A Scalable Coercion-resistant Blockchain Decision-making Scheme

Zeyuan Yin Bingsheng Zhang Andrii Nastenko
Zhejiang University Zhejiang University 1OG Singapore Pte Ltd
zeyuanyin @zju.edu.cn bingsheng @ zju.edu.cn andrii.nastenko @iohk.io

Roman Oliynykov Kui Ren

10G Singapore Pte Ltd;
V.N.Karazin Kharkiv National University, Ukraine
roman.oliynykov@iohk.io

Abstract

Typically, a decentralized collaborative blockchain decision-
making mechanism is realized by remote voting. To date, a
number of blockchain voting schemes have been proposed;
however, to the best of our knowledge, none of these schemes
achieve coercion-resistance. In particular, for most blockchain
voting schemes, the randomness used by the voting client can
be viewed as a witness/proof of the actual vote, which enables
improper behaviors such as coercion and vote-buying. Unfor-
tunately, the existing coercion-resistant voting schemes can-
not be directly adopted in the blockchain context. In this work,
we design the first scalable coercion-resistant blockchain
decision-making scheme that supports private differential
voting power and 1-layer liquid democracy as introduced by
Zhang et al. (NDSS’19). Its overall complexity is O(n), where
n is the number of voters. Moreover, the ballot size is reduced
from Zhang et al.’s ®(m) to O(1), where m is the number
of experts and/or candidates. Its incoercibility is formally
proven under the UC incoercibility framework by Alwen et
al. (Crypto’15). We implement a prototype of the scheme and
the evaluation result shows that our scheme’s tally execution
time is more than 6x faster than VoteAgain (USENIX’20) in
an election with over 10,000 voters and over 50% extra ballot
rate.

1 Introduction

Blockchain technology enjoys its popularity since the in-
vention of Bitcoin in 2008, and it continues to reshape our
digital society with its property for decentralization, trans-
parency, and security. Democracy on the blockchain has the
potential to transform the way political systems function, cre-
ating a more equitable and inclusive future.

Democracy on the blockchain. In a democratic blockchain
system, stakeholders have the right to participate in the
decision-making process through verifiable remote voting
where everyone can express his opinion. Usually, in a
blockchain voting, each participant’s voting power is different

Zhejiang University
kuiren @ zju.edu.cn

and is proportional to his stake, which is called differential
voting power in this work. This is one of the main differences
between blockchain voting and conventional elections, where
typically one participant has one vote. On the other hand,
direct democracy might not always be the best choice for
a blockchain decision-making process. In practice, to make
a wise decision, a stakeholder needs to rationally put sub-
stantial effort into informing himself, and also expert knowl-
edge throughout the process. Therefore, letting elites lead
the decision-making might be an optimization in most cases.
Some systems such as ZCash [6] use a small committee (con-
sisting of several experts) to make the decisions; however, this
has the risk of centralization, i.e., if the committee behaves
maliciously, there is no mechanism for stakeholders to alter
their decisions whatsoever.

The concept of liquid democracy has been proposed to
achieve better collaborative intelligence. Liquid democracy
(also known as delegative democracy [19]) is a hybrid of
direct democracy and representative democracy. It provides
the benefits of both systems (whilst avoiding their drawbacks)
by enabling organizations to take advantage of experts in a
blockchain voting process, as well as giving the stakeholders
the opportunity to vote. For each proposal, a voter can either
vote directly or delegate his voting power to an expert who is
knowledgeable and renowned in the corresponding area.

Zhang et al. [31] proposed a treasury system that supports
liquid democracy. However, their scheme has the following
two drawbacks: (i) the ballot size is linear in the number of
candidates and/or experts; (ii) it is not coercion-resistant.
The coercion problem in remote voting. In real-world vot-
ing, a voting booth gives a voter privacy and protects him
from being coerced. However, in remote voting, the voting
procedure can be viewed as a probabilistic algorithm that
takes as input a random coin and the voter’s choice. If the
output is published on the bulletin board, then we have a
problem: the input and randomness used in the voting pro-
cedure can be viewed as a proof of casting a certain ballot,
and anyone can run the probabilistic algorithm again to verify
it, which makes coercion and vote-buying possible. Many

well-known e-voting systems are not coercion-resistant, such
as snapshot [29], Helios [2], and prét a voter [28]. What’s
worse, in the blockchain context, vote-buying becomes easier
with the help of smart contracts.

To address the coercion/vote-buying problem, several
schemes are proposed. Generally, coercion-resistant voting
can be divided into three categories: fake credentials [4, 14,
241, re-vote [1,21, 25, 26], and secure hardware [3,27]. In
a coercion-resistant voting scheme using fake credentials, a
voter holds both real and fake credentials. If coerced, a voter
will cast a ballot using a fake credential, which is indistin-
guishable from the real one in the coercer’s view, and it will
be silently uncounted in the tally phase. In a re-voting scheme,
a voter can cast his ballot multiple times and only the last one
will be tallied. Coercion-resistance relies on that the voter can
cast the ballot again after the coercer leaves. In the schemes
using secure hardware, the secure hardware has its internal
randomness source and can do probabilistic encryption for the
voter so that the voter can lie about what has been encrypted.
Coercion-resistance v.s. deniability. All types of coercion-
resistant voting schemes must give a voter deniability
through some technique. Concretely, in “fake credentials"
schemes, the election authority will provide randomness in
the credential-related elements, and generate a designated
verifier proof of correctness. To deceive the coercer, a voter
can generate a fake credential and claim it as the real one by
simulating the designated verifier proof. Namely, the regis-
tration procedure is deniable. In re-vote schemes, the re-vote
operation must be deniable, i.e., the tally procedure will not
reveal if a voter has re-voted. In the schemes using secure
hardware, the secure hardware hides the randomness in the
ciphertext so that a voter can claim that it is encryption of
another candidate, i.e., the encryption operation is deniable.
Challenges. Could we apply the aforementioned techniques
to realize a coercion-resistant voting scheme in the blockchain
context? It turns out to be a non-trivial task. First of all, se-
cure hardware based solutions might not be suitable for the
blockchain setting, because an open blockchain allows anyone
to join and leave freely and not all devices are equipped with
a secure hardware, such as a trusted execution environment
(TEE).

How about “fake credentials” and “re-voting” schemes?
Can we adapt those schemes with differential voting power?
There are still some challenges. For instance, JCJ [24] is a
well-known coercion-resistance voting scheme, and it can
be modified to support differential voting power; however,
the scheme has O(n?) complexity due to the pair-wise plain-
text equivalence tests (PETs), where n is the total number
of votes, limiting its scalability. On the other hand, although
the recently proposed scheme, VoteAgain [26], offers quasi-
linear complexity, its verifiability relies on a trusted third
party (TTP), which is undesirable in the blockchain setting.
The best-known candidate is Aradjo et al.’s “fake credentials”
scheme [4], which achieves O(n) complexity without rely-

ing on TTP for verifiability. Unfortunately, the credential of
Aratjo et al.’s scheme is in the form of two group elements
satisfying a linear relationship, and this makes it unable to be
modified trivially to support differential voting power. To the
best of our knowledge, no proper coercion-resistant voting
scheme in the literature can support differential voting power
and achieve O(n) complexity at the same time. Hereby, we
are asking the question:

Can we design a scalable (linear complexity)
coercion-resistant delegated voting scheme for
blockchain decision-making?

1.1 Our Approach

In this work, we answer the above question affirmatively
by proposing a new coercion-resistant voting scheme. Our
scheme belongs to the “fake credentials" category. We start
with the well-known JCJ scheme [24]. In the JCJ scheme,
each encrypted credential is put on the bulletin board in the
registration phase, and each ballot generally consists of an
encrypted candidate and an encrypted credential. In the tally
phase, by a shuffle and pair-wise PETs on the credentials, the
ballots with fake credentials will be silently eliminated.

It is intuitive that one can associate credentials with voting
power in the JCJ scheme to support differential voting power,
i.e., each encrypted credential is tied with an encrypted voting
power and we still perform PETs on the encrypted credentials
in the tally phase. However, the scheme will have O(n?) com-
plexity, so it does not scale well when the number of voters
is large. To improve scalability, we propose a novel “dummy
voting power” technique. The key idea is that we allow voters
to publish (encrypted) fake credentials associated with (en-
crypted) zero voting power on the bulletin board. Then, in
the tally phase, after shuffle re-encrypting the real and fake
credentials, all the credentials can be decrypted. In this way,
we transform the pair-wise PETs into “decrypt and matching”,
achieving O(n) complexity (counting cryptographic opera-
tions only).

To achieve delegation, we design a “two-layer homomor-
phic tally” procedure consisting of “delegation calculation”
and “final tally calculation”. In layer one, delegation is calcu-
lated by decrypting voters’ choices and adding the delegated
voting power to the corresponding experts. In layer two, the
final tally result is calculated by decrypting experts’ choices
and adding experts’ voting power together with voters’ di-
rect votes. Thanks to the additive homomorphism of the en-
cryption scheme, voters’ ballots and voting power are hidden
throughout the tally.

Combining the “dummy voting power” technique and “two-
layer tally” procedure together, we build the first coercion-
resistant voting scheme that has linear complexity and sup-
ports private differential voting power and liquid democracy.
We perform the security analysis under the UC (universal

Table 1: Comparison of voting schemes. Here, n is the number of voters and m is the number of election candidates. Del. means
delegation. Crypto state means that the voter needs to keep cryptographic secret from the coercer. EA stands for election authority.
Hardware means that the property is guaranteed by secure hardware. An item in bold text means that our scheme is the best in

this aspect.

Diff. voting Del. Bgllot Complexity Crypto Bgllot Verifiability Coe.rcion-

power size state privacy resistant

JCJ [24] No No | O(1) o(n?) Yes t-out-of-k | trustnoone | trust EA

ABBT [4] No No | O(1) O(n) Yes t-out-of-k | trustnoone | trust EA

AKL+ [1], LHK [25] No No | O(1) o(n?) Yes | t-out-of-k | trustno one secret

credential

VoteAgain [26] No No | O(1) | O(nlogn) No t-out-of-k trust EA trust EA

Secure hardware [3,27] No No | O(1) O(n) No hardware hardware hardware
Snapshot [29] Yes No | O(1) O(n) - t-out-of-k | trust no one -
ZOB [31] Yes Yes | O(m) O(mn) - t-out-of-k | trust no one -

Our scheme Yes Yes | O(1) O(n) Yes | t-out-of-k | trust no one | trust EA

composable) framework, and we prove that our scheme is UC
coercion-resistant [3]. We implement the scheme and eval-
uate its performance. Results show that our scheme’s tally
execution time is more than 6x faster than VoteAgain [26] in
elections with over 10,000 voters and over 50% extra ballot
rate’.

Note: Vote-buying via stake-buying. In blockchain voting, typ-
ically a voter’s voting power is proportional to his stake. Since
blockchain coins are publicly traded in open exchanges, one
may argue that it is always possible to realize vote-buying
via stake-buying. However, acquiring sufficient voting power
through stake-buying is impractical. For an adversary to be
successful, he needs to purchase a substantial amount of stake.
Here’s the catch: When buying from an exchange, there is
often limited availability of stakes. Furthermore, rapidly pur-
chasing large volumes of stake will inevitably drive up the
price due to the basic principles of supply and demand. This
surge in price could put the adversary’s capital at risk. In con-
trast, vote-buying is a much simpler method and is detrimental
to the decision-making process. Our coercion-resistant voting
scheme prevents vote-buying on the blockchain.

