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Abstract
In proof-of-stake blockchains, liveness is ensured by repeatedly selecting random groups of parties

as leaders, who are then in charge of proposing new blocks and driving consensus forward, among
all their participants. The lotteries that elect those leaders need to ensure that adversarial parties
are not elected disproportionately often and that an adversary can not tell who was elected before
those parties decide to speak, as this would potentially allow for denial-of-service attacks. Whenever
an elected party speaks, it needs to provide a winning lottery ticket, which proves that the party
did indeed win the lottery. Current solutions require all published winning tickets to be stored
individually on-chain, which introduces undesirable storage overheads.

In this work, we introduce non-interactive aggregatable lotteries and show how these can be
constructed efficiently. Our lotteries provide the same security guarantees as previous lottery
constructions, but additionally allow any third party to take a set of published winning tickets and
aggregate them into one short digest. We provide a formal model of our new primitive in the universal
composability framework.

As one of our main technical contributions, which may be of independent interest, we introduce
aggregatable vector commitments with simulation-extractability and present a concretely efficient
construction thereof in the algebraic group model in the presence of a random oracle. We show how
these commitments can be used to construct non-interactive aggregatable lotteries.

We have implemented our construction, called Jackpot, and provide benchmarks that underline
its concrete efficiency.
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1 Introduction
Blockchains rely on lottery mechanisms for repeatedly electing one or multiple leaders at random from
the pool of all participants. These leaders are then in charge of proposing new blocks and driving the
protocol’s consensus forward, thereby ensuring liveness of the blockchain. In proof-of-stake blockchains,
the participants’ probabilities of being elected are tied to their stake, i.e., to the amount of money they
have put into the system. In Ethereum, each participant deposits a fixed amount of money to participate
in the lotteries and thus everybody has the same probability of being elected. In Algorand [GHM+17], on
the other hand, participants may have deposited different amounts of money and therefore have different
probabilities of being elected.

In the context of proof-of-stake blockchains, a lottery mechanism needs to satisfy several properties.
From a security perspective, lotteries should not allow corrupt parties to be elected disproportionately
often and they should hide who the elected leaders are, as an adversary could otherwise prevent the chain
from growing by taking the leaders off the network right after they have been elected, but before they
have had a chance to speak. Leaders should privately learn whether they won the lottery and obtain a
publicly verifiable winning ticket. When a leader is ready to speak, they can attach the winning ticket to
their message, so that everybody can verify that they are indeed one of the leaders.

From an efficiency perspective, lotteries should aim to minimize both the network bandwidth and
storage overheads that they incur, since new leaders may need to be elected frequently among a large
number of participants. In terms of bandwidth overhead, we would like to minimize the amount of
communication needed to run each lottery. In terms of storage overhead, we would like to minimize
the amount of memory needed to store all published winning tickets. Ideally, we would like the storage
overhead to grow sublinearly in the number of published winning tickets.

Various constructions of lotteries schemes have already been proposed in the literature, but all of
them either do not keep the lottery output secret [BD84, BK14, BZ17], require a trusted party [CHYC05,
LBM20], or have storage overheads that are linear in the number of published winning tickets [GHM+17,
DGKR18] per election.

1.1 Our Contribution
In this work, we introduce non-interactive aggregatable lotteries. In this setting, we have a set of parties,
where each party is identified by a short verification key and holds a corresponding secret key. We assume
the existence of a randomness beacon functionality, which broadcasts uniformly random values to all
parties in regular intervals. We will associate the randomness beacon output at time t with the t-th
lottery execution.

Whenever the randomness beacon outputs a lottery seed, every party can, without interacting with
the other parties, check whether they have won the current lottery. Each party will win each lottery
independently with probability 1/k for some fixed parameter k.1 Maliciously generated keys do not allow
the adversary to increase their winning probabilities or to coordinate which corrupt parties win which
lotteries at which times. The adversary is not able to determine which honest parties are winning which
elections with probability noticeably better than guessing. Each winning party can locally compute a
publicly verifiable proof, the winning ticket, that allows it to convince other parties that it won a lottery.
Finally and most importantly, the lotteries are aggregatable. By this, we mean that all published winning
tickets belonging to the same lottery execution can be compressed into one short ticket by any (possibly
untrusted) third party. Given the public keys of all winning parties and the compressed lottery ticket,
anybody can still be convinced of the fact that each individual party had won the lottery. We formally
model these lotteries in the universal composability (UC) framework of Canetti [Can01].
Lotteries from Simulation-Extractable Vector Commitments. We introduce the notion of
aggregatable vector commitments with a strong simulation-extractability property and show that these
commitments can be used to instantiate our non-interactive aggregate lotteries. On an intuitive level,
a vector commitment is said to be aggregatable if openings belonging to different commitments can be
compressed into one short opening, and a vector commitment is said to be simulation-extractable if
it satisfies the following two properties: in security proofs, knowing a trapdoor, we can issue dummy

1We also show how to generalize our notion of lotteries and our constructions to the setting, where parties have different
winning probabilities.
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commitments and later open those to arbitrary messages at arbitrary positions. Additionally, we can
extract the committed messages from any valid, but adversarially chosen commitment. While our notion
effectively requires the commitments to be “non-malleable”, the openings of such a commitment scheme
can still be malleable, which is of crucial importance for being able to aggregate them.
Simulation-Extractable Vector Commitments from KZG. We present a construction of such an
aggregatable vector commitment with simulation-extractability, proven secure in the algebraic group model
(AGM) [FKL18]. Our construction is similar to the polynomial commitment scheme of Kate, Zaverucha,
Goldberg (KZG) [KZG10] and uses the exact same trusted setup. Proving that our construction satisfies
our notion of simulation-extractability turns out to be rather involved and we view this proof as one of
our main technical contributions. We believe that our construction satisfying simulation-extractability
may be of independent interest, beyond its applications in this work.
Implementation and Benchmarks. To show the practicality of our construction, called Jackpot, we
have implemented it and provide benchmarks for various parameter settings. For instance, Jackpot allows
for aggregating 2048 winning tickets in less than 15 milliseconds and verifying the aggregated ticket takes
less than 17 milliseconds on a regular Macbook Pro. Storing the 2048 winning tickets in aggregated form
is 1228.8 times more efficient than storing a list of all outputs of a state-of-the-art VRF explicitly. The
main bottleneck of our construction is the time it takes to generate the public keys. For generating a
public key that is good for 220 lotteries, i.e., for one lottery every 5 minutes for 10 years nonstop, our
protocol takes around 8 seconds. The corresponding public key is 160 bytes large.

1.2 Related Work
Lotteries have appeared throughout cryptographic research in various shapes and forms. In the following,
we discuss a few of those research works and highlight how they differ from ours.
Lotteries Without Secrecy. The problem of allowing a group of parties to select a random set of
leaders among them has already been addressed by Broder and Dolev [BD84] over 40 years ago. Their
work, however, requires a large amount of interaction during each election and does not hide who is
elected. The works of Bentov and Kumaresan [BK14] and of Bartoletti and Zunino [BZ17] allow parties
to run financial lotteries that enjoy certain fairness properties on top of cryptocurrencies like Bitcoin
or Ethereum. Here each party can deposit a coin and a random parties is elected to be the winner
that obtains all deposited coins. Neither of those protocols provides any privacy guarantees and their
techniques do not seem applicable to our setting.
Lotteries Without Aggregation. A lottery that satisfies all of our desired properties apart from
aggregation was proposed by Gilad et al. [GHM+17]. In their construction, each party is identified via a
public key for a verifiable random functions (VRF) [MRV99]. The public key of party i can be viewed as
a commitment to a secret random function fi and, using their corresponding secret key, party i is able
to output pairs (x, y) and prove that y = fi(x). Whenever a randomness beacon provides lseed, party
i can check whether they won the corresponding lottery by computing whether fi(lseed) < k for some
parameter k. Since the function is random, nobody can predict, when party i wins a lottery. At the same
time the verifiability property of the random function allows party i to claim the win. In a subsequent
work, David et al. [DGKR18] properly formalized this approach and showed that the VRF actually needs
to satisfy an additional property, which ensures that high entropy inputs produce high entropy outputs,
even if the VRF keys were chosen by a malicious party.

Both works [GHM+17, DGKR18] show different ways of how their lotteries can then be used to
select committees that then drive consensus forward in their respective blockchain designs. Both works
would benefit from being able to aggregate lottery tickets as it would allow them to reduce their storage
complexities.
Single Secret Leader Elections. A recent work by Boneh et al. [BEHG20] introduces the problem
of secret leader elections and shows how it can be solved using cryptographic tools like indistinguisha-
bility obfuscation [GGH+13], threshold fully homomorphic encryption [BGG+18], or proofs of correct
shuffles [BG12]. Whereas our work focuses on electing a certain number of leaders in expectation, they
focus on computing an ordered list of an exact number of leaders. As their problem is significantly harder
to solve, their protocols are significantly more expensive computationally and require large amounts of
interaction for each lottery.
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Aggregatable Vector Commitments. We mentioned above that our main technical tool is an
aggregatable vector commitment that satisfies a strong form of simulation-extractability. Various
aggregatable or linearly homomorphic vector commitments [LY10, CF13, PSTY13, LLNW16, TAB+20,
GRWZ20, LPR22, FSZ22, FHSZ22] have previously been proposed, but all of these works fail to achieve
simulation-extractability, which is of crucial importance for our application.

On a technical level, a recent result by Faonio et al. [FFK+23] uses some observations that are similar
to ours. In their work, they show that the KZG polynomial commitment scheme without any modifications
satisfies a very weak notion of simulation-extractability in the AGM. We note that there is indeed no
hope of proving a strong notion of simulation-extractability for KZG commitments as both commitments
and openings are homomorphic, which is a property that is at odds with simulation-extractability. The
authors prove that their notion is sufficiently strong for constructing simulation-extractable non-interactive
succinct arguments of knowledge [Sah99, GM17]. In contrast to their work, we define and construct a
new primitive that immediately satisfies a strong form of simulation-extractability, which may be of
independent interest, and then use this primitive to construct our lotteries.

1.3 Technical Overview
One way of instantiating VRFs for lotteries that rely on them, e.g. [GHM+17, DGKR18], is to use the
unique signature scheme by Boneh, Lynn, Shacham (BLS) [BLS01] as a verifiable unpredictable function
and then apply a random oracle to the signature to make the output pseudorandom. More concretely,
whenever the randomness beacon outputs the unpredictable lottery seed lseed, each participant j signs
lseed (as well as potentially additional context such as their own identity) using their BLS signing key
skj resulting in a unique signature σj . Participant j wins the lottery iff H(σj) < t, where H is a random
oracle and t is an appropriate threshold to achieve the desired winning probability. To prove that they
won, the party presents σj as their winning ticket. Anyone can verify that they won by verifying the
signature using the BLS public key pki and checking that indeed H(σj) < t.

When considering the possibility of aggregating winning tickets, the use of BLS might seem promising
at first glance. After all, BLS signatures are known to be aggregatable [BGLS03] even in the presence of
rogue keys [BDN18] by computing a random linear combination of the signatures. One might thus be
tempted to store this short aggregated signature σ instead of a long list of all individual signatures. Alas,
this does not work. Although we could still verify that all aggregated σj were valid, the exact values of
the individual signatures would be lost. We therefore could not recompute their individual hash values to
check that all aggregated tickets were winning tickets.

The first idea to solve this dilemma is to try to avoid using the random oracle and directly look
for a VRF with nice linearity properties. Specifically, let (pkj , skj) be key pairs of a VRF and let
yj = VRF(skj , x). Further, let τi be proofs of the former equality. Then, we would like that the following
holds for arbitrary weights ξj

VRF.Ver
( n∑
j=1

ξjpkj , x,
n∑
j=1

ξjyj ,

n∑
j=1

ξjτj

)
= 1 (1)

The ith round of the lottery could now proceed as follows: given lseed, derive per party challenges xj .
Party j wins the lottery iff VRF(skj , (i, lseed)) = xj . The corresponding winning ticket is the proof τj .
Using the linearity of the VRF, we could aggregate the proofs by computing a random linear combination
of the winning tickets and weights (ξ1, . . . , ξn), which are obtained by hashing the set of public keys. The
aggregated ticket τ =

∑n
i=1 ξjτj allows full verification of all proofs via Equation (1) simultaneously.

For this construction to be sensible we would, however, require a linearly homomorphic VRF with
small codomain. Specifically, to achieve a winning probability of 1/k, the VRF needs a codomain of
size exactly k. There are currently no known constructions of such VRFs for usefully small values of
k. Fortunately, we can still make the above approach work, if we are willing to make some concessions,
namely that a public key will only be valid for a limited number T of successive lotteries. Since T can be
chosen sufficiently large for practical purposes and because we can simply generate fresh keys after T
lotteries, the concession we make is rather small.
Naive VRFs via Vector Commitments. If we use a vector commitment to commit to a uniformly
random vector v ∈ [k]T , it can in many ways be viewed as a VRF with domain [T ] and codomain [k].
The public key is now the commitment, and the secret key is the vector v as well as the randomness used
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to commit. To participate in T lotteries, each party j initially commits to a random vector v(j) ∈ [k]T .
In the ith lottery round we again derive per party challenges xj from lseed and party j wins iff v(j)

i = xj .
Each party can prove that they won by revealing an opening for position i of their commitment. If the
vector commitment has the required homomorphic properties of Equation (1), we can verify all openings
using only the aggregated opening. Luckily for us, such linearly homomorphic vector commitments do
exist, with KZG [KZG10] being the most prominent among them.
The Woes of Universal Composability. For our lottery scheme to be useful as part of more complex
protocols, it is neccessary that it composes securely with itself and other protocols. To this end, we
define the security of a lottery scheme in the universal composability (UC) framework [Can01]. This,
however, causes issues with the proof of the construction sketched above. Namely in the security proof,
the simulator would need to both equivocate commitments for honest participants and extract from
commitments of corrupted participants. This implies that the vector commitment requires some kind
of simulation-extractability, i.e., a guarantee that it is possible to extract preimages from any valid
commitment produced by an adversary, even if the adversary was previously given equivocal commitments
(from which extraction would not be possible).

Unfortunately, not only does KZG not have this property, the required simulation-extractability and
the linear homomorphism described above in fact contradict each other. Let com be a valid simulated
commitment and let τ be an opening proving that com contained x at position i. Then by the linear
homomorphism com′ = com + com is also a valid commitment and τ ′ = τ + τ could be used to prove that
com′ contained x+ x at position i. However, it would not be possible to extract a preimage from com′.
We thus need to depart from using a regular linear homomorphism for aggregation.
Making KZG Simulation-Extractable. Our idea for getting around this problem is to make the
commitments non-malleable, while maintaining the linear homomorphism on the openings (and a part of
the commitments). An expensive black-box way of achieving this might be to add a simulation-extractable
proof of knowledge of the secret vector to the commitment. Instead, we can leverage the fact that KZG
is not just a vector commitment, but a polynomial commitment. When KZG is used to commit to a
vector v ∈ [k]T , we are actually committing to the polynomial f of degree T − 1 over a large field F
that is uniquely defined by the points (j,vj). While we have only explicitly defined f on [T ] ⊂ F, we
can still open the commitment at any position in F. Now, the idea is to force anyone presenting a fresh
commitment to also open their commitment at a random position. If the commitment is derived from
simulated commitments, then providing such an opening should not be possible. Since this is an additional
opening we need to increase the degree of the polynomial to T and it will turn out that a technicality in
the proof actually requires the degree to be T + 1. The actual construction of our simulation-extractable
vector commitment will work as follows: to commit to a vector v ∈ FT we uniformly choose a polynomial
f of degree T + 1 conditioned on f(j) = vj for j ∈ [T ] and commit to it using a regular KZG commitment
comKZG. The full commitment then consists of comKZG as well as an opening of the commitment at
position H(comKZG) where H is a random oracle mapping to F. The idea is that whenever an adversary
would derive a commitment from existing commitments, they would need to open their commitment
at a new random position, which the hiding property of KZG should prevent them from doing. At the
same time, aggregation of openings can still be done using a random linear combination, just as with
regular KZG and aggregated openings can be verified given the list of commitments by verifying that
each individual commitment is indeed valid and then using the linear combination of the KZG part
of the commitments to verify the aggregated opening. Finally, we note that while our commitment is
conceptually simple, the proof that it provides simulation-extractability is far from it.
On the Necessity of Randomness Beacons. Throughout our paper, we assume that all parties have
access to a randomness beacon. It is sensible to ask how necessary this assumption is. Intuitively, we
would like our lotteries to ensure that no party can predict when it will win a lottery. For this to be
feasible, there needs to be a source of entropy associated with each lottery execution, which is exactly what
a randomness beacon provides. From a practical perspective, assuming the existence of a randomness
beacon is also not too problematic, as they are deployed and running already. In the context of Ethereum,
for example, the randomness beacon is known as Randao2.

