = (a = (a0, . . . , an−1), b) ∈ Zn+1
q ;

A rotation polynomial r(X) ∈ RQ;
Evaluation key EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S) ∈ R

d(n+q)
Q ;

LWE key-switching key LKSKf ,s,Qks,Bks = {lkski,j,v}i∈ZN ,j∈Zdks
,1≤v<Bks

;
Output:

A refreshed LWE ciphertext LWEq,s(m) ∈ Zn+1
q ;

1: ACC← BREval((a, b), r,EVKτ,∆)
2: LWEQ,f (m)← Ext(ACC)
3: LWEQks,f (m) ← ModSwitch(LWEQ,f (m), Qks)
4: LWEQks,s(m)← LWE_KS(LWEQks,f (m),LKSKf ,s,Qks,Bks)
5: LWEq,s(m)← ModSwitch(LWEQks,s(m), q)

Theorem 2 (Bootstrapping LWE-based First-layer Ciphertexts). Let
q < Qks < Q be positive integers. Given an LWE ciphertext (a, b = ⟨a, s⟩ −
noised(m)) ∈ Zn

q ×Zq encrypting a plaintext m ∈ Zt with noised(m) = ⌊ qt ⌉m+e,
Algorithm 2 outputs a refreshed LWE ciphertext (a′, b′ = a′s − (⌊ qt ⌉m + e′)) ∈
Zn
q×Zq encrypting the same plaintext. And the noise e′ of the refreshed ciphertext

is bounded by a Gaussian with standard deviation√
q2

Q2
ks

(
Q2

ks

Q2
σ2
BR + σ2

MS1 + σ2
LKS

)
+ σ2

MS2



where σ2
BR = (2n + 1)dN B2

12 V ar(g), σ
2
MS1 = NV ar(f)+1

12 , σ2
LKS = NdksV ar(e),

and σ2
MS2 = nV ar(s)+1

12 are the noise variances contributed respectively by the
blind rotation, the first modulus switching, the key switching, and the second
modulus switching in Algorithm 2, and V ar(g), V ar(f), V ar(e), V ar(s) are re-
spectively the noise variance and secret key variance of NTRU ciphertext and
the noise variance and secret key variance of LWE ciphertext.

Proof. The correctness of Algorithm 2 directly follows from the correctness of
the blind rotation in Theorem 1, the modulus switching in Lemma 4, and the
LWE key switching in Lemma 5.

Next we analyze the noise of the resulting ciphertext. After the blind rotation
in step 1, we get a scalar NTRU ciphertext with noise variance bounded by
σ2
BR = (2n+1)dN B2

12 V ar(g) according to the analysis in Section 4.2. By a trivial
Ext in step 2 we get an LWE ciphertext without increasing the noise variance.
By Lemma 4, we have the noise variance after the first modulus switching from
Q to Qks in step 3 is bounded by Q2

ks

Q2 · σ2
BR + σ2

MS1 where σ2
MS1 = NV ar(f)+1

12 .
By Lemma 5, the noise variance after the key switching in step 4 is bounded
by Q2

ks

Q2 · σ2
BR + σ2

MS1 + σ2
LKS , where σ2

LKS = NdksV ar(e). Again, by Lemma
4, we have the noise variance after the second modulus switching in step 5 from
Qks to q is bounded by q2

Q2
ks

(
Q2

ks

Q2 σ
2
BR + σ2

MS1 + σ2
LKS

)
+ σ2

MS2 where σ2
MS2 =

nV ar(s)+1
12 . This finally completes the proof.

6 Bootstrapping RLWE-based First-layer Ciphertexts

We now describe how to apply our blind rotation to bootstrap an RLWE-based
first-layer ciphertext. Our bootstrapping has a high-level structure as follows:
RLWEq,s(m)

Ext−−→
[33]

{LWEq,s(mi)}
BREval+Ext−−−−−−−→
Alg.1+[33]

{LWEQ,f (mi)}
Pack−−−−−→

Lemma 6
RLWEQ,s(m).

