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Abstract. We give a new approach for finding large smooth twins. Those twins whose sum is a prime
are of interest in the parameter setup of certain isogeny-based cryptosystems such as SQIsign. The
approach to find such twins is to find two polynomials in Q[z] that split into a product of small degree
factors and differ by 1. Then evaluate them on a particular smooth integer. This was first explored by
Costello, Meyer and Naehrig at EUROCRYPT 21 using polynomials that split completely into linear
factors which were found using Diophantine number theory. The polynomials used in this work split
into mostly linear factors with the exception of a few quadratic factors. Some of these linear factors
are repeated and so the overall smoothness probability is either better or comparable to that of the
prior polynomials. We use these polynomials to search for large smooth twins whose sum is prime. In
particular, the smoothness bounds of the 384 and 512-bit twins that we find are significantly smaller
than those found in EUROCRYPT’21.
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1 Introduction

Efficient instances of many new isogeny-based cryptosystems require a large prime p such that p? —1 is either
B-smooth or has a large B-smooth divisor for some small B. Most notably, this includes the digital signature
scheme SQIsign [19] which was submitted to NIST’s recent call for alternative signature schemes [31,11] as
part of their on-going effort to standardise post-quantum cryptography [30]. By B-smooth, we mean that
each prime divisor is at most B.

This condition on p ensures that supersingular curves over IF,,> and their quadratic twists both have many
rational points of small prime order, which permits efficient isogeny computations'. The smoothness bound,
B, of p?> —1 or its smooth divisor is the dominant factor in the performance of these cryptosystems [4]. Hence
finding parameters that minimise B is vitally important. Having said this, making B as small as possible
is not feasible. This is due to the existence of a theoretical bound for how small B can be [29]. This paper
addresses the problem of finding large primes p that reduce the smoothness bound of p? — 1 to something
which is close to the theoretical optimum.

One can translate this problem of finding primes p with p? — 1 being smooth into the problem of finding
smooth twins in the sense of the following definition.

Definition 1. We call a pair of consecutive integers (r,r+ 1) B-smooth twins if their product, r- (r+1), is
B-smooth. We drop B from this definition when it is polynomial in logs(r) and refer to a cryptographic-sized
smooth twin if it has at least 256-bits.

L A priori, this needs [F4-rational points in order to make sense of the quadratic twist but all computations can be
done over F 2 using standard techniques [13, §3].



log,(B) of smallest B
Method for b-bit primes p Where
b ~ 256 b~ 384 b =512
XGCD over Z 22.7 — — [4]
Cyclotomic factors 18.9 24.4 — [13,18]
PTE sieve 15.0 20.6 27.9 [14]
XGCD over Q[x] 15.4 19.7 24.3 this work

Table 1: Best known smoothness bounds of p? — 1 for cryptographic-sized primes p.

Numerous applications arise from finding smooth twins including the computation of logarithms of in-
tegers [22] and the ABC conjecture [12]. In the context of this work, if their sum p = 2r 4+ 1 of a twin is
a prime, then p?> — 1 = 4r(r + 1) is smooth and suitable for isogeny-based applications. Much like for the
primes p, there is a theoretical optimum for the smoothness bound of smooth twins. We refer to an optimally
small smoothness bound for twins of a certain size as the minimal smoothness bound B such that B-smooth
twins of that size exist.

Related work. Broadly speaking, the known techniques to find smooth twins can be separated into two
categories: constructive and probabilistic methods. The constructive methods [29,12] fix a smoothness bound
B and find all or almost all B-smooth twins, including those with an optimally small B. The probabilistic
methods [13,14] search for twins of a fixed size and guarantee finding them up to some probability depending
on B. Thus expecting to find B-smooth twins for an optimally small B is not realistic. Nevertheless, if B is
not too small, one can find such twins when looking over a large search space.

Constructive methods. There are two known approaches that enumerate all or almost all B-smooth twins.
One requires solving exponentially many Pell equations [29,22,8] with respect to B, and the other is a
recursive algorithm referred to as CHM [12]. While these algorithms tackle the task of finding twins with an
optimally small smoothness bound, they become computationally infeasible when finding twins which are at
least 256-bits. The analysis in [7, §4.1] suggests that the optimally smallest smoothness bound for a 256-bit
twin is around B ~ 5000 which is much too large even with current computing resources. The largest twin
found using these methods whose sum is prime is a 127-bit prime p such that p? — 1 is 2!%-smooth [6] and
was found using the CHM algorithm.

Probabilistic methods. To counter this hindrance from the constructive methods, one resorts to the proba-
bilistic methods to find such cryptographic-sized twins. This sacrificies the optimal smoothness bound for
the ability to find concrete cryptographic-sized twins that could have practical isogeny-based applications.
Almost all of the methods that fall into this category use some polynomial evaluation. The high level idea is
to find two polynomials f, g € Z[z] that differ by an integer C' and factorise nicely. Then one evaluates these
polynomials at an integer, ¢, with f(¢) and g(¢) divisible by C to generate smooth twins.

Prior to this work, only two classes of polynomial pairs have been used to find such twins: first are the
polynomials f(z) = 2™ —1, g(x) = 2™ [13]; and the second are polynomials f, g that completely split over the
integers [14]. The latter polynomials is the current state-of-the-art in terms of minimising the smoothness
bound. See Table 1 for a summary of the best results using these pairs.

Contributions. In this work we revisit and generalise the probabilistic methods for finding smooth twins.
In particular, we use polynomial pairs f, g that (once again) differ by an integer C' and split mostly into
linear factors with the exception of a few quadratic factors. At first glance, the introduction of the quadratic
factors would decrease the smoothness probabilities in comparison to the completely split pairs from [14].
However, this is largely compensated by having more repeated factors in f and g. As a result, the smoothness



probability that arise from these polynomial pairs are either better or comparable to that of the prior
polynomial pairs of the same degree.

For example, the following pair of degree 8 polynomials were found in [14] — they differ by an integer and
split completely over the integers:

fl@)=az(x+4)(x+9)(x +23)(x +27)(x + 41) (2 + 46)(z + 50), and
g(x) = (z+ 1)(z+2)(x + 11)(z + 20)(x + 30)(z + 39)(z + 48)(x + 49).

The next pair of degree 8 polynomials is found in this work — again they differ by an integer but g(x) is a
square product of linear factors and f(z) factors into linear factors except for one quadratic factor:

f(x) = (z+1D(z+4)(z+9)(z+ 10)(z + 15)(x + 18)(2* + 19z — 12), and
g(x) = 2 (z + 6)*(z + 13)%(x + 19)%

The probability of finding 384-bit primes p such that p? — 1 is 223-smooth is approximately 27487 from the
first polynomial pair and 274°2 from the second pair. The latter probability is significantly larger than the
former (see Section 3 on how these smoothness probabilities are computed).

We searched for these polynomial pairs with the aid of the extended Euclidean (XGCD) algorithm over
rational polynomial rings. A naive search computes this XGCD over Q[z] but a more fruitful approach
computes this over Q(ay, - ,ay)[z]. This can be viewed as a precomputation and, after potentially solving
some equations in the variables ay,--- ,a,, results in a more fine-grained searching criterion.

We use these polynomials pairs to find b-bit smooth twins and primes p such that p? — 1 is smooth for
b € {256,384,512}. Table 1 summarises the best results. It shows that our polynomials result in a comparable
smoothness bound when searching for 256-bit primes, and give significantly better smoothness bounds when
searching for larger primes (with b = 384,512). We emphasise that the primes found here only reduce the
smoothness bound of p? — 1 and do not take into account any additional constraints on p that may be
imposed by specific isogeny-based cryptosystems (and which may, in some cases, be incompatible with lower
smoothness bounds). We discuss this further in Section 6.

Organisation. We begin in Section 2 by reviewing known techniques for finding such smooth twins. In
Section 3 we describe existing results on smoothness probabilities. In Section 4 we describe the general
framework of our method for finding smooth twins. In Section 5 we detail the concrete computations of these
new polynomials. As part of these computations we find polynomial pairs of degrees 8, 10 and 12. Finally, in
Section 6 we detail experimental results for finding smooth twins and primes p using these new polynomial
pairs.

2 Existing Techniques for Finding Smooth Twins

We start by reviewing the known techniques to find twin smooth integers separating the techniques into
constructive and probabilistic methods.

2.1 Constructive Methods

The methods presented here find all or almost all B-smooth twins for a fixed an integer B. It turns out that
the set of B-smooth twins is finite for a fixed B. Thus it makes sense to try and enumerate all or almost all
B-smooth twins.

Solving Pell equations. Let Pg := {2,3,...,q} be the set of primes up to B with cardinality =(B).
Suppose that (r,7+1) is a B-smooth twin and let z = 2r+ 1 so that, as mentioned in the introduction, x — 1
and z + 1 are B-smooth. Decompose their product 2 — 1 into its squarefree part, D, and its square part, y.



Thus the pair (z,y) is a solution to the Pell equation X? — DY? = 1. Additionally, Dy? is B-smooth, which
means D = 2%2.3% ..... g™ with «; € {0, 1} for each i € Pp. For each of the 27(B) gquarefree choices for D,
Stgrmer [29] (and later improved algorithmically by Lehmer [22]) reverses the above argument and proposes
to solve the 27(B) Pell equations

X2 -Dy?=1,

to find solutions (z,y) such that y is B-smooth. Stgrmer showed that this set of solutions is finite and thus
finds the complete set of B-smooth twins (r,r + 1).

Solving all 27(B) Pell equations is computationally infeasible for large? B but is practical for small B.
For instance, with B = 5 (B = 7 resp.) solving all 27(®) Pell equations gives 10 (23 resp.) B-smooth twins.
To date, the largest run of this algorithm was done by Costello [13] with B = 113 — the complete number of
113-smooth twins is 33,233.

The Conrey-Holmstrom-McLaughlin algorithm. Start with an initial set of integers S(©) = {1,2,---,B—
1} that represent the B-smooth twins (1,2), (2,3),---,(B — 1, B). The algorithm by Conrey-Holmstrom-
McLaughlin (CHM) proposes to iteratively add to this initial set with new integers that represent B-smooth
twins. For each r, s € S with r < s compute the following expression

t r s+1

t/ 7‘+1. s

b

where ¢/t is written in lowest order terms. Thus one forms a new set of integers S(+1) to be the set S(*)
coupled with the set of integer solutions ¢t where ¢’ = ¢t + 1 and are not in S, Since the set of B-smooth
twins is finite, we must have S(4+1) = S(4 for some integer d. At this point the algorithm terminates.

In practice, this algorithm finds either all or a majority of B-smooth twins®. For instance, with B = 5
the algorithm finds all 5-smooth twins while with B = 7 the algorithm finds all 7-smooth twins except for
the largest twin (4374, 4375). The original authors of the algorithm [12] ran it with B = 200 to obtain a total
of 346,192 pairs of 200-smooth twins.As a smoothness bound, this is larger than the computations with the
Pell equation.More recently, Bruno et al. [7] made improvements to the algorithm and ran it with B = 547
to obtain a total of 82,026,426 pairs of 547-smooth twins. An additional 2,649 pairs of 200-smooth twins
were found from this computation — proving the point that one does not find all smooth twins. The only way
to know this exact number is to solve 27(200) = 246 P¢]] equations which is beyond our current computing
resources.