1.2 Related Work

Coercion-resistant voting can be roughly split into three
classes: fake credentials [4, 8, 11, 14, 15, 24], re-vote [1,21,
25, 26], and secure hardware [3, 27]. JCJ [24] is the first
paper that introduces the “fake credentials" type of coercion-
resistant voting. In JCJ, each ballot contains an encrypted
credential and there is a list of encrypted valid credentials in
the bulletin board. In the tally phase, by pair-wise plaintext
equivalence tests (PETs), the ballots with invalid credentials
will be eliminated, but the pair-wise PETs obviously have
O(n?) complexity. Other “fake credentials" schemes such

n VoteAgain, it means that more than 50% voters re-voted once; in our
scheme, it means that more than 50% voters cast a fake ballot.

as [4, 14] improve the time complexity and achieve better
properties such as everlasting privacy. The re-voting type
of coercion-resistant voting allows a voter to cast multiple
ballots and the tally procedure will only count the last one.
Achenbach et al. [1] and Locher et al. [25] utilize a deniable
vote update mechanism to realize re-voting with quadratic
complexity. The Norwegian Internet voting protocol [21]
and VoteAgain [26] achieve (quasi-)linear complexity, but
they both need a trusted third party for verifiability. Schemes
based on secure hardware [3,27] are easy to achieve coercion-
resistance, but secure hardware is a strong assumption.

On the other hand, blockchain voting is becoming more
and more popular nowadays. Snapshot [29] is a popular DAO
(Decentralized Autonomous Organization) voting platform
that frees voters from gas fees. It uses IPFS [7] to store the
proposals and votes, making the voting process off-chain and
gas-free. Zhang et al. [31] proposes a treasury system for
blockchain governance. It supports liquid democracy and is
provably secure, but its ballot size is linear to the candidate
number. Besides, to the best of our knowledge, none of the
existing blockchain voting schemes are coercion-resistant.

Finally, Table | gives a comparison between our scheme
and previous work.

2 Preliminaries

Notations. Let A € N be the security parameter. Let G be a
cyclic group of prime order p with group generator g. We
abbreviate probabilistic polynomial time as PPT.

2.1 (Lifted) EIGamal Encryption

ElGamal encryption scheme consists of three PPT algo-
rithms: the key generation algorithm EC.Keygen(G,g,p)
takes as input the group parameters and outputs a public-
private key pair (pk := g% sk); the encryption algorithm

EC.Encpk(m) takes as input the public key pk and the message
m € G and outputs the ciphertext ¢ := (c1,¢2) := (g",m-pk’);
the decryption algorithm EC.Decg(c) takes as input the se-
cret key sk and the ciphertext ¢ and outputs the message
m:=cy/ck.

ElGamal encryption is a re-randomizable encryption
scheme. The re-encryption algorithm EC.Randp(c) takes as
input a ciphertext ¢ := (c1,¢2) and outputs the re-randomized
ciphertext ¢’ := (¢, c}) == (g"-c1,h" - c2).

Lifted ElGamal encryption is a variant of ElGamal encryp-
tion. The encryption algorithm LE.Encpk(m) takes as input
the public key pk and the message m and outputs the cipher-
text ¢ := (c1,¢2) := (g",¢™ - pk"); the decryption algorithm
LE.Dec(c) takes as input the secret key sk and the cipher-
text ¢ and outputs the message m := Dlog(c2/c$¥), where
Dlog(x) outputs the discrete logarithm of x (note that com-
puting the discrete logarithm is inefficient, thus the message
space should be small in practice).

Clearly, the (lifted) EIGamal encryption scheme is IND-
CPA secure under the DDH assumption (see Appendix B
for formal definition). Lifted ElGamal encryption is ad-
ditive homomorphic, i.e., LE.Encpi(mi) - LE.Encpe(m2) =
LE.Encpk(m1 +my). Besides, (lifted) ElGamal encryption can
be distributed as a threshold encryption scheme [20].

2.2 Signature

A signature scheme Sig is defined by three PPT algorithms:
A key generation algorithm Sig.Keygen(1%) that generates
a public-private key pair (pk,sk); a signing algorithm G «+
Sig.Sign,, (m) that generates a signature on message m; and a
verification algorithm Sig.Verify, (c,m) that outputs 1 if and
only if ¢ is a valid signature on m.

A secure signature scheme is existentially unforgeable un-
der chosen message attack (see Appendix B for formal defini-
tion).

2.3 Non-interactive Zero-knowledge Proof
(NIZK)

A non-interactive zero-knowledge proof (NIZK) consists of
four PPT algorithms: {Setup, Prove, Verify, Sim} and is com-
plete, sound, and zero-knowledge (see Appendix B for formal
definition). Our scheme utilizes six zero-knowledge proofs
for proving: (i) voting power correctness (NIZKower); (ii) El-
Gamal encryption plaintext knowledge (NIZKynowledge); (iii)
re-encryption correctness (NIZKpyr_reenc); (iv) knowledge
of secret key (NIZKgy); (v) shuffle correctness (NIZKgpyfrie);
and (vi) decryption correctness (NIZKpe.). We will give the
details of these NIZKs in Appendix A.

r—(Functionality T[’)’KEG [G]}

The ideal functionality TISPZG [G] interacts with key generators
P:={P,...,P}, an ideal adversary S. It’s parameterized
with threshold 7. Denote Z. as the set of corrupted generators,
B, := P\ P, as the set of honest generators, and |%,| <t —1.
Fpkg maintains a set A(initially set to 0).

Upon receiving (CORRUPTSHARES,sid, ({/,sk;}p,ep.)) from
S:
* Pick sk <~ Z,;, and compute pk := gSk;
* Construct random polynomial F(x) := Z'b;lo ap - x” under
the restriction F(j) =sk; for Pj € 7., and F(0) = sk;
+ Compute sk; := F(i) and ppk; = g for i € [n];
* Send (KEYGEN,sid,{pk;}c[,) to S and send
(KEYGEN,sid,sk;) to P,,i € |n].

Upon receiving (READPK,sid) from any party, return
(READPK,sid, pk, {ppk;}ic[s) to the requestor.

Figure 1: DKG ideal functionality fﬁ;‘lﬁc G]

,—‘ Functionality Gpgg

The ideal functionality Gpgg is globally available to all partic-
ipants. It is parameterized with a predicate Validate.

Upon initialization, set Storage := 0.
Upon receiving (READ,sid) from P:
* let val := Storage|sid];
* return (READ;sid,val) to the requestor.
Upon receiving (WRITE, sid,inp) from P, do the following:
* let val := Storage|sid];
« if Validate(val,inp) =1, then set

Storage|[sid] := val||inp, return (RECEIPT,sid) to the
requestor;

* Otherwise, return (REJECT,sid) to the requestor.

Figure 2: Functionality Gpgg

Functionality Fc

The ideal functionality 5. proceeds as follows.

» Upon receiving (SEND,sid,R,m) from a party S, send
(SENT,sid,S,R,|m|) to the adversary S and send
(SENT,sid,S,m) to R.

* Ignore other requests.

Figure 3: Functionality .

2.4 Universal Composibility

We perform security analysis under the Universally Com-
posable (UC) framework [9, 10]. In the UC framework, a pro-
tocol is represented by a set of interactive Turing machines
(ITMs). Each ITM contains the program to be run by a party.
Security is based on the indistinguishability between the real
world execution EXECyy 4 7 and the ideal world execution
EXECy s z. In EXECyy 4,7, the parties run protocol IT with
the adversary 4. In EXECy¢ s z, the parties interact with the
ideal functionality ¥ with the ideal adversary (simulator) S.
If for all PPT adversary A4 there exists a PPT simulator .S such
that no PPT environment Z can distinguish the real world and
the ideal world, then we say that the protocol IT UC-realizes
the ideal functionality .

2.5 Distributed Key Generation

Our voting scheme utilizes a distributed key generation
protocol for threshold key generation. We use an ideal func-
tionality fé’IéG [30] to abstract the DKG procedure. The func-

tionality ,‘FS"IQG is depicted in Fig. 1. It interacts with key gen-
erators P := {Py,..., P} to generate a public key pk and deal
the secret key shares sk; to P;. Meanwhile, it publishes each
party P;’s partial public key ppk;. To realize TS’IK{G, we can use
the threshold distributed key generation protocol proposed by
Gennaro et al. [20].

2.6 Public Bulletin Board

For a voting scheme, a public bulletin board is needed for
broadcasting the ballots and other auxiliary information such
as zk proofs. Formally, we use a shared functionality [10]
Gpeg to model the public bulletin board, as depicted in Fig. 2.
Gpeg has two interfaces: READ and WRITE, and it guarantees
the anonymity of the sender. In practice, the blockchain serves
as the public bulletin board.

2.7 Secure Channel

Coercion-resistant voting requires a secure channel be-
tween a voter and the authority. We model it as a UC secure
channel functionality ., as depicted in Fig. 3. Note that %
only deals with transmission of a single message. Secure chan-
nel for multiple messages is obtained by invoking multiple
sessions of Fq..

3 System Overview

In this section, we start by modifying the JCJ protocol [24]
to build a coercion-resistant voting scheme that supports dif-
ferential voting power with O(n?) complexity. Then, we give
the intuition and details of our novel “dummy voting power”

Regiatration

[o4]

\ [va,]

lon] pair-wise PETs :
[va.]

Ballots
([v1], [o1], P f) / l ; t
. remove Pf’ P
' & shuffle final tally
([van], [o2nl, P £) re-encrypt result

Figure 4: JCJ original protocol

Regiatration

(1] [enD)

N (AN

fou lonl)| :
Ballots pairwise PETS | 1 [o])

{oa]. 1],) /
: remove Pf

) & shuffle
([van], [o2n], Pf) re-encrypt

decrypt candidates
& add voting power
& decrypt voting power sum

final tally
result

Figure 5: JCJ protocol with differential voting power

technique and “two-layer tally” procedure. Finally, we pro-
vide an overview of our scheme.