Given an RLWE ciphertext RLWEq,s(m) = (a, b) ∈ R̂q × R̂q, and let a =
(a0, . . . , an−1) , s = (s0, . . . , sn−1) ,m = (m0, . . . ,mn−1) ∈ Zn

q be the coefficients
of a, s,m ∈ R̂q, one can easily extract n LWE ciphertexts (ai, bi) that encryptsmi

under secret s by the LWE sample extraction algorithm Ext in [33]. Then, for each
LWE ciphertext (ai, bi), we apply our blind rotation algorithm BREval to obtain
an NTRU ciphertext ci that encrypts r(X

2N
q ) · X

2N
q noised(mi) under the secret

key f . Let f = (f0, f1, . . . , fN−1) ∈ ZN
Q and ci = (ci,0, ci,1, · · · , ci,N−1) ∈ ZN

Q be
the coefficient vectors of f, ci ∈ RQ. Let ĉi = (ci,0,−ci,N−1, . . . ,−ci,1) ∈ ZN

Q ,
then (ĉi, 0) ∈ ZN

Q × ZQ is actually an LWE ciphertext that encrypts mi under
the secret key f = (f0, f1, . . . , fN−1) ∈ ZN

Q . In particular, by setting appropriate
rotation polynomial r(X), we can always have that ⟨ĉi, f⟩ = τ ·ei+∆·mi for some
noise ei and integers (τ,∆) depending on the encoding of m in RLWEq,s(m).
Finally, we can use the packing algorithm Pack in [40] pack the LWE ciphertexts
into an RLWE ciphertext RLWEQ,s(m) = (a′, b′) ∈ R̂Q× R̂Q. For completeness,
we describe the packing algorithm in [40] in Section 6.1.



6.1 Packing LWE Ciphertexts to RLWE Ciphertexts

Let n,B,Q, τ,∆ be positive integers, and let d = ⌈logB Q⌉. Without loss of
generality, we assume that an LWE ciphertext LWEQ,f (m) has the form of (a, b =
⟨a, f⟩ − (τ · e +∆ ·m)). Let R̂Q = Z[X]/(Xn + 1). We recall the algorithm for
packing LWE ciphertexts into RLWE ciphertexts in [40]. Formally, we define two
algorithms (PackKGen,Pack) as follows:

• PackKGen(f , s) : Given a vector f = (f0, · · · , fN−1) ∈ ZN
Q and a ring element

s ∈ R̂Q as inputs, the algorithm first computes a set of ciphertexts

rpkj,k = (âj,k, b̂j,k = âj,ks− τ · êj,k −Bkfj) ∈ R̂Q × R̂Q

for all j ∈ ZN , k ∈ Zd by randomly choosing âj,k ← R̂Q and noise êj,k from
some distribution over R̂Q. Then, it outputs RPKτ = {rpkj,k}.

• Pack({LWEQ,f (mi)},RPKτ ): Given ciphertexts LWEQ,f (mi) = (ai, bi) ∈
ZN
Q × ZQ for all 0 ⩽ i ⩽ n− 1 and ai = (ai,0, ai,1, · · · , ai,N−1) ∈ ZN

Q , and
the packing key RPKτ = {rpkj,k} for some rpkj,k = (âj,k, b̂j,k) as in-
puts, the algorithm first computes uj =

∑n−1
i=0 ai,jX

i for 0 ≤ j ≤ N − 1,
and BitDecomB(uj) = (uj,0, · · · , uj,d−1) ∈ R̂d

B for some uj =
∑d−1

k=0 uj,kB
k.

Then, it computes

u =

N−1∑
j=0

d−1∑
k=0

uj,kâj,k, v =

N−1∑
j=0

d−1∑
k=0

uj,k b̂j,k +

n−1∑
i=0

biX
i.

Finally, it returns (u, v) ∈ R̂Q × R̂Q as the output.

Lemma 6 (Correctness of Packing). Let f = (f0, · · · , fN−1) ∈ ZN
Q be a

vector, and let s ∈ R̂Q be a ring element. For all 0 ≤ i ≤ n−1, let LWEQ,f (mi) =
(ai, bi = ⟨ai, f⟩−(τ ·ei+∆·mi)) ∈ ZN

Q×ZQ be an LWE ciphertext that encrypts mi

under secret key f = (f0, · · · , fN−1) ∈ ZN
Q . Then, for any RPKτ = {rpkj,k} =

PackKGen(f , s), we have that (u, v) = Pack({LWEQ,f (mi)},RPKτ ) ∈ R̂Q × R̂Q

is a ciphertext that encrypts m =
∑n−1

i=0 miX
i under the secret key s ∈ R̂Q.

