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Abstract
Private Information Retrieval (PIR) is a cryptographic primi-
tive that enables a user to retrieve information from a database
without revealing the particular information they are seeking,
thus preserving their privacy. PIR schemes suffer from high
computation overhead. By running an offline preprocessing
phase, PIR scheme can achieve sublinear online server compu-
tation. On the other hand, although protocols for honest-but-
curious servers have been well-studied in both single-server
and multi-server scenarios, little work has been done for the
case where the server is malicious. In this paper, we propose
a simple but efficient sublinear PIR scheme named Crust.
The scheme is tailored for verifiability and provide privacy
and data integrity against malicious servers. Our scheme can
work with two servers or a single server. Aside from verifi-
ability, our scheme is very efficient. Comparing to state-of-
the-art two-server and single-server sublinear PIR schemes,
our scheme is 22x more efficient in online computation. To
the best of our knowledge, this is the first PIR scheme that
achieves verifiability, as well as amortized O(

√
n) server com-

putation.

1 Introduction

Private Information Retrieval (PIR) is a noteworthy crypto-
graphic primitive where a server holds a database represented
by an array of n records, and a client wishes to query the i-th
element (i ∈ {1..n}) without disclosing i to the server. PIR
has numerous applications in real-world scenarios, including
but not limited to private database search [19], private media
consumption [9], and credential breach reporting [20].

Verifiability. The advent of cloud computing and the ris-
ing trend of outsourced computing have prompted us to
reconsider PIR’s implementation. By delegating databases
to cloud servers with adequate computing power, the exist-
ing security model for PIR must be reevaluated. Most PIR
schemes[4, 10, 14, 15, 18] assume an honest-but-curious
server. However, this assumption is overly idealistic for the

cloud setting, where a server may provide incorrect answers
intentionally or due to system failures. Therefore, it is es-
sential to consider malicious servers. In such cases, a server
may deviate from the scheme and provide arbitrary responses,
deceiving the client into accepting an incorrect answer.

In the aforementioned protocols, a server could (at least
with non-negligible probability) force the client to retrieve
any value it decides. Checklist [12] provides an application
of "Safe Browsing" service. If the servers are malicious in the
application, they can delibrately provide the client with wrong
answers and cheat the client into malicious websites. Another
example could be a PIR server for private DNS queries [22].
A malicious server may perform a DNS poisoning attack [5],
thus preventing user from accessing certain web service or
redirecting the user to a bogus website controlled by malicious
party.

In order to secure a PIR scheme in the malicious setting,
the client needs to be able to verify the server’s response,
which is a non-trivial task. In practice, this task is challenging
as the verification must not reveal any information about the
index being queried.

PIR Schemes with Sublinear Online Time. Corrigan-
Gibbs and Kogan introduced an offline-online sublinear PIR
construction for a two-server setting using puncturable pseu-
dorandom sets (PPRS) in [4], by running an offline phase
aforehead and retrieve hints for online queries. The scheme
results in amortized O(

√
n) server computation and commu-

nication. They identified that utilizing a better instance of
PPRS can further reduce communication costs. Shi et al.[18]
presented a meticulous construction of such a PPRS, which
they combined with [4] to achieve a PIR scheme with O(logn)
communication.

While the asymptotic complexity of the scheme looks
promising, their are a few obstacles that prevent it from being
practical. First, the scheme needs parallel instances to ensure
its correctness, which makes its efficiency worse than ex-
pected. Second, if O(logn) communication is to be achieved,
either the construction in [18] or [4] is indispensable. The
former is known to have a very large constant factor, and the
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latter incurs linear client storage. There are a few following
works that aims to tackle these obstacles in different ways
such as Checklist [12] and TreePIR [13].

At Eurocypt 22’, Corrigan-Gibbs et al.[3] applied this
offline-online sublinear PIR technique to the single server
scenerio. They proposed to retrieve the offline hints with ho-
momorphic encryption so that one server could act as two
servers. The work also introduced the concept of main hint
and backup hints to allow multiple queries without replen-
ishing existing hints. However, what makes the two-server
scheme impractical also applies to the single-server scheme.
The scheme needs parallel instances to ensure its correctness,
and the communication cost is O(

√
n). The work is extended

by Piano[24] which combines the highlight of TreePIR [13]
and [3] to construct a more practical single-server scheme.

However, these works introduce extra complications in
the scheme and hinder us from introducing verifiability to
sublinear schemes. We will discuss the details in Section 3.

Possible constructions. A common approach to achieve
data integrity is to compose some data authentication method
with the target protocol. Concerning PIR, the database
provider could attach a digital signature under a previously
published key, or a merkle proof with reference to a certain
merkle root to the database records. The integrity of data
records are ensured by verifying the attached authentication.
There are three major concerns that prevent us from applying
these methods to PIR.

1. If the database records are very small in size, the au-
thentication information could enlarge database record
size significantly. A typical ECDSA signature is of size
at least 320 bits. For a 1-bit record, the authentication
information is 320 times larger than the record itself.

2. The authentication information requires extra care when
handling database updates, damaging both integrity and
efficiency. Without proper version control, the server
may conduct a replay attack by replying with outdated
database. And the merkle proofs attached to records need
to be recalculated after every single update.

3. Common data authentication are vulnerable to selective
failure attacks [11]. In such attacks, a malicious server
selectively tamper with the database records, and tries
to infer the query index i from the result of integrity
check. Consider that the database records are protected
by digital signatures. The malicious server replaces the
first record of the database with a random item that shall
not pass the signature verification. If the client accept
the answer, the server knows that the first item is not
queried. Otherwise, the server knows that the first item
is queried.

Therefore, the question of Whether we can design a
malicious-secure PIR scheme with sublinear computation
remains unanswered. We provide a positive answer to this

question by offering Crust—two PIR scheme with sublinear
computation and verifiability, one for the single server set-
ting, and one for the two-server setting. The core idea of our
construction is simple. We retrieve extra information from
the server and use it to verify the server’s response in the fu-
ture. Our scheme offers verifiability while incurring minimal
overhead.

Our contributions. Our contribution includes:

• We introduce verifiability to sublinear PIR schemes, en-
abling these schemes to be run in a malicious setting.
Our two server scheme can provide integrity with two
non-colluding servers, one of them being honest-but-
curious and one of them being malicious. Our single
server scheme provide integrity against malicious server
with a digest from a trusted database provider. To the
best of our knowledge, this is the first PIR scheme that
achieves both verifiability and O(

√
n) amortized server

computation.

• We analyse the exsiting constructions of sublinear PIR
schemes and discuss the obstacles that prevent them
from being verifiable. We propose a new construction
specially designed for verifiability. The construction is
efficient and simple. Furthermore, our construction can
run in the semi-honest setting by removing verifiability,
thus providing better efficiency. Without the overhead
of verifiability, our scheme is 4.2x-7.7x more efficient in
online computation than state-of-the-art non-verifiable
schemes. The verifiability bring only around 2x overhead
in online computation, which makes our scheme being
verifiable and more efficient than non-verifiable schemes
at the same time.

• We propose a detailed evaluation on our scheme compar-
ing to the state-of-the-art schemes, alone with an open-
source implementation for our scheme.

The rest of this paper is arranged as follows: We introduce
the preliminaries in Section 2. Section 3 presents our pro-
posed construction. In Section 4, we evaluate our scheme’s
performance. Section 5 introduces related works and Section
6 concludes with a summary.

