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Abstract

Proof-of-Replication (PoRep) plays a pivotal role in decentralized storage networks, serv-
ing as a mechanism to verify that provers consistently store retrievable copies of specific data.
While PoRep’s utility is unquestionable, its implementation in large-scale systems, such as
Filecoin, has been hindered by scalability challenges. Most existing PoRep schemes, such
as Fisch’s (Eurocrypt 2019), face an escalating number of challenges and growing computa-
tional overhead as the number of stored files increases. This paper introduces a novel PoRep
scheme distinctively tailored for expansive decentralized storage networks. At its core, our
approach hinges on polynomial evaluation, diverging from the probabilistic checking preva-
lent in prior works. Remarkably, our design requires only a single challenge, irrespective of
the number of files, ensuring both prover’s and verifier’s run-times remain manageable even
as file counts soar. Our approach introduces a paradigm shift in PoRep designs, offering a
blueprint for highly scalable and efficient decentralized storage solutions.
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1 Introduction

In recent years, there has been a significant shift in the domain of consensus mechanisms. Tra-
ditional proof-of-work (PoW) systems [44, 33], though revolutionary in their own right, have
been scrutinized for their significant energy consumption and potential centralization due to
ASIC dominance. As a result, the cryptographic community has been driven to explore alter-
native methods that could provide similar security guarantees without the associated ecological
or centralization concerns [30, 11, 30, 50, 6, 27, 25, 19].

Proof-of-Space (PoS) [30, 11] emerged as a compelling alternative to proof-of-work, with
applications spanning from spam prevention and DDoS attack resistance, to serving as the
backbone for novel Sybil-resistant blockchain consensus protocols. Notably, the allure of PoS
stems from its eco-friendly nature and resistance to ASIC dominance. By leveraging available
storage space instead of massive energy consumption, PoS positions itself as a more egalitarian
and sustainable solution when compared to PoW.

Proof-of-Replication (PoRep) extends the concept of PoS by requiring the prover to store
useful replicated data that can also be retrieved by the verifier. In a PoS protocol, the prover
demonstrates to a verifier that it is dedicating a minimum amount of storage space, but the
stored data can be arbitrary. In contrast, a PoRep scheme verifies that the prover is persistently
storing retrievable copies of a specific data file or dataset. While a PoS only proves the size of
storage used, a PoRep provides stronger guarantees that the prover is dedicating unique storage
resources per replica of the data. PoRep has the useful side effect of providing decentralized and
verifiable file storage, unlike PoS which wastes the dedicated space. PoRep can be conceptualized
as a fusion of (1) PoS with application-specific beneficial data, and (2) the robust guarantees of
Proof of Data Possession (PDP) [12] and Proof of Retrievability (PoR) [38], ensuring not only
the existence but also the retrievability of stored data replicas.

This practicality and robustness of PoRep make it especially attractive for real-world ap-
plications. One notable implementation is Filecoin [1], a decentralized storage network built
on top of the Interplanetary File System (IPFS). Filecoin not only capitalizes on the concept
of PoRep but elevates it as a foundational pillar. In the Filecoin ecosystem, storage providers
are incentivized through the native cryptocurrency, FIL, to reliably store users’ files. To prove
their reliability and earn these rewards, providers are audited : they must demonstrate through
PoRep that they are consistently storing retrievable replicas of client data by answering a se-
ries of challenges. This ensures that data is not merely stored but is also readily available for
retrieval, aligning with Filecoin’s vision of offering a more efficient, decentralized, and resilient
alternative to traditional data storage methods.

However, as the decentralized storage vision of Filecoin materializes, certain requirements
emerge as paramount:

1. Laconic challenges: An efficient PoS and PoRep would necessitate compact challenges,
ideally of constant size.

2. Sublinear prover and verifier : To ensure longevity and efficiency, the prover’s query com-
plexity on its local storage (or replica) should be minimized, preventing wear and tear from
frequent audits [2]. Also, verification should be efficient to make these scheme applicable
in large scale systems.

3. Robust space gap: To ensure maximal security and data fidelity, the gap between data
deletion and its detection during audits must be minimized.

Fisch [31] introduces a novel construction of tight PoRep rooted in graph labeling, targeting
an asymptotic proof size of O(logN/η), where η represents the space gap (i.e., the difference
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between the amount of space the prover claims to be using and the actual space they are using).
Central to this, is the mechanism of stacked Depth Robust Graphs (DRGs), wherein multiple
fixed-degree DRGs are systematically layered. Such an arrangement is designed to ensure that
a slight perturbation in one layer’s data triggers a cascading recomputation in the preceding
layers. The inherent interplay between the number of DRG layers and the degree of each
graph directly impacts the efficacy of the construction. A potential imbalance in this delicate
equation could lead to surging proof complexities, a considerable impediment, especially when
accommodating arbitrary values of ϵ. In an alternative model, Fisch [31] proposes the ZigZag
Expander DRGs. By amalgamating each DRG layer with a non-bipartite expander graph of
constant degree and intertwining their dependencies in a “zig-zag” fashion, this design promises
more streamlined data extraction. However, it calls for doubling the layer count to maintain
analogous security guarantees, a compromise that might not be universally optimal.

In the context of systems like Filecoin, where vast numbers of files are stored, the method-
ology introduced by Fisch may encounter scalability challenges. Specifically, as the number of
files escalates, the computational overhead inherent to the PoRep mechanism of [31] becomes
increasingly pronounced, making it potentially expensive in terms of both challenge generation
and runtime efficiency for provers and verifiers.

This poses the question:

How can we develop a PoRep scheme that retains the security and robustness of
prior models, yet offers improved scalability and efficiency suitable for large-scale
decentralized storage networks?

Our primary objective is to design an optimized PoRep scheme specifically for large-scale
decentralized storage networks, rectifying the shortcomings identified in existing models. Our
goals encompass enhanced computational efficiency, improved challenge-response mechanisms,
and a reduced space gap. Central to our approach is an auditing technique for proofs of space,
anchored in polynomial evaluation. This guarantees that the prover’s efficiency stays sublinear,
being notably poly-logarithmic relative to the file size. To achieve this, we employ sophis-
ticated polynomial evaluation methods together with polynomial pre-processing, a technique
detailed in [40]. This pre-processing phase yields a data structure that ensures poly-logarithmic
processing times for both provers and verifiers.

In Table 1, we showcase the performance of the state-of-the-art protocol [31] based on the
criteria listed above.

For a single file, our scheme’s performance might align with, or slightly lag behind, Fisch’s
design as presented in [31]. This is partly due to the overheads associated with our polynomial
evaluations and pre-processing. However, our distinct advantage lies in our challenge mecha-
nism: irrespective of the number of files, our polynomial-based encoding consistently demands
only one challenge. As the file count grows, this feature becomes increasingly beneficial. In
contrast, Fisch’s design sees its number of challenges rise in direct proportion to the number
of files. This inherent trait means that both the prover’s and verifier’s run-times in Fisch’s
approach grow quadratically as more files are added (see Table 1). It is important to note that
our method, while benefiting from a data structure tailored for univariate polynomial evalua-
tion, does introduce an “expansion factor” which increases the data footprint. Yet, this mild
growth in data might be a reasonable trade-off for the significant computational gains it offers,
particularly in extensive systems like Filecoin where processing speed often takes precedence
over storage size. In addition, this factor is adjustable; it can be fine-tuned according to the
prover’s specific requirements, providing flexibility within the PoRep construction.
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Table 1: This table contrasts our PoRep (Theorem 9 and Corollary 6) with [31] based on
replication (i.e., memory guarantee). Here, u ≥ 1 represents file count, |m| = N = d · z denotes
each file’s bit size, with d as block count and z as each block’s bit size. We use Oλ(f(·)) to
symbolize O(f(·) · poly(λ)). Columns 2-4 relate the challenge count to the malicious prover’s
required memory n (in bits) for verification. Column 5 depicts prover and verifier run-times
relative to challenge count, while Column 6 presents the factor γ which modifies memory for the
honest prover (i.e., memory used is u·N ·γ). The 4th column’s (η)-gap, defined as (1−η)u·N = n,
denotes the difference between file size u · N and adversary’s memory bound; a smaller gap
indicates a better memory guarantee. Rows one and two (labeled ”generic statement”) outline
the construction’s security. The table’s final two rows, set by |q| = λ and z = λ1+δ (for any
constant δ > 0), contrast replication assurances for a specified malicious prover memory-bound
(Column 3). Colored cells emphasize optimal parameters.

Scheme # Challenges
Adv.’s memory n

in bits
(η)-gap

where η ∈ [0, 1]
Prover’s and

verifier’s run-time
Honest prover’s

memory (γ)-expansion

[31]
(generic statement)

1/η
(of size log(d))

u(N − η ·N)
any η ∈ [0, 1]

(η can depend on d and u)
Oλ(u/η · log d) O(1)

Ours § 6.1
(generic statement)

1
(element from Zq)

u ·N − d · |q| − λ (d · |q| − λ) / (u ·N) Oλ(u · polylog(d))
Oλ

(
c
√
d
)

(for arbitrary constant c ≥ 1)

[31]
O
(
u · λδ1

)
(of size log(d))

u ·N − (d+ 1)λ O
((

u · λδ
)−1)

Oλ(u
2 · log d) O(1)

Ours § 6.1
1

(of size λ)
u ·N − (d+ 1)λ O

((
u · λδ

)−1)
Oλ(u · polylog(d))

Oλ

(
c
√
d
)

(for arbitrary constant c ≥ 1)

1.1 Our Contributions

Our primary contribution lies in designing an optimized Proof-of-Replication (PoRep) scheme
tailored for large-scale decentralized storage networks. By centering our methodology around
polynomial evaluation, we ensure that as file sizes grow, our prover’s efficiency remains consistent
and manageable. Key benefits of our system include enhanced computational efficiency, a
streamlined challenge-response mechanism, and a reduced space gap. Our methodology presents
significant benefits—particularly as the number of files grows—improving on prior work like
Fisch’s [31], where challenges increase proportionally with file count. To realize this, we have
introduced innovative solutions that tackle the limitations of current PoRep models:

• We introduce a novel auditing mechanism rooted in polynomial evaluation. This technique
streamlines the proof verification process, especially beneficial for expansive datasets.
Drawing inspiration from [14], our core method involves combining an identifier and a
message to form a polynomial that appears random. This strategy allows our system to
operate with just a single challenge, regardless of the number of files, providing a notable
advantage in scalability.

• Building on Kedlaya and Umans [40], we have developed a method to achieve poly-
logarithmic prover’s running time for polynomial evaluation in decentralized storage net-
works. By using a RAM data structure, polynomial evaluations are expedited, reducing
time complexities. This structure, however, enlarges memory by a multiplicative factor γ,
which can be adjusted based on prover requirements. This balances efficient computation
time with manageable memory overhead, making polynomial evaluations more efficient in
our PoRep scheme.

• To achieve efficient PoRep verification, we leverage localized RAM computation, ensuring
both the prover’s and verifier’s tasks remain poly-logarithmic in complexity. By using
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Merkle trees on top of our data structure, a verifier can check the integrity of a prover’s
computation without having full access to the prover’s data structure. While this approach
emphasizes the auditing phase, it is crucial to ensure honest generation of the root digest,
which can be reinforced using a SNARK proof during the encoding phase. Our resulting
authenticated data structure for polynomial evaluation is of independent interest: it can
be seen as a succinct polynomial commitment where opening algorithm is sublinear in
the degree of the polynomial. This construction—which achieves this property trading
additional storage—is to the best of our knowledge the first of its type. All the other
constructions we are aware of require linear proving time (an incomplete list includes the
works [39, 46, 41]).

1.2 Technical Overview

Given the intricate nature of our solution, we provide a high-level overview of our PoRep
construction. It achieves laconic challenges, efficient proving and verification complexity, and a
robust space gap (i.e., high memory guarantees) as the number of files u increases. For clarity, we
focus on enforcing memory usage (the replication property), sidelining extractability. Note that
extraction arises from polynomial interpolation; messages/files are encoded into polynomials,
enabling extraction via interpolating multiple evaluations.

Initially, we detail the syntax and security guarantees of PoRep. Then, we outline our single-
file approach (case u = 1). Towards the end, we delve into handling multiple files (case u ≥ 1)
and draw comparisons with Fisch’s PoRep [31]. We assume all messages consist of d blocks of
size |p| = log(p), where p is a prime in our construction; thus, |m| = d · |p|.

Syntax and Security of PoRep Schemes. A PoRep scheme allows encoding highly com-
pressible messages (e.g., a file) into incompressible strings that represent the messages. These
schemes consist of five algorithms: Setup, Encode, Prove, Verify, and Decode. The setup al-
gorithm generates three public keys: an encoding key ek, a proving key pk, and a verification
key vk. Each key is used during a specific phase of the PoRep scheme. The Encode algorithm
computes the incompressible encoding of a message m. Given the encoding key ek, a message
m, and an identifier id for m, it outputs an encoding c and a digest h for later verification. After
encoding (and the publication of the digest h), the auditing phase begins. This phase involves
the execution of Prove (on the prover’s side) and Verify (on the verifier’s side). This phase
primarily ensures the prover stores the encoding c. Specifically, given a random challenge chall,
the prover runs Prove(ek, chall, c) to produce a proof π that verifies the storage of c. On the ver-
ifier’s side, using the same challenge chall and proof π, the verifier executes Verify(vk, h, chall, π)
(where h is associated with the prover’s encoding) to ensure the prover passed the auditing
phase. Lastly, the Decode algorithm, when provided the encoding key ek, inverts an encoding c
to retrieve the original message m.

Informally, a PoRep must ensure: (i) the prover utilizes significant memory and (ii) encoded
messages are retrievable. These properties are termed replication and extraction.1 For a single
message (denoted by u = 1), PoRep’s replication represents the minimum memory n a prover
must use to pass verification. When u > 1, the replication concept remains, but a prover
must produce u verification proofs, and n can vary based on the number of messages u > 1.
Higher values of n indicate better replication. Additionally, we aim to enforce a memory usage
of size n that scales with the number of files u. Such enforcement necessitates limiting the
prover’s runtime, a common trait in PoRep schemes [31]. Given the trapdoorless nature of our
PoRep (no secret keys), certain constraints emerge. For instance, in a decentralized setting like

1The replication property corresponds to PoS (proof-of-space) in [31].
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blockchains, a message m (chosen by the prover) can be highly compressible. Each block of
m = (F(k, 1),F(k, 2), . . .) is generated by evaluating a PRF F(k, ·), where k ∈ {0, 1}λ is a short
key. To compute a proof π, the prover can regenerate blocks of m as needed. This approach
uses minimal memory since the sizes of ek, pk, id, and k aren’t related to the message’s size.
Thus, our PoRep employs a “slow” Encode algorithm. Its speed is adjustable using the time
parameter t chosen during Setup, restricting the adversary to producing proofs more quickly
than the execution time of Encode.

Conversely, PoRep’s extraction property ensures all umessages are retrievable when a prover,
holding the encodings, passes the verification phase for any number of files u.

Enforcing Space through Polynomial Evaluation. Our starting point is the work of
Ateniese et al. [14], which leverages the evaluation of a random polynomial to build verifiable
capacity-bound functions, a specific type of space-based primitive. Let Zp be a field of order
p from which the coefficients of the polynomial are sampled, and let Zq ⊆ Zp be a field of
order q (a subset of Zp, i.e., q < p) from which evaluation points are sampled. At a high
level, [14] examines a setting where a (possibly malicious) evaluator receives a randomly sampled
polynomial f(X) ∈ Zp[X] of degree d − 1, preprocesses f(X) to compute a memory α smaller
than |f(X)| (i.e., by compressing f(X) or pre-computing and storing some evaluations of f(X)
on some adversarially chosen points (x1, x2, . . .)), and then attempts to compute y = f(x) on a
randomly chosen point x ∈ Zq using only α (and not f(X)). The work in [14] formally shows
that the evaluator’s memory α cannot be smaller than |α| ≈ d · |p| − d · |q| where |p| is the size
of a coefficient and |q| is the size of the challenge point.2 When q ≪ p (e.g., |q| is sublinear in
|p|), we find that |α| is close to the size of f(X), which is |f(X)| = d · |p|. Hence, evaluating
f(X) requires memory close to |f(X)|.

This result forms the core idea of our PoReps. The encoding c of a message m ∈ {0, 1}d·|p|
(comprising d blocks each of size |p|) concerning an identifier id (i.e., the execution of Encode(ek,
m, id)) involves combining id andm to derive a polynomial f(X) that appears randomly sampled
from Zp[X]. We achieve this by calculating f(X) = r ⊕m (interpreting each block of r ⊕m as
a coefficient of f(X)) where r = EvalMHF(id) is the output of a memory-hard function (MHF)
(denoted by EvalMHF) that remains secure against input-dependent pre-processing.3 This type
of MHF abstracts functions that are “slow” to compute in the presence of an adversary that
conserves storage by omitting some of the labels needed for output computation. An example
of such functions are those based on either stacked DRG or ZigZag Expander DRG proposed
by Fisch [31], which informally ensure that an adversary, omitting some labels associated with
the last layer of the underlying DRG, will face a high sequential runtime to compute the correct
output r = EvalMHF(id).

4

Using this method, we determine that an evaluator utilizing memory of size at most |α| =
n ≈ min{nMHF, d · |p| − d · |q|} (where ≈ d · |p| − d · |q| is the memory-bound provided by f(X)
and nMHF is the one offered by the MHF) cannot compute f(x) (on a randomly sampled x)
in parallel time tMHF where tMHF is the time-bound offered by the MHF, dependent on nMHF.
This stems from the security guarantees of polynomial evaluation and MHF described earlier.5

Setting nMHF ⪅ d · |p| − d · |q| (achievable by adjusting settings on the graph of [31] such as the

2To be precise, the memory size is |α| = d · |p|−d · |q|−λ. We ignore the loss λ and we write |α| ≈ d · |p|−d · |q|
for clarity.