Moreover, if the variance of the noise in LWEQ,f (mi) is V ar(e), and the
variance of the noise distribution in generating RPKτ is V ar(ê), then the vari-
ance V ar(e′) of the noise in the resulting ciphertext (u, v) is upper bounded by
V ar(e′) ⩽ nNdB2

12 V ar(ê) + V ar(e).

We defer the proof of Lemma 6 to Appendix C, as it is also presented in [40].

6.2 The Bootstrapping Algorithm

In this subsection, we give the bootstrapping algorithm for RLWE-based first-
layer ciphertexts in Algorithm 3, and prove the following theorem.



Algorithm 3 Bootstrapping RLWE-based First-layer Ciphertexts
Input:

RLWE ciphertext RLWEq,s(m) = (a, b) ∈ R̂q × R̂q;
A rotation polynomial r(X) ∈ RQ;
Evaluation keys EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S) ∈ R

d(n+q)
Q ;

Packing keys RPKτ ;
Output:

A refreshed RLWE ciphertext (a′, b′) ∈ R̂Q × R̂Q;
1: for i = 0,i < n,i = i+ 1 do
2: (ai, bi)← Ext(RLWEq,s(m))
3: ACCi ← BREval((ai, bi), r,EVKτ,∆)
4: LWEQ,f (mi) ← Ext(ACCi)
5: end for
6: RLWEQ,s(m) = (a′, b′) ← Pack({LWEQ,f (mi)}i∈[0,n−1],RPKτ )

Theorem 3 (Bootstrapping RLWE-based First-layer Ciphertexts). Given
an RLWE ciphertext (a, b) = (a, as− noised(m)) ∈ R̂q × R̂q encrypting a plain-
text m ∈ R̂, Algorithm 3 outputs a refreshed RLWE ciphertext (a′, b′ = a′s− (τ ·
e′ +∆ ·m)) ∈ R̂Q × R̂Q encrypting the same plaintext. And the noise e′ of the
refreshed ciphertext is bounded by a Gaussian with standard deviation√

nNd
B2

12
V ar(e) + V ar(e) + (2n+ 1)dN

B2

12
V ar(g)

where V ar(g), V ar(e) represents the noise variance of NTRU ciphertext and the
noise variance of RLWE ciphertext, respectively.

Proof. The correctness of Algorithm 3 directly follows from the correctness of
the blind rotation in Theorem 1 and the LWE packing in Lemma 6.

Now, we analyze the noise of the resulting ciphertext. After each blind rota-
tion in step 2, we get a scalar NTRU ciphertext with noise variance bounded by
V ar(e)+σ2

BR = V ar(e)+(2n+1)dN B2

12 V ar(g). Then we extract the coefficients
of NTRU ciphertext as LWE ciphertext, and use the packing algorithm to obtain
a refreshed RLWE ciphertext in R̂Q under large modulus Q. By Lemma 6, the
refreshed noise is a Gaussian with standard deviation√

nNd
B2

12
V ar(e) + V ar(e) + (2n+ 1)dN

B2

12
V ar(g).

This completes the proof.

7 Security, Parameters and Implementation

In this section, we present the necessary security analysis and the experimental
results of our bootstrapping algorithm for LWE-based first-layer ciphertexts, and
compare its performance with that of FHEW/AP [22] and TFHE/GINX [19]
running on the same laptop.



7.1 Security Analysis

The ciphertext of our first-layer encryption basically consists of (R)LWE sam-
ples, and thus it is indistinguishable from uniform based on the decisional (R)LWE
assumptions. The ciphertext of our second-layer encryption contains scalar NTRU
ciphertexts and vector NTRU ciphertexts. Our scalar NTRU encryption has form
of c = (τ · g +∆ · u)/f . Since τ and ∆ are publicly defined constants, this can
be simplified as c = (t · g + u)/f , where t is an integer. Because the standard
NTRU encryption (in the symmetric key setting) has the form of c = t ·g/f+m,
our ciphertext can be seen as a standard NTRU ciphertext that encrypts a key-
dependent message m = u/f . Thus, the security of our second-layer encryption
requires the circular-security/KDM-security assumption of the standard NTRU
scheme, which is the same as that in [7,27,41]. Note that the construction of
FHEs without such kind of assumptions is currently unknown. Moreover, the
currently best algorithm solving c = (t · g + u)/f , to the best of our knowledge,
is to treat it as an RLWE instance (c, u) (as we can rewrite it as u = cf−t·g), and
the lattice used to solve this problem is very close to the standard NTRU lattice.
Based on known algorithms solving (R)LWE and NTRU problems, we believe
that this type of encryption c = (t · g+u)/f will not provide extra advantage to
the adversary from the point of concrete attacks. Our vector NTRU ciphertext
(for generating the evaluation keys EVKτ,∆ = (evk0, . . . , evkn, {kskj}j∈S))
basically encrypts different messages using the same secret key as that in [7,41],
whose security is essentially guaranteed by the decisional Vectorized-NTRU as-
sumption.