2 Preliminaries

2.1 Notation
Throughout the rest of this paper, we assume a PIR scheme
with a client C and two servers usually referred to as
Shint ,Squery. A data owner O has a database D with n records,
where D = D1, . . . ,Dn. We assume n is a perfect square, if
not, the database could always be rounded up to the next per-
fect square. with at most O(sqrtn) dummy records. We use
the notation [k] for the set {1,2, . . . ,k}. We use λ to denote
the security parameter and negl(·) for the negligible function.
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Scheme Servers Communication Computation Verifiable
TreePIR [13] 2 O(

√
n) O(

√
n) ✗

DPF-PIR [7] 2 O(logn) O(n) ✗
APIR(Merkle) [2] 2 O(λ

√
n logn) O(λn logn) ✓

Crust (Theorem 1) 2 O(
√

n) O(
√

n) ✓

SimplePIR [10] 1 O(
√

n) O(n) ✗
Piano [24] 1 O(

√
n) O(λ

√
n) ✗

APIR(LWE) [2] 1 O(
√

n) O(n) ✓
Crust (Theorem 2) 1 O(

√
n) O(λ

√
n) ✓

Table 1: A comparison of PIR schemes on database size n. The communication and computation are ammortized over
√

n queries.
Some of the schemes has a client-irrelevent database preprocessing phase, which is not included in the table. The database in
APIR is rearranged to balance upload and download.

Letter Meaning
D Database
ck The client key, consisting of PPRS keys
sk A PPRS key
q A client query
a A server answer
h The hint
λ Security parameter

Table 2: Summary of frequent notations.

The notation used in this paper is shown in Table 2:

2.2 Private Information Retrieval (PIR)
We adopt the definition from CK20[4].

Definition 2.1 (Offline-Online PIR). An Offline-Online PIR
scheme allows a client to retrieve a record Di from the
database D without revealing the index i to any of the
k servers. The scheme consists of algorithm tuple PIR =
(Setup,Hint,Query,Answer,Reconstruct):

• Setup(1λ,n)→ (ck,qh), generates client key ck and hint
queries qh given database size n and security parameter λ.

• Hint(D,qh)→ h generates hints h from database D and
hint queries qh.

• Query(ck, i)→ q generates a query q consisting of k sub-
queries given the hints h and the index i. The j-th subquery
is sent to the j-th server.

• Answer(q j)→ a j generates answer a j in response to sub-
query q j.

• Reconstruct(h,a)→Di reconstructs the record Di with the
help of hint h given answers a.

The scheme should satisfy two essential properties:

Correctness. The client receives the correct record Di with
overwhelming probability (i.e., 1−negl(λ)) if both the client
and the servers execute the scheme honestly.

Privacy. The servers learns nothing about the index i from
the query q j sent by the client.

In this paper, we primarily explore the schemes related to a
two-server setting where k = 2, and the single server setting
where k = 1. In the two-server setting, we assume they do not
collude during the execution of the scheme, which is common
in sublinear PIR settings. A hint in such schemes usually
contains a set and a value. We use the word "parity" or "hint
parity" to refer to the value contained in a hint. The word
"parity" also refers to the value in an answer. And we use
"set" or "hint set" to refer to the set in a hint.

2.3 Puncturable pseudorandom set(PPRS)
A puncturable pseudorandom set (PPRS) is a set that can be
represented with a short key and supports an additional "punc-
ture" operation that removes an element from the set. This
set is characterized by three algorithms (Gen,Punc,Eval), pa-
rameterized by the set size s, range R, key space K , punctured-
key space Kp:

• Gen(1λ,n)→ sk probabilistically generates a set key sk ∈
K , given the set size n and security parameter λ.

• Punc(sk, i)→ skp generates a punctured set key skp ∈Kp,
given the key sk and the punctured element index i.

• Eval(sk)→ S generates the corresponding set S, given the
set key sk ∈K ∪Kp. Each element in the set is an element
in [R].

PPRS must satisfy efficiency, correctness, and privacy. We
informally define these as follows:

Efficiency. All three algorithms (Gen,Punc,Eval) should
run in time linear in s and polylogarithmic in n.

Correctness. The original set and the punctured set should
be correctly generated and evaluated.
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Figure 1: An illustration of the base construction in CK20.
The client retrieve hints from hint server, puncturing the item
it wishs to query from the hint set, and send the punctured set
to the query server. The query server returns the answer to
the client. The client can then reconstruct the record from the
answer and the hint.

Privacy. The punctured item should be indistinguishable
from any other item that is not in the punctured set.

It is noteworthy that here we do not require the PPRS
to be non-trivial. That is to say, if the set does not have a
succinct expression after an element is punctured. To express
the set in plain as a list of values would also satisfied the
definition. We shall see that in some cases, we would have
to use such a trivial PPRS as the punctured index effectively
leaks information. In the following sections, we will use the
term "puncture" to describe the operation of removing an
element from the set, regardless of whether the PPRS is trivial
or not.

In addition, PPRS in our construction may be extended by
relaxing the correctness requirement. It can be evaluated to
a set with 1 more element than the original set. A detailed
explanation is provided in Section 3.

PPRS reduce the space needed to store a list of sets. In the
form of PPRS, a set can be effectively expressed with a short
key.

2.4 Base construction

To better comprehend our scheme, a basic understanding on
the construction 44 in [4] is vital. The scheme is described as
follows: two servers, Shint and Squery, each holding a copy of
the database, are involved. The construction consists of two
phases: an offline phase and an online phase.

Offline phase. The client generates m PPRS {sk j}m
j=1 with

size s and range n. The client sends them to Shint . The hint
server calculates a parity h j for each set and returns them to
the client. A parity consists of the sum all records in the set
sk j, i.e. h j = Σi∈Eval(sk j)Di. The client stores these sets and
their corresponding parities.

Online phase. To make a query, the client finds a PPRS skt
containing the desired index i and remove i from the set. It
also samples a new set sknew containing i and remove i from it.
sknew is sent to Shint and skt is sent to squery. The servers then
calculate the parities of the punctured sets aquery and ahint
and return them to the client. The client then reconstructs the

record Di from aquery and replenishes the hints from ahint .
In the scheme, the hints is defined as the sum of all the

elements in the set. So the record could be easily reconstructed
by calculating Di = ht − aquery. The used set skt must be
discarded to avoid the server learning the index i. So a new
set sknew is sampled to replace the used set. The client then
stores the new set sknew and its corresponding parity hnew =
ht −aquery +ahint .

The problem is that, the distribution of the sets skt and
sknew are twisted. The sets never contains the index i. To
fix that, with probability s−1

n , the client would not select skt .
It merely samples a skdummy containing i and punctures a
random element other than i. The set skdummy is then sent to
both servers.

A single instance of the construction fails with non-
negligible probability. The client may hold no such set con-
taining i, or a dummy set is sampled and sent to the servers. In
both case, the client can learn nothing. To satisfy correctness,
λ instances are run in parallel. With proper parameters, it
could be shown that in each single instance the scheme fails
with probability less than 1

2 , so the final scheme fails with
probability negligible in λ, thus correctness holds.

2.5 Verifiability and Selective failure
The selective failure attacks, first proposed in 2006[11], de-
mand a scheme to retain privacy when a malicious server is
given access to the verification result of the client. It can be
seen as the client sends a bit b indicating whether the answer
is accepted to the servers. Thus, the servers may "guess" a
index that the client is likely to query, and only corrupt the
one record. Privacy can be violated if a scheme does not put
that into careful consideration, as we have discussed in the
introduction.