3.1 The JCJ Protocol

We first recall the well-known JCJ protocol [24] and show
how to modify it to support differential voting power.
The original protocol. As mentioned above, JCJ is the first
protocol that introduces the concept of “fake credentials”.
Generally, it works as follows. For simplicity, we use [x] to
denote encryption of x in this sec. 3.1 and 3.2. In the regis-
tration phase, a voter authenticates to the election authority
(EA) and the EA generates a credential 6 < G. Then, the
EA publishes S = [o] on the PBB and sends 6 to the voter
along with a designated verifier proof that § is encryption of
. In the voting phase, a voter cast a ballot B = ([v], [o], Pf)
where [v] is the encryption of a candidate v, Pf includes the
NIZK proofs of knowledge of v and &, and a NIZK proof
that [v] encrypts a valid candidate. If a voter is coerced, he
generates a random ¢’ <— G and claims it as the real creden-
tial by simulating the designated verifier proof. In the tally
phase, the trustees shuffle the ballots and perform pair-wise
PETs on encrypted credentials to eliminate the ballots with
fake credentials. Finally, the trustees decrypt the candidates
and tally the votes. The overview of JCJ protocol is shown in
Fig. 4.
Supporting differential voting power. We can see that if we
associate each credential with voting power, then the system
can easily support differential voting power. More specifically,
in the registration phase, the EA publishes S = ([c],[o]) on

the PBB, where [o] is the encrypted credential and [o] is
the encrypted voting power under an additive homomorphic
encryption scheme. After the pair-wise PETs, we get tuples of
([v]; [ee]), where [[v] is the encrypted candidate and [o] is the
encrypted voting power. Then, the trustees decrypt the candi-
dates and add the voting power by additive homomorphism.
The overview of the modified JCJ protocol with differential
voting power is shown in Fig. 5.

3.2 Our Technique

In this part, we will illustrate our novel techniques that can
achieve O(n) complexity and delegated voting.
Dummy voting power. We can see that in the JCJ protocol,
the pair-wise PETs cause O(n?) complexity. The idea is that:
if we allow voters to publish the fake credentials on the PBB,
but associate them with dummy (zero) voting power, then
we can directly decrypt the credentials instead of performing
PETs in the tally phase. In other words, in the registration
phase, the EA publishes (encrypted) real credentials and (en-
crypted) real voting power; at any convenient time, voters
can also publish (encrypted) fake credentials and (encrypted)
dummy voting power. In this way, we switch pair-wise PET
into shuffle-decrypt and matching, achieving linear complex-
ity. Furthermore, “dummy voting power” also hides the num-
ber of votes obtained by each candidate. The idea of “dummy
voting power” technique is shown in Fig. 6.
Two-layer tally. To support delegation, the trustees perform
a “two-layer tally” in the tally phase. Generally speaking, in
layer one, voters’ choices are decrypted and the delegated vot-
ing power will be added to the corresponding experts; in layer
two, experts’ choices are decrypted and the final tally result is
calculated by adding experts’ voting power and voters’ direct
votes. Note that, experts have input independence instead of
ballot privacy so their ballots can be decrypted directly. Fig. 7
shows the process of a “two-layer tally” procedure where
there are 3 candidates and 2 experts.

3.3 Overview of Our Scheme

In this section, we define the roles in our system and pro-
vide an overview of our scheme in the blockchain context.

Roles. There are five roles in the protocol: voters, experts,
registration authority (RA), shuffler, and trustees.

* A voter has a certain amount of voting power and can
either vote on the proposal directly or delegate his voting
power to an expert.

e An expert does not have voting power himself, but he
can be delegated to vote on others’ behalf.

* The RA is responsible for the registration procedure.

real credentials with
real voting power

<ﬂ01]]:ﬂf11]]>

(SN

(lo], [oy | "R \
{I24], 1) (T o)

decrypt credentials
& matching

fake credentials with
dummy voting power

([t], [,)

decrypt candidates
Ballots & add voting power
{[v1], [o], P£) & decrypt voting power sum

remove Pf
) “& shuffle ™ final tally
([o2nl To2n]. PF) | re-encrypt result

Figure 6: Dummy voting power technique

[+ [e]

final tally
result

I 5. decrypt

v I L [
ot e

53 = [a1] - 55

4. calcul.
ﬁnalclz;; rae[seult
e

2. calculate
delegation
(layer 1)

experts’ ‘ HWE] H 34=|[a3]]-|[a5]] ‘ 3. de_crypt
| emted |

Figure 7: Two-layer tally

* The shuffler verifiably shuffles the ballots and public
keys.

* The trustees are responsible for decrypting the ballot and
revealing the final tally result.

We use n,m, ¢ to denote the voter number, expert number,
and candidate number, respectively. There are k trustees with
threshold ¢.

An optimization of JCJ’s ballot structure. We optimize
JCJ’s ballot structure in the following two aspects. Firstly, we
observe that it is not necessary to prove that [v] encrypts a
valid candidate because all the selections will be decrypted
in the tally phase. If it encrypts an invalid value, we can
simply treat it as “abstain” and drop it. Secondly, a slight
modification is performed to reduce the ballot size: instead
of defining ¢ as the secret credential, we can define ¢ :=
pk := g%k and let the voter keep the secret key sk. Then, the
ballot can be modified as (pk, u, T, Sig), where u := [v] is the
encrypted choice, Sig < Sign(sk,u), and 7 is a NIZK proof
of plaintext knowledge of u. After matching the choices with

PBB
1. Register 2. Re-encrypt and sign | (K;, Ay, txy, 01, 0ra1)
(K, A, tx, 6) (K, A,tx,8,0a) :
Koy An, B, 00, OrA
Voter (0, Ons ORAR)
K, Ao,
3. Publish fake key 5, door)
(K", Ao, p) (K}, Ao, pn)
Figure 8: Registration phase
1. Cast real vote PBB
(pk, u, m, o) (pky, w1, 71,01)
Voter :
2. Cast fake YOt? (\:vh?n coerced) (P, U, T,)
(pk’,u', 7", ")
<E1701¢7'1¢UE1>
Expert 3. Cast vote :
<E7 &7 UE> <Em-,cm77-m70'Em>

Figure 9: Voting/delegation phase

voting power, the trustees shuffle and decrypt the choices (see
Fig. 10 for the whole tally procedure). By doing so, we change
an Elgamal encryption [o] to a group element pk, achieving
smaller ballot size.

Overview. Our voting scheme has four phases: preparation
phase, registration phase, voting/delegation phase, and tally
phase.

In the preparation phase, the RA generates a public-private
signing key pair (pkgra,skra). The trustees perform a dis-
tributed key generation protocol to generate pkt and share
SkT.

In the registration phase (see Fig. 8), each voter first freezes
some stake by transaction tx. Then, he generates a pair of
real voting keys (serving as the real credential) (pk,sk) and
sends a registration message (K,A,tx,9) to the RA (step 1),
where K < EC.Encpi. (pk) is encryption of real public key,
A LE.Encpyi, () is encryption of voting power, tx is the
transaction that freezes some stake, and 8 is a NIZK proof that
the encrypted voting power equals the frozen stake (Cf. Ap-
pendix. A). After authenticating the voter (i.e., checking that
the voter knows the sk corresponding to tx’s sender’s pk by
an interactive zero-knowledge protocol), the RA re-encrypts
K as K and signs the registration message. Then, the RA
sends a designated verifier proof of re-encryption correctness
to the voter, and sends (K,A,tx,8,6ra) to the PBB (step 2),
where Ora « Sig.signg., (K||A][tx||3). At any convenient
time, the voter can generate a pair of fake voting keys (serving
as the fake credential) (pk’,sk’) and publish a fake key item
(K',Ap,p) on the PBB (step 3), where K’ < EC.Encpk, (pk')
is encryption of fake public key, Ag is a deterministic en-
cryption of 0, and p is a NIZK proof of knowledge of the
corresponding secret key. The voter can repeat step 3 multiple
times to generate multiple fake keys.

In the voting phase (see Fig. 9), each voter encrypts his
choice with the trustees’ public key pky, signs it with the
voting secret key and casts it on PBB (step 1). Specif-
ically, a voter’s ballot is of the form (pk,u,T,c), where
u < EC.Encpi; (v) is the encrypted choice, 6 < Sign(sk, u)
is the signature and 7 is a NIZK proof of plaintext knowl-
edge of u. If a voter is coerced, he will use the fake key pair
(pk’,sk’) to perform the voting process (step 2). Thanks to
the re-encryption by RA and the designated verifier proof, the
voter can claim that K is re-encryption of EC.Encpk, (pK') by
simulating the designated verifier proof. In this phase, each
expert also casts his ballot by simply encrypting the choice
and signing it with his blockchain secret key (step 3), i.e.,
an expert’s ballot is of the form (E, ¢, T,G6g), where E is the
expert’s identity, ¢ < EC.Encp, (vF) is the encrypted candi-
date, o is the signature and 7 is the NIZK proof of plaintext
knowledge.

In the tally phase (see Fig. 10), the PBB contains “en-
crypted public key items”, voters’ ballots and experts’ ballots
at the beginning. For simplicity, in the figure, we assume there
are n real ballots and n fake ballots; in reality, a voter can cast
any number of fake ballots. Firstly, the shuffler checks the va-
lidity of all the “encrypted public key items” and ballots, and
removes the NIZK proofs and signatures (step 1). Then, the
shuffler shuffle re-encrypts the “encrypted public key items"
(step 2). Next, the trustees jointly decrypt the public keys in
“encrypted public key items” and voters’ ballots (step 3). If
the same public key appears more than once, then drop them.
The encrypted voting power and encrypted choices with the
same public key will be matched (step 4). To ensure ballot
privacy, the matched items need to be shuffle re-encrypted
(Step 5). Next, the trustees jointly decrypt voters’ choices
(step 6) and experts’ choices (step 7). After the decryption,
the trustees will add the voting power to the corresponding
candidates by a two-layer tally (step 8). In layer 1, experts’
obtained voting power is calculated, i.e., expert E;’s obtained
voting power is §; := [I,;—r1iAc;:i € [1,m], where £ is the
candidate number and m is the expert number; in layer 2, the
votes for each candidate are tallied by adding direct votes and
expert votes together, i.e., candidate v’s obtained voting power
is sy :=[1,;= A, Hle_:v s;j,v € [1,1]. Ballots that encrypt an
invalid choice will be dropped. Finally, the trustees jointly
decrypt {sy},¢[1,¢ to publish the final tally result (step 9).

Blockchain deployment. To deploy the scheme on a
blockchain, we need to select the RA, shuffler, and trustees in
the blockchain context. Also, there should be a validator that
checks all the NIZK proofs.

The RA. Note that the communication between the voter and
the RA must be secret to the coercer. Also, the RA is trusted
for coercion-resistance and cannot be distributed (Cf. sec. 4.1).
Therefore, it may be instantiated with trusted execution envi-
ronment (TEE) like Intel SGX.

The shuffler. The shuffler can be implemented by a

(PKqy» Aay)

™~

”””””””””””” 1. check
PBB | (pk;,u1,m,01) validity - | (Pki u1)

<pk2n7 U2n, T2n, 02n>

(K1, A1, tx1,01,0rA1) (K1, Ay

(B, A, b6 B, 7R) (KnAn) | 2. shuffle 3. decrypt pk
(K1, Ao, p1) (K!,A,) | re-encrypt
<K;L’ AO-,/)n) (K:‘IAO>

4. matching | (Ae:,Ue,)
(PKag, > Aas) o g : 5. shuffle

<Ac2'n, ’ uC2n> re_encrypt

6. decrypt|u

<A61 ’ U1>

(E1,c1,71,0€8,)

7. decryptc
P

(Em, Cm> Tm, OE,,) (Em,Cm)

(E1,0f)

(Em, “Ez> vyt

T §8.two-layertallyf (Acy,, > v2n)
si= [Aei€ll,m]

9. decrypt 5. | final tally
soi=] Ae, I] ssv el result

v;=v E—u
i vi=v

Figure 10: Tally phase

mixnet [12], and the mixnet nodes can be selected by cryp-
tographic sortition [13]. The shuffle is secure as long as one
mixnet node is honset.