In all, the semantically (IND-CPA) security of our two-layer FHE scheme can
be directly proved under the decisional (R)LWE problem, the decisional NTRU
problem (with KDM security) and the decisional Vectorized-NTRU problem via
a standard hybrid argument.

7.2 Parameters

In Table 4, we give all the parameters used in our experiment. The parameter
STD128 (resp. STD192) is used for FHEW/AP [22] and TFHE/GINX [19],
which is the default parameter for 128-bit (resp., 192-bit) security provided in
the OpenFHE 0.9.1 library [6] and recommended in [39].

For 128-bit security, we choose two types of parameters, namely, P128T and
P128G, for our algorithms: P128T is set to have the same parameters (n, q) and
ternary key distribution with STD128 for the first-layer LWE encryption; while
P128G is set to use a Gaussian key distribution with variance 4/3. We use the
LWE estimator [4] to estimate the security of (R)LWE instances, and use the
NTRU estimator offered by Ducas and van Woerden [23] to find the BKZ block
size β needed by Dense Sublattice Discovery(DSD) attack. Then, we use the cost
model T (d, β) := 20.292·β+16.4+log2(8·d)(in the NTRU setting d = 2N) to estimate
the concrete security. Both P128T and P128G are set to provide at least 128-bit
security. Similar to [22,17,39], they are also set to satisfy the requirement that
the decryption failure upper bound is less than 2−32. We choose P192T and



Table 4. Parameters for bootstrapping LWE-based first-layer ciphertexts.

Parameters Key distrib. n q N Q B Qks Bks

STD128 [39] Ternary 512 1024 1024 227 27 214 27

P128T Ternary 512 1024 1024 995329 ≈ 219.9 24 214 27

P128G Gaussian 465 1024 1024 995329 ≈ 219.9 24 214 27

STD192 [39] Ternary 1024 1024 2048 237 213 219 28
P192T Ternary 1024 1024 2048 44421121 ≈ 225.4 29 219 28

P192G Gaussian 870 1024 2048 44421121 ≈ 225.4 29 217 28

P192G to provide at least 192-bit security as STD192 using the same way as
P128T and P128G.

For a NAND gate, we estimate the failure probability of decryption using
the same formula P = 1− erf

(
q/8
2β′

)
(β′ represents the standard deviation of the

final noise) as that in [22,17,39]. The estimated decryption failure probabilities
for our parameters are given by PP128T = 2−32, PP128G = 2−34, PP192T = 2−53

and PP192G = 2−42. Note that our parameters have modulus Q < N2 (resp.,
Q < N2.31) for both P128T and P128G (resp., P192T and P192G), which is
smaller than the fatigue point Q = N2.484 in [23] to avoid sublattice attacks on
NTRU problems.

7.3 Experimental Results

We implement our bootstrapping algorithm for LWE-based first-layer ciphertexts
in C++ on a laptop with an Intel(R) Core(TM) i5 CPU @ 2.30GHz and 16 GB
RAM, running Linux 4.4.0-19041-Microsoft. We compare the performance with
FHEW/AP [22] and TFHE/GINX [19] that were implemented in the OpenFHE
library [6]. All the experiments are running with a single thread at a single CPU
core. In Table 5, we present the experimental results, where the timing figures
are averaged over 1000 times running of the algorithms.