The problem is addressed in previous work [2]. They bind
one record to the entire database with a digest, and perform
linear computaion on the database. However, the problem is
subtler in sublinear schemes. The dilemma is clear: Not all
records are accessed in one query, thus how can we tell if
the database is changed or not, on those untouched records?
In addtion to that, some recent works [12, 13, 16] introduce
dummy queries to rectify the aforementioned twisted distribu-
tion of the query set. The dummy sets are ignored in the final
answer. Such dummy queries, if not properly handled, could
also be used to perform selective failure attacks.

3 Algorithms

3.1 Two Server Verifiable PIR
We first define our Verifiable PIR model based on the PIR
definition.

Definition 3.1 (Verifiable Private Information Retrieval). A
verifiable private information retrieval scheme is a PIR
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scheme (Setup,Hint,Query,Answer,Reconstruct). In addi-
tion to correctness and privacy, the scheme also ensures in-
tegrity.

• Setup(1λ,n)→ (ck,qh), given the database size n and se-
curity parameter λ, generates client key ck and hint queries
qh.

• Hint(D,qh)→ h, given the database D and the hint queries
qh, generates hints h.

• Query(ck, i)→ (qhint ,qquery), given the client key ck and
the index i, generates two queries for hint server and query
server separately.

• AnswerQuery(D,qquery)→ aquery, given the query qquery,
generates answer aquery and replies to the client.

• AnswerHint(D,qhint)→ ahint , given the query qhint , gener-
ates answer ahint and replies to the client.

• Reconstruct(h,aquery)→{Di,⊥}, given the answer aquery,
reconstructs the record Di with the help of hint h or reject
the answers.

• Replenish(ck,h,ahint)→ (ck,h), given the answer ahint , up-
date the hints.

The Answer algorithm is delibrately split into two parts. In
the scheme the two servers answer the queries in different
ways. The scheme should satisfy two additional properties:

Integrity. The client should either reject the answer (out-
put ⊥) or output the correct record Di with overwhelming
probability (i.e., 1−negl(λ)) if the hint server is honest.

Privacy (Concerning selective failure attack). The
servers learns nothing about the index i from the query q j sent
by the client with access to a bit b indicating if Reconstruct
algorithm outputs ⊥.

Theorem 1. There is a two-server offline/online verifi-
able private information retrieval scheme with correct-
ness, privacy and strong integrity. On a database of size
n, the scheme has:

• Offline communication complexity: O(λ2√n)

• Offline computation complexity: O(λn)

• Online communication complexity: O(
√

n)

• Online computation complexity: O(
√

n)

• Ammortized computaion complexity: O(
√

n)

• Support at least
√

n queries.

Construction for Query Server. The core of our construc-
tion is extremely simple, and is commonly used in secure

multi-party computation. In order to compute a function f (x)
with malicious participants, the participants calculate two
functions f (x) and g(x) = α f (x) with a hidden α ∈ F2p . The
results are then verified by checking if f (x) ·α = g(x). If the
participants are honest, the verification will always succeed.
Otherwise, the verification will fail with a probability 2−p. In
our case, we can use the same idea to verify the answer aquery.

It is important to note that the two servers in the base
construction are not equivalent. We assume that Shint is an
honest server.

Instead of calculating one hint parity, we calculate two:
the sum parity hs and random parity hr. The two parities are
defined by:

For a set of elements, S = {x1,x2, . . . ,xs}, and a set of
random numbers R = {r1,r2, . . . ,rs},

hs = Σi∈[s]xi,
hr = Σi∈[s]ri · xi

We assume that both hints are both in F2p , and F2p is
large enough to hold one record in the database.

Recall that in the actual scheme, the set S is represented by
a short PPRS. It is natural that we use PPRS to express both
the random numbers and the set. A query is also split into
two parts: Sum query qs and random query qr. The other part
remain the same as the base construction. qs and qr is defined
by:

For a PPRS sk containing the query item at index i, a
PPRS sr that would evaluate to random numbers,

qs = Punc(sk, i),
qr = Punc(sr, i)

The two PPRS sk and sr will have different range. sk
evaluates to random indexes in [n] while sr evaluates to
random numbers in F2p .

The servers then compute the answers as and ar the same
way as the hints are computed. Except with the punctured
index and random number left out. The servers then send the
answers to the client. The can client verifies the answers by
checking if

hr−ar = Eval(sr)i · (hs−as)

If the verification fails, the client outputs⊥. An explanation
on the integrity is delayed to Section 3.4.

We explicitly point out that this modification to hint calcu-
lation and reconstruction is orthogonal to how the hint set is
selected. This enables our scheme to run more efficiently in a
semi-honest scenario by simply removing the random parity.
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Figure 2: An illustration of the process of generating a query
from a hint. The database contains n= 16 items and is divided
into
√

n = 4 blocks. A hint contains one item in each block.
The client wants to query the i = 10-th item, which is in the
third block. The item is punctured from the hint, and a crumb
in the third block is added to the set.

Handling Hint Server. Shint differs from Squery in that the
client C only uses "existing" hint at Squery, but learns "new"
hint from Shint . Specifically there are two key points:

1. We run the offline hint retrieving phase with the hint
server, where query server is not involved at all.

2. A part of the hint, namely the punctured items, are re-
moved when sent to the query server. These values are
not accessed by both server, thus harder to verify by the
client.

In such concerns, we choose to limit our scheme to toler-
ate one honest but curious hint server, and a malicious query
server. Of course, the client could always run the single server
scheme presented in Section 3.3, if no honest server is avail-
able. A detailed explanation on why the verification fails to
work with a malicous hint server can be found in the Appendix
A

3.2 A new construction of query
There are two main drawbacks in the construction.

1. It needs parallel instances to ensure correctness. The
original paper [4] fixes the number of parallel instances
to λ. In practice, to achieve a 2−128 correctness error
on a database with 220 items, around 13 instances are
required. This is a significant overhead in both com-
munication and computation, which makes the scheme,
though asymptoticly efficient, perform poorly in prac-
tice.

2. The original construction of the PPRS does not allow
efficient membership test. Which means that, in order
for a client to find a PPRS that contains the queried
index, the only way is to evaluate the entire set. This

makes the client computation linear in the size of the
database. An alternative solution is to use a hash table to
record the items while evaluating the sets, but this would
require linear client storage. Neither of the two solutions
is acceptable.

Our solution to these two problems is greatly inspired by
recent progression on sublinear PIR [13, 16]. To provide a
better grasp of the solution, we first introduce the key con-
tribution of these works—how PPRS is generated, and how
queries are organized. As the rest of the scheme, namely the
hint calculation, answer generation and reconstruction are
almost identical to the original construction.

