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Inria and Laboratoire d’Informatique de l’École polytechnique (LIX), Institut Polytechnique de Paris, Palaiseau,
France

bruno-sydney.sterner@inria.fr

Abstract. We give a new approach for finding large smooth twins. Those twins whose sum is a prime
are of interest in the parameter setup of certain isogeny-based cryptosystems such as SQIsign. The
approach to find such twins is to find two polynomials in Q[x] that split into a product of small degree
factors and differ by 1. Then evaluate them on a particular smooth integer. This was first explored by
Costello, Meyer and Naehrig at EUROCRYPT’21 using polynomials that split completely into linear
factors which were found using Diophantine number theory. The polynomials used in this work split
into mostly linear factors with the exception of a few quadratic factors. Some of these linear factors
are repeated and so the overall smoothness probability is either better or comparable to that of the
prior polynomials. We use these polynomials to search for large smooth twins whose sum is prime. In
particular, the smoothness bounds of the 384 and 512-bit twins that we find are significantly smaller
than those found in EUROCRYPT’21.

Keywords: Post-quantum cryptography, isogeny-based cryptography, twin smooth integers, extended
Euclidean algorithm, SQIsign.

1 Introduction

Efficient instances of many new isogeny-based cryptosystems require a large prime p such that p2−1 is either
B-smooth or has a large B-smooth divisor for some small B. Most notably, this includes the digital signature
scheme SQIsign [19] which was submitted to NIST’s recent call for alternative signature schemes [31,11] as
part of their on-going effort to standardise post-quantum cryptography [30]. By B-smooth, we mean that
each prime divisor is at most B.

This condition on p ensures that supersingular curves over Fp2 and their quadratic twists both have many
rational points of small prime order, which permits efficient isogeny computations1. The smoothness bound,
B, of p2−1 or its smooth divisor is the dominant factor in the performance of these cryptosystems [4]. Hence
finding parameters that minimise B is vitally important. Having said this, making B as small as possible
is not feasible. This is due to the existence of a theoretical bound for how small B can be [29]. This paper
addresses the problem of finding large primes p that reduce the smoothness bound of p2 − 1 to something
which is close to the theoretical optimum.

One can translate this problem of finding primes p with p2 − 1 being smooth into the problem of finding
smooth twins in the sense of the following definition.

Definition 1. We call a pair of consecutive integers (r, r+1) B-smooth twins if their product, r · (r+1), is
B-smooth. We drop B from this definition when it is polynomial in log2(r) and refer to a cryptographic-sized
smooth twin if it has at least 256-bits.

1 A priori, this needs Fp4 -rational points in order to make sense of the quadratic twist but all computations can be
done over Fp2 using standard techniques [13, §3].



Method

log2(B) of smallest B

for b-bit primes p Where

b ≈ 256 b ≈ 384 b = 512

XGCD over Z 22.7 — — [4]

Cyclotomic factors 18.9 24.4 — [13,18]

PTE sieve 15.0 20.6 27.9 [14]

XGCD over Q[x] 15.4 19.7 24.3 this work

Table 1: Best known smoothness bounds of p2 − 1 for cryptographic-sized primes p.

Numerous applications arise from finding smooth twins including the computation of logarithms of in-
tegers [22] and the ABC conjecture [12]. In the context of this work, if their sum p = 2r + 1 of a twin is
a prime, then p2 − 1 = 4r(r + 1) is smooth and suitable for isogeny-based applications. Much like for the
primes p, there is a theoretical optimum for the smoothness bound of smooth twins. We refer to an optimally
small smoothness bound for twins of a certain size as the minimal smoothness bound B such that B-smooth
twins of that size exist.

Related work. Broadly speaking, the known techniques to find smooth twins can be separated into two
categories: constructive and probabilistic methods. The constructive methods [29,12] fix a smoothness bound
B and find all or almost all B-smooth twins, including those with an optimally small B. The probabilistic
methods [13,14] search for twins of a fixed size and guarantee finding them up to some probability depending
on B. Thus expecting to find B-smooth twins for an optimally small B is not realistic. Nevertheless, if B is
not too small, one can find such twins when looking over a large search space.

Constructive methods. There are two known approaches that enumerate all or almost all B-smooth twins.
One requires solving exponentially many Pell equations [29,22,8] with respect to B, and the other is a
recursive algorithm referred to as CHM [12]. While these algorithms tackle the task of finding twins with an
optimally small smoothness bound, they become computationally infeasible when finding twins which are at
least 256-bits. The analysis in [7, §4.1] suggests that the optimally smallest smoothness bound for a 256-bit
twin is around B ≈ 5000 which is much too large even with current computing resources. The largest twin
found using these methods whose sum is prime is a 127-bit prime p such that p2 − 1 is 210-smooth [6] and
was found using the CHM algorithm.

Probabilistic methods. To counter this hindrance from the constructive methods, one resorts to the proba-
bilistic methods to find such cryptographic-sized twins. This sacrificies the optimal smoothness bound for
the ability to find concrete cryptographic-sized twins that could have practical isogeny-based applications.
Almost all of the methods that fall into this category use some polynomial evaluation. The high level idea is
to find two polynomials f, g ∈ Z[x] that differ by an integer C and factorise nicely. Then one evaluates these
polynomials at an integer, ℓ, with f(ℓ) and g(ℓ) divisible by C to generate smooth twins.

Prior to this work, only two classes of polynomial pairs have been used to find such twins: first are the
polynomials f(x) = xn−1, g(x) = xn [13]; and the second are polynomials f, g that completely split over the
integers [14]. The latter polynomials is the current state-of-the-art in terms of minimising the smoothness
bound. See Table 1 for a summary of the best results using these pairs.

Contributions. In this work we revisit and generalise the probabilistic methods for finding smooth twins.
In particular, we use polynomial pairs f, g that (once again) differ by an integer C and split mostly into
linear factors with the exception of a few quadratic factors. At first glance, the introduction of the quadratic
factors would decrease the smoothness probabilities in comparison to the completely split pairs from [14].
However, this is largely compensated by having more repeated factors in f and g. As a result, the smoothness
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probability that arise from these polynomial pairs are either better or comparable to that of the prior
polynomial pairs of the same degree.

For example, the following pair of degree 8 polynomials were found in [14] – they differ by an integer and
split completely over the integers:

f(x) = x(x+ 4)(x+ 9)(x+ 23)(x+ 27)(x+ 41)(x+ 46)(x+ 50), and

g(x) = (x+ 1)(x+ 2)(x+ 11)(x+ 20)(x+ 30)(x+ 39)(x+ 48)(x+ 49).

The next pair of degree 8 polynomials is found in this work – again they differ by an integer but g(x) is a
square product of linear factors and f(x) factors into linear factors except for one quadratic factor:

f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and

g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2.

The probability of finding 384-bit primes p such that p2 − 1 is 223-smooth is approximately 2−48.7 from the
first polynomial pair and 2−40.2 from the second pair. The latter probability is significantly larger than the
former (see Section 3 on how these smoothness probabilities are computed).

We searched for these polynomial pairs with the aid of the extended Euclidean (XGCD) algorithm over
rational polynomial rings. A näıve search computes this XGCD over Q[x] but a more fruitful approach
computes this over Q(a1, · · · , an)[x]. This can be viewed as a precomputation and, after potentially solving
some equations in the variables a1, · · · , an, results in a more fine-grained searching criterion.

We use these polynomials pairs to find b-bit smooth twins and primes p such that p2 − 1 is smooth for
b ∈ {256, 384, 512}. Table 1 summarises the best results. It shows that our polynomials result in a comparable
smoothness bound when searching for 256-bit primes, and give significantly better smoothness bounds when
searching for larger primes (with b = 384, 512). We emphasise that the primes found here only reduce the
smoothness bound of p2 − 1 and do not take into account any additional constraints on p that may be
imposed by specific isogeny-based cryptosystems (and which may, in some cases, be incompatible with lower
smoothness bounds). We discuss this further in Section 6.

Organisation. We begin in Section 2 by reviewing known techniques for finding such smooth twins. In
Section 3 we describe existing results on smoothness probabilities. In Section 4 we describe the general
framework of our method for finding smooth twins. In Section 5 we detail the concrete computations of these
new polynomials. As part of these computations we find polynomial pairs of degrees 8, 10 and 12. Finally, in
Section 6 we detail experimental results for finding smooth twins and primes p using these new polynomial
pairs.

2 Existing Techniques for Finding Smooth Twins

We start by reviewing the known techniques to find twin smooth integers separating the techniques into
constructive and probabilistic methods.

2.1 Constructive Methods

The methods presented here find all or almost all B-smooth twins for a fixed an integer B. It turns out that
the set of B-smooth twins is finite for a fixed B. Thus it makes sense to try and enumerate all or almost all
B-smooth twins.

Solving Pell equations. Let PB := {2, 3, . . . , q} be the set of primes up to B with cardinality π(B).
Suppose that (r, r+1) is a B-smooth twin and let x = 2r+1 so that, as mentioned in the introduction, x−1
and x+1 are B-smooth. Decompose their product x2 − 1 into its squarefree part, D, and its square part, y.
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Thus the pair (x, y) is a solution to the Pell equation X2 −DY 2 = 1. Additionally, Dy2 is B-smooth, which
means D = 2α2 ·3α3 · · · · · qαq with αi ∈ {0, 1} for each i ∈ PB . For each of the 2π(B) squarefree choices for D,
Størmer [29] (and later improved algorithmically by Lehmer [22]) reverses the above argument and proposes
to solve the 2π(B) Pell equations

X2 −DY 2 = 1,

to find solutions (x, y) such that y is B-smooth. Størmer showed that this set of solutions is finite and thus
finds the complete set of B-smooth twins (r, r + 1).

Solving all 2π(B) Pell equations is computationally infeasible for large2 B but is practical for small B.
For instance, with B = 5 (B = 7 resp.) solving all 2π(B) Pell equations gives 10 (23 resp.) B-smooth twins.
To date, the largest run of this algorithm was done by Costello [13] with B = 113 – the complete number of
113-smooth twins is 33,233.

The Conrey-Holmstrom-McLaughlin algorithm. Start with an initial set of integers S(0) = {1, 2, · · · , B−
1} that represent the B-smooth twins (1, 2), (2, 3), · · · , (B − 1, B). The algorithm by Conrey-Holmstrom-
McLaughlin (CHM) proposes to iteratively add to this initial set with new integers that represent B-smooth
twins. For each r, s ∈ S(i) with r < s compute the following expression

t

t′
=

r

r + 1
· s+ 1

s
,

where t/t′ is written in lowest order terms. Thus one forms a new set of integers S(i+1) to be the set S(i)

coupled with the set of integer solutions t where t′ = t + 1 and are not in S(i). Since the set of B-smooth
twins is finite, we must have S(d+1) = S(d) for some integer d. At this point the algorithm terminates.

In practice, this algorithm finds either all or a majority of B-smooth twins3. For instance, with B = 5
the algorithm finds all 5-smooth twins while with B = 7 the algorithm finds all 7-smooth twins except for
the largest twin (4374, 4375). The original authors of the algorithm [12] ran it with B = 200 to obtain a total
of 346,192 pairs of 200-smooth twins.As a smoothness bound, this is larger than the computations with the
Pell equation.More recently, Bruno et al. [7] made improvements to the algorithm and ran it with B = 547
to obtain a total of 82,026,426 pairs of 547-smooth twins. An additional 2,649 pairs of 200-smooth twins
were found from this computation – proving the point that one does not find all smooth twins. The only way
to know this exact number is to solve 2π(200) = 246 Pell equations which is beyond our current computing
resources.