From Table 5, one can see that for parameters with ternary first-layer key
distribution providing 128-bit security, we only need to store 18.65MB for blind
rotation, which is about 89.8 times smaller than FHEW/AP [22,6] and 2.9 times
smaller than TFHE/GINX [19,6]. Moreover, our algorithm only needs 112ms to
evaluate a NAND gate followed by a bootstrapping, which is about 3.2 times
faster than FHEW/AP and 2.1 times faster than TFHE/GINX. By using P128G
with Gaussian key distribution, we can obtain an extra 10% improvement over
P128T (we note that the performance of TFHE/GINX would become worse
by roughly a factor of 1.5 when using the same Gaussian key distribution as
ours). For parameters with ternary first-layer key distribution providing 192-bit
security, the evaluation key size of our blind rotation is about 175 times smaller
than FHEW/AP and 5.8 times smaller than TFHE/GINX; Our bootstrapping
algorithm is about 3.7 times faster than FHEW/AP and 2.7 times faster than



Table 5. Timings and key sizes for bootstrapping (where the column “Timings” de-
notes the timing for performing a NAND gate followed by a bootstrapping, the column
“EVK” denotes the evaluation key size for blind rotation; the column “KSK” denotes
the key size for switching a second-layer ciphertext back to a first-layer one; the last
column “Boots. key” denotes the whole bootstrapping key size.)

Algorithms Parameters
Key Timings EVK KSK Boots. key

distrib. (ms) (MB) (MB) (MB)
FHEW/AP [22,6] STD128 [39] Ternary 359 1674 224 1898

TFHE/GINX [19,6] STD128 [39] Ternary 234 54 224 278

Ours
P128T Ternary 112 18.65 224 242.65
P128G Gaussian 100 17.90 203.44 221.34

FHEW/AP [22,6] STD192 [39] Ternary 1200 6682 532 7214
TFHE/GINX [19,6] STD192 [39] Ternary 859 222 532 754

Ours
P192T Ternary 320 38.10 532 570.10
P192G Gaussian 273 34.30 404.41 438.71

TFHE/GINX. Again, by using P192G with Gaussian key distribution, we can
obtain an extra 17% improvement over P192T.

Finally, we note that the whole bootstrapping key consists of the evalua-
tion key for blind rotation and the key-switching key for converting a second-
layer ciphertext (obtained from blind rotation) back to a first-layer ciphertext.
Moreover, we also note that all the algorithms need a key-switching key of
nNBksdks log2Qks bits. In Table 5, one can see that the size of the bootstrap-
ping keys for TFHE/GINX and ours is mainly dominated by the key-switching
key size. However, even if we use a key-switching key of the same size (namely,
P128T and P192T) as TFHE/GINX, our blind rotation still provides a reduction
in the total bootstrapping key size by about 12.7% for 128-bit security and 24.4%
for 192-bit security. More improvements are available when using Gaussian key
distributions.
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′
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q (
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i=0 aisi) = X
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i=0 wisi−
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of Algorithm 1. Let ĉn be the value of ACC in step 13 of Algorithm 1. For our
purpose, it suffices to show that

ĉn = NTRUQ,f,τ,∆(r(X
2N
q ) ·X− 2N

q bX
∑n−1

i=0 wisi−
∑n−1

i=0 si).

We first show that for all 0 ≤ i ≤ n− 1, we have

ĉi = NTRUQ,f,τ,∆(r(X
2N
q w′

i+1) ·X− 2N
q bw′

i+1X(
∑i

j=0 wjsj)w
′
i+1).

Note that ACC = ∆·r(X
2N
q w′

0)·X− 2N
q bw′

0 before entering the loop in steps 7 ∼ 10,
and that evk0 = NTRU′

Q,f,τ (X
s0/f) = (τ · g0/f + B0Xs0/f, · · · , τ · gd−1/f +

Bd−1Xs0/f). By the property of external product, one can easily check that

c0(X) = ACC⊙ evk0 = NTRUQ,f,τ,∆(r(X
2N
q w′

0) ·X− 2N
q bw′

0Xs0).

If w0w
′
1 = 1 mod 2N , then we immediately have

ĉ0(X) = c0(X) = NTRUQ,f,τ,∆(r(X
2N
q w′

1) ·X− 2N
q bw′

1Xw0s0w
′
1).

Otherwise, the algorithm will compute ĉ0(X) = EvalAutow0w′
1
(c0(X),kskw0w′

1
).

By Lemma 2, we still have that

ĉ0(X) = NTRUQ,f,τ,∆(r(X
2N
q w′

1) ·X− 2N
q bw′

1Xw0s0w
′
1).