Instead of using a PPRS with range n to express the set
directly, they proposed to first divide the database into

√
n

blocks, express the set with
√

n ranged sets and use it as an
offset in each

√
n blocks. Concretely speaking, a set with raw

elements in range [
√

n]:

Eval(S) = {s0,s1, . . . ,s√n−1}

would evaluate to domain [n] with items:

EvalSet(S)= {0·
√

n+s0,1 ·
√

n+s1, . . . ,(
√

n−1)·
√

n+s√n−1}

To avoid confusion, the evaluation here is denoted as
EvalSet to distinguish from the Eval functionality in PPRS
definition. We use EvalSet to refer to evaluation with the
block offset, and Eval to refer to evaluation without offset.
This "divide and sample" trick enables efficient membership
test. To check if an index j is in a set, we find the correspond-
ing block by calculating ⌊ j/

√
n⌋ and check if the offset is

j−
√

n · ⌊ j/
√

n⌋.
Likewise, when generating a query, the client find a set

that contains the queried index, and puncture the index in the
set. This technique cannot be directly applied to a normal
PPRS construction, since the punctured point would narrow
the queried item to a block. Theses works propose to send ad-
ditional random sets to as "dummy sets" to the server. So that
the server received set is uniformly distributed. The dummy
sets are ignored in the final answer. How the dummy sets are
generate differs from scheme to scheme. In these schemes
the client always learns the queried record. That release the
schemes from running parallel instances, which makes the
schemes significantly faster in practice. We omit the details
here, and refer readers to the papers for a detailed explanation
and proof for its correctness and privacy.

Eliminating dummy set with crumbs. The very problem
that hinder us from applying this optimization is the dummy
set. As we discussed in the selective failure part, the dummy
set also requires verification. Otherwise it will be easy for the
server to tell which set is the genuine one. A simple strategy
would be the server answers one of the sets with a random
value, and the other ones with honest results. If the client
accept the answer, the randomly answered set is a dummy
one, otherwise it is the genuine one.
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We address the problem by taking a different approach to
hide the punctured point. The client retrieves extra random
hints called crumbs. Each crumb is a random record from a
block. The client retrieves λ records from each block in the
offline phase. There will be λ

√
n crumbs in total.

When making queries, the client now uses a crumb in the
queried block to make up the punctured block. Concretely
speaking, if the client wants to query the i-th record, it first
finds a set that contains i, and puncture i from the set. It then
looks for a crumb in the ⌊i/

√
n⌋-th block, and adds it to the

set. An illustration is shown in Figure 2. The algorithm is
describe in algorithm 3.

Since the crumb is merely one bare record. The "real"
answer, which does not contain the crumb, can be easily cal-
culated from the answer and the crumb. The client can then
verify and reconstruct the record as is done in the unoptimized
scheme.

It is worth mentioning that the punctured set and the crumb
cannot be expressed succinctly as previous PPRS does, in the
sense that, the punctured point effectively leaks which block
the queried index is in. So the set will be expressed in plain
in the online queries. Such a construction does not strictly
follows the PPRS definition. Specifically, the construction
does not satisfy correctness and privacy at the same time.
The extra crumb introduced is necessary to retain privacy,
but breaks correctness. We choose to relax correctness by
allowing one extra element in the evaluated set.

Hint retrieving and replenishment. The offline hint re-
trieving and online hint replenishment require extra care.

In the offline phase, crumbs can be easily retrieved in plain.
Since they are retrieved from a semi-honest hint server with a
PRG, the crumbs can be sampled by the server.

In the online phase, the client needs to replenish hints and
crumbs. Hint replenishment is done in a different way as
querying. The crumbs retrieved from hint server cannot be
used at the hint server. Instead, the client samples a new PPRS
containing the queried index i. After that i is punctured and a
random index in the ⌊i/

√
n⌋-th block is selected to make up

the punctured block. The client then sends the set to the hint
server. The hint server sends all the

√
n records in plain to the

client. The hint is assembled at the client from the records
and Di. This process is described in algorithm 4.

The client cannot replenish crumbs directly from the hint
server, for the crumb will always be in the same block as
the queried index, which leaks information to the hint server.
Instead, the crumb must be selected randomly. We adopt the
techniques from single server sublinear PIR schemes [3]. The
crumbs will not be updated after each single queries. Instead,
after a collection of

√
n queries, a new set of λ

√
n crumbs

will be fetched from the hint server. In each query 1 crumb
will be consumed. The probability that some block would run
out of crumbs before

√
n queries is negligible.

Remark 1 (Queried Index Distribution). As is stated in [3],
the database could always be randomly permuted before any

of the queries are made. On the other hand, we can always ask
the client to save the last

√
n query result, so that one index

is not queried multiple times within a
√

n queries period. If
such a query is made, the client queries a random database
element instead, and retrieve the record from the saved re-
sults. This will ensure that the queried index is uniformly
distributed, which is necessary for the scheme to handle

√
n

queries successfully with overwhelming probability.

Remark 2 (Handling Changing Databases). It is natural for
applications to have a changing database. The optimization
and technique involved in our scheme is compatible with for-
mer techniques handling database changes, such as Checklist
[12].

Algorithm 1: Hint generate algorithm in the two
server setting, run in the offline phase by the client.

Output :Client-side stored hints Hint
1 Samples M = λ

√
n PPRS sk1,sk2, . . . ,skM with size√

n and range
√

n
2 Samples M = λ

√
n PPRS sr1,sr2, . . . ,srM with size√

n and range p
3 Sends sk1,sk2, . . . ,skM and sr1,sr2, . . . ,srM to the

server.
4 Receive H = {(hs1,hr1),(hs2,hr2), . . . ,(hsM,hrM)}

from the server.
5 Store hint as

Hint = (hs1,hr1,sk1,sr1), . . . ,(hsM,hrM,skM,srM)

Algorithm 2: Hint generate algorithm in the two
server setting, run in the offline phase by the hint
server.

Input :Client query PPRS sk1,sk2, . . . ,skM and
sr1,sr2, . . . ,srM

Output :Hint answer H
1 Let M = λ

√
n

2 Let H = []
3 foreach i ∈ [M] do
4 Let S = EvalSet(ski), R = Eval(sri)
5 Let hr = 0, hs = 0
6 foreach j ∈ [

√
n] do

7 hs = hs+S j
8 hr = hr+R j ·S j

9 end
10 Let h = (hs,hr)
11 Append h to H
12 end
13 Send H to the client

7



Algorithm 3: Query algorithm in the two server set-
ting, run in the online phase by the client.

Input :The queried index i
Output :The queried record Di or ⊥

1 Let b = ⌊i/
√

n⌋+1
2 Find t such that hint

ht = (hst ,hrt ,skt ,srt),Eval(skt)b = i. Remove the
hint. If no such skt exists, halt and output ⊥

3 Find a crumb c = (id,x) in Cb. Remove the crumb.
Halt and output ⊥ if crumbs runs out.

4 Sample a random number r from [p].
5 Let qs = EvalSet(Punc(skt ,b))∪{id}
6 Let qr = Eval(Punc(srt ,b))∪{r} // The

addtional item goes to the punctured
point

7 Send qs,qr to the query server.
8 Receive as,ar from the query server.
9 Let res = hst −as+ x, resr = hrt −ar+ r · x.

10 if res ·Eval(srt)b = resr then
11 Output Di = res
12 else
13 Output ⊥
14 end

Algorithm 4: Hint replenish algorithm in the two
server setting, run in the online phase by the client.

Input :The queried index i, the retrieved database
record Di

1 Let b = ⌊i/
√

n⌋+1
2 Sample a random index id in the b-th block.
3 Sample a new set sknew with size

√
n and range

√
n,

containing i.
4 Sample a new set srnew with size

√
n and range p.

5 Let qsnew = EvalSet(Punc(sknew,b))∪{id} // The
addtional item goes to the punctured
point

6 Send qsnew to the query server.
7 Receive x1,x2, . . . ,x√n from the query server.
8 Let hs = Σ j∈[

√
n]\bx j +Di

9 Let hr = Σ j∈[
√

n]\bEval(srnew) j · x j +Eval(srnew)b ·Di

10 Append h = (hs,hr,sknew,srnew) to hint storage.

Algorithm 5: Hint generation algorithm in the single
server setting, run in the offline phase by the client.