2https://eth2book.info/capella/part2/building_blocks/randomness/
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2 Preliminaries
In this section, we fix notation and recall relevant cryptographic preliminaries.
Notation. For a finite set S, writing s←$S means that s is sampled uniformly at random from S. For a
probabilistic algorithm A, we write s := A(x; ρ) to state that A is run on input x with random coins ρ,
and the result is assigned to the variable s. If the coins ρ are sampled uniformly at random, we write
s← A(x). If we write s ∈ A(x), we mean that there are random coins such that when A is run on input
x with these random coins, it outputs s. The security parameter λ is given implicitly to all algorithms (in
unary). We denote the running time of an algorithm A by T(A). We use standard cryptographic notions,
e.g., PPT, negligible. We define [L] := {1, . . . , L} ⊆ N. We let B(p) denote a Bernoulli distribution with
Pr [b = 1] = p for b sampled from B(p) (written as b← B(p)).
Pairings and Assumptions. We rely on the `-DLOG assumption and the `-SDH assumption [BB08,
KZG10]. For this and the remainder of this paper, let PGGen be an algorithm that on input 1λ outputs
the description of prime order groups G1,G2,GT of order p, generators g1 ∈ G1 and g2 ∈ G2, and the
description of a pairing, i.e., a bilinear map e : G1 ×G2 → GT for which e (g1, g2) is a generator of GT .
That is, PGGen outputs par = (G1,G2, g1, g2, p, e). Then, informally, the `-DLOG assumption states that
it is hard to output α given (gαi1 )`i=1, g

α
2 for a random α←$ Zp, and the `-SDH assumption states that it

is hard to output (c, g1/(α+c)
1 ) for some c on the same input. Clearly, `-DLOG is implied by `-SDH.

Definition 1 (`-DLOG Assumption). We say that the `-DLOG assumption holds relative to PGGen, if
for any PPT algorithm A, the following advantage is negligible:

Adv`-DLOG
A,PGGen(λ) := Pr

[
A(par, In) = α

∣∣∣∣ par← PGGen(1λ),
α←$ Zp, In := ((gαi1 )`i=1, g

α
2 )

]
.

Definition 2 (`-SDH Assumption). We say that the `-SDH assumption holds relative to PGGen, if for
any PPT algorithm A, the following advantage is negligible:

Adv`-SDH
A,PGGen(λ) := Pr

 ∃c ∈ Zq \ {−α} :
A(par, In) =

(
c, g

1/(α+c)
1

) ∣∣∣∣∣∣
par← PGGen(1λ),
α←$ Zp,
In := ((gαi1 )`i=1, g

α
2 )

 .
Universal Composability. We define an ideal functionality for aggregatable lotteries and prove security
of our construction in the universal composability (UC) framework [Can01] in the presence of static
corruptions. Our construction relies on synchronous broadcast and a synchronous randomness beacon,
for which we provide ideal functionalities later.
Random Oracle Model. For some of our proofs, we use the (programmable) random oracle model
(ROM) [BR93]. To recall, in the ROM, hash functions are modeled by oracles implementing perfectly
random functions via lazy sampling. For our UC proof, we use the standard ROM, which is sometimes
known as the local ROM as opposed to the global ROM [CDG+18].
Algebraic Group Model. For some of our proofs and extractors, we leverage the algebraic group
model (AGM) [FKL18]. In this model, we only consider so called algebraic algorithms. This means that
whenever such an algorithm outputs a group element Y in some cyclic group G of prime order p, it also
outputs a so called algebraic representation, which is a vector (c1, . . . , ck) ∈ Zkp such that Y =

∏k
i=1X

ci
i .

Here, X1, . . . , Xk are all group elements that the algorithm received so far. We emphasize that we analyze
the game-based security of some of our building blocks in the AGM, and then use this security in a
black-box manner for our UC proof.

3 Aggregatable Vector Commitments
In this section, we define and instantiate a special class of vector commitments that we will use to
construct aggregatable lotteries.
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3.1 Syntax of Our Vector Commitments
A vector commitment allows a party to commit to a vector m ∈M` over some alphabetM, resulting in
a commitment com. Later, the committer can open com at any position i ∈ [`] by revealing mi and a
corresponding opening (proof) τ . One can then publicly verify the pair (mi, τ) with respect to com and
i. Our definition of vector commitments is special in two ways. First, it should be possible to publicly
aggregate several openings for different commitments with respect to the same position. Precisely, we
require the existence of an algorithm Aggregate that takes a list of L openings τj , j ∈ [L] (all for the same
position i ∈ [`]) and outputs an aggregated opening τ . One can then verify τ with respect to a list of L
commitments. For non-triviality, the aggregated τ should ideally be as large as one single τj . Note that a
similar aggregation feature for openings of different commitments has been defined in [GRWZ20]. The
second non-standard part of our definition is that we explicitly model an algorithm VerCom that verifies
whether commitments (not openings) are well-formed. For our security notions, this will be convenient.

Definition 3 (Vector Commitment Scheme). A vector commitment scheme (VC) is a tuple VC = (Setup,
Com,VerCom,Open,Aggregate,Ver) of PPT algorithms, with the following syntax:

• Setup(1λ, 1`) → ck takes as input the security parameter and a message length `, and outputs a
commitment key ck. We assume that ck specifies a message alphabetM, opening space T , and
commitment space C.

• Com(ck,m)→ (com, St) takes as input a commitment key ck and a vector m ∈M`, and outputs a
commitment com ∈ C and a state St.

• VerCom(ck, com)→ b is deterministic, takes as input a commitment key ck and a commitment com,
and outputs a bit b ∈ {0, 1}.

• Open(ck, St, i) → τ takes as input a commitment key ck, a state St, and an index i ∈ [`], and
outputs an opening τ ∈ T .

• Aggregate(ck, i, (comj)Lj=1, (mj)Lj=1, (τj)Lj=1)→ τ is deterministic, takes as input a commitment key
ck, an index i ∈ [`], a list of commitments comj ∈ C, a list of symbols mj ∈ M, and a list of
openings τj ∈ T , and outputs an opening τ ∈ T .

• Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ)→ b is deterministic, takes as input a commitment key ck, an index
i ∈ [`], a list of commitments comj ∈ C, a list of symbols mj ∈ M, and an opening τ ∈ T , and
outputs a bit b ∈ {0, 1}.

Further, we require that the following properties holds:

1. Commitment Completeness. For every ` ∈ N, every ck ∈ Setup(1λ, 1`), and every m ∈M`, we
have

Pr [VerCom(ck, com) = 1 | (com, St)← Com(ck,m)] = 1.

2. Opening Completeness. For every ` ∈ N, every ck ∈ Setup(1λ, 1`), every m ∈ M`, and every
i ∈ [`], we have

Pr
[

Ver(ck, i, com,mi, τ) = 1
∣∣∣∣ (com, St)← Com(ck,m),
τ ← Open(ck, St, j),

]
= 1.

3. Aggregation Completeness. For every ` ∈ N, any ck ∈ Setup(1λ, 1`), any L ∈ N, every index
i ∈ [`], every list (mj)Lj=1 ∈ML, every list (comj)Lj=1 ∈ CL, any list (τj)Lj=1 ∈ T L, we have

∀j ∈ [L] : Ver(ck, i, comj ,mj , τj) = 1 ∧ τ = Aggregate(ck, i, (comj)Lj=1, (mj)Lj=1, (τj)Lj=1)
=⇒ Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) = 1.
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3.2 Simulation-Extractability
We define a strong simulation-extractability property for vector commitments. This property captures all
properties that we will need for our UC proof, including both hiding and binding properties. Beyond that,
it may be interesting in itself. The notion states that no adversary can distinguish between two games in
which it is running, where one game models the real world, and the other game models an ideal world.
The first property that our notion models is a strong form of hiding. Namely, we require that there is a
way to set up the commitment key with a trapdoor, and this trapdoor allows a simulator to compute
commitments without knowing the message, and later open these commitments at arbitrary positions to
arbitrary symbols. This is modeled in our notion as follows. In the real world game, the adversary gets
an honest commitment key. It also gets access to an oracle GetCom that outputs honestly computed
commitments to messages of the adversary’s choice. Another oracle GetOp provides openings for these
commitments when the adversary asks for them. In the ideal world game, the commitment key is set up
with a trapdoor and both commitments and openings are simulated. In addition to this hiding property,
our notion models a strong form of binding. Namely, the adversary gets access to oracles SubCom
and SubOp that allow it to submit commitments and openings for them. While the commitments and
openings are simply verified in the real world game, there are additional checks in the ideal world game.
Concretely, when the adversary submits a commitment com that is not output by GetCom, the game
not only verifies it, but also tries to extract a preimage (m, ϕ) from it, such that m with randomness ϕ
commits to com. If this extraction fails but com verifies, SubCom outputs 0 in the ideal world game,
whereas it would output 1 in the real world game. In other words, indistinguishability of the games
ensures that we can always extract preimages of commitments. In addition, our notion ensures that
openings are consistent: (1) whatever we extracted in SubCom is consistent with any valid opening that
the adversary submits later, and (2) if the adversary opens a commitment output by GetCom(m) at
position i, then (2a) it opens to the respective mi, and (2b) it queried GetOp for this commitment at
position i before. Our notion ensures this because in the ideal game, SubOp outputs 0 if one of the
inconsistencies (1,2a,2b) occurs, whereas in the real game the output of SubOp only depends on whether
the opening verifies.

Definition 4 (Simulation-Extractability of VC). Let VC = (Setup,Com,VerCom,Open,Aggregate,Ver)
be a vector commitment scheme. For any algorithm A, any ` ∈ N, any algorithm Ext, and any triple of
algorithms Sim = (TSetup,TCom,TOpen), consider the games `-SIM-EXTAVC,Sim,Ext,b(λ) for b ∈ {0, 1}
defined in Figure 1. We say that VC is simulation-extractable, if there are PPT algorithms Ext and
Sim = (TSetup,TCom,TOpen) such that for any polynomial ` ∈ N and any PPT algorithm A, the
following advantage is negligible:

Advsim-ext
A,VC,Sim,Ext,`(λ) :=

∣∣∣Pr
[
`-SIM-EXTAVC,0(λ)⇒ 1

]
− Pr

[
`-SIM-EXTAVC,Sim,Ext,1(λ)⇒ 1

]∣∣∣ .
Then, we say VC is simulation-extractable with extractor Ext and simulator Sim.

3.3 Modularizing Simulation-Extractability
Our simulation-extractability notion is well-suited for our UC proof. However, it models several dis-
tinct properties of the vector commitment simultaneously, which renders a direct proof of simulation-
extractability complicated. Thus, we define three less complex security notions and show that in
combination they imply simulation-extractability. The first notion, equivocality, is the hiding part of our
simulation-extractability notion.

Definition 5 (Equivocal VC). Consider a vector commitment scheme VC = (Setup,Com,VerCom,Open,
Aggregate,Ver). For any algorithm A, any ` ∈ N, and any triple of algorithms Sim = (TSetup,TCom,
TOpen) consider the games `-EQUIVAVC,Sim,b(λ) for b ∈ {0, 1} defined in Figure 2. We say that VC is
equivocal, if there are PPT algorithms Sim = (TSetup,TCom,TOpen) such that for any polynomial ` ∈ N
and any PPT algorithm A, the following advantage is negligible:

Advequiv
A,VC,Sim,`(λ) :=

∣∣∣Pr
[
`-EQUIVAVC,0(λ)⇒ 1

]
− Pr

[
`-EQUIVAVC,Sim,1(λ)⇒ 1

]∣∣∣ .
In this case, we say that VC is equivocal with simulator Sim.
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Game `-SIM-EXTAVC,0(λ)
01 c := 0, ck← Setup(1λ, 1`)
02 OG := (GetCom0,GetOp0)
03 OS := (SubCom0,SubOp0)
04 return AOG,OS (ck)

Oracle GetCom0(m)
05 c := c+ 1, Msgs[c] := m
06 (com, St)← Com(ck,m)
07 Coms[c] := com, St[c] := St
08 Ops[c] := ∅
09 return com

Oracle GetOp0(k, i)
10 if Coms[k] = ⊥ : return ⊥
11 if i ∈ Ops[k] : return ⊥
12 Ops[k] := Ops[k] ∪ {i}
13 τ ← Open(ck,St[k], i)
14 return τ

Oracle SubCom0(com)
15 if ∃k s.t. Coms[k] = com :
16 return 0
17 if VerCom(ck, com) = 0 :
18 return 0
19 Sub := Sub ∪ {com}
20 return 1

Game `-SIM-EXTAVC,Sim,Ext,1(λ)
21 c := 0, (ck, td)← TSetup(1λ, 1`)
22 OG := (GetCom1,GetOp1)
23 OS := (SubCom1,SubOp1)
24 return AOG,OS (ck)

Oracle GetCom1(m)
25 c := c+ 1, Msgs[c] := m
26 (com, St)← TCom(ck)
27 Coms[c] := com, St[c] := St
28 Ops[c] := ∅
29 return com

Oracle GetOp1(k, i)
30 if Coms[k] = ⊥ : return ⊥
31 if i ∈ Ops[k] : return ⊥
32 Ops[k] := Ops[k] ∪ {i}
33 τ ← TOpen(td,St[k], i,Msgs[k]i)
34 return τ

Oracle SubCom1(com)
35 if ∃k s.t. Coms[k] = com :
36 return 0
37 if VerCom(ck, com) = 0 :
38 return 0
39 (m, ϕ)← Ext(td, com)
40 (com′, St) := Com(ck,m;ϕ)
41 if com′ 6= com : return 0
42 MsgsExt[com] := m
43 Sub := Sub ∪ {com}
44 return 1

Oracle SubOpb(i, (comj)Lj=1, (mj)Lj=1, τ)
45 if b = 1 : for j ∈ [L] :
46 if comj ∈ Sub ∧mj 6= MsgsExt[com]i : return 0
47 if ∃k s.t. comj = Coms[k] ∧ i ∈ Ops[k] ∧mj 6= Msgs[k]i : return 0
48 if ∃k s.t. comj = Coms[k] ∧ i /∈ Ops[k] : return 0
49 return Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ)

Figure 1: The simulation-extractability games `-SIM-EXT for a vector commitment VC = (Setup,
Com,VerCom,Open,Aggregate,Ver), an adversary A, an extractor Ext, and a simulator Sim =
(TSetup,TCom,TOpen). In the random oracle model, Ext gets as additional input the list of random
oracle queries of A. In the algebraic group model, Ext gets as additional input the algebraic representation
of all group elements contained in the commitment com submitted by A.

Game `-EQUIVAVC,0(λ)
01 c := 0
02 ck← Setup(1λ, 1`)
03 return AGetCom0,GetOp0(ck)

Game `-EQUIVAVC,Sim,1(λ)
04 c := 0
05 (ck, td)← TSetup(1λ, 1`)
06 return AGetCom1,GetOp1(ck)

Figure 2: The equivocality games `-EQUIV for a vector commitment VC = (Setup,Com,VerCom,Open,
Aggregate,Ver), an adversary A, and a simulator Sim = (TSetup,TCom,TOpen). Oracles GetComb and
GetOpb are as in Figure 1.
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Game `-AUG-EXTAVC,Ext(λ)
01 ck← Setup(1λ, 1`)
02 com← AGetCom0,GetOp0(ck)
03 (m, ϕ)← Ext(ck, com), (com′, St) := Com(ck,m;ϕ)
04 if @k s.t. Coms[k] = com ∧ VerCom(ck, com) = 1 ∧ com 6= com′ : return 1
05 return 0

Figure 3: The augmented extractability game `-AUG-EXT for a vector commitment VC = (Setup,Com,
VerCom,Open,Aggregate,Ver), an extractor Ext, and an adversary A. Oracles GetCom0 and GetOp0
are as in Figure 1. In the random oracle model, Ext gets as additional input the list of random oracle
queries of A. In the algebraic group model, Ext gets as additional input the algebraic representation of
all group elements contained in the commitment com submitted by A. Notably, Ext does not share any
internal state with the rest of the game.

The second and third notion focus on binding. Namely, the notion of augmented extractability states
that we can extract preimages of commitments from any opening that the adversary outputs, even if
it sees some honest commitments and openings. Notably, we do not allow the extractor to inspect the
internal state of the oracles that output these honest commitments and openings, which is crucial for
making this notion compose with equivocality.
Definition 6 (Augmented Extractability of VC). Let VC = (Setup,Com,VerCom,Open,Aggregate,Ver)
be a vector commitment scheme. For any algorithm A, any algorithm Ext, any ` ∈ N, consider the game
`-AUG-EXTAVC,Ext(λ) defined in Figure 3. We say that VC satisfies augmented extractability, if there
is a PPT algorithm Ext such that for any polynomial ` ∈ N and any PPT algorithm A, the following
advantage is negligible:

Advaug-ext
A,VC,Ext,`(λ) := Pr

[
`-AUG-EXTAVC,Ext(λ)⇒ 1

]
.