Now, it is enough to show that if

ĉk = NTRUQ,f,τ,∆(r(X
2N
q w′

k+1) ·X− 2N
q bw′

k+1X(
∑k

j=0 wjsj)w
′
k+1),

for some 0 ≤ k < n − 1, then ĉk+1 also has the same formula. Note that at the
(k + 1)-th loop, the algorithm will first compute ck+1(X) = ĉk ⊙ evkk+1. Since
evkk+1 = NTRU′

Q,f,τ (X
sk+1). By Lemma 1, we have that

ck+1 = NTRUQ,f,τ,∆(r(X
2N
q w′

k+1) ·X− 2N
q bw′

k+1X(
∑k

j=0 wjsj)w
′
k+1+sk+1).

Then, the algorithm will set ĉk+1 = ck+1 if wk+1w
′
k+2 = 1, otherwise ĉk+1 =

EvalAutowk+1w′
k+2

(ck+1(X),kskwk+1w′
k+2

). Again, by Lemma 2 we always have
that

ĉk+1 = NTRUQ,f,τ,∆(r(X
2N
q w′

k+2) ·X− 2N
q bw′

k+2X(
∑k+1

j=0 wjsj)w
′
k+2).

After the loop, the algorithm will finally compute ĉn = ĉn−1 ⊙ kskn. Using
the fact that w′

n = 1 and evkn = NTRU′
Q,f,τ (X

−
∑n−1

i=0 si), by Lemma 1 we have
that

ĉn = NTRUQ,f,τ,∆(r(X
2N
q ) ·X− 2N

q bX
∑n−1

i=0 wisi−
∑n−1

i=0 si).

This finally completes the proof.



B Proof of Lemma 5

Proof. By definition, we have that LWEq,f (m) = (â, b̂ = ⟨â, f⟩ − (ê + ⌊ qt ⌉m)) ∈
ZN
q ×Zq for some â = (â0, . . . , âN ) ∈ ZN

q , and that LKSKf ,s,q,Bks
= {lkski,j,v}

for some lkski,j,v = (ai,j,v, bi,j,v = ⟨ai,j,v, s⟩ − ei,j,v − vBj
ksfi). This lemma

directly follows from the fact that âi =
∑dks−1

j=0 vi,jB
j
ks and that

b̂′ =

N−1∑
i=0

dks−1∑
j=0,vi,j ̸=0

bi,j,vi,j
+ b̂

=

N−1∑
i=0

dks−1∑
j=0,vi,j ̸=0

(⟨ai,j,vi,j , s⟩ − ei,j,vi,j − vi,jB
j
ksfi) + b̂

= ⟨â′, s⟩ −
N−1∑
i=0

dks−1∑
j=0,vi,j ̸=0

ei,j,vi,j −
N−1∑
i=0

âifi + b̂

= ⟨â′, s⟩ −
N−1∑
i=0

dks−1∑
j=0,vi,j ̸=0

ei,j,vi,j
− (ê+

⌊q
t

⌉
m)

C Proof of Lemma 6

Proof. By definition, we have that LWEQ,f (mi) = (ai, bi = ⟨ai, f⟩ − noised(mi))
for some ai = (ai,0, . . . , ai,N−1) ∈ ZN

Q and noised(mi) = τ · ei +∆ ·mi and that
RPKτ = {rpkj,k} for some rpkj,k = (âj,k, b̂j,k) and b̂j,k = âj,ks−τ · êj,k−Bkfj .
By the fact that uj =

∑n−1
i=0 ai,jX

i =
∑d−1

k=0 uj,kB
k, we have that

v =

N−1∑
j=0

d−1∑
k=0

uj,k b̂j,k +

n−1∑
i=0

biX
i

=

N−1∑
j=0

d−1∑
k=0

uj,k(âj,ks− (τ · êj,k +Bkfj)) +

n−1∑
i=0

biX
i

= us− τ ·
N−1∑
j=0

d−1∑
k=0

uj,kêj,k −
N−1∑
j=0

n−1∑
i=0

ai,jfjX
i +

n−1∑
i=0

biX
i

= us− τ ·
N−1∑
j=0

d−1∑
k=0

uj,kêj,k −
n−1∑
i=0

(τ · ei +∆ ·mi)X
i

= us− τ · e′ −∆ ·m

where e =
∑n−1

i=0 eiX
i, m =

∑n−1
i=0 miX

i and e′ =
∑

j,k uj,k · êj,k + e. This
means that (u, v) is a ciphertext that encrypts m under the secret key s ∈ R̂Q.
Moreover, since ∥uj,k∥∞ < B, we have that V ar(e′) ⩽ nNdB2

12 V ar(ê) + V ar(e).
This completes the proof.
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