3Looking ahead, our construction will compute f(X) as f(X) = H(r, id) where r = EvalMHF(id) and H is a
hash function modeled as a random oracle (RO). In this section, we assume f(X) = r ⊕m for clarity.

4Following our abstraction, r = EvalMHF(id) concatenates the random oracle labels associated with the last
layer of the DRG as defined in [31].

5This requires selecting the minimum memory-bound |α| = n ≈ min{nMHF, d · |p|− d · |q|} provided by the two
to ensure both hold simultaneously.
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number of layers and nodes per layer of the underlying DRG), results in |α| = n ≈ d · |p|−d · |q|,
close to d · |p| = |m| when q ≪ p. Thus, requesting y = f(x) will necessitate the evaluator to
use memory |α| ≈ |m| when restricted to a runtime shorter than tMHF.

Though the above solution enforces significant space usage on the prover’s side, which is
essential for the PoReps’ replication property, it presents the following challenges:

1. How can the prover efficiently compute y = f(x) to achieve sublinear prover’s runtime?
Currently, evaluating the polynomial takes time linear in d (i.e., the number of coefficients).

2. How can the verifier efficiently check that y
?
= f(x)? In other words, how can we make

the above scheme verifiable in sublinear time?

We discuss solutions to these problems in the subsequent paragraphs.

Achieving poly-logarithmic prover’s running time. As described in the previous para-
graph, our approach asks a (possibly malicious) prover to compute f(x) on a randomly sampled
point in Zq where f(X) = m⊕ EvalMHF(id). To decrease the prover’s running time, we need to
make the evaluation of a polynomial efficient. Several works [40, 43, 10, 17, 20, 53, 54, 37, 45, 35]
have proposed different techniques to enable fast polynomial evaluation. This led to the work
of Kedlaya and Umans [40] which proposed a RAM data structure D that allows computing
f(x) (for any x ∈ Zp) in time poly-logarithmic in the number of coefficients d of the polynomial
f(X) ∈ Zp[X] (recall that the number of coefficients d corresponds to the number of blocks
of the encoded message). Formally, [40] shows the existence of an algorithm GenData that, on
input f(X) ∈ Zp and p, outputs a data structure D. Then, an evaluator can execute Eval(x,D)
(i.e., Eval leverages the RAM access to D to read some blocks from D) to compute y = f(x) in
time poly(log(d), |p|).

We note that, to achieve a poly(log(d), |p|) evaluation time, the data structure D (output
by GenData) is larger than the size of f(X), since f(X) is pre-computed and manipulated. In
particular, the D of [40] has a multiplicative overhead which we term (γ)-expansion, meaning the
size of D is |f(X)| · γ (D is γ times larger than the size of the original polynomial). Specifically,
the (γ)-expansion of [40] is γ = c

√
d · logo(1)(p) for any arbitrary constant c > 1. Thus, the

running time of an honest prover can be made poly-logarithmic in d by increasing its memory
by a multiplicative factor γ = c

√
d · logo(1)(p), which is sublinear in |f(X)|. On the bright side,

the factor c
√
d (of the expansion γ) can be made arbitrarily small by selecting a larger constant

c > 1. This parameter can be chosen by the prover according to its needs: c can be dynamically
increased or decreased as it is not fixed by the PoRep construction.

Poly-logarithmic verification through localized RAM computation. Until now, the
technique we have described relies on requiring the prover (who stores m) to evaluate a poly-
nomial f(X), where f(X) = m⊕ EvalMHF(id) represents an encoding of m with respect to the
identifier id, on a randomly chosen point x ∈ Zq. As noted at the beginning of this section, eval-
uating f(X) suffices to verify that the prover is utilizing a memory α of size |α| ≈ d · |p|−d · |q|,
which is approximately d · |p| = |m| when |q| ≪ |p|. The remaining challenge is to enable a

verifier to ascertain that y
?
= f(x).6

At first glance, one might assume that poly-logarithmic verification could be integrated
using standard techniques for verifying computations, such as SNARKs. For instance, we could
employ a SNARK (which permits efficient verification) to have the prover generate a proof

6If the verifier cannot validate y
?
= f(x), a prover could bypass the verification without using any memory by

simply outputting a malicious ỹ ̸= f(x).
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π that demonstrates y = f(x). Specifically, this could be achieved by validating that y was
honestly computed using the data structure D (retained by the prover) outlined in the previous
paragraph. However, this strategy is flawed because it would result in the prover’s running time
becoming linear in the size of the data structure D. Generating a proof with SNARKs demands
time linear to the size of the witness (of the required relation), which corresponds to the data
structure D. This would nullify the advantages gained by employing the efficient data structure.

Our solution to verification capitalizes on the observation that we target the same poly-
logarithmic (in d) complexity for both the prover and the verifier. It might therefore be adequate
for a verifier to replicate the prover’s computation and verify that the derived result f(x) = y′

matches y, the value produced by the prover. A significant obstacle in implementing this
strategy is that the verifier lacks access to D. To address this, we utilize Merkle trees (or any
vector commitment) atop D. Specifically, the data structure D = (D1, . . . ,Dℓ) is segmented
into ℓ blocks, and h represents the root of the corresponding Merkle tree (with the tree’s height
being log(ℓ)). We recognize that, during the computation of y, the prover will access at most
a poly-logarithmic number of blocks D′ ⊂ D from D = (D1, . . . ,Dℓ) (recalling that D is a RAM
data structure), making its running time poly-logarithmic in d. For verification, the prover
merely needs to transmit y, the accessed blocks D′, and the associated |D′| Merkle tree openings
(π′1, . . . , π

′
|D′|). Thus, a verifier possessing the digest h can:

1. Using the openings (π′1, . . . , π
′
|D′|), verify that the received blocks D′ align with the blocks

of D.

2. Compute y′ = f(x) by running the evaluation algorithm Eval of the data structure solely
with the received blocks D′.

3. Validate that y′
?
= y, where y is the evaluation returned by the prover.

The ensuing verification process ensures the prover’s running time remains poly-logarithmic
in d while facilitating poly-logarithmic verification. We emphasize that h must be computed
honestly to guarantee the soundness of the above verification procedure. Although this paper’s
contribution centers on the auditing phase, we implicitly presume that h is generated with
integrity. Nonetheless, we stress that the integrity of h (furnished by the prover) can be assured
by incorporating a SNARK proof during the encoding phase conducted by the prover. This
doesn’t impact the paper’s conclusions since we don’t set a specific limit on the running time
of Encode.7

We term the act of conducting an accurate RAM computation using only the blocks involved
in the computation (as performed by our verification algorithm) as ”localized RAM computa-
tion”. A thorough analysis is presented in Section 4, where we demonstrate that every RAM
algorithm possesses its corresponding localized version, with the runtime being identical up to
a logarithmic factor. While the foundational concept may appear straightforward, the formal
proof is nuanced. For a comprehensive overview, we direct readers to Section 4.

Multiple files and comparison with Fisch’s PoRep [31]. In the case of multiple messages
or files (when u > 1), a prover must provide u verifying proofs to pass the auditing. As previously
discussed, when a single message is stored, our PoRep ensures that a prover utilizes at least
n ≈ d · |p| − d · |q| memory to pass the verification. Using a hybrid argument, we can assert
that the memory requirement when u ≥ 1 must be at least n ≈ u(d · |p| − d · |q|). A limitation
of this memory-bound n is that the loss increases with the number of stored files. Specifically,

7Applying a SNARK at encoding time, replication can be ensured even under malicious executions of Encode.
A variant of this method is employed in practice by Filecoin. See [1].
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if a prover can save 1 GB with u = 1, then the same prover can save up to u GB when u > 1.
This is naturally an undesirable outcome. A pertinent question arises: can we mitigate such a
loss, potentially making it independent of the number of messages u?

We demonstrate that, in contrast to [31], this is achievable by expanding the analysis on
the memory needed to evaluate a random polynomial (as outlined at the beginning of this
section) to consider the case where u > 1 for polynomial evaluations. Our findings indicate
that when evaluating u random polynomials f1(X), . . . , fu(X) at the exact same point x ∈ Zq

(i.e., the consistent PoRep’s challenge), the memory required for the evaluation must be at
least |α| = n ≈ u · d · |p| − d · |q|, approximating u · |m| when q ≪ p. Consequently, polynomial
evaluations enable our PoRep scheme to amortize the memory loss when multiple polynomials
are evaluated.

By integrating this insight with the method introduced at the start of this section, we derive
a PoRep scheme that compels an evaluator (even if potentially malicious) operating in a time
frame shorter than tMHF (as defined by the underlying MHF) to allocate at least n ≈ u · |m|
memory to pass the auditing phase (i.e., computing u verifying proofs). The sole prerequisite is
encoding the u messages m1, . . . ,mu into u distinct random polynomials. Given that messages
can be chosen with malice (e.g., they could all be identical), a unique identifier idi for each mi

is mandatory. This is the sole alteration necessary to achieve the stated bound.
Regarding Fisch’s PoRep construction [31], we note that, for η ∈ [0, 1], the challenge count

needed is O(1/η) when the prover employs memory of size |m| − η · |m| (refer to Table 1).
The memory-bound exhibits a loss that scales linearly with the message count u, meaning the
challenge count must be O(1/η) when u · |m|−u · η · |m|. Hence, to ensure a loss independent of
u, η must be inversely proportional to u, e.g., η = 1

u · η
′ for some other η′ ∈ [0, 1]. Nevertheless,

this directly influences the challenge count of [31], causing it to rise linearly with the file count u,
leading to a challenge count of O(1/η) = O(u/η′). This, in turn, affects the prover’s operational
time, making it quadratic in terms of message count, necessitating the prover to compute u
proofs, each containing u openings.

Conversely, our PoRep demands a singular challenge (a point x), while achieving a memory-
bound of n ≈ u·|m|, and a prover’s operational time of u·poly(log(d), log(p)). For a juxtaposition
between our approach and Fisch’s PoRep security, we direct readers to Table 1.

2 Related Work

Proof-of-Space (PoS) protocols ensure provers allocate specific memory amounts, emphasiz-
ing efficient verification and communication. Some approaches, like the pebbling-based ones,
delve into directed acyclic graphs to amplify space guarantees [30, 11, 4, 50, 6, 18]. Proof-of-
Replication (PoRep) confirms storage providers are genuinely replicating data, thwarting them
from storing unrelated content [48, 32, 26, 8, 24, 42, 47, 36, 23, 31]. Beyond PoS and PoRep,
the cryptographic storage protocol landscape is varied and diverse. This section delves into
other notable cryptographic storage mechanisms, highlighting their relevance and contributions
to the field.8

Proof of Data Possession (PDP): PDP schemes are a cornerstone in cryptographic storage,
enabling a storage provider to convince clients that their outsourced data remains intact and
available. While they achieve the space-hardness goal of PoS when large, incompressible data
is in play, they often entail significant communication costs, especially during the initial data
transfer [12, 15, 52, 34, 9].

Proof of Retrievability (PoR): PoR is another fundamental protocol that permits clients to

8For a comprehensive overview, see https://proofofspace.org.
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ensure the integrity and retrievability of their stored files on a server. It’s equipped with an
extractor that facilitates the reconstruction of the client’s file from the provided proofs [38, 51,
28, 21].

Memory-Hard Functions (MHF): These are functions designed to require considerable mem-
ory/space for computation, primarily aimed at constructing ASIC-resistant proofs-of-work.
While they demand continuous CPU utilization, their distinction from PoS is their ability
to keep provers offline while still utilizing space-time [5, 7, 16, 3].

Proof of Secure Erasure (PoSE): This protocol ensures a prover’s ability to confirm the
erasure of specific memory portions. When integrated with PoS, it offers a holistic solution to
secure storage and subsequent data erasure [4].

Proof of Transient Space (PoTS) and Proof of Persistent Space (PoPS): These protocols
emphasize the temporal aspect of storage, with PoPS focusing on ensuring provers allocate
space over time, verified through periodic audits. When integrated with PDP or PoR, they
underline the prover’s commitment to storage over extended periods [13, 49, 22].

3 Preliminaries

3.1 Notation

Bold capital letters (such as X) are used to denote random variables, small letters (such as x)
to denote concrete values, calligraphic letters (such as X ) to denote sets, serif letters (such as
A) to denote algorithms. For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X |
represents the cardinality of X . When x is chosen uniformly from a set X , we write x←$ X .
We use Un to denote the uniform distribution over {0, 1}n. For an arbitrary distribution X
(e.g., non-uniform) over a set X , we write x←$ X the act of sampling x from X according to
the distribution X. If A is a deterministic algorithm, we write y = A(x) to denote a run of A
on input x and output y; if A is randomized, we write y←$ A(x) (or y = A(x; r)) to denote a
run of A on input x and (uniform) randomness r, and output y. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in a polynomial number of steps (in the input size).

3.2 Memory-Hard Function with Input-dependent Pre-processing

A memory-hard function (MHF) with input space X and output space Y, consists of the fol-
lowing polynomial-time algorithms:

Setup(1λ, 1t): On input the security parameter 1λ and the time parameter 1t, the randomized
setup algorithm outputs the public parameter pp.

Eval(pp, x): On input the public parameters pp and an input x ∈ X , the deterministic evaluation
algorithm outputs y ∈ Y.

We are interested in secure MHF even in the presence of input-dependent pre-processing. In-
formally, such a flavor of MHF guarantees that it is infeasible to compute y = Eval(pp, x) (for
a random input x←$ X ) in parallel time complexity σ with O(poly(t)) processors (i.e., the
computation of y = Eval(pp, x) is non-parallelizable). This must hold even if the adversary
pre-processes the MHF by producing a string α (of bounded size) conditioned to the challenged
input x.

Definition 1 (Input-dependent pre-processing security of MHF). Let σ(λ, t, n) = σ be a poly-
nomial function that depends on the security parameter λ, time parameter t, and the memory
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bound n. A MHF scheme Π = (Setup,Eval) with message space X and output space Y is
(ϵ, σ, n)-secure if for every valid PPT adversary A = (A1,A2), then

P
[
Eval(pp, x) = A2(1

λ, 1t, pp, x, α) ∧ |α| ≤ n
]
≤ ϵ

where pp←$ Setup(1λ, 1t), x←$ X , and α←$ A1(1
λ, 1t, pp, x). An adversary A = (A1,A2) is

called valid if A2 runs in parallel time σ with poly(t) processors.

Remark 1 (On the output length of MHF with input-dependent pre-processing). In Defini-
tion 1, the auxiliary information α of size at most n (e.g., the memory state) can depend on
the challenge input x←$ X . This implies that the output y = Eval(pp, x) must be incompress-
ible, i.e., it is infeasible to compress y (in polynomial-time) into a string of size at most n.
Otherwise, A1 can simply compute y = Eval(pp, x) and output α which is the compression of
y. In such a way, the second adversary A2 may simply decompress α to recompute y, possibly
bypassing the non-parallelizable computation enforced by the MHF scheme. This is analogous
to the DRG constructions of [31] in which the output is set to the labels of the last layers of the
DRG, and an adversary can delete a fraction of those labels.

We will use the following corollary and instantiate Definition 1 from [31].

Corollary 1. Let σ(λ, t, n) = σ be a polynomial function in the security parameter λ, the time
parameter, and the memory bound n (as defined in Definition 1). For every λ ∈ N, for every
n ∈ poly(λ), there exists a (negl(λ), σ, n)-secure MHF with input space {0, 1}λ in the parallel
random oracle model (parallel ROM).9

The work in [31] presents a construction of a stacked depth-robust graph (DRG). The last
layer in the “stack” contains the sinks of the graph. All nodes in the graph are labeled. Each
of these labels is computed as a random oracle applied to the labels of the node’s parents. The
results in [31] can then be interpreted as: any adversary storing less than 80% of the sinks will
need to perform a Ω(n) sequential computation where n is the number of blocks.

This allows us to instantiate Corollary 1 as follows. We define the evaluation of our MHF
as the computation of the labels of the sinks in the graph. The labels of the source nodes are
defined in terms of x, the input to the evaluation function. The setup of our MHF corresponds
to the topology of the graph.

3.3 Vector Commitments and Merkle Trees

A vector commitment (VC) scheme with message spaceM is composed of the following polynomial-
time algorithms:

Setup(1λ): On input the security parameter 1λ, the randomized setup algorithm outputs the
public parameters pp.

Commit(pp, (m1, . . . ,mℓ)): On input the public parameters pp and a sequence of ℓ messages
(m1, . . . ,mℓ) ∈Mℓ, the deterministic commit algorithm outputs a commitment c and an
auxiliary information aux.

Open(pp,m, i, aux): On input the public parameters pp, a message m ∈ M, an index i ∈ [ℓ],
and an auxiliary information aux, the deterministic open algorithm outputs a proof π.

9The parallel time complexity of A2 corresponds to the number of parallel random oracle (parallel RO) queries
submitted by A2.
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Verify(pp, c,m, i, π): On input the public parameters pp, a message m ∈ M, and index i ∈ [ℓ],
and a proof π, the deterministic verification algorithm outputs a decision bit b ∈ {0, 1}.

A VC scheme must satisfy the standard definitions of (perfect) correctness and position binding.
Moreover, we focus on VC schemes where the running times of both Open and Verify are poly-
logarithmic in ℓ in the RAM model of computation.

Definition 2 (Efficiency of VC). A VC scheme Π = (Setup,Commit,Open,Verify) with message
space M is efficient if both the open algorithm Open and the verification algorithm Verify have
(worst-case) running time poly(λ, log(ℓ)) where ℓ is the vector length parameter given as input
to Setup. The running times of both Open and Verify are measured in the RAM model of
computation.