In this case, we say that VC satisfies augmented extractability with extractor Ext.
Augmented extractability states that we can extract some preimage of adversarially submitted

commitments. It does not state that what we extract is consistent with whatever the adversary opens
later. For that, we define aggregation position-binding. Intuitively, we want that any two lists of
commitments and openings that an adversary outputs are consistent, i.e., if they share a commitment,
then the opened symbols for that commitment are the same. It turns out that we can further simplify this
by assuming that one of the lists contains exactly one honestly computed commitment (with potentially
biased randomness).
Definition 7 (Aggregation Position-Binding of VC). Let VC = (Setup,Com,VerCom,Open,Aggregate,
Ver) be a vector commitment scheme. For any algorithm A and any ` ∈ N, consider the game `-
A-POS-BINDAVC(λ) defined in Figure 4. We say that VC is aggregation position-binding, if for any
polynomial ` ∈ N and any PPT algorithm A, the following advantage is negligible:

Adva-pos-bind
A,VC,` (λ) := Pr

[
`-A-POS-BINDAVC(λ)⇒ 1

]
.

Next, we show that our notions imply simulation-extractability. This allows us to focus on the three
simpler notions when we construct and analyze vector commitments.
Lemma 1. Let VC be a vector commitment scheme such that |M| ≥ ω(log λ). Assume that VC is equivocal
with simulator Sim, and that it is aggregation position-binding, and satisfies augmented extractability
with extractor Ext. Then, VC is simulation-extractable with extractor Ext and simulator Sim. Concretely,
for any PPT algorithm A that makes at most Q queries to oracle GetCom there are PPT algorithms
B1,B2,B3 with T(Bi) ≈ T(A) for i ∈ {1, 2, 3}, and

Advsim-ext
A,VC,Sim,Ext,`(λ) ≤ `Q

|M|
+ (`Q+ 1) · Adva-pos-bind

B2,VC,` (λ)

+ Advaug-ext
B1,VC,Ext,`(λ) + (2`Q+ 1) · Advequiv

B3,VC,Sim,`(λ).
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Game `-A-POS-BINDAVC(λ)
01 ck← Setup(1λ, 1`)
02 (m, ϕ, i, (comj)Lj=1, (mj)Lj=1, τ)← A(ck)
03 (com, St) := Com(ck,m;ϕ)
04 if Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) = 0 : return 0
05 if ∃j∗ ∈ [L] s.t. comj∗ = com ∧mj∗ 6= mi : return 1
06 return 0

Figure 4: The aggregation position-binding game `-A-POS-BIND for a vector commitment VC = (Setup,
Com,VerCom,Open,Aggregate,Ver) and an adversary A.

Moreover, if A is algebraic and every algorithm of VC is algebraic, then so are the Bi for i ∈ {1, 2, 3}.

Proof. We first give a proof intuition and then provide the full proof. We need to show that the real game
and the ideal game of simulation-extractability are indistinguishable. For that, we start with the real
game. In a first step, we change the game by extracting from all commitments that the adversary submits
via SubCom, and let the oracle return 0 if extraction does not yield a valid preimage. The games are
indistinguishable by augmented extractability. Note that now oracle SubCom is as in the ideal game. In
the second step, we change oracle SubOp to be as in the ideal world game as well. The adversary can only
distinguish this, if one of the three conditions on which the implementations of oracle SubOp in the real
game and the ideal game differ occurs. It turns out that we can bound this probability using aggregation
position-binding. Now, it remains to change the implementation of oracles GetCom and GetOp to be
as in the ideal game. This change can be done using equivocality of the commitment. Here, it is essential
that we defined our extractor in an appropriate way, see Figure 3: the extractor does not rely on any
internals of the oracles GetCom and GetOp and just sees their input and output behavior. Otherwise,
a reduction for this final change would not be able to run the extractor correctly. Next, we turn to the
formal proof. We present a sequence of games, where the initial game G0 is `-SIM-EXTAVC,0(λ), and the
final game G3 is `-SIM-EXTAVC,Sim,Ext,1(λ).
Game G0: We define G0 to be the game `-SIM-EXTAVC,0(λ). We briefly recall it. In the game, the
adversary A is run on input ck← Setup(1λ, 1`) with access to four oracles, which are as follows:

• Oracle GetCom(m) honestly commits to message m ∈ M` by running (com, St)← Com(ck,m).
It saves St and outputs com to A.

• Oracle GetOp(k, i) honestly opens the kth commitment output by GetCom at the ith position,
given that this commitment exists. That is, it returns τ ← Open(ck, St, i), where St has been saved
before.

• Oracle SubCom(com) verifies commitment com by running VerCom(ck, com), given that it is fresh,
i.e., not an output of GetCom. It returns 1 if and only if the commitment is fresh and verifies.

• Oracle SubOp(i, (comj)Lj=1, (mj)Lj=1, τ) verifies the given opening. That is, it runs and returns
Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ).

Finally, the game outputs whatever A outputs. In the following games, we will gradually change these
oracles. By definition, we have

Pr
[
`-SIM-EXTAVC,0(λ)⇒ 1

]
= Pr [G0 ⇒ 1].

Game G1: This game is as G0, but we change oracle SubCom. Roughly, we switch it from being
implemented as in `-SIM-EXTAVC,0(λ) to being implemented as in `-SIM-EXTAVC,Sim,Ext,1(λ). More
concretely, whenA queries SubCom(com), the oracle first checks if com is fresh and if VerCom(ck, com) = 1.
If not, it returns 0 as before. Otherwise, however, it now additionally runs extractor Ext, namely, it
runs (m, ϕ) ← Ext(ck, com) and returns 0 if com′ 6= com for (com′, St) := Com(ck,m;ϕ). That is, it
returns 0 if the extractor does not compute a valid preimage of the submitted commitment. Otherwise,
it returns 1. Here, we want to remark that all group elements that A may get in the algebraic group
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model are contained in ck and the outputs of GetCom and GetOp. This is exactly as in the augmented
extractability game for which Ext is originally defined, meaning that the extractor “understands” the
algebraic representation submitted by A with com, and the game does not need to do any modification
on it before running Ext. This will be important later. Note that A’s view only changes if it submits a
commitment com for which SubCom would return 1 in G0 but 0 in G1. In this case, the commitment
is fresh, it verifies via algorithm VerCom, but extraction fails. We can easily bound this event using a
straight-forward reduction B breaking augmented extractability. The reduction gets as input ck and gets
access to oracles GetCom and GetOp. It runs A on input ck, while simulating GetCom and GetOp by
simply forwarding to its own oracles and simulating SubOp honestly as in G0 and G1. It also simulates
SubCom as in G1, and if the event we want to bound occurs, it outputs the submitted commitment com
(including the algebraic representation) to its game and terminates. Clearly, the simulation is perfect,
and B breaks augmented extractability if the event we want to bound occurs. We get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Advaug-ext
B,VC,Ext,`(λ).

Game G2: In this game, we change oracle SubOp. Namely, we implement it as in the ideal game
`-SIM-EXTAVC,Sim,Ext,1(λ) from now. To recall, in G1 the oracle takes an input (i, (comj)Lj=1, (mj)Lj=1, τ)
and runs and returns Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ). Now, it returns 0, if one of the following events
occur for this query, whereas it returns Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) otherwise.

• Event BadOpMal: This event occurs, if there is a j ∈ [L] such that (1) comj has been submitted
to SubCom before, and (2) extraction on comj succeeded, i.e., (m, ϕ) ← Ext(ck, comj) and m
commits to comj with randomness m, but (3) the submitted mj is not the consistent with the
extracted m, i.e., mi 6= mj .

• Event BadOpHon: This event occurs, if there is a j ∈ [L] and a k such that (1) comj has been
output as the kth commitment by GetCom(m) before, and (2) GetOp(k, i) has been called, i.e.,
comj has been opened at position i by the game, but (3) the submitted mj is not the consistent
with m, i.e., mi 6= mj .

• Event BadOpEarly: This event occurs, if there is a j ∈ [L] and a k such that (1) comj has been
output as the kth commitment by GetCom(m) before, and (2) GetOp(k, i) has not been called
before, i.e., comj has not been opened at position i by the game before.

Note that the three events correspond to the three conditions on which the implementations of oracle
SubOp in the real game and the ideal game differ. Clearly, A’s view only changes if makes a query to
SubOp for which the oracle would return 1 inG1 but 0 inG2. In other words, A’s view only changes if one
of the three events occurs. To bound the probability, we first consider the event BadOpMal ∨ BadOpHon.
If this event occurs, it is easy to see that a reduction B can break aggregation position-binding of VC.
Namely, if this happens for an input (i, (comj)Lj=1, (mj)Lj=1, τ), then the reduction can simply return
(m, ϕ, i, (comj)Lj=1, (mj)Lj=1, τ), where in the case of BadOpHon, ϕ is the randomness that has been used
in oracle GetCom(m). We get

Pr [BadOpMal ∨ BadOpHon] ≤ Adva-pos-bind
B,VC,` (λ).

Further, we claim that

Pr [BadOpEarly] ≤ `Q

|M|
+ 2`Q · Advequiv

B,VC,Sim,`(λ) + `Q · Adva-pos-bind
B′,VC,` (λ).

We will show this at the end of the proof. In combination, we get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ `Q

|M|
+ 2`Q · Advequiv

B,VC,Sim,`(λ) + (`Q+ 1) · Adva-pos-bind
B′,VC,` (λ).

Game G3: In this game, we change ck and the oracles GetCom and GetOp. Namely, we no longer
generate ck ← Setup(1λ, 1`), but instead generate it with a trapdoor via (ck, td) ← TSetup(1λ, 1`).
In oracle GetCom(m), we compute the commitment com without using the message m by running
(com, St) ← TCom(ck). Later, when we have to open this commitment at the ith position during a
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query to GetOp, we compute τ by running τ ← TOpen(td, St, i,mi). The difference between these
two games can easily be bounded by a reduction B against equivocality of VC, which just forwards the
queries to GetCom and GetOp and there responses between the adversary and its own oracles. In
the algebraic group model, what is important here is that the reduction does not need to change the
algebraic representation for the extractor, as noted in G1, and that the extractor Ext does not rely on any
internal states of oracles GetCom and GetOp. If this were the case, the reduction could not provide
this internal state to Ext and thus not simulate the game. We get

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Advequiv
B,VC,Sim,`(λ).

Finally, note that G3 is exactly `-SIM-EXTAVC,Sim,Ext,1(λ), and we get

Pr [G3 ⇒ 1] = Pr
[
`-SIM-EXTAVC,Sim,Ext,1(λ)⇒ 1

]
.

Bounding Event BadOpEarly. It remains to bound the probability of BadOpEarly in G1. For that, we first

introduce sub-events BadOpEarlyk,i. Namely, for every k ∈ [Q] and every i ∈ [`], we define BadOpEarlyk,i
as to be the event that BadOpEarly occurs on a query (i, (comj)Lj=1, (mj)Lj=1, τ) to SubOp and the comj

triggering BadOpEarly is the kth commitment output by GetCom. With that, a union bound gives us

Pr [BadOpEarly] ≤
∑

k∈[Q],i∈[`]

Pr
[
BadOpEarlyk,i

]
.

In the following, we fix a k∗ ∈ [Q] and i∗ ∈ [`], and bound the probability of BadOpEarlyk∗,i∗ . Again, we
do so by providing a sequence of games.
Game H0: This game is exactly as game G1, but it terminates and outputs 1 on immediately when
BadOpEarlyk∗,i∗ occurs. Also, it terminates and outputs 0 immediately when A queries GetOp(k∗, i∗)
and the k∗th commitment has already been output by GetCom(m∗), i.e., if BadOpEarlyk∗,i∗ can no
longer occur. To fix notation, we let com∗ be this k∗th commitment output by GetCom and m∗ ∈M`

be the respective oracle input. By definition, we have

Pr
[
BadOpEarlyk∗,i∗

]
= Pr [H0 ⇒ 1].

Game H1: This game is the same as H0, but all commitments and openings output by GetCom
and GetOp are simulated. That is, we no longer generate ck ← Setup(1λ, 1`), but instead generate it
via (ck, td) ← TSetup(1λ, 1`). In oracle GetCom(m), we compute the commitment com by running
(com, St)← TCom(ck). When we have to open this commitment at the ith position during a query to
GetOp, we compute τ by running τ ← TOpen(td, St, i,mi). In other words, this change is similar to the
change from G2 to G3. Using a similar argument as we did there, we get

|Pr [H0 ⇒ 1]− Pr [H1 ⇒ 1]| ≤ Advequiv
B,VC,Sim,`(λ).

Game H2: This game is the same as H1, but we sample m∗←$M in the beginning of the game. Later,
when event BadOpEarlyk∗,i∗ occurs on a query (i∗, (comj)Lj=1, (mj)Lj=1, τ) to oracle SubCom, the game
outputs 0 if for the smallest j ∈ [L] with comj = com∗ we have mj = m∗. Otherwise, it outputs 1 as
before. Clearly, as A obtains no information about m∗, we have

|Pr [H1 ⇒ 1]− Pr [H2 ⇒ 1]| ≤ 1
|M|

.

Game H3: In this game, we essentially undo our change from H0 to H1, with a small but important
twist. Namely, we generate ck← Setup(1λ, 1`) and compute all commitments and openings output by
GetCom and GetOp honestly via algorithms Com and Open. Importantly, we compute com∗ not as
com∗ := Com(ck,m∗;ϕ∗) , but instead as

com∗ := Com(ck, m̃;ϕ∗), with m̃i =
{

m∗i , if i ∈ [`] \ {i∗}
m∗, if i = i∗

.
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Now, in case A issues a query GetOp(k∗, i∗) and the k∗th commitment has already been output by
GetCom(m∗), we see that both H2 and H3 output 0 by definition. So, we can focus on the case where
A does not make such a query. We can easily bound the difference in this case using a reduction B
against equivocality of VC as in the change from G2 to G3. The only modification is that it forwards m̃
on behalf of m∗. If B runs in the real world game of equivocality, then it perfectly simulates G3 for A.
On the other hand, if it runs in the ideal world game, it perfectly simulates G2 because of the assumption
that A does not make such a query. We get

|Pr [H2 ⇒ 1]− Pr [H3 ⇒ 1]| ≤ Advequiv
B,VC,Sim,`(λ).

Finally, we bound the probability that H3 outputs 1. Namely, we sketch a reduction that breaks
aggregation position-binding of VC if H3 outputs 1. To this end, observe that when H3 outputs 1, then
event BadOpEarlyk∗,i∗ occurs on a query (i∗, (comj)Lj=1, (mj)Lj=1, τ) to oracle SubCom. We also know
that in this case mj 6= m∗ for the smallest j ∈ [L] such that comj = com∗. Thus, the reduction can return
(m̃, ϕ∗, i∗, (comj)Lj=1, (mj)Lj=1, τ) to break aggregation position-binding of VC. We get

Pr [H3 ⇒ 1] ≤ Adva-pos-bind
B,VC,` (λ).

3.4 Simulation-Extractable Vector Commitments from KZG
We present an instantiation of vector commitments with suitable properties based on the KZG commitment
scheme [KZG10]. To recall, we let PGGen be an algorithm that on input 1λ outputs the description of
prime order groups G1,G2,GT of order p, generators g1 ∈ G1 and g2 ∈ G2, and the description of a
pairing e : G1 ×G2 → GT . We first recall the KZG commitment scheme [KZG10]. Then, we modify it to
get our vector commitment scheme with suitable properties.

• KZG.Setup(1λ, 1d)→ ck:

1. Run par := (G1,G2, g1, g2, p, e)← PGGen(1λ).
2. Sample α←$ Zp and β←$ Z∗p, and set h1 := gβ1 ∈ G1.

3. Set ui := gα
i

1 and ûi := hα
i

1 for each i ∈ {0, . . . , d}. Set R := gα2

4. Return ck := (par, h1, R, (ui)di=0, (ûi)di=0).

• KZG.Com(ck, f ∈ Zp[X])→ (com, St)

1. If the degree of f is larger than d, abort.
2. Sample a polynomial f̂ ∈ Zp[X] of degree d uniformly at random.

3. Compute com = g
f(α)
1 · hf̂(α)

1 . Note that com can be computed efficiently.
4. Return com and St := (f, f̂).

• KZG.Open(ck, St = (f, f̂), z)→ τ

1. Let ψ := (f − f(z))/(X − z) ∈ Zp[X] and ψ̂ := (f̂ − f̂(z))/(X − z) ∈ Zp[X].

2. Set v := g
ψ(α)
1 · hψ̂(α)

1 . Note that v can be computed efficiently.
3. Return τ := (f̂(z), v).