The trustees. The trustees can also be selected by crypto-
graphic sortition [13]. The majority of trustees are honest
with a high probability when a majority of the stake is honest.
The validator. Every participant can be the validator to check
all the NIZK proofs if he wants. Since there is shuffle proofs
in our scheme, whose verification cost is relatively heavy, it is
not recommended to deploy a smart contract to play the role
of the validator.

Roles of the blockchain. In our scheme, the blockchain serves
as the PBB. It also plays the role of PKI in the registration
phase to authenticate a voter.

4 Assumptions and Security Modeling

In this section, we first informally define ballot privacy, ver-
ifiability, and coercion-resistant and we analyze under which
assumptions these properties are achieved. Then, we formally
introduce the UC incoercibility framework.

4.1 Security Properties and Assumptions

Definition 1. (Ballot privacy) The adversary cannot learn the
votes of honest voters.

Definition 2. (Coercion-resistance) A coercer cannot deter-
mine if the coerced party is trying to deceive him.

Definition 3. (Verifiability) Honest voters’ ballots must be
tallied and the adversary cannot cast more votes than the
number of voters that he controls.

Assumptions. Our scheme only relies on basic assumptions
that any “fake credentials" type of coercion-resistant voting

scheme needs. We list these assumptions, explain the neces-
sity, and discuss how they are achieved in the blockchain
context.

Assumption 1. The public bulletin board is honest and the
communication with the PBB is anonymous.

PBB is a basic assumption for any electronic voting scheme.
A malicious PBB can break verifiability by creating different
views for different voters [22]. Then, since ballots can be
dropped undetectably, ballot privacy will be undermined [16],
and it is not possible to have coercion-resistance without
ballot privacy. Thus, PBB is trusted for all three properties.
Moreover, communication with PBB must be anonymous;
otherwise, the coercer will catch the deceiving voter when he
tries to cast the real ballot.

In our system, the blockchain is a public ledger and serves
as the honest PBB. A voter can use anonymous channels (e.g.,
TOR) to broadcast on the blockchain.

Assumption 2. There is a secure (untappable) channel between
the voter and the RA.

In all “fake credentials" schemes, a voter needs to establish
a secret in the registration phase and keep the secret from the
coercer. If the coercer taps all the communication between the
voter and the authorities, then the voter’s private information
is a receipt/witness of what he cast [23].

As mentioned above, the RA can be instantiated with TEE
like Intel SGX. A voter can use TOR to communicate with
the RA.

Assumption 3. The authentication is inalienable [1], i.e., the
coercer cannot impersonate the voter or stop the voter from
authenticating.

Inalienable authentication is a must for all voting schemes.
Otherwise, the adversary can vote on the voter’s behalf or
launch a forced abstention attack.

In the blockchain context, the blockchain plays the role

of PKI and each voter authenticates to the RA by proving
knowledge of his blockchain secret key. It is assumed that a
voter will not reveal his blockchain secret key to the coercer,
which will put the voter’s stake at risk.

In the following, we analyze how ballot privacy, verifiabil-
ity, and coercion-resistance are achieved.
Ballot privacy. In the registration phase, the voter himself
generates the voting public key, and he encrypts it with the
trustees’ public key before sending it to the RA. Thus, no-
body knows the link between the voting public key and the
voter as long as the majority of trustees are honest. In the
voting/delegation phase, voters’ ballots are also encrypted
with the trustees’ public key. In the tally phase, ballots and
“encrypted public key items" will be shuffled before decryp-
tion so that the link between identity and voting public key is
broken by the shuffle. Therefore, ballot privacy is achieved if
the shuffler and the majority of trustees are honest.
Note: In delegated voting, usually the experts have input in-
dependence rather than ballot privacy, i.e., when casting the
ballot, it should be independent of the others; later in the tally
phase, it will be decrypted directly without shuffle. This is
an important requirement for delegated voting because we
want to detect if an expert’s behavior deviates from what he
claimed.
Verifiability. A process composed of several subroutines is
verifiable if each subroutine is verifiable itself. In the prepa-
ration phase, the trustees perform a verifiable distributed key
generation protocol [20]. In the registration phase, we use
two NIZKs to ensure that (i) the encrypted voting power is
equal to the frozen stake; (ii) the RA does the re-encryption
correctly. In the voting/delegation phase, EUF-CMA prop-
erty of the signature scheme prevents anyone who does not
know the secret key from casting a valid ballot. In the tally
phase, the shuffle correctness is guaranteed by the shuffle
NIZK [5], and decryption correctness is guaranteed by the
decryption NIZK [20]. In conclusion, all subroutines in our
scheme are publicly verifiable so no one needs to be trusted
for verifiability.
Coercion-resistance. A coercer may ask the voter to reveal
his real voting key pair, but the voter can claim a fake key pair
as real by simulating the designated verifier proof, as long as
the RA is not colluding with the coercer. In the tally phase,
after shuffling all the “encrypted public key items", real keys
and fake keys become indistinguishable from the coercer’s
perspective. Besides, the majority of trustees must be honest
to ensure that the coercer cannot decrypt the ciphertexts.

Finally, Table 2 summarizes the trust assumptions on the
entities for achieving each property.
Notes on distributing the shuffler and RA: To distribute the
shuffler, a mixnet [12] can be utilized and we can perform a
cryptographic sortition [13] on the blockchain to select the
mixnet nodes. The assumption becomes that at least one of
the mixnet nodes is honest instead of trusting a single shuffler.

Table 2: Trust assumptions on the entities.

Ballot 1 g fability | COSTion

privacy resistance
PBB Trusted Trusted Trusted
RA Untrusted Untrusted Trusted
Shuffler Trusted Untrusted Trusted

Trustees | 7-out-of-k Untrusted t-out-of-k

However, simply distributing the RA does not lead to a
weaker assumption because the coercer can ask the voter to
provide the entire view of the registration phase. Even if
only one of the RA parties is colluding with the coercer, the
voter who does not know which RA party is colluding cannot
simulate the registration view with negligible fail probability.
Concretely, if the voter fakes a message sent by a RA member,
then he will have at least 1/n probability of being caught (in
the case that the RA member is malicious), where 7 is the
number of RA parties. Therefore, it is better not to distribute
the RA for “fake credentials" schemes. We suggest using TEE
to instantiate the RA on the blockchain.

4.2 Security Modeling

Framework. We formally perform security analysis under the
Universal Composable (UC) framework [9]. As mentioned in
sec. 2.4, security is based on the indistinguishability between
the ideal world and the real/hybrid world.

Modeling coercion-resistance. We adopt the UC incoercibil-
ity definition proposed by Alwen, Ostrovsky, Zhou, and Zikas
(AOZZ) [3]. In their definition, the ideal deception strategy DI
in the ideal world is controlled by the environment Z and the
ideal adversary S plays the role of coercer. When Dl receives
an input x from the ideal adversary (coercer) .S, the environ-
ment Z maps x to x” and instructs DI to forward x’ to the ideal
functionality F (¥’ can be equal to x). In the real world, the
real deception strategy DR is a twist on the protocol IT and
DR internally runs DI. DR will interact with the real adversary
(coercer) 4 and do actions according to DI’s output.

We can see that, in the ideal world, the ideal deceiving

strategy can map the coercer’s input x to any other input x’,
which represents “cast-as-intend”. Also, the ideal adversary
S determines if a party is deceiving no better than someone
who only sees the outputs of the computation. Thus, if for
every DI there exists DR that makes the ideal world and the
real world indistinguishable, we say that the protocol IT is
TUC (incoercible UC) secure.
The ideal world execution. In the ideal world, the voters
V, experts ‘E, trustees 7, shuffler, registration authority RA,
and ideal adversary .§ communicate with the ideal function-
ality F"™50K (Cf. Fig. 11). The ideal functionality F5m5k
has four phases: preparation phase, registration phase, vot-
ing/delegation phase, and tally phase.

r—(Voting ideal functionality T\,'f,’t”é'[’[’k} N\

The functionality f}'\,'f,‘trzj’t‘k interacts with a set of voters V := {Vy,...,V,}, a set of experts E := {Ej,...,E,}, a set of trustees

T :={Ty,..., T}, the shuffler, the registration authority RA and the adversary S. It is parameterized with candidate number ¢ and
threshold ¢ and it internally keeps variables 7,m,state, ballots. Denote Z¢or and Zponest as the set of corrupted and honest trustees,
respectively. Denote the candidates as C.

Initially, J :=m := ballots := 0, state :=0.

Preparation phase.

Upon receiving (INIT,sid) from the trustee T;, send a notification message (INITNOTIFY,sid, T;) to S.

Upon receiving (INIT,sid) from the RA, send a notification message (INITNOTIFY,sid,RA) to S.

Registration phase.

When TSm0 receives (INIT,sid) from all trustees and RA, set state := 1.

Frmbik qoes the following: (ignore the request if state # 1)

Upon receiving (REG,sid,a;) from the voter V,
* Set power[V;] :=a;.
o If |7 NTor| >t, send (LEAKPOWER,sid, (0, V;)) to S.
* Otherwise, send a notification message (REGNOTIFY,sid,V;) to the adversary S.

Voting/Delegation phase:

When F/5"5* receives (REG,sid) from all voters, set state :=2.

Upon receiving (VOTE,sid,v;) from the voter V; or the expert E;,
* Set ballots[V;(or E;)] :=v;.
* If the request is from a voter, send (VOTENOTIFY,sid, VOTER) to §. Otherwise, send (VOTENOTIFY,sid, EXPERT) to .
o If |TNTor| >1t, send (LEAKVOTE,sid, (v;,Vi(or E;))) to .

Tally phase.
Upon receiving (VOTEEND,sid) from the shuffler, send (VOTEEND,sid) to the adversary .S, and set state:=3.

Frmbik goes the following: (ignore the request if state # 3)

Fimbitk qoes the following: (ignore the request if state 5 2)

Upon receiving (TALLY,sid) from the trustee T;,

e Set 7:=JU{T}, if |IN Thonest| +|Zcor| > ¢, compute 1 < TallyAlg(V, E, C,ballots, power) (Cf. Fig. 12) and
bey + CountAlg(V,E, C,ballots) (Cf. Fig. 13). Denote experts’ ballots as ballotsg. Send (LEAKTALLY,sid,n,ballotsg,bcy))
to the adversary S.

o If |90 Thonest| +|Zeor| > and the shuffler is corrupted, send (LEAKBALLOTS,sid,ballots) to the adversary .
* Send (TALLYNOTIFY,sid,T;) to adversary .
o If |9] > 1, set n «+ TallyAlg(V, E, C,ballots, power) (Cf. Fig. 12).

Upon receiving (READTALLY,sid) from any party, return (READTALLYRETURN,sid,mn) to the requestor.

. . — itk
Figure 11: The voting ideal functionality Foure

,—(The tally algorithm TaIIyAIg} N

,—(The ballot-counting algorithm CountAlg)

Input: a set of the voters ¥/, a set of the experts E, a set of
candidates C, a table of ballots ballots and a table of voting
power power.