Definition 3 (Perfect correctness of VC). A VC scheme Π = (Setup,Commit,Open,Verify)
with message space M is perfectly correct if ∀λ ∈ N,∀ℓ ∈ N,∀(m1, . . . ,mℓ) ∈ Mℓ,∀i ∈ [ℓ], the
following probability holds:

P

Verify(pp, c,mi, i, π) = 1 :
pp←$ Setup(1λ),

(c, aux) = Commit(pp, (m1, . . . ,mℓ)),
π = Open(pp,mi, i, aux)

 = 1

Definition 4 (Position binding of VC). A VC scheme Π = (Setup,Commit,Open,Verify) with
message spaceM satisfies (ϵ)-position binding if for every PPT adversary A, we have:

P

 Verify(pp, c,m, i, π) = 1 ∧
Verify(pp, c,m′, i, π′) = 1 ∧

m ̸= m′
:

pp←$ Setup(1λ),
(c,m,m′, i, π, π′)←$ A(1λ, pp)

 ≤ ϵ

Merkles tree (implemented using collision-resistance hash functions) are efficient VCs.10

Below, we report the formal corollary.

Corollary 2. Assuming a collision-resistant hash function, there exists a (negl(λ))-position
binding and efficient VC scheme with message spaceM = {0, 1}z (for any z ≥ 1) and efficiency
as defined in Definition 2. Moreover, we have that |c| = λ (i.e., commitments are succinct) and
|aux| = ℓ · z.

3.4 Efficient Data Structure for Univariate Polynomial Evaluation

Next, we introduce the notion of data structures (DS) for univariate polynomial evaluation. At
a high level, D is a DS for univariate polynomial evaluation if there exists a RAM algorithm
that, given a point x, reads some blocks from D (using its RAM access to D) to compute f(x)
where f(X) =

∑d
i=0 ai ·Xi ∈ Zp[X] is the univariate polynomial taken into account.

More formally, let p be a prime and Zp be a field. A (possibly efficient) data structure
(DS) for evaluation of univariate polynomials is composed of the following polynomial-time
algorithms:

GenData(f, p): On input a univariate polynomial f(X) =
∑d

i=0 ai ·Xi ∈ Zp[X] (of degree d ∈ N)
and a prime p ∈ N, the deterministic data structure generation algorithm outputs a data
structure D.

10In Merkle trees, the auxiliary information aux (output by Commit) corresponds to the intermediate hashes
of the tree. Hence, computing the opening π (for some mi ∈ M at position i) requires time λ · log(ℓ) + log(|M|)
in the RAM model of computation since the evaluator needs to read log(ℓ) intermediate hashes (from aux) each
of size λ and a leaf (i.e., the sibling message of mi) of size log(|M|).
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Eval(x,D): On input a point x ∈ Zp and the data structure D, the deterministic evaluation
algorithm outputs y ∈ Zp.

Intuitively, correctness says that, for every prime p ∈ Zp, for every f(X) ∈ Zp[X], for every
x ∈ Zp, the evaluation algorithm Eval(x,D) correctly computes f(x) when D = GenData(f, p).

Definition 5 (Perfect correctness of DS). A DS Π = (GenData,Eval) for evaluation of univari-
ate polynomials is perfectly correct if ∀ prime p ∈ N, ∀f(X) ∈ Zp[X], ∀x ∈ Zp, the following
probability hold:

P[f(x) = Eval(x,GenData(f, p))] = 1.

Naturally, a trivial DS D corresponds to the coefficients of f(X): evaluating f(x) requires
reading the d coefficients ai ∈ Zp from D. In this paper, we are interested in DS for univariate
polynomial evaluation with non-trivial efficiency, i.e., the computation of f(x) requires time
poly(log(d), log(p)) where p and d are the prime and the degree of the univariate polynomial
f(X) ∈ Zp[X] given in input to GenData. We highlight that in order to obtain poly-logarithmic
(or any sublinear) evaluation time, the data structure generation algorithm GenData may need
to pre-process f(X) ∈ Zp. Hence, the data structure D (output by GenData) may be bigger
than |f(X)| = (d+1) · log(p) where log(p) is the bit size of a coefficient ai ∈ Zp. For this reason,

the following definition of efficiency is parametrized by γ = |D|
|f(X)| . Throughout the paper, we

refer to γ as the expansion factor of DS. The formal definition follows.

Definition 6 (Efficiency with (γ)-expansion of DS). A DS Π = (GenData,Eval) for evaluation
of univariate polynomials is efficient with (γ)-expansion if the following conditions hold:

(γ)-expansion: The size of D (output by GenData(f, p)) is bounded by |f(X)|·γ = (d+1) log(p)·
γ where d is the degree of f(X) ∈ Zp[X] and log(p) is the size of a coefficient ai ∈ Zp

of f(X). The expansion parameter γ may depend on the degree d of f(X) and bit length
log(p) of p.

Efficient evaluation: The evaluation algorithm Eval has (worst-case) running time poly(log(d),
log(p)) where d is the degree of f(X) ∈ Zp[X] and log(p) is the size of a coefficient ai ∈ Zp

of f(X) (recall that f(X) and p are given as input to GenData). The running time of Eval
is measured in the RAM model of computation.

Kedlaya and Umans [40] have proposed an efficient DS for univariate polynomial evaluation
with expansion factor γ = O(dδ · logo(1)(p)) where δ is an arbitrary positive constant. Below,
we report the efficiency of their construction.

Corollary 3 ([40, Section 5] restated). For every positive constant δ > 0, there exists an
efficient DS for univariate polynomial evaluation with (γ)-expansion (Definition 6) defined as
γ = (d+1)δ logo(1)(p), where log(p) and d are the size of the prime p and the degree of f(X) ∈ Zp

(given in input to GenData), respectively.11

3.5 Incompressibility and Polynomial Evaluation

Next, we define the notion of incompressibility (w.r.t distributions) which defines how much a
string x, sampled from a distribution X, can be compressed.

11Observe that the expansion factor γ of (d + 1)δ logo(1)(p) implies that the overall size of D (output by
GenData(f, p)) is at most (d + 1)1+δ log1+o(1)(p). This follows by observing that |D| = |f(X)| · γ = (d +
1) log(p)(d+ 1)δ logo(1)(p) = d1+δ log1+o(1)(p).
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Definition 7 (Incompressibility). Let X be a distribution defined over {0, 1}n. We say that X
is (c, ϵ)-incompressible if for every unbounded adversary A = (A1,A2), we have

P
[
A2(1

λ, α) = x ∧ |α| ≤ n− c : x←$ Xλ, α←$ A1(1
λ, x)

]
≤ ϵ.

Observe that the above definition considers adversaries with unbounded computation. It is
known that the uniform distribution Un over {0, 1}n is (c, 1

2c )-incompressible with respect to
unbounded adversaries.

Theorem 1. For every n ∈ N and for every c ∈ N such that c ≤ n, the uniform distribution
Un over {0, 1}n is (c, 1

2c )-incompressible.

We extend the above theorem to the setting of polynomial evaluation. In particular, we
demonstrate that a randomly sampled polynomial f(X)←$ Zp[X] cannot be compressed in
the following sense: to compute f(x) on a randomly sampled point x with sufficiently large
probability, an adversary must have access to a sufficiently large string α (which encodes f(X)
or some pre-computed evaluations of f(X)). Intuitively, this follows by observing that d + 1
evaluations (f(x1), . . . , f(xd+1)) and their corresponding points (x1, . . . , xd+1) are an encoding
of the random string a = (a0, . . . , ad) composed of the d + 1 coefficients of the polynomial
f(X) =

∑d
i=0 ai ·Xi.12 This allows us to reduce the incompressibility of random polynomials

to the incompressibility of random strings (Theorem 1). Below, we report the formal result
whose proof appears in Appendix A.1. Also, we highlight that an analogous result has been
demonstrated in [14, Section 3], but in a different setting, yielding a different bound.

Theorem 2. Let p be a (sp + 1)-bits prime and q be a (sq)-bits prime where q ≤ p. For every
u ∈ N, let Fu

d−1,p be a distribution (over the set of univariate polynomials of degree d− 1 from
Zp[X]) which samples u polynomials f1(X), . . . , fu(X) ∈ Zp[X] as follows:

• Sample (a0, . . . , au·d−1)←$ Uu·d·sp and return the u univariate polynomials f1(X), . . . ,

fu(X) such that fj(X) =
∑d−1

i=0 aj·d+i · Xi ∈ Zp[X] of degree d − 1 for j ∈ {0} ∪ [u − 1]
(i.e., each ai is interpreted as an element of Zp).

For every u ∈ N, for every d ∈ N, for every c ≤ d(u ·sp−sq) and for every unbounded adversary
A = (A1,A2), the following probability holds:

P

 A2(1
λ, x, α) = (f1(x), . . . , fu(x)) ∧
|α| ≤ d(u · sp − sq)− c

:

(fi(X))i∈[u]←$ Fu
d−1,p,

α←$ A1(1
λ, f1, . . . , fu),

x←$ Zq

 ≤ d− 1

|Zq|
+

1

2c
.

On the best possible (asymptotic) security guarantees of Theorem 2. Fix u = 1
in Theorem 2 (i.e., the adversary must deal with a single random polynomial). We observe that
the bound of |α| presents a loss proportional to d · sq which depends on the size of the (single)
polynomial (i.e., the degree d).13 This loss exactly corresponds to the length of d points from
Zq ⊆ Zp. Intuitively, this is because the adversary A1 can compute α such that it will later
allow A2 to answer correctly only to some adversarially chosen points that may be correlated to
the random polynomial f(X)←$ F1

d−1,p (this is because A1 computes α while knowing f(X)).14

The reason behind this loss is also discussed in [14, Sec. 3].

12From (f(x1), . . . , f(xd+1)) and (x1, . . . , xd+1) it is possible to reconstruct a = (a0, . . . , ad) through Lagrange
interpolation.

13For the sake of clarity, we ignore c that does not depend on either d or u.
14By looking at the proof of Theorem 2 in Appendix A.1, this loss is due to the need of encoding (x1, . . . , xd)

(which may be arbitrary and correlated to f(X)) in the string α output by the reduction. These points (x1, . . . , xd)
are essentially the ones on which the adversary A2 correctly computes (f(x1), . . . , f(xd)). This is required in order
to allow the reduction to correctly reconstruct a = (a0, . . . ad−1) and contradicts the (c, 1

2c
)-incompressibility of

Ud·sp (recall we are assuming that u = 1).
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In addition, we notice that the best possible security guarantee offered by Theorem 2 is
when the adversarial advantage is small and the upper-bound of |α| is maximized (note that
the upper-bound on |α| cannot go beyond d · u · sp). In such a way, we are guaranteed that
the adversary does not win even when it has access to a large pre-computed information (i.e.,
the string α). To this end, we choose to state Theorem 2 while taking into account that sq
(which defines the size of the (challenge) point space Zq ⊆ Zp) can be both (i) significantly
smaller than sp (which defines the size of a coefficient of the polynomials) to get a reasonably
high upper-bound on |α|, and (ii) large enough to get a significantly small (possibly negligible)
upper-bound on the adversary’s advantage.

The following corollary shows that this is possible asymptotically. In particular, we can set
the upper-bound of the adversary’s advantage to be exponentially small in λ while keeping the
bound on |α| to be asymptotically close to the optimal value u · d · sp (i.e., the best possible
security that can be achieved) by setting sp = sp(λ) = λ1+δ (where δ is a positive constant)
and sq = sq(λ) = λ. Below, we report the formal corollary whose proof is in Appendix A.2.

Corollary 4. For every λ ∈ N, for every u = u(λ) ∈ poly(λ), for every d = d(λ) ∈ poly(λ), for
every (λ1+δ + 1)-bits prime p where δ > 0 is a constant, for every (λ)-bits prime q (note that
q < p by definition), we have:

P

 A2(1
λ, x, α) = (f1(x), . . . , fu(x)) ∧
|α| ≤ d · u · λ1+δ − (d+ 1) · λ :

(fi(X))i∈[u]←$ Fu
d−1,p,

α←$ A1(1
λ, f1, . . . , fu),

x←$ Zq

 ≤ O

(
1

2λ

)
.

We stress that there are other combinations of parameters for sp and sq that allow for a
negligible adversarial advantage. For example, it is sufficient to set sq ∈ ω(log(λ)) and sp = λ.
However, these choices do not allow us to set the adversary’s advantage to be exponentially small
in λ as achieved in Corollary 4. Thus, we choose sq = sq(λ) = λ and sp = sp(λ) = λ1+δ to set
the advantage to be at most O( 1

2λ
) while getting an upper-bound on |α| which is asymptotically

close to d · u · sp (i.e., the best possible security that can be achieved).

3.6 Pseudorandom Functions

A pseudorandom function (PRF) scheme Π = (KGen,F) with input space X and output space
Y is composed of the following polynomial-time algorithms:

KGen(1λ): The randomized key generation algorithm takes as input the security parameter 1λ

and outputs a key k.

F(k, x): The deterministic function evaluation algorithm takes as input a key k and an input
x ∈ X , it outputs a value y ∈ Y.

A PRF Π is considered secure (i.e., pseudorandom) if its output distribution is indistinguishable
from the one of a truly random function.

Definition 8 (Security of PRF). A PRF Π with input space X and output space Y is (ϵ)-secure
if for every PPT adversary A, we have:∣∣∣P[AF(k,·)(1λ) = 1

]
− P

[
AFrnd(·)(1λ) = 1

]∣∣∣ ≤ ϵ,

where k←$ KGen(1λ) and Frnd : X → Y is a truly random function over X and Y.
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4 Localized (deterministic) RAM algorithms

Consider an input x = (x1, . . . , xn) composed of n blocks where each xi can be accessed in
constant time in the RAM model of computation. Also, consider a RAM algorithm T with
RAM access to x that, on input y ∈ {0, 1}∗,15 performs a computation, reading only a subset
X ⊂ {x1, . . . , xn} of the blocks of x. In this section, we formally demonstrate that the exact
same computation can be executed with only having y and the blocks X effectively read by T
(i.e., the unread blocks are unnecessary) when T is deterministic.16 To this end, we start by
introducing the oracle notation for RAM algorithms which will allow us to formally demonstrate
the above statement.

Oracle Notation for Deterministic algorithms in the RAM model of computation.
We focus only on deterministic RAM algorithms. Let x be a RAM accessible input composed
of multiple blocks x = (x1, . . . , xn). We denote with T[x] a RAM algorithm T with read-only
RAM access to x. Moreover, let y ∈ {0, 1}∗ be an arbitrary binary string. We denote with
T[x](y) the deterministic execution of a RAM algorithm T with read-only RAM access to x but
not to y, i.e., T must read y in its entirety. Below, we formally define how T interacts with its
RAM accessible input.

Definition 9 (Oracle abstraction for deterministic RAM algorithms). A deterministic RAM
algorithm T is an algorithm that performs computations by leveraging its RAM access to (some
of) its inputs. Let x = (x1, . . . , xn) be a read-only RAM accessible input x composed of n blocks
and y ∈ {0, 1}∗ be an arbitrary binary input string. The execution T[x](y) performs computations
over x and y where T can read parts of x by interacting with the oracle [x] as follows:

• T can send a (read, i) read command (for i ∈ [n]) to [x]. As a result, T receives the i-th
block xi from [x].

Definition 10 (Indexes read during a RAM computation). Let T be a deterministic RAM
algorithm, x = (x1, . . . , xn) be a read-only RAM accessible input x composed of n blocks and
y ∈ {0, 1}∗ be an arbitrary binary input string. We say that Ix,y ⊆ [n] is the ordered set of
indexes read from x during the computation T[x](y) if the following conditions hold:

Completeness: Let (read, i1), . . . , (read, in′) be the read commands submitted by T to [x] during
the RAM computation T[x](y) (note that n′ may be greater than n since T can read a block
multiple times). Then, we have that ij ∈ Ix,y for every j ∈ [n′] where Ix,y is a set (i.e.,
no duplicate indexes).

Ordering: The set Ix,y = {i1, . . . , ik} is ordered, i.e., ∀j ∈ [k − 1] we have ij < ij+1 where
ij , ij+1 ∈ Ix,y.

Localized (deterministic) RAM algorithms. The fact that the deterministic RAM com-
putation T[x](y) computes output v by only reading the indexes Ix,y of the input x = (x1, . . . , xn)
implies that it is possible to compute v (in the RAMmodel) even without the blocks (xi)i∈[n]\Ix,y
where x = (x1, . . . , xn). To this end, we define the notion of localized RAM algorithm. Intu-
itively, the localized version Local.T of the deterministic RAM algorithm T is, in turn, a deter-
ministic RAM algorithm that is able to recompute the output of T[x](y) by taking as input the
string y and the blocks xi1 , . . . , xik read by T[x](y) from x.

15In this section it is sufficient to interpret y as an arbitrary binary string that needs to be read in its entirety,
i.e., RAM access to y does not give any benefit to T.

16Otherwise, the final output and the blocks read from x may also depend on the random coins of T.
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Somewhat more formally, if T[x](y) = v then Local.T[x′],[map](y) = v, where Ix,y is the ordered
set of indexes read from x during the computation T[x](y) and x′ = (x′1, . . . , x

′
k) = (xi1 , . . . , xik)

is a read-only RAM accessible input. We note that the localized algorithm Local.T has access
to an additional read-only RAM accessible input map which is essentially the memory mapping
between x′ = (x′1, . . . , x

′
k) and x = (x1, . . . , xn). In particular, map is defined asmap = (ij)ij∈Ix,y

and its required to let Local.T[x′],[map](y) know that its j-th block x′j of x′ corresponds to the

ij-th block xij of x (held by the original computation T[x](y)).17 We formalize the notion of
localized RAM algorithms below.

Definition 11 (Localized RAM algorithms). We say that a deterministic RAM algorithm
Local.T is the localized version of the deterministic RAM algorithm T if the following conditions
hold:

Perfect correctness: For every read-only RAM accessible input x = (x1, . . . , xn), for every
arbitrary binary input y ∈ {0, 1}∗, let Ix,y = {i1, . . . , ik} be the ordered set of indexes
read from x during the RAM computation T[x](y). Then, for every k′ ≥ k, for every
memory mapping map = (i′1, . . . , i

′
k′) ⊆ [n], for every read-only RAM accessible input

x′ = (x′1, . . . , x
′
k′) such that

• map is ordered, i.e., ∀j ∈ [k′ − 1] then i′j < i′j+1,

• ∀ij ∈ Ix,y then ij ∈ map,

• ∀i′j ∈ map, if i′j ∈ Ix,y then x′j = xi′j ,

we have P
[
T[x](y) = Local.T[x′],[map](y)

]
= 1.