• KZG.Ver(ck, com, z, y, τ = (ŷ, v))→ b

1. If e
(

com · g−y1 · h−ŷ1 , g2

)
= e

(
v,R · g−z2

)
, return b = 1. Else, return b = 0.
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With this definition of KZG we define the vector commitment scheme VCKZG = (VCKZG.Setup,VCKZG.Com,
VCKZG.Open,VCKZG.Ver). For this, we also need two random oracles H : {0, 1}∗ → Zp and H′ : {0, 1}∗ → Zp.
We use the linear properties of KZG to make aggregation work. To add non-malleability at the same time,
we include an opening at a random position z0 in the commitments. Typically, to commit to a vector of `
elements, one would work with polynomials of degree d = ` − 1. As we give out one additional point
f(z0) for non-malleability and still need hiding, it is natural to increase d by one to d = `. It turns out
that for a technical reason in our extractability proof (see paragraph “Proof Strategy” in the proof), we
have to choose d = `+ 1.

• VCKZG.Setup(1λ, 1`)→ ck:

1. Run ckKZG ← KZG.Setup(1λ, 1d), where d := `+ 1. The parameters specify message alphabet
M := Zp, opening space T := Zp ×G1, and commitment space C := G1 × Zp × T .

2. Let ι : [`]→ Zp be a fixed injection and zout ∈ Zp such that 0 and zout are not in the image of ι.
3. Return ck := (ckKZG, zout, ι).

• VCKZG.Com(ck,m)→ (com, St)

1. Sample δ0, δ1←$ Zp and let f ∈ Zp[X] be the unique polynomial of degree d := `+ 1 such that
f(0) = δ0, f(zout) = δ1 and f(ι(i)) = mi for all i ∈ [`].

2. Run (comKZG, St)← KZG.Com(ck, f ∈ Zp[X]).
3. Compute z0 := H(comKZG) and set y0 := f(z0).
4. Run τ0 ← KZG.Open(ckKZG, St, z0).
5. Return com := (comKZG, y0, τ0) and St.

• VCKZG.VerCom(ck, com)→ b

1. Parse com = (comKZG, y0, τ0) and set z0 := H(comKZG).
2. Return KZG.Ver(ckKZG, comKZG, z0, y0, τ0).

• VCKZG.Open(ck, St, i)→ τ

1. Return KZG.Open(ckKZG, St, ι(i)).

• Aggregate(ck, i, (comj)Lj=1, (mj)Lj=1, (τj)Lj=1)→ τ

1. For each j ∈ [L], parse τj = (ŷj , vj) ∈ Zp ×G1.
2. Set ξ := H′(i, (comj)Lj=1, (mj)Lj=1).

3. Set ŷ :=
∑L
j=1 ξ

j−1ŷj and v :=
∏L
j=1 v

ξj−1

j .
4. Return τ = (ŷ, v).

• VCKZG.Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ)→ b

1. For each j ∈ [L], parse comj = (comKZG,j , y0,j , τ0,j) ∈ G1 × Zp × T .
2. Set ξ := H′(i, (comj)Lj=1, (mj)Lj=1).

3. Compute m :=
∑L
j=1 ξ

j−1mj and com :=
∏L
j=1 comξj−1

KZG,j .
4. Return KZG.Ver(ckKZG, com, ι(i),m, τ).

In the following, we show that VCKZG satisfies equivocality, aggregation position-binding, and augmented
extractability. By Lemma 1, this implies that it is simulation-extractable.

Lemma 2. Let H : {0, 1}∗ → Zp be a random oracle. Then, VCKZG is equivocal. Namely, there are PPT
algorithms Sim = (TSetup,TCom,TOpen) such that for any polynomial ` ∈ N and any algorithm A that
makes at most QC queries to oracle GetCom, we have

Advequiv
A,VC,Sim,`(λ) = `+QC + 1 + `QC

p
.
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Proof. We prove the statement by defining a sequence of hybrid games. Namely, we start with game
`-EQUIVAVC,0(λ). Then, we provide a sequence of hybrid games until we end up at a game that we can
write as `-EQUIVAVC,Sim,1(λ) by appropriately defining Sim.
Game G0: We start with G0, which is defined to be `-EQUIVAVC,0(λ). We recall the game to fix
some notation. Initially, the game sets c := 0 and runs ck ← Setup(1λ, 1`). Here, ck has the form
ck = (ckKZG, zout, ι), where ι is an injective mapping from [`] to Zp and ckKZG = (par, h1, R, (ui)di=0, (ûi)di=0)
is a commitment key for the KZG polynomial commitment of degree d = `+ 1, with group parameters
par = (G1,G2, g1, g2, p, e). Specifically, we have h1 = gβ1 for some random β ∈ Zp, and ui = gα

i

1 and
ûi = hα

i

1 for each i ∈ {0, . . . , d} and some random α ∈ Zp. Further, R = gα2 . Then, A is run on input ck
with access to oracles GetCom,GetOp, which are as follows:

• On input m ∈ Z`p, oracle GetCom increments c and computes (com, St) ← Com(m). It stores
Coms[c] := com, St[c] := St, Msgs[c] := m and sets Ops[c] := ∅. Then, it returns com to A. To
recall com consists of a KZG commitment comKZG and an opening τ0 for value y0 at position
z0 := H(comKZG).

• On input (k, i) for which Coms[k] 6= ⊥ and i /∈ Ops[k], oracle GetOp inserts k into Ops[k] and
returns τ ← Open(ck,St[k], i) to A.

By definition, we have
Pr
[
`-EQUIVAVC,0(λ)⇒ 1

]
= Pr [G0 ⇒ 1].

Game G1: In this game, we change how openings are computed. This includes both openings τ0 that
are part of commitments returned by oracle GetCom and openings τ that are output by oracle GetOp.
Namely, recall that in G0, openings for a KZG commitment comKZG = g

f(α)
1 h

f̂(α)
1 at a position z ∈ Zp to

value y := f(z) are computed as τ := (ŷ, v), where ŷ = f̂(z) and

v = g
ψi(α)
1 h

ψ̂i(α)
1 for ψi = f − y

X − z
, ψ̂i = f̂ − ŷ

X − z
.

From now on, we change how v is computed. Namely, it is computed directly using α and comKZG as

v =
(

comKZG · g−y1 h−ŷ1

) 1
α−z

.

In the case that α = z, we simply set v to be a random element in G1. By expanding the equation defining
v in G0, one can see that the distribution is not changed unless α = z. To see that the probability that
α = z is negligible, the reader may recall at which positions z ∈ Zp opening proofs are provided during
the game. Namely, either z is in the image of ι, which is fixed independently of α and has size `, or z is
an output of random oracle H during a query to GetCom. There are QC of these queries. With a union
bound, we get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ `+QC
p

.

Game G2: In this game, we change how commitments com output by GetCom are computed. Recall
that in G1, the commitments have the form com = (comKZG, y0, τ0), where comKZG = g

f(α)
1 h

f̂(α)
1 is a KZG

commitment to a polynomial f of degree d = `+ 1 with randomness f̂ , where f̂ is a random polynomial
of degree d = `+ 1. Further, y0 = f(z0) for z0 = H(comKZG), and τ0 is an opening for comKZG to value
y0 at position z0. From now on, whenever the game needs to generate such a commitment, it samples
f̂(α)←$ Zp and sets comKZG = g

f(α)
1 h

f̂(α)
1 . Moreover, it defines f̂ lazily by sampling f̂(z) uniformly at

random from Zp whenever it is needed to compute an opening as in G1. This is the case for z = z0 and
for z in the image of ι. To argue that this does not change the view of A, we only need to argue that the
joint distribution of the values

f̂(α), f̂(z0),
(
f̂(ι(i))

)
i∈[`]

does not change from G1 to G2. Clearly, in G2, these values are uniformly distributed and independent.
This is the same in G1, as these are at most `+ 2 values and f̂ is sampled as a uniform polynomial of
degree d = `+ 1. We have

Pr [G1 ⇒ 1] = Pr [G2 ⇒ 1].
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Game G3: In this game, we change the commitments comKZG = g
f(α)
1 h

f̂(α)
1 again. Concretely, from

now on, we compute comKZG by sampling a random γ←$ Zp and setting comKZG := gγ1 . To argue
indistinguishability, we use the fact that, as long as h1 is a generator of G1, the term h

f̂(α)
1 acts as a

one-time pad. With probability at most 1/p, h1 is not a generator, and so we get

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ 1
p
.

Game G4: In this game, we change the commitments com = (comKZG, y0, τ0) output by GetCom again.
However, this time, we do not change the KZG commitment comKZG. Instead, we change the value y0.
Recall that until now, on a query GetCom(m) for a message m ∈ Z`p, the game sampled δ0, δ1←$ Zp and
defined f ∈ Zp[X] to be the unique polynomial of degree d = `+ 1 such that f(0) = δ0, f(zout) = δ1 and
f(ι(i)) = mi for all i ∈ [`]. Then, it sets comKZG = gγ1 for a random γ←$ Zp, computes z0 := H(comKZG)
and sets y0 := f(z0). Finally, it computed an opening τ0 for f at z0 as explained in G1. From now on,
the game no longer samples δ0 and δ1 and no longer defines f right away. Instead, the game samples
y0←$ Zp at random, sets f(z0) := y0 and defines the rest of f in a lazy way. Namely, whenever oracle
GetOp is called for this particular commitment, and the game needs f(ι(i)), it sets f(ι(i)) := mi and
continues as before. To argue that this does not change the view of A, we first assume that z0 is not in
the image of ι. For this assumption, we have to account a term of `QC/p. If this is the case, then the
joint distribution of the values

f(z0), (f(ι(i)))i∈[`]

does not change from G3 to G4. This is because f has degree d > `− 1 and therefore f(z0) is uniform in
G3 given all f(ι(i)) = mi. We get

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ `QC
p

.

Now, we argue that G4 can be written as `-EQUIVAVC,Sim,1(λ) by appropriately defining a PPT
simulator Sim = (TSetup,TCom,TOpen). This is because TSetup can simply output α as the trapdoor
and TCom can define the commitment comKZG to be comKZG = gγ1 for a random γ, sample y0←$ Zp, and
compute τ0 as explained in G1. Further, TCol can use the trapdoor α to open commitments as explained
in G1 and G2.

Lemma 3. If the d-DLOG assumption holds relative to PGGen and H′ : {0, 1}∗ → Zp is modeled as a
random oracle, then VCKZG is aggregation position-binding in the algebraic group model. Concretely, for
any polynomial ` ∈ N and any algebraic PPT algorithm A that makes at most QH′ queries to random
oracle H′, there are PPT algorithms B1,B2 with T(B1) ≈ T(B2) ≈ T(A) and

Adva-pos-bind
A,VCKZG,`

(λ) ≤ 2 · Adv1-DLOG
B1,PGGen(λ) + 2 · Adv(`+1)-DLOG

B2,PGGen (λ) + QH′Lmax
p

,

where Lmax is the maximum length of lists (mj)j submitted by A as part of the input to random oracle
H′.

Proof. We first recall the aggregation position-binding game for an algebraic adversary A and a dimension
` to fix some notation. Set d := `+ 1 as in the scheme. First, a commitment key ck = (ckKZG, zout, ι) is
generated, where ι is a mapping from [`] to Zp and ckKZG = (par, h1, R, (ui)di=0, (ûi)di=0) is a commitment
key for the KZG polynomial commitment, with group parameters par = (G1,G2, g1, g2, p, e). That is,
h1 = gβ1 for some β ∈ Zp, and there is some α ∈ Zp such that ui = gα

i

1 and ûi = hα
i

1 for each i ∈ {0, . . . , d}.
Further, R = gα2 . Then, when A terminates, it outputs the following:

• A message m ∈ Z`p and randomness ϕ. Here ϕ has the form ϕ = (δ0, δ1, f̂ ′) ∈ Zp × Zp × Zp[X],
where f̂ ′ is of degree `. Based on this output, the aggregation position-binding game honestly
computes a commitment com. More concretely, let f ′ ∈ Zp[X] be the polynomial of degree d = `+ 1
with f ′(0) = δ0, f ′(zout) = δ1, and f ′(ι(i)) = mi for every i ∈ [`]. Then, the commitment com has
the form com = (comKZG, y0, τ0), where comKZG = g

f ′(α)
1 h

f̂ ′(α)
1 .
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• An index i∗ ∈ [`]. We will denote z := ι(i∗). Further, we will denote by ψ′, ψ̂′ ∈ Zp[X] the
polynomials

ψ′ := f ′ − f ′(z)
X − z

, ψ̂′ := f̂ ′ − f̂ ′(z)
X − z

as in an honest KZG opening for f ′ at position z. The game can efficiently compute these polynomials.

• Lists (comj)Lj=1 and (mj)Lj=1, and an opening τ = (ŷ, v) ∈ Zp × G1. Concretely, each comj has
the form comj = (comKZG,j , y0,j , τ0,j), where comKZG,j ∈ G1. As A is algebraic, it also outputs an
algebraic representation for each comKZG,j and for τ . Due to the structure of the commitment key,
this is equivalent to saying that A outputs polynomials fj , f̂j ∈ Zp[X] and ψ, ψ̂ ∈ Zp[X] all of
degree at most d = `+ 1 such that

τ = g
ψ(α)
1 · hψ̂(α)

1 ∧ ∀j ∈ [L] : comKZG,j = g
fj(α)
1 · hf̂j(α)

1 .

We denote the event that A breaks aggregation position-binding by Win. Assuming that Win occurs, we
know the following: There is an index j∗ ∈ [L] such that comj∗ = com and mj∗ 6= mi∗ . In particular, this
means that comKZG = comKZG,j∗ and mj∗ 6= f ′(z). We have VCKZG.Ver(ck, i, (comj)Lj=1, (mj)Lj=1, τ) = 1.
In particular, by reading the verification equation in the exponent, we have

L∑
j=1

ξj−1(fj(α) + βf̂j(α)−mj)− βŷ = (ψ(α) + βψ̂(α))(α− z)

for ξ := H′(i, (comj)Lj=1, (mj)Lj=1). Defining polynomials f :=
∑L
j=1 fjξ

j−1 ∈ Zp[X] and f̂ :=
∑L
j=1 f̂jξ

j−1

∈ Zp[X], and the element m :=
∑L
j=1mjξ

j−1 simplifies this equation to

f(α) + βf̂(α)−m− βŷ = (ψ(α) + βψ̂(α))(α− z).

By construction of f ′, f̂ ′ and ψ′, ψ̂′, we also have

f ′(α) + βf̂ ′(α)− f ′(z)− βf̂ ′(z) = (ψ′(α) + βψ̂′(α))(α− z).

Subtracting the two equations, we get our core equation, namely,

f(α)− f ′(α) + β(f̂(α)− f̂ ′(α))− (m− f ′(z))− β(ŷ − f̂ ′(z))
= (ψ(α)− ψ′(α) + β(ψ̂(α)− ψ̂′(α)))(α− z).

Our goal will be to simplify the structure of this core equation. To do so, we define the following event:

• Event Complex: This event occurs, if η := f̂(α)− f̂ ′(α)− (ŷ − f̂ ′(z))− (ψ̂(α)− ψ̂′(α))(α− z) 6= 0.

Claim. There is a PPT algorithm B with Pr [Win ∧ Complex] ≤ Adv1-DLOG
B,PGGen(λ).

Proof of Claim. Reduction B is as follows. It gets as input the group parameters, the generator g1 and
the element h1 = gβ1 . We show that it can simulate the game for A and compute β if Win ∧ Complex
occurs. For that, B first samples α←$ Zp and computes the commitment key ck as in algorithm Setup.
Observe that for that, β is not needed. Now, if Win occurs, then we know that the core equation holds.
For convenience, we group together the β-terms in our core equation, getting

β · η = f ′(α)− f(α) + (m− f ′(z)) + (ψ(α)− ψ′(α))(α− z).

Clearly, if Complex, then reduction B can compute β by multiplying the right hand-side with η−1.
From now on, we condition on ¬Complex. In other words, we assume that η = 0, which implies that

the simplified core equation

f(α)−m− (f ′(α)− f ′(z)) = (ψ(α)− ψ′(α))(α− z)

holds. Our goal will be to show that if this equation holds, we can build a reduction breaking the d-DLOG
assumption. For that, we define the following events:
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• Event NoColl : This event occurs, if f ′(α) 6= fj∗(α).

• Event Ambig : This event occurs, if f ′ 6= fj∗ over Zp[X].

• Event AggFail : This event occurs, if m = f(z).