2.2 Probabilistic Methods

Instead of fixing the smoothness bound, the methods presented here fix a target size and search for twin
smooth integers of that size. One can guarantee finding twin smooth integers from these methods up some
probability.

XGCD over the integers. The most natural approach to find smooth twins is to choose random B-smooth
integers r until either r —1 or r+1 is B-smooth. A slightly better approach [13,19] is to choose two B-smooth
integers o and § that are coprime and also « - § is roughly the target size of r and r + 1. Then use the
extended Euclidean algorithm over the integers with inputs a and 3. This gives two integers, s and ¢, such
that as + 8t = 1 with |s| < |8/2| and |t| < |a/2|. If s and ¢ are B-smooth then one obtains the following
B-smooth twins

(r,r +1) = (las, 18¢))-

The probability that s - ¢ is B-smooth is much larger than the probability that a random integer of similar
size being B-smooth.

2 Recent work [8] modifies this approach for large B. Instead of collating all B-smooth twins for a smoothness bound
B, they find B-smooth twins in a large interval.
3 The proportion of B-smooth twins not found with CHM is conjectured to be o(1).



Searching using cyclotomic factors. In Costello’s computations with the Pell equations [13], he noticed
that some of the largest B-smooth twins are of the form (2% —1,2?). He generalised this to find large smooth
twins of the form

(r,r+1)= (2" —1,2")

for small n € Z, and exploited the factorisation of ™ — 1 into cyclotomic polynomials. For instance, finding
b-bit twins of the form (2% — 1,2°) requires searching for three (b/6)-bit smooth numbers (i.e. z — 1,z and
x + 1)and two (b/3)-bit smooth numbers(i.e. 2 — x + 1 and 2% + x + 1). This increases the probability of
finding such smooth twins.

Searching with PTE solutions. The large-degree factors that arise from searching with » = 2" — 1 is a
bottleneck when reducing the smoothness bounds. In more recent work, the approach taken in [14] is to find
polynomials f, g € Z[x] with g — f = C for some integer C and split completely over the integers — namely

f(@)=(@+a) (z+a2) - (z+ay), and
9(@) = (x+b1) - (x4 b2) - (x +bn).

Once such polynomials are known, then searching for b-bit twins consists of sieving an interval of roughly
(b/n)-Dbit integers and identifying the integers £ in this interval such that (/4 a;) and (£+b;) are all smooth.
Thus the evaluations f(¢) and g(¢) are smooth. A final check needs to be done to determine whether one gets
smooth twins — that is whether f(¢) and g(¢) are divisible by C. If all of this holds, then we get a smooth
twin of the form

(f(6)/C,9(0)/C).

These completely split polynomials increases the smoothness probability again. However, such polynomial
pairs f,g are non-trivial to find when the degree n > 4. Fortunately, one can construct such polynomials
using solutions to the Prouhet—Tarry—Escott (PTE) problem (see [9] for more background on this problem).

3 Smoothness Probabilities

We recall standard results on the distribution of smooth integers, and polynomial evaluations, in intervals.
This allows us to compute smoothness probabilities in these settings. The exposition given here follows [14,

§2].

3.1 Dickman rho Function and Distribution of Smooth Integers

One can attempt to count the number of B-smooth integers up to some bound N. This is often expressed
with the notation
U(N,B) :=#{1 <m < N :mis B-smooth}.

In order to do this counting, we define the Dickman-de Bruijn (rho) function. It is a function p : Rt — R*
that is continuous at u = 1, differentiable for v > 1 and satisfies the following difference differentiable
equation

plu) =1, (0<u<1)
up'(u) = —p(u —1), (u>1).

~—

When 1 < u < 2, we have p(u) = 1 — In(u). But, for v > 2, there is no known closed form for this
function in terms of elementary functions. Despite this we can still evaluate this function using numerical

techniques [32,24] which are built in to many popular computer algebra packages (including Magma and
SageMath).



Relating this to the context of counting smooth integers, Dickman [17] and independently de Bruijn [16]
proved that as N — oo we have

(N, B) ~ p(u)N,

where u = log(NN)/log(B). Hence the proportion of B-smooth integers approaches this Dickman-de Bruijn
function. While this formula is asymptotic, it is a good approximation for concrete values of N and B. As a
result, assuming that the B-smooth integers in the interval [1, N] are uniformly distributed with B = N 1u
the Dickman-de Bruijn function can be used to approximate the probability that an integer less than N is
B-smooth.

3.2 Smoothness of Polynomial Evaluations

For f € Z[z], we count the number of smooth evaluations of f and define
U;(N,B) =#{1 <m < N: f(m) is B-smooth}.

Numerous works have studied this quantity ¥ (N, B) and it can be argued that the smoothness probability
of f(m) is the product of the smoothness probabilities of f;(m) for each irreducible factor f; | f. While this
heuristic is proven for certain ranges of N and B [25], it does not apply for the ranges of cryptographic
interest. However, our experiments (and those of [14]) suggest that these heuristics closely approximate their
true values. So we formally restate the heuristic.

Heuristic 1 ([14]) Suppose that a polynomial f € Z[x] has distinct irreducible factors of degrees dy, - -+ ,dy >
1. Then, as X — oo, we have

wf(X’ B) ~ p(diu) - - p(dru) X,

where u = log(X)/log(B).

Smoothness of Rational Polynomial Evaluations. In this work we are mostly interested in finding
smooth evaluations of a polynomial f € Q[z] rather than an integer-valued polynomial. One can still use the
heuristic in order to compute these smoothness probabilities by writing

1) = 5 i),

where C' € 7Z is an integer and f € Z[z] is an integer-valued polynomial such that C' is coprime to the
content (that is, the ged of the coefficients) of f. We must modify Heuristic 1 to include the probability that
an evaluation f(m) = f(m)/C is an integerr, which depends on a congruence condition modulo C: namely
the number of integers m € Z/CZ such that f(m) =0 mod C. By the Chinese Remainder Theorem, this
depends of a system of congruences

f(m)=0 modp;’, 1<i<k,

where C' = [[ pf* for distinct primes p;. Computing this number of integers modulo p;* can be done directly
as long as each prime power p;* is not too big. Then multiplying all of these together gives the desired
number of residue classes. Furthermore dividing this number by C' gives the associated probability.

We assume that the events “f (m) is smooth” and “ f (m) =0 mod C” are mutually independent, so the
probability that f(m) is smooth is (heuristically) the sum of the probability of these events. We note that this
point was addressed in [14], however this second event was not accounted in their smoothness probabilities.



4 Smooth Twins using XGCD over Polynomial Rings

This section describes a generalisation of the probabilistictechniques from §2.2. A core ingredient is the
extended Euclidean (XGCD) algorithm over polynomial rings [28, Theorem 17.4]. In order to fix consistent
notation, we briefly recall this.

Let k be a field. The XGCD algorithm takes as input F,G € k[z] and finds the unique polynomials
S, T € klz], with deg(S) < deg(G) and deg(T) < deg(F'), satisfies the following polynomial Bézout identity

F-S+ G -T=gcd(F,QG).

4.1 The General Strategy to find Smooth Twins

Choose two coprime polynomials, F, G € Z[z], that split completely into mostly repeated linear factors. We
assume for expositions sake that F' and G are monic polynomials. Use the XGCD algorithm over Q[z] to
find polynomials S, T € Q[z] such that F'- S+ G -T = 1. Assume without loss of generality that S and T'
do not have any linear factors* and the leading coefficient of G - T is positive. Then the polynomials —F - S
and G - T differ by one and thus can give smooth twins with polynomial evaluation. We adopt a PTE style
search, since these are polynomials in Q[z], and lift these polynomials to Z[z]. Namely define the polynomials
f(z) =—-C-F(x)-S(z) and g(x) = C - G(z) - T(x), where C is the smallest integer such that f,g € Z[z].
These polynomials now differ by C, so one searches for integers ¢ such that f(¢) and g(¢) are smooth and
f(0) = g(¢) =0 mod C. This ensures that f(¢) and g(¢) are divisible by C and thus gives smooth twins.
The formal procedure is given below and implicitly takes a smoothness bound B as input:

1. Choose polynomials F, G € Z[x] and apply the XGCD algorithm to get polynomials S, T € Q|x]. Let C be
the smallest integer such that CS(x), CT(z) € Z[z] and set (f(x),g(x)) = (—CF(x)S(x),CG(z)T(x)).
2. Let I be an interval of integers and use the sieve of Eratosthenes, as described in [14, §4.1] (see also [15,
§3.2.5]), to identify the integers £ € I that are B-smooth.
3. Use the sieve established in Step 2 to identify the integers £ such that £+ a are B-smooth for each integer
a with (z + a) | F(z) - G(z).
4. Tsolate those integers £ found in Step 3 for which f(¢) = g(¢) =0 mod C.
5. Using one of the following techniques, determine when CS(¢) and CT({), or equivalently Q(¢) for all
irreducible factors Q(x) | C2S(x)T (), are B-smooth for the leftover integers ¢ from Step 4:
(a) Factorise the B-smooth part of Q(¢) directly using either trial division or fast factoring methods
such as ECM [26].
(b) Use an Eratosthenes—style sieve that sieves the list of evaluations of each irreducible factor [15,
§3.2.7]. This can be done in parallel with the sieving in Step 2.
(c) Collate all evaluations m = Q(¢) for each irreducible factor @) into a list and apply Bernstein’s
sieving algorithm [3]. It does this by computing mp = ([[,<zp mod m)?" mod m, where e > 0 is
the smallest integer such that 22° > m. This is the largest B-smooth divisor of m [3, Theorem 2.2].
6. The remaining integers ¢ give smooth twins of the form (f(¢)/C, g(¢)/C).

Deciding which technique in Step 5 to use in the search depends on the specific choice of polynomials F, G.
This will be discussed in Section 6.

Realising the generalisation. One can view this method as a generalisation of the probabilistic methods
described in §2.2 . To obtain the polynomial pair " — 1, 2™ using this approach, one simply computes the
XGCD of F(z) = x — 1 and G(x) = 2™. The polynomial pair that result from a PTE solution ,

flx)=(r+a1) (x+az) - (r+an), and
g(x) = (x40b1) - (x+bg) - (x +by),

LI S(x) = (xz — @)S'(x) then F(z)(z — a)S’(z) + G(2)T(x) = 1. So XGCD of F(x) and G(z) results in the same
polynomial pair as the XGCD of F(z)(z — ) and G(x).



can be recovered as follows. Iterate over all polynomials of the form F(z) = (z 4+ Ay)---(z + Ap,) and
G(z) = (x+By) - - - (x+By,) with ny +ng > n and apply the XGCD algorithm until the resulting polynomials
S and T completely split. This idea is exploited in Appendix B to find new solutions that have not been
seen in the literature.