2.2 Probabilistic Methods

Instead of fixing the smoothness bound, the methods presented here fix a target size and search for twin
smooth integers of that size. One can guarantee finding twin smooth integers from these methods up some
probability.

XGCD over the integers. The most natural approach to find smooth twins is to choose random B-smooth
integers r until either r−1 or r+1 is B-smooth. A slightly better approach [13,19] is to choose two B-smooth
integers α and β that are coprime and also α · β is roughly the target size of r and r + 1. Then use the
extended Euclidean algorithm over the integers with inputs α and β. This gives two integers, s and t, such
that αs + βt = 1 with |s| < |β/2| and |t| < |α/2|. If s and t are B-smooth then one obtains the following
B-smooth twins

(r, r + 1) = (|αs|, |βt|).
The probability that s · t is B-smooth is much larger than the probability that a random integer of similar
size being B-smooth.

2 Recent work [8] modifies this approach for large B. Instead of collating all B-smooth twins for a smoothness bound
B, they find B-smooth twins in a large interval.

3 The proportion of B-smooth twins not found with CHM is conjectured to be o(1).
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Searching using cyclotomic factors. In Costello’s computations with the Pell equations [13], he noticed
that some of the largest B-smooth twins are of the form (x2−1, x2). He generalised this to find large smooth
twins of the form

(r, r + 1) = (xn − 1, xn)

for small n ∈ Z, and exploited the factorisation of xn − 1 into cyclotomic polynomials. For instance, finding
b-bit twins of the form (x6 − 1, x6) requires searching for three (b/6)-bit smooth numbers (i.e. x − 1, x and
x + 1)and two (b/3)-bit smooth numbers(i.e. x2 − x + 1 and x2 + x + 1). This increases the probability of
finding such smooth twins.

Searching with PTE solutions. The large-degree factors that arise from searching with r = xn − 1 is a
bottleneck when reducing the smoothness bounds. In more recent work, the approach taken in [14] is to find
polynomials f, g ∈ Z[x] with g − f ≡ C for some integer C and split completely over the integers – namely

f(x) = (x+ a1) · (x+ a2) · · · (x+ an), and

g(x) = (x+ b1) · (x+ b2) · · · (x+ bn).

Once such polynomials are known, then searching for b-bit twins consists of sieving an interval of roughly
(b/n)-bit integers and identifying the integers ℓ in this interval such that (ℓ+ai) and (ℓ+ bj) are all smooth.
Thus the evaluations f(ℓ) and g(ℓ) are smooth. A final check needs to be done to determine whether one gets
smooth twins – that is whether f(ℓ) and g(ℓ) are divisible by C. If all of this holds, then we get a smooth
twin of the form

(f(ℓ)/C, g(ℓ)/C).

These completely split polynomials increases the smoothness probability again. However, such polynomial
pairs f, g are non-trivial to find when the degree n ≥ 4. Fortunately, one can construct such polynomials
using solutions to the Prouhet–Tarry–Escott (PTE) problem (see [9] for more background on this problem).

3 Smoothness Probabilities

We recall standard results on the distribution of smooth integers, and polynomial evaluations, in intervals.
This allows us to compute smoothness probabilities in these settings. The exposition given here follows [14,
§2].

3.1 Dickman rho Function and Distribution of Smooth Integers

One can attempt to count the number of B-smooth integers up to some bound N . This is often expressed
with the notation

Ψ(N,B) := #{1 ≤ m ≤ N : m is B-smooth}.

In order to do this counting, we define the Dickman-de Bruijn (rho) function. It is a function ρ : R+ → R+

that is continuous at u = 1, differentiable for u > 1 and satisfies the following difference differentiable
equation

ρ(u) = 1, (0 ≤ u ≤ 1);

uρ′(u) = −ρ(u− 1), (u > 1).

When 1 ≤ u ≤ 2, we have ρ(u) = 1 − ln(u). But, for u ≥ 2, there is no known closed form for this
function in terms of elementary functions. Despite this we can still evaluate this function using numerical
techniques [32,24] which are built in to many popular computer algebra packages (including Magma and
SageMath).
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Relating this to the context of counting smooth integers, Dickman [17] and independently de Bruijn [16]
proved that as N → ∞ we have

Ψ(N,B) ∼ ρ(u)N,

where u = log(N)/ log(B). Hence the proportion of B-smooth integers approaches this Dickman-de Bruijn
function. While this formula is asymptotic, it is a good approximation for concrete values of N and B. As a
result, assuming that the B-smooth integers in the interval [1, N ] are uniformly distributed with B = N1/u,
the Dickman-de Bruijn function can be used to approximate the probability that an integer less than N is
B-smooth.

3.2 Smoothness of Polynomial Evaluations

For f ∈ Z[x], we count the number of smooth evaluations of f and define

Ψf (N,B) := #{1 ≤ m ≤ N : f(m) is B-smooth}.

Numerous works have studied this quantity Ψf (N,B) and it can be argued that the smoothness probability
of f(m) is the product of the smoothness probabilities of fi(m) for each irreducible factor fi | f . While this
heuristic is proven for certain ranges of N and B [25], it does not apply for the ranges of cryptographic
interest. However, our experiments (and those of [14]) suggest that these heuristics closely approximate their
true values. So we formally restate the heuristic.

Heuristic 1 ([14]) Suppose that a polynomial f ∈ Z[x] has distinct irreducible factors of degrees d1, · · · , dk ≥
1. Then, as X → ∞, we have

Ψf (X,B) ∼ ρ(d1u) · · · ρ(dku)X,

where u = log(X)/ log(B).

Smoothness of Rational Polynomial Evaluations. In this work we are mostly interested in finding
smooth evaluations of a polynomial f ∈ Q[x] rather than an integer-valued polynomial. One can still use the
heuristic in order to compute these smoothness probabilities by writing

f(x) =
1

C
f̂(x),

where C ∈ Z is an integer and f̂ ∈ Z[x] is an integer-valued polynomial such that C is coprime to the
content (that is, the gcd of the coefficients) of f . We must modify Heuristic 1 to include the probability that

an evaluation f(m) = f̂(m)/C is an integerr, which depends on a congruence condition modulo C: namely

the number of integers m ∈ Z/CZ such that f̂(m) = 0 mod C. By the Chinese Remainder Theorem, this
depends of a system of congruences

f̂(m) = 0 mod peii , 1 ≤ i ≤ k,

where C =
∏

peii for distinct primes pi. Computing this number of integers modulo peii can be done directly
as long as each prime power peii is not too big. Then multiplying all of these together gives the desired
number of residue classes. Furthermore dividing this number by C gives the associated probability.

We assume that the events “f̂(m) is smooth” and “f̂(m) ≡ 0 mod C” are mutually independent, so the
probability that f(m) is smooth is (heuristically) the sum of the probability of these events. We note that this
point was addressed in [14], however this second event was not accounted in their smoothness probabilities.
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4 Smooth Twins using XGCD over Polynomial Rings

This section describes a generalisation of the probabilistictechniques from §2.2. A core ingredient is the
extended Euclidean (XGCD) algorithm over polynomial rings [28, Theorem 17.4]. In order to fix consistent
notation, we briefly recall this.

Let k be a field. The XGCD algorithm takes as input F,G ∈ k[x] and finds the unique polynomials
S, T ∈ k[x], with deg(S) < deg(G) and deg(T ) < deg(F ), satisfies the following polynomial Bézout identity

F · S +G · T ≡ gcd(F,G).

4.1 The General Strategy to find Smooth Twins

Choose two coprime polynomials, F,G ∈ Z[x], that split completely into mostly repeated linear factors. We
assume for expositions sake that F and G are monic polynomials. Use the XGCD algorithm over Q[x] to
find polynomials S, T ∈ Q[x] such that F · S + G · T ≡ 1. Assume without loss of generality that S and T
do not have any linear factors4 and the leading coefficient of G · T is positive. Then the polynomials −F · S
and G · T differ by one and thus can give smooth twins with polynomial evaluation. We adopt a PTE style
search, since these are polynomials in Q[x], and lift these polynomials to Z[x]. Namely define the polynomials
f(x) := −C · F (x) · S(x) and g(x) := C ·G(x) · T (x), where C is the smallest integer such that f, g ∈ Z[x].
These polynomials now differ by C, so one searches for integers ℓ such that f(ℓ) and g(ℓ) are smooth and
f(ℓ) ≡ g(ℓ) ≡ 0 mod C. This ensures that f(ℓ) and g(ℓ) are divisible by C and thus gives smooth twins.
The formal procedure is given below and implicitly takes a smoothness bound B as input:

1. Choose polynomials F,G ∈ Z[x] and apply the XGCD algorithm to get polynomials S, T ∈ Q[x]. Let C be
the smallest integer such that CS(x), CT (x) ∈ Z[x] and set (f(x), g(x)) := (−CF (x)S(x), CG(x)T (x)).

2. Let I be an interval of integers and use the sieve of Eratosthenes, as described in [14, §4.1] (see also [15,
§3.2.5]), to identify the integers ℓ ∈ I that are B-smooth.

3. Use the sieve established in Step 2 to identify the integers ℓ such that ℓ+a are B-smooth for each integer
a with (x+ a) | F (x) ·G(x).

4. Isolate those integers ℓ found in Step 3 for which f(ℓ) ≡ g(ℓ) ≡ 0 mod C.
5. Using one of the following techniques, determine when CS(ℓ) and CT (ℓ), or equivalently Q(ℓ) for all

irreducible factors Q(x) | C2S(x)T (x), are B-smooth for the leftover integers ℓ from Step 4:
(a) Factorise the B-smooth part of Q(ℓ) directly using either trial division or fast factoring methods

such as ECM [26].
(b) Use an Eratosthenes–style sieve that sieves the list of evaluations of each irreducible factor [15,

§3.2.7]. This can be done in parallel with the sieving in Step 2.
(c) Collate all evaluations m = Q(ℓ) for each irreducible factor Q into a list and apply Bernstein’s

sieving algorithm [3]. It does this by computing mB := (
∏

p≤B p mod m)2
e

mod m, where e > 0 is

the smallest integer such that 22
e ≥ m. This is the largest B-smooth divisor of m [3, Theorem 2.2].

6. The remaining integers ℓ give smooth twins of the form (f(ℓ)/C, g(ℓ)/C).

Deciding which technique in Step 5 to use in the search depends on the specific choice of polynomials F,G.
This will be discussed in Section 6.

Realising the generalisation. One can view this method as a generalisation of the probabilistic methods
described in §2.2 . To obtain the polynomial pair xn − 1, xn using this approach, one simply computes the
XGCD of F (x) = x− 1 and G(x) = xn. The polynomial pair that result from a PTE solution ,

f(x) = (x+ a1) · (x+ a2) · · · (x+ an), and

g(x) = (x+ b1) · (x+ b2) · · · (x+ bn),

4 If S(x) = (x − α)S′(x) then F (x)(x − α)S′(x) + G(x)T (x) = 1. So XGCD of F (x) and G(x) results in the same
polynomial pair as the XGCD of F (x)(x− α) and G(x).
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can be recovered as follows. Iterate over all polynomials of the form F (x) = (x + A1) · · · (x + An1) and
G(x) = (x+B1) · · · (x+Bn2) with n1+n2 > n and apply the XGCD algorithm until the resulting polynomials
S and T completely split. This idea is exploited in Appendix B to find new solutions that have not been
seen in the literature.