Output: the tally result n.

Use n,m,{ to denote |V|,|E|,|C|, respectively.

Input: a set of the voters ¥/, a set of the experts E, a set of
candidates C, a table of ballots ballots.

Output: voters’ ballot count bcy.

. Use n,m,{ to denote |V|,|E|,|C|, respectively.

nit:

. o Init:
¢ For each candidate C;, set initial score as s; := 0. For

each expert E;, set initial score as s/, := 0. * For each candidate C;, set initial ballot count as ¢; := 0.

For each expert E;, set initial ballot count as ¢y, ; :=0.
Tally Computation: P J +j

Computation:
e For each V; € ¥, let v:= ballots[V], set putati
sy 1= s, + power|[V,]. e For each V; € ¥, let v:=ballots[V]], set ¢, := ¢, + 1.
Output:

* For each E; € E, let v:= ballots[E;], set s, := s, + 5/4.

Output: * Return bey := {citic1 4m-

* Return M := {si}icp1q- b

Figure 13: The ballot-counting algorithm
Figure 12: The tally algorithm

10

Preparation phase. In the preparation phase, the ideal func-
tionality F/%™4* receives the initialization commands from
the trustees and the RA, and it sends initialization notifica-
tion to the simulator .S. At the end of the preparation phase,
Frmbik gets state 1= 1.
Registration phase. In the registration phase, the ideal func-
tionality F/2""K recei i i fi

Y Focte eceives registration requests from voters
and records their voting power. If there are ¢ or more cor-

rupted trustees, voting power will be leaked to the ideal world
j_—;l,m,é,t,k

vote

adversary S. At the end of the registration phase,
sets state := 2.

Voting/Delegation phase. In the voting/delegation phase, the
ideal functionality T\,Z}'Z’E’t’k receives vote commands from
voters and experts, and records their votes. Similarly, if there

are ¢t or more corrupted trustees, the votes will be leaked to

S. At the end of the voting/delegation phase,
state :=3.

Tally phase. In the tally phase, the ideal functionality F,5" "
receives tally commands from the trustees and performs the
tally algorithm. The tally algorithm TallyAlg (Cf. Fig 12)
takes as input all the ballots and voting power and outputs the
final tally result. During the tally, experts’ ballots and voters’
ballot count are leaked (Cf. Fig. 13), but this does not affect
ballot privacy of voters.

Ideal deception. The ideal deceiving strategy DI is controlled
by the environment Z. When a voter V; is coerced by the ideal
adversary § to vote for x, Z maps x to x’ and instrusts DI; to
send (VOTE, sid, x') to F/5™"* Note that, in the modeling,
DI; can either obey (i.e., x = x’) or deceive (i.e., x #).
Connection with the properties. It is easy to see that a protocol
I1 IUC-realizing F.5™""* has ballot privacy, verifiability and
coercion-resistance. Firstly, voters’ ballots are never leaked
by FmE0 if the shuffler and majority of trustees are honest.
Secondly, nobody can falsify the final tally result computed
by FLm4K Thirdly, the definition of the ideal deception DI
ensures that a voter can cast-as-intend even if he is being
coerced.

The real world execution. In the real world, we invoke the
distributed key generation functionality féféc [G] (Cf. Fig. 1)
and the secure channel functionality .. (Cf. Fig. 3). The
parties perform the voting protocol. When a voter V; is co-
erced, he switches to the real deceiving strategy DR; to resist
coercion.

-,}-n,m.[.t,k

vote sets

5 The Protocol

In this section, we give a detailed protocol description of
our voting scheme and formally prove security of our scheme
in the UC framework.

5.1 Protocol Description

. . . n,m,lt.k
Coercion-resistant voting IT,;..

11

Denote the voters as V' := {Vy,...,V,}, the experts as
E :={Ey,...,En}, the candidates as C := {Cy,...,C/}, the
registration authority as RA, the trustees as 7 := {T1,..., T }.
The protocol is parameterized with threshold z.

Preparation Phase:

Upon receiving (INIT,sid) from the environment 2, the
trustee T; does the following:

o Send (KEYGEN;sid) to féﬁc and receive (KEYGEN,
sid, (pk,skT,)).

o Send (WRITE,sid, pky) to Gpgs.

Upon receiving (INIT,sid) from the environment Z, the
RA does the following:

o Generate a public-private signing key-pair (pkga,
skra) < Sig.Keygen(1%).

o Send (WRITE,sid, pkga) to Gpgs.

Registration Phase:

Upon receiving (REG, sid, 0;) from the environment Z, the
voter V; does the following:

o Generate a public-private signing key-pair (pk sk i)
Sig.Keygen(1*).

o Send (SEND,sid,RA,(K;,A;,tx;,8;)) to Fs, where
K; < EC.Encpir(pk;), Aj < LE.Encyq(at)), tx; is the
transaction that freezes the voter’s stake, and & i
NIZKpower-Prove(4,tx;) is a NIZK proof that the frozen
stake equals o; (Cf. Appendix A).

Upon receiving (SENT,sid,V;, (K;,A},tx;,8;)) from s,
the registration authority RA does the following:

o Compute b := NIZKower.Verify(8;,4|[tx;). If b =0,
send (SEND,sid,V;,REJECT) to Fs.

o Else, compute K; < EC.Randy,(K;). Send
(WRITE,sid, <kj,Aj,th,6j,(5RAﬁj>) to Gpps, where ORra j
— Sig'SignskRA(kj‘|Aj||txj”8j)'

o Generate a designated verifier proof mpyp of re-
encryption correctness (Cf. Appendix A) and send
(SEND,Sid,Vj,TEDVP) to Fec.

Voting/Delegation Phase:

Upon receiving (VOTE,sid,v;) from the environment 2,
the expert E; does the following:

o Compute ¢; < EC.Encpy;(v;) and the corresponding
NIZK 7; < NIZKynowiedge-Prove(c;), which is a proof of
plaintext knowledge of ¢; (Cf. Fig. 18).

o Compute OF; < Sig.signskE[(¢i).

o Denote the ballot as BF := (E;, ¢;, i, O,).

o Send (WRITE,sid, BF) to Gpgg.

Upon receiving (VOTE,sid, v;) from the environment Z,
the voter V; does the following:

o Compute u; <— EC.Ency,(v;) and the corresponding
NIZK 7; < NIZKknowledge-Prove(u;), which is a proof of
plaintext knowledge of u; (Cf. Fig. 18).

o Compute G < Sig.signg,, (#;).

o Denote the ballot as B; = (pkj,uj,m;,0;).

o Send (WRITE,Sid,Bj) to gPBB-

Upon coerced, the voter V; switches to the real deception
strategy as described in Fig. 14.

,—(Real Deceiving Strategy DR) N\

The real deception strategy DR; internally runs DI;. Upon
coerced, it does the following:

¢ Generate a fake signing key pair:
sk’;, pk; Sig.Keygen(1*).

+ Compute K + EC.Encpi (pkj).

* Send (WRITE,sid, (K’,40,p;)) to Gpee, Where
Ap = LE.Encp; (0;0) and p; + NIZKSk.Prove(K;-) is a
NIZK proof of knowledge of sk} (Cf. Fig. 20).

Use (sk);,pk);) to perform the voting procedure,
following the coercer’s instruction.

Use (skj, pk j) to perform the voting procedure again,
where the candidate v; is the same as the one submitted
by DlI;.

Figure 14: Real Deceiving Strategy DR

Tally Phase:

Upon receiving (VOTEEND, sid) from the environment Z,
the shuffler does the following:

o Send (READ,sid) to Gpgg and get all the ballots and
“encrypted public key items".

o For each voter’s ballot B; = (pk;,u;,7;,6,), check (i)

NIZKicnowtedge-Verify (1, u) = 1: (ii) Sig. Verify, (0;,u;) =
1. Remove the invalid ballots and remove 7;,G;. Now a
voter’s ballot B is of the form (K, u).

o For each “encrypted public key item"
(Kj,Aj,tx;,8;,0rpj) published by RA, check
(i) NIZKpower-Verify(8),4,|tx;) = 1 (ii)

Sig.Verify.. (Ora.j» Kjl|A;]tx118)) = 1. Remove the
invalid ones and remove tx;,8;,0ra, j.
o For each “encrypted public key item" (K},Ao,p;) pub-

lished by a voter, check NIZKknOMedge.Verify(pj,K}) 21 Re-
move the invalid ones and remove p;.

o Put all the valid “encrypted public key items" together.
At this point, each item W is of the form (K,A), where K is
the encrypted public key, A is the encrypted voting power.

o Verifiably shuffle re-encrypt the encrypted public key
items (Cf. [5]).

o Send (WRITE,sid, ({B},{W},n)) to Gpgs, where T is
the proof of shuffle correctness (Cf. [5]).

Upon receiving (TALLY,sid) from the environment 2, the
trustee T, € [k] does the following:

o Send (READ,sid) to Gpgg to get {B},{W}.

o Jointly decrypt the public keys (i.e. K) in {W} (Cf. [20]).

12

o For each ballot B, if the public key does not match any
public key in {W}, drop it.

o Put the corresponding A together with u, i.e., assume
B = (Kp,u) and W = (Kw,A), and Kp, K4 are decrypted to
the same public key, then we put A and u together to form a
new item [:= (A, u).

o Send (WRITE,sid,{I}) to Gpgg.

o Send (SHUFFLE,sid) to the shuffler.

Upon receiving (SHUFFLE, sid) from the trustees, the shuf-
fler does the following:

o Send (READ,sid) to Gpgg and get {/}.

o Shuffle {I} and send (WRITE,sid, ({I'},7)) to Gpgg,
where T is the proof of shuffle correctness (Cf. [5]).

o Send (SHUFFLEEND,sid) to all the trustees.

Upon receiving (SHUFFLEEND, sid) from the shuffler, the
trustee T,,7 € [k] does the following:

o For each candidate C;, set initial score as §; :=
LE.Encpi, (0). For each expert Ej, set initial score as ¢ j :=
LE.Encpi, (0).

o For each item I := (A, u), jointly decrypt u to v (Cf. [20])
and update candidate (or expert) v’s score §,, := §,, - A.

o After tallying all the voters’ ballots, for each
expert’s ballot BF := (E¢;,T,0g), check (i)
NIZKknowtedge- Verify (Ti, €;) = 1; (if) Sig. Verify._ (Ge;, ;) =
1. Remove the invalid ballots and 71;,0g,. Now lan expert’s
ballot BE is of the form (E;, ¢;).

o Form a list of each expert’s encrypted score and encrypted
candidate, i.e., expert E;’s entry is of the form (s¢1;,¢;).

o For each expert’s entry (s,c), jointly decrypt ¢ to v
(Cf. [20]) and update candidate v’s score s, := s, - S.

o For each candidate C;, jointly decrypt the score s; to s;
(Cf. [20]).

o Send (WRITE,Sid, {si}ie[é]) to ngB.

Upon receiving (READTALLY,sid) from the environment
Z, the party P does the following:

o Send (READ,sid) to Gpgg and get {si}[em.

o Return (READTALLYRETURN;sid, {s;};c) to the re-
questor.