Precomputed Polynomials. The simplest way to choose the input polynomials F' and G is to take them at
random by choosing integers a,b € Z, with a # b to ensure coprimality and exponents e,, e, € Z at random.
Then construct the polynomials F(x) = [[(z + a)® and G(x) = [[(z + b)/*. A better approach is to have a
precomputed list of polynomials F, G and choose one or many of them for the search. This precomputation
has the advantage that one can maximise the smoothness probability with a good choice of polynomials
F and G that result in the largest probability of finding smooth twins. We note that this precomputation
approach was also adopted by Costello et. al. [14] in their PTE sieve — namely they precompute and collect
many PTE solutions using either known parameterisations or using interpolation techniques [5].

This precomputation can be done naively over Q[z]. However, a slightly better approach is to initially
work over a polynomial ring with coefficients in some rational function field before specialising to Qlz].
Effectively the integers a,b that give the polynomials F' and G become parametrised as variables over a
rational function field. Write k = Q(ay,- - ,a,) for this rational function field and k[z] for its polynomial
ring. Once the XGCD computation over k[z] is done, one gets polynomials S, T € k[z]. Then one specialises
each irreducible factor of S - T back to Q[z] by evaluating each variable in the function field. Finally, one
computes the factorisations of these resulting polynomials and records their factorisation structure. This
provides a more tailored search and significantly reduces the number of XGCD computations (since these
are enumerable).

Seaching with one vs many pairs. Much like with the PTE sieve, one can search for smooth twins using
either a single or many polynomial pairs. The search with a single pair is exactly as described above but one
swaps the order of Step 3 and Step 4. This is particularly beneficial when the integer C' is large since the
proportion of integers with f(¢) = g(¢) =0 mod C may be small. At a practical level, this was explored by
Ahrens [1] in the context of the PTE sieve.

Alternatively, one can store a list of polynomial pairs and search for twins using all pairs simultaneously.
To make this effective one employs a tree that fully traverses all polynomial pairs in a minimal number
of checks. The construction of the tree can be seen as an instance of the hitting set problem as described
in-detail in [14, §4.3]. In the context of the general algorithm, this construction of the tree as well as the
subsequent sieving is incorporated into Step 3.

Smoothness probabilities. Recall from §3.2 that the smoothness probability of an evaluated polynomial
depends on the irreducible factors of the polynomial. So the probability of finding smooth twins depends on
the irreducible factors of F'- G - S - T. This might suggest that a maximised smoothness probability would
be obtained when these factors are all linear. This is certainly the case if the polynomial pair has repeated
linear factors since fewer smoothness checks in Step 3 of the algorithm are needed. However, such polynomial
pairs only exist when the degree of the polynomial is n € {2, 3,4, 6}. For the larger-degree pairs this suggests
the following: instead of having all of the factors being linear, one replaces some of the linear factors with
quadratic (or potentially higher degree) factors and counterbalance that by having more repeated linear
factors. One example of such a polynomial pair is the following degree 8 pair that differ by an integer and
factors into linear factors up to one quadratic factor:

f(x) = (z+ 1) (z+4)(z+9)(z + 10)(z + 15)(x + 18)(2* 4+ 19z — 12), and
g(x) = 2%(x + 6)*(x + 13)*(x + 19)2. (1)

As mentioned in Section 1, the smoothness probability from this pair is much larger than that of a known
degree 8 pair that splits completely into linear factors. In addition, here is another polynomial pair but of



degree 12:

fx)=(x+4)(z+7)(x+ 22)(x + 50)(z + 56)(x + 84)(z + 99)(z + 102) (2)
(z% 4 752 — 136)(z* + 137z + 3150), and
g(x) = 2% (x + 14)*(x + 39)(z + 67)%(x + 92)*(z + 106)>.

A more in-depth discussion on searching for such polynomials will be given in the next section detailing
searches for degree 8,10 and 12 pairs.

Remark 1. In the setting of searching for twins whose sum is a prime, an extra probability is included which,
by the prime number theorem, is approximately 1/(log(2)b). We heuristically assume that this probability
can be computed independently from the other smoothness probabilities.

Remark 2. One can replace S and T from Step 1 with more general solutions to the Bézout equation that
do not satisfy the condition that deg(S) < deg(G) and deg(T) < deg(F), namely S’ = S+ P -G and
T' =T — P - F for P € k[z]. This will not aid the smoothness probability since it increases the degree of
the resulting polynomial, but it is necessary for some choices of F, G if there is cryptographic intention. See
Appendix A for details on this.

5 Searching for Polynomials with Better Smoothness Probabilities

We detail strategies to find polynomial pairs f,¢g € Z[z] that feature repeated factors and maximise the
smoothness probability. As mentioned previously, this is only possible when their degree is not 2, 3,4 or 6.
To incoporate repeated factors we search for pairs of the form f(x) = h(x)* — C and g(z) = h(z)* where
k,C € Z, with k > 1, and h € Z[z]. Moreover, if f has a root a, then C = h(a)* is a k" power and f
factorises into cyclotomic polynomials composed with h. In addition we search for even polynomials in the
sense that f(x) = f(2?) and g(z) = §(2?) for f,g € Z[x]. This will be combined with the following Lemma
to give an effective search for these polynomial pairs. We note that this last idea has been used to find
symmetric PTE solutions using interpolation techniques [5].

Lemma 1. Let F, G € k[z] be coprime polynomials and S, T € Kk[z] be the result of applying XGCD to F,G.
Formn € Zsq, set Fp(z) == F(2™) and G, (z) = G(a™). If XGCD of F,,,G,, gives Sy, Ty, then S,(x) = S(z™)
and Ty, (z) = T(z™).

Proof. By the coprimality of F' and G and replacing = by =™ we get

Fo(z)S(z™) + Gu ()T (2™) = 1.
Writing S'(z) = S(z™) and T"(x) = T(a™), we have deg(S’) = ndeg(S) < ndeg(G) = deg(G,) and
deg(T") < deg(F,). Since S,, and T,, are determined uniquely, we must have S, =5 and T, = T". O

5.1 General Search Strategies

We apply the XGCD algorithm over k[z], with k :== Q(ay, -+ ,am,a), to F(z) == 22 — a? and G(z) = h(x)*
where h € k] is of the form

With the addition of Lemma 1, this gives two polynomials S and T with deg(S) = deg(h) - k — 2 and
deg(T) = 0. Write T'(z) = 1/C for some C € k. With this the desired polynomial pair can be recovered as
follows: g(z) == C - (G(z) - T(x)) = h(z)* and f(z) :=C-(—F(x)-S(z)) = C-(G(z)-T(z) — 1) = h(z)* - C.



We now enumerate all positive coprime integers ai,--- ,am,a < k and evaluate the irreducible factors
of S at these integers to give polynomials in Q[z]. Factorise these polynomials and record the pair f, g if it
has lots of linear factors and some quadratic factors. Finally, for sake of cleaning the polynomials, we apply
a linear shift z — x + A to the polynomials f, g so that the polynomials each linear factor of f - g is of the
form (z+a) fora>0and z | f-g.

Remark 3. When deg(h) is even and the integer product (][] a;) - a is odd, applying this linear shift gives
even a’s. Thus we can consider half-integers ai,- - - , @, a in this circumstance. This cannot be done when
(ITa:) - a is even.

For the sake of illustration we see this in action through a search of degree 8 and 12 polynomials.

Ezample 1. Let k = Q(a1,az,a), k = 2 and h(x) = (2% — a?)(2? — a3) € k[z]. Applying XGCD to F(z) =
2?2 — a? and G(z) = h(z)? gives

1

S(x) = e (x2 —(af +a3 — a2)) (x4 — (a? + a3)2® + afa3 + \/5)

and T'(z) = 1/C, where C = ((a? —a?)(a3—a?))?. The quadratic and quartic factors in S(z) are irreducible in
k[z]. For some rational choices for aj, as and a, these factors may be reducible over Q[z]. After enumerating,
one encounters a1 = 19/2, as = 7/2 and a = 1/2 where S factors into four linear factors and one irreducible
quadratic. Computing f and ¢ as described above with a linear shift « — z + 19/2 gives

f(z) = (z+ D(z +4)(xz+9)(z + 10)(z + 15)(z + 18)(2* + 192 — 12), and
g(x) = 2%(x + 6)*(x + 13)*(x + 19)2.
These are exactly the polynomials mentioned in Equation (1).
Ezample 2. Work with the rational function field k = Q(ay, az, as,a). Let k = 2 and h(x) = (2% — a?)(2® —

a3)(z? — a3) € k[z]. Applying the XGCD algorithm to the polynomials F(z) = 2? — a? and G(z) = h(x)?
gives the polynomials

§(a) = — Lpa(elpo(a), and T(@) =
where C' = ((a} — a?)(a3 — a?)(a3 — a?))? and ps,ps € k[z] are algebraically computatable irreducible

polynomials of degree 4 and 6 (resp.). When a; = 53, as = 39, a3 = 14 and a = 3, the polynomial S factors
into six linear and two irreducible quadratic factors over Q[z]. After computing f(z) and g(z) from the
formulas mentioned above and applying the linear shift  +— x + 53, the resulting polynomials are

fl@)=(z+4)(x+7)(z+22)(x+50)(z + 56)(z + 84)(x + 99)(z + 102)
(2® + 752 — 136) (2 + 1372 + 3150), and
g(z) = 2*(z + 14)*(z + 39)*(z + 67)*(z + 92)*(z + 106)?,

which were mentioned in Equation (2).