Input :A database digest d
1 Invoke the crumb replenish algorithm in two server

setting on the streamed database.
2 Samples 2M = 2λ

√
n PPRS sk1,sk2, . . . ,sk2M with

size
√

n and range
√

n
3 Samples 2M = 2λ

√
n PPRS sr1,sr2, . . . ,sr2M with size√

n and range p
4 foreach i ∈ [

√
n] do

5 foreach j ∈ [λ] do
6 Let id = (i−1) ·

√
n+ j

7 skid = Punc(skid , i)
/* The puncturing can be expressed

by simply recording the punctured
index, since the PPRS remains
with the client and is never sent
to the server before being
promoted to a main hint. */

8 end
9 end

10 Initialize a total of 4M = 4λ
√

n parities
hs1,hr1,hs2,hr2, . . . ,hs2M,hr2M to 0.

11 Initialize the digest hash.
12 foreach i ∈ [

√
n] do

13 Download the i-th part of the database Pi from the
server.

14 Update hash with Pi.
15 foreach j ∈ [2M] do
16 Let x = EvalSet(sk j)i, r = Eval(sr j)i
17 if x ̸=⊥ then

// The block is not punctured
18 hs j = hs j +Dx
19 hr j = hr j + r ·Dx

20 end
21 end
22 end
23 if hash ̸= d then
24 Halt and output ⊥
25 end
26 Store hint as Hint =

(hs1,hr1,sk1,sr1,⊥), . . . ,(hs2M,hr2M,sk2M,sr2M,⊥)
/* There’s one extra item in the hint
for hint replenishment. The item is
also added to a query when the hint set
is evaluated */
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Algorithm 6: Hint replenish algorithm in the single
server setting, run in the online phase by the client.

Input :The queried index i, the retrieved database
record Di

1 Let b = ⌊i/
√

n⌋
2 Find a hint h from the backup hints for block b (hints

with id ∈ [M+b ·
√

n+1,M+(b+1) ·
√

n])
3 Parse hint h as h = (hs,hr,sk,sr,⊥)
4 Let hs′ = hs+Di,hr′ = hr+Eval(sr)b ·Di
5 Remove h from backup hints and append

(hs′,hr′,sk,sr, i) it to main hints.

3.3 Single Server Verifiable PIR
Theorem 2. There is a single server offline/online verifiable
private information retrieval scheme with correctness, privacy
and strong integrity. On a database of size n, the scheme has:

• Offline communication complexity: O(n)

• Offline computation complexity: O(λn)

• Online communication complexity: O(
√

n)

• Online computation complexity: O(
√

n)

• Ammortized computaion complexity: O(λ
√

n)

• Support at least
√

n queries.

To make the sublinear PIR schemes work in a single server
setting, there are two major challenges:

1. There will be no online server for us to replenish hints.

2. Offline hints and oniline queries now goes to the same
server, which is prohibited.

To replenish hints in the online phase, we adopt the idea of
backup hints[3]. The client retrieve extra hints in the offline
phase to replenish the hints consumed in the online phase.
The hints are classified into main hints and backup hints.
There will be as many main hints as there are in the two-
server setting, and λ backup hints for each of the

√
n blocks.

A backup hint for block i is a normal hint with the i-th item
punctured. After a query to block i is finished, a backup hint
for block i is fetched. The client add the queried item to the
backup hint and update the parities. This makes the backup
hint an available main hint with exact

√
n items. The scheme

allows a client to make
√

n queries without rerunning the
costly hint retrieving phase. After that, the offline phase must
be rerun. The crumbs will be replenished in the offline phase
as well. The detail of the hint replenishment is shown in
algorithm 6.

The second challenge is handled in two possible ways. [3]
proposed to retrieve hints with homomorphic encryption and
[17, 24] proposed to stream the entire database to the client.

We adopt the latter one, since it is more efficient in practice.
The hint generation could be done in a block-wise streaming

way. The client request one block from the server at a time,
and update local hints accordingly. For each hint contains
exactly zero or one item in each block. After receiving block i,
the client iterate through all hints and update their parity with
their item in the block. The block can then be discarded and a
new block is fetched from the server. This makes the client
storage sublinear in the database size. A detailed description
is shown in algorithm 5.

In a malicious setting, the client needs to verify the integrity
of the database when generating offline hints. The verification
could be done in an simpler way since the entire database
is accessible to the client. In such single-server situation, a
trusted database owner could be obligated to publish a digest
of the database, as is assumed in APIR [2]. The digest can
be a secure cryptographic hash of the entire database. Details
concerning how such digest is designed and implemented is
out of the scope of this paper.

3.4 Security Analysis

The arguments here serves as an intuition for the security of
our scheme. A formal proof is provided in B.

Two Server Scheme. We omit the unoptimized scheme
here, since it merely serves as an introduction to the optimized
scheme. The analysis applis only to the optimized scheme.
As a reminder, we assume a honest-but-curious hint server
and a malicious query server.

Correctness. The two situations in our scheme that the
client does not learn the queried record are when the client
cannot find a proper set conatining the queried index, or the
block runs out of crumbs. By retrieving M = λ

√
n hints and

crumbs, both happen with negligible probability. From the
algorithm it is clear that an honest answer from the server is
always accepted. Thus the correctness error is negligible.

Integrity. We assume the client has already remove the
crumb from the answers and hints. This always succeeds since
the crumb is known to the client. We denote r = Eval(sr)i
for ease of writing. r is a random element in F2p , and due
to the privacy of PPRS, remains indistinguishable from any
other elements in the field. If an adversary A0 act as Squery
cheats successfully with non-negligible probability ε, which
means it passes the verification with wrong a′s and a′r, it could
construct two equations as follows:{

r · (hs−as) = hr−ar
r · (hs−a′s) = hr−a′r

Within which as,ar are the honest answer it is expected
to answer with, a′s,a

′
r are the maliciously fabricated answer

which pass the verification, hs,hr are the hint parities and
should be unknown to A0.

Substracting the two equation yields

r(a′s−as) = a′r−ar
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Given the equations, A0 can easily solve r. Which mean
there exists an adversary that can break PPRS privacy with
advantage at least ε.

To achieve negligible integrity error, we need a large field
for the elements. Namely, the field should be at least as large
as 2λ where λ is the security parameter.

Privacy. The query server does not affect how the client
generates a query, thus it is sufficient to prove the standard
privacy (without selective failure) in an honest-but-curious
setting. In the offline phase, the hints and sets sampled are
not related to the any specifc index. In other words, there’re
no private inputs from the client that need to be protected
yet. In the online phase, each query from the client is indis-
tinguishable from a newly sampled set with one random item
in each block. The only difference between the set selected
by the client and a random set is that it always contains the
queried index. By switching the index to a random one, the
set is identical to a random set.

More importantly, we show the scheme is not prone to
selective failure attacks. The key observation here is that the
malicious query server already learns the client output when
it generates its reply. If the query server answers honestly,
from correctness, the client will accept the answer and output
a record. If the query server cheats, the only thing it can do
is to modify the answers. From the integrity analysis, a false
answer only passes the verification with probability 2−p. The
client output provide no extra information to the server except
for probability 2−p.