Invalid mapping: For every read-only RAM accessible input x = (x1, . . . , xn) and for every
arbitrary binary input y ∈ {0, 1}∗, let Ix,y = {i1, . . . , ik} be the ordered set of indexes
read from x during the RAM computation T. Then, for every memory mapping map =
(i′1, . . . , i

′
k′) ⊆ [n], for every read-only RAM accessible input x′ = (x′1, . . . , x

′
k′) such that

• map is ordered, i.e., ∀j ∈ [k′ − 1] then i′j < i′j+1,

• ∃ij ∈ Ix,y such that ij ̸∈ map,

• ∀i′j ∈ map then x′j = xi′j ,

we have P
[
Local.T[x′],[map](y) = ⊥

]
= 1.

Intuitively, perfect correctness says that Local.T[x′],[map](y) performs the same computation
of T[x](y) when map provides the correct mapping between x′ and x for all the indexes Ix,y
read by T[x](y) (observe that Definition 11 allows x′ and map to additionally include blocks and
indexes not read by T[x]. Still, this do not affect the computation of Local.T[x′],[map](y)).

On the other hand, invalid mapping says that Local.T[x′],[map](y) outputs ⊥ when map does
not contain an index ij ̸∈ map which, instead, is read by T[x](y). Looking ahead, this prop-
erty is fundamental to prove security of our verifiable data structure for univariate polynomial
evaluation (Section 5).

The following theorem states (whose proof appears in Appendix A.3) that any deterministic
RAM algorithm has its localized deterministic RAM algorithm. Moreover, the theorem also
explicates the running time of the localized RAM algorithm in terms of the running time of the
original one.

17This is essentially identical to how virtual memories work in practice.
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Theorem 3. If there exists a deterministic RAM algorithm T, then there exists a deterministic
RAM algorithm Local.T which is the localized version of T (Definition 11). In addition, for every
read-only RAM accessible input x, arbitrary binary input y, read-only RAM accessible input x′,
and read-only RAM accessible memory mapping map, the running time of Local.T[x′],[map](y) is
at most t · log(|map|) where t is the running time of T[x](y). The running times of both T and
Local.T are measured in the RAM model of computation.

For the sake of clarity, in the remaining sections we drop the oracle notation [x] used to
denote a RAM accessible input. Thus, we will write Local.T(y, x) (instead of Local.T[x](y))
when it is clear that x is the RAM accessible input.

5 Verifiable DS for Univariate Polynomial Evaluation

We extend the notion of DS for univariate polynomial evaluation (introduced in Section 3.4)
by making it verifiable, i.e., making it possible to check that y = f(x). Intuitively, the syntax
of verifiable DS (VDS, in short) for univariate polynomial evaluation is analogous to that of
(non-verifiable) DS except that the evaluation algorithm produces a proof π that can later be
verified by the corresponding verification algorithm Verify. To make the verification process
work, a VDS also has some public parameters pp (taken as input by all algorithms) and a digest
h that is a succinct representative value of the data structure D.

Formally, a VDS for evaluation of univariate polynomials is composed of the following
polynomial-time algorithms:

Setup(1λ): On input the security parameter 1λ, the randomized setup algorithm outputs the
public parameters pp.

GenData(pp, f, p): On input the public parameters pp, a univariate polynomial f(X) =
∑d

i=0 ai ·
Xi ∈ Zp[X] (of degree d ∈ N) and a prime p ∈ N, the deterministic data structure
generation algorithm outputs a data structure D, a digest h (of the data structure D), and
auxiliary information aux (required to compute proofs of correctness).

Eval(pp, x,D, aux): On input the public parameters pp, a point x ∈ Zp, a data structure D, and
auxiliary information aux, the deterministic evaluation algorithm outputs y ∈ Zp and a
proof π.

Verify(pp, h, x, y, π): On input the public parameters pp, a digest h, a point x ∈ Zp, a value
y ∈ Zp and a proof π, the deterministic verification algorithm outputs a decision bit
b ∈ {0, 1}.

We assume that p is a prime (thus, Zp is a field of prime order) for simplicity, since our PoRep
will leverage such fields.

We require a VDS to satisfy the standard notions of correctness and completeness. The
former says that VDS allows one to correctly compute y = f(x), whereas the latter says that
honestly generated proofs always verify. Differently from non-verifiable DS, a VDS additionally
needs to satisfy soundness in order to be considered secure. At a high level, it is infeasible for
a malicious evaluator to produce a proof π that verifies with respect to an incorrect output
y ̸= f(x).

Definition 12 (Perfect correctness of VDS). A VDS Π = (Setup,GenData,Eval,Verify) for
evaluation of univariate polynomials is perfectly correct if ∀λ ∈ N, ∀ prime p ∈ N, ∀f(X)
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∈ Zp[X], ∀x ∈ Zp, the following probability holds:

P

y = f(x) :
pp←$ Setup(1λ)

(D, h, aux) = GenData(pp, f, p)
(y, π) = Eval(pp, x,D, aux)

 = 1

Definition 13 (Perfect completeness of VDS). A VDS Π = (Setup,GenData,Eval,Verify) for
evaluation of univariate polynomials is perfectly complete if ∀λ ∈ N, ∀ prime p ∈ N, ∀f(X)
∈ Zp[X], ∀x ∈ Zp, the following probability holds:

P

Verify(pp, h, x, y, π) = 1 :
pp←$ Setup(1λ)

(D, h, aux) = GenData(pp, f, p)
(y, π) = Eval(pp, x,D, aux)

 = 1

Definition 14 (Soundness of VDS). A VDS Π = (Setup,GenData,Eval,Verify) for evaluation
of univariate polynomials (ϵ)-sound if for every valid PPT adversary A, the following probability
holds:

P

Verify(pp, h, x, y, π) = 1 ∧ y ̸= f(x) :
pp←$ Setup(1λ)

(x, y, π, f, p)←$ A(1λ, pp)
(D, h, aux) = GenData(pp, f, p)

 ≤ ϵ.

An adversary A is called valid if p ∈ N is a prime and f(X) ∈ Zp[X].18

Observe that the above definition is fully adaptive even if A does not take as input the tuple
(D, h, aux). This is because GenData is deterministic.

Lastly, we extend the notion of efficiency with (γ)-expansion of DS (see Definition 6) to the
setting of VDS. The only difference is that (i) we consider a doubly-efficient VDS where both
evaluation and verification run in time poly-logarithmic in the degree d of the polynomial, and
(ii) the expansion is defined as γ = |D|+|aux|

|f(X)| , i.e., we consider as expansion any information

(that depends on f(X)) required for evaluation which is capable of computing y = f(x) and
its corresponding proof π (observe that the computation of π requires knowledge of aux).19 We
do not include the public parameters pp in the expansion factor since they only depend on the
security parameter.

Definition 15 (Double-efficiency with (γ)-expansion of VDS). A VDS Π = (Setup,GenData,Eval,
Verify) for evaluation of univariate polynomials is doubly-efficient with (γ)-expansion if the fol-
lowing conditions hold:

(γ)-expansion: The size of (D, aux) (output by GenData(pp, f, p)) is bounded by |f(X)| · γ =
(d+1) log(p) ·γ where d is the degree of f(X) ∈ Zp[X] and log(p) is the size of a coefficient
ai ∈ Zp of f(X). The expansion parameter γ may depend on the security parameter λ,
the degree d of f(X), and bit length log(p) of p.

Efficient evaluation and verification: Both Eval and Verify have (worst-case) running time
poly(λ, log(d), log(p)) where d is the degree of f(X) ∈ Zp[X] and log(p) is the size of a
coefficient ai ∈ Zp of f(X) (recall that f(X) and p are given in input to GenData). The
running time of both Eval and Verify is measured in the RAM model of computation.

18We assume that p (output by A) is a prime only because we will leverage fields of prime order when building
our PoRep scheme. Hence, this definition can be extended to any field (e.g., composite p).

19Recall that in DS the only additional information was the expansion of D introduced to handle fast evaluation.
See Definition 15.
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5.1 (Doubly-efficient) VDS from DS and VC

We build a doubly-efficient VDS (Section 5 and Definition 15) from any efficient DS for eval-
uation of univariate polynomials (Section 3.4 and Definition 6) and efficient VC schemes (Sec-
tion 3.3 and Definition 2). At a high level, the construction leverages the fact that a verifier

can check y
?
= f(x) by using Local.EvalDS which is the (deterministic) localized RAM version

of the (deterministic) RAM evaluation algorithm of DS (see Definition 11) as described in the
technical overview (Section 1.2). The formal construction follows.

Construction 1. Consider the following ingredients:

1. A DS scheme ΠDS = (GenDataDS,EvalDS) for evaluation of univariate polynomials. With-
out loss of generality, we assume that the output space of GenDataDS is {0, 1}ℓ·z, i.e.,
the (read-only RAM accessible) data structure D = (D1, . . . ,Dℓ) is composed of ℓ = ℓ(d)
blocks each of size z (for some arbitrary z ∈ N).20 Observe that the degree d of f(X)
(the polynomial given in input to GenDataDS) affects the length of the data structure D
(see Corollary 3) and, for this reason, ℓ = ℓ(d) is a function of d.

2. A deterministic RAM algorithm Local.EvalDS that is the localized version of the determin-
istic RAM algorithm EvalDS of ΠDS (Definition 11).

3. A VC scheme ΠVC = (SetupVC,CommitVC,OpenVC,VerifyVC) with message space {0, 1}z
where z is the block size of the output space of GenDataDS (as defined in Item 1).

We build a VDS scheme Π for evaluation of univariate polynomials as follows:

Setup(1λ): On input the security parameter 1λ, the randomized setup algorithm outputs pp =
ppVC←$ SetupVC(1

λ).

GenData(pp, f, p): On input the public parameters pp = ppVC, a univariate polynomial f(X)
=

∑d
i=0 ai · Xi ∈ Zp[X] of degree d, and a prime p ∈ N, the deterministic data struc-

ture generation algorithm computes D = (D1, . . . ,Dℓ) = GenDataDS(f, p) and (c, aux) =
CommitVC(ppVC, (D1, . . . ,Dℓ)) (recall that ℓ = ℓ(d)). Finally, it outputs the data structure
D, the digest h = c, and the auxiliary information aux.

Eval(pp, x,D, aux): On input the public parameters pp = ppVC, a point x ∈ Zp, a data struc-
ture D, and auxiliary information aux, the deterministic evaluation algorithm proceeds as
follows:

1. Execute EvalDS(x,D) = y and let Ix,D = {i1, . . . , ik} be the ordered set of indexes read
from D during the computation EvalDS(x,D) (recall that EvalDS is a RAM algorithm.
See Definitions 9 and 10).

2. For j ∈ Ix,D, compute πj = OpenVC(ppVC,Dj , j, aux).

Finally, it outputs y ∈ Zp and π = (Ix,D, {Dj}j∈Ix,D , {πj}j∈Ix,D).

Verify(pp, h, x, π): On input the public parameters pp = ppVC, a digest h = c, a point x ∈ Zp, a
value y ∈ Zp, and a proof π = (Ix,D, {Dj}j∈Ix,D , {πj}j∈Ix,D), the deterministic verification
algorithm proceeds as follows:

1. Check that |Ix,D| ≤ ℓ and Ix,D = {i1, . . . , ik} is ordered. If not, return 0.

2. For j ∈ Ix,D, compute VerifyVC(ppVC, c,Dj , j, πj) = bj.

20This means that a z-bits size block of D can be read in constant time in the RAM model of computation.
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3. Execute the localized algorithm Local.EvalDS(x, (Di1 , . . . ,Dik),map) = y′ where map =
(i1, . . . , ik).

21

Finally, the verification algorithm outputs 1 if y = y′ and bj = 1 for every j ∈ Ix,D.
Otherwise, it outputs 0.

Below, we report the results regarding correctness, completeness, and soundness of Construc-
tion 1. The formal proofs appear in Appendices A.4 and A.5.

Theorem 4. Let ΠDS, Local.EvalDS, and ΠVC as defined in Construction 1.

1. If ΠDS is perfectly correct (Definition 5) then Π of Construction 1 is perfectly correct
(Definition 12).

2. If ΠVC is perfectly correct (Definition 3) and Local.EvalDS is perfectly correct (Defini-
tion 11) then Π of Construction 1 is perfectly complete (Definition 13).

Theorem 5. Let ΠDS, Local.EvalDS, and ΠVC as defined in Construction 1. If ΠDS is perfectly
correct (Definition 5), Local.EvalDS satisfies the invalid mapping property (Definition 11), ΠVC

is perfectly correct (Definition 3) and (ϵVC)-position binding (Definition 4), then Π from Con-
struction 1 is (ℓ · ϵVC)-sound.

Construction 1 is doubly-efficient if both the underlying DS and VC scheme are efficient.
Moreover, the expansion factor of Construction 1 depends of the expansion factor of DS and
the size of aux generated by the VC scheme (observe that aux is needed to correctly compute a
proof π). Below, we state the formal result whose proof is deferred to Appendix A.7.

Theorem 6. If ΠDS is efficient with (γDS)-expansion (Definition 6) and ΠVC is efficient (Def-

inition 2) then Π of Construction 1 is doubly-efficient with (γ)-expansion for γ = γDS +
|aux|
|f(X)| ,

where f(X) is the univariate polynomial taken into account and aux is the auxiliary information
generated by ΠVC.

The following corollary is obtained by combining Theorem 6 and Corollaries 2 and 3 (see Ap-
pendix A.6 for the formal proof).

Corollary 5. Under the collision resistant hash function assumption, for every positive constant
δ > 0, there exists a VDS for evaluation of univariate polynomials that is (negl(λ))-sound and
doubly-efficient with (γ)-expansion for γ = 2(d+1)δ logo(1)(p) where log(p) and d are the size of
the prime p and the degree of f(X) ∈ Zp (given in input to GenData), respectively. Moreover,
we have that |h| = λ, i.e., digests are succinct.

6 Proof-of-Replication

A proof-of-replication (PoRep) scheme allows a verifier to efficiently check that a prover is using a
significant amount of space to store an arbitrary message m ∈M.22 The space required to store
m must be sufficiently large even if m is highly compressible. Moreover, PoRep guarantees that
m can be retrieved if the prover passes the verification process. PoRep was previously proposed
in [31]. Our syntax and security definitions below generally capture the same properties, but
they are tailored to reflect the objectives and contributions of this work.

21Recall that Local.EvalDS(x, (Di1 , . . . ,Dik ),map) corresponds to Local.Eval
[Di1

,...,Dik
],[map]

DS (x) using the oracle
abstraction introduced in Section 4.

22We use the term “message” to refer to a file that needs to be stored.
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Formally, we define a PoRep scheme with message spaceM, identifier space I, and challenge
space C to consist of the following polynomial-time algorithms:23

Setup(1λ, 1t): On input the security parameter 1λ and the time parameter 1t, the randomized
setup algorithm outputs a public encoding key ek, a public proving key pk, and a public
verification key vk.

Encode(ek,m, id): On input the public encoding key ek, a message m ∈ M, and an identifier
id ∈ I (for the message m), the deterministic encoding algorithm outputs an encoding c
(of the message m with associated identifier id) and a digest h (of the encoding Encode).

Prove(pk, chall, c): On input the public proving key pk, a challenge chall ∈ I, and an encoding
c, the deterministic proving algorithm outputs a proof π.

Verify(vk, h, chall, π): On input the public verification key vk, a digest h, a challenge chall, and
a proof π, the deterministic algorithm outputs b ∈ {0, 1}.

Decode(ek, c, id): On input the public encoding key ek, an encoding c, and an identifier id ∈ I,
the deterministic decoding algorithm outputs m ∈M.

We require a PoRep scheme to satisfy the standard notions of correctness and completeness.
The former says that an honest execution (of PoRep’s algorithms) allows to correctly decode
the message whereas the latter says that honest proofs always verify.

Definition 16 (Perfect correctness of PoRep). A PoRep Π = (Setup,Encode,Prove,Verify,
Decode) with message space M, identifier space I, and challenge space C is perfectly correct if
∀λ ∈ N, ∀t ∈ N, ∀m ∈M, ∀id ∈ I, the following probability holds:

P
[
Decode(ek, c, id) = m :

(ek, pk, vk)←$ Setup(1λ, 1t)
(c, h) = Encode(ek,m, id)

]
= 1.

Definition 17 (Perfect completeness of PoRep). A PoRep Π = (Setup,Encode,Prove,Verify,
Decode) with message space M, identifier space I, and challenge space C is perfectly complete
if ∀λ ∈ N, ∀t ∈ N, ∀m ∈M, ∀id ∈ I, ∀chall ∈ C, the following probability holds:

P

Verify(vk, h, chall, π) = 1 :
(ek, pk, vk)←$ Setup(1λ, 1t)
(c, h) = Encode(ek,m, id)

π = Prove(pk, chall,Encode)

 = 1.

In addition, we are interested in PoRep protocols that are doubly-efficient, i.e., the running
times of both Eval and Verify are poly-logarithmic in the size |m| of m in the RAM model of
computation. Analogously to VDS, the encoding c may be bigger than m in order to achieve
the above double-efficiency property. Thus, we extend the notion of (γ)-expansion to PoRep

except that γ is defined with respect to |m|, i.e., γ = |c|
|m| (this means that |c| = |m| · γ).

Definition 18 (Double-efficiency with (γ)-expansion of PoRep). A PoRep Π = (Setup,Encode,
Prove,Verify,Decode) with message spaceM, identifier space I, and challenge space C is doubly-
efficient with (γ)-expansion if the following conditions hold:

23Following [31], if needed, one can consider PoRep scheme with an additional message preprocessing algo-
rithm (e.g., encryption of the message) executed by the data owner, or a polling algorithm when challenges are
structured.
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(γ)-expansion: The size of c (output by Encode(ek,m, id)) is bounded by |m| · γ where m is
the encoded message. The expansion parameter γ may depend on the security parameter
λ and the size |m| of m.