As deg(h) increases, so does deg(S) and its irreducible factors. So the likeliness that S has at most
quadratic factors after variable evaluation decreases. One can alleviate this slightly using the following
modification. One replaces F, G described above, with F(z) = (22 — a2?)(22 — b?) and G(z) = h(z)*, giving
polynomials with deg(S) = deg(h) - k — 2 and deg(T) = 2. For certain aq,...,amn,a,b we have deg(S) =
deg(h) - k — 4 and deg(T") = 0. This happens when the leading coefficient of T" is 0. We do not need to worry
about the z coefficient since it is already 0 by Lemma 1. This gives us a relation between the variables of
the function field: a1, ..., am,a,b. Isolating one of the variables in this relation and replacing it in F' and G
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log, (Smooth'nlcss>
Method | n |(f(x),g(2)) |[log,(C)] | (m1, m2) 2\ Probability
b=256]b=384]b=512
6| XGCD® 6 (7,1) | —45.2 | —52.5 | —56.8
T xeepy 1T 100 | (8,2) | 386 | —44.8 | —48.5 |
XGCD3 12 (8,2) | —39.6 | —45.6 | —49.2
log, (Snloothf1§58> XGCDS 14 (4,3) | —41.6 | —47.2 | =505
Method | n | (f(z),g9(z)) |[log,(C)]|(m1,m2) Probability XGCD3 15 (7,2) 307 | —45.2 | —48.4
b=256[b = 384]b = 512 8| XGCDE 16 (8,2) | —41.4 | —47.2 | —50.6
Cve 6] («®—1,2% 0 (3,2) | —43.0 | —49.8 | —53.9 XGCD§ 21 (10,1) | —38.3 | —43.4 | —46.5
yelotomic| ¢ - g - = =T 4 - -~ =~ |- 2 =S~ -~~~ T
factors LSL@ L) | 0 | B1) | —449 | —51.8 | —55.9 | XGCD} 30 (10,1) | —43.6 | —48.1 | —50.8
n3 [0 @0 -1, 0 | (3,00 | 448 | 514 ] —556 | XGCDS 32 (10,1) | —43.8 | —48.2 | —50.8
12](z" - 1,2") 0 (3,3)" 31.7 | 371 | 403 | |XGCD over XGCDS 35 (10,1) 15.3 | —49.5 | —52.0
PTES 1 (9,0) | 428 | —48.9 | —526 Qla] S X6epi® 1 22 | (9,3) [ =360 ] —40.8 | —43.7 |
6 PTES 17 (12,0) | —55.3 | —63.0 | —67.7 XGCD3’ 26 (11,2) 34.1 | —38.3 | —40.9
) S TPTES ] 31 | (16,0) | —474 | —=52.8 | =56.0 | 10| XGCDX° 28 (9,3) 385 | —43.0 | —45.7
PTEL“‘“‘ 8| PTES 35 | (16,0) | 501 | —55.1 | —58.1 XGCEDY | 41 | (11,2) | 394 | —429 | —450
PTES 38| (16,0) | =525 | =57.2 | —60.0 || XGED:® | 43 | (1L.2) | 403 | —43.7 | —457 |
[To[ ~ PTEY | 73 | (20,0) | =575 | —59.2 | —60.3 | XGCD1? 14 (8,5) | —31.4 | —36.3 | —39.3
[12]  PTEZ | 76 | (24,0) | —44.7 | —45.9 | —46.7 | XGCD3% 24 (10,4) | =310 | —=35.2 | —=37.7
XGCD}? 29 (10,4) 32.6 | —36.5 | —38.9
XGCDE? 42 (12,3) | —34.3 | =373 | —39.1
12| XGCDg? 56 (12,3) 38.8 | —41.1 | —42.6
XGCD#? 59 (12,3) | —42.2 | —44.4 | —45.8
XGCD3? 60 (14,2) | —37.6 | —=39.7 | —40.9
XGCD4? 69 (12,3) 14.8 16.4 | —47.4

Table 2: Smoothness probabilities for finding primes p with p? — 1 being 2'¢, 222 and 2**-smooth (resp.). An asterisk,
(m1,m2)”, is marked when m; > 0 for some ¢ > 3. The probabilities shaded in grey means that the search space is
too small to expect to find such primes. See Appendix D for all polynomial pairs.

ensures that deg(S) = deg(h) - k — 4 and deg(T) = 0. To make sure isolating a variable is possible, we take
h to be either

hzx) = (2% — a1) H($2 —a?) or h(z)=2(2®—a) H(xQ —a?),

and the variable that will be isolated is a1. This reduction in deg(S) reduces the cost of factoring. Also after
evaluation h may not split completely, so some new polynomial pairs can be found compared to the inital
approach.

Can one go further and choose F(z) = (22 — a?)(2% — b?)(2? — ¢®)? The challenge is being able to solve
the respective equation to ensure that deg(7T) = 0 which is non-trivial when F has this form. Solving the
equation when F(z) = (22 — a?)(2? — b?) is quite a bit easier, so we focus on this.

Table 2 collates many polynomial pairs (f(z), g(z)) with g— f = C found from these searches and together
with the approximate probability of finding b-bit primes p such that p? — 1 is B-smooth. As mentioned in
§3.2 and Remark 1, we can heuristically estimate this probability as

#0<m<C: f(m)=g(m)=0 modC}+ 1
C log(2)b’

pldiw)--- pdyu) +

where the d;’s are the degrees of each irreducible factor of f - g, u = log(X)/log(B) and X is an (b +
log,(C))/ deg(f)-bit integer. The table also include some probabilities from polynomials found from prior
work.

Definition 2. For a pair f, g € Z[z], we denote my, by the number of irreducible degree k factors in f-g. For
instance, the pair in Equation 1 has m1 = 10 and me = 1; and in Equation 2 it has m1 = 14 and me = 2.
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5.2 Degree 8 Polynomials

We begin with the search for degree 8 polynomials. The precomputation step consists of working over
the rational function field Q(a1,az,a,b). This search will prove to be the easiest and, up to the XGCD
precomputation, an implementation of the search strategy can be done without needing any polynomial
arithmetic.

k = 2. Let h(z) = (2% — a1)(2? — a2) and apply the XGCD algorithm to the polynomials F(z) = (22 —
a?)(z? — b?) and G(x) = h(x)? to get polynomials, S and T', with deg(S) = 6 and deg(T) = 2. The leading
coefficient of S and T is

(a1 + a2 — a® — b?) - (2a103 — a1a® — a1b® — a%a® — a3b? + a* + b*)
(a1 — a?)?(a1 — b%)*(a3 — a?)*(a3 — b%)? '

When this leading coefficient is 0, we get either

2,52 2 a3(a® +b?) —a* —b*
a1 =a"+b"—a3 or a= 5 5 5
205 —a® —b

After replacing a; with these expressions we get deg(S) = 4 and deg(T) = 0. In the first case, we have
T(z) = 1/((a%—a?)(a3—1%))? and the polynomial S is irreducible over Q(ay, az, a,b)[x] that can be explicitly
computed as

-1

5() = (= (o~ (@ e+ e = 2 - o) - 87)).

Whereas in the second case we have T'(z) = 1/C, the polynomial S splits into quadratic factors which, with
aid of the expression for a, is

S(z) = —é( 2 (a1 + a’ —az)) (x2 — (ay + a3 —b2))7

and C = ((a3 — a*)(a3 — b*)(a® — b?)/(2a} — a® — b2))2. The reason why it splits is due to where 22 — a?
and x? — b? is in the factorisation of f. Write f(z) = h(z)? — C = (h(z) — VC)(h(z) + v/C) and note that
(h(z) & /C) are both even polynomials. In the first case (22 — a?)(z? — b?) is equal to either (h(z) &= /C)
(up to the constant factor) and in the second case (22 — a?) divides one of (h(z)++/C) and (22 — b?) divides
the other — thus explaining why S factors.

We assume that a; = (a2(a® + b?) — a* — b*)/(2a% — a® — b?) for the rest of this exploration. For certain
asz,a,b € Q, these quadratic factors might be reducible. If a1, a; + a3 — a2, a; + a3 — b? are all squares, then
the polynomial pair splits completely with m; = 12 — giving a PTE solution. As mentioned earlier there are
no known ideal PTE solutions of this type in the literature. Our experiments did not find as, a, b such that
ai,a; + a% —a%, a1 + a% — b2 are all squares.

We can relax the condition that a1, a1 + a% —a? a1 + a% — b2 are all squares to only require two of them
to be squares. This results in polynomials pairs with m; = 10 and my = 1. Plenty of polynomial pairs of
this type can be found. The pair mentioned in Equation (1) would be found when as = 7/2, a = 1/2 and
b = 11/2 and is the example which features the smallest integer difference with C' = 1166400. The next
smallest can be found when as = 8, a = 3 and b = 12 and, after applying the linear shift z — x + 24, results
in the pair

f(z) = (z+2)(z+9)(z+ 18)(x + 24)(x + 33)(z + 40)(2? + 42z — 55), and
g(x) = 22 (z + 13)%*(x + 29)%(z + 42)?,
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which differ by C' = 564537600. An example where a; is not a square but a; + a3 — a2, a; + a3 — b* are both
squares occur when as = 25/2, a = 3/2 and b = 45/2. After applying the appropriate linear shift, it results
in the polynomials

f@) =x(x 4+ 9)(x + 10)(z + 31)(z + 34)(x + 55)(x + 56)(x + 65), and
g(x) = (x4 20)2(x + 45)% (2 + 65z + 154),

which differ by C' = 19209960000. This polynomial pair would not be found using the initial approach since
h(x) does not split completely in this case.

We can relax this condition even further and only require one of these integers to be a square. This gives
polynomial pairs with m; = 8 and my = 2. While the smoothness probability could decrease by increasing
ma, one can find instances with a smaller C'. Hence the smoothness probabilities are comparable to the prior
pairs. In particular when as = 3/2, a = 1/2, b = 5/2, one gets the pair

f(x) = (z+1)(z+3)(z+4)(z+6)(x? + Tz — 2) (2> + Tz +4), and
g(x) = 2%(z + 2)%(z + 5)*(z + 7)?,

which differ by C' = 576. Moreover, for this specific polynomial pair, the evaluation of each residue class
modulo C is 0. So there is no additional probability associated to the division by C' when finding smooth
twins from this pair.

Additionally, one example has been found with either a,b = 0. This reduces m; by 1 and increases the
smoothness probability compared to other pairs with my = 2. This occurs when as = 2, a = 0, and b = 3,
resulting in the pair

f(@) = z(x+ ) (z +7)%(x + 10)(z + 14) (2% 4 142 4+ 9), and
g(z) = (x + 5)*(z + 9)*(z* + 14z + 4)%,
which differ by C' = 32400.

k = 4. Now let h(x) = (2% — a;) and apply XGCD to F(z) = (22 — a®)(2? — b?) and G(x) = h(z)*. This
gives polynomials, S and T, with deg(S) = 4 and deg(T) = 0 only when either 243 —2a;a% —2a;b* +a* +b* =
(a1 —a?®)? + (a1 — b*)? = 0 or a; = (a? + b?)/2. The first case cannot happen by the coprimality of F' and
G. So a1 = (a® + b?)/2 and gives

1 4 4
S(z) =— 6b2)4 (x4 — (a* +b*)z” + M) .

(a? — 2
If it can be factored, then it will be either (22 — ¢)(2? — d) or (22 — cx + d)(2® + cx + d) (up to the constant
factor). By looking at the discriminant of the associated quadratic the first case cannot happen, so suppose
the latter. By comparing the constant coefficients we have a* + b* = 2d?. As a consequence of Fermat’s last
theorem this equation has no rational solutions. Hence, for every a,b € Q, the evaluated polynomial S € Q[z]
will always be irreducible.

Instead of choosing F(z) = (22 —a?)(2% — b?), we revert back to F(z) = (22 —a?) and G(z) = (2% —a?)*.
This is a special case of the computation from Example 1 with ay = a1 and gives

1

@

S(z) =— (:vz —2a% + a2> (m4 —2a22? + 2a — 2a%a® + a4).