Single Server Scheme. The argument for our single server
scheme is similar to the two server one. The offline hint gen-
erate and online query algorithm is almost identical to the
single server scheme. The main concern remains is the impact
of the hint replenishment.

Correctness. From a similar argument, the chance that
the client cannot find a backup hint to replenish the hint is
negligible. And since the chance of the client cannot find a
proper set conatining the queried index, or the block runs out
of crumbs are both negligible, the overall correctness error is
negligible.

Integrity. Since the database is verified against a digest
in the offline phase, the offline hints are correct except for
negligible probability. With the correct hints at hand the on-
line queries are identical to the two server scheme. From the
same argument in the two server scheme, the integrity error
is negligible.

Privacy. In the offline phase, a server only streams the
database to the client and sees nothing. In the online phase,
the transcript is identical to the query server of the two server
scheme. From the same argument in the two server scheme,
the privacy error is negligible.

3.5 Efficiency analysis
Two Server Scheme. In the offline phase, the client sends
M = λ

√
n PPRS to the hint server. Each PPRS can be repre-

sented by a short key of size λ. The crumbs can be fetched
with an extra PPRS or simply using one of the M PPRS. The
hint server in return sends 2M parities and λ

√
n crumbs to the

client. Assuming parities and crumbs are of the same size as
one database record, the total offline communication would
be O(λ2√n) and the offline computation would be O(λn).

In the online phase, the client search for a hint that con-
tains the queried index i, which takes O(

√
n) computation in

expectation. The succesive processing of the hint, including
puncturing and evaluating the set, also cost O(

√
n) compu-

tation. The query with a size of O(
√

n) is then sent to both
servers. Each server computes the parities in O(

√
n) time. The

hint server answers the query with O(
√

n) records and the
query server answers the query with 2 parities. The client then
verifies the answer in O(1) time. The total online communi-
cation would be O(

√
n) and the online computation would be

O(
√

n).
The crumbs will have to be refreshed after

√
n queries,

which takes O(λ
√

n) communication and computation. Over-
all the amortized communication would be O(

√
n) and the

amortized computation would be O(
√

n).
Single Server Scheme. The one server in the single server

scheme acts almost the same as the query server in the two
server scheme. The online phase with the server is almost
identical. The offline phase involves streaming the database
to the client, which takes O(n) communication and O(λn)
computation. Unlike the two server scheme, the entire offline
phase must be rerun after

√
n queries. So the amortized com-

munication would be O(
√

n) and the amortized computation
be O(λ

√
n).

4 Evaluation

Implementation: We evaluated the performance of our con-
struction and compared it with state of art two-server PIR,
single server PIR and verifiable PIR schemes. For two-server
PIR schemes, we choose DPF-PIR [7],TreePIR[13] and APIR
[2]. For single server settings, we choose Simple PIR [10],
Piano [24] and the LWE variant of APIR. We developed our
implementation. 1.

We selected the parameters to ensure at least 128-bit secu-
rity and maintained and m = λ

√
n throughout the evaluation.

All benchmarks are run single-threaded. For the two server
schemes, the two servers are run in serial so that server time
is doubled in the evaluation.

We conducted the benchmark on a 32-core AMD EPYC
7K83 CPU with 128GB RAM server. We run the benchmarks
on five databases, with different record count and size. The
results can be found in table 3 and 4.

1The code is available at https://github.com/asternight/vpir
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Database Offline Online
Parameters Comm.(MB) Compute(s) Comm.(KB) Compute(ms)

DPF-PIR - - 0.58 3.3
TreePIR 220 32-byte entries 2.88 1.4 65.9 0.94

APIR(Merkle) 32 MB in total - - 1620 301
Crust 13 6.6 72 0.09

Crust(Without verification) 9 1.6 40 0.04
DPF-PIR - - 0.74 54.6
TreePIR 224 32-byte entries 11.53 25 262.6 4.6

APIR(Merkle) 512 MB in total - - 6473 4942
Crust 50 196 288 0.44

Crust(Without verification) 34 38 160 0.18
DPF-PIR - - 0.82 249
TreePIR 228 8-byte entries 11.53 275 262.6 16.6

APIR(Merkle) 2 GB in total - - - -
Crust 104 1828 640 1.46

Crust(Without verification) 50 475 256 0.61
DPF-PIR - - 0.89 842
TreePIR 228 32-byte entries 46.14 426 1049.6 20.6

APIR(Merkle) 8 GB in total - - - -
Crust 200 3470 1152 2.46

Crust(Without verification) 136 693 640 0.95
DPF-PIR - - 1.05 3372
TreePIR 228 128-byte entries 184.56 943 4198 29.4

APIR(Merkle) 32 GB in total - - - -
Crust 776 9411 4224 6.80

Crust(Without verification) 520 1577 2176 1.26

Table 3: Comparison of two-server PIR schemes. The online phase and offline phase are benchmarked separately. DPF-PIR and
APIR do not have a client-wise offline phase. We are unable to run APIR on databases holding 228 entries. It consumes more
than 128 GB RAM.

4.1 Two server schemes

On the performance of APIR. Similar to our schemes, APIR
provide integrity, but at a much larger cost. For two-server
schemes, Merkle Tree based APIR is slower and require larger
communication than our scheme. The scheme is much slower
than DPF-PIR for its database expansion. Merkle Tree based
APIR has a considerable database expansion, we are unable
to run the the scheme on databases with 228 records due to
insufficient RAM.

On the performance of DPF-PIR. DPF-PIR serves as the
baseline for a linear PIR scheme. It has a very small commu-
nication overhead, but suffers from linear online computation.
On large databases, it’s efficiency degrades considerably.

On the performance of TreePIR. TreePIR is a sublinear
PIR scheme. Our scheme improves upon TreePIR in that, it
does not require the server to calculate

√
n possible results. In

addition to that, the instantiating of the PPRS of our scheme
is much simpler. In a sense, we do not actually require the
PPRS to be effectively "puncturable", since after puncturing
a PPRS is always represented in plain. So, the complicated

tree-shaped PPRS can be avoided in our scheme. This brings
around 7x better performance in the online phase.

4.2 Single server schemes

On the performance of SimplePIR. SimplePIR is similar to
a sublinear PIR scheme for that it requires the server to send a
"hint" to the client as well. Though the hint can be calculated
in advance, a server-client communication overhead cannot
be avoided. The rest of SimplePIR is quite straightforward. It
serves as a baseline for a linear PIR scheme, just like DPF-
PIR. On larger databases, it is outperformed by sublinear PIR
schemes.