Precomputed Polynomials. The simplest way to choose the input polynomials F and G is to take them at
random by choosing integers a, b ∈ Z, with a ̸= b to ensure coprimality and exponents ea, eb ∈ Z at random.
Then construct the polynomials F (x) =

∏
(x+ a)ea and G(x) =

∏
(x+ b)fb . A better approach is to have a

precomputed list of polynomials F,G and choose one or many of them for the search. This precomputation
has the advantage that one can maximise the smoothness probability with a good choice of polynomials
F and G that result in the largest probability of finding smooth twins. We note that this precomputation
approach was also adopted by Costello et. al. [14] in their PTE sieve – namely they precompute and collect
many PTE solutions using either known parameterisations or using interpolation techniques [5].

This precomputation can be done näıvely over Q[x]. However, a slightly better approach is to initially
work over a polynomial ring with coefficients in some rational function field before specialising to Q[x].
Effectively the integers a, b that give the polynomials F and G become parametrised as variables over a
rational function field. Write k = Q(a1, · · · , an) for this rational function field and k[x] for its polynomial
ring. Once the XGCD computation over k[x] is done, one gets polynomials S, T ∈ k[x]. Then one specialises
each irreducible factor of S · T back to Q[x] by evaluating each variable in the function field. Finally, one
computes the factorisations of these resulting polynomials and records their factorisation structure. This
provides a more tailored search and significantly reduces the number of XGCD computations (since these
are enumerable).

Seaching with one vs many pairs. Much like with the PTE sieve, one can search for smooth twins using
either a single or many polynomial pairs. The search with a single pair is exactly as described above but one
swaps the order of Step 3 and Step 4. This is particularly beneficial when the integer C is large since the
proportion of integers with f(ℓ) ≡ g(ℓ) ≡ 0 mod C may be small. At a practical level, this was explored by
Ahrens [1] in the context of the PTE sieve.

Alternatively, one can store a list of polynomial pairs and search for twins using all pairs simultaneously.
To make this effective one employs a tree that fully traverses all polynomial pairs in a minimal number
of checks. The construction of the tree can be seen as an instance of the hitting set problem as described
in-detail in [14, §4.3]. In the context of the general algorithm, this construction of the tree as well as the
subsequent sieving is incorporated into Step 3.

Smoothness probabilities. Recall from §3.2 that the smoothness probability of an evaluated polynomial
depends on the irreducible factors of the polynomial. So the probability of finding smooth twins depends on
the irreducible factors of F · G · S · T . This might suggest that a maximised smoothness probability would
be obtained when these factors are all linear. This is certainly the case if the polynomial pair has repeated
linear factors since fewer smoothness checks in Step 3 of the algorithm are needed. However, such polynomial
pairs only exist when the degree of the polynomial is n ∈ {2, 3, 4, 6}. For the larger-degree pairs this suggests
the following: instead of having all of the factors being linear, one replaces some of the linear factors with
quadratic (or potentially higher degree) factors and counterbalance that by having more repeated linear
factors. One example of such a polynomial pair is the following degree 8 pair that differ by an integer and
factors into linear factors up to one quadratic factor:

f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and

g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2. (1)

As mentioned in Section 1, the smoothness probability from this pair is much larger than that of a known
degree 8 pair that splits completely into linear factors. In addition, here is another polynomial pair but of
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degree 12:

f(x) = (x+ 4)(x+ 7)(x+ 22)(x+ 50)(x+ 56)(x+ 84)(x+ 99)(x+ 102) (2)

(x2 + 75x− 136)(x2 + 137x+ 3150), and

g(x) = x2(x+ 14)2(x+ 39)2(x+ 67)2(x+ 92)2(x+ 106)2.

A more in-depth discussion on searching for such polynomials will be given in the next section detailing
searches for degree 8,10 and 12 pairs.

Remark 1. In the setting of searching for twins whose sum is a prime, an extra probability is included which,
by the prime number theorem, is approximately 1/(log(2)b). We heuristically assume that this probability
can be computed independently from the other smoothness probabilities.

Remark 2. One can replace S and T from Step 1 with more general solutions to the Bézout equation that
do not satisfy the condition that deg(S) < deg(G) and deg(T ) < deg(F ), namely S′ = S + P · G and
T ′ = T − P · F for P ∈ k[x]. This will not aid the smoothness probability since it increases the degree of
the resulting polynomial, but it is necessary for some choices of F,G if there is cryptographic intention. See
Appendix A for details on this.

5 Searching for Polynomials with Better Smoothness Probabilities

We detail strategies to find polynomial pairs f, g ∈ Z[x] that feature repeated factors and maximise the
smoothness probability. As mentioned previously, this is only possible when their degree is not 2, 3, 4 or 6.
To incoporate repeated factors we search for pairs of the form f(x) = h(x)k − C and g(x) = h(x)k where
k,C ∈ Z, with k > 1, and h ∈ Z[x]. Moreover, if f has a root a, then C = h(a)k is a kth power and f
factorises into cyclotomic polynomials composed with h. In addition we search for even polynomials in the
sense that f(x) = f̃(x2) and g(x) = g̃(x2) for f̃ , g̃ ∈ Z[x]. This will be combined with the following Lemma
to give an effective search for these polynomial pairs. We note that this last idea has been used to find
symmetric PTE solutions using interpolation techniques [5].

Lemma 1. Let F,G ∈ k[x] be coprime polynomials and S, T ∈ k[x] be the result of applying XGCD to F ,G.
For n ∈ Z>0, set Fn(x) := F (xn) and Gn(x) := G(xn). If XGCD of Fn,Gn gives Sn, Tn, then Sn(x) = S(xn)
and Tn(x) = T (xn).

Proof. By the coprimality of F and G and replacing x by xn we get

Fn(x)S(x
n) +Gn(x)T (x

n) = 1.

Writing S′(x) := S(xn) and T ′(x) := T (xn), we have deg(S′) = ndeg(S) < n deg(G) = deg(Gn) and
deg(T ′) < deg(Fn). Since Sn and Tn are determined uniquely, we must have Sn ≡ S′ and Tn ≡ T ′. ⊓⊔

5.1 General Search Strategies

We apply the XGCD algorithm over k[x], with k := Q(a1, · · · , am, a), to F (x) := x2 − a2 and G(x) := h(x)k

where h ∈ k[x] is of the form

h(x) =

m∏
i=1

(x2 − a2i ) or h(x) = x

m∏
i=1

(x2 − a2i ).

With the addition of Lemma 1, this gives two polynomials S and T with deg(S) = deg(h) · k − 2 and
deg(T ) = 0. Write T (x) = 1/C for some C ∈ k. With this the desired polynomial pair can be recovered as
follows: g(x) := C · (G(x) ·T (x)) = h(x)k and f(x) := C · (−F (x) ·S(x)) = C · (G(x) ·T (x)− 1) = h(x)k −C.
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We now enumerate all positive coprime integers a1, · · · , am, a ≤ κ and evaluate the irreducible factors
of S at these integers to give polynomials in Q[x]. Factorise these polynomials and record the pair f, g if it
has lots of linear factors and some quadratic factors. Finally, for sake of cleaning the polynomials, we apply
a linear shift x 7→ x+ A to the polynomials f, g so that the polynomials each linear factor of f · g is of the
form (x+ α) for α ≥ 0 and x | f · g.

Remark 3. When deg(h) is even and the integer product (
∏

ai) · a is odd, applying this linear shift gives
even α’s. Thus we can consider half-integers a1, · · · , am, a in this circumstance. This cannot be done when
(
∏

ai) · a is even.

For the sake of illustration we see this in action through a search of degree 8 and 12 polynomials.

Example 1. Let k = Q(a1, a2, a), k = 2 and h(x) = (x2 − a21)(x
2 − a22) ∈ k[x]. Applying XGCD to F (x) =

x2 − a2 and G(x) = h(x)2 gives

S(x) = − 1

C

(
x2 − (a21 + a22 − a2)

)(
x4 − (a21 + a22)x

2 + a21a
2
2 +

√
C
)

and T (x) = 1/C, where C = ((a21−a2)(a22−a2))2. The quadratic and quartic factors in S(x) are irreducible in
k[x]. For some rational choices for a1, a2 and a, these factors may be reducible over Q[x]. After enumerating,
one encounters a1 = 19/2, a2 = 7/2 and a = 1/2 where S factors into four linear factors and one irreducible
quadratic. Computing f and g as described above with a linear shift x 7→ x+ 19/2 gives

f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and

g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2.

These are exactly the polynomials mentioned in Equation (1).

Example 2. Work with the rational function field k = Q(a1, a2, a3, a). Let k = 2 and h(x) = (x2 − a21)(x
2 −

a22)(x
2 − a23) ∈ k[x]. Applying the XGCD algorithm to the polynomials F (x) = x2 − a2 and G(x) = h(x)2

gives the polynomials

S(x) = − 1

C
p4(x)p6(x), and T (x) =

1

C
,

where C = ((a21 − a2)(a22 − a2)(a23 − a2))2 and p4, p6 ∈ k[x] are algebraically computatable irreducible
polynomials of degree 4 and 6 (resp.). When a1 = 53, a2 = 39, a3 = 14 and a = 3, the polynomial S factors
into six linear and two irreducible quadratic factors over Q[x]. After computing f(x) and g(x) from the
formulas mentioned above and applying the linear shift x 7→ x+ 53, the resulting polynomials are

f(x) = (x+ 4)(x+ 7)(x+ 22)(x+ 50)(x+ 56)(x+ 84)(x+ 99)(x+ 102)

(x2 + 75x− 136)(x2 + 137x+ 3150), and

g(x) = x2(x+ 14)2(x+ 39)2(x+ 67)2(x+ 92)2(x+ 106)2,

which were mentioned in Equation (2).

As deg(h) increases, so does deg(S) and its irreducible factors. So the likeliness that S has at most
quadratic factors after variable evaluation decreases. One can alleviate this slightly using the following
modification. One replaces F,G described above, with F (x) = (x2 − a2)(x2 − b2) and G(x) = h(x)k, giving
polynomials with deg(S) = deg(h) · k − 2 and deg(T ) = 2. For certain a1, . . . , am, a, b we have deg(S) =
deg(h) · k− 4 and deg(T ) = 0. This happens when the leading coefficient of T is 0. We do not need to worry
about the x coefficient since it is already 0 by Lemma 1. This gives us a relation between the variables of
the function field: a1, . . . , am, a, b. Isolating one of the variables in this relation and replacing it in F and G
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Method n (f(x), g(x)) ⌈log2(C)⌉ (m1,m2)
log2

(
Smoothness
Probability

)
b = 256 b = 384 b = 512

Cyclotomic

factors

[13]

6 (x6 − 1, x6) 0 (3, 2) −43.0 −49.8 −53.9

8 (x8 − 1, x8) 0 (3, 1)∗ −44.9 −51.8 −55.9

10 (x10 − 1, x10) 0 (3, 0)∗ −44.8 −51.4 −55.6

12 (x12 − 1, x12) 0 (3, 3)∗ −31.7 −37.1 −40.3

PTE sieve

[14]

6
PTE6

1 14 (9, 0) −42.8 −48.9 −52.6

PTE6
2 17 (12, 0) −55.3 −63.0 −67.7

8

PTE8
1 31 (16, 0) −47.4 −52.8 −56.0

PTE8
2 35 (16, 0) −50.1 −55.1 −58.1

PTE8
3 38 (16, 0) −52.5 −57.2 −60.0

10 PTE10 73 (20, 0) −57.5 −59.2 −60.3

12 PTE12 76 (24, 0) −44.7 −45.9 −46.7

Method n (f(x), g(x)) ⌈log2(C)⌉ (m1,m2)
log2

(
Smoothness
Probability

)
b = 256 b = 384 b = 512

XGCD over

Q[x]