When the quartic factors into a product of quadratics it gives pairs with m; = 4 and ms = 3. This occurs
when a; = 3/2 and a = 7/2, resulting in the pair.

f(z) = z(z +7)(2® + 22 + 5) (2 + Tz + 20)(2? 4 122 + 40), and

g(z) = (z +2)*(x +5)%,
which differ by C' = 10000.
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5.3 Degree 10 Polynomials

Now we detail the search for degree 10 polynomial pairs.

k = 2. Let h(z) = x(2? — a1)(2® — a3) and apply the XGCD algorithm to the polynomials F(x) =
(22 — a?)(2? — b?) and G(x) = h(x)? to get polynomials, S and T, with deg(S) = 8 and deg(T) = 2. The
leading coefficient of S is 0 when
a3(a® £ ab + b?) — a* F a®b — a?b* F ab® — b*

a3 —a? F ab — b? '

a1 =

With this choice of a1 we reduce deg(S) = 6 and deg(T) = 0. For simplicity, we choose a sign for this
expression. With this we get T'(x) = 1/C and

1
S(x) = —6(333 + (a +b)2* + ez + 02> (:c3 —(a+b)2® + cr1z — c2)7

where ¢1,co € Q(as,a,b) are algebraically computable expressions and

oo <ab(a +b)(a3 — a®)(a3 — b2)>2.

a3 —a? — ab — b?

The cubic polynomials in the factorisation of S are irreducible over Q(ag, a,b)[z]. However they might be
reducible after evaluating the variables as, a, b. Note that if one of them has a root o then the other polynomial
must have a root —a.

When the cubics are reducible, the resulting polynomial pair has, at least, m; = 9 and my = 3. This
occurs when ag =1, a = 4 and b = 6 giving

f(x) =2(x+1)(x +3)(z + 11)(x + 13)(z 4+ 14)(z* + 11z + 38)
(% + 172 + 80), and
g(z) = (z +6)*(x + 7)%(z + 8)%(2® + 14 + 5)2, with C = 2822400.

One can ask when these quadratic factors reduce to linear factors. The case when all quadratic factors
can be factored gives a PTE solution of size 10. However, only one such solution exists in the literature
which does not have repeated factors. Additionally, when one (and hence both) of the quadratic factors in
S is reducible, it gives a PTE solution of size 5 that has repeated factors. Again such solutions do not exist.
The final case is the setting when ay is a square. This can happen and does so on many occasions, giving
pairs with m; = 11 and mgo = 2. When a3 =8, a =1 and b = 7, we get such a pair and is

f(z) = (z+1)(z +4)(z + 10)(z + 12)(z + 18)(z + 21)(x? + 202 — 9) (3)
(2% + 24z + 35), and
g(x) = 2%(x + 3)*(x + 11)*(x + 19)?(z + 22)?, with C' = 57153600.

Special case with a; = a3. Similar in spirit to the degree 8 search with k = 4, one can look at a special

case that reduces the number of irreducible factors of h. In particular we set h(z) = z(z® — a1)? and apply
XGCD to F(x) = (22 —a?)(z? — b?) and G(x) = h(x)?. With similar computations as we did previously, this
gives polynomials with deg(S) = 6 and deg(T") = 0 when b = ¢?/a and a; = (a* £ a®c + a®c? £ ac® + ¢*)/a?
where ¢ is a new parameter. Much like before, S splits as a product of cubic polynomials and one can ask
if or when they factor. Experimentally, no instances have been found with these cubics being factorable.
Alternatively, one can ask when the expression for a; is a square — inducing more linear factors in F. This
happens occasionally and gives pairs with m; = 7 and m3 = 2. For example, this occurs when a¢ = 1 and
c =3 (giving b =9 and a; = 11?).

We could also consider F(x) = (z(2? — a1)?)? and G(z) = (2% — a?) and see if T can be factored into a
product of irreducible quadratic factors. Once again, this happens occasionally and gives pairs with m; = 3
and mo = 5. For example, this occurs when a = 3, a; = —11.
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k = 5. We make a few brief comments on the other setting with & = 5 and choose F(z) = (2% — a?)
and G(z) = (22 — a?)®. XGCD gives polynomials with deg(S) = 8 and deg(T) = 0. S is irreducible over
Q(ay,a)[z] and, after evaluating the variables ay, a, the best one can hope for is that S factors into a product
of two irreducible quartic factors. However, no such examples have been found.

5.4 Degree 12 Polynomials

We finally detail the search for degree 12 polynomial pairs.

k = 2. Let h(z) = (22 — a1)(2? — a3)(2? — a3) and apply XGCD to F(z) = (22 — a?)(2? — b*) and
G(x) = h(x)?. giving polynomials with deg(S) = 10 and deg(7) = 2. The leading coefficient of S and T is
0, then deg(S) = 8 and deg(T") = 0. This occurs when either
. (@3 +ad)(@® +1?) — (afaf +at +a®0? +0%) - aja3(e’ +1?) — (af +a)(a’ +b%) +a® +1°
1= , 1=

a3 +a% —a?—b? 2a3a% — (a3 + a2)(a® + b?) + a* + b4

This choice of expression for a; results in different factorisation structure for the polynomial S. For the
first choice, the polynomial S splits as S = Sy - Sg/C where Sy is an irreducible monic quadratic, Sg is an
irreducible degree 6 monic polynomial over Q(az, as, a,b)[z] and

C= ((ag — a?)(a3 — b?)(a3 — a®)(a3 — b2))2.

a%+a§fa2fb2

Now the question is when does S factorise into a product of at most quadratic factors after variable evaluation.
Since S is automatically quadratic, this only depends on the Sg. One can factor Sg for each variable
evaluation but it is more economical to only factor Sg when the associated cubic S} where Sg(z) = S5(2?)
has roots. This cubic can either be factored directly or use known root tests to determine if it has roots.
When ag =1/2, ag = 13/2, a = 5/2 and b = 7/2 it gives polynomial pairs with mq = 4 which is
f(@) = (z+ 1)(z+3)(z+4)(z + 9)(z + 10)(z + 12)(2* + 13z — 3)
(2 4 13z + 6)(2® + 13z + 45), and
g(x) = 2%(x + 6)*(x + 7)%*(x + 13)*(2? + 13z + 21)%
with C' = 10497600. Additionally, choosing as = 19/2, az = 43/2, a = 23/2 and b = 29/2 gives polynomial
pairs with m; = 12 and my = 3 which is
fl@)=(z+1)(z+3)(z+ 7)(z+ 10)(z + 33)(z + 36)(x + 40)(z + 42)
(2% + 43z — 24)(2® + 43z + 396) and
g(x) = 22 (x +12)*(x + 31)%(z + 43)? (2 + 432 + 186)*.
with C' = 3983377305600.

For the second choice, S = Sy - S} splits into a product of two distinct irreducible quartics over
Q(as, as, a,b)[z]. Once again, each polynomial S, Sy, S} are even polynomials and T'(z) = 1/C where

2
o — ( (a3 —a?)(a3 — b?)(a3 — a?)(a3 — b*)(a® — V%)
2a3a3 — (a3 + a3)(a? + b2) + a* + b* '

Now one has to check when the polynomials Sy and S} factorise into quadratic polynomials. Since these
polynomials are even, this can be done with no polynomial arithmetic. This was discussed towards the end
of §5.2 and the idea is that any polynomial of the form x* + Ax? 4+ B factorises either into (2% — o)(z? — )
or (22 — ax + B)(2? + ax + B) for some o and 3. Note that these quadratic factors might not be irreducible
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but the point is that if the quartic can be factored then it has must have at most quadratic factors. The first
case can be checked by doing some discriminant calculation, namely whether A2 — 4B is a square. In the
second case, there are a few arithmetic checks needed: firstly B must be a square and then either 25 — A or
—28 — A must be a square.

When as = 3, a3 =4, a =1 and b = 2 it gives polynomial pairs with me = 5 which is

f(x) = (z+2)(z +3)(x +5)(z + 6)(2* + 8z — 1) (2 + 8z + 2)
(2% + 8z + 4) (2% + 8z + 10), and
g(x) = 2*(x + 1)*(z + 7)%(z + 8)% (2 + 8z + 14)*.

with C = 14400. Additionally, choosing as = 14, ag = 39, a = 3 and b = 31 gives the pair mentioned in
Equation (2) with mgo = 2.

k = 3,6. There are three other choices we can make for k and we start with a few brief comments when
3| k. Apply XGCD to F(z) = (2% —a?) and G(x) = h(x)? with h(z) = (22 —a?})(2? — a3) giving a polynomial
S = S5 - Sg where deg(S2) = 2 and deg(Ss) = 8. After variable evaluation, the best one can hope for is
that Sg factors into a product of quartics. This happens rarely but a small example can be found when
a; = 17/2, ay = 15/2 and a = 11/2. The special case when a; = ag gives a polynomial S = Sy - Sy - S}
— which automatically yield pairs with m4 > 0. However, both quartics cannot simultaneously factor into
quadratics after variable evaulation. As a result, these pairs give small smoothness probabilities.

k = 4. For this final choice, one applies XGCD to F(z) = (22 —a?) and G(z) = h(z)* with h(z) = z(2%—a?).
Similar to the previous case, the best one can expect after evaluating the variables is getting pairs with
my > 0. However, loosening h to h(x) = x(2? — a;) can lead to polynomial pairs with m; = 0 for i > 3. For
instance this happens when a; = 52429 and a = 82. With m; = 3 and ms = 6 for these pairs, they do not
result in better smoothness probabilities compared to the k = 2 pairs.

5.5 Other Degrees

We make a few comments on searches that could be made to find other degree polynomials. We leave the
implementation of these searches as future work.

Larger even degrees. The same strategy can be applied for finding polynomials of degree 14, 16 and
larger even degrees. For instance, to find degree 14 polynomials, one would do the XGCD computation of
the polynomials F(z) = (22 —a?)(2% — b?) and G(x) = 22(2? — a;1)?(2% — a3)?(2® — a3)?. Then find algebraic
expressions for a; to reduce deg(S) = 10 and deg(7T") = 0 before factoring S and see if it has small degree
factors. The XGCD precomputation that would be required in these settings would be a lot more involved
compared to the searches in §5.2, §5.3 and §5.4. Additionally, expecting to find polynomial pairs with mj = 0
for all £ > 3 would take much longer compared to the other degrees. We note that these polynomials could
be quite useful if one needs to find smooth twins that are much larger than 512-bits.

Odd degrees. This general strategy outlined at the head of this section can not be applied in the same
way when searching for odd degree pairs. Additionally, the search for odd degree n pairs of the form f(x) =
h(z)* — C and g(z) = h(z)* only becomes fruitful when n is composite. However, most small odd integers
are prime and so this will only the cyclotomic pair: f(z) = 2™ — 1 and g(z) = a™.