On the performance of Piano. Piano is a sublinear PIR
scheme. Our scheme outperform Piano in the online phase
since there’s no need to calculate those "dummy answers". We
would like to emphasize again that the datas of our scheme
are collected with verification enabled and a conservative
parameter. Which means in a "fairer" comparison, where
both schemes are run under the same parameter and with
verification removed, our scheme will be concretely faster.
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Database Offline Online
Parameters Comm.(MB) Compute(s) Comm.(KB) Compute(ms)

SimplePIR 20 - 40 12.0
Piano 220 32-byte entries 32 13.6 39 13

APIR(LWE) 32 MB in total 19200 - 1024 5565
Crust 32 11.7 36 0.06

Crust(Without verification) 32 5.0 4 0.03
SimplePIR 84 - 168 82.9

Piano 224 32-byte entries 512 262 159 65
APIR(LWE) 512 MB in total 76800 - 4096 23071

Crust 512 196 144 0.31
Crust(Without verification) 512 89 16 0.12

SimplePIR 169 - 338 255
Piano 228 8-byte entries 2048 4881 255 302

APIR(LWE) 2 GB in total 9600 - 4096 24026
Crust 2048 2721 320 0.98

Crust(Without verification) 2048 1235 64 0.39
SimplePIR 344 - 688 899

Piano 228 32-byte entries 8192 5319 639 329
APIR(LWE) 8 GB in total 38400 - 16384 96104

Crust 8192 3331 416 1.63
Crust(Without verification) 8192 1432 80 0.66

SimplePIR - - - -
Piano 228 128-byte entries 32768 6062 2175 377

APIR(LWE) 32 GB in total 153600 - 65536 384416
Crust 32768 8774 2112 4.86

Crust(Without verification) 32768 1804 64 0.66

Table 4: Comparison of single-server PIR schemes. The online phase and offline phase are benchmarked separately. SimplePIR
does not have a client-wise offline computation, but a hint is transfered to the client. On the largest database our server runs out
of RAM for SimplePIR. The data of the LWE variant of APIR is calculated by the cost of retrieving one bit times the entry width.

On the performance of APIR. The LWE variants of APIR
support only 1-bit retrieval. Its performace degrades drasti-
cally when the database items are large, since multiple in-
stances of the scheme are needed to retrieve one database
item. Similar to SimplePIR, it has a large hint to be trans-
fered to the client in the offline phase. The performance of
the scheme is very limited on databases with large records
that even if we only run one query after the offline phase, our
scheme still outperforms the LWE variant of APIR.

On the performance of Crust. Our schemes outperforms
both the state of art verifiable PIR schemes and sublinear
PIR schemes. Our schemes are faster than APIR and re-
quire less communication. The high offline overhead almost
completely comes from the choice of M. We set λ be 128
and fix M = λ

√
n throughout the evaluation. The parameter

is rather conservative in implementation. As a comparison,
TreePIR chooses M = log2 ·λ

√
n≈ 0.3λ

√
n and Piano stores

M = 4logn
√

n main hints and backup hints. The cost of of-
fline phase is almost completely propotional to M. Choosing
a smaller M is possible, but it troubles us in proving privacy
in a malicious setting. Such a large M is overkill for most

cases. In a semi-honest case, one could choose a smaller M,
at a cost of increased correctness error.

In the online phase the computation of both servers is
minimal—They merely fetch

√
n entries and calculate their

sum and weighted sum. The results are benchmarked with
and without verification as a comparison. The overhead of
galois field computing is considerably large. If we remove
the verification from our scheme (which involves the random
parities and the random set), the offline computation is further
reduced by 75%−83% and online computation reduced by
56%−82%. Which means in a "fair" comparison to TreePIR
when both schemes are in a semi-honest scenario, our scheme
will be around 22x faster than TreePIR in the online phase.
The verification requires a constant λ bits overhead for each
entry, which is not a problem for large entries. But for small
entries, the overhead could be considerable. For ease of im-
plementation, in our code both the entries and the random
parities are represented with a max(λ,size) element. The com-
munication can be further reduced by using a constant λ-bytes
random parity.
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5 Related work

5.1 Verifiable PIR

The concept of Private Information Retrieval (PIR) in a mali-
cious setting is not very innovative. [8] mentioned the concept,
and there have been a body of work, such as [1, 6, 21, 23],
focusing on it. These works are based on previous PIR con-
structions with online computation of O(n) complexity.

Zhang et al.[21] developed their scheme upon the Woodruff-
Yekhanin PIR Scheme and provided accountability. Their
scheme has little communication overhead compared to pre-
vious verifiable PIR schemes, and supports database updates.
They also proposed a simple solution for verifiability in a
single-server PIR, although the solution is too expensive for a
PIR scheme.

Zhao et al.[23] was the first to propose a verifiable single-
server PIR with efficiency comparable to some typical single-
server PIR schemes. However, their construction focuses on
the case where the server remains committed to a predefined
database and tries to break the encryption scheme.

Colombo et al.[2] gives a thorough definition of verifiable
PIR (referred to as authenticated PIR). They propose a simple
construction for multi-server verifiable PIR and an interesting
construction for predicate queries utilizing function sharing.
They also give constructions for single-server verifiable PIR.

5.2 Sublinear PIR

There are a few improvements cannot be directly applied to
our scheme.

The membership testing problem was first addressed in
CK20 by instantiating the PPRS with a pseudorandom per-
mutation (PRP) which enables fast membership test. The cost
is that, PRP is not puncturable, so in the online phase the
client would have to transmit the queries in plain, resulting in
O(
√

n) communication.
Checklist. To avoid running parallel instances, a first

approach was proposed by Kogan and Corrigan-Gibbs in
Checklist[12]. The idea is to retrieve extra information from
the servers and ensure even when the desired item is punc-
tured in query to the query server, the client could recover
it from the extra information from the hint server. We refer
readers to their work for more details. The key point is that, in
their construction, the concept of hint server and query server
is mixed. The assumption we rely upon, that we only learn
new hints from the hint server, is no longer true. In additon,
the scheme requires the client to send dummy queries that
cannot be verified, which makes the scheme prone to selective
failure attacks.

TreePIR. Lazzaretti and Papamathou in TreePIR [13] pro-
pose a brand new way of constructing the PPRS, along with
a new primitive called weakly puncturable pseudorandom
set (WPPRS). They are the first to introduce the "divide and

sample" expression used in our scheme.
The scheme is promising except that it yield

√
n results,

within which only one is the real answer and the rest are
dummy answers. The client has no way to verify the dummy
answers, which makes the scheme prone to selective failure
attacks.

6 Conclusion

Verifiable PIR has expanded the scope of PIR applications
by enabling clients to protect their privacy and data integrity
under malicious settings. In this paper, we present a new
sublinear PIR scheme, with both better performance and veri-
fiability. The scheme outperforms state-of-the-art verifiable
PIR schemes and sublinear PIR schemes. We believe that
our work will further extend the boundaries of PIR and its
applications.
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Suppose we’ve chosen a set key sk j to query Di, which means
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will reconstruct D̂i unknowingly.

The verification we introduced is not involved here. Since
the hints are generated "genuinely", but with a false data
source. Although the cheating may be detected in a query that
uses sk j but does not puncture i. Unfortunately, the probability
of this happening is not high enough, and surprisingly, cannot

14

https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2023/204
https://eprint.iacr.org/2023/204
https://eprint.iacr.org/2023/1072
https://eprint.iacr.org/2023/452
https://eprint.iacr.org/2023/452


be effectively increased by running parallel instances. We
demonstrate the fact with the following adversary strategy:

Consider an adversary A playing the role of Shint . A selects
an index i and a random value D̂i ̸= Di before running the
scheme. Whenever Di is accessed, A use D̂i instead of Di.

If the client decide to query Di, it will be deceived in one
instance with probability 1− s−1

n (the probability of selecting
a set containing i). For one query, the queried index remains
the same across all parallel instances. Therefore, if the client
queries Di, it will consistently select poisoned PPRS keys.
Since the probability of being deceived for the client in one
instance is 1− s−1

n , which is close to 1, running parallel in-
stances does not provide significant benefits.

From a similar argument, the scheme is prone to selective
failure attack when the hint server is malicious. Although the
queries to the hint server are independent from the queried
index. The mere fact that the client fails a query is informative
enough for the hint server. That means the client just used a
"poisoned" hint and that narrows down the queried index to
one hint set.