6 XGCD6 6 (7, 1) −45.2 −52.5 −56.8

8

XGCD8
1 10 (8, 2) −38.6 −44.8 −48.5

XGCD8
2 12 (8, 2) −39.6 −45.6 −49.2

XGCD8
3 14 (4, 3) −41.6 −47.2 −50.5

XGCD8
4 15 (7, 2) −39.7 −45.2 −48.4

XGCD8
5 16 (8, 2) −41.4 −47.2 −50.6

XGCD8
6 21 (10, 1) −38.3 −43.4 −46.5

XGCD8
7 30 (10, 1) −43.6 −48.1 −50.8

XGCD8
8 32 (10, 1) −43.8 −48.2 −50.8

XGCD8
9 35 (10, 1) −45.3 −49.5 −52.0

10

XGCD10
1 22 (9, 3) −36.0 −40.8 −43.7

XGCD10
2 26 (11, 2) −34.1 −38.3 −40.9

XGCD10
3 28 (9, 3) −38.5 −43.0 −45.7

XGCD10
4 41 (11, 2) −39.4 −42.9 −45.0

XGCD10
5 43 (11, 2) −40.3 −43.7 −45.7

12

XGCD12
1 14 (8, 5) −31.4 −36.3 −39.3

XGCD12
2,3 24 (10, 4) −31.0 −35.2 −37.7

XGCD12
4 29 (10, 4) −32.6 −36.5 −38.9

XGCD12
5 42 (12, 3) −34.3 −37.3 −39.1

XGCD12
6 56 (12, 3) −38.8 −41.1 −42.6

XGCD12
7 59 (12, 3) −42.2 −44.4 −45.8

XGCD12
8 60 (14, 2) −37.6 −39.7 −40.9

XGCD12
9 69 (12, 3) −44.8 −46.4 −47.4

Table 2: Smoothness probabilities for finding primes p with p2−1 being 216, 222 and 228-smooth (resp.). An asterisk,
(m1,m2)

∗, is marked when mi > 0 for some i ≥ 3. The probabilities shaded in grey means that the search space is
too small to expect to find such primes. See Appendix D for all polynomial pairs.

ensures that deg(S) = deg(h) · k − 4 and deg(T ) = 0. To make sure isolating a variable is possible, we take
h to be either

h(x) = (x2 − a1)

m∏
i=2

(x2 − a2i ) or h(x) = x(x2 − a1)

m∏
i=2

(x2 − a2i ),

and the variable that will be isolated is a1. This reduction in deg(S) reduces the cost of factoring. Also after
evaluation h may not split completely, so some new polynomial pairs can be found compared to the inital
approach.

Can one go further and choose F (x) = (x2 − a2)(x2 − b2)(x2 − c2)? The challenge is being able to solve
the respective equation to ensure that deg(T ) = 0 which is non-trivial when F has this form. Solving the
equation when F (x) = (x2 − a2)(x2 − b2) is quite a bit easier, so we focus on this.

Table 2 collates many polynomial pairs (f(x), g(x)) with g−f ≡ C found from these searches and together
with the approximate probability of finding b-bit primes p such that p2 − 1 is B-smooth. As mentioned in
§3.2 and Remark 1, we can heuristically estimate this probability as

ρ(d1u) · · · ρ(dku) +
#{0 ≤ m < C : f(m) ≡ g(m) ≡ 0 mod C}

C
+

1

log(2)b
,

where the di’s are the degrees of each irreducible factor of f · g, u = log(X)/ log(B) and X is an (b +
log2(C))/ deg(f)-bit integer. The table also include some probabilities from polynomials found from prior
work.

Definition 2. For a pair f, g ∈ Z[x], we denote mk by the number of irreducible degree k factors in f ·g. For
instance, the pair in Equation 1 has m1 = 10 and m2 = 1; and in Equation 2 it has m1 = 14 and m2 = 2.
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5.2 Degree 8 Polynomials

We begin with the search for degree 8 polynomials. The precomputation step consists of working over
the rational function field Q(a1, a2, a, b). This search will prove to be the easiest and, up to the XGCD
precomputation, an implementation of the search strategy can be done without needing any polynomial
arithmetic.

k = 2. Let h(x) = (x2 − a1)(x
2 − a22) and apply the XGCD algorithm to the polynomials F (x) = (x2 −

a2)(x2 − b2) and G(x) = h(x)2 to get polynomials, S and T , with deg(S) = 6 and deg(T ) = 2. The leading
coefficient of S and T is

(a1 + a22 − a2 − b2) · (2a1a22 − a1a
2 − a1b

2 − a22a
2 − a22b

2 + a4 + b4)

(a1 − a2)2(a1 − b2)2(a22 − a2)2(a22 − b2)2
.

When this leading coefficient is 0, we get either

a1 = a2 + b2 − a22, or a1 =
a22(a

2 + b2)− a4 − b4

2a22 − a2 − b2
.

After replacing a1 with these expressions we get deg(S) = 4 and deg(T ) = 0. In the first case, we have
T (x) = 1/((a22−a2)(a22−b2))2 and the polynomial S is irreducible over Q(a1, a2, a, b)[x] that can be explicitly
computed as

S(x) =
−1

(a22 − a2)2(a22 − b2)2

(
x4 − (a2 + b2)x2 + a2b2 − 2(a22 − a2)(a22 − b2)

)
.

Whereas in the second case we have T (x) ≡ 1/C, the polynomial S splits into quadratic factors which, with
aid of the expression for a1, is

S(x) = − 1

C

(
x2 − (a1 + a22 − a2)

)(
x2 − (a1 + a22 − b2)

)
,

and C =
(
(a22 − a2)(a22 − b2)(a2 − b2)/(2a22 − a2 − b2)

)2
. The reason why it splits is due to where x2 − a2

and x2 − b2 is in the factorisation of f . Write f(x) = h(x)2 − C = (h(x)−
√
C)(h(x) +

√
C) and note that

(h(x)±
√
C) are both even polynomials. In the first case (x2 − a2)(x2 − b2) is equal to either (h(x)±

√
C)

(up to the constant factor) and in the second case (x2−a2) divides one of (h(x)±
√
C) and (x2− b2) divides

the other – thus explaining why S factors.

We assume that a1 = (a22(a
2 + b2)− a4 − b4)/(2a22 − a2 − b2) for the rest of this exploration. For certain

a2, a, b ∈ Q, these quadratic factors might be reducible. If a1, a1 + a22 − a2, a1 + a22 − b2 are all squares, then
the polynomial pair splits completely with m1 = 12 – giving a PTE solution. As mentioned earlier there are
no known ideal PTE solutions of this type in the literature. Our experiments did not find a2, a, b such that
a1, a1 + a22 − a2, a1 + a22 − b2 are all squares.

We can relax the condition that a1, a1 + a22 − a2, a1 + a22 − b2 are all squares to only require two of them
to be squares. This results in polynomials pairs with m1 = 10 and m2 = 1. Plenty of polynomial pairs of
this type can be found. The pair mentioned in Equation (1) would be found when a2 = 7/2, a = 1/2 and
b = 11/2 and is the example which features the smallest integer difference with C = 1166400. The next
smallest can be found when a2 = 8, a = 3 and b = 12 and, after applying the linear shift x 7→ x+24, results
in the pair

f(x) = (x+ 2)(x+ 9)(x+ 18)(x+ 24)(x+ 33)(x+ 40)(x2 + 42x− 55), and

g(x) = x2(x+ 13)2(x+ 29)2(x+ 42)2,
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which differ by C = 564537600. An example where a1 is not a square but a1 + a22 − a2, a1 + a22 − b2 are both
squares occur when a2 = 25/2, a = 3/2 and b = 45/2. After applying the appropriate linear shift, it results
in the polynomials

f(x) = x(x+ 9)(x+ 10)(x+ 31)(x+ 34)(x+ 55)(x+ 56)(x+ 65), and

g(x) = (x+ 20)2(x+ 45)2(x2 + 65x+ 154)2,

which differ by C = 19209960000. This polynomial pair would not be found using the initial approach since
h(x) does not split completely in this case.

We can relax this condition even further and only require one of these integers to be a square. This gives
polynomial pairs with m1 = 8 and m2 = 2. While the smoothness probability could decrease by increasing
m2, one can find instances with a smaller C. Hence the smoothness probabilities are comparable to the prior
pairs. In particular when a2 = 3/2, a = 1/2, b = 5/2, one gets the pair

f(x) = (x+ 1)(x+ 3)(x+ 4)(x+ 6)(x2 + 7x− 2)(x2 + 7x+ 4), and

g(x) = x2(x+ 2)2(x+ 5)2(x+ 7)2,

which differ by C = 576. Moreover, for this specific polynomial pair, the evaluation of each residue class
modulo C is 0. So there is no additional probability associated to the division by C when finding smooth
twins from this pair.

Additionally, one example has been found with either a, b = 0. This reduces m1 by 1 and increases the
smoothness probability compared to other pairs with m2 = 2. This occurs when a2 = 2, a = 0, and b = 3,
resulting in the pair

f(x) = x(x+ 4)(x+ 7)2(x+ 10)(x+ 14)(x2 + 14x+ 9), and

g(x) = (x+ 5)2(x+ 9)2(x2 + 14x+ 4)2,

which differ by C = 32400.

k = 4. Now let h(x) = (x2 − a1) and apply XGCD to F (x) = (x2 − a2)(x2 − b2) and G(x) = h(x)4. This
gives polynomials, S and T , with deg(S) = 4 and deg(T ) = 0 only when either 2a21−2a1a

2−2a1b
2+a4+b4 =

(a1 − a2)2 + (a1 − b2)2 = 0 or a1 = (a2 + b2)/2. The first case cannot happen by the coprimality of F and
G. So a1 = (a2 + b2)/2 and gives

S(x) = − 16

(a2 − b2)4

(
x4 − (a2 + b2)x2 +

a4 + b4

2

)
.

If it can be factored, then it will be either (x2 − c)(x2 − d) or (x2 − cx+ d)(x2 + cx+ d) (up to the constant
factor). By looking at the discriminant of the associated quadratic the first case cannot happen, so suppose
the latter. By comparing the constant coefficients we have a4 + b4 = 2d2. As a consequence of Fermat’s last
theorem this equation has no rational solutions. Hence, for every a, b ∈ Q, the evaluated polynomial S ∈ Q[x]
will always be irreducible.

Instead of choosing F (x) = (x2−a2)(x2− b2), we revert back to F (x) = (x2−a2) and G(x) = (x2−a21)
4.

This is a special case of the computation from Example 1 with a2 = a1 and gives

S(x) = − 1

(a21 − a2)4

(
x2 − 2a21 + a2

)(
x4 − 2a21x

2 + 2a41 − 2a21a
2 + a4

)
.

When the quartic factors into a product of quadratics it gives pairs with m1 = 4 and m2 = 3. This occurs
when a1 = 3/2 and a = 7/2, resulting in the pair.

f(x) = x(x+ 7)(x2 + 2x+ 5)(x2 + 7x+ 20)(x2 + 12x+ 40), and

g(x) = (x+ 2)4(x+ 5)4,

which differ by C = 10000.
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5.3 Degree 10 Polynomials

Now we detail the search for degree 10 polynomial pairs.

k = 2. Let h(x) = x(x2 − a1)(x
2 − a22) and apply the XGCD algorithm to the polynomials F (x) =

(x2 − a2)(x2 − b2) and G(x) = h(x)2 to get polynomials, S and T , with deg(S) = 8 and deg(T ) = 2. The
leading coefficient of S is 0 when

a1 =
a22(a

2 ± ab+ b2)− a4 ∓ a3b− a2b2 ∓ ab3 − b4

a22 − a2 ∓ ab− b2
.

