
Power circuits: a new arithmetization for

GKR-styled sumcheck

Lev Soukhanov ∗

October 2023

Abstract

Goldwasser-Kalai-Rothblum protocol (GKR) for layered circuits is
a sumcheck-based argument of knowledge for layered circuits, running
in ∼ 2µℓ amount of rounds, where ℓ is the amount of layers and µ is
the average layer logsize.

For a layer i of size 2µi the main work consists of running a sum-
check protocol of the form∑

x,y

Addi(x, y, z)(f(x) + f(y)) +Muli(x, y, z)f(x)f(y)

over a 22µi-dimensional cube, where Addi(x, y, z) and Muli(x, y, z) are
(typically relatively sparse) polynomials called ”wiring predicates”.

We present a different approach, based on the (trivial) observation
that multiplication can be expressed through linear operations and
squaring.

This leads to the different wiring, which is marginally more efficient
even in a worst-case scenario, and decreases the amount of communi-
cation ∼ 2× in the case where wiring predicates are sparse.

1 Introduction

In the last year, the protocol of Goldwasser-Kalai-Rothblum [1] has got a
resurgence due to the applications to the field of succinct non-interactive
snarks.

Specifically, it was realized that structured circuits used in lookup argu-
ments and permutation arguments can be efficiently delegated to a run of

∗Privacy Scaling Exporations, Ethereum Foundation. email:0xdeadfae@gmail.com

1

GKR protocol. Two already existing constructions of this kind are Lasso [4]
and logup-GKR [3].

The GKR protocol has excellent proving time, and, importantly, only
requires the user to commit to the witness and not the full execution trace,
which has an important implication to the lookup arguments in question
- as values committed by the prover are typically of small magnitude, and
values appearing in the execution trace itself are much larger.

Despite that, usage of GKR protocol in other succinct contexts is blocked
by a relatively large amount of rounds it requires. We suggest a different
wiring strategy, leading to the same worst-case performance and concrete
gains in sparse wiring scenario (and, specifically, for Thaler’s product circuit
[5] and for fractional summation protocol from logup-GKR paper [3]) .

This work was done at research seminar in Seoul organized by Privacy
Scaling Exploration. Author expresses gratitude to the participants of the
seminar: without them the work would likely never happen.

2 Reminder on GKR protocol

Let’s consider a layered arithmetic circuit over a large field F, with n layers,
layer i being of the size 2µi . The elements of the layer are interpreted as the
vertices of a boolean hypercube, i.e. vectors (x0, ..., xµi−1) ∈ {0, 1}µi .

Each layer is connected to the next one by a pair of wiring predicates: for
variables x, y in layer i and variable z in layer i+1, we set Addi(x, y, z) = 1
iff the values in cells x and y should be added and result written in a cell z,
and 0 otherwise. Similarly, we declare a wiring predicate Muli(x, y, z) which
is equal to 1 iff there is an instruction multiplying values in x and y and
writing the product into z, and 0 otherwise.

We denote the unique multilinear extensions of Add and Mul with
the same symbols, and hope that it will not lead to any confusion.

Then, for a run of this circuit, we denote by the Wi the (multilinear
extension of) values of the execution trace on the layer i. Then, it is clear
that

Wi+1(z) =
∑

x,y∈Bµi

(Addi(x, y, z)(Wi(x) +Wi(y)) +Muli(x, y, z)Wi(x)Wi(y)

Sumcheck protocol is a fundamental protocol [2] allowing the prover
to reduce the claim about the sum of the multivariate polynomial P (x) of de-
gree d in each variable over a hypercube of dimension µ to a claim about its
value in a challenge point. This short note is not a good and place to go into

2

the details, but we refer to any of the cited papers, or excellent Thaler’s lec-
tures on the topic https://people.cs.georgetown.edu/jthaler/sumcheck.pdf.
Sumcheck protocol runs in µ rounds with prover messages of size d.

GKR protocol applies the following reduction n times: it goes back,
starting from the final layer, and uses sumcheck over variables x and y to
reduce a statement about the value of a polynomial in some point

Wi+1(si+1) = Si+1

into a pair of statements
Wi(li) = Li

Wi(ri) = Ri

. Then, with additional round of communication of size µi, it reduces this
statement to a single statement of a form

Wi(si) = Si

by the standard argument: prover sends the coefficients of wi(t) of the re-
striction of Wi on a line li + t(ri − li), and verifier responds with a ran-
dom challenge τ and specializes evaluation into a challenge point: si =
li + τ(ri − li), Si = wi(τ)

Therefore, total amount of communication for a single layer i is 7µi,
coming from 2µi messages of size 3, and an additional reduction protocol
with a single message of size µi.