Efficient proving and verification: Both Prove and Verify have (worst-case) running time
poly(λ, log(|m|)) where |m| is the size of the encoded message m ∈ M (recall that m is
given as input to Encode). The running time of both Prove and Verify are measured in the
RAM model of computation.

We now turn on security. A PoRep must satisfy two notions, named replication and extrac-
tion, which we formally define in the remainder of this section.

Greplicate
A,Π (λ, t, n, u)

(ek, pk, vk)←$ Setup(1λ, 1t)

(m1, . . . ,mu, state)←$ A1(1
λ, ek, pk, vk)

(id1, . . . , idu)←$ Iu

∀i ∈ [u], (ci, hi) = Encode(ek,mi, idi)

α←$ A2(1
λ, (idi, hi, ci)i∈[u], state)

chall←$ C

(π1, . . . , πu)←$ A3(1
λ, ek, pk, vk, (idi)i∈[u], chall, α)

If ∀i ∈ [u], Verify(vk, hi, chall, πi) = 1 : return 1

Otherwise : return 0

Figure 1: Experiment defining (ϵ, σ, n, u)-replication of PoRep.

Replication of PoRep. In a nutshell, a PoRep must force a prover to use a memory of
size n (to store m ∈ M) in order to produce a proof that verifies. For any adversarially
chosen message m, an adversary cannot compress an honestly computed encoding c (output
by Encode(ek,m, id)) into a string α (i.e., the memory) of size n while passing the verification
process. The same guarantee must hold even if the adversary is required to store u > 1 (possibly
identical) messages (m1, . . . ,mu) and pass the verification for each of those messages. Naturally,
in this case, we have that the memory bound n = n(u) is a function of the number of messages
u (optimally we would like to have that n scales linearly in u).

As already discussed in the technical overview, we consider trapdoorless PoRep. Thus, the
above notion cannot be achieved without restricting the behavior of the adversary (see the
PRF-based attack described in Section 1.2).

For this reason, we consider PoRep with a “slow” encoding algorithm Encode (the slowness
of Encode can be tuned by setting the time parameter t chosen on Setup), and we restrict the
adversary to produce a valid proof in less time than the one required to execute Encode. In the
trapdoorless setting, several works [30, 29, 11, 50, 6, 48, 31] have considered adversaries with
restricted running time. The formal definition follows.

Definition 19 (Replication of PoRep). Let σ(λ, t, n) = σ be a polynomial function of the
security parameter λ, the time parameter t, and the memory bound n, and n(λ, u) = n be
a function that depends on the security parameter λ and the number of messages u ∈ N. A
PoRep Π = (Setup,Encode,Prove,Verify,Decode) with message space M, identifier space I,
and challenge space C satisfies (ϵ, σ, n, u)-replication if for every valid PPT adversary A =

(A1,A2,A3), then P
[
Greplicate

A,Π (λ, t, n, u) = 1
]
≤ ϵ where Greplicate

A,Π is depicted in Figure 1.
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An adversary A = (A1,A2,A3) is called valid if |α| ≤ n and A3 runs in parallel time σ with
poly(t) processors.

Observe that both A1 and A2 are unrestricted; thus, they can perform any polynomial-time
computation (even running Encode over multiple adversarially chosen messages and identifiers).
Also, in addition to α, A3 takes as input anything that is not produced by Encode. This
means that A2 only needs to encode in α (in an compressed fashion) Encode’s output. Finally,
we associate a random but public identifier id only after A1 has committed on the challenge
message m (note that both A2 and A3 take id as input). This allows Encode to have some
randomness (i.e., the identifier) which is not correlated to the chosen message m, allowing it to
produce an incompressible encoding c which is fundamental in order to achieve Definition 19.24

Practical implementations of random identifiers in decentralized systems (such as blockchain
systems) are random beacons, hashing the last blocks of a blockchains, or hashing the message
id = H(m).

Remark 2 (On the honest execution of Encode). In Definition 19, we assume that Encode
is honestly executed. This is because the digest h is fundamental in order to have a sound
verification process (h provides a binding guarantee on the original m). However, this setting
is not compatible with decentralized scenarios (e.g., blockchain systems) in which the prover
(which can be malicious) is entitled to run Encode. Still, we highlight that standard techniques
for verifying computations (such a SNARKs) can be used to efficiently verify that h has been
honestly computed (note that h’s computation does not require any secret, making verification
easier). For the sake of exposition, we choose not to deal with malicious executions of Encode
since the main objective of this paper is to propose a novel approach for PoRep verification
phase.

Memory gap of PoRep. Let u be the number of messages to be stored. The memory gap
of PoRep is defined as the distance between the sizes |m1|+ . . .+ |mu| of the u messages to be
stored and the maximum parameter n for which the PoRep satisfies replication (with respect
to u messages) with negligible adversarial advantage (formally, (negl(λ), σ, n, u)-replication for
some σ). The notion of gap is useful for comparison between different PoReps schemes.

Definition 20 ((η)-gap of PoRep). A PoRep Π = (Setup,Encode,Prove,Verify,Decode) with
message spaceM, identifier space I, and challenge space C has (η)-gap if Π satisfies (negl(λ), n,
σ, u)-replication and n = (1 − η)(u · log(|M|)) where log(|M|) is the length of the messages
supported by Π. The gap parameter η = η(λ, u, log(|M|)) can depend on the security parameter
λ, the number of encoded messages u, and the length of the supported messages log(|M|).

Intuitively, the smaller the gap, the better is the robustness of the PoRep scheme. This is
because an adversary, to pass the verification with non-negligible probability, is forced to use a
memory which is close to the sizes of the u messages which it is entitled to store (where closeness
is defined by the gap parameter η).

Extractability of PoRep. We now turn on extraction. PoRep is extractable if there is a
universal extractor Ext that, given (ek, vk, h, id) and oracle access to the adversary, is able to
extract the encoded message m. Naturally, this must hold only when the adversary is able
to produce verifying proofs with respect to h, i.e., the digest of the encoding of m. We use a
standard definition of extraction, we consider (i) universal PPT extractors, and (ii) adversary
with noticeable (i.e., non-negligible) probability in producing verifying proofs.25

24If m is correlated to id, then c has no chance to be incompressible, Encode is deterministic.
25If the adversary passes the verification with negligible probability then extraction cannot be guaranteed.

Indeed, any adversary (even the one that does not know m) can pass the verification with negligible probability
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Gextract
A,Ext,Π(λ, t, u)

(ek, pk, vk)←$ Setup(1λ, 1t)

(m1, . . . ,mu, state)←$ A1(1
λ, ek, pk, vk)

(id1, . . . , idu)←$ Iu

∀i ∈ [u], (ci, hi) = Encode(ek,mi, idi)

α←$ A2(1
λ, (idi, hi, ci)i∈[u], state)

(m′
1, . . . ,m

′
u)←$ ExtA3(·)(1λ, ek, vk, (hi, idi)i∈[u])

If ∀i ∈ [u], m′
i = mi : return 1

Otherwise : return 0

Figure 2: Experiment defining extractability of PoRep. The extractor Ext of Gextract
A,Ext,Π(λ, t, u)

has oracle access to A3(·) which is defined as A3(·) = A3(1
λ, ek, pk, vk, (idi)i∈[u], ·, α), i.e., Ext

can only submit challenges chall ∈ C to A3(·).

Below, we report the formal definition of extraction of PoRep. For the sake of clarity, we directly
define extraction in the asymptotic setting since the definition only depends on λ (i.e., we do
not put any time and memory restriction on the adversary except from being polynomial in λ).

Definition 21 (Extractability of PoRep). A PoRep Π = (Setup,Encode,Prove,Verify,Decode)
with message spaceM, identifier space I, and challenge space C is extractable if there exists an
universal PPT extractor Ext such that ∀λ ∈ N, ∀t ∈ poly(λ), ∀u ∈ poly(λ), ∀n ∈ poly(λ), and
for every PPT adversary A = (A1,A2,A3), the following condition holds:

P
[
Greplicate

A,Π (λ, t, n, u) = 1
]
≥ 1

poly(λ)
=⇒

P
[
Gextract

A,Ext,Π(λ, t, u) = 1
]
≥ 1− negl(λ), (1)

where the both experiments Greplicate
A,Π (λ, t, n, u) and Gextract

A,Ext,Π,d(λ, t, u) are depicted in Figure 2.

We stress that A does not need to be valid with respect to experiment Greplicate
A,Π (λ, t, n, u) as

defined in Definition 19 (i.e., Ext is able to extract independently from the running time and
the memory used by the adversary).

We highlight that the head of the implication (Equation (1)) implies that the adversary

passes the verification with non-negligible probability (see experiment Greplicate
A,Π (λ, t, n, u) in Fig-

ure 2). Moreover, Ext of Gextract
A,Ext,Π,d(λ, t, u) (Figure 2) has only oracle access to A3 and no a-priori

knowledge about (m1, . . . ,mu) (the messages that Ext needs to extract).

6.1 PoRep from (input-dependent pre-processing) MHF and VDS

Next, we build a PoRep scheme from MHF (with input-dependent pre-processing), VDS, and
an hash function H modelled as a RO.

Construction 2. Consider the following ingredients:

1. A prime p of (sp + 1)-bits and a prime q of (sq)-bits where q ≤ p (by definition Zq ⊆ Zp

when q ≤ p), sp(λ) = sp and sq(λ) = sq two polynomials in the security parameter. We
assume that sq is at least ω(log(λ)) w.l.o.g.

by simply guessing the verifying proof π.
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2. A MHF scheme ΠMHF = (SetupMHF,EvalMHF) with input space XMHF and output space
YMHF.

3. A VDS ΠVDS = (SetupVDS,GenDataVDS,EvalVDS,VerifyVDS) for evaluation of univariate
polynomials.

4. A hash function H : YMHF ×XMHF → {0, 1}d·sp modeled as a RO.

We build a PoRep scheme Π with message spaceM = {0, 1}d·sp (for any d < q), identifier space
I = XMHF, and challenge space C = Zq, as follows:

Setup(1λ, 1t): On input the security parameter 1λ and the time parameter 1t, the randomized
setup algorithm outputs a public encoding key ek = (ppMHF, ppVDS), a public proving key
pk = ppVDS, and a public verification key vk = ppVDS where ppMHF←$ SetupMHF(1

λ, 1t)
and ppVDS←$ SetupVDS(1

λ).

Encode(ek,m, id): On input the public encoding key ek = (ppMHF, ppVDS), a message m ∈
{0, 1}d·sp, and an identifier id ∈ I (for the message m), the deterministic encoding al-
gorithm computes v = EvalMHF(ppMHF, id) and r = H(v, id). In addition, it computes
r ⊕m = f(X) ∈ Zp[X] (i.e., r ⊕m is interpreted as a random polynomial f(X) of de-
gree d− 1 from Zp[X]) and (h,D, aux) = GenDataVDS(ppVDS, f, p). Finally, it outputs the
encoding c = (D, aux) and the digest h.

Prove(pk, chall, c): On input the public proving key pk = ppVDS, a challenge chall = x ∈ C,
and the encoding c = (D, aux), the deterministic proving algorithm outputs a proof π =
(y, π′) = ProveVDS(ppVDS, x,D, aux).

Verify(vk, h, chall, π): On input the public verification key vk = ppVDS, a digest h, a challenge
chall = x ∈ C, and a proof π = (y, π′), the deterministic verification algorithm outputs
b = VerifyVDS(ppVDS, h, x, y, π

′).

Decode(ek, c, id): On input the public encoding key ek = (ppMHF, ppVDS), an encoding c =
(D, aux), and an identifier id ∈ I, the deterministic decoding algorithm proceeds as follows:

• For every i ∈ [d], compute (yi, πi) = ProveVDS(ppVDS, i,D, aux) (recall that d < q thus
d ∈ Zq = C).26

• Compute a polynomial f ′(X) ∈ Zp[X] of degree d − 1 by running Lagrange interpo-
lation on the points (1, . . . , d) and the evaluations (y1, . . . , yd).

Finally, it outputs m = H(EvalMHF(ppMHF, id), id)⊕ f ′(X).

Correctness, completeness, and double-efficiency trivially follow from that of VDS, so we omit
the proof.

Theorem 7. Let ΠVDS as defined in Construction 2. If ΠVDS is perfectly correct (Definition 12)
and doubly-efficient with (γ)-expansion (Definition 15) then Π of Construction 2 is perfectly
correct, perfectly complete, and doubly-efficient with (γ)-expansion.

As for replication and extraction, we establish the following results (Theorems 8 and 9 and Corol-
lary 6) whose proofs appear in Appendices A.8 to A.10.

26We set d < q to guarantee that the challenge space C contains at least d challenges required for re-computing
f(X) using Langrange interpolation.
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Theorem 8. Let ΠVDS as defined in Construction 2. If ΠVDS is (negl(λ))-sound (Definition 4)
then Π of Construction 2 is extractable.

Theorem 9. Let sp(λ) = sp, sq(λ) = sq, p, q, ΠMHF, ΠVDS, and H as defined in Construction 2.
For every λ ∈ N, d ∈ N, u ∈ N, c ∈ N such that c < d(u · sp − sq), and under the following
conditions:

• existence of an (ϵPRF)-secure ΠPRF = (KGenPRF,FPRF) scheme with input space YMHF and
output space {0, 1}d·sp (Definition 8),

• (ϵMHF, σMHF, nMHF)-security of ΠMHF (Definition 1),

• (ϵVDS)-soundness of ΠVDS (Definition 14),

then Π of Construction 2 satisfies (ϵ, σMHF, n, u)-replication (Definition 19) in the ROM for
n = min{nMHF, d(u · sp − sq) − c}, and ϵ = ϵPRF + u · qH · ϵMHF + u

|XMHF| + u · ϵVDS + d−1
|Zq | +

1
2c

where qH is the number of queries submitted to the RO H.

Remark 3 (On the Need of Assuming PRFs in Theorem 9). Surprisingly, Theorem 9 holds
under the existence of a secure PRF even if Construction 2 does not involve a PRF at all.
The reason behind the need of a PRF is due to the combination of the ROM with experiments
(defining the security of a primitive) in which a multi-stage adversary is restricted to sharing a
state of bounded size. Examples of such experiments are Definitions 1 and 19 and Theorem 2 in
which there is a first adversary that passes to a second adversary a pre-computed state α (i.e., the
memory) which is bounded by some parameter n ≥ |α|. For the sake of concreteness, consider
a multi-stage reduction A′ = (A′1,A

′
2) that wins against the MHF experiment of Definition 1 by

using (in a black-box fashion) a multi-stage algorithm A = (A1,A2,A3) against the replication
experiment of Definition 19 (this is exactly Lemma 11 of the proof of Theorem 9). In order
to correctly simulate A’s view, A′ must answers to all the RO queries consistently. To do so,
A must share a state which contains the mapping between the inputs/outputs of the simulated
RO. However, A′1 and A′2 can only share a state |α| ≤ n whereas A may submit any a-priori
unknown number of RO queries which may require more than n bits to be stored. This means
that A′2 (the one that receives |α| from A′1) may fail in replying consistently to the RO queries
if A submits a particular query twice (submit the same query to both A′1 and A′2). To overcome
this problem, we use a PRF that allows A′ to compress the inputs/outputs of the RO by sharing
a short PRF key k between A′1 and A′2. In this way, A′1 and A′2 can answer consistently by
replying with F(k, x) when they receive a RO query x. This is exactly why we need a PRF to
prove Theorem 9 (see Lemma 11 of Theorem 9 for more details about the proof).

By combining Corollaries 1, 4 and 5 with Theorems 8 and 9, we obtain the following corollary
(see Appendix A.10 for the formal proof).

Corollary 6. Under the collision resistant hash function, for every positive constants δ1, δ2 > 0,
for every d ∈ poly(λ), for every u ∈ poly(λ), there exists a PoRep scheme with message space

{0, 1}d·λ1+δ1 , identifier space {0, 1}λ, and challenge space {0, 1}λ that satisfies (negl(λ), σ, n, u)-
replication, extraction, and double-efficiency with (γ)-expansion (Definitions 18, 19 and 21), in
the parallel ROM where n = d · u · λ1+δ1 − (d+ 1) · λ, γ = 2 · dδ2 · λo(1)(1+δ1), and σ(λ, t, n) = σ
be the upper-bound of (possibly parallel) running time under which the underlying MHF scheme
remains secure. Moreover, the (η)-gap of the aforementioned PoRep scheme is defined as η =

O
(

1
u·λδ1

)
.
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A Supporting Proofs

A.1 Proof of Theorem 2

Fix u ∈ N and c ≤ d(u · sp − sq). Assume there exists a PPT adversary A = (A1,A2) such that

P

 A2(1
λ, x, α) = (f1(x), . . . , fu(x)) ∧
|α| ≤ d(u · sp − sq)− c

:

(f1(X), . . . , fu(X))←$ Fu
d−1,p,

α←$ A1(1
λ, f1, . . . , fu),

x←$ Zq

 (2)

>
d− 1

|Zq|
+

1

2c
= ϵ.

Fix (f1(X), . . . , fu(X))←$ Fu
d−1,p, α←$ A1(1

λ, f1, . . . , fu), and the random coins r2 ∈ {0, 1}∗

of A2. Let Xf1,...,fu,α,r2 be the set of points for which the adversary A2, on input (1λ, α) and
random coins r2, is able to correctly compute (f1(x), . . . , fu(x)), i.e.,

Xf1,...,fu,α,r2
def
= {x : x ∈ Zq such that (f1(x), . . . , fu(x)) = A2(1

λ, x, α; r2)}.

It is easy to see that
|Xf1,...,fu,α,r2

|
|Zq | > ϵ; otherwise, Equation (2) does not hold. Hence, we

have that |Xf1,...,fu,α,r2 | > ϵ · |Zq| = d − 1 +
|Zq |
2c > d − 1. This means that Xf1,...,fu,α,r2 ⊆ Zq

contains at least d distinct points with probability ϵ where the probability is taken over choices
of (f1(X), . . . , fu(X))←$ Fu

d−1,p, α←$ A1(1
λ, f1, . . . , fu), and random coins r2←$ {0, 1}∗.