B Security Proof

We will focus on the two server protocol. As is introduced in
the brief analysis part, the single server protocol can be easily
reduced to the two server protocol, with minimal modification
to the proof.

B.1 Correctness
There are two major part concerning correctness, namely

1. The probability that the client cannot find a hint contain-
ing the queried index

2. The probability that a certain block runs out of crumbs

We show that both probabilities are negligible. For the first
one, we have the following lemma:

Lemma 1. Each hint contains any specific index i with prob-
ability 1√

n .

Proof. Each hint contains exactly one random element in
each block of size

√
n. Any specific index falls into one block

and is selected with probability 1√
n .

The first situation happens when the client cannot find a
hint containing the queried index. The probability is at most
(1− 1√

n )
M . With M = λ

√
n, (1− 1√

n )
λ
√

n < e−λ.
For the second probability, a block runs out of crumbs if

more than λ queries falls into it. With M = λ
√

n, we prove
the following lemma

Lemma 2. The probability that more than λ queries fall into
one block is negligible.

Proof. This part of the proof comes from [3]. Consider a list
of Q =

√
n queried indexes i1, i2, . . . , iQ. As we stated in the

construction, we assume these index are randomly distributed
and distinct. We may also assume that λ <

√
n, otherwise the

proof would be trivial. Consider a subset I ⊆ {i1, i2, . . . , iQ}
of size λ. Let CI be the event that all queries in I fall into the
same block j. We have

Pr[CI ] = (

√
n

n
)(

√
n−1
n
−1) · · ·(

√
n−λ

n
−λ)

Each term in the product is at most
√

n
n−λ

≤
√

n
n−
√

n
=

1√
n−1

Therefore, Pr[CI ]≤ (
√

n−1)−λ. There are at most(
Q
λ

)
≤ (

eQ
λ
)λ

choices of the set I, by the union bound, the probability that
there exists such a set I is

(
1√

n−1
· (eQ

λ
))λ ≤ (

6
λ
)λ

Which is negligible in λ. Taking a union bound over all
√

n
blocks completes the proof.

The proof for the single server protocol is similar. The only
difference is the backup hints. It it easy to see that the backup
hints are identical to crumbs, so the probability that a block
runs out of backup hints are also negligible.

B.2 Integrity
The general idea of proving integrity has been shown in the
security analysis part. We will give a formal proof here. We
first prove a useful lemma.

Lemma 3. In the two server version of Crust, for any non-
zero offset ∆ = (∆s,∆r) ∈ F2

2p , the following probability give
the chance that the client accepts a false answer a′ = a+∆

from the query server.

Pr

c ̸=⊥ :

(ck,qh) ← Setup(1λ,n)
h ← Hint(D,qh)
q ← Query(ck, i)
a ← Answer(D,q)
c ← Reconstruct(h,a+∆)

≤ 1
2p−1

The statement holds also for the successive queries.

Proof. Let r be the random element in F2p that is punctured
from the random hint. In short, the reconstruction part can be
rewritten as

Pr [r · (hs−as−∆s) = hr−ar−∆r]
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Within which as,ar are the answers, hs,hr are the hint pari-
ties. Since the true answers always pass the verification, we
have

r · (hs−as) = hr−ar

So the probability can be further simplified as

Pr [r∆s−∆r = 0]

Noting that r is a random element from PPRS and is indis-
tinguishable from a hidden random value in F2p . The equation
is the evaluation of a non-zero degree-1 polynomial at a ran-
dom point r. Since a degree-1 polynomial has at most 1 root
in F2p , the probability is at most 1

2p−1 .
With lemma 3 at hand, integrity follows directly. The single

server version shares the same proof, with the only difference
being we need to introduce an extra part for the offline setup
to ensure the hints are correct. The proof can be done via a
basic argument on cryptographic hash functions and we omit
it here.

B.3 Privacy
There are two parts in the privacy proof. We first prove that
the scheme satisfy privacy under semi-honest setting. Then
we move on to the malicious setting and prove the scheme is
not prone to selective failure attacks.

We prove the semi-honest privacy by showing that the
client’s queries are indistinguishable from a random set with
one random element in each block. To show that, we prove
the following lemma

Lemma 4. For any query q received by the server and any
two queried indexs i, i′,

Pr[q|i] = Pr[q|i′]

Proof. q can be divided into set qs and qr. Every index
except i and i′ in queried set qs are generated by a PPRS.
Since the PPRS is indistinguishable from a random set, these
indexes are indistinguishable from elements in a random set.
For the block that contains i or i′, the block is resampled with
a fresh crumb. A crumb is always a random element in the
block. Therefore, the block is also indistinguishable from a
random set. The distribution of qs is irrelevent to i and i′.
Aside from the queried set qs, the random query qr is merely√

n random numbers that has nothing to do with the queried
index. The lemma holds.

The scheme allows
√

n queries. To extend above proofs to
subsequent queries, it is necessary to show the distribution of
hints remains the same after each query.

Lemma 5. After each query, the client-side hints h follows the
same distribution, which is indistinguishable from M random
set with one random element in each block.

Proof. The hints are independent from each other. It is suf-
ficient to show that during each query, the consumed hint and
the replenished hint follows the same distribution. Recall that
in a query to i which falls into the j-th block, the found query
set skt and the newly sampled set sknew are both uniformly
random in every other block than j, and contains i in the j-th
block, which directly gives us the lemma.

From lemma 5, we are confident to say correctness, in-
tegrity and semi-honest privacy applies to multiple queries.
We now move on to the malicious setting.

Discussing privacy in a malicious setting, we first quote
from CK20[4], The client’s queries depend neither on the
hint nor on any of the servers’ past answers. For this reason,
the hint and the servers’ answers do not play a role in the
privacy games we define. Thus, actively malicious behavior by
the servers, such as responding incorrectly to a client query,
cannot help them break the PIR privacy property.

This enables us to consider only the selective failure part
of the malicious privacy. Namely, the argument shows that
the scheme satisfies privacy when the server is not given the
query result. Recall that we assume the servers to learn one
extra bit indicating whether the answer is accepted.

From lemma 5, we can assume a scenerio during the online
phase of the scheme. From a specific point in the online
phase (including right after the offline phase finishes), the
query server is replaced by an adversary A( f ). The adversary
is given access to an algorithm f , which denotes the "next
message" function, which enables the adversary to dynamicly
choose the answer. For ease of the writing, we assume f
would also output a bit b indicating whether the answer is
correct. This does not introduce extra information since the
adversary can always get the bit by comparing the output of
f and the genuine answer calculated on the database D. We
prove that

Lemma 6. Let REALA( f ) be a random variable represent-
ing the view of adversary A in one query. Let SIMA( f ) be
the ideal simulation of the protocol where the output of the
protocol is selected by the simultor rather than given by the
client. There exists a probabilistic polynomial time similator
SIM, for all f ,A

SIMA( f )≡ REALA( f )

Proof. Assume such a simulator, it receive the bit b from
f and use exactly the bit as the client result provided to the
servers. Now we show that such a simulation is indistinguish-
able from the real world. Consider the difference between b
and the real response b′ from the client. The client always ac-
cept a true answer. The only situation that b ̸= b′ is when the
client accepts a false answer. From lemma 3, the probability
that the client accepts a false answer is negligible. Therefore,
the difference between b and b′ is negligible. The simulation
is indistinguishable from the real world.
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The proof naturally extends to the single server scheme,
since the server plays the same role as the query server in the
two server scheme.
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