5.2 Complexity

In the preparation phase, the RA takes O(1) time to gen-
erate the signing key pair, and the trustees take O(k) time to
perform the DKG protocol, where k is the number of trustees.
In the registration phase, a voter generates a NIZK proof of
voting power correctness and verifies a designated verifier
proof, which has O(1) complexity. In the voting/delegation
phase, a voter encrypts his choice and generates a NIZK proof
of plaintext knowledge, which has O(1) complexity, too. In
the tally phase, the shuffler shuffles the ballots and the en-
crypted public key items, which has O(n) complexity (count-
ing cryptographic operations only), where n is the number
of voters. Then, the trustees decrypt the public keys, do the
matching between voting power and candidate, and decrypt

Tally execution time, s (25% extra ballots)

3000

2500 +

2000 +

1500 4

1000 4

500 4

—— Our scheme
—-- VoteAgain

0
Q

T T T T T
20000 40000 0000 80000 100000
Number of voters

Tally execution time, s (50% extra ballots)

3000

2500 4

2000

1500

1000 A

500 A

—— Our scheme
-—- VoteAgain ,

o]
0

T T T T T
20000 40000 60000 80000 100000
Number of voters

Tally execution time, s (75% extra ballots)

3000

2500 4

2000

1500 A

1000 A

500 -

—— Our scheme
—--- VoteAgain

0
0

T T T T T
20000 40000 60000 80000 100000
Number of voters

Figure 15: Comparison of tally execution time between our scheme and VoteAgain [26] (with extra ballot rate as 25%, 50%, 75%
from left to right). In VoteAgain, x% extra ballot rate means that x% voters re-vote once; in our scheme, x% extra ballot rate

means that x% voters cast one fake ballot.

the candidate. Thus, the time complexity of a trustee is also
O(n). Adding them together, the whole scheme has O(n) time
complexity.

5.3 Security

We show the security of our construction via the following
theorem.

Theorem 1. Assume that the NIZKs NIZK;,i €
{power, knowledge, DVF-reenc,sk,shuffle, Dec} are com-
plete, sound, and zero-knowledge. Assume that the ElGamal
encryption scheme EC is IND-CPA secure. Assume that Sig is
a signature scheme satisfying EUF-CMA. Then the protocol
Hcgfé["l’k IUC-realizes ,‘F\,'f)’trg’é’t’k against static corruption
and adaptive coercion in the { Té’}lzG [G], F<c, Grar }-hybrid
world.

The proof of the theorem is deferred to Appendix C.

6 Implementation and Evaluation

We implement a prototype of our voting scheme in Rust.
The implementation uses OpenSSL 1.1.1t to provide the basic
elliptic curve math and it uses Schnorr signature as the sig-
nature scheme. We evaluated all the cryptographic building
blocks and the time consumption in each phase. The exper-
iments are performed on a workstation with Intel Core i7-
1165G7 @2.80GHz and 32GB RAM running Ubuntu 20.04.4
LTS x64, using the elliptic curve secp256r1.

Preparation phase. We evaluate the DKG execution time
and traffic with respect to different numbers of trustees: from
4 to 64. Results are given in Fig. 16.

Registration phase. In the registration phase, the voter uses
NIZKower n the registration request to prove that the frozen
stake is equal to the encrypted voting power, and the RA
proves re-encryption correctness by a designated verifier

13

1000

0.304 ——- Execution time ,
.) -
—— Overall traffic 4
7
0.25 ' I 800
%
’
l’ o
w ’
- ¥
0.20 ’,
£ v teoo g
s s 5
H S~ [
=
2 0154 S =
El # T
] Py 200 5
x ’ 2
“ 010 v °
L
;”
- 200
0.05 L
_”
S
0.00 T T T T T T 0
0 10 20 30 40 50 60

Number of trustees

Figure 16: DKG execution time and overall traffic with respect
to different numbers of trustees

proof NIZKpyF-reenc. Generating a registration request costs
430.95 ps and its size is 475 bytes. The designated verifier
proof costs 102.91 ps to generate and 181.69 ps to verify, and
its size is 141 bytes. Generating a fake “encrypted public key
item” costs 336.05 ps and the size is 267 bytes.
Voting/Delegation phase. In the voting/delegation phase,
voters and experts encrypt the choice and sign it and using
NIZKknowledge to prove plaintext knowledge of the ballot. It
takes 283.27 us to generate a ballot. The size of a voter’s
ballot is 358 bytes and the size of an expert’s ballot is 332
bytes.

Tally phase. We evaluate the tally execution time with respect
to different numbers of voters and different extra ballot rates
and compare the results with VoteAgain [26]. Here, extra
ballot rate represents how many voters cast extra ballots, i.e.,
in VoteAgain, 50% extra ballot rate means that 50% voters
re-vote once; in our scheme, 50% extra ballot rate means that
50% voters cast one fake ballot. Note that, in our scheme, a
voter’s ballot takes more time to tally than an expert’s ballot
(because voters’ ballots are shuffled and experts’ ballots are
not shuffled), so we set expert number as zero in the experi-

ments.

Fig. 15 shows the tally execution time compared with
VoteAgain [26] when the extra ballot rates are 25%, 50%,
and 75% from left to right. VoteAgain’s benchmark fails in
102400 voters with 50% and 75% extra ballot rate (proba-
bly because of too large ciphertext input). We can see that
our scheme’s execution time grows linearly and VoteAgain’s
execution time grows quasi-linearly (O(n logn)). A higher
rate of extra ballots confers a greater advantage, as it necessi-
tates VoteAgain to introduce a substantial quantity of dummy
ballots in this scenario. In large-scale voting with more than
10000 voters and over 50% extra ballot rate, our scheme’s
tally execution time is over 6x faster than VoteAgain.

7 Conclusion

In this work, we propose the first scalable coercion-resistant
blockchain decision-making scheme that supports differential
voting power and liquid democracy. It is scalable in the sense
that it has constant ballot size and linear complexity. We
formally prove the scheme secure under the UC incoercibility
framework without any extra strong assumptions. Compared
with existing voting schemes, our scheme has an advantage
over all of them, so it is suitable to be applied to large-scale
coercion-resistant blockchain voting programs.

References

[1] Dirk Achenbach, Carmen Kempka, Bernhard Lowe, and
Jorn Miiller-Quade. Improved coercion-resistant elec-
tronic elections through deniable re-voting. {USENIX}
Journal of Election Technology and Systems ({JETS}),
3:26-45, 2015.

[2] Ben Adida. Helios: Web-based open-audit voting. In
Paul C. van Oorschot, editor, USENIX Security 2008:
17th USENIX Security Symposium, pages 335-348, San
Jose, CA, USA, July 28 — August 1, 2008. USENIX
Association.

[3] Joél Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and
Vassilis Zikas. Incoercible multi-party computation and
universally composable receipt-free voting. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, Advances
in Cryptology — CRYPTO 2015, Part II, volume 9216
of Lecture Notes in Computer Science, pages 763-780,
Santa Barbara, CA, USA, August 16-20, 2015. Springer,
Heidelberg, Germany.

[4] Roberto Aratdjo, Amira Barki, Solenn Brunet, and
Jacques Traoré. Remote electronic voting can be ef-
ficient, verifiable and coercion-resistant. In Jeremy
Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wal-

lach, Michael Brenner, and Kurt Rohloff, editors, FC

14

(5]

(6]

(7]

(10]

(11]

(12]

(13]

[14]

2016 Workshops, volume 9604 of Lecture Notes in Com-
puter Science, pages 224-232, Christ Church, Barbados,
February 26, 2016. Springer, Heidelberg, Germany.

Stephanie Bayer and Jens Groth. Efficient zero-
knowledge argument for correctness of a shuffle. In
David Pointcheval and Thomas Johansson, editors, Ad-
vances in Cryptology — EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 263—
280, Cambridge, UK, April 15-19, 2012. Springer, Hei-
delberg, Germany.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 20714 IEEE Symposium on Security and
Privacy, pages 459-474, Berkeley, CA, USA, May 18-
21, 2014. IEEE Computer Society Press.

Juan Benet. Ipfs-content addressed, versioned, p2p file
system. arXiv preprint arXiv:1407.3561, 2014.

Sergiu Bursuc, Gurchetan S Grewal, and Mark D Ryan.
Trivitas: Voters directly verifying votes. In International
Conference on E-Voting and Identity, pages 190-207.
Springer, 2011.

Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd Annual
Symposium on Foundations of Computer Science, pages
136-145, Las Vegas, NV, USA, October 14-17, 2001.
IEEE Computer Society Press.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi
Walfish. Universally composable security with global
setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory
of Cryptography Conference, volume 4392 of Lecture
Notes in Computer Science, pages 61-85, Amsterdam,
The Netherlands, February 21-24, 2007. Springer, Hei-
delberg, Germany.

David Chaum. Random-sample voting. White Paper,
2016.

David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of
the ACM, 24(2):84-90, 1981.

Jing Chen and Silvio Micali. Algorand: A secure and ef-
ficient distributed ledger. Theoretical Computer Science,
777:155-183, 2019.

Jeremy Clark and Urs Hengartner. Selections: Internet
voting with over-the-shoulder coercion-resistance. In
George Danezis, editor, FC 2011: 15th International
Conference on Financial Cryptography and Data Se-
curity, volume 7035 of Lecture Notes in Computer Sci-
ence, pages 47-61, Gros Islet, St. Lucia, February 28 —
March 4, 2012. Springer, Heidelberg, Germany.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Michael R. Clarkson, Stephen Chong, and Andrew C.
Myers. Civitas: Toward a secure voting system. In
2008 IEEE Symposium on Security and Privacy, pages
354-368, Oakland, CA, USA, May 18-21, 2008. IEEE
Computer Society Press.

Véronique Cortier and Joseph Lallemand. Voting: You
can’t have privacy without individual verifiability. In
David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018: 25th Con-
ference on Computer and Communications Security,
pages 53-66, Toronto, ON, Canada, October 15-19,
2018. ACM Press.

Ronald Cramer, Ivan Damgérd, and Berry Schoenmak-
ers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology — CRYPTO’94, volume 839
of Lecture Notes in Computer Science, pages 174—187,
Santa Barbara, CA, USA, August 21-25, 1994. Springer,
Heidelberg, Germany.

Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology
— CRYPTO’86, volume 263 of Lecture Notes in Com-
puter Science, pages 186—194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany.

Bryan Alexander Ford. Delegative democracy. Techni-
cal report, 2002.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In Jacques Stern, edi-
tor, Advances in Cryptology — EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 295—
310, Prague, Czech Republic, May 2-6, 1999. Springer,
Heidelberg, Germany.

Kristian Gjgsteen. The norwegian internet voting pro-
tocol. In E-Voting and Identity: Third International
Conference, VotelD 2011, Tallinn, Estonia, September
28-30, 2011, Revised Selected Papers 3, pages 1-18.
Springer, 2012.

Lucca Hirschi, Lara Schmid, and David A. Basin. Fixing
the achilles heel of E-voting: The bulletin board. In Ralf
Kiisters and Dave Naumann, editors, CSF 2021: IEEE
34th Computer Security Foundations Symposium, pages
1-17, Virtual Conference, June 21-24, 2021. IEEE Com-
puter Society Press.