We leverage this observation to build an adversary A′ = (A′1,A
′
2) that contradicts the (c,

1
2c )-

incompressibility of Uu·d·sp (Theorem 1). Without loss of generality, we assume that both A′1
and A′2 have hardcoded r2←$ {0, 1}∗. A′ = (A′1,A

′
2) are defined as follows:

A′1(1
λ, a): On input the security parameter 1λ and string a = (a0, . . . , au·d−1) ∈ {0, 1}u·d·sp , A′1
proceeds as follows:

1. Compute α←$ A1(1
λ, f1, . . . , fu) where fj(X) =

∑d−1
i=0 aj·d+i ·Xi ∈ Zp[X] for every

j ∈ {0} ∪ [u− 1].

2. Compute (in time |Zq|) the set Xf1,...,fu,α,r2 . Note that this is possible since A′1 is
unbounded and has r2 hardcoded.

3. Output α′ = (α, x1, . . . , xd) where x1, . . . , xd ∈ Xf1,...,fu,α,r2 .

A′2(1
λ, α′): On input the security parameter 1λ and α′ = (α, x1, . . . , xd), A

′
2 proceeds as follows:

1. For every i ∈ [d], compute (yi,1, . . . , yi,u)←$ A2(1
λ, xi, α; r2).

2. For every j ∈ {0}∪[u−1], compute (aj·d, . . . , aj·d+d−1) using Langrange interpolation
over the evaluations y1,j , . . . , yd,j and the points x1, . . . , xd (recall that p is of size
(sp + 1). This guarantees that each ai of size sp can be correctly reconstructed).

3. Output a = (a0, . . . au·d−1).

First, it is easy to see that A′1 outputs a string α′ of the correct size since

|α′| = |α|+ |x1|+ . . .+ |xd| ≤ d(u · sp − sq)− c+ d · sq = u · d · sp − c.

Second, we know that Xf1,...,fu,α,r2 contains d points with probability ϵ and, by definition
of Xf1,...,fu,α,r2 , the evaluations (y1,j , . . . , yd,j)j∈[u] are correct, i.e., yi,j = fj(xi) for every i ∈ [d]
and for every j ∈ [u]. Since f1(X), . . . , fu(X) are all univariate polynomials of degree d− 1, the
Lagrange interpolation correctly reconstructs the corresponding coefficients of each polynomial.
In turn, this implies that A′2 outputs the correct string a = (a0, . . . , au·d−1). Hence, A

′ = (A′1,A
′
2)

retains the same advantage of A = (A1,A2) which is greater than 1
2c (independently from the

choices of d and q. See Equation (2)). This concludes the proof.
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A.2 Proof of Corollary 4

The corollary follows by setting c = c(λ) = λ, sp = sp(λ) = λ1+δ, sq = sq(λ) = λ, and observing

that d−1
|Zq | ≤

poly(λ)
2λ

∈ O( 1
2λ
), 1

2c = 1
2λ
, and

|α| ≤ d(u · sp − sq)− c = d · u · sp − (d · sq + c) = d · u · λ1+δ − (d · λ+ λ)

= d · u · λ1+δ − (d+ 1) · λ.

A.3 Proof of Theorem 3

This proof relies on the oracle abstraction defined in Definition 9. This is because, the lo-
calized version Local.T[x′],[map](y) of a deterministic RAM algorithm T[x](y) is essentially the
execution of T[·](y) where the (oracle) RAM accessible input (denoted as [·]) is simulated by
Local.T[x′],[map](y) using its oracle access to both x′ and map, and intercepting the all (read, i)
read commands issued by T[·](y) (as defined in Definition 9).

Formally, consider the following construction.

Construction 3. Let T be a deterministic RAM algorithm. We build the localized version
Local.T of T as follows.

Local.T[x′],[map](y): On input an arbitrary binary string y ∈ {0, 1}∗, a RAM accessible input
x′ = (x′1, . . . , x

′
k′), and a RAM accessible memory mapping map = (i′1, . . . , i

′
k′), the local-

ized deterministc RAM algorithm Local.T executes T[·](y) (the notation [·] indicates that
Local.T will simulate the access to the read-only RAM input) and, until T stops or it
outputs a value v, it proceeds as follows:

1. When T submits a read command (read, ij), Local.T leverages its read-only RAM
access to map to execute a binary search over map to identify the index c which is
the location of ij into map. If such an index c does not exist (i.e., ij ̸∈ map), Local.T
outputs ⊥ and terminates.

2. Local.T sends the read command (read, c) to [x′] and receives x′c as a result. Then,
Local.T returns x′c to T as the answer of the read command (read, ij).

3. Local.T waits for the next read command of T and re-executes Items 1 to 3.

Finally, Local.T outputs the same value v output by T[·](y).

We now demonstrate that Local.T of Construction 3 satisfies perfect correctness and invalid
mapping. Lastly, we demonstrate the running time of Local.T.

Lemma 1. The localized version Local.T (Construction 3) of the deterministic RAM algorithm
T is perfectly correct (Definition 11).

Proof. Fix the read-only accessible input x = (x1, . . . , xn) and an arbitrary binary input of T.
Also, consider Ix,y, k′, map, and x′ = (x′1, . . . , x

′
k′) as defined in the perfect correctness property

of Definition 11. Then, we have the following conditions:

1. map is ordered, i.e., ∀j ∈ [k′] then i′j < i′j+1,

2. ∀ij ∈ Ix,y then ij ∈ map,

3. ∀i′j ∈ map if i′j ∈ Ix,y then x′j = xi′j .
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From Item 1, we conclude that Local.T of Construction 3 can correctly execute the binary search
onmap. Moreover, by definition, T will submit only read commands (read, ij) such that ij ∈ Ix,y.
In turn, by combining the above with Item 2, we conclude that Local.T will never return ⊥ since
ij will be in map. Let c be the index of ij (of the read command (read, ij)) indentified by Local.T
after running the binary search on map. By leveraging, Item 3 we have that x′c = xij which is

the correct value expected by T. Hence, it must be that T[x](y) = v = Local.T[x′],[map](y). This
concludes the proof.

Lemma 2. The localized version Local.T (Construction 3) of the deterministic RAM algorithm
T satisfies the invalid mapping property (Definition 11).

Proof. Fix the read-only accessible input x = (x1, . . . , xn) and an arbitrary binary input of T.
Also, consider Ix,y, k′, map, and x′ = (x′1, . . . , x

′
k′) as defined in the invalid mapping property

of Definition 11. Then, we have the following conditions:

1. map is ordered, i.e., ∀j ∈ [k′] then i′j < i′j+1,

2. ∃ij ∈ Ix,y such that ij ̸∈ map,

3. ∀i′j ∈ map then x′j = xi′j .

As usual, Item 1 implies that Local.T of Construction 3 can correctly execute the binary search
on map. Moreover, by definition, T will submits only read commands (read, ij) such that
ij ∈ Ix,y. Now, fix a generic m-th read command (read, ij) submitted by T. We can identify
the following two cases:

• If ij ∈ map then Local.T will return x′c to T as the answer of the read command (read, ij)
where c is the index of ij indentified by Local.T (after running the binary search on map).
By leveraging, Item 3, we have x′c = xij which is precisely the value that T expects to see.
Hence, the computation of T and Local.T can continue as expected.

• If ij ̸∈ map (note that ij ∈ Ix,y also holds since, by definition, T will only submit read
commands (read, ij) such that ij ∈ Ix,y) then the binary search, executed by Local.T, will
not find an index c. In turn, Local.T will output ⊥ and terminate. Observe that this
case must happen (i.e., there exists an m′-th read command query (read, ij) such that
ij ̸∈ map) since we know that ∃ij ∈ Ix,y such that ij ̸∈ map (Item 2).

By combining the above observations, we conclude that Local.T[x′](y) will output ⊥. This
concludes the proof.

Lemma 3. For every read-only RAM accessible input x, arbitrary binary input y, read-only
RAM accessible input x′, and read-only RAM accessible memory mapping map, the running time
of Local.T[x′],[map](y) (Construction 3) is at most t · log(|map|) where t is the running time of
T[x](y). Running times of both T and Local.T are measured in the RAM model of computation.

Proof. Assume that the running time of T[x](y) is t in the RAM model of computation. This
implies that T[x](y) submits at most t read command queries to its read-only RAM accessible
input x. Without loss of generality, assume T[x](y) only submits read command queries and
does not perform any internal computation (this is fine to assume since Local.T[x′],[map](y) will
produce an overhead only when a read command query is submitted by T[x](y)). For every
read command query submitted by T[x](y), Local.T[x′],[map](y) executes a binary search over
map which requires (worst-case) time log(|map|) in the RAM model of computation. Hence, the
overall running time of Local.T[x′],[map](y) will be at most t · log(|map|).

Theorem 3 follows by combining Lemmas 1 to 3.
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A.4 Proof of Theorem 4

First, regarding perfect correctness of Π, the value y, output by Eval(pp, x,D, aux), is computed
as y = EvalDS(x,D) where D = GenDataDS(f, p). As a consequence, perfect correctness of Π
simply follows from the perfect correctness of ΠDS.

Second, regarding perfect completeness of Π, fix an honestly generated output (y, π) pro-
duced by Eval(pp, x,D, aux) where π = (Ix,Dx,D

, {πj}j∈Ix,D) as defined in Construction 1 (recall
that Ix,D is the ordered set of indexes read from the data structure D during the RAM compu-
tation EvalDS(x,D). See Item 1). On verification, Verify(pp, h, x, π) proceeds as follows:

1. It checks |Ix,D| ≤ ℓ and Ix,D = {i1, . . . , ik} is an ordered set. If Eval(pp, x,D, aux) is
honestly executed then these conditions hold by definition (observe that D is composed
of ℓ blocks so Ix,D cannot be bigger than ℓ).

2. It computes VerifyVC(ppVC, c,Dj , j, πj) = bj for j ∈ Ix,D. Since ΠVC is perfectly correct,
we have that bj = 1 for every j ∈ Ix,D.

3. It executes Local.EvalDS(x, (Di1 , . . . ,Dik),map) = y′ where Ix,D = {i1, . . . , ik} and map =
(i1, . . . , ik). By definition, we have that Ix,D = {i1, . . . , ik} is the ordered set of in-
dexes read from x during the computation EvalDS(pp, x,D). Hence, we conclude that
Local.EvalDS(x, (Di1 , . . . ,Dik),map) = y′ = y = EvalDS(x,D) by leveraging the perfect
correctness of the localized computation Local.EvalDS of EvalDS (see Definition 11).

Observe that the final output of Verify(pp, h, x, π) is 1 if y′ = y and bj = 1 for every j ∈ Ix,D.
Hence, by combining the two above observations, we conclude that Π is perfectly complete.

A.5 Proof of Theorem 5

Suppose that Π is not (ℓ · ϵVC)-sound, i,e, there exists a valid PPT adversary A such that

P

 Verify(pp, h, x̃, ỹ, π̃) = 1 ∧
ỹ ̸= f(x̃)

:
pp←$ Setup(1λ)

(x̃, ỹ, π̃, f, p)←$ A(1λ, pp)
(D, h, aux) = GenData(pp, f, p)

 > ℓ · ϵVC. (3)

Fix the output (x̃, ỹ, π̃) of A where π̃ = (Ĩ, {D̃1, . . . D̃n}, {π̃1, . . . , π̃n}) and Ĩ = {ĩ1, . . . , ĩn}.
Through the proof, we assume the following:

1. n ≤ ℓ ∈ N and Ĩ is an ordered set; otherwise, the verification Verify(pp, h, x̃, ỹ, π̃) would
output 0, contradicting Equation (3) (see Construction 1).

2. p ∈ N is a prime and f(X) ∈ Zp[X]. This is because A is valid with respect to Definition 14.

Lemma 4. For every j ∈ [n], the following probability holds:

P

 VerifyVC(ppVC, c, D̃j , ĩj , π̃j) = 1 ∧
Dĩj
̸= D̃j

:
pp←$ Setup(1λ)

(x̃, ỹ, π̃, f, p)←$ A(1λ, pp)
(D, h, aux) = GenData(pp, f, p)

 ≤ ϵVC,

where π̃ = (Ĩ, {D̃1, . . . D̃n}, {π̃1, . . . , π̃n}), Ĩ = {ĩ1, . . . , ĩn}, h = c, pp = ppVC, and D =
(D1, . . . ,Dℓ).

Proof. Suppose that the above probability does not hold. We build a PPT adversary AVC that
breaks the (ϵVC)-positional binding of ΠVC. AVC proceeds as follows:
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1. Receive ppVC from the challenger.

2. Send ppVC to A.

3. Receive (x̃, ỹ, π̃, f, p) from A where π̃ = (Ĩ, {D̃1, . . . D̃n}, {π̃1, . . . , π̃n}) and Ĩ = {ĩ1, . . . , ĩn}.

4. Compute (D, h, aux) = GenData(ppVC, f, p) where D = (D1, . . . ,Dℓ).

5. Output (h,Dĩj
, D̃j , ĩj , πĩj , π̃j) where πĩj = OpenVC(ppVC,Dĩj

, ĩj , aux).

It is easy to see that AVC correctly simulates the view of A. Conditioned to a correct simulation,
we observe the following:

1. VerifyVC(ppVC, h,Dĩj
, ĩj , πĩj ) = 1 where h = c = CommitVC(ppVC, (D1, . . . ,Dℓ)). This fol-

lows from the perfect correctness of ΠVC.

2. VerifyVC(ppVC, h, D̃j , ĩj , π̃j) = 1 and Dĩj
̸= D̃j with probability at least ϵVC. This because,

by definition, A has an advantage ϵVC in outputting (x̃, ỹ, π̃, f, p) such that VerifyVC(ppVC, c,
D̃j , ĩj , π̃j) = 1 and Dĩj

̸= D̃j .

By combining the above observations, we conclude that AVC breaks positional binding with
probability greater than ϵVC. This concludes the proof.

Lemma 5. The following probability holds:

P

 Local.EvalDS(x̃, (D
′
1, . . . ,D

′
n),map) = ⊥ :

pp←$ Setup(1λ),
(x̃, ỹ, π̃, f, p)←$ A(1λ, pp),

(D, h, aux) = GenData(pp, f, p),
∃ij ∈ ID,x̃ s.t. ij ̸∈ map

 = 1,

where ID,x̃ = {i1, . . . , ik} is the set of ordered indexes read from x during the (honestly exe-

cuted) deterministic RAM computation EvalDS(x̃,D), π̃ = (Ĩ, {D̃1, . . . , D̃n}, {π̃1, . . . , π̃n}), Ĩ =
{ĩ1, . . . , ĩn}, h = c, pp = ppVC, map = (ĩ1, . . . , ĩn), and (D′1, . . . ,D

′
n) = (Dĩ1

, . . . ,Dĩn
).

Proof. Observe that the following conditions hold:

• map is ordered since it is computed from Ĩ which in turn is an ordered set; otherwise,
Verify(pp, h, x̃, ỹ, π̃) would output 0, contradicting Equation (3).

• By definition, Lemma 5 assumes that ∃ij ∈ ID,x̃ such that ij ̸∈ map.

• By definition, Lemma 5 assumes that ∀ĩj ∈ map we have D′j = Dĩj
.

By leveraging the above conditions, the Lemma 5 follows by using the invalid mapping property
(Definition 11) of the localized deterministic RAM algorithm Local.EvalDS of EvalDS.

Lemma 6. The following probability holds:

P

Local.EvalDS(x̃, (D
′
1, . . . ,D

′
n),map) = f(x̃) :

pp←$ Setup(1λ)
(x̃, ỹ, π̃, f, p)←$ A(1λ, pp)

(D, h, aux) = GenData(pp, f, p)
̸ ∃ij ∈ ID,x̃ s.t. ij ̸∈ map

 = 1,

where ID,x̃ = {i1, . . . , ik} is the set of ordered indexes read from x during the (honestly exe-

cuted) deterministic RAM computation EvalDS(x̃,D), π̃ = (Ĩ, {D̃1, . . . , D̃n}, {π̃1, . . . , π̃n}), Ĩ =
{ĩ1, . . . , ĩn}, h = c, pp = ppVC, map = (ĩ1, . . . , ĩn), and (D′1, . . . ,D

′
n) = (Dĩ1

, . . . ,Dĩn
).
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Proof. Observe that the following conditions hold:

• map is ordered since it is computed from Ĩ which in turn is an ordered set; otherwise,
Verify(pp, h, x̃, ỹ, π̃) would output 0, contradicting Equation (3).

• By definition, Lemma 6 assumes that ̸ ∃ij ∈ ID,x̃ such that ij ̸∈ map (or equivalently
∀ij ∈ ID,x̃ we have ij ∈ map).

• By definition, Lemma 6 assumes that ∀ĩj ∈ map we have D′j = Dĩj
. Moreover, in combi-

nation with the above condition, we can also conclude that ∀ĩj ∈ map we have if ĩj ∈ ID,x̃

then D′j = Dĩj
.

By leveraging the above conditions, Lemma 6 follows by using the perfect correctness (Defini-
tion 11) of the localized deterministic RAM algorithm Local.EvalDS of EvalDS.

To conclude the proof of Theorem 5, we need to observe the following:

1. By leveraging ℓ times Lemma 4, we conclude that ∃j ∈ [n] such that Dĩj
̸= D̃j with

probability probability at most ℓ · ϵVC. By combining this observation with Equation (3),
we obtain that (Dĩ1

, . . . ,Dĩn
) = (D̃1, . . . , D̃n).