We demostrate an alternative strategy that could be used when searching for degree 7 pairs which can be
generalised to other odd degrees. Start with the polynomials F(z) = 2?(x+a)? and G(z) = (v+a1)?(x+az2)?.
The result of applying the XGCD algorithm over Q(ay, az, a)[z] gives two cubic polynomials S and T. Over
Q(a1, az,a)[x], these polynomials are irreducible but, after evaluating the variables at rationals, they might
be reducible. This simple strategy was experimented with but the resulting polynomials pairs did not give
a good smoothness probability compared to the even degree pairs. An alternative choice for polynomial F'
and G might be favourable and we leave this direction open.
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| Method Where [ Nogy(p)] | (B, [log,(B)]) |

10622157951 XGCD# 239 (69833, 17)
2944237003 XGCDS 241 (103001, 17)
[ Method | Where | o) | (Bi[o N 4187092101 XGCDS 242 (87103, 17)
g2 (P g2(B 13024987664 XGCDE 250 (77029, 17)
[ XGCD over Z [ [4, App. A] | 256 [ (6548911,23) | 19371175757 XGCD? 255 (77687,17)
Cvelotomi [13, Ex.5] 247 (652357, 20) 49076211087 XGCD$ 257 (88897,17)
clotomic
yf . [13, Ex.8] 250 (486839, 19) 38295031104 XGCD§ 263 (42577, 16)
actors
[18, §6.2] 388 (20884693, 25) 1473704676325530 | XGCD§ 370 (1723177,21)
670305535922892 | XGCD§ 375 (826069, 20)
[14, p2a1] 241 (32039, 15)
1543959040318783 | XGCD$ 376 (1742497, 21)
(14, paas) 245 (49711, 16)
(14, paus)] 246 (40151, 16) 479638273270508 | XGCD§ 377 (1137329, 21)
over | 567277683164610 8 378 1812263, 21
[14, poar] 247 (40289, 16) XGCD 7277683164 XGCD3 7 ( )
‘ (14, pao)] 249 (38119, 16) Q[x] 2054426379410766 | XGCD$ 379 (1502581, 21)
PTE sieve 647738699898325 | XGCDS 380 (1640941, 21)
[14, paso] 250 (32191, 15)
6 999,
[14, pasa] 9252 (35291,16) 1213633306317077 | XGCD§ 382 (1445533, 21)
491954219730809 | XGCD§ 383 (1749091, 21)
[14, p2ss] 255 (52069, 16)
14 = 1471680421245912 | XGCD§ 384 1140157,21
(14, pas7] 257 (42979, 16)
376 . 2062439636622939 | XGCD§ 388 (1733527, 21)
[14, pa7e) 376 (1604719,21) | | | 2062439636622939 | XGCDg | 388 | (1733527,21) |
[14, pssa] 384 (3726773, 22) 1290853259901 XGCD5’ 378 (1766099, 21)
Q 2 9] o] 0
(14, ps12] 512 (238733063, 28) 12538742222491880 | XGCD3° 511 (34102657, 26)
14334163549504404 | XGCD3° 512 (43346161, 26)
64343906330928 | XGCD.? 510 (42485491, 26)
188327931771336 | XGCDZ? 511 (24984383, 25)
192093987758508 | XGCDZ? 512 (20003833, 25)

Table 3: Cryptographic-sized primes p such that p? — 1 is B-smooth. The full list of polynomial pairs can be found
in Appendix D.

6 Experimental Results: Concrete Smooth Sandwiches

We conducted experiments to find 256, 384 and 512-bit primes p (giving 128, 192 and 256-bits of security)
such that p? — 1 is smooth using these new polynomials and the strategy from §4.1. We use Table 2 to choose
appropriate smoothness bounds for these searches. Table 3 records the results from these experiments.

We use the C implementation of the sieve of Eratothenes from the PTE Python3 code® as a starting point
for our implementation. We include sieves with multiple polynomial pairs (for the degree 8 pairs) as well as
sieves with a single pair (for the degree 10 and 12 pairs). We chose to implement Step 5a, to deal with the
smooth evaluations of the quadratic factors and implemented this in Magma to benefit from fast factoring
algorithms. This strategy is particular effective when my < 2 and also the search using the degree 12 pair
with mgo = 3. The other pairs might benefit from using either Step 5b or Step 5c for this post-processing —
this is left as an avenue for future work.

We ran these experiments on a server (featuring a total of 96 parallel threads) with a Xeon E7-4850v2
2.30GHz, 1007GB of RAM. The timings for the experiments depends on the interval size and ms. It took
5-6 days to do the sieve of Eratothenes and took 30-60 minutes (around a day) to do the post processing
with mg = 1 (mgy = 2 resp.) when searching an interval of size 24

b = 256. Finding 256-bit primes with our polynomials imposes a reduced search space. For instance, using
the degree 8 pairs, the interval [23!,237] scans all 256-bit primes and the probability of finding 2'6-smooth
twins is at most 27383, This suggests that a search with this B would be unsuccessful. So we ran our code
in this interval with B = 2'7. Despite the low probability, one prime was found with p? — 1 being 2'6-smooth
which is

b (e(z 4 6)(0+ 13)(£ + 19)

2
1, with £ = 38205031104.
1080 ) M

® https://github.com /microsoft /twin-smooth-integers
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In contrast, the PTE sieve [14] produced smaller smoothness bounds. There they used degree 6 pairs that
split completely into linear factors some of which are repeated — giving a larger smoothness probablity to
search space size ratio.

b = 384. When searching for larger primes, the search space limitations become less of an issue with
our polynomials. The degree 8 pairs offer the best option for decreasing the smoothness bound of 384-bit
primes.The search with B = 222 using our degree 8 pairs found plenty of primes p with p?> — 1 being 222-
smooth. Many of these 22!-smooth — surpassing the smoothness bounds found with the PTE sieve. One
prime was found with p? — 1 being 22%-smooth which is

p=2 LL+6)(L+13
1080

+19)\ 2
)+ )) — 1, with £ = 670305535922892.

We also searched with the degree 10 pairs with B = 222, This produced fewer primes compared to the degree
8 search but one was found that is 22!-smooth.

b = 512. This final setting will give the most gain in reducing the smoothness bound. The searches with
the PTE sieve found a few primes with p? — 1 being 228-smooth. The probabilities from Table 2 suggests the
degree 10 and 12 pairs should plenty of primes with B = 22%. So we used B = 22% for our searches. Among
our degree 10 pairs, the best prime found from these searches is

(M) + 1) (419
p= 7560

0+ 22)\?
)+ )) — 1, with £ = 14334163549504404.

We also searched with the degree 12 pairs with mo < 3. The pair from Equation (2) with ms = 2 gave two
primes with 22°-smooth p? — 1. The larger is

_ o (A4 14) (€ + 39)(£+ 6T)(¢ + 92)(¢ + 106) o .
p= 791683200 :

with ¢ = 192093987758508.

Protocol specific polynomials. None of our primes have direct impact on an isogeny-based cryptosys-
tem. They were initially proposed for B-SIDH [13] which was broken by the recent polynomial time at-
tacks [10,23,27] on SIDH [21]. Our primes can be used in countermeasures to these attacks have been
proposed [20,2] but much larger primes are required. So further experiments are needed.

The signature scheme SQIsign [19] requires primes p with a smooth divisor 277" | p? — 1 with T ~ po/4
and f as large as possible. The smoothness bound of T" and the size of f controls the performance of signing.
Our primes do not have a large power of two so would not improve the state-of-the-art. However, given
the general idea from §4.1 one does not have to use the polynomial pairs found in Section 5 and one could
construct pairs that can guarantee a large power of two. This is the case for the pair (z" — 1,2™) [7,11]
since one can get a large power of two from a small power of two in = which is boosted with the n*® power.
The trouble is the degree of the largest factor of 2™ — 1 grows with n which does not aid the smoothness
probability. Alternatively, one could construct pairs with a smaller power of x that gives better smoothness
probabilities.

As mentioned in the introduction, this work focuses on simply reducing this smoothness bound and seeing
how small they could be. As a result we did not conduct these application ideas and are left as future work.

Concluding remarks. These experimental results shows that our polynomials scale better compared to
prior polynomials — in the sense that, when searching for larger primes and twins, our polynomials produce
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smaller smoothness bounds. This is relevant in the context of isogeny-based cryptosystems that need to fields
of much larger characteristic and wish to benefit from these sorts of primes.

Despite all of this work, we have not answered the underlying question of finding cryptographic sized
smooth twins with an optimally small smoothness bound. Given the probabilistic nature of the method, one
has to sacrifice the smoothness bound and not make it as small as possible. Improving these approaches is
left open to the reader.
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A Choosing incorrect polynomials for cryptographic applications

We have to be careful in how we choose F, G in the general description given in §4.1 if we wish to find twins
whose sum is a prime. Here we describe a certain class of polynomials for which one will categorically never
find primes when using these polynomials. Thus cannot be used for cryptographic purposes. One example
of such an instance is when F(z) = (z + 1) and G(z) = 2™. When summing the polynomial pair that arise
from this choice it will always contain 2z + 1 as a factor.

Proposition 1. Let n be a positive integer and F,G € Q|x] be polynomials with m = F — G € Q. Let
SnyTn € Q[z] be the result of applying the XGCD algorithm to the polynomials F™ = F - F---F and
G" =G -G---G. Then there is a constant C,, r,qg € Q such that

F(2)Sn41(x) — Sn(z) = CpreG@)"(F(z) + G(z)), and
G(2)Thi1(x) = Ta(x) = =Cp paF(2)" (F(z) + G(z)).

Moreover, in the setting when F(x) = z+1 and G(x) = z, the polynomial H,,(z) = F"(x)S, (z)—G"(z)T,(x)
will always have 2x + 1 as a factor.

Proof. By construction, F' and G are coprime, so we have
F(z)"Sp(x) + G(z)"T,(z) =1, deg(Sy) = deg(Ty,) < n. (%)
In order to prove the proposition, we need two key ingredients. These are formulated in the following claims.

Claim. For every n, we have the following deg(S,,) = deg(T,) = deg(G) - (n — 1).
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Proof. Let’s start by applying the Euclidean algorithm step by step to F(z)™ and G(z)™. Write F(x)" =
(G(x)+m)™ = G(x)"+ Ry (x). Tt is straight forward to see that deg(r1) = deg(G)(n—1). Now write G(x)" =
Q2(x)R1 () + Ra(z) with deg(Rs) < deg(Ry). Again, it is straight forward to see that deg(Q2) = deg(G)
and deg(Ry) = deg(G)(n — 2) since the x3°8(%)(»=2) coefficient of Q2(2)R;(x) is non-zero. One can repeat
this iteratively and deduce that deg(Qy) = deg(G) and deg(Ry) = deg(G)(n — k) for all 2 < k <n.

Using these polynomials, we can apply the extended Euclidean algorithm to recover the polynomials S,
and T,. In fact, using Theorem 17.4(iv) from [28], we obtain the desired result.

Claim. For every n, we have the following closed forms for S,, and T},:

(" k= 1) (—G(z)/m)*, and

M

k=0
7,0 = ) (M)
k=0

Proof. Let pp(xz) =m™" Y ;_ ("+k 1)( G(z)/m)*. Since deg(S,,) = deg(p,) = deg(g)(n — 1) then, by the
uniqueness of S, T, it suﬁices to show that F'(x)"p,(z) — 1 is divisible by G(x)".