With this choice of a1 we reduce deg(S) = 6 and deg(T ) = 0. For simplicity, we choose a sign for this
expression. With this we get T (x) = 1/C and

S(x) = − 1

C

(
x3 + (a+ b)x2 + c1x+ c2

)(
x3 − (a+ b)x2 + c1x− c2

)
,

where c1, c2 ∈ Q(a2, a, b) are algebraically computable expressions and

C =

(
ab(a+ b)(a22 − a2)(a22 − b2)

a22 − a2 − ab− b2

)2

.

The cubic polynomials in the factorisation of S are irreducible over Q(a2, a, b)[x]. However they might be
reducible after evaluating the variables a2, a, b. Note that if one of them has a root α then the other polynomial
must have a root −α.

When the cubics are reducible, the resulting polynomial pair has, at least, m1 = 9 and m2 = 3. This
occurs when a2 = 1, a = 4 and b = 6 giving

f(x) = x(x+ 1)(x+ 3)(x+ 11)(x+ 13)(x+ 14)(x2 + 11x+ 38)

(x2 + 17x+ 80), and

g(x) = (x+ 6)2(x+ 7)2(x+ 8)2(x2 + 14x+ 5)2, with C = 2822400.

One can ask when these quadratic factors reduce to linear factors. The case when all quadratic factors
can be factored gives a PTE solution of size 10. However, only one such solution exists in the literature
which does not have repeated factors. Additionally, when one (and hence both) of the quadratic factors in
S is reducible, it gives a PTE solution of size 5 that has repeated factors. Again such solutions do not exist.
The final case is the setting when a1 is a square. This can happen and does so on many occasions, giving
pairs with m1 = 11 and m2 = 2. When a2 = 8, a = 1 and b = 7, we get such a pair and is

f(x) = (x+ 1)(x+ 4)(x+ 10)(x+ 12)(x+ 18)(x+ 21)(x2 + 20x− 9) (3)

(x2 + 24x+ 35), and

g(x) = x2(x+ 3)2(x+ 11)2(x+ 19)2(x+ 22)2, with C = 57153600.

Special case with a1 = a22. Similar in spirit to the degree 8 search with k = 4, one can look at a special
case that reduces the number of irreducible factors of h. In particular we set h(x) = x(x2 − a1)

2 and apply
XGCD to F (x) = (x2−a2)(x2− b2) and G(x) = h(x)2. With similar computations as we did previously, this
gives polynomials with deg(S) = 6 and deg(T ) = 0 when b = c2/a and a1 = (a4 ± a3c+ a2c2 ± ac3 + c4)/a2

where c is a new parameter. Much like before, S splits as a product of cubic polynomials and one can ask
if or when they factor. Experimentally, no instances have been found with these cubics being factorable.
Alternatively, one can ask when the expression for a1 is a square – inducing more linear factors in F . This
happens occasionally and gives pairs with m1 = 7 and m3 = 2. For example, this occurs when a = 1 and
c = 3 (giving b = 9 and a1 = 112).

We could also consider F (x) = (x(x2 − a1)
2)2 and G(x) = (x2 − a2) and see if T can be factored into a

product of irreducible quadratic factors. Once again, this happens occasionally and gives pairs with m1 = 3
and m2 = 5. For example, this occurs when a = 3, a1 = −11.
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k = 5. We make a few brief comments on the other setting with k = 5 and choose F (x) = (x2 − a2)
and G(x) = (x2 − a21)

5. XGCD gives polynomials with deg(S) = 8 and deg(T ) = 0. S is irreducible over
Q(a1, a)[x] and, after evaluating the variables a1, a, the best one can hope for is that S factors into a product
of two irreducible quartic factors. However, no such examples have been found.

5.4 Degree 12 Polynomials

We finally detail the search for degree 12 polynomial pairs.

k = 2. Let h(x) = (x2 − a1)(x
2 − a22)(x

2 − a23) and apply XGCD to F (x) = (x2 − a2)(x2 − b2) and
G(x) = h(x)2. giving polynomials with deg(S) = 10 and deg(T ) = 2. The leading coefficient of S and T is
0, then deg(S) = 8 and deg(T ) = 0. This occurs when either

a1 =
(a22 + a23)(a

2 + b2)− (a22a
2
3 + a4 + a2b2 + b4)

a22 + a23 − a2 − b2
, or a1 =

a22a
2
3(a

2 + b2)− (a22 + a23)(a
4 + b4) + a6 + b6

2a22a
2
3 − (a22 + a23)(a

2 + b2) + a4 + b4
.

This choice of expression for a1 results in different factorisation structure for the polynomial S. For the
first choice, the polynomial S splits as S = S2 · S6/C where S2 is an irreducible monic quadratic, S6 is an
irreducible degree 6 monic polynomial over Q(a2, a3, a, b)[x] and

C =

(
(a22 − a2)(a22 − b2)(a23 − a2)(a23 − b2)

a22 + a23 − a2 − b2

)2

.

Now the question is when does S factorise into a product of at most quadratic factors after variable evaluation.
Since S2 is automatically quadratic, this only depends on the S6. One can factor S6 for each variable
evaluation but it is more economical to only factor S6 when the associated cubic S′

3 where S6(x) = S′
3(x

2)
has roots. This cubic can either be factored directly or use known root tests to determine if it has roots.

When a2 = 1/2, a3 = 13/2, a = 5/2 and b = 7/2 it gives polynomial pairs with m2 = 4 which is

f(x) = (x+ 1)(x+ 3)(x+ 4)(x+ 9)(x+ 10)(x+ 12)(x2 + 13x− 3)

(x2 + 13x+ 6)(x2 + 13x+ 45), and

g(x) = x2(x+ 6)2(x+ 7)2(x+ 13)2(x2 + 13x+ 21)2.

with C = 10497600. Additionally, choosing a2 = 19/2, a3 = 43/2, a = 23/2 and b = 29/2 gives polynomial
pairs with m1 = 12 and m2 = 3 which is

f(x) = (x+ 1)(x+ 3)(x+ 7)(x+ 10)(x+ 33)(x+ 36)(x+ 40)(x+ 42)

(x2 + 43x− 24)(x2 + 43x+ 396) and

g(x) = x2(x+ 12)2(x+ 31)2(x+ 43)2(x2 + 43x+ 186)2.

with C = 3983377305600.
For the second choice, S = S4 · S′

4 splits into a product of two distinct irreducible quartics over
Q(a2, a3, a, b)[x]. Once again, each polynomial S, S4, S

′
4 are even polynomials and T (x) = 1/C where

C =

(
(a22 − a2)(a22 − b2)(a23 − a2)(a23 − b2)(a2 − b2)

2a22a
2
3 − (a22 + a23)(a

2 + b2) + a4 + b4

)2

.

Now one has to check when the polynomials S4 and S′
4 factorise into quadratic polynomials. Since these

polynomials are even, this can be done with no polynomial arithmetic. This was discussed towards the end
of §5.2 and the idea is that any polynomial of the form x4 +Ax2 +B factorises either into (x2 − α)(x2 − β)
or (x2 − αx+ β)(x2 + αx+ β) for some α and β. Note that these quadratic factors might not be irreducible
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but the point is that if the quartic can be factored then it has must have at most quadratic factors. The first
case can be checked by doing some discriminant calculation, namely whether A2 − 4B is a square. In the
second case, there are a few arithmetic checks needed: firstly B must be a square and then either 2β −A or
−2β −A must be a square.

When a2 = 3, a3 = 4, a = 1 and b = 2 it gives polynomial pairs with m2 = 5 which is

f(x) = (x+ 2)(x+ 3)(x+ 5)(x+ 6)(x2 + 8x− 1)(x2 + 8x+ 2)

(x2 + 8x+ 4)(x2 + 8x+ 10), and

g(x) = x2(x+ 1)2(x+ 7)2(x+ 8)2(x2 + 8x+ 14)2.

with C = 14400. Additionally, choosing a2 = 14, a3 = 39, a = 3 and b = 31 gives the pair mentioned in
Equation (2) with m2 = 2.

k = 3, 6. There are three other choices we can make for k and we start with a few brief comments when
3 | k. Apply XGCD to F (x) = (x2−a2) and G(x) = h(x)3 with h(x) = (x2−a21)(x

2−a22) giving a polynomial
S = S2 · S8 where deg(S2) = 2 and deg(S8) = 8. After variable evaluation, the best one can hope for is
that S8 factors into a product of quartics. This happens rarely but a small example can be found when
a1 = 17/2, a2 = 15/2 and a = 11/2. The special case when a1 = a2 gives a polynomial S = S2 · S4 · S′

4

– which automatically yield pairs with m4 > 0. However, both quartics cannot simultaneously factor into
quadratics after variable evaulation. As a result, these pairs give small smoothness probabilities.

k = 4. For this final choice, one applies XGCD to F (x) = (x2−a2) and G(x) = h(x)4 with h(x) = x(x2−a21).
Similar to the previous case, the best one can expect after evaluating the variables is getting pairs with
m4 > 0. However, loosening h to h(x) = x(x2 − a1) can lead to polynomial pairs with mi = 0 for i ≥ 3. For
instance this happens when a1 = 52429 and a = 82. With m1 = 3 and m2 = 6 for these pairs, they do not
result in better smoothness probabilities compared to the k = 2 pairs.

5.5 Other Degrees

We make a few comments on searches that could be made to find other degree polynomials. We leave the
implementation of these searches as future work.

Larger even degrees. The same strategy can be applied for finding polynomials of degree 14, 16 and
larger even degrees. For instance, to find degree 14 polynomials, one would do the XGCD computation of
the polynomials F (x) = (x2−a2)(x2− b2) and G(x) = x2(x2−a1)

2(x2−a22)
2(x2−a23)

2. Then find algebraic
expressions for a1 to reduce deg(S) = 10 and deg(T ) = 0 before factoring S and see if it has small degree
factors. The XGCD precomputation that would be required in these settings would be a lot more involved
compared to the searches in §5.2, §5.3 and §5.4. Additionally, expecting to find polynomial pairs with mk = 0
for all k ≥ 3 would take much longer compared to the other degrees. We note that these polynomials could
be quite useful if one needs to find smooth twins that are much larger than 512-bits.

Odd degrees. This general strategy outlined at the head of this section can not be applied in the same
way when searching for odd degree pairs. Additionally, the search for odd degree n pairs of the form f(x) =
h(x)k − C and g(x) = h(x)k only becomes fruitful when n is composite. However, most small odd integers
are prime and so this will only the cyclotomic pair: f(x) = xn − 1 and g(x) = xn.

We demostrate an alternative strategy that could be used when searching for degree 7 pairs which can be
generalised to other odd degrees. Start with the polynomials F (x) = x2(x+a)2 and G(x) = (x+a1)

2(x+a2)
2.