2. Conditioned to (Dĩ1
, . . . ,Dĩn

) = (D̃1, . . . , D̃n), if ∃ij ∈ ID,x̃ such that ij ̸∈ Ĩ, then also map

(computed by the verification algorithm Verify) is such that ∃ij ∈ ID,x̃ where ĩj ̸∈ map

(this because map is computed from Ĩ). In turn, by leveraging Lemma 5 we conclude
that the localized deterministic RAM computation Local.EvalDS (of EvalDS) will output
y′ = ⊥. By definition, this can not happen since y′ = ⊥ ̸= f(x̃) and, in turn, this would
require Verify(pp, h, x̃, ỹ, π̃) to output 0, contradicting Equation (3). Hence, it must be
that ̸ ∃ij ∈ ID,x̃ such that ij ̸∈ Ĩ.

3. On the other hand, conditioned to (Dĩ1
, . . . ,Dĩn

) = (D̃1, . . . , D̃n), if ̸ ∃ij ∈ ID,x̃ such

that ij ̸∈ Ĩ, then also map (computed by the verification algorithm Verify) is such that

̸ ∃ij ∈ ID,x̃ where ĩj ̸∈ map (this is because map is computed from Ĩ). Similarly to the
previous case, by leveraging Lemma 5 we conclude that the localized deterministic RAM
algorithm Local.EvalDS (of EvalDS) will output Local.EvalDS(x̃, (D̃1, . . . , D̃n),map) = y′ =
f(x̃) = EvalDS(x̃,D). Finally, Verify(pp, h, x̃, ỹ, π̃) = 1 (as defined in Equation (3)) implies
that y = y′. Hence, we conclude that y = f(x̃) which contradicts Equation (3) (which
says y ̸= f(x̃)).

Theorem 5 follows from the combination of Items 1 to 3 above (which in turn they leverage Lem-
mas 4 to 6).

A.6 Proof of Corollary 5

By leveraging Corollary 3 we have that the size |D| of D (output by GenData) is |f(X)| · γDS,
where γDS = (d+1)δ logo(1)(p). In addition, Corollary 2 implies that |aux| = ℓ · z = |f(X)| · γDS

since ℓ = ℓ(d) corresponds to the number of blocks of D when each block (of D) is of size z
(see Construction 1). Finally, by leveraging Theorem 6 we conclude that

γ = γDS +
|aux|
|f(X)|

= 2 · γDS = 2(d+ 1)δ logo(1)(p).

Regarding the size of digest, we can observe that h = c and |c| = λ (see Corollary 2) where c is
generated by ΠVC.
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A.7 Proof of Theorem 6

We prove each efficiency property individually.

(γ)-expansion: This property is straigthforward. Since |D| = |f(X)| · γDS + |aux|, we obtain
that

γ =
|D|+ |aux|
|f(X)|

= γDS +
|aux|
|f(X)|

,

where γDS is the expansion factor of the underlying ΠDS and aux is the auxiliary informa-
tion output by ΠVC.

Efficient of evaluation and verification: As for evaluation, we can observe that Eval pro-
ceeds as follows:

1. It executes EvalDS(x,D) and computes the ordered set of indexes Ix,D. Since ΠDS

is efficient (see Definition 6), we obtain that both EvalDS(x,D) and the computation
of Ix,D requires time poly(log(d), log(p)). Observe that the running time for com-
puting Ix,D holds since EvalDS(x,D) runs in time poly(log(d), log(p)) which, in turn,
is an upper-bound on the number of indexes read. In addition, ordering Ix,D has
a logarithmic multiplicate overhead which is absorbed by the asymptotic notation
poly(log(d), log(p)).

2. It computes |Ix,D| ∈ poly(log(d), log(p)) openings πj by executing |Ix,D| times the
opening algorithm OpenVC. Since ΠVC is efficient (Definition 2), computing these
|Ix,D| openings requires time poly(λ, log(d), log(p)).27

On the other hand, as for verification, Verify proceeds as follows:

1. It checks that Ix,D ≤ ℓ and that Ix,D is ordered. Since Ix,D is upper-bounded by the
(worst-case) running time of EvalDS, we conclude that these steps require (worst-case)
time poly(log(d), log(p)).

2. It executes |Ix,D| times the verification algorithm VerifyVC. As usual ΠVC is efficient.
Thus, the overall (worst-case) running time of this step is poly(λ, log(d), log(p)).

3. Finally, it executes the localized computation Local.EvalDS(x, (Di1 , . . . , ,Dik),map)
where |map| = |Ix,D| ∈ poly(log(d), log(p)) since EvalDS runs in time poly(log(d),
log(p)). By combining Theorem 3 with the above observation, we have that the
localized RAM algorithm Local.EvalDS has (worst-case) running time poly(log(d),
log(p)).

To conclude, the (worst-case) running times of both Eval and Verify are poly(λ, log(d),
log(p)) in the RAM model of computation.

This implies that Construction 1 is doubly-efficient.

A.8 Proof of Theorem 8

Consider the following extractor ExtA3(·) (with oracle access to A3 as defined in experiment
Gextract

A,Π,Ext(λ, t, u) of Definition 21):

ExtA3(·)(1λ, ek, (hi, idi)i∈[u]): On input the security parameter 1λ, the public encoding key ek =
(ppMHF, ppVDS), the public verification key vk = ppVDS, u pairs of digests and identifiers

27Recall that ℓ = ℓ(d) is a polynomial function that depends on d. Thus, log(ℓ) = O(log(d)).
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(hi, idi)i∈[u] (each corresponding to a message mi that Ext needs to extract), and oracle
access to the adversary A3(·),28 the extractor proceeds as follows:

1. Initialize yi,j = ⊥ for every i ∈ [u] and j ∈ [d].

2. For every j ∈ [d] and for every q ∈ [trials] where trials(λ) ∈ ω(log(λ)) (note that trials
depends on the security parameter λ):

(a) Send challj,q←$ C to A3 and receive the answer (πi,j,q)i∈[u] where πi,j,q = (yi,j,q,
π′i,j,q) (recall that A3 will reply with u proofs, one for each message).

(b) If Verify(vk, hi, challj,q, πi,j,q) = 1 for every i ∈ [u], set yi,j = yi,j,q and xj = challj,q
for every i ∈ [u].

3. If ∃i ∈ [u] and j ∈ [d] such that yi,j , the extractor aborts and outputs ⊥.
4. For every i ∈ [u], use Lagrange interpolation over the points (xj)j∈[d] and the evalu-

ations (yi,j)j∈[d] to compute f ′i(X) ∈ Zp[X].

5. Finally, return (m′1, . . . ,m
′
u) where mi = f ′i(X)⊕ H(Eval(ppMHF, idi), idi) for i ∈ [u].

It is easy to see that the extractor runs in polynomial-time since u ∈ poly(λ), d ∈ Zp[X], and
trials = ω(log(λ)).

We now prove the following lemmas with respect to A3(·) and the aforementioned extractor
ExtA3(·).

Lemma 7. For every PPT adversary A = (A1,A2,A3) we have

P
[
Greplicate

A,Π (λ, t, n, u) = 1
]
≥ 1

poly(λ)
=⇒

P
[
ExtA3(·)(1λ, ek, vk, (hi, idi)i∈[u]) ̸= ⊥

]
≥ 1− negl(λ).

Proof. Let ν(λ) be a non-negligible probability such that

P
[
Greplicate

A,Π (λ, t, n, u) = 1
]
≥ ν(λ).

Recall that the above implies that the probability that A3 returns at least one proof (among
the u) that does not verify is at most 1− ν(λ) which, in turn, is non-negligible (this is because
ν(λ) is non-negligible). The probability that ExtA3(·)(1λ, ek, vk, (hi, idi)i∈[u]) = ⊥ is bounded as
follows:

P
[
ExtA3(·)(1λ, ek, vk, (hi, idi)i∈[u]) = ⊥

]
= P[∃i ∈ [u],∃j ∈ [d], yi,j = ⊥] =

P[∃i ∈ [u],∃j ∈ [d],∀q ∈ [trials],Verify(vk, hi, challj,q, πi,j,q) = 0].

It is easy to see that the last probability is at most (1 − ν(λ))trials = (1 − ν(λ))ω(log(λ)) which
is negligible. In turn, this implies that ExtA3(·)(1λ, ek, vk, (hi, idi)i∈[u]) ̸= ⊥ with probability at

least 1− (1− ν(λ))ω(log(λ)) = 1− negl(λ). This concludes the proof.

Lemma 8. P[∀j1 ∈ [d],∀j2 ∈ [d] \ {j1}, xj1 ̸= xj2 ] ≥ 1− negl(λ).

Proof. The lemma follows by simply observing that:

• for every j ∈ [d], xj corresponds to a randomly sampled challenge challj,q←$ C (for some
q ∈ [trials]), and

28Recall that the extractor can only submit challenges to the adversary A3 as defined in Definition 21
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• C = Zq and q is a (sq)-bits prime were sq ∈ ω(log(λ)) (see Item 1 of Construction 2), then
|C| = |Zq| = 2ω(log(λ)).

Since Ext runs in polynomial-time (i.e., it samples at most poly(λ) challenges from C) and |C| is
of size super-polynomial in the security parameter λ, then the probability of sampling the same
point twice (i.e., ∃j1 ∈ [d],∃j2 ∈ [d] \ {j1} such that xj1 = xj2) is negligible. This concludes the
proof.

Lemma 9. If ΠVDS is (negl(λ))-sound then ∀i ∈ [u],∀j ∈ [d],∀q ∈ trials we have

P[Verify(vk, hi, challj,q, πi,j,q) = 1 ∧ yi,j,q ̸= fi(challj,q)] ≤ negl(λ), (4)

where fi(X) = mi ⊕ H(Eval(ppMHF, idi), idi) for every i ∈ [u].

Proof. Observe that Verify(vk, hi, challj,q, πi,j,q) = 1 only if VerifyVDS(ppVDS, hi, challj,q, π
′
i,j,q) = 1

(see Construction 2). Thus, if there exists i ∈ [u],j ∈ [d], q ∈ trials for which Equation (4) does
not hold (i.e., the probability is non-negligible) then we would contradict the (negl(λ))-soundness
of ΠVDS (recall that u, d ∈ poly(λ) and trials ∈ ω(log(λ))). The proof is standard so we omit it
(the proof is similar to that of Lemma 14 of the proof of Theorem 9).

The lemmas above imply the following:

• By leveraging Lemma 7, the extractor does not abort (i.e., it outputs ⊥) with overwhelm-
ing probability. This also implies that for every i ∈ [u], for every j ∈ [u], we have yi,j ̸= ⊥
and Verify(vk, hi, challj,q, πi,j,q) = 1 (for the corresponding q ∈ trials) where challj,q = xj .

• Conditioned to the above, we have that yi,j = fi(xj) for every i ∈ [u], for every j ∈ [d]
with overwhelming probability (this follows by leveraging Lemma 9).

• Lastly, by leveraging Lemma 8 we have that points (x1, . . . xd) are all different with over-
whelming probability (Lemma 8).

Hence, the above observations imply that the Lagrange interpolation (executed by Ext) com-
putes the correct polynomial f ′i(X) = fi(X) = mi ⊕ H(EvalMHF(ppMHF, idi), idi). Thus, Ext
correctly extracts the messages (m′1, . . . ,m

′
u) = (m1, . . . ,mu) with overwhelming probability.

This concludes the proof.

A.9 Proof of Theorem 9

Consider the following hybrid experiments (defined in the random oracle model):

H0(λ, t, n, u): This hybrid experiment is identical to the adaptive experimentGreplicate
A,Π (λ, t, n, u)

of PoRep.

H1(λ, t, n, u): Identical to H0(λ, t, n, u) except that the challenger simulates the majority of the
random oracle queries using the PRF scheme ΠPRF. More in detail, the challenger com-
putes k←$ KGenPRF(1

λ) and samples the u challenge random identifier (id1, . . . , idu)←$ Iu
in advance. Then, on input a query (v′, id′) ∈ YMHF × XMHF for the random oracle H(·),
the challenger proceeds as follows:

• If v′ ̸= vi = EvalMHF(ppMHF, idi) or id′ ̸= idi for every i ∈ [u], the challenger returns
FPRF(k, (v

′, id′)) (instead of a random value).

• Otherwise, if there exists i ∈ [u] such that v′ = vi = EvalMHF(ppMHF, idi) and id′ = idi,
the challenger returns a random value r′←$ {0, 1}d·sp .
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H2(λ, t, n, u): Identical to H1(λ, t, n, u) except that the challenger aborts if the adversary A3

(i.e., the third adversary) submits the random oracle query (v′, id′) ∈ YMHF × XMHF

such that v′ = vi = Eval(ppMHF, idi) for some i ∈ [u], i.e., the challenger aborts if
(Eval(ppMHF, idi), id

′) ∈ QA3,H (for some id′ and i ∈ [u]) where QA3,H is the set of ran-
dom oracle queries submitted by A3 and idi is the i-th challenge random identifier which
is sampled at random from I. Observe that if A1 and A2 submit (Eval(ppMHF, idi), id

′) (for
some id′ and i ∈ [u]) to the random oracle, the challenger does not abort.

H3(λ, t, n, u): Identical to H2(λ, t, n, u) except that the challenger aborts if the adversary A1

(i.e., the first adversary) submits the random oracle query (v′, id′) such that id′ = idi for
some i ∈ [u], i.e., the challenger aborts if (v′, idi) ∈ QA1,H (for some v′ and i ∈ [u]) where
QA1,H is the set of random oracle queries submitted by A1 and idi is the i-th challenge
random identifier which is sampled at random from I in advance.

H4(λ, t, n, u): Identical to H5(λ, t, n, u) except that the challenger changes its strategy for com-
puting f1(X), . . . , fu(X) and answering to the random oracle query (v′, id′) such that
v′ = vi = EvalMHF(ppMHF, idi) and id′ = idi (for some i ∈ [u]), where idi is the i-th chal-
lenge random identifier which is sampled in advance. More formally, let Fu

d−1,p (where p
is a (sp+1)-bits prime) be a distribution over univariate polynomials of degree d−1 from
Zp[X] that samples u polynomials f1(X), . . . , fu(X) ∈ Zp[X] as follows:

1. Sample (a0, . . . , au·d−1)←$ Uu·d·sp .

2. Return u univariate polynomials f1(X), . . . , fu(X) such that fj(X) =
∑d−1

i=0 aj·d+i·Xi

for every j ∈ [u− 1] ∪ {0} (i.e., each binary string ai is interpreted as an element of
Zp).

The challenger proceeds as follows:

• The challenger samples (id1, . . . , idu)←$ Iu and (f1(X), . . . , fu(X))←$ Fu
d−1,p.

• The challenger starts the experiment H4(λ, t, n, u).

• When A1(1
λ, ek, pk, vk) outputs (m1, . . . ,mu, β), the challenger runs vi = EvalMHF(

ppMHF, idi) and sets H(vi, idi) = ri = fi(X)⊕mi for every i ∈ [u].

• Then, the challenger continues the execution of H4(λ, t, n) which is identical to
H3(λ, t, n, u) except that the challenger will use f1(X), . . . , fu(X) and H(v1, id1), . . . ,
H(vu, idu) computes as described defined above.

H5(λ, t, n, u): Identical toH4(λ, t, n, u) except that the outcome of the experimentH5(λ, t, n, u)
is set to 0 if there exists i ∈ [u] such that yi ̸= fi(chall) where πi = (yi, π

′
i) is the i-th proof

output by the adversary A3.

Lemma 10. If ΠPRF is (ϵPRF)-secure then

H0(λ, t, n, u) ≈ϵPRF H1(λ, t, n, u).

Proof. Assume there exists a PPT distinguisher A = (A1,A2,A3) that distinguishes between
H0(λ, t, n, u) and H1(λ, t, n, u) with advantage greater than ϵPRF. Then, we build APRF that
breaks the (ϵPRF)-security of ΠPRF. APRF is defind as follows:

1. Compute (ek, pk, vk)←$ Setup(1λ, 1t) where ek = (ppMHF, ppVDS), pk = vk = ppVDS.

2. For every i ∈ [u], sample idi←$ I, ri←$ {0, 1}d·sp , and compute vi = EvalMHF(ppMHF, idi).
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3. Execute A1(1
λ, ek, pk, vk) and answer the incoming random oracle queries as follows:

(a) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that vi ̸= v′ or
idi ̸= id′ for every i ∈ [u], APRF forwards (v′, id′) to its oracle and returns the answer.

(b) On the other hand, on input the random oracle query (v′, id′) ∈ YMHF × XMHF such
that vi = v′ and idi = id′ for some i ∈ [u], APRF returns ri.

4. Eventually, A1(1
λ, ek, pk, vk) outputs (m1, . . . ,mu, state).

5. For every i ∈ [u], compute hi and ci = (Di, auxi) where fi(X) = ri⊕mi and (Di, hi, auxi) =
GenDataVDS(ppVDS, fi, p).

6. Execute A2(1
λ, (idi, hi, ci)i∈[u], state) and answer the incoming random oracle queries as

in Item 3.

7. Eventually, A2(1
λ, (idi, hi, ci)i∈[u], state) outputs α.

8. Sample chall←$ C.

9. Execute A3(1
λ, ek, pk, vk, (idi)i ∈ [u], chall, α), and answer the incoming queries as in Item 3.

10. Finally, output whatever is returned by A3(1
λ, ek, pk, vk, (idi)i∈[u], chall, α).

It is easy to see that, in the random oracle model, APRF correctly simulates the view of A =
(A1,A2,A3). Hence, APRF retains the same advantage ϵPRF of A = (A1,A2,A3). This concludes
the proof.

Lemma 11. If ΠMHF is (ϵMHF, σMHF, nMHF)-secure (Definition 1) then for every valid PPT
distinguisher A = (A1,A2,A3) we have that

H1(λ, t, n, u) ≈u·qH·ϵMHF
H2(λ, t, n, u).

A distinguisher A = (A1,A2,A3) is called valid if |α| ≤ n and A3 runs in parallel time σMHF

with poly(t) processors (as defined in Theorem 9).

Proof. Assume there exists a valid PPT distinguisher A = (A1,A2,A3) that distinguishes be-
tween H1(λ, t, n, u) and H2(λ, t, n, u) with advantage greater than u · qH · ϵMHF.