In the next claims, we bound the probability that one of these event occurs.
Claim. There is a PPT algorithm B with Pr [Win ∧ NoColl] ≤ Adv1-DLOG

B,PGGen(λ).
Proof of Claim. Note that if Win occurs, then we have f ′(α) + βf̂ ′(α) = fj∗(α) + βf̂j∗(α), because
comKZG = comKZG,j∗ . If NoColl occurs at the same time, then we know that f̂ ′(α)− f̂j∗(α) 6= 0 and one
can efficiently solve for β. It is not hard to turn that into a formal reduction that determines β given
h1 = gβ1 .
Claim. There is a PPT algorithm B with Pr [Ambig ∧ ¬NoColl] ≤ Advd-DLOG

B,PGGen(λ).
Proof of Claim. Note that if ¬NoColl occurs, then we have f ′(α) 6= fj∗(α). If Ambig occurs at the same
time, we know that α is a root of the non-zero polynomial f ′ − fj∗ , which has degree at most d = `+ 1.
Hence, α can be found in polynomial time by a reduction. We leave details to the reader.
Claim. We have Pr [Win ∧ AggFail ∧ ¬Ambig] ≤ QH′Lmax/p.
Proof of Claim. By definition of m and f , event AggFail is equivalent to the equation

L∑
j=1

mjξ
j−1 =

L∑
j=1

fj(z)ξj−1.

In other words, if AggFail occurs, then the polynomial

ζ =
L∑
j=1

(fj(z)−mj)Xj−1 ∈ Zp[X]

has a root at ξ. Observe that ζ has degree L ≤ Lmax and is fixed before3 ξ is chosen at random by
the random oracle H′. Thus, for any fixed random oracle query where ζ 6= 0, this event occurs with
probability at most Lmax/p. It remains to argue that ζ 6= 0 if Win occurs and Ambig does not. This can
be seen by observing that the j∗th coefficient of ζ is non-zero, i.e., mj∗ 6= fj∗(z). Namely, we know that
f ′ = fj∗ due to ¬Ambig. Thus, if we had mj∗ = fj∗(z), then we had mj∗ = f ′(z), contradicting Win.
Concluding the Proof. To conclude the proof, we can now assume that Win occurs, but neither of the
events defined above occurs. We come back to our simplified core equation. The equation tells us that α
is a root of the polynomial Ψ of degree at most d = `+ 1, which is given as

Ψ = f −m− (f ′ − f ′(z))− (ψ − ψ′)(X − z) ∈ Zp[X].

Now, if we can argue that Ψ is non-zero, then one can efficiently find α based on A’s output, leading to
our final reduction. To argue that Ψ is non-zero, not that Ψ = 0 implies that

f −m = (f ′ − f ′(z)) + (ψ − ψ′)(X − z).

While the right hand-side is a multiple of X − z, the left hand-side is not, as we assume ¬AggFail.
Therefore, this equality can not hold, which means that Ψ is non-zero. In combination, setting Bad :=
NoColl ∨ Ambig ∨ AggFail ∨ Complex we get a reduction B with

Pr [Win ∧ ¬Bad] ≤ Advd-DLOG
B,PGGen(λ).

3We are a bit sloppy here: It could be that the adversary submitted a different algebraic representation to the random
oracle. In this case, we just define the fj ’s to be this representation.
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Lemma 4. If the d-DLOG assumption holds relative to PGGen and H : {0, 1}∗ → Zp is modeled as a
random oracle, then VCKZG satisfies augmented extractability in the algebraic group model. Concretely,
there is a PPT algorithm Ext such that for any polynomial ` ∈ N and any algebraic PPT algorithm A,
there are PPT algorithms B1,B2 with T(B1) ≈ T(B2) ≈ T(A) and

Advaug-ext
A,VCKZG,Ext,`(λ) ≤ Q2

H +QH + `+QHQC(`+ 1)
p

+ (QC + 2) · Adv1-DLOG
B,PGGen(λ) + 2 · Adv(`+1)-DLOG

B,PGGen (λ).

Proof. We first recall the augmented extractability game to fix notation and define extractor Ext. Then,
we provide a proof intuition. Finally, we proceed with the details of the proof.

Game, Extractor and Notation. In the augmented extractability game for VCKZG, the adversary A gets as
input a commitment key ck and access to a commitment oracle GetCom and an opening oracle GetOp.
These are as follows:

• The commitment key ck has the form ck = (ckKZG, zout, ι) where ι : [`] → Zp is injective and
ckKZG = (par, h1, R, (ui)di=0, (ûi)di=0) is a KZG commitment key with group parameters par = (G1,

G2, g1, g2, p, e). We have h1 = gβ1 for some random β ∈ Zp, and ui = gα
i

1 and ûi = hα
i

1 for each
i ∈ {0, . . . , d} for some random α ∈ Zp. We also have R = gα2 .

• On input m ∈ Z`p, the commitment oracle returns a commitment com for m. We use the subscript k
to refer to the kth commitment returned by the oracle. That is, comk = (comKZG,k, fk(zk,0), τk,0) is
the kth commitment returned by the oracle, where comKZG,k = g

fk(α)
1 h

f̂k(α)
1 is a KZG commitment

to a polynomial fk of degree d with randomness f̂k, and τk,0 = (f̂k(zk,0), vk,0) is a KZG opening for
fk at position zk,0 = H(comKZG,k) to value fk(zk,0). We denote the number of queries to GetCom
by QC and assume without loss of generality that QC ≥ 1.

• On input (k, i) such that comk is defined, the opening oracle GetOp opens comk at position i.
To recall, such an opening is a KZG openings for commitment comKZG,k at position zk,i := ι(i).
We denote the opening by τk,i = (f̂k(zk,i), vk,i) for vk,i = g

ψk,i(α)
1 h

ψ̂k,i(α)
1 , where ψk,i = (fk −

fk(zk,i))/(X − zk,i) ∈ Zp[X] and ψ̂k,i := (f̂k − f̂k(zk,i))/(X − zk,i). Without loss of generality, we
can assume that for every commitment comk returned by the commitment oracle, A queries the
opening oracle for every i ∈ [`], and thus it obtained all of these openings τk,i for i ∈ {0, . . . , `}.

When A terminates, it outputs a commitment outputs com = (comKZG, y0, τ0) with τ0 = (ŷ0, v0). As
A is algebraic, it also outputs the algebraic representation of all group elements in com. Due to the
structure of ck and the group elements that A obtained from the commitment and opening oracles, we
can assume that this representation is given by polynomials f, f̂ , ψ, ψ̂ ∈ Zp[X] of degree d = `+ 1 and
lists of exponents (wk)k, (rk)k and (tk,i)k,i, (sk,i)k,i over Zp such that

comKZG = g
f(α)
1 · hf̂(α)

1 ·
QC∏
k=1

comwk
KZG,k ·

QC∏
k=1

∏̀
i=0

v
tk,i
k,i︸ ︷︷ ︸

=:L

and

v0 = g
ψ(α)
1 · hψ̂(α)

1 ·
QC∏
k=1

comrk
KZG,k ·

QC∏
k=1

∏̀
i=0

v
sk,i
k,i .

Without loss of generality, we assume that A queried H(comKZG), and it did so with the same algebraic
representation for comKZG as the one that it outputs in the end. Given the output of the adversary,
the extractor returns the message m ∈ Z`p defined by mi := f(ι(i)) for all i ∈ [`] and the randomness
ϕ := (δ0, δ1, f̂), where δ0 := f(0) and δ1 := f(zout). Now, A wins the game, if the following three
properties hold:

• The commitment com is fresh, i.e., it was not output by the commitment oracle GetCom.
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• Committing to m with randomness ϕ does not yield com. It is easy to see that this can only happen
if L 6= g0

1 .

• The commitment com verifies, i.e., VCKZG.VerCom(ck, com) = 1. This is equivalent to saying that
τ0 is a valid KZG opening for comKZG at position z0 = H(comKZG) to value y0, i.e., that

e
(

comKZG · g−y0
1 · h−ŷ0

1 , g2

)
= e

(
v0, g

α
2 · g

−z0
2
)
.

Proof Strategy. In a preparatory phase (see G0 to G3), we rule out some simple bad events and simplify
some equations. Namely, we rule out that there are collisions among the z’s, e.g., that z0 = zk,i for some
i and k. We also rule out that α is equal to one of those z’s. Further, we ensure that not only com is
fresh, but instead comKZG is fresh. For that, we need to rule out that the adversary reuses a comKZG,k
with a different opening. We also expand the verification using the algebraic representation, and simplify
it by ensuring that the exponent of h1 is zero. Indeed, if this were not the case, one could compute the
discrete logarithm β of h1 = gβ1 . After this preparatory phase, our main argument follows (see G4 to
G7). Namely, we show that from the adversary’s output, a reduction can efficiently compute fk∗(z0) for
some k∗, while it only provided the `+ 1 = d evaluations fk∗(zk∗,i) for i ∈ {0, . . . , `} to the adversary.
With this additional evaluation point fk∗(z0), the reduction can compute fk∗ entirely. Roughly, this
observation can be used as follows: The reduction guesses k∗, interprets a DLOG instance X∗ = gx

∗

1
as gfk∗ (α)

1 , and embeds it into the commitment comKZG,k∗ . With the output of the adversary, it can
efficiently recover fk∗ and therefore the discrete logarithm x∗ = fk∗(α).
Proof Details. Now, we turn to the details of the proof. We bound the probability that A wins the
augmented extractability game using a sequence of games.
Game G0: This game is the augmented extractability game as presented above. To recall, A wins if the
commitment com that it outputs is fresh, i.e., not output by GetCom, L 6= g0

1 , and the KZG verification
equation holds for commitment comKZG at position z0 with opening τ0 to value y0. By definition, we have

Advaug-ext
A,VC,Ext,`(λ) = Pr [G0 ⇒ 1].

Game G1: This game is as G0, but it outputs 0 if there is a collision for random oracle H or if α is
output by H, or if α is in the image of ι. The probability of the first event is at most Q2

H/p, the probability
of the second is at most QH/p, and the probability of the third is at most `/p so we get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Q2
H +QH + `

p
.

Game G2: This game is as G2, but we change the freshness condition which is part of the winning
condition. Namely, we now require that comKZG is fresh, meaning that there is no k ∈ [QC ] such that
comKZG = comKZG,k. Clearly, the games only differ if the KZG verification equation holds for commitment
comKZG at position z0 with opening τ0 to value y0, and comKZG = comKZG,k (and thus z0 = zk,0) for some
k ∈ [QC ], but (y0, τ0) 6= (fk(z0), τk,0). To bound the probability of this event, we assume the event occurs
and consider three cases. In the first case, we have y0 = fk(z0) and ŷ0 = f̂k(z0). It is easy to see that
the verification equation now implies that v0 = vk,0, and so (y0, τ0) = (fk(z0), τk,0), a contradiction. In
the second case, we have (y0, ŷ0) 6= (fk(z0), f̂k(z0)), but y0 + βŷ0 = fk(z0) + βf̂k(z0). In this case, it is
easy to build a reduction that gets as input gβ1 and breaks DLOG by finding β. In the third case, we
have y0 + βŷ0 6= fk(z0) + βf̂k(z0). Set ȳ := y0 + βŷ0 and ȳ′ := fk(z0) + βf̂k(z0). In this case, intuitively,
we can break the standard position-binding of KZG. More precisely, we sketch a reduction that breaks
d-SDH. Namely, it gets as input group parameters and gαi1 for all i ∈ [d], and gα2 , and uses this to define
the commitment key for A. It simulates G1 for A. Assuming that the event we want to bound occurs
and we are in the third case, we know from the verification equation that

gȳ1 · v
α−z0
0 = comKZG = comKZG,k = gȳ

′

1 · v
α−zk,0
k,0 .

Using z0 = zk,0 and ȳ 6= ȳ′, this implies that

g
1

α−z0
1 =

(
v0 · v−1

k,0

) 1
ȳ′−ȳ

,
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which can be computed efficiently by the reduction. In combination, we get

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Adv1-DLOG
B,PGGen(λ) + Advd-DLOG

B,PGGen(λ).

Game G3: The game is as G2, but it outputs 0 if a bad event Complex occurs, which is defined as
follows.

• Event Complex: This event occurs, if ηL 6= ηR, where

ηL = f̂(α) +
QC∑
k=1

wkf̂k(α) +
QC∑
k=1

∑̀
i=0

tk,iψ̂k,i(α)− ŷ0,

ηR =
(
ψ̂(α) +

QC∑
k=1

rkf̂k(α) +
QC∑
k=1

∑̀
i=0

sk,iψ̂k,i(α)
)

(α− z0).

Roughly, this event occurs if when we expand the verification equation using the algebraic representation
of comKZG and v0, the combined exponent of h1 is non-zero. It is easy to see that if this event occurs and
G2 outputs 1, then one can efficiently compute the discrete logarithm β of h1 = gβ1 . We leave the details
of a reduction B to the reader, and get

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [Complex] ≤ Adv1-DLOG
B,PGGen(λ).

Now, given that G3 outputs 1, we know that

f(α) + f̄(α) + ψ̄(α)− y0 =
(
ψ(α) + f̃(α) + ψ̃(α)

)
(α− z0)

for the polynomials

f̄ :=
QC∑
k=1

wkfk, ψ̄ :=
QC∑
k=1

∑̀
i=0

tk,iψk,i, f̃ :=
QC∑
k=1

rkfk, ψ̃ :=
QC∑
k=1

∑̀
i=0

sk,iψk,i.

We call this our simplified core equation.
Game G4: This game is as G3, but we introduce another bad event WrongValue and let the game output
0 if this event occurs.

• Event WrongValue: This event occurs, if f̄(z0) + ψ̄(z0) 6= y0 − f(z0).

Next, we bound the probability that WrongValue occurs and G3 outputs 1. For that, we see that
WrongValue implies that the polynomial f + f̄ + ψ̄ − y0 does not evaluate to 0 at z0. Therefore, we have

f + f̄ + ψ̄ − y0 6=
(
ψ + f̃ + ψ̃

)
(X − z0)

over Zp[X], which implies that

ζ := f + f̄ + ψ̄ − y0 −
(
ψ + f̃ + ψ̃

)
(X − z0) 6= 0 ∈ Zp[X].

However, it follows from our simplified core equation that α is a root of ζ, which has degree at most
d+ 1 by definition. Therefore, a reduction that gets as input gαi1 for i ∈ {0, . . . , d} and gα2 can efficiently
compute α as a root of ζ (which is known to the reduction) if event WrongValue occurs and G3 would
output 1. We get

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ Pr [WrongValue] ≤ Advd-DLOG
B,PGGen(λ).

Before we continue, we introduce more notation and make an observation. Namely, we want to leverage
the fact that we know f̄(z0) + ψ̄(z0) = y0 − f(z0) by relating this term to the polynomials fk. For that,
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we recall the definition of f̄ and ψ̄ and get

y0 − f(z0) = (f̄ + ψ̄)(z0)

=
QC∑
k=1

(
wkfk(z0) +

∑̀
i=0

tk,iψk,i(z0)
)

=
QC∑
k=1

(
wkfk(z0) +

∑̀
i=0

tk,i
fk(z0)− fk(zk,i)

z0 − zk,i

)

=
QC∑
k=1

((
wk +

∑̀
i=0

tk,i
z0 − zk,i︸ ︷︷ ︸

=:ck(z0)

)
fk(z0)−

∑̀
i=0

tk,ifk(zk,i)
z0 − zk,i

)

=
QC∑
k=1

(
ck(z0)fk(z0)−

∑̀
i=0

tk,ifk(zk,i)
z0 − zk,i

)
.

We call this equation our helper equation. Roughly, our crucial observation is that if ck(z0) 6= 0, then we
can compute fk(z0) from all fk(zk,i) and y0, f(z0).
Game G5: This game is as G4, but we introduce another bad event CoeffZero and let the game output
0 if this event occurs.

• Event CoeffZero: This event occurs, if ck(z0) = 0 for all k ∈ [QC ].

We bound the probability that event CoeffZero occurs and G4 outputs 1 as follows: By multiplying with∏`
j=0(z0 − zk,j), we see that ck(z0) = 0 implies that pk(z0) = 0 for the polynomial

pk := wk
∏̀
i=0

(X − zk,i) +
∑̀
i=0

tk,i
∏̀

j=0,j 6=i
(X − zk,j).

Note that pk has degree at most `+ 1 and is fixed entirely when A queried H(comKZG) for the first time,
i.e., before z0 is sampled uniformly from Zp. Therefore, if we can argue that there is a k ∈ [QC ] such
that pk 6= 0, then event CoeffZero occurs with probability at most QHQC(`+ 1)/p. To argue that there is
such a k, assume towards contradiction that pk = 0 for all k ∈ [QC ]. It is easy to see that the coefficient
of X`+1 in pk is wk, and so wk = 0 for all k ∈ [QC ]. Now, if pk = 0 for all k ∈ [QC ], then especially
pk(zk,i) = 0 for all i ∈ {0, . . . , `} and all k ∈ [QC ]. So we get

0 = pk(zk,i) =
∑̀
i′=0

tk,i′
∏̀

j=0,j 6=i′
(zk,i − zk,j) = tk,i

∏
j=0,j 6=i

(zk,i − zk,j),

and thus tk,i = 0 for all k ∈ [QC ] and all i ∈ {0, . . . , `}. However, if all wk and all tk,i are zero, then
L = g0

1 , contradicting L 6= g0
1 . With this, we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [CoeffZero] ≤ QHQC(`+ 1)
p

.