The result of applying the XGCD algorithm over Q(a1, a2, a)[x] gives two cubic polynomials S and T . Over
Q(a1, a2, a)[x], these polynomials are irreducible but, after evaluating the variables at rationals, they might
be reducible. This simple strategy was experimented with but the resulting polynomials pairs did not give
a good smoothness probability compared to the even degree pairs. An alternative choice for polynomial F
and G might be favourable and we leave this direction open.
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Method Where ⌈log2(p)⌉ (B, ⌈log2(B)⌉)

XGCD over Z [4, App. A] 256 (6548911, 23)

Cyclotomic

factors

[13, Ex.5] 247 (652357, 20)

[13, Ex.8] 250 (486839, 19)

[18, §6.2] 388 (20884693, 25)

PTE sieve

[14, p241] 241 (32039, 15)

[14, p245] 245 (49711, 16)

[14, p246] 246 (40151, 16)

[14, p247] 247 (40289, 16)

[14, p249] 249 (38119, 16)

[14, p250] 250 (32191, 15)

[14, p252] 252 (35291, 16)

[14, p255] 255 (52069, 16)

[14, p257] 257 (42979, 16)

[14, p376] 376 (1604719, 21)

[14, p384] 384 (3726773, 22)

[14, p512] 512 (238733063, 28)

Method Where ⌈log2(p)⌉ (B, ⌈log2(B)⌉)

XGCD over

Q[x]

10622157951 XGCD8
7 239 (69833, 17)

2944237003 XGCD8
2 241 (103001, 17)

4187092101 XGCD8
5 242 (87103, 17)

13024987664 XGCD8
6 250 (77029, 17)

19371175757 XGCD8
6 255 (77687, 17)

49076211087 XGCD8
7 257 (88897, 17)

38295031104 XGCD8
6 263 (42577, 16)

1473704676325530 XGCD8
9 370 (1723177, 21)

670305535922892 XGCD8
6 375 (826069, 20)

1543959040318783 XGCD8
7 376 (1742497, 21)

479638273270508 XGCD8
4 377 (1137329, 21)

567277683164610 XGCD8
5 378 (1812263, 21)

2054426379410766 XGCD8
7 379 (1502581, 21)

647738699898325 XGCD8
4 380 (1640941, 21)

1213633306317077 XGCD8
6 382 (1445533, 21)

491954219730809 XGCD8
1 383 (1749091, 21)

1471680421245912 XGCD8
6 384 (1140157, 21)

2062439636622939 XGCD8
6 388 (1733527, 21)

1290853259901 XGCD10
2 378 (1766099, 21)

12538742222491880 XGCD10
2 511 (34102657, 26)

14334163549504404 XGCD10
2 512 (43346161, 26)

64343906330928 XGCD12
5 510 (42485491, 26)

188327931771336 XGCD12
8 511 (24984383, 25)

192093987758508 XGCD12
8 512 (20003833, 25)

Table 3: Cryptographic-sized primes p such that p2 − 1 is B-smooth. The full list of polynomial pairs can be found
in Appendix D.

6 Experimental Results: Concrete Smooth Sandwiches

We conducted experiments to find 256, 384 and 512-bit primes p (giving 128, 192 and 256-bits of security)
such that p2−1 is smooth using these new polynomials and the strategy from §4.1. We use Table 2 to choose
appropriate smoothness bounds for these searches. Table 3 records the results from these experiments.

We use the C implementation of the sieve of Eratothenes from the PTE Python3 code5 as a starting point
for our implementation. We include sieves with multiple polynomial pairs (for the degree 8 pairs) as well as
sieves with a single pair (for the degree 10 and 12 pairs). We chose to implement Step 5a, to deal with the
smooth evaluations of the quadratic factors and implemented this in Magma to benefit from fast factoring
algorithms. This strategy is particular effective when m2 ≤ 2 and also the search using the degree 12 pair
with m2 = 3. The other pairs might benefit from using either Step 5b or Step 5c for this post-processing –
this is left as an avenue for future work.

We ran these experiments on a server (featuring a total of 96 parallel threads) with a Xeon E7-4850v2
2.30GHz, 1007GB of RAM. The timings for the experiments depends on the interval size and m2. It took
5-6 days to do the sieve of Eratothenes and took 30-60 minutes (around a day) to do the post processing
with m2 = 1 (m2 = 2 resp.) when searching an interval of size 248.

b = 256. Finding 256-bit primes with our polynomials imposes a reduced search space. For instance, using
the degree 8 pairs, the interval [231, 237] scans all 256-bit primes and the probability of finding 216-smooth
twins is at most 2−38.3. This suggests that a search with this B would be unsuccessful. So we ran our code
in this interval with B = 217. Despite the low probability, one prime was found with p2−1 being 216-smooth
which is

p = 2

(
ℓ(ℓ+ 6)(ℓ+ 13)(ℓ+ 19)

1080

)2

− 1, with ℓ = 38295031104.

5 https://github.com/microsoft/twin-smooth-integers
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In contrast, the PTE sieve [14] produced smaller smoothness bounds. There they used degree 6 pairs that
split completely into linear factors some of which are repeated – giving a larger smoothness probablity to
search space size ratio.

b = 384. When searching for larger primes, the search space limitations become less of an issue with
our polynomials. The degree 8 pairs offer the best option for decreasing the smoothness bound of 384-bit
primes.The search with B = 222 using our degree 8 pairs found plenty of primes p with p2 − 1 being 222-
smooth. Many of these 221-smooth – surpassing the smoothness bounds found with the PTE sieve. One
prime was found with p2 − 1 being 220-smooth which is

p = 2

(
ℓ(ℓ+ 6)(ℓ+ 13)(ℓ+ 19)

1080

)2

− 1, with ℓ = 670305535922892.

We also searched with the degree 10 pairs with B = 222. This produced fewer primes compared to the degree
8 search but one was found that is 221-smooth.

b = 512. This final setting will give the most gain in reducing the smoothness bound. The searches with
the PTE sieve found a few primes with p2− 1 being 228-smooth. The probabilities from Table 2 suggests the
degree 10 and 12 pairs should plenty of primes with B = 228. So we used B = 226 for our searches. Among
our degree 10 pairs, the best prime found from these searches is

p = 2

(
ℓ(ℓ+ 3)(ℓ+ 11)(ℓ+ 19)(ℓ+ 22)

7560

)2

− 1, with ℓ = 14334163549504404.

We also searched with the degree 12 pairs with m2 ≤ 3. The pair from Equation (2) with m2 = 2 gave two
primes with 225-smooth p2 − 1. The larger is

p = 2

(
ℓ(ℓ+ 14)(ℓ+ 39)(ℓ+ 67)(ℓ+ 92)(ℓ+ 106)

791683200

)2

− 1,

with ℓ = 192093987758508.

Protocol specific polynomials. None of our primes have direct impact on an isogeny-based cryptosys-
tem. They were initially proposed for B-SIDH [13] which was broken by the recent polynomial time at-
tacks [10,23,27] on SIDH [21]. Our primes can be used in countermeasures to these attacks have been
proposed [20,2] but much larger primes are required. So further experiments are needed.

The signature scheme SQIsign [19] requires primes p with a smooth divisor 2fT | p2 − 1 with T ≈ p5/4

and f as large as possible. The smoothness bound of T and the size of f controls the performance of signing.
Our primes do not have a large power of two so would not improve the state-of-the-art. However, given
the general idea from §4.1 one does not have to use the polynomial pairs found in Section 5 and one could
construct pairs that can guarantee a large power of two. This is the case for the pair (xn − 1, xn) [7,11]
since one can get a large power of two from a small power of two in x which is boosted with the nth power.
The trouble is the degree of the largest factor of xn − 1 grows with n which does not aid the smoothness
probability. Alternatively, one could construct pairs with a smaller power of x that gives better smoothness
probabilities.

As mentioned in the introduction, this work focuses on simply reducing this smoothness bound and seeing
how small they could be. As a result we did not conduct these application ideas and are left as future work.

Concluding remarks. These experimental results shows that our polynomials scale better compared to
prior polynomials – in the sense that, when searching for larger primes and twins, our polynomials produce
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smaller smoothness bounds. This is relevant in the context of isogeny-based cryptosystems that need to fields
of much larger characteristic and wish to benefit from these sorts of primes.

Despite all of this work, we have not answered the underlying question of finding cryptographic sized
smooth twins with an optimally small smoothness bound. Given the probabilistic nature of the method, one
has to sacrifice the smoothness bound and not make it as small as possible. Improving these approaches is
left open to the reader.
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A Choosing incorrect polynomials for cryptographic applications

We have to be careful in how we choose F,G in the general description given in §4.1 if we wish to find twins
whose sum is a prime. Here we describe a certain class of polynomials for which one will categorically never
find primes when using these polynomials. Thus cannot be used for cryptographic purposes. One example
of such an instance is when F (x) = (x+ 1)n and G(x) = xn. When summing the polynomial pair that arise
from this choice it will always contain 2x+ 1 as a factor.

Proposition 1. Let n be a positive integer and F,G ∈ Q[x] be polynomials with m := F − G ∈ Q. Let
Sn, Tn ∈ Q[x] be the result of applying the XGCD algorithm to the polynomials Fn := F · F · · ·F and
Gn := G ·G · · ·G. Then there is a constant Cn,F,G ∈ Q such that

F (x)Sn+1(x)− Sn(x) = Cn,F,GG(x)n(F (x) +G(x)), and

G(x)Tn+1(x)− Tn(x) = −Cn,F,GF (x)n(F (x) +G(x)).

Moreover, in the setting when F (x) = x+1 and G(x) = x, the polynomial Hn(x) := Fn(x)Sn(x)−Gn(x)Tn(x)
will always have 2x+ 1 as a factor.

Proof. By construction, F and G are coprime, so we have

F (x)nSn(x) +G(x)nTn(x) = 1, deg(Sn) = deg(Tn) < n. (*)

In order to prove the proposition, we need two key ingredients. These are formulated in the following claims.

Claim. For every n, we have the following deg(Sn) = deg(Tn) = deg(G) · (n− 1).
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Proof. Let’s start by applying the Euclidean algorithm step by step to F (x)n and G(x)n. Write F (x)n =
(G(x)+m)n = G(x)n+R1(x). It is straight forward to see that deg(r1) = deg(G)(n−1). Now write G(x)n =
Q2(x)R1(x) + R2(x) with deg(R2) < deg(R1). Again, it is straight forward to see that deg(Q2) = deg(G)
and deg(R2) = deg(G)(n − 2) since the xdeg(G)(n−2) coefficient of Q2(x)R1(x) is non-zero. One can repeat
this iteratively and deduce that deg(Qk) = deg(G) and deg(Rk) = deg(G)(n− k) for all 2 ≤ k ≤ n.

Using these polynomials, we can apply the extended Euclidean algorithm to recover the polynomials Sn

and Tn. In fact, using Theorem 17.4(iv) from [28], we obtain the desired result.

Claim. For every n, we have the following closed forms for Sn and Tn:

Sn(x) = m−n
n−1∑
k=0

(
n+ k − 1

k

)
(−G(x)/m)k, and

Tn(x) = (−m)−n
n−1∑
k=0

(
n+ k − 1

k

)
(F (x)/m)k.

Proof. Let pn(x) = m−n
∑n−1

k=0

(
n+k−1

k

)
(−G(x)/m)k. Since deg(Sn) = deg(pn) = deg(g)(n− 1) then, by the

uniqueness of Sn, Tn, it suffices to show that F (x)npn(x)− 1 is divisible by G(x)n.
Firstly, write F (x) = m(G(x)/m+1). When multiplying F (x)n and pn(x), write the result as a polynomial

in G(x) – so we have F (x)npn(x) =
∑2n−1

k=0 akG(x)k. For k < n the coefficient ak in this product is equal to

m−k
k∑

i=0

(
n

i

)(
n+ k − i− 1

k − i

)
(−1)k−i.