Firstly, write F/(z) = m(G(z)/m+1). When multiplying F'(x)™ and p, (x), write the result as a polynomial
in G(x) — so we have F(z)"p,(x) = Zi’;gl arG(z)F. For k < n the coefficient ay, in this product is equal to

_kZ( )(er_z_l)(_l)k_i'

When k£ = 0 this is equal to 1. As a simple exercise in using the “Upper Negation” and Vandermonde’s
identities for binomial coefficients, when 0 < k < n this is equal to 0. This proves the closed form of .S,, and
proving the closed form of T}, can be done with a similar strategy.

With the closed form for S, it is an algebraic exercise to obtain the first of these formulas. In the process
one shows that C,, pg = m~ 2" }(=1)" (27?_ ). One could do the same algebraic exercise for T}, but by
considering the equation (x) for n and n + 1, we have

()" (F(2)Sn41(z) = Sn(2)) = G(2)" (T = G(2)Tnta (1)) -

This shows that the second of these formulas can easily be found from the first.

Now suppose that F(z) = x + 1 and G(x) = z. Using the derived recursive formulas for S,,, T, and by
induction, we have S, (—1/2) = 2"~! and T,(—1/2) = —(—2)"~!. Plugging —1/2 into the defining formula
for H,, gives the result. O

Remark 4. The concluding statement in the proposition is not specific to F(z) = x +1 and G(x) = x and it
applies more generally. In the general setting the factor that appears is the polynomial F' + G. As another
remark, it is straight forward to adopt the arguments addressed above to the setting when F' is a linear
transform of G (i.e. F(z) = aG(x) +b)

B New ideal PTE solutions

We demonstrate an application of this XGCD approach to find new PTE solutions that have not been
recorded in the literature. In particular, we present a new parametrised family of size 4 ideal PTE solutions
that feature one repetition on both sides. Such PTE solutions was considered to find smooth B-SIDH [13]
parameters before the polynomial time attacks on SIDH surfaced [10,23,27]. There one requires to find primes
p such that there are large smooth cofactors of p+1 and p—1 which are roughly the same size. The repetition
in both sides of these PTE solution would have made our chances of finding such parameters more profitable.
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Proposition 1 Let o, 8 be rational parameters and let

a=aB(B+1)(6*-28+3),
b=aB(B+1)(8+1),

c=a(f+1)(B*+28-1),
d=a(B+1)(8-1)°,

e =4af, and

C=a'g(B-1)°(B+1)°(8* +1)°.
Then the following two polynomials in Q[a, ]

f(z) =z(x+a)*(z+c), and
g(x) = (x +b)*(x + d)(x +e)

differ by C'.

For concreteness of an example, when choosing « = —16 and 8 = —1/2, one gets a = 17, b =5, ¢ = 35,
d = 27 and e = 32. One can easily show that, among all such PTE solutions for which a,b,c,d, e are all
positive integers and all coprime, this is the smallest solution — as emphasised by the solutions listed in
Table 4. Additionally, it is a straight forward algebraic computation to check the proposition however the
proof we give derives these algebraic formulae as a result of some XGCD computation.

Proof. We will work with polynomials with coefficients over a function field Q(«, ) and start out by applying
the XGCD algorithm over this field to the polynomials F(x) := z(z + a)? and G(x) = (x + b)?> where
a,b € Q(a, ) are elements of the function field to be chosen later. This results in the polynomials S, T such
that deg(S) = 1 and deg(T") = 2 which are

—a +3b —2a+4b

S = =0t da =)
a— 3b x2+2a2—6ab+2b2x+i
b2(a — b)3 b2(a — b)3 b2

T(x) =

Since the polynomial s is linear it only suffices to check when ¢ factors. This happens only when its discrim-
inant is a square: disc(T) = D?. If we let a = b(a — b)3D, b = 2a — 4b and ¢ = 2b, then this is equivalent to
solving the equation

aZ +b? =2c2.

This is a genus 0 curve and solutions can be parameterised as a = 2a(8% — 26 — 1), b = —2a(8? + 28 — 1)
and ¢ = 2a(B% + 1) for a,3 € Q. From this recovering what a,b are in this context is straightforward
which are a = a(8% — 28 + 3) and b = (B2 + 1). These expressions for a,b are not quite what is stated
in the proposition since S and T' (and hence the resulting polynomials f and g) are not monic. Currently
the leading coefficient of these polynomials is (a — 3b)/(b*(a — b)3) = B(B8 + 1)/(a*(8 — 1)3(B% + 1)?). To
make this monic we first apply the linear transform x — 2/(8(8 + 1)) and then multiply these polynomials
through by C' = a*33(8 —1)3(B8+ 1)3(8% + 1)2. This makes these polynomials monic and, after doing all the
algebra, the expressions for a, b, ¢, d, e materialise as stated in the proposition. a

Corollary 1. Using the language of PTE solutions from Costello et. al. [1}], we get an ideal PTE solution
of size 4 of the form
[0,a,a,c] =3 [b,b,d,e].

Remark 5. The strategy laid out in the proof of the proposition can be generalised in order to obtain a
complete parametrisation of all ideal PTE solutions of size 4 not just those with this specific shape.
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a b c d e a b c d e a b c d e

17 5 35 27 32 [|26010| 8070 | 88501 | 36501 | 87880 || 93456 [29616| 439921 [128625| 438976
86 | 26 | 221 | 125 | 216 |[26672| 8720 | 314465 | 35937 | 314432 || 97247 |31775|1114175|131072(1114047
171 | 51 | 391 | 256 | 375 |[|28170| 8790 | 103429 | 39304 | 102885 || 98021 [28721| 196571 [163296| 171875
243 | 75 775 343 768 1|129358| 8610 | 59245 | 48013 | 52728 || 98825 [32525(1757651|132651|1757600
524 | 164 | 2009 | 729 | 2000 (|31160|9320 | 72929 | 46305 | 70304 |[102476|31076| 271001 [148176| 265625
594 | 174 | 1189 | 1000 | 1029 ||31437(10185| 255595 | 42592 | 255507 ||104585|32045| 307139 [148955| 303264
605 | 185 | 1739 | 864 | 1715 ||31841(10421| 396611 | 42875 | 396576 [|105066|30966| 219541 {164616| 203125
965 | 305 | 4331 | 1331 | 4320 |[33561({10461| 121411 | 46875 | 120736 ||110619|35139| 544999 |151959| 544000
1463 | 455 | 5135 | 2048 | 5103 ||33885| 9945 | 68731 | 54880 | 61731 (|110942|36530(2047085|148877(2047032
1602 | 510 | 8245 | 2197 | 8232 ||34047(10335| 90895 | 49152 | 89167 |[114653|34265| 266555 |170723| 256608
1790 | 530 | 3869 | 2744 | 3645 ||35684(10604| 79289 | 54000 | 75449 |[114950|36650| 610589 |157464| 609725
2471|791 | 14351 | 3375 | 14336 {|37638|12330| 493885 | 50653 | 493848 {|116721|38181|1415011|157216|1414875
2628 | 780 | 5785 | 3993 | 5488 [|39542|12410| 158045 | 54872 | 157437 {|124011|40851|2370871|166375|2370816
2889 |1 909 | 12019 | 4000 | 11979 ||40871(13271| 359471 | 55296 | 359375 ||126770|38990| 388229 [179685| 384104
3608 [1160| 23345 | 4913 | 23328 [|41445[12465| 101659 | 60835 | 98784 [|127688|37400| 255425 |216513| 219488
3735 [1095| 7519 | 6144 | 6655 [|44099(14459| 608039 | 59319 | 608000 [|135812(41420| 379865 |194672| 373977
3962 [1190] 9605 | 5832 | 9317 [|51260(16820| 740921 | 68921 | 740880 [|138068|45500(2731625|185193|2731568
4455 (1335] 10591 | 6591 | 10240 ||52025|16925| 492179 | 70304 | 492075 ||138635[45395(1772999(186624|1772855
5027 |1595| 24215 | 6912 | 24167 [|52415|15455| 109871 | 81920 | 101871 {|139139(40859| 283319 [224000| 255879
5049 |1629| 36019 | 6859 | 36000 [|52767|16575| 213775 | 73167 | 212992 [140670(41490| 295501 [219501| 274360
6620 [1940| 13289 [10985| 11664 ||52988|15860| 124745 | 78608 | 120393 ||141372(42420| 339865 |208537| 329232
6830 [2210| 53261 | 9261 | 53240 ||53618|16910| 231845 | 74088 | 231173 ||142722(45630| 805285 {195112| 804357
7398 |12250( 20125 |10648| 19773 ||54824|16184| 115889 | 85169 | 108000 ||144245|43265| 345611 {212960| 334611
7749 12289 16459 [12000| 15379 (|59157(19425| 894475 | 79507 | 894432 |[150993|48165| 810355 [206763| 809248
8021 [2561| 43931 |10976| 43875 ||64638(20370| 275965 | 89373 | 275128 [|151317|47265| 563755 |210912| 560947
8987 (2915] 76055 |12167| 76032 [|65043(21195| 658615 | 87808 | 658503 [|153149(50489{3132059|205379(3132000
10269(3129| 28459 [14739| 28000 |[65583(|19215| 131455 [109503| 114688 ||162459({47619| 326599 (268279| 288000
11556(3756|105481|15625(105456||67779]|20859| 208999 | 96000 | 206839 [|163133|53465(2194955(219488(2194803
12015(3855| 73759 [16384| 73695 |[67826(22286(1070741| 91125 |1070696|[169290|55830(3574981|226981|3574920
12386(3806| 37541 [17576| 37125 |[68255(20735| 183599 | 98415 | 180224 |[171899|51779| 427319 |251559| 416000
13076(3836| 26441 [21296| 23625 ||70686(22386| 328861 | 97336 | 328125 |[174339|51579| 374599 |268119| 352000
14472(4440| 43105 [20577| 42592 ||71631(21231| 156031 [109375| 147456 |[174420|55740| 974521 |238521| 973360
14573(4745|142715(19683|142688(73062(21450| 148525 (117912| 133837 ||174638(55970({1043165|238328(1042173
15930(4710| 34069 [24565| 31944 ||75060(22620| 187369 [109744| 182505 |[175644|53844| 518569 |250000( 512169
17153(5525|116675(23328(116603||76505|22685| 167171 |116640| 158171 ||179192(52520| 360065 [296352| 317057
18074|5894|189029(24389(189000]|77303|25415(1271855(103823[1271808||180080({55760| 597329 (253265| 592704
19214|5954| 64349 [27000| 63869 ||80069(|26129| 864059 [108000| 863939 ||186527(61535|4063295|250047|4063232
20195|5915| 40391 [34391| 34560 ||85140(25980| 239449 [121945| 235824 |[189335|57095| 475391 [276480| 463391
22095(7215|245791|29791|245760||86616(25416| 175441 [140625| 157216 ||189675|59475| 747799 |263424| 744775
22473|6765| 55555 |32928| 54043 ||87624|28824|1500049(117649|1500000([189945|55965| 396019 |298144| 365835
22572|6660| 47545 |35152| 44217 ||90801|28101| 299251 [127776| 296875 (|190359(62439|2688079(256000({2687919
22715(6755| 50759 |34295| 48384 ||91034|28934| 453509 [125000| 452709 |[193698|57630| 434485 |292008| 414613
23579(7619|176039(32000|175959|(91490(27230| 205781 [137781| 196520

Table 4: A list of all degree 4 polynomial pairs of the form given in Proposition 1 and Corollary 2 with a,b,c,d,e > 0
and b < a < 200000 and d < e, and ged(a, b, ¢, d,e) = 1.
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Corollary 2. Suppose we have an ideal PTE solution of the form [0,a,a,c] =3 [b,b,d, €] with a > b and
a,b,c,d,e > 0. Then we have
3b<a< (24 V2)b.