Game G6: In this game, we sample a k∗←$ [QC ] in the beginning of the game. Then, we run the game
exactly as in G5. In the end, we let the game output 0 if ck∗(z0) = 0, and output whatever G5 would
have output otherwise. Clearly, the view of A is independent of k∗, and if G5 outputs 1, then there must
be at least one k such that ck(z0) 6= 0. Therefore, we have

Pr [G5 ⇒ 1] ≤ QC · Pr [G6 ⇒ 1].

Game G7: In this game, we change how the openings vk∗,i are computed. Recall that until now, these
are computed as vk∗,i = g

ψk∗,i(α)
1 h

ψ̂k∗,i(α)
1 , where ψk∗,i = (fk∗ − fk∗(zk∗,i))/(X − zk∗,i) ∈ Zp[X] and

ψ̂k∗,i := (f̂k∗ − f̂k∗(zk∗,i))/(X − zk∗,i). Now, we compute them directly via

vk∗,i :=
(

comKZG,k∗ · g
−fk∗ (zk∗,i)
1 h

−f̂k∗ (zk∗,i)
1

) 1
α−zk∗,i

,
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where we used that α 6= zk∗,i, see G1. It is easy to see that the distribution of the vk∗,i does not change,
and so we get

Pr [G6 ⇒ 1] = Pr [G7 ⇒ 1].

The reader should observe the consequence of this change: we no longer need fk∗(α) to simulate comKZG,k∗

and its openings. Instead, it is sufficient to know g
fk∗ (α)
1 . We will use this insight in the following to

bound the probability that G7 outputs 1 using a reduction B against DLOG. The reduction is as follows:

1. B gets as input group parameters and X∗ = gx
∗

1 . Its goal is to find x∗.

2. B samples k∗←$ [QC ] and computes a commitment key ck as in G7 honestly. Especially, B knows
α and β.

3. B runs A with input ck and access to a commitment oracle GetCom and an opening oracle GetOp:

• For k 6= k∗, B simulates GetCom and GetOp honestly as in G7. Especially, B knows all
fk ∈ Zp[X] for k 6= k∗, and all zk,i for all k and i.

• For the k∗th query to GetCom, B gets as input a message m ∈ Z`p. It does not sample δ0, δ1 to
define fk∗ as in G7. Instead, it implicitly sets fk∗(α) = x∗ by defining comKZG,k∗ := X∗h

f̂k∗ (α)
1 .

Then, it hashes zk∗,0 := H(comKZG,k∗) and sets fk∗(zk∗,0) to be a random element in Zp, and
fk∗(zk∗,i) := mi for all i ∈ [`]. Note that fk∗ is well-defined now, and B knows fk∗(zk∗,i) for
all i ∈ {0, . . . , `}. Any opening vk∗,i for comKZG,k∗ is computed as explained in G7.

4. When A terminates and outputs its commitment, B computes a guess for fk∗(z0) by solving the
helper equation for fk∗(z0). If this works and the set {z0} ∪ {zk∗,i}`i=0 has size ` + 2, then B
interpolates fk∗ from the corresponding evaluations fk∗(z0), fk∗(zk∗,i) and outputs fk∗(α).

First, it is clear that B simulates the commitment key ck and the commitment and opening oracles
perfectly as in G7, and that B’s running time is dominated by that of A. While B can not efficiently
check all bad events that we introduced throughout the games, we can still argue that if none of these
events occurs, i.e., if G7 outputs 1, then B’s output is x∗. To see this, note that if G7 outputs 1, then
especially ck∗(z0) 6= 0 and so B can solve the helper equation to get fk∗(z0). Further, by the change
introduced in G1, we know that all z0, zk∗,i are different, and so B knows `+ 2 evaluations of fk∗ , which
means it can correctly compute fk∗(α) = x∗. We get

Pr [G7 ⇒ 1] ≤ Adv1-DLOG
B,PGGen(λ).

4 Aggregatable Lotteries
In this section, we discuss how our lotteries are defined and how they can be constructed from our notion
of vector commitments.

4.1 Definition of Aggregatable Lotteries
We formally present our ideal functionality Flottery(p, T ) for non-interactive aggregatable lotteries in Fig-
ures 5 and 6. It is parameterized by an upper bound on the winning probability p and the number
of lotteries T . The probability p specifies how likely it is that a party wins in a lottery round. As
described previously, our lotteries should intuitively prevent an adversary from winning the lotteries a
disproportionate amount of times and the adversary should also not be able to tell which honest parties
win the lotteries when. We do, however, allow the adversary to reduce its winning probability, i.e., the
adversary can misbehave in a way that makes them win the lottery less often. We model this by allowing
the adversary to specify their own winning probabilities for each lottery, capped at p, upon registration.

Our ideal functionality also has an additional special party called the Croupier, which we did not
mention so far. This party is in charge of initiating lottery executions and registering lottery participants.
By modelling the lottery in this way, we allow the adversary to corrupt Croupier, meaning that security
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Functionality Flottery(p, T )

The functionality for T lotteries with winning probability p interacts with parties Playerj and a dedicated party
PlayerCroupier. It also interacts with the ideal world adversary Sim.

Interface Initialize:

01 Tickets := ∅, AggTickets := ∅
02 Win := ∅, Registered := ∅, LotCnt := 1

Interface Register: On (Register, j, pid) from party PlayerCroupier
// Check if pid already registered

01 if ∃(_, pid,_) ∈ Registered : return
02 Leak (Register, j, pid) to Sim
// Corrupted parties can win with smaller probability

03 if Playerj is corrupted:
04 Receive p from Playerj
05 for t ∈ [T ] : pt := min{pt, p}
06 else : p := (p, . . . , p) ∈ {p}T
// Add to registrations

07 Registered := Registered ∪ {(j, pid,p)}
08 Output (Register, j, pid) to Playerj

Interface NextLottery: On (NextLottery) from PlayerCroupier
// Obtain a label for this lottery

01 if LotCnt > T : return
02 Request fresh lottery label l from Sim
// Sample lottery outputs for all registered parties

03 for (j, pid,p) ∈ Registered :
04 w ← B(pLotCnt) // Bernoulli
05 if w = 1 : Win := Win ∪ {(l, j, pid)}
06 Output (NextLottery, pid, l, w) to Playerj
// Advance lottery counter

07 LotCnt := LotCnt + 1

Figure 5: Ideal functionality Flottery(p, T ) for an T -time aggregatable lottery with winning probability p.
The remaining interfaces are given in Figure 6.

is guaranteed even when the adversary can arbitrarily control the lottery, i.e., by registering players or
initiating new lotteries.

Parties can be registered by Croupier for participating in the lotteries via the Register interface. A
lottery execution is run by Croupier via the NextLottery interface. Upon calling this interface, the
functionality flips a biased coin for every currently registered party and stores whether they won the
currently executed lottery. Parties can call the Participate interface to see whether they won a specific
lottery. If they did, then they obtain a lottery ticket label, otherwise they receive nothing. Parties can call
the Aggregate interface with a set of winning ticket labels and party identifiers to obtain an aggregate
ticket label. Lastly, the Verify interface takes an aggregate ticket label and the corresponding winning
parties’ identifiers as input and checks whether the ticket is valid.

4.2 Our Construction
Let us now proceed with our construction of aggregatable lotteries from vector commitments. For that, let
VC = (VC.Setup,VC.Com,VC.VerCom,VC.Open,VC.Aggregate,VC.Ver) be a vector commitment scheme
according to Definition 3. Let T, k ∈ N be arbitrary parameters. We construct a T -time aggregatable
lottery with winning probability p = 1/k using a random oracle H : {0, 1}∗ → [k]. The main idea is that
each player commits to a vector v ∈ [k]T upfront, and wins the ith lottery if and only if its personal
challenge x is equal to vi. Crucially, the challenge x has to be independent for different players and
over different lotteries, and should be unpredictable before the lottery seed lseed is known. Thus, we
define x := H(pk, pid, i, lseed), where pid is the identifier of the player and pk is its public key, i.e., its
commitment to v.
Algorithms. To define our lottery protocol, we first define algorithms Setup,Gen,VerKey,Participate,
Aggregate,Ver that will be used in our protocol:
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Functionality Flottery(p, T ) (continued)

Interface Participate: On (Participate, l, pid) from party Playerj
// Obtain ticket label

01 Leak (Participate, l, pid) to Sim
02 Receive fresh ticket from Sim
// If player won add ticket to table

03 if (l, pid, j) ∈Win :
04 Tickets := Tickets ∪ {(l, pid, ticket)}
05 return ticket to Playerj
06 return ⊥ to Playerj
Interface Aggregate:
On (Aggregate, l, I = (pidi)i∈[L], T = (ticketi)i∈[L]}) from Playeri
// Check that the tickets are winning

01 for (pid, ticket) ∈ T :
02 if (l, pid, ticket) /∈ Tickets :
03 return ⊥ to Playeri
// Obtain aggregated ticket

04 Leak (Aggregate, l, I, T ) to Sim
05 Receive agg from Sim
// Store aggregated ticket label

06 AggTickets := AggTickets ∪ {(l, {pid : pid ∈ I}, agg)}
07 return agg to Playeri
Interface Verify: (Verify, l, agg, I) from Playerj
// Tickets generated by the functionality are always valid

01 Leak (Verify, l, agg, I) to Sim
02 if (l, I, agg) ∈ AggTickets : return > to Playerj
03 return ⊥ to Playerj

Figure 6: Remaining interfaces of ideal functionality Flottery(p, T ) for T aggregatable lotteries with
winning probability p. The other interfaces are given in Figure 5.
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• Setup(1λ)→ par:

1. Run ck ← VC.Setup(1λ, 1T ). Recall that ck defines message alphabet M, opening space T ,
and commitment space C. We assume that [k] ⊆M.

2. Set and return par := ck.

• Gen(par)→ (pk, sk):

1. Sample v←$ [k]T and run (com, St)← VC.Com(ck,v).
2. Set and return pk := com and sk := (v, St).

• VerKey(pk)→ b

1. Return b := VC.VerCom(ck, pk).

• Participate(t, lseed, pid, sk)→ ticket/⊥:

1. Set x := H(pk, pid, t, lseed). If vi 6= x, return ⊥.
2. Otherwise, set τ ← VC.Open(ck, St, i) and return ticket := τ .

• Aggregate(t, lseed, (pidj , pkj)Lj=1, (ticketj)Lj=1)→ agg:

1. For each j ∈ [L], write pkj = comj and ticketj = τj .
2. For each j ∈ [L], set xj := H(pkj , pidj , i, lseed).
3. Return agg := τ := VC.Aggregate(ck, t, (comj)Lj=1, (xj)Lj=1, (τj)Lj=1).

• Ver(t, lseed, (pidj , pkj)Lj=1, agg)→ b:

1. For each j ∈ [L], write pkj = comj and set xj := H(pkj , pidj , t, lseed).
2. Define agg := τ and return b := VC.Ver(ck, t, (comj)Lj=1, (xj)Lj=1, τ).

Protocol. We informally explain how to turn these algorithms into a protocol Πlottery for aggregatable
lotteries using a randomness beacon Frandom (see Figure 8) and a broadcast channel Fbroadcast (see
Figure 7). Parties register for the lottery by running (pk, sk) ← Gen(par) and broadcasting their
public key pk to other parties who verify it using VerKey. To commenced the next lottery the random
beacon samples lseed←$ {0, 1}λ and distributes it to all the parties, each party then locally computes
ticket← Participate(t, lseed, pid, sk) where t is the index of the current lottery, to observe whether they
obtained a winning ticket for the current lottery. These tickets can be verified and aggregated by any
party. Given a set of tickets (ticketj)Lj=1 a party can locally use Aggregate to compute an aggregated
ticket agg, similarly it can locally use Ver to verify an aggregated ticket agg. The full formal formal
description can be found in Figures 9 to 12.

Theorem 1. Let k ∈ N and T ∈ N be arbitrary and p = 1/k. Further, let VC be a simulation-extractable
vector commitment scheme (see Definition 4). Then, the protocol Πlottery(p, T ) realizes the functionality
Flottery(p, T ) in the (Frandom,Fbroadcast)-hybrid model against PPT adversaries for any polynomially
bounded T and k.

We give the proof of Theorem 1 in Appendix A.

5 Discussion and Efficiency
In the final section of our paper, we present some practical thoughts about our construction and evaluate
its concrete efficiency.
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Functionality Fbroadcast

The functionality for a totally ordered broadcast channel with n parties. It interacts with parties Playerj and the ideal
world adversary Sim. Interface Initialize:

01 MsgReq := ∅

Interface Broadcast: On (Broadcast, µ) from Playerj
01 Leak (Broadcast, µ, j) to Sim
02 Request a fresh label l from Sim
03 MsgReq := MsgReq ∪ {(l, j, µ)}

Interface Deliver: On (Deliver, l) from Sim
// Deliver the next message to every player

01 if ∃j′, µ s.t. (l, j′, µ) ∈ MsgReq
02 MsgReq := MsgReq \ {(l, j′, µ)}
03 for each Playerj : Output (Deliver, j′, µ) to Playerj
04 else return ⊥

Figure 7: Ideal functionality Fbroadcast for a broadcast channel.

Functionality Frandom

The functionality enabling the sampling of public randomness. The functionality interacts with parties Playerj and a
special party PlayerCroupier which initiates the sampling of randomness.

Interface Random: On (Random) from PlayerCroupier

01 rnd←$ {0, 1}λ
02 Leak (Random, rnd) to Sim
03 for each Playerj : Output (Random, rnd) to Playerj

Figure 8: Ideal functionality Frandom for randomness beacon.

Protocol Πlottery(p, T )

The protocol for T lotteries with winning probability p which is run parties Playerj and a dedicated party PlayerCroupier.
It uses the algorithms Setup,Gen,VerKey,Participate,Aggregate,Ver defined in Section 4.2.

Interface Initialize:
// Generate global params for the lottery scheme

01 par← Setup(1λ)

// Each player initializes their local state
02 Each player Playerj locally sets:
03 Playerj .LotCnt := 1 // Local lottery counter
04 Playerj .Registered := ∅ // Local allocation of key registrations
05 Playerj .PidAlloced := ∅ // Local allocation of players to ids
06 Playerj .Tickets := ∅ // Locally computed tickets
07 Playerj .Keys := ∅ // Local secret keys

Figure 9: Initialization of protocol Πlottery(p, T ) to implement Flottery(p, T ). The remaining parts of the
protocol are given in Figures 10 to 12.
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Protocol Πlottery(p, T )

Register: On (Register, j, pid) from party PlayerCroupier
// PlayerCroupier broadcasts the allocation pid 7→ j

01 Input (ReqKey, j, pid) on Fbroadcast.PlayerCroupier

Register: On (Deliver,Croupier, µ = (ReqKey, j′, pid)) on Fbroadcast.Playerj
// Ignore if id already allocated

01 if ∃(_, pid) ∈ Playerj .PidAlloced : return ⊥
02 Playerj .PidAlloced := Playerj .PidAlloced ∪ (j′, pid)

// If addressed to this player, sample fresh key and broadcast
03 if j′ = j :
04 (pk, sk)← Gen(par)
05 Playerj .Keys := Playerj .Keys ∪ {(pk, sk)} // Store the secret key locally
06 Input (SetKey, pid, pk) on Fbroadcast.Playerj // Broadcast public key

Register: On (Deliver, j′ 6= Croupier, µ = (SetKey, pid, pk)) on Fbroadcast.Playerj
// Check that the player is authorized

01 if (j′, pid) /∈ Playerj .PidAlloced : return ⊥
02 if ∃(pid,_,_) ∈ Playerj .Registered : return ⊥

// Check validity/uniqueness of the commitment
03 if ∃(_,_, pk) ∈ Playerj .Registered : pk := ⊥
04 if VerKey(par, pk) = 0 : pk := ⊥

// Locally mark the player as registered
05 Playerj .Registered := Playerj .Registered ∪ {(pid,Playerj .LotCnt, pk)}

Figure 10: Procedures of Πlottery(p, T ) implementing the Register interface of Flottery(p, T ). The
dedicated player PlayerCroupier broadcasts an “id allocation” (j, pid) on Fbroadcast.PlayerCroupier, the addressed
party Playerj samples a fresh key and broadcasts (pid, pk) on Fbroadcast.Playerpid. Upon receiving the
public key, all honest parties store it (in Registered) along with the pid and the index of the first lottery
for which it is marked registered. The remaining parts of the protocol are given in Figures 9, 11 and 12.