When k = 0 this is equal to 1. As a simple exercise in using the “Upper Negation” and Vandermonde’s
identities for binomial coefficients, when 0 < k < n this is equal to 0. This proves the closed form of Sn and
proving the closed form of Tn can be done with a similar strategy.

With the closed form for Sn it is an algebraic exercise to obtain the first of these formulas. In the process
one shows that Cn,F,G = m−2n−1(−1)n

(
2n−1
n−1

)
. One could do the same algebraic exercise for Tn but by

considering the equation (∗) for n and n+ 1, we have

F (x)n (F (x)Sn+1(x)− Sn(x)) = G(x)n (Tn −G(x)Tn+1(x)) .

This shows that the second of these formulas can easily be found from the first.
Now suppose that F (x) = x + 1 and G(x) = x. Using the derived recursive formulas for Sn, Tn and by

induction, we have Sn(−1/2) = 2n−1 and Tn(−1/2) = −(−2)n−1. Plugging −1/2 into the defining formula
for Hn gives the result. ⊓⊔

Remark 4. The concluding statement in the proposition is not specific to F (x) = x+1 and G(x) = x and it
applies more generally. In the general setting the factor that appears is the polynomial F + G. As another
remark, it is straight forward to adopt the arguments addressed above to the setting when F is a linear
transform of G (i.e. F (x) = aG(x) + b)

B New ideal PTE solutions

We demonstrate an application of this XGCD approach to find new PTE solutions that have not been
recorded in the literature. In particular, we present a new parametrised family of size 4 ideal PTE solutions
that feature one repetition on both sides. Such PTE solutions was considered to find smooth B-SIDH [13]
parameters before the polynomial time attacks on SIDH surfaced [10,23,27]. There one requires to find primes
p such that there are large smooth cofactors of p+1 and p−1 which are roughly the same size. The repetition
in both sides of these PTE solution would have made our chances of finding such parameters more profitable.
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Proposition 1 Let α, β be rational parameters and let

a = αβ(β + 1)(β2 − 2β + 3),

b = αβ(β + 1)(β2 + 1),

c = α(β2 + 1)(β2 + 2β − 1),

d = α(β + 1)(β − 1)3,

e = 4αβ, and

C = α4β3(β − 1)3(β + 1)3(β2 + 1)2.

Then the following two polynomials in Q[α, β]

f(x) = x(x+ a)2(x+ c), and

g(x) = (x+ b)2(x+ d)(x+ e)

differ by C.

For concreteness of an example, when choosing α = −16 and β = −1/2, one gets a = 17, b = 5, c = 35,
d = 27 and e = 32. One can easily show that, among all such PTE solutions for which a, b, c, d, e are all
positive integers and all coprime, this is the smallest solution – as emphasised by the solutions listed in
Table 4. Additionally, it is a straight forward algebraic computation to check the proposition however the
proof we give derives these algebraic formulae as a result of some XGCD computation.

Proof. We will work with polynomials with coefficients over a function field Q(α, β) and start out by applying
the XGCD algorithm over this field to the polynomials F (x) := x(x + a)2 and G(x) := (x + b)2 where
a, b ∈ Q(α, β) are elements of the function field to be chosen later. This results in the polynomials S, T such
that deg(S) = 1 and deg(T ) = 2 which are

S(x) =
−a+ 3b

b2(a− b)3
x+

−2a+ 4b

b(a− b)3

T (x) =
a− 3b

b2(a− b)3
x2 +

2a2 − 6ab+ 2b2

b2(a− b)3
x+

1

b2
.

Since the polynomial s is linear it only suffices to check when t factors. This happens only when its discrim-
inant is a square: disc(T ) = D2. If we let a = b(a− b)3D, b = 2a− 4b and c = 2b, then this is equivalent to
solving the equation

a2 + b2 = 2c2.

This is a genus 0 curve and solutions can be parameterised as a = 2α(β2 − 2β − 1), b = −2α(β2 + 2β − 1)
and c = 2α(β2 + 1) for α, β ∈ Q. From this recovering what a, b are in this context is straightforward
which are a = α(β2 − 2β + 3) and b = α(β2 + 1). These expressions for a, b are not quite what is stated
in the proposition since S and T (and hence the resulting polynomials f and g) are not monic. Currently
the leading coefficient of these polynomials is (a − 3b)/(b2(a − b)3) = β(β + 1)/(α4(β − 1)3(β2 + 1)2). To
make this monic we first apply the linear transform x 7→ x/(β(β + 1)) and then multiply these polynomials
through by C = α4β3(β− 1)3(β+1)3(β2 +1)2. This makes these polynomials monic and, after doing all the
algebra, the expressions for a, b, c, d, e materialise as stated in the proposition. ⊓⊔

Corollary 1. Using the language of PTE solutions from Costello et. al. [14], we get an ideal PTE solution
of size 4 of the form

[0, a, a, c] =3 [b, b, d, e].

Remark 5. The strategy laid out in the proof of the proposition can be generalised in order to obtain a
complete parametrisation of all ideal PTE solutions of size 4 not just those with this specific shape.
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a b c d e a b c d e a b c d e

17 5 35 27 32 26010 8070 88501 36501 87880 93456 29616 439921 128625 438976
86 26 221 125 216 26672 8720 314465 35937 314432 97247 31775 1114175 131072 1114047
171 51 391 256 375 28170 8790 103429 39304 102885 98021 28721 196571 163296 171875
243 75 775 343 768 29358 8610 59245 48013 52728 98825 32525 1757651 132651 1757600
524 164 2009 729 2000 31160 9320 72929 46305 70304 102476 31076 271001 148176 265625
594 174 1189 1000 1029 31437 10185 255595 42592 255507 104585 32045 307139 148955 303264
605 185 1739 864 1715 31841 10421 396611 42875 396576 105066 30966 219541 164616 203125
965 305 4331 1331 4320 33561 10461 121411 46875 120736 110619 35139 544999 151959 544000
1463 455 5135 2048 5103 33885 9945 68731 54880 61731 110942 36530 2047085 148877 2047032
1602 510 8245 2197 8232 34047 10335 90895 49152 89167 114653 34265 266555 170723 256608
1790 530 3869 2744 3645 35684 10604 79289 54000 75449 114950 36650 610589 157464 609725
2471 791 14351 3375 14336 37638 12330 493885 50653 493848 116721 38181 1415011 157216 1414875
2628 780 5785 3993 5488 39542 12410 158045 54872 157437 124011 40851 2370871 166375 2370816
2889 909 12019 4000 11979 40871 13271 359471 55296 359375 126770 38990 388229 179685 384104
3608 1160 23345 4913 23328 41445 12465 101659 60835 98784 127688 37400 255425 216513 219488
3735 1095 7519 6144 6655 44099 14459 608039 59319 608000 135812 41420 379865 194672 373977
3962 1190 9605 5832 9317 51260 16820 740921 68921 740880 138068 45500 2731625 185193 2731568
4455 1335 10591 6591 10240 52025 16925 492179 70304 492075 138635 45395 1772999 186624 1772855
5027 1595 24215 6912 24167 52415 15455 109871 81920 101871 139139 40859 283319 224000 255879
5049 1629 36019 6859 36000 52767 16575 213775 73167 212992 140670 41490 295501 219501 274360
6620 1940 13289 10985 11664 52988 15860 124745 78608 120393 141372 42420 339865 208537 329232
6830 2210 53261 9261 53240 53618 16910 231845 74088 231173 142722 45630 805285 195112 804357
7398 2250 20125 10648 19773 54824 16184 115889 85169 108000 144245 43265 345611 212960 334611
7749 2289 16459 12000 15379 59157 19425 894475 79507 894432 150993 48165 810355 206763 809248
8021 2561 43931 10976 43875 64638 20370 275965 89373 275128 151317 47265 563755 210912 560947
8987 2915 76055 12167 76032 65043 21195 658615 87808 658503 153149 50489 3132059 205379 3132000
10269 3129 28459 14739 28000 65583 19215 131455 109503 114688 162459 47619 326599 268279 288000
11556 3756 105481 15625 105456 67779 20859 208999 96000 206839 163133 53465 2194955 219488 2194803
12015 3855 73759 16384 73695 67826 22286 1070741 91125 1070696 169290 55830 3574981 226981 3574920
12386 3806 37541 17576 37125 68255 20735 183599 98415 180224 171899 51779 427319 251559 416000
13076 3836 26441 21296 23625 70686 22386 328861 97336 328125 174339 51579 374599 268119 352000
14472 4440 43105 20577 42592 71631 21231 156031 109375 147456 174420 55740 974521 238521 973360
14573 4745 142715 19683 142688 73062 21450 148525 117912 133837 174638 55970 1043165 238328 1042173
15930 4710 34069 24565 31944 75060 22620 187369 109744 182505 175644 53844 518569 250000 512169
17153 5525 116675 23328 116603 76505 22685 167171 116640 158171 179192 52520 360065 296352 317057
18074 5894 189029 24389 189000 77303 25415 1271855 103823 1271808 180080 55760 597329 253265 592704
19214 5954 64349 27000 63869 80069 26129 864059 108000 863939 186527 61535 4063295 250047 4063232
20195 5915 40391 34391 34560 85140 25980 239449 121945 235824 189335 57095 475391 276480 463391
22095 7215 245791 29791 245760 86616 25416 175441 140625 157216 189675 59475 747799 263424 744775
22473 6765 55555 32928 54043 87624 28824 1500049 117649 1500000 189945 55965 396019 298144 365835
22572 6660 47545 35152 44217 90801 28101 299251 127776 296875 190359 62439 2688079 256000 2687919
22715 6755 50759 34295 48384 91034 28934 453509 125000 452709 193698 57630 434485 292008 414613
23579 7619 176039 32000 175959 91490 27230 205781 137781 196520

Table 4: A list of all degree 4 polynomial pairs of the form given in Proposition 1 and Corollary 2 with a, b, c, d, e > 0
and b < a < 200000 and d < e, and gcd(a, b, c, d, e) = 1.
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Corollary 2. Suppose we have an ideal PTE solution of the form [0, a, a, c] =3 [b, b, d, e] with a > b and
a, b, c, d, e > 0. Then we have

3b < a < (2 +
√
2)b.

Proof. By the parametrisation of such solutions given in Proposition 1, we have

a

b
=

β2 − 2β + 3

β2 + 1
,

for some β ∈ Q. As a rational function, the right hand expression attains a global maximum at β = 1−
√
2.

Thus, after evaluation, we get a/b < 2 +
√
2 which proves the upper bound.

For the lower bound, suppose that b < a ≤ 3b. Once again, substitute the parametric expressions for a
and b. After solving the inequality, one deduces that α ≥ 0 and either β < −1 or 0 < β < 1.

Recall that d and e can be written in terms of this parametrisation as d = α(β+1)(β− 1)3 and e = 4αβ.
If β < −1 then, since α ≥ 0, we must have e = 4αβ < 0. Similarly, if 0 < β < 1 then d = α(β+1)(β−1)3 < 0.
In either case, this contradicts to the positivity of d and e and thus proves the intended lower bound. ⊓⊔

As a consequence of the above proof, we must have α < 0 and −1 < β < 0. Hence we can write β = −p0/q0
for some positive coprime integers p0, q0 with p0 < q0. Moreover, if the PTE solution is normalised in the
sense that not only does it satisfy the condition given in the above Corollary but also a, b, c, d, e are integers
such that gcd(a, b, c, d, e) = 1, then we must have α = −q40 . We note that this is a necessary condition to find
such normalised solutions but is not sufficient. Substituting these in, one gets an integral parametrisation of
such PTE solutions rather than a rational one.