Martin Hirt and Kazue Sako. Efficient receipt-free vot-
ing based on homomorphic encryption. In Bart Preneel,
editor, Advances in Cryptology — EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science,

15

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

A

pages 539-556, Bruges, Belgium, May 14-18, 2000.
Springer, Heidelberg, Germany.

Ari Juels, Dario Catalano, and Markus Jakobsson.
Coercion-resistant electronic elections. In Proceedings
of the 2005 ACM workshop on Privacy in the electronic
society, pages 61-70, 2005.

Philipp Locher, Rolf Haenni, and Reto E. Koenig.
Coercion-resistant internet voting with everlasting pri-
vacy. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A.
Ryan, Dan S. Wallach, Michael Brenner, and Kurt
Rohloff, editors, FC 2016 Workshops, volume 9604 of
Lecture Notes in Computer Science, pages 161-175,
Christ Church, Barbados, February 26, 2016. Springer,
Heidelberg, Germany.

Wouter Lueks, Ihigo Querejeta-Azurmendi, and
Carmela Troncoso. VoteAgain: A scalable coercion-
resistant voting system. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020: 29th USENIX
Security Symposium, pages 1553-1570. USENIX
Association, August 12—14, 2020.

Emmanouil Magkos, Mike Burmester, and Vassilis
Chrissikopoulos. Receipt-freeness in large-scale elec-
tions without untappable channels. Towards the E-
Society: E-Commerce, E-Business, and E-Government,

pages 683-693, 2001.

Peter YA Ryan, David Bismark, James Heather, Steve
Schneider, and Zhe Xia. Prét a voter: a voter-verifiable

voting system. IEEE transactions on information foren-
sics and security, 4(4):662-673, 2009.

Snapshot. Snapshot. Online: https://snapshot.org (Last
accessed: 2023-04-02).

Douglas Wikstrom. Universally composable dkg with
linear number of exponentiations. In Security in Commu-
nication Networks: 4th International Conference, SCN
2004, Amalfi, Italy, September 8-10, 2004, Revised Se-
lected Papers 4, pages 263-277. Springer, 2005.

Bingsheng Zhang, Roman Oliynykov, and Hamed Balo-
gun. A treasury system for cryptocurrencies: Enabling
better collaborative intelligence. In ISOC Network and
Distributed System Security Symposium — NDSS 2019,
San Diego, CA, USA, February 24-27, 2019. The Inter-
net Society.

NIZKs

In this section, we show the construction of the
NIZKs used in our system. There are six zero-knowledge
proofs in our scheme for proving: (i) voting power cor-
rectness (NIZKgower); (i) ElGamal encryption plaintext

,—(Si gma protocol for voting power correctness) N\

CRS: g, h,m.
Statement: A = (A1,A2),v= (vi,»).
Witness: o,r(,r; such that A = (g",g%") A v=(g",8%n'2).

Prover:
* Pick random o, r{,r} < Zg;
* Compute a; := g’ll ,ay = g“/h’/l ,a3 ::g”z,a4 = g“/mr/z;
e P—V:ap,ar,a3,a4.
Verifier:
* V — P: random e <~ Zg.
Prover:
e Compute z; :=r|+e-r,z:=rh+e-r,z3:=0 +e- 0
* P—=V:z1,22,23.
Verifier:
e Output 1 if and only if the following holds:
- & =ay-Af;
- g8 =ay-AS;
- g2 =a3;

- gBh2 =ag4.

Figure 17: Sigma protocol for voting power correctness

knowledge (NIZKynowledge): (iii) re-encryption correctness
(NIZKpvE-reenc); (iv) knowledge of secret key (NIZK) (V)
shuffle correctness (NIZKgpfre); and (vi) decryption correct-
ness (NIZKpec). We adopt Bayer and Groth’s scheme [5] for
shuffle correctness and Genarro et al.’s scheme [20] for de-
cryption correctness. Here, we will demonstrate how to use
Sigma protocols to construct the other four zero-knowledge
proofs. In practice, they will be transformed into NIZKs by
Fiat-Shamir heuristic [18].

Proof of voting power correctness. In the registration phase,
the voter will create a transaction that freezes some stake.
Then, he sends the transaction tx, encrypted voting power A,
and proves that the encrypted voting power is the same as
the value of tx. In a privacy-preserving blockchain cryptocur-
rency system, tx usually contains an encrypted transaction
value v. In this case, the zero-knowledge proof proves that
A and v encrypt the same value. If the transaction value is
encrypted by Lifted Elgamal, then Fig. 17 shows the Sigma
protocol for voting power correctness. If it is encrypted by a
hybrid encryption scheme (e.g., ZCash), then we can utilize
zkSNARK to construct the zero-knowledge proof.

Proof of ElIGamal encryption plaintext knowledge. In the
voting phase, we use a NIZK for ballot plaintext knowledge
to prevent copying the other voter’s choice. This can also be
proven with Sigma protocol, depicted in Fig. 18.

Proof of re-encryption correctness. In the registration
phase, the RA needs to generate a designated verifier proof

16

,—(Sigma protocol for plaintext knowledge) N\

CRS: g, h.
Statement: ¢ = (c1,c2).
Witness: m,r such that c; =g" A co =m-h".
Prover:
* Pick random r' < Zg,m' + G;
« Compute aj :=g" ,a:=m'-h";
e P—V:a,a.
Verifier:
* V — P: random e < Zy,.
Prover:
e Compute z; :=r +e-r,z2 :=m -m;
* P—V:z1,2.
Verifier:
e Output 1 if and only if the following holds:
- g =a-¢;

- ChE = €
22 Wl =ap c5.

Figure 18: Sigma protocol for ElGamal encryption plaintext
knowledge

,—(Sigma protocol for re-encryption correctness) N\

CRS: g, h.
Statement: u = (uj,uz),v = (vi,v2).
Witness: r such that vi =u;-g" AN va=up-h'".
Prover:

* Pick random 7’ < Zg;

* Compute a; :g",az = h’/;

e P—V:aya.
Verifier:

* V — P: random e < Z,.
Prover:

e Compute z:=1 +e-r;

e PV:z
Verifier:

e Output 1 if and only if the following holds:

e

- g=ar-(vi/m)4

- =ay - (va/up)e.

Figure 19: Sigma protocol for re-encryption correctness

,—(Si gma protocol for knowledge of secret key) N\

CRS: g,h.
Statement: ¢ = (c1,c2).
Witness: x,r such that ¢c; =g" A ca =g"- 1.
Prover:
* Pick random 1 < Zg,x' < G;
¢ Compute a; := g’l,az ::g“” i
e P—V:ap,a.
Verifier:
* V — P: random e < Z,.
Prover:
e Compute z1:=# +e-rz:=x +e-x;
s P—=V:z1,22.
Verifier:

¢ Output 1 if and only if the following holds:

- gl =a-cf;

- g2 R =ay- .

Figure 20: Sigma protocol for knowledge of secret key

for re-encryption correctness. To make it a designated verifier
proof, the statement is “this is a correct re-encryption OR 1
know the verifier’s secret key” so that the verifier can simulate
the proof. The Sigma protocol for re-encryption correctness
is depicted in Fig. 19. By the CDS composition [17], we can
compose the Sigma protocol for re-encryption correctness
and the standard Schnorr protocol to construct the designated
verifier proof of re-encryption correctness.

Proof of knowledge of secret key. To publish an (encrypted)
fake voting public key on the PBB, the voter needs to prove
knowledge of the corresponding secret key. This is a variant
of the Schnorr protocol, depicted in Fig. 20.

B Security Definitions of NIZK, Encryption,
and Signature

Here, we give formal game-based definitions of complete-
ness, soundness, zero-knowledge of a NIZK, IND-CPA prop-
erty of an encryption scheme, and EUF-CMA property of a
signature scheme.

NIZK. A non-interactive zero-knowledge proof
(NIZK) for relation X has four PPT algorithms
(Setup, Prove, Verify, Sim) such that

(0,7) < Setup(R): The setup algorithm outputs a common
reference string ¢ and a simulation trapdoor 7 for relation X.
T < Prove(R, 0,9, w): the prover algorithm takes as input
a common reference string ¢ and (¢,w) € R and outputs a
proof T.

17

0/1 + Verify(R ,0,0,T): the verification algorithm takes as
input a common reference string G, a statement ¢ and a proof
7, and it returns O or 1 for rejection or acceptance, respectively.
7 < Sim(R,T,0): the simulation algorithm takes as input a
simulation trapdoor T and a statement ¢, and it outputs a proof
.

Completeness. A NIZK protocol is complete if an honest
prover can always successfully convince an honest verifier.
Formally, for all (0,w) € R,

Pr[(c,T) + Setup(R);T < Prove(R,c,¢,w) :
Verify(,6,0,7) = 1] = 1
Zero-knowledge. A proof is zero-knowledge if no other infor-
mation is leaked except that the statement is true. Consider

the following experiment:
Experiment EXPT% 7, (A):

1. For a relation R, (6,7) < Setup(R), (¢,w) € R, the
challenger computes Ty < Prove(R,0,0,w) and)

Sim(R,7,9).
2. The challenger picks a random bit b € {0,1}.

3. 4 is given (0,T,) as input, and it outputs a guess bit
b e{0,1}.

4. If b=V, output 1; otherwise, output 0.

A NIZK is zero-knowledge if the adversary A’s advantage
AdVEizk (A,) := |2 - Pr[EXPT% iz (A) = 1] — 1] is negligi-
ble in A.

Soundness. A proof is sound if it is not possible for a prover to
prove a false statement. Consider the following experiment:
Experiment EXPTSN%, (A):

1. For arelation R, (G,1) + Setup(R).
2. Given © as input, 4 outputs (¢,T).

3. If Verify(R ,0,0,7) = 1 and ¢ ¢ Ly, output 1; otherwise,
output 0.

A NIZK is sound if the adversary A’s advantage
AdviRd (A,) = Pr[EXPqu?f,‘\r,‘,dZK (A) = 1] is negligible in
A.

Encryption scheme. An encryption scheme consists of three
PPT algorithms (Keygen, Enc, Dec). The ElGamal encryption
scheme we used is IND-CPA secure. Formally, consider the
following IND-CPA experiment:

Experiment EXPT'/Q'E'CCPA (A):

1. The challenger performs the key generation algorithm
(pk,sk) «+ Keygen() and sends pk to the adversary 4.

2. A4 sends mg,m to the challenger.

3. The challenger picks a random bit b € {0, 1} and sends
¢ < Encpi(mp) to 4.

4. 4 outputs a guess bit b’ € {0,1}. If b =¥, output 1;
otherwise, output 0.

An encryption scheme is IND-CPA secure if
the adversary A’s advantage Advp PA(4,h) =
12-Pr[EXPTN2PA(L) = 1] — 1] is negligible in A.
Signature. A éignature scheme consists of three PPT algo-
rithms (Keygen, Sign, Verify). We require the underlying sig-
nature scheme to be existentially unforgeable under chosen
message attack (EUF-CMA). The EUF-CMA experiment is
as follows:

Experiment EXPTEIEJSFi'gCMA (A):

1. The challenger performs the key generation algorithm
(pk,sk) <+ Keygen () and sends pk to the adversary 4.

2. A can repeatedly request for signatures on chosen mes-
sages (mo,...,my), and receives the valid signatures
(o0, ...,04) in response.