Protocol Πlottery(p, T )

NextLottery: On (NextLottery) on PlayerCroupier
// Run the random beacon

01 Party PlayerCroupier inputs (Random) on Frandom.PlayerCroupier

NextLottery: On (Random, lseed) on Frandom.Playerj
// Check if any lotteries left

01 if Playerj .LotCnt > T : return ⊥
// Check for which pid’s the party won

02 Define l = (Playerj .LotCnt, lseed)
03 for (pid, t, pk) ∈ Playerj .Registered ∧ (pk, sk) ∈ Playerj .Keys :
04 ticket← Participate(Playerj .LotCnt, lseed, pid, sk)
05 if ticket 6= ⊥ :
06 Playerj .Tickets = Playerj .Tickets ∪ {(l, pid, ticket)}
07 Output (NextLottery, pid, l, 1) to Playerj
08 else
09 Output (NextLottery, pid, l, 0) to Playerj
10 Playerj .LotCnt := Playerj .LotCnt + 1

Figure 11: Procedures of Πlottery(p, T ) implementing the NextLottery interface of Flottery(p, T ). The
remaining parts of the protocol are given in Figures 9, 10 and 12.

30



Protocol Πlottery(p, T )

Participate: On (Participate, l, pid) from Playerj
// Locally lookup the ticket

01 if ∃(l, pid, ticket) ∈ Playerj .Tickets : return ticket
02 else return ⊥
Aggregate: On (Aggregate, l = (t, lseed), T, I) from Playeri
// Lookup public keys, check registered before t

01 P := ∅
02 for pid ∈ I :
03 if ∃(pid, t′, pk) ∈ Playerj .Registered ∧ t′ ≤ t : P := P ∪ {(pid, pk)}
04 else return ⊥ // No such pid in lottery t
// Run the aggregation algorithm

05 return Aggregate(t, lseed, P, T )

Verify: (Verify, l = (t, lseed), agg, I) from Playeri
// Lookup public keys, check registered before t

01 P := ∅
02 for pid ∈ I :
03 if ∃(pid, t′, pk) ∈ Playerj .Registered ∧ t′ ≤ t : P := P ∪ {(pid, pk)}
04 else return 0 // No such pid in lottery t
// Run the verification algorithm

05 return Ver(t, lseed, P, agg)

Figure 12: Protocol implementing the local operations (interfaces Participate, Aggregate, Verify)
of Flottery(p, T ). The remaining parts of the protocol are given in Figures 9 to 11.

5.1 Practical Considerations
In practice, one can make some natural adjustments to our lottery, which we discuss here.
Weighted Lotteries. One may assign a weight pj to participant j (e.g., based on its stake) such that
j wins independently with probability pj . We can adjust our lottery to support this: we simply let a
participant with weight pj = 1/kj commit to vectors over the range [ki] instead of [k], and let the hash
function defining j’s challenge xj = H(pkj , pidj , i, lseed) map to the range [ki].
Late Registration. Consider the case of ` lotteries and assume that a user registers late, say after the
ith and before the (i+ 1)st lottery. In the extreme case, we have i = `− 1. As written, the user would
have to sample a random vector of length ` and commit to it, while only the coordinates from i+ 1 to `
would be relevant. After the `th lottery, the entire system restarts and the user would have to generate
a new key and register again. This is wasteful. Fortunately, there are ways to deal with this: (1) the
user could implicitly set the first i coordinates to 0, which makes committing much more efficient (in
evaluation form, see below). A similar solution applies when the user only wants to take part in any small
subset of lotteries; (2) the user could keep its key for the next lifecycle of the lottery system until after
the ith lottery, where for the i′th lottery (i′ ≤ i) in the next lifecycle, it would use the i′th coordinate.
High Entropy. Our proof only relies on the fact that the lottery seed output by the randomness beacon
has high entropy. It is actually not necessary that it is uniformly random.
Evaluation Form. When KZG [KZG10] is used as a vector commitment (as in our case), we should
avoid explicitly computing the interpolating polynomial. Instead, we can compute the KZG commitments
and openings more efficiently in the Lagrange basis. For that, we need to assume that the KZG setup
contains elements gλi(α)

1 , where λi is the ith Lagrange polynomial with respect to our evaluation domain.
Note that this can be publicly pre-computed from a standard KZG setup. Optimal for efficiency is the
case where we choose our evaluation domain to be the group of roots of unity and the polynomials we
work with have degree d such that d+ 1 is a power of two, meaning that `+ 2 has to be a power of two.
In this case, we can benefit from several tricks to compute commitments and openings efficiently [Fei21].
We emphasize that this changes the way we compute commitments and openings, but not their final
value, meaning that this has no negative impact on security.
Pre-computing Openings. Note that for participants of a lottery, the most time-critical part is not key
generation, but rather the time it takes to participate and compute winning tickets (algorithm Participate).
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Tickets L VRF-BLS [B] Jackpot [B] Ratio VRF-BLS/Jackpot
1 48 80 0.6

16 768 80 9.6
256 12288 80 153.6

1024 49152 80 614.4
2048 98304 80 1228.8

Table 1: Comparison of the memory consumption for storing or communicating L winning tickets for
Jackpot with VRF-BLS. Memory is given in Bytes, and the column “Ratio” describes the ratio between
the two schemes. We do not count player identifiers and their public keys, as they have to be stored on
registration independent of winning tickets.

In our scheme, a winning ticket is just a KZG opening proof within our evaluation domain. While
computing a single proof takes linear time in ` (the number of lotteries), we can instead pre-compute
all KZG opening proofs right after key generation and before lotteries take place. This can be done
efficiently [FK23].

5.2 Efficiency Evaluation
With these considerations in mind, we evaluate the efficiency of our aggregatable lottery scheme Jackpot.
We focus on communication/storage and computation costs.
Lottery Schemes. We have implemented the following lottery schemes in Rust using the arkworks4 frame-
work. VRF-BLS: The VRF-based lottery [GHM+17, DGKR18] instantiated with BLS signatures [BLS01]
over curve BLS12-381 and SHA-256; more precisely, a party with secret key sk wins in lottery i with
seed lseed if H(σ) < t for appropriate t = t(k), where σ is a BLS signature of i and lseed and H is a hash
function; σ is the winning ticket; To verify L tickets, we use BLS batch verification and L individual hash
operations; Note that batch verification is only possible if all parties sign the same message, which is
why can not include the party’s identifier in the signed message. This also means that two parties with
the same public key do not win independently, which has to be taken care of by other means. Jackpot:
Our lottery scheme, using curve BLS12-381 to implement KZG; we follow the practical considerations
discussed above; we have also implemented the technique from [FK23] to optionally pre-compute all
openings. For all of our benchmarks, we assume k = 512 and lseed ∈ {0, 1}256. Our code is available at

https://github.com/b-wagn/jackpot.

Bandwidth and Memory Consumption. Public keys for Jackpot have size 2 · 48 + 2 · 32 = 160 Bytes,
whereas they have size 48 Bytes for VRF-BLS. Now, assume that L winning tickets have to be stored or
communicated. For VRF-BLS, this requires a storage of (ignoring public keys and identifiers of winning
parties) 48 · L Bytes, whereas for Jackpot each ticket has size 48 + 32 = 80 Bytes, but the L tickets can
be aggregated into one. This means that for L tickets, the relative improvement of Jackpot in comparison
to VRF-BLS is 48 · L/80 = 0.6 · L, which is a significant improvement even for small L. Table 1 shows
some example numbers.
System Setup. For the following benchmarks, we have used a Macbook Pro (2020) with an Apple M1
processor, 16 GB of RAM, and MacOS Ventura 13.4. We benchmark our Rust implementation using the
Criterion benchmark crate5.
Aggregation and Verification. As our first benchmark in terms of running time, we evaluate the
running times of aggregation (for Jackpot) and verification (for Jackpot and VRF-BLS) for different
numbers L of tickets in Table 2. The running time is independent of the total number of lotteries. For
VRF-BLS, we use BLS batch verification to verify multiple tickets with only one pairing equation. In
this way, both schemes require L many hash evaluations and one pairing equation. Remarkably, our
results demonstrate a increase in efficiency by a factor of 2 for Jackpot in comparison to VRF-BLS. This
advantage arises from the fact that BLS batch verification necessitates operations over G2, whereas
Jackpot’s verification exclusively relies on operations over G1.

4http://arkworks.rs
5https://github.com/bheisler/criterion.rs
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L = 1 L = 16 L = 256 L = 1024 L = 2048
Jackpot Aggregate [ms] 0.038 0.390 2.377 6.899 14.242
Jackpot Ver [ms] 1.413 1.959 3.948 8.875 15.422
VRF-BLS Ver [ms] 1.663 2.990 7.959 19.010 33.838

Table 2: Benchmarked running times for aggregation and verification of L tickets for Jackpot and VRF-BLS.
All times are given in milliseconds.

Number of Lotteries ` ≈ 210 ` ≈ 215 ` ≈ 220

Lifetime 3.5 days 4 months 10 years
Time Gen 14.83 ms 317.82 ms 8.27 s
Time Precompute 2.20 s 65.45 s 45 min
Memory Precompute 147 KB 5 MB 151 MB
Time Participate 1.26 µs 1.27 µs 1.31 µs
Time ComputeTicket 9.45 ms 215.80 ms 6.36 s

Table 3: Benchmark results of running times for our lottery scheme Jackpot for key generation (Gen),
pre-computing all openings (Precompute), and participating (Participate and ComputeTicket) in a lottery
for different numbers of lotteries ` = 2z − 2, z ∈ {10, 15, 20}. Lifetimes are estimated by assuming one
lottery every 5 minutes.

Key Generation and Pre-computation. In Table 3, we evaluate the parts of our scheme Jackpot
for which the running time and memory depend on the total number of lotteries `. For VRF-BLS, the
running time is independent of ` and there is no preprocessing, and thus VRF-BLS is not listed in this
table. We focus on three parameter settings ` ≈ 2z for z ∈ {10, 15, 20}. The table also shows the lifetime
of keys for such settings, assuming one lottery every 5 minutes. In this case, 220 lotteries are sufficient
for 10 years. For these three parameter sets, we evaluate the running time of key generation (algorithm
Gen) and the pre-computation of all KZG openings (algorithm Precompute). The table also shows the
memory consumption for storing the result of the pre-computation. Even for 220 lotteries, running times
and memory consumption remain within practical bounds. Especially, the pre-computation’s duration
of approximately 45 minutes is acceptable, given that it can be run in the background at the user’s
convenience, and it is a one-time task for the entire lifespan of a key.
Participation. To participate in a lottery round, a party determines whether it won, and it computes a
winning ticket in case it did. While we combined these two tasks in our modeling (algorithm Participate),
we separate them for our benchmarks (algorithms Participate and ComputeTicket, respectively). We show
the results in Table 3. For all parameter sets, the running time of Participate (i.e., checking if the party
won) is negligibly small, namely, within microseconds. The running time to compute a ticket scales
linearly with `, but even for 220 lotteries it is within a practical range: waiting 7 seconds for a ticket is
fine, as one can compute a ticket in our scheme even before the lottery round started. Also, assuming we
did a pre-computation as discussed above, this cost is completely avoided.
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Appendix

A UC Proof of Our Lottery
Proof of Theorem 1. To prove the theorem, we have to describe a simulator (aka ideal world adversary)
Sim(Πlottery) such that the ideal world with functionality Flottery(p, T ) and Sim(Πlottery) is indistin-
guishable from the real world with the protocol Πlottery(p, T ) for any environment E. The simulator
Sim(Πlottery) internally emulates functionalities Frandom and Fbroadcast: maintaining the same state as
the functionalities and interacts with the environment E via the leakage/influence ports like for the real
functionalities. When a party is corrupted in Flottery, the corresponding party is corrupted in the emulated
functionalities Frandom/Fbroadcast and its emulated ports are observed/controlled by the enviroment via
the corresponding leakage/influence ports exposed by the simulator. The simulator may inspect/alter the
state of these emulated functionalities and for honest players emulates control of the player ports. To
recap and provide context, recall that:

• For honest Playerj :

– Flottery.Playerj is controlled by E
– Emulated port Frandom.Playerj is controlled by Sim(Πlottery) internally.
– Emulated port Fbroadcast.Playerj is controlled by Sim(Πlottery) internally.

• For corrupt Playerj :

– Flottery.Playerj is controlled by Sim(Πlottery).
– Emulated port Frandom.Playerj is controlled by E via Frandom.Infl.
– Emulated port Fbroadcast.Playerj is controlled by E via Fbroadcast.Infl.

Now, we describe the behavior of the simulator Sim(Πlottery) for different events:

On Initialize :
01 LotCnt := 1 // Lottery counter
02 PidAlloced := ∅ // Set of registered pid’s
03 Registered := ∅ // Set of registered commitments (any type)
04 (ck, td)← TSetup(1λ, 1T ) // Trapdoor setup for commitment scheme

// Simulate the registration. When an honest PlayerCroupier invokes (Register, j, pid) emulate sending
(ReqKey, j, pid). Regardless of whether PlayerCroupier is corrupted, when an honest party receives
(Deliver,Croupier, µ = (ReqKey, j′, pid)) in the simulation, add (j′, pid) to the allocated ids, if
addressed to an honest player sample a trapdoor commitment, if instead a corrupted party registers
the key then extract from the commitment.

On (Register, j, pid) from Flottery.Leak:
// PlayerCroupier is honest
01 Input (ReqKey, j, pid) on emulated Fbroadcast.PlayerCroupier

On (Deliver,Croupier, µ = (ReqKey, j′, pid)) on emulated Fbroadcast.Playerj
// Allocate the id to the player
01 if ∃(_, pid) ∈ PidAlloced : return ⊥
02 PidAlloced := PidAlloced ∪ {(j′, pid)}

// Generate trapdoor commitment for honest party
03 if j′ = j:
04 (com, St)← VC.TCom(td)
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05 St[com] := St
06 Input (SetKey, pid, com) on emulated Fbroadcast.Playerj

On (Deliver, j′ 6= Croupier, µ = (SetKey, pid, com)) on emulated Fbroadcast.Playerj
// Ignore unauthorized registration or double registration
01 if ∃(j′, pid) /∈ PidAlloced : return
02 if ∃(pid,_,_) ∈ Registered : return

// Extract from corrupt keys received by honest players
03 if Playerj′ is corrupt:

// If com is invalid or has already been registered, replace with⊥
04 if VC.VerCom(ck, com) = 0 ∨ ∃(_,_, com) ∈ Registered :
05 Registered := Registered ∪ {(pid, LotCnt,⊥)}
06 Define p := 0
07 Input p on Flottery.Playerj′
08 return

// Otherwise extract
09 (m, ϕ)← VC.Ext(td, com)
10 if m = ⊥ : abort
11 MsgsExt[com] = m

// Translate corrupt party behavior to winning probabilities
12 for i ∈ [T ] : mi ∈ [k] : pi := p else pi := 0
13 Input p on Flottery.Playerj′ (finish registration).

// Register pid from next lottery onwards
14 Registered := Registered ∪ {(pid, LotCnt, com)}

// Corrupt PlayerCroupier invoking Random on the emulated random beacon is equivalent to the PlayerCroupier
inputting NextLottery into Flottery:

On (Random) emulated Frandom.PlayerCroupier and PlayerCroupier corrupt:
01 Input (NextLottery) into Flottery.PlayerCroupier

// When the next lottery is started, we sample the random beacon, invoke the Flottery to learn the
outcomes for the corrupt parties, then program the random oracle to ensure that their tickets win iff.
they do in the ideal world

On (NextLottery) from Flottery.Leak:
// Sample the outcome of the random beacon
01 Sample lseed←$ {0, 1}λ.
02 Define label l := (LotCnt, lseed)
03 LotCnt := LotCnt + 1

// Let Flottery sample outcomes
// At this point the simulator learns the outcomes for corrupted parties.
04 Pass l to Flottery

// Emulate Frandom: the players learn the output of the random beacon
05 Emulate Frandom with lseed as output.

On (NextLottery, pid, l = (t, lseed), w) on corrupted Flottery.Playerj:
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// Make corrupted party win/lose as in the ideal world
01 if ∃(pid,_, com) ∈ Registered ∧ com 6= ⊥:
02 if H(com, pid, t, lseed) has already been queried: abort
03 if w = 1 :
04 Program H(com, pid, t, lseed) := MsgsExt[com]t.
05 if w = 0 :
06 R←$ [k] \ {MsgsExt[com]t}
07 Program H(com, pid, t, lseed) := R.

// When an honest party invokes Participate we always generate an opening for the trapdoor commit-
ment. Recall that Flottery only passes this to Playerj if the player won.