Using this parameterisation with the help of the bounds given in Corollary 2, one can find concrete PTE
solutions of this type. Table 4 lists all possible solutions of this type such that 0 < b < a < 200000.

Alternative Strategy to Section 5.2. The search for degree 8 polynomials that was mentioned in §5.2
have almost all of the repeated factors are on one side of the polynomial pair. Inspired by these new PTE
solutions, we could attempt to find degree 8 polynomial pairs where the repeated factors are balanced between
each side of the pair. To do this, we can either use the parameterisations from Proposition 1 and Corollary 2.
Alternatively we can be more direct and apply XGCD to F (x) = (x2 − a1)

2(x2 − a22) and G(x) = (x2 − a2)2

giving polynomials with deg(S) = 4 and deg(T ) = 2. Again, after evaluating the variables a1, a2 and a, S
may be factored into at most quadratic factors. In particular, up to permutations, only two examples have
been found with m2 = 1. The first of these occurs when a1 = (41/2)2, a2 = 85/2 and a = 71/2 and results
in the polynomial pair

f(x) = (x+ 20)2(x+ 48)(x+ 63)(x+ 93)2(x2 + 111x− 70), and

g(x) = x(x+ 13)(x+ 35)2(x+ 76)2(x+ 98)(x+ 111),

which differ by C = 701168832000. The second occurs when a1 = 4729, a2 = 9 and a = 61 and results in the
polynomial pair

f(x) = x(x+ 11)2(x+ 65)(x+ 79)(x+ 133)2(x+ 144), and

g(x) = (x+ 16)(x+ 63)(x+ 81)(x+ 128)(x2 + 144x+ 455)2,

which differ by C = 2163606681600.
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C List of Polynomial Pairs

Here we list all polynomal pairs PTEn
i and XGCDn

j that were used in Table 2 and Table 3 for computing the
smoothness probabilities and presenting the resulting smooth twins (resp.).

PTE6
1 =

{
f(x) = x(x+ 3)(x+ 5)(x+ 11)(x+ 13)(x+ 16), and
g(x) = (x+ 1)2(x+ 8)2(x+ 15)2.

PTE6
2 =

{
f(x) = x(x+ 5)(x+ 6)(x+ 16)(x+ 17)(x+ 22), and
g(x) = (x+ 1)(x+ 2)(x+ 10)(x+ 12)(x+ 20)(x+ 21).

PTE8
1 =

{
f(x) = x(x+ 4)(x+ 9)(x+ 23)(x+ 27)(x+ 41)(x+ 46)(x+ 50), and
g(x) = (x+ 1)(x+ 2)(x+ 11)(x+ 20)(x+ 30)(x+ 39)(x+ 48)(x+ 49).

PTE8
2 =

{
f(x) = x(x+ 9)(x+ 10)(x+ 29)(x+ 38)(x+ 57)(x+ 58)(x+ 67), and
g(x) = (x+ 2)(x+ 3)(x+ 18)(x+ 22)(x+ 45)(x+ 49)(x+ 64)(x+ 65).

PTE8
3 =

{
f(x) = x(x+ 14)(x+ 19)(x+ 43)(x+ 57)(x+ 81)(x+ 86)(x+ 100), and
g(x) = (x+ 1)(x+ 9)(x+ 30)(x+ 32)(x+ 68)(x+ 70)(x+ 91)(x+ 99).

PTE10 =

{
f(x) = x(x+ 12)(x+ 125)(x+ 213)(x+ 214)(x+ 412)(x+ 413)(x+ 501)(x+ 614)(x+ 626), and
g(x) = (x+ 5)(x+ 6)(x+ 133)(x+ 182)(x+ 242)(x+ 384)(x+ 444)(x+ 493)(x+ 620)(x+ 621).

PTE12 =


f(x) = x(x+ 11)(x+ 24)(x+ 65)(x+ 90)(x+ 129)(x+ 173)(x+ 212)(x+ 237)(x+ 278)

(x+ 291)(x+ 302), and
g(x) = (x+ 3)(x+ 5)(x+ 30)(x+ 57)(x+ 104)(x+ 116)(x+ 186)(x+ 198)(x+ 245)(x+ 272)

(x+ 297)(x+ 299).

Now we list the pairs XGCDn
j found in this work and give only a small sample of such polynomial pairs

compared to the total number. This additionally includes an example that can be found from a degree 6
search which can be used to compare with the degree 6 PTE polynomials.

XGCD6 =

{
f(x) = x(x+ 1)(x+ 2)(x+ 4)(x+ 5)(x+ 6), and
g(x) = (x+ 3)2(x2 + 6x+ 2)2.

XGCD8
1 =

{
f(x) = (x+ 1)(x+ 3)(x+ 4)(x+ 6)(x2 + 7x− 2)(x2 + 7x+ 4), and
g(x) = x2(x+ 2)2(x+ 5)2(x+ 7)2.

XGCD8
2 =

{
f(x) = x(x+ 1)(x+ 3)(x+ 5)(x+ 7)(x+ 8)(x2 + 8x− 8), and
g(x) = (x+ 2)2(x+ 6)2(x2 + 8x− 5)2.

XGCD8
3 =

{
f(x) = x(x+ 7)(x2 + 2x+ 5)(x2 + 7x+ 20)(x2 + 12x+ 40), and
g(x) = (x+ 2)4(x+ 5)4.

XGCD8
4 =

{
f(x) = x(x+ 4)(x+ 7)2(x+ 10)(x+ 14)(x2 + 14x+ 9), and
g(x) = (x+ 5)2(x+ 9)2(x2 + 14x+ 4)2.

XGCD8
5 =

{
f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 12)(x2 + 13x− 6)(x2 + 13x+ 18), and
g(x) = x2(x+ 3)2(x+ 10)2(x+ 13)2.

XGCD8
6 =

{
f(x) = (x+ 1)(x+ 4)(x+ 9)(x+ 10)(x+ 15)(x+ 18)(x2 + 19x− 12), and
g(x) = x2(x+ 6)2(x+ 13)2(x+ 19)2.

XGCD8
7 =

{
f(x) = (x+ 2)(x+ 9)(x+ 18)(x+ 24)(x+ 33)(x+ 40)(x2 + 42x− 55), and
g(x) = x2(x+ 13)2(x+ 29)2(x+ 42)2.

XGCD8
8 =

{
f(x) = x(x+ 7)(x+ 9)(x+ 38)(x+ 40)(x+ 47)(x2 + 47x+ 622), and
g(x) = (x+ 2)2(x+ 19)2(x+ 28)2(x+ 45)2.

XGCD8
9 =

{
f(x) = x(x+ 9)(x+ 10)(x+ 31)(x+ 34)(x+ 55)(x+ 56)(x+ 65), and
g(x) = (x+ 20)2(x+ 45)2(x2 + 65x+ 154)2.
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XGCD10
1 =

{
f(x) = x(x+ 1)(x+ 3)(x+ 11)(x+ 13)(x+ 14)(x2 + 11x+ 8)(x2 + 17x+ 80), and
g(x) = (x+ 6)2(x+ 7)2(x+ 8)2(x2 + 14x+ 5)2.

XGCD10
2 =

{
f(x) = (x+ 1)(x+ 4)(x+ 10)(x+ 12)(x+ 18)(x+ 21)(x2 + 20x− 9)(x2 + 24x+ 35), and
g(x) = x2(x+ 3)2(x+ 11)2(x+ 19)2(x+ 22)2.

XGCD10
3 =

{
f(x) = (x+ 1)(x+ 7)(x+ 8)(x+ 14)(x+ 15)(x+ 21)(x2 + 19x− 10)(x2 + 25x+ 56), and
g(x) = x2(x+ 11)2(x+ 22)2(x2 + 22x+ 77)2.

XGCD10
4 =

{
f(x) = (x+ 2)(x+ 18)(x+ 22)(x+ 36)(x+ 40)(x+ 56)(x2 + 49x− 60)(x2 + 67x+ 462), and
g(x) = x2(x+ 12)2(x+ 29)2(x+ 46)2(x+ 58)2.

XGCD10
5 =

{
f(x) = (x+ 6)(x+ 20)(x+ 22)(x+ 40)(x+ 42)(x+ 56)(x2 + 57x− 90)(x2 + 67x+ 220), and
g(x) = x2(x+ 12)2(x+ 31)2(x+ 50)2(x+ 62)2.

XGCD12
1 =

f(x) = (x+ 2)(x+ 3)(x+ 5)(x+ 6)(x2 + 8x− 1)(x2 + 8x+ 2)(x2 + 8x+ 4)
(x2 + 8x+ 10), and

g(x) = x2(x+ 1)2(x+ 7)2(x+ 8)2(x2 + 8x+ 14)2.

XGCD12
2 =

f(x) = (x+ 1)(x+ 3)(x+ 4)(x+ 9)(x+ 10)(x+ 12)(x2 + 13x− 3)(x2 + 13x+ 6)
(x2 + 13x+ 45), and

g(x) = x2(x+ 6)2(x+ 7)2(x+ 13)2(x2 + 13x+ 21)2.

XGCD12
3 =

f(x) = x(x+ 3)(x+ 6)(x+ 8)(x+ 11)(x+ 14)(x2 + 14x+ 9)(x2 + 14x+ 15)
(x2 + 14x+ 39), and

g(x) = (x+ 2)2(x+ 5)2(x+ 9)2(x+ 12)2(x2 + 14x+ 3)2.

XGCD12
4 =

f(x) = (x+ 1)(x+ 6)(x+ 7)(x+ 9)(x+ 10)(x+ 15)(x2 + 16x− 6)(x2 + 16x+ 18)
(x2 + 16x+ 84), and

g(x) = x2(x+ 3)2(x+ 13)2(x+ 16)2(x2 + 16x+ 78)2.

XGCD12
5 =

f(x) = (x+ 1)(x+ 3)(x+ 7)(x+ 10)(x+ 33)(x+ 36)(x+ 40)(x+ 42)(x2 + 43x− 24)
(x2 + 43x+ 396), and

g(x) = x2(x+ 12)2(x+ 31)2(x+ 43)2(x2 + 43x+ 186)2.

XGCD12
6 =

f(x) = x(x+ 9)(x+ 20)(x+ 30)(x+ 59)(x+ 69)(x+ 80)(x+ 89)(x2 + 89x+ 330)
(x2 + 89x+ 2100), and

g(x) = (x+ 14)2(x+ 44)2(x+ 45)2(x+ 75)2(x2 + 89x+ 120)2.

XGCD12
7 =

f(x) = x(x+ 21)(x+ 60)(x+ 69)(x+ 71)(x+ 80)(x+ 119)(x+ 140)(x2 + 140x− 99)
(x2 + 140x+ 2301), and

g(x) = (x+ 20)2(x+ 63)2(x+ 77)2(x+ 120)2(x2 + 140x− 51)2.

XGCD12
8 =

f(x) = (x+ 4)(x+ 7)(x+ 22)(x+ 50)(x+ 56)(x+ 84)(x+ 99)(x+ 102)(x2 + 75x− 136)
(x2 + 137x+ 3150), and

g(x) = x2(x+ 14)2(x+ 39)2(x+ 67)2(x+ 92)2(x+ 106)2.

XGCD12
9 =

f(x) = x(x+ 43)(x+ 52)(x+ 138)(x+ 147)(x+ 190)(x2 + 97x+ 810)(x2 + 190x+ 2856)
(x2 + 283x+ 18480), and

g(x) = (x+ 3)2(x+ 28)2(x+ 70)2(x+ 120)2(x+ 162)2(x+ 187)2.
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