3. 4 outputs a message and signature (m*,c*).

4. If m* is not one of the messages requested in step 2, and
Verify,, (m*,6*) = 1, output 1; otherwise, output 0.

A signature scheme is EUF-CMA if the adversary A’s
EUF-CMA o EUF-CMA (3 _
advantage Advg, (A,A) := PrEXPT ¢~ (A) = 1]
is negligible in A.

C Proof of Theorem 1

Theorem 1 Assume that the NIZKs NIZK;,i €
{power, knowledge, DVF-reenc,sk,shuffle,Dec} are com-
plete, sound, and zero-knowledge. Assume that the ElGamal
encryption scheme EC is IND-CPA secure. Assume that Sig is
a signature scheme satisfying EUF-CMA. Then the protocol
% [UC-realizes FEM" against static corruption
and adaptive coercion in the { fé"{éc [G], Fsc, Grae }-hybrid
world.

Proof. To prove the theorem, we construct the real decep-
tion strategies DR and a simulator § such that no non-
uniform PPT environment Z can distinguish (i) the real exe-

1.k
. |Gl Fsc,
cution EXECTDKG[]’T:EPZBB from the (ii) the ideal execution

nm,l.t.k
1—Ivcrte

G
EXEC) et o152

Real Deocteeption Strategy. The real deception strategy DR;
internally runs Dl;, forwarding messages between DI; and the
environment Z. DR; performs as described in Fig. 14.

When the coercer asks for the view of the registration phase,
DR; generates K’ <— EC.Encpi, (pk]). Then, the voter claims
that (K;.,Aj,txj, d;) is the message sent to the RA by simulat-
ing the designated verifier proof of re-encryption.
Simulator. The simulator § internally runs A4, forwarding
messages to and from the environment Z. .§ simulates the

voters V := {Vi,...,V,}, the experts E := {E,...,E;},
the registration authority RA, the shuffler, the trustees 7 :=
{T1,...,Ti}, and the ideal functionalities Fre[G], Fec. It
works as follows:

In the preparation phase:

Upon receiving (INITNOTIFY,sid, T;) from the ideal func-
tionality 7™%"* § simulates the trustee T, following the
protocol TT™* as if he receives (INIT,sid) from the envi-
ronment 2.

Upon receiving (INITNOTIFY, sid, RA) from the ideal func-

tionality 50k

, S simulates the RA following the protocol
T4 as if he receives (INIT,sid) from the environment
Z.
In the registration phase:
Upon receiving (LEAKPOWER,sid, (a;, V;)) from the ideal

functionality F:"™%* S simulates the voter V ; following the

m btk
protocol Ty ™"

environment 2.
Upon receiving (REGNOTIFY,sid, V) from the ideal func-

Frmbik ¢ simulates the voter V ; following the

as if he receives (REG,sid,o;) from the

tionality
protocol TI"%4* a5 if he receives (REG, sid,0) from the en-
vironment Z.

When the the registration authority RA receives
(SENT,sid,V;,(K;,A},tx;,8;)) from the simulated %, S
simulates the RA following the protocol IT%7;5¢
In the voting/delegation phase:

Upon receiving (VOTENOTIFY,sid, VOTER) from the

btk .
Fooiot S simulates an honest voter

V; following the protocol 5K a5 if he receives
(VOTE,sid, vp) from the environment Z.
Upon receiving (VOTENOTIFY,sid, EXPERT) from the

m Ltk :
Foor ", S simulates an honest ex-

ideal functionality
pert E; following the protocol TT™%* as if he receives
(VOTE,sid, vy) from the environment 2.

When a voter V; is coerced, § simulates V; performing the
real deceiving strategy DR; to cast a fake ballot following the
coercer’s instructions.

Once Gpgg receives (WRITE,sid,BF), S does the follow-

ing:

ideal functionality

s Parse BF as (E;, ¢;,Ti, OF,).

o Check (i) NIZKynowteage Verify(ti ;) = 13 (i)
Sig.VerifypkEl_ (og;,€i) 21

* If it is valid, compute v; = EC.Decq; (c;);

e If E; is not corrupted, § will abort.

« Send (VOTE, sid, v;) to F5"* on behalf of E;.

Once Gpgg receives (WRITE,sid, B;), S does the follow-
ing:

* Parse B; as (pkj>ujanj76j)'

9

e Check (1)
Sig.Verify,, (0, u;) L1

NIZKknOW|edge.Verify(ﬂ:j,uj) 1; (11)

« If it is valid, compute v; = EC.Decgy, (u;);

* Find the owner of pk; by decrypting all the registration
messages. Denote him as V.

* If V; is not corrupted, § will abort.

« Send (VOTE,sid, v;) to Fsw"* on behalf of V.

In the tally phase:
Upon receiving (VOTEEND, sid) from the ideal functional-
ity Fumbk | simulates the shuffler following the protocol

vote
"% as if he receives (VOTEEND, sid) from the environ-

vote

ment 2.
Upon receiving (LEAKTALLY,sid,n, ballotsg, bcy) from
the ideal functionality F/%™“"* § records m, ballotsg, bey .

Upon receiving (LEAKBALLOTS,sid, ballots) from the

ideal functionality F/5"™%"* § records ballots.

Upon receiving (TALLYNOTIFY,sid, T;) from the ideal
Frmbik s does the following:

functionality F,ote

e Set J:=JU{T;}.

o If |9 N Thonest| + |Teor| < t, S simulates the trustee
T, following the protocol IT%™ F ag if he receives

(TALLY,sid) from the environment 2.

* Otherwise, S simulates T;’s decryption and the corre-
sponding NIZK based on the tally result 1 and the known
information about ballots.

Indistinguishability.

We prove indistinguishability through a series of hybrid
worlds H, ..., He.
Hybrid #): This is
EXECTéEG[[gLﬂOGPBB.

2" DR,4,2
Hybrid #,: #, is the same as H; except that during the tally
phase, the honest trustees’ decryption NIZKs are generated
by the NIZK simulator.

Claim 1: If NIZKpe is zero-knowledge with adversary ad-
vantage Adv,z\,k,ZKDec(ﬂ,l), then #; and Hj are indistinguish-
able with distinguishing advantage at most (4n +m+) -
AdVZNk|2KDec (A,1).

Proof 1: With each voting casting at most one fake ballot
in our modeling, there are at most 2n voters’ ballots and 2n
encrypted public key items. For experts and candidates, each
of them has one ciphertext to decrypt. Therefore, the overall
advantage is at most (4n+m+{) ~Adv,z\,k|ZKDec(ﬂl,7») by a
standard hybrid argument.

the real world execution

19

Hybrid %5: 6 is the same as #] except that during the tally
phase, the honest trustees’ decryption shares are backward
calculated from the tally result.

Claim 2: #5 and #, are perfectly indistinguishable.

Proof 2: In out threshold cryptosystem, the backward calcu-
lated shares in #5 and the shares in %] have the same distri-
bution.

Hybrid #45: %5 is the same as #H, except that in the vot-
ing/delegation phase, the honest voters’ ballots are replaced
with ballots for candidate vg.

Claim 3: If the encryption scheme EC is IND-CPA with
advantage Adv'ENCD'CPA(ﬂ, A) and NIZKynowledge 1S zero-
knowledge with adversary advantage Advﬁ,l]ZKkaIe dge (4a,n),

then %45 and %, are indistinguishable with distin-
guishing advantage at most n - Advi>“PA(4,0) + n -
AdvakIZKknowledge (/QL 7\') :

Proof 3: With at most n honest voters in the system, the
overall advantage is at most n - AdviN>PA(Z L) +n -
AdVZNkIZKknowIe dge (4, L) by a standard hybrid argument.

Hybrid #4: #H, is the same as #; except that if a corrupted
voter generates a valid ballot for an honest voter, the execution
will abort.

Claim 4: If the signature scheme Sig is EUF-CMA with
advantage AdvE}éF'CMA(ﬂ,k), then #; and %4 are indis-
tinguishable with distinguishing advantage at most n -
AQVEUF-CMA (72,

Proof 4: There are at most n honest voters, so the probabil-
ity of abortion is no more than n - AdvEgF'CMA(ﬁl,k) by a
standard hybrid argument.

Hybrid Hs: Hs is the same as #H; except that if a corrupted
expert generates a valid ballot for an honest expert, the execu-
tion will abort.

Claim 5: If the signature scheme Sig is EUF-CMA with
advantage AdinLéF'CMA(ﬁl,k), then #5 and #; are indis-
tinguishable with distinguishing advantage at most m -
Advsym MA(a,).

Proof 5: Same as the previous proof, the probability of abor-
tion is no more than m - Adin:F‘CMA(ﬂl,%) by a standard
hybrid argument.

; - Thic i : : GreB
Hybrid #: This is the ideal execution EXECf""”*"",Dl,s,Z'

Claim 6: If the decryption NIZK NIZKD:;te is sound
with adversary advantage Adsz‘]%“,gDec (4,\) and the shuf-
fle NIZK NIZKghyere is sound with adversary advantage
Advs,\,"|L‘z’}f'shufﬂe (4,\), then Hg and s are indistinguish-
able with distinguishing advantage at most (4n+m+¢) -
Advigi (A, 0) +Advigic, . (A1),

Proof 6: It suffices to argue that the ideal tally and the real
tally output the same result. We can see that, as long as the
re-encryption in the registration phase is correct and the shuf-
fle and decryption in the tally phase are sound, the ideal tally
and the real tally did the same computation by the additive ho-
momorphism of lifted ElGamal encryption scheme. Thus, the

: d
overall advantage is no more than n- Advijzi, o (A,A) +

(4n+m+0)- Adviigs. (A,0) + Adviig (A1),

Combining together, the real execution
F5kclCl. Fsc, Grar . .
EXEC PXG and the ideal execution
o pRr.4,2
EXECYPE8, are indistinguishable with distinguishing
Foote " DLS,Z

advantage at most

(4n+m+ L) - AdvRlizip,. (A,N) +n- Advip “PA (4, 1)
1 AdVRizZK, oteage (M) + (n+m) - Advgg™MA(,0)

+n-Adve (A,M) + (4n+m+0) - Advigi (A1)

NIZKpyp-reenc
sound
+ AdVNIZKshufﬂe (ﬂ7 }\’)

This concludes the proof.

20

	Introduction
	Our Approach
	Related Work

	Preliminaries
	(Lifted) ElGamal Encryption
	Signature
	Non-interactive Zero-knowledge Proof (NIZK)
	Universal Composibility
	Distributed Key Generation
	Public Bulletin Board
	Secure Channel

	System Overview
	The JCJ Protocol
	Our Technique
	Overview of Our Scheme

	Assumptions and Security Modeling
	Security Properties and Assumptions
	Security Modeling

	The Protocol
	Protocol Description
	Complexity
	Security

	Implementation and Evaluation
	Conclusion
	NIZKs
	Security Definitions of NIZK, Encryption, and Signature
	Proof of Theorem 1