Proof. By the parametrisation of such solutions given in Proposition 1, we have

a_ [*-28+3
b B2+1

for some 3 € Q. As a rational function, the right hand expression attains a global maximum at 8 =1 — /2.
Thus, after evaluation, we get a/b < 2 + v/2 which proves the upper bound.

For the lower bound, suppose that b < a < 3b. Once again, substitute the parametric expressions for a
and b. After solving the inequality, one deduces that o > 0 and either 8 < —1or 0 < 8 < 1.

Recall that d and e can be written in terms of this parametrisation as d = a(8+1)(8—1)3 and e = 4af.
If 3 < —1 then, since a > 0, we must have e = 4a3 < 0. Similarly, if 0 < 3 < 1 then d = a(5+1)(3—1)% < 0.
In either case, this contradicts to the positivity of d and e and thus proves the intended lower bound. a

As a consequence of the above proof, we must have @ < 0 and —1 < § < 0. Hence we can write 5 = —po/qo
for some positive coprime integers pg, go with py < qo. Moreover, if the PTE solution is normalised in the
sense that not only does it satisfy the condition given in the above Corollary but also a, b, ¢, d, e are integers
such that ged(a, b, ¢,d, e) = 1, then we must have a = —qg3. We note that this is a necessary condition to find
such normalised solutions but is not sufficient. Substituting these in, one gets an integral parametrisation of
such PTE solutions rather than a rational one.

Using this parameterisation with the help of the bounds given in Corollary 2, one can find concrete PTE
solutions of this type. Table 4 lists all possible solutions of this type such that 0 < b < a < 200000.

Alternative Strategy to Section 5.2. The search for degree 8 polynomials that was mentioned in §5.2
have almost all of the repeated factors are on one side of the polynomial pair. Inspired by these new PTE
solutions, we could attempt to find degree 8 polynomial pairs where the repeated factors are balanced between
each side of the pair. To do this, we can either use the parameterisations from Proposition 1 and Corollary 2.
Alternatively we can be more direct and apply XGCD to F(z) = (2% — a1)?(2? — a3) and G(x) = (2% — a?)?
giving polynomials with deg(S) = 4 and deg(T") = 2. Again, after evaluating the variables a;,as and a, S
may be factored into at most quadratic factors. In particular, up to permutations, only two examples have
been found with my = 1. The first of these occurs when a; = (41/2)%, as = 85/2 and a = 71/2 and results

in the polynomial pair

f(x) = (x +20)*(x + 48)(z + 63) (z + 93)*(2? + 111z — 70), and
g(z) = x(x +13)(z + 35)%(z + 76)*(x + 98)(z + 111),

which differ by C' = 701168832000. The second occurs when a; = 4729, as = 9 and a = 61 and results in the
polynomial pair

f(@) = z(x + 11)*(z + 65)(x + 79)(x + 133)*(z + 144), and
g(x) = (x4 16)(z + 63)(x + 81)(z + 128) (22 + 144z + 455)?,

which differ by C' = 2163606681600.
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C List of Polynomial Pairs

Here we list all polynomal pairs PTE and XGCD? that were used in Table 2 and Table 3 for computing the
smoothness probabilities and presenting the resulting smooth twins (resp.).

= x(x + 3)(:17 +5)(z + 11)(x + 13)(z + 16), and
= (24 1)(z + 8)%(z + 15)2.

1)?
(x+5)(x+6)(x+16)(a:+17)(x+22), and

+ 1) (z + 2)(x + 10)(z + 12)(x + 20)(x + 21).
r+4

( +4)(z 4+ 9)(z + 23)(z + 27)(x + 41)(z + 46)(x + 50), and
(z + 1)(z + 2)(z + 11)(z + 20)(z + 30)(x + 39)(x + 48)(z + 49).

(x 4+ 9)(z+10)(z + 29)(x + 38)(z + 57)(x + 58)(x + 67), and
(x4 2)(z + 3)(z + 18)(z + 22)(x + 45)(z + 49) (x + 64)(z + 65).

(x 4+ 14)(z + 19)(z + 43)(x + 57)(z + 81)(x + 86)(z + 100), and
+ 1)(x 4+ 9)(x + 30)(z + 32)(x + 68)(z + 70)(x + 91)(z + 99).

(z
x) = x(z + 12)(x + 125)(z + 213)(x + 214)(z + 412)(x + 413)(x + 501)(z + 614)(x + 626), and
= (x +5)(z+6)(x + 133)(z + 182)(z + 242)(x + 384)(z + 444)(x + 493)(z + 620)(x + 621).

f(z) =x(x + 11)(z + 24)(x 4 65)(x + 90)(x + 129)(x + 173)(x + 212)(x + 237)(x + 278)
(x4 291)(x + 302), and

g(x) = (x4 3)(x +5)(z + 30)(x + 57)(z + 104) (x + 116)(x + 186) (z + 198)(x + 245)(z + 272)
(z + 297)(z + 299).

Now we list the pairs XGCD;L found in this work and give only a small sample of such polynomial pairs
compared to the total number. This additionally includes an example that can be found from a degree 6
search which can be used to compare with the degree 6 PTE polynomials.

_ f(= :a:(x+1)(x+2)(m+4)(x+5)(m+6), and
XGCDG_{ z) = (z + 3)%(z% + 6z + 2)°.
x) = (as—l—1)(x+3)(33+4)(x+6)(332+7:E—2)(1:2+7x+4), and
XGCDY = 4 y(x) =« (x—|—2)2(x+5)2(x+7)2.
r)=2x )(m+3)( +5)(x + 7)(x + 8)(x? + 8z — 8), and

(m+2) (x4 6)2 (2 + 8z — 5)2.

z(z + 7)(2? 4+ 22 + 5) (22 + 7o + 20) (22 + 122 + 40), and
x+2)*(z +5)%

(x +4)(z + 7)%(x + 10)(z + 14) (2 + 142 + 9), and

x+5)%(x + 9)%(2? + 14z + 4)%

= x—l—l)( +4)(x 4+ 9)(x + 12) (2% + 132 — 6)(2? + 132 + 18), and
= 2%(z + 3)%(x + 10)%(z + 13)2.

= (x +1)(z +4)(x + 9)(z + 10)(z + 15)(z + 18)(2? + 192 — 12), and

=22(x +6)2(x + 13)%(z + 19)%.

z+2)(z+9)(z+ 18)(z + 24)(x + 33)(z + 40) (2 + 422 — 55), and
2(z 4 13)2(z + 29)%(x + 42)2.

(x4 7)(33 +9)(x + 38)(z + 40)(x + 47) (22 + 47z + 622), and

x +2)%(z + 19)%(z + 28)%(z + 45)%.

=xz(z 4+ 9)(z 4+ 10)(x + 31)(x + 34)(x + 55)(x + 56)(x + 65), and
= (z +20)%(z + 45) (22 + 652 + 154)2.

—~

—~
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x(x + )($—|—3)( +11 )(x—|—13)($—|—14)(:52—|—11x—|—8)(z2—|—17x—|—80), and
2(z 4 8)%(2? + 14z + 5)%.
(x + 1) (2 + 4) (2 + 10)(z + 12)(x + 18)(z + 21)(2? + 20z — 9)(22 + 242 + 35), and
22(z +3)%(x + 11)%(z + 19)2(x + 22)2.
z+1)(z+7)(z+ 8)(z + 14)(z + 15)(z + 21)(x? + 19z — 10)(2* + 25z + 56), and
22 (2 + 11)2(x + 22)% (22 + 222 + 77)2.
z+2)(z + 18)(x + 22)(z + 36)(z + 40)(x + 56) (2% + 492 — 60)(2? + 67z + 462), and
22 (2 +12)2 (2 + 29)%(x + 46)%(z + 58)2.
x + 6)(x + 20)(x + 22)(x + 40)(x + 42)(x + 56) (22 + 57z — 90) (2 + 67z + 220), and
22(z +12)2(x + 31)%(x + 50)2(x + 62)2.
=(x+ 2)(x +3)(x +5)(x + 6)(2? + 8z — 1)(2% + 8z + 2)(2? + 8z + 4)
(2 4+ 8z + 10), and
=2%(z+1)%(z + 7)%(z + 8)2(2? + 8x + 14)2.
=(z+ 1)(x +3)(z +4)(x +9)(z + 10)(z + 12) (2% + 13z — 3)(z? + 13z + 6)
(2 + 13z + 45), and
=2%(x +6)%(z + 7)%(z + 13)%(2? + 13z + 21).
=z(x 4+ 3)(z + 6)(z + 8)(x + 11)(x + 14)(2? + 14z + 9)(z? + 14z + 15)
(2% + 142 + 39), and
= (z+2)%(z+ 5%z +9)%(z + 12)%(2? + 14z + 3)2.
=(x+1)(z+6)(z+7)(x+9)(x+ 10)(x + 15)(2? + 162 — 6)(z% + 162 + 18)
(22 + 162 + 84), and
22(z + 3)%(z + 13)%(z + 16)?(2? + 16z + 78)%.
(ac + 1)(35 +3)(z + 7)(x + 10)(x + 33)(x + 36)(z + 40)(z + 42)(z? + 43z — 24)
(22 + 43z + 396), and
= 2%(z + 12)%(z + 31)%(z + 43)%(2* + 43z + 186)2.

=z(x + 9)(z + 20)(z + 30)(z + 59)(z + 69)(z + 80)(z + 89)(z* + 89z + 330)
(22 + 89z + 2100), and
= (z+14)%(x + 44)%(z + 45)2(x + 75)%(2? + 89z + 120)2.

= x(z + 21)(x + 60)(z + 69)(z + 71)(x + 80)(z + 119)(z + 140)(z? 4+ 140z — 99)
(22 4+ 140x + 2301), and
= (z +20)%(x + 63)%(z + 77)%(x + 120)2 (2% + 1402 — 51)2.
= (z+4)(z + 7)(z + 22)(z + 50)(z + 56)(z + 84)(z + 99)(z + 102)(x2 + 75z — 136)
(2 + 1372 + 3150), and
=2%(z + 14)%(z + 39)%(z + 67)%(x + 92)(z + 106)2.
= o(z +43)(x + 52)(x + 138)(x + 147) (¢ +190)(a? + 97 + 810)(a? + 190z + 2856)
(22 + 283z + 18480), and
= (z + 3)%(z + 28)(x + 70)?(x + 120)?(z + 162)?(x + 187)2.
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