On (Participate, l = (t, lseed), pid) from Flottery.Leak:
// Generate opening for honest party invoking Participate
01 if ∃(pid,_, com) ∈ Registered ∧ com ∈ St:
02 mt := H(com, pid, t, lseed)
03 τ ← TOpen(td,St[com], t,mt)
04 return τ
05 return ⊥

// The simulation of the remaining interfaces simply run the protocol Πlottery

On (Aggregate, l = (t, lseed), I, T ) from Flottery.Leak:
// Retrieve the public keys
01 for pidi ∈ I :
02 if ∃(pidi, t′, com) ∈ Registered ∧ t′ ≤ t : comi = com
03 else return 0

// Run the aggregation algorithm for honest party
04 agg := Aggregate(t, lseed, (pidi, comi)Li=1, T )
05 return agg

On (Verify, l = (t, lseed), agg, I) from Flottery.Leak:
// Retrieve the public keys for the pid’s
01 for pidi ∈ I :
02 if ∃(pidi, t′, com) ∈ Registered ∧ t′ ≤ t : comi = com
03 else return 0

// Run the verification algorithm
04 b := Ver(t, lseed, (pidi, comi)Li=1, agg)
05 return b

To see that the distribution of the real protocol Πlottery and the simulation Flottery � Sim(Πlottery) are
indistinguishable, consider the following sequence of hybrids starting from the ideal world Flottery �
Sim(Πlottery):

H0. The Ideal World: Flottery � Sim(Πlottery) Simulation

Let EFailProgram be the event that the simulator attempts to program H at a point where it
has already been queried by the enviroment. Note that the simulation of NextLottery aborts iff
EFailProgram occurs. Claim:

Pr [EFailProgram] ≤ T · poly(λ)/2λ,
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where poly(λ) is the running time of the enviroment. To see this observe that in the simulation
lseed is chosen uniformly at random from {0, 1}λ and unknown to the enviroment before the point
of programming. Therefore, for EFailProgram to occur the enviroment must have queried H on some
input q = (com, pid, t, lseed) prior to lseed←$ {0, 1}λ being sampled. In each lottery the probability
that lseed matches with any previous query q = (com, pid, t, lseed) made by the enviroment is at
most poly(λ)/2λ; since the enviroment makes at most poly(λ) queries. A union bound over all T
lotteries yields the claim.

H1. Don’t Sample Lottery Outputs for Corrupted Players.

Hybrid H1 is the same as hybrid H0, except during NextLottery rather than having Flottery
sample the bits w from a Bernoulli distribution and programming the random oracle, the simulator
computes the winning bit for corrupted players by checking the output of the random beacon against
the extracted value m. The behavior for honest players is unchanged, the important changes are
highlighted:

On (Register, j, pid) from party Croupier

// Check if pid already registered
01 if ∃(_, pid,_) ∈ Flottery.Registered : abort
02 Leak (Register, j, pid) to Sim
// Ignore the probability vector from corrupted parties
03 if Playerj is corrupted:
04 Ignore p from Playerj
// Add to registrations (but don’t store p inside Flottery)
05 Flottery.Registered := Flottery.Registered ∪ {(j, pid,⊥)}
06 Output (Register, j, pid) to Playerj

On (NextLottery) from Croupier

// Obtain a label for this lottery
01 if LotCnt > T : abort
02 Obtain l = (LotCnt, lseed) from Sim
// Sample lottery outputs for all registered parties
03 for (j, pid,p) ∈ Flottery.Registered :
04 if Playerj is corrupt :
05 if H(com, pid, LotCnt, lseed) = MsgsExt[com]LotCnt :
06 w := 1
07 else
08 w := 0
09 if Playerj is honest :
10 w ← B(p)
11 if w = 1 :
12 Win := Win ∪ {(l, j, pid)}
13 Output (NextLottery, pid, l, w) to Playerj
// Advance lottery counter
14 LotCnt := LotCnt + 1

On (NextLottery, pid, l = (t, lseed), w) on Flottery.Playerj from Flottery:
// Do nothing (do not program the random oracle H anymore)

Indistinguishability. Conditioned on ¬EFailProgram, the distribution of w is equal in hybrid H0
and hybrid H1:
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• From the definition of Flottery in H0 it is clear that Pr [w = 1] = pt.
• In H1: Since none of the inputs (com, pid, t, lseed) has been queried by E the outputs m′t =

H(com, pid, t, lseed) for distinct pid’s are sampled uniformly and independently in the view of
the enviroment E. Therefore any value in m′t ∈ [k] is equiprobable with probability 1/k. Thus,
if mt ∈ [k], Pr [w = 1] = 1/k, otherwise Pr [w = 1] = 0 – which is how pt is defined during
Register in H0.

Therefore, the statistical distance between the distribution of w in H0 and H1 is at most
Pr [EFailProgram] = T · poly(λ)/2λ, where poly(λ) is the running time of the enviroment.

H2. Don’t Sample Lottery Outputs for Honest Players.

Hybrid H2 is the same as hybrid H1, except rather than Flottery sampling w ← B(p) for honest
players, the simulator picks m←$ [k]T independent of the commitment upon registration, checks
whether the honest player wins checking H(com, pid, t, lseed) ?= mt and then defines the bit w
correspondingly, i.e., the following changes are made:

The registration simulation is changed to sample m for honest players:

On (Deliver,Croupier, µ = (ReqKey, j′, pid)) on Fbroadcast.Playerj

// Allocate the id to the player
01 PidAlloced := PidAlloced ∪ {(j′, pid)}
// Generate trapdoor commitment for honest party
02 if j′ = j:
03 m←$ [k]T
04 (com, St)← VC.TCom(ck)
05 Msgs[com] := m
06 Input (SetKey, pid, com) on Fbroadcast.Playerj

The Flottery is changed to check H(com, pid, t, lseed) against m:

On (NextLottery) from Croupier

// Obtain a label for this lottery
01 if LotCnt > T : return
02 Obtain l = (LotCnt, lseed) from Sim
// Sample lottery outputs for all registered parties
03 for (j, pid,p) ∈ Flottery.Registered :
04 if Playerj is corrupt :
05 if H(com, pid, LotCnt, lseed) = MsgsExt[com]LotCnt :
06 w := 1
07 else
08 w := 0
09 if Playerj is honest :
10 if H(com, pid, t, lseed) = Msgs[com]LotCnt :
11 w := 1
12 else
13 w := 0
14 if w = 1 : Win := Win ∪ {(l, j, pid)}
15 Output (NextLottery, pid, l, w) to Playerj
// Advance lottery counter
16 LotCnt := LotCnt + 1
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Indistinguishability. Honest parties clearly win independently with probability p = 1/k in each
lottery in both hybrids.

H3. Rewrite H2 Using the Definition of SIM-EXTVC,Sim,Ext,1.

The hybrid H3 is exactly the same as hybrid H2, except rewritten using the oracles in the simulation-
extractability game (Definition 4) when the challenge bit b = 1. For clarity, the rewritten simulator
is provided below:

On Initialize :
01 LotCnt := 1
02 PidAlloced := ∅
03 Registered := ∅

On (Register, j, pid) from Flottery.Leak:
// PlayerCroupier is honest
01 Input (ReqKey, j, pid) on emulated Fbroadcast.PlayerCroupier

On (Deliver,Croupier, µ = (ReqKey, j′, pid)) on emulated Fbroadcast.Playerj
// Allocate the id to the player
01 if ∃(_, pid) ∈ PidAlloced : return ⊥
02 PidAlloced := PidAlloced ∪ {(j′, pid)}

// Generate commitment using GetCom1 oracle for honest parties
03 if j′ = j:
04 m←$ [k]T
05 com := GetCom1(m).
06 Input (SetKey, pid, com) on emulated Fbroadcast.Playerj

On (Deliver, j′ 6= Croupier, µ = (SetKey, pid, com)) on emulated Fbroadcast.Playerj
// Ignore unauthorized registration or double registration
01 if ∃(j′, pid) /∈ PidAlloced : return
02 if ∃(pid,_,_) ∈ Registered : return

// Submit commitments from corrupt players
03 if Playerj′ is corrupt :
04 if SubCom1(com) = 0 : com := ⊥

// Register pid from next lottery onwards
05 Registered := Registered ∪ {(pid, LotCnt, com)}

On (Random) on Frandom.PlayerCroupier and PlayerCroupier corrupt:
01 Input (NextLottery) into Flottery.PlayerCroupier

On (NextLottery) from Flottery.Leak:
// Emulate the random beacon
01 Emulate Frandom obtain lseed as output.
02 LotCnt := LotCnt + 1

// Compute the lottery outputs for all registered parties
03 Pass (LotCnt, lseed) to Flottery
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On (Participate, l = (t, lseed), pid) from Flottery.Leak:
// Generate opening for honest party using GetOp1
01 if ∃(pid, t′, com) ∈ Registered ∧ t′ ≤ t :
02 return GetOp1(com, t)
03 return ⊥

On (Aggregate, l = (t, lseed), I, T ) from Flottery.Leak:
// Retrieve the public keys
01 for pidi ∈ I :
02 if ∃(pidi, t′, com) ∈ Registered ∧ t′ ≤ t : comi = com
03 else return 0

// Run the aggregation algorithm for honest party
04 agg := Aggregate(t, lseed, (pidi, comi)Li=1, T )
05 return agg

On (Verify, l = (t, lseed), agg, I) from Flottery.Leak:
// Retrieve the public keys for the pid’s
01 for pidi ∈ I :
02 if ∃(pidi, t′, com) ∈ Registered ∧ t′ ≤ t : comi = com
03 else return 0

// Use the SubOp1 oracle to run verification
04 for i ∈ [L] : mi := H(comi, pidi, t, lseed).
05 b := SubOp1(t, (comi)Li=1, (mi)Li=1, agg).
06 return b

Indistinguishability. Since the simulation is simply rewritten, indistinguishability is trivial: the
two hybrids are identical except one is written with the algorithms in SIM-EXTVC,Sim,Ext,1.

H4. Move to b = 0 using Simulation-Extractability of VC.

Hybrid H4 is the same as hybrid H3, except moving from b = 1 in the simulation extractability
game to b = 0, i.e., replacing every instance of:

• GetCom1 with GetCom0.
• GetOp1 with GetOp0.
• SubCom1 with SubCom0.
• SubOp1 with SubOp0.

Indistinguishability. H4 and H3 are indistinguishable by the simulation-extractability of VC
(Definition 4).

H5. Rewriting H4 Using the Definition of SIM-EXTVC,Sim,Ext,0.

Hybrid H5 is exactly the same as hybrid H4 except expanding the definitions of the oracles in
the simulation extractability game for the b = 0 case. In hybrid H4 the opening state for honest
commitments resides inside the state of the SIM-EXTVC,Sim,Ext,0 oracles, in H5 we simply remove
this boundary. For clarity, the full rewrite of the simulation is again provided below:

On Initialize :
01 LotCnt := 1
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02 PidAlloced := ∅
03 Registered := ∅

On (Register, j, pid) from Flottery.Leak:
// PlayerCroupier is honest
01 Input (ReqKey, j, pid) on emulated Fbroadcast.PlayerCroupier

On (Deliver,Croupier, µ = (ReqKey, j′, pid)) on emulated Fbroadcast.Playerj
// Allocate the id to the player
01 if ∃(_, pid) ∈ PidAlloced : return ⊥
02 PidAlloced := PidAlloced ∪ {(j′, pid)}

// Generate commitment as in GetCom0 for honest parties
03 if j′ = j:
04 m←$ [k]T
05 (com, St)← VC.Com(ck,m)
06 St[com] := St
07 Msgs[com] := m
08 Input (SetKey, pid, com) on emulated Fbroadcast.Playerj

On (Deliver, j′ 6= Croupier, µ = (SetKey, pid, com)) on emulated Fbroadcast.Playerj
// Ignore unauthorized registration or double registration
01 if ∃(j′, pid) /∈ PidAlloced : return
02 if ∃(pid,_,_) ∈ Registered : return

// Submit commitments from corrupt players
03 if Playerj′ is corrupt :
04 if ∃(_,_, com) ∈ Registered : com := ⊥
05 if VC.VerCom(ck, com) = 0 : com := ⊥

// Register pid from next lottery onwards
06 Registered := Registered ∪ {(pid, LotCnt, com)}

On (Random) on Frandom.PlayerCroupier and PlayerCroupier corrupt:
01 Input (NextLottery) into Flottery.PlayerCroupier

On (NextLottery) from Flottery.Leak:
// Emulate the random beacon
01 Emulate Frandom obtain lseed as output.
02 LotCnt := LotCnt + 1

// Compute the lottery outputs for all registered parties
03 Pass (LotCnt, lseed) to Flottery

On (Participate, l = (t, lseed), pid) from Flottery.Leak:
// Generate opening for honest party using the definiton of GetOp0
01 if ∃(pid, t′, com) ∈ Registered ∧ t′ ≤ t :
02 return VC.Open(ck,St[com], t)

On (Aggregate, l = (t, lseed), I, T ) from Flottery.Leak:
// Retrieve the public keys
01 for pidi ∈ I :
02 if ∃(pidi, t′, com) ∈ Registered ∧ t′ ≤ t : comi = com
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03 else return 0

// Run the aggregation algorithm for honest party
04 agg := Aggregate(t, lseed, (pidi, comi)Li=1, T )
05 return agg

On (Verify, l = (t, lseed), agg, I) from Flottery.Leak:
// Retrieve the public keys for the pid’s
01 for pidi ∈ I :
02 if ∃(pidi, t′, com) ∈ Registered ∧ t′ ≤ t : comi = com
03 else return 0

// Expand SubOp0 in verification
04 for i ∈ [L] : mi := H(comi, pidi, t, lseed).
05 b := VC.Ver(ck, t, (comi)Li=1, (mi)Li=1, agg).
06 return b

Indistinguishability. Hybrid H5 is exactly the same as hybrid H4 except expanding the definitions
of the oracles in the simulation extractability game for the b = 0 case.

H6. The Real-World: The Πlottery Protocol.

Indistinguishability. To see that H6 and H5 are indistinguishable, make the following sequence
of observations:

• Because the Fbroadcast functionality delivers messages simultaneously to all honest parties, the
individual sets Playerj .Registered maintained by any honest party Playerj are identical at all
times and equal to the global Registered in H5, i.e., for all pairs of honest players Playerj and
Playerj′ :

Playerj .Registered = Playerj′ .Registered = Registered

• Because the Frandom functionality delivers messages simultaneously to all honest parties, the
individual counters Playerj .LotCnt maintained by any honest party Playerj are identical at all
times and equal to the global LotCnt in H5, i.e., for all pairs of honest players Playerj and
Playerj′ :

Playerj .LotCnt = Playerj′ .LotCnt = LotCnt

• The definition of Verify in H5 is identical to H6, except that H5 uses a globally defined
Registered and LotCnt. By the previous two claims this is equivalent to using the locally defined
Playerj .Registered in H6.

• The definition of Aggregate in H5 is identical to H6, since the only distinction is the use of
a the global Registered as oppose to the local Playerj .Registered.

• Note that in hybrid H5 we still have the global maps Msgs and St. At this point, however, these
do not need to be global as each Playerj only accesses parts of St/Msgs that it also knows locally.

• The behavior upon (Deliver,Croupier, µ = (ReqKey, j′, pid)) is exactly identical in H5 and
H6 by inspection and the observations above.

• The behavior upon (Deliver, j′ 6= Croupier, µ = (SetKey, pid, com)) is exactly identical in H5
and H6 by inspection and the observations above.
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• For participate observe that in H6 (Πlottery) the output is computed as:

01 Set x := H(pk, pid, i, lseed). If vi 6= x, return ⊥.
02 Otherwise, set τ ← VC.Open(ck, St, i) and return ticket := τ .

Where as in the hybrid H5 the computation of the output is as follows:

// In modified Flottery (hybrids H1 and H2):
01 if H(com, pid, t, lseed) = Msgs[com]LotCnt :
02 w := 1
03 else
04 w := 0
05 if w = 1 : Win := Win ∪ {(l, j, pid)}

// In modified Sim(Flottery) (hybrids H3, H4 and H5):
06 if (l, pid, j) ∈Win :
07 ticket := VC.Open(ck,St[com], t)
08 return ticket
09 else return ⊥

These two computations have identical behavior.

• For Aggregate in H5, observe that the simulation strategy is simply to execute Aggregate
as defined Πlottery: since the operation is completely local. Hence the behavior of H5 and H6
is trivially seen to be identical.

• For Verify, observe that the definition of Verify in H5 is identical to Verify in H6, except
that H5 uses a globally defined Registered. As argued above this is equivalent to using the
locally defined Playerj .Registered in H6.

Since the implementations of each interface are perfectly indistinguishable, it follows that H5 and
H6 are perfectly indistinguishable.

46


	Introduction
	Our Contribution
	Related Work
	Technical Overview

	Preliminaries
	Aggregatable Vector Commitments
	Syntax of Our Vector Commitments
	Simulation-Extractability
	Modularizing Simulation-Extractability
	Simulation-Extractable Vector Commitments from KZG

	Aggregatable Lotteries
	Definition of Aggregatable Lotteries
	Our Construction

	Discussion and Efficiency
	Practical Considerations
	Efficiency Evaluation

	UC Proof of Our Lottery