Let E be the event that there exists i ∈ [u], (v′, id′) ∈ QA3,H such that EvalMHF(ppMHF, idi)
= vi = v′ where QA3,H is the set of random oracle queries submitted by A3, i.e., E corresponds
to the event that the challenger aborts. Also, let E∗ be the event that A = (A1,A2,A3) outputs
b = 1. Then, the advantage of A can be rewritten as follows:∣∣P[E∗|E] · P[E]− P[E∗|¬E] · P[¬E]

∣∣ > u · qH · ϵMHF.

We observe that P[E∗|¬E] = 0 when ¬E occurs (this is because, conditioned to ¬E, the hybrids
H1(λ, t, n, u) and H2

d(λ, t, n, u) are identical). Hence, it must be that

P[E∗|E] · P[E] ≥ P[E] > u · qH · ϵMHF. (5)

By leveraging the fact that P[E] > u · qH · ϵMHF, we build an adversary AMHF = (AMHF,1,AMHF,2)
that breaks the (ϵMHF, σMHF, nMHF)-security of ΠMHF. Recall that the validity of A = (A1,A2,A3)
guarantees A3 runs in parallel time σMHF with poly(t) processors (as required in Definition 1).
Without loss of generality, we assume that both AMHF,1 and AMHF,2 have harcoded ppVDS←$

SetupVDS(1
λ), k←$ KGenPRF(1

λ), ri←$ {0, 1}d·sp for every i ∈ [u], chall←$ C, i∗←$ [u], idi←$ I
for every i ∈ [u] \ {i∗}, and j∗←$ [qH].

29

AMHF = (AMHF,1,AMHF,2) is defined as follows:

29Observe that qH is unknown but upper-bounded by poly(λ).
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AMHF,1(1
λ, 1t, ppMHF, id

∗): On input the security parameter 1λ, the time parameter 1t, the public
parameters ppMHF, and the input id∗ ∈ XMHF, AMHF,1 proceeds as follows:

1. Set idi∗ = id∗.

2. For every i ∈ [u], compute vi = EvalMHF(ppMHF, idi).

3. Execute A1(1
λ, ek, pk, vk) where ek = (ppMHF, ppVDS) and pk = vk = ppVDS.

4. Answer the incoming random oracle queries (submitted by A1) as follows:

(a) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that vi ̸= v′ or
idi ̸= id′ for every i ∈ [u], AMHF,1 returns r′ = FPRF(k, (v

′, id′)).

(b) On the other hand, on input the random oracle query (v′, id′) ∈ YMHF × XMHF

such that vi = v′ and idi = id′ for some i ∈ [u], AMHF,1 returns ri.

5. Eventually, A1(1
λ, ek, pk, vk) outputs (m1, . . . ,mu, state).

6. For every i ∈ [u], compute hi and ci = (Di, auxi) where fi(X) = ri ⊕ mi and
(Di, hi, auxi) = GenDataVDS(ppVDS, fi, p).

7. Execute A2(1
λ, (idi, hi, ci)i∈[u], state) and answer the incoming random oracle queries

(submitted by A2) as defined in Item 4.

8. Finally, return α output by A2(1
λ, (idi, hi, ci)i∈[u], state).

AMHF,2(1
λ, 1t, ppMHF, id

∗, α): On input the security parameter 1λ, the time parameter 1t, the
public parameters ppMHF, the input id∗ ∈ XMHF, and the pre-computed string α, AMHF,2

proceeds as follows:

1. Set idi∗ = id∗.

2. Execute A3(1
λ, ek, pk, vk, (idi)i∈[u], chall, α).

3. Answer the incoming random oracle queries (submitted by A3) as follows:

(a) On input the j-th random oracle query (v′j , id
′
j) ∈ YMHF×XMHF such that j ̸= j∗,

AMHF,2 returns r′ = FPRF(k, (v
′
j , id

′
j)).

(b) On the other hand, on input the j-th random oracle query (v′j , id
′
j) ∈ YMHF ×

XMHF such that j = j∗, AMHF,2 stops and outputs v′j .

First, observe that AMHF is valid with respect to the MHF experiment (see Definition 1). Indeed,
AMHF,1 satisfies the following conditions:

1. AMHF,1 outputs α which, in turn, is output by A2. Since A2 is valid according to Lemma 11,
we conclude that |α| ≤ n.

2. AMHF,2 has the same running time of A3 which, in turn, runs in parallel time σMHF with
poly(t).

Assume thatE holds (i.e., there exists i ∈ [u] and (v′, id′) ∈ QA3,H such that EvalMHF(ppMHF, idi) =
vi = v′). Conditioned to E, suppose that A3 queries (vi, id

′) (for some id′) to the random oracle
during the j-th query (v′j , id

′
j) (i.e., v

′
j = vi). Conditioned to E and j∗ = j, it is easy to see that

AMHF,2 correctly simulates A3’s view until the j∗-th oracle query. Moreover, conditioned to E
(i.e., there exists i ∈ [u] and (v′, id′) ∈ QA3,H such that EvalMHF(ppMHF, idi) = vi = v′), we have
that

• i∗ = i (i.e., the input idi∗ = id∗ corresponds to the i-th idi such that (vi, id
′) ∈ QA3,H where

vi = EvalMHF(ppMHF, idi)) happens with probability 1
u .
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• Conditioned to i∗ = i, j∗ = j (i.e., the case for which AMHF,2 wins against the MHF
experiment) happens with probability 1

QA3,H
≤ 1

qh
.

By combining Equation (5) and the above observations, we conclude that AMHF = (AMHF,1,
AMHF,2) is valid (with respect to the MHF exerpeiment) and has an advantage of at least
P[E] · 1

qH·u = ϵMHF. This concludes the proof.

Lemma 12. H2(λ, t, n, u) ≈ u
|XMHF|

H3(λ, t, n, u).

Proof. The only difference between these two hybrid experiments is that the challenger aborts
when A1 submits a random oracle query (v′, id′) such that idi = id′ for some i ∈ [u], where
idi is the i-th challenge random identifier sampled by the challenger. Since A1 does not know
the value of id1, . . . , idu (which are only revealed to A2) we have that A1 submits a random
oracle query (v′, id′) such that id′ = idi (for some i ∈ [u]) with probability at most u

|XMHF| . This
concludes the proof.

Lemma 13. H3(λ, t, n, u) ≡ H4(λ, t, n, u).

Proof. It is easy to see that these two hybrids are identical. This is because A1 does not
submit a random oracle query (v′, id′) such that id′ = idi (for some i ∈ [u]) where idi is the
challange random identifier sampled by the challenger (see definition of H3(λ, t, n, u)). Hence,
the challenger of H4(λ, t, n, u), which samples (f1(X), . . . , fu(X))←$ Fu

d−1,p and programs the
random oracle as H(vi, idi) = H(Eval(ppMHF, idi), idi) = ri = fi(X) ⊕mi only after it receives
m1, . . . ,mu from A1 (as defined in H4(λ, t, n, u)), is equivalent to the challenger of H3(λ, t, n, u).
Moreover, since ri = fi(X) ⊕mi (for every i ∈ [u]), we have that the output of the encoding
algorithm is correctly distributed. This is because fi(X) = H(Eval(ppMHF, idi), idi) ⊕ mi =
ri ⊕mi = fi(X)⊕mi ⊕mi = fi(X). This concludes the proof.

Lemma 14. If ΠVDS is (ϵVDS)-sound then

H4(λ, t, n, u) ≈u·ϵVDS
H5(λ, t, n, u).

Proof. Assume there exists a valid PPT distinguisher A = (A1,A2,A3) that distinguishes be-
tween H4(λ, t, n, u) and H5(λ, t, n, u) with advantage greater than u · ϵVDS.

Let E be the event that there exists i ∈ [u] such that Verify(vk, hi, chall, πi) = 1∧yi ̸= fi(chall)
where πi = (yi, π

′
i) is the proof output by A3. Also, let E∗ be the event that A = (A1,A2,A3)

outputs b = 1. Then, the advantage of A can be rewritten as follows:∣∣P[E∗|E] · P[E]− P[E∗|¬E] · P[¬E]
∣∣ > u · ϵVDS.

We observe that P[E∗|¬E] = 0 when ¬E occurs (this is because, conditioned to ¬E, the hybrids
H4(λ, t, n, u) and H5(λ, t, n, u) are identical). Hence, it must be that

P[E∗|E] · P[E] ≥ P[E] > u · ϵVDS. (6)

By leveraging the fact that P[E] > u · ϵVDS, we build an adversary AVDS that breaks the (ϵVDS)-
soundness of ΠVDS. AVDS is defined as follows:

1. Sample (f1(X), . . . , fu(X))←$ Fu
d−1,p and i∗←$ [u].

2. Send fi∗(X) to the challenger (i.e., AVDS will play the VDS’s experiment with respect to
fi∗(X)).
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3. Receive ppVDS, Di∗ , hi∗ , auxi∗ from the challenger (computed by the challenger using
fi∗(X)).

4. For every i ∈ [u], sample idi←$ I and compute vi = EvalMHF(ppMHF, idi).

5. Compute ppMHF←$ SetupMHF(1
λ, 1t) and k←$ KGenPRF(1

λ).

6. Set ek = (ppMHF, ppVDS), pk = vk = ppVDS, and ci∗ = (Di∗ , auxi∗).

7. For every i ∈ [u] \ {i∗}, compute hi and ci = (Di, auxi) where (Di, hi, auxi) = GenDataVDS(
ppVDS, fi, p).

8. Execute A1(1
λ, ek, pk, vk) and answer the incoming random oracle queries as follows:

(a) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that id′ ̸= idi for
every i ∈ [u], AVDS returns r′ = FPRF(k, (v

′, id′)).

(b) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that id′ = idi for
some i ∈ [u], AVDS aborts.

9. Eventually, A1(1
λ, ek, pk, vk) outputs (m1, . . . ,mu, state).

10. For every i ∈ [u], set H(vi, idi) = ri = fi(X)⊕mi.

11. Execute A2(1
λ, (idi, hi, ci)i∈[u], state) and answer the incoming random oracle queries as

follows:

(a) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that v′ ̸= vi or
id′ ̸= idi for every i ∈ [u], AVDS returns r′ = FPRF(k, (v

′, id′)).

(b) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that v′ = vi and
idi = id′ for some i ∈ [u], AVDS returns ri.

12. Eventually, A2(1
λ, (idi, hi, ci)i∈[u], state) outputs α.

13. Sample chall←$ C.

14. Execute A3(1
λ, ek, pk, vk, (idi)i∈[u], chall, α) and answer the incoming random oracle queries

as follows:

(a) On input the random oracle query (v′, id′) ∈ YMHF×XMHF such that v′ ̸= vi for every
i ∈ [u], AVDS returns r′ = FPRF(k, (v

′, id′)).

(b) On input the random oracle query (v′, id′) ∈ YMHF×XMHF such that v′ = vi for some
i ∈ [u], AVDS aborts.

15. Finally, output (chall, yi∗ , π
′
i∗) where πi∗ = (yi∗ , π

′
i∗) is the i∗-th proof output of A3(1

λ,
ek, pk, vk, (idi)i∈[u], chall, α).

It is easy to see that AVDS correctly simulates the views of both A1, A2, and A3. Assume that E
happens and let i ∈ [u] be an index such that yi ̸= fi(chall). Conditioned to E and i∗ = i (which
happends with probability 1

u), we have that yi∗ ̸= fi∗(chall) and Verify(vk, hi∗ , chall, πi∗) = 1
which, in turn, implies that VerifyVDS(ppVDS, hi∗ , chall, π

′
i∗) = 1. By combining Equation (6)

with the observations above, we conclude that AVDS’s advantage is at least P[E] · 1u = ϵVDS.
This concludes the proof.

Lemma 15. P
[
H5

d(λ, t, n, u) = 1
]
≤ d−1
|Zq | +

1
2c .
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Proof. Assume there exists a valid PPT adversary A = (A1,A2,A3) such that

P
[
H4

d(λ, t, n, u) = 1
]
>

d− 1

|Zq|
+

1

2c
. (7)

Then, we build an adversary A′ = (A′1,A
′
2) that contradicts Theorem 2. Without loss of general-

ity, we assume that both A′1 and A′2 have harcoded (ek, pk, vk)←$ Setup(1λ, 1t), k←$ KGenPRF(1
λ),

idi←$ I for i ∈ [u], where ek = (ppMHF, ppVDS) and pk = vk = ppVDS. A′ = (A′1,A
′
2) is defined

as follows:

A′1(1
λ, f1, . . . , fu): On input the security parameter 1λ and u univariate polynomials f1(X), . . . ,
fu(X) ∈ Zp[X] of degree d− 1, A′1 proceeds as follows:

1. For every i ∈ [u], compute vi = EvalMHF(ppMHF, idi).

2. Execute A1(1
λ, ek, pk, vk) and answer to the incoming random oracle queries as fol-

lows:

(a) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that id′ ̸= idi
for every i ∈ [u], AVDS returns r′ = FPRF(k, (v

′, id′)).

(b) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that id′ = idi
for some i ∈ [u], AVDS aborts.30

3. Eventually, A1(1
λ, ek, pk, vk) outputs (m1, . . . ,mu, state).

4. For every i ∈ [u], set H(vi, idi) = ri = fi(X)⊕mi and compute (hi, ci) = Encode(ek,mi,
idi) using the fact that H(vi, idi) = ri = fi(X)⊕mi.

5. Execute A2(1
λ, (idi, hi, ci)i∈[u], state) and answer the incoming oracle queries as fol-

lows:

(a) On input the random oracle query (v′, id′) ∈ YMHF × XMHF such that v′ ̸= vi or
id′ ̸= idi for every i ∈ [u], AVDS returns r′ = FPRF(k, (v

′, id′)).

(b) On input the random oracle query (v′, id′) ∈ YMHF×XMHF such that v′ = vi and
idi = id′ for some i ∈ [u], AVDS returns ri.

6. Eventually, return α which is the output of A2(1
λ, (idi, hi, ci)i∈[u], state).

A′2(1
λ, x, α): On input the security parameter 1λ, a point x ∈ Zq, and a string α, A′2 proceeds
as follows:

1. Execute A3(1
λ, ek, pk, vk, (idi)i∈[u], x, α) and answer the incoming random oracle queries

as follows:

(a) On input the random oracle query (v′, id′) ∈ YMHF ×XMHF such that v′ ̸= vi for
every i ∈ [u], AVDS returns r′ = FPRF(k, (v

′, id′)).

(b) On input the random oracle query (v′, id′) ∈ YMHF ×XMHF such that v′ = vi for
some i ∈ [u], AVDS aborts.31

2. Finally, output (y1, . . . , yu) where πi = (yi, π
′
i) is the i-th proof output by A3(1

λ,
ek, pk, vk, (idi)i∈[u], x, α).

30Note that this first aborting condition is fundamental for concluding the proof correctly. This is because, at
this point, A′

1 does not know m1, . . . ,mu (which are chosen by A1). Hence, A′
1 would not be able to program the

random oracle output of H(vi, idi) = fi(X)⊕mi for i ∈ [u].
31Note that this second aborting condition is fundamental for concluding the proof correctly. This is because

A′
2 can simulate A3’s view without knowing r1, . . . , ru, f1(X), . . . , fu(X), and m1, . . . ,mu which are too large to

be encoded into α.
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First, observe that, conditioned to H5(λ, t, n, u) = 1, we have that yi = fi(x) for every i ∈ [u].
Second, since A = (A1,A2,A3) is valid, we know that |α| ≤ n and

n = min{nMHF, d(u · sp − sq)− c}.

Hence, by combining Equation (7) and the above arguments, we conclude that A′ = (A′1,A
′
2)

is valid and outputs (f1(x), . . . fu(x)) with probability greater than d−1
|Zq | +

1
2c . This contra-

dicts Theorem 2 and concludes the proof.

Theorem 9 follows by combining Lemmas 10 to 15. This concludes the proof.

A.10 Proof of Corollary 6

The corollary follows by plugging Corollaries 1, 4 and 5 into Theorems 8 and 9 and Definition 18,
and observing that

• under the collision resistance assumption (or the RO), there exists an (negl(λ))-secure
PRF scheme,

• u, d ∈ poly(λ) thus u · qHϵMHF, u · ϵVDS,
u

|XMHF| =
u
2λ

(of Theorem 9) are negligible,

• by setting sp, sq, and c as defined in Corollary 4 (see also the corresponding proof) then
d−1
|Zq | +

1
2c ≤ O( 1

2λ
) and d(u · sp − sq)− c = d · u · λ1+δ1 −O(d · λ) (of Theorem 9),

• by leveraging Corollary 1 we can set nMHF to be larger than d(u · sp − sq) − c. That, in
turn, implies n = min{nMHF, d(u · sp − sq)− c} (of Theorem 9) equal to d(u · sp − sq)− c,

• the (γ)-expansion of Construction 2 is exactly the (γ)-expansion of the underlying VDS
scheme (see Theorem 7) and Construction 2 leverages polynomials of degree d − 1 from
Zp[X] where p is of sp = λ1+δ1 bits (according to our choice of parameters); thus γ =

2 · dδ2 · logo(1)(p) = 2 · dδ2 · λo(1)(1+δ1) for any choice of positive constant δ2 > 0.

Lastly, as for the (η)-gap, it follows by observing that n = min{nMHF, d(u · sp − sq)− c} =
d(u · sp− sq)− c (as defined above), d(u · sp− sq)− c = d · u · λ1+δ1 − (d+1) · λ (for sp = λ1+δ1 ,
sq = λ, and c = λ as defined in Corollary 4. See also the corresponding proof), and

d · u · λ1+δ1 − (d+ 1) · λ = (1− η)(u · d · λ1+δ1) =⇒

η = 1− d · u · λ1+δ1 − (d+ 1) · λ
u · d · λ1+δ1

=⇒ η =
(d+ 1) · λ
u · d · λ1+δ1

∈ O

(
1

u · λδ1

)
,

where we used the fact that sp = λ1+δ1 , sq = λ, and c = λ in Corollary 4 (see also the
corresponding proof).
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