3 Power circuits protocol

We start off with a rather simple observation - usage of addition predicate
feels wasteful, because the same effect could be achieved by a single sumcheck
emulating a linear operator:∑

x,y

Addi(x, y, z)(f(x) + f(y)) =
∑
x

Mi(z, x)f(x)

by defining
∆(p, q, x) = Eq(p, x) + Eq(q, x)

and then noticing
f(p) + f(q) = ∆(p, q, x)f(x)

3

and setting

Mi(z, x) =
∑
p,q

Addi(p, q, z)∆(p, q, x)

This does not improve verification cost by itself, because there is still a
multiplication sumcheck which runs over a double set of variables. However,
it is well known that it is possible to emulate multiplication using only linear
operations and squaring:

ab =
1

2
((a+ b)2 − a2 − b2)

Motivated by this, we give the following definition:

Definition 1. A power circuit of depth n is given by a sequence of variable
layers of size µ0, ...µn, the sequence of n affine mappings, encoded as tuples
(M,C), where Mi(y, x) is a matrix and an Ci(y) is an affine shift, with x
running over layer i and y over the layer i + 1, and a sequence of powers
d1, ..., dn−1 (and we set d0 = 1 by convention, to start from a linear layer).

The execution of the circuit is given by the following rule:

Wi+1(y) =
∑
x

Mi(y, x)W
di
i (x) + Ci(y)

We will also frequently consider the special case, when d1 = ... = dn−1 =
2, which we call a ”squaring circuit”.

Theorem 1. It is possible to emulate a GKR circuit by a squaring circuit,
with the size 2ci + qi, where ci is the size of the original layer, and qi is the
amount of multiplication gates in layer i - i.e. amount of pairs (x, y) such
that ∃z|Muli(x, y, z) ̸= 0.

Note: it is also always possible to skip the factor 2 before ci if our circuit
is homogeneous.

Convention: in what follows, we will sometimes write some vectors like
Wi(x) (meaning multilinear function with x running over vertices of the
boolean hypercube), and sometimes as the list of their values, written as
(Wi)0, (Wi)1, ...,. We do not explicitly spell out how these indices are related
to the vertices of a hypercube, but pretend that this indexing is given.

Proof. We define a pair of affine mappings (recall that affine mapping is a
multiplication by matrix and addition of a vector), the extension mapping
and the reduction mapping. The extension mapping maps the original layer

4

(in which the variable x lives) into an extended layer x̃ and works by ap-
pending to the vector (Wi)0, ..., (Wi)ci−1 the vector (, ..., (Wi)x +(Wi)y, ...,)
running over all pairs x, y that appear in multiplication gates, and the vector
((Wi)0 + 1, ..., (Wi)ci−1 + 1).

This mapping is clearly affine. We denote it Ei.
Then, the reduction mapping is another affine mapping that expresses

required products from the squares of the extended vector. Precisely, it
is clear that we can linearly express every product of (Wi)x and (Wi)y as
1
2(((Wi)x + (Wi)y)

2 − (Wi)
2
x − (Wi)

2
y), and it is possible to express (Wi)x

(and hence any of its linear combinations) back affinely as 1
2(((Wi)x +1)2 −

(Wi)
2
x − 1). Therefore, we can construct such reduction mapping Ri that

Ri(Ei(Wi)
2) = Wi+1

Now, we can use the fact that composition of affine mappings is affine
and define

M̃i = Ei+1 ◦ Ri

The components of this mapping define our matrix and a constant term:

(M̃iWi)(y) =
∑
x

Mi(y, x)Wi(x) + Ci(y)

Performance. The prover work seems to be comparable (though it
largely depends on optimizations involved in evaluation of wiring predi-
cates). Amount of communication drops significantly compared to GKR -
in each layer, instead of doing 2µi rounds with messages of size 3, parties
now only exchange µ̃i = ⌈log2(2ci + q)⌉ messages of size 3. In the dense
scenario total communication is the same as before, and with multiplication
predicate being relatively sparse it decreases the amount of work ∼ 2×. This
also completely skips an additional subprotocol which is required to combine
two claims about the value of Wi into a single one, saving us µ amount of
communication and another round.

Higher degree circuits. It is not inconceivable that power circuits
of larger degree can also be used. For example, computing 4-th power in a
single layer yields the same amount of communication, but lesser amounts of
rounds (and in a non-interactive Fiat-Shamir setting this is also a welcome
tradeoff, because hashing larger strings at the same time is faster). However,
amount of data which needs to be computed on a linear layer grows signifi-
cantly in a worst-case scenario, which suggests that such optimizations are

5

better used for a very structured circuits consisting of the copies of the same
polynomial gate.

4 Examples

Lets consider two simple but important examples.

Example 1. Binary product tree. The initial layer has size 2n, and every
next layer is twice smaller, keeping products of elements w0 = v0v1, w1 =
v2v3,

Then, our extension operation writes elements

v01 = v0 + v1, v23 = v2 + v3, ...

. Reduction operation, on the other hand, computes

w0 =
1

2
(v201 − v20 − v21), w1 =

1

2
(v223 − v22 − v23, ...)

Combining this with the next extension layer, we get the linear expres-
sion which represents the new extended layer as the linear combination of
squares of the previous one:

w0 =
1

2
(v201 − v20 − v21), w1 =

1

2
(v223 − v22 − v23, ...),

w01 =
1

2
(v201 − v20 − v21 + v223 − v22 − v23)

As one can see, the size of the layer only increased twofold (so, µ̃i =
µi + 1).

Example 2. Logup-gkr fraction addition tree. It works as follows: along
binary tree, we are adding pairs of the form (a, b) using the addition formula
(a, b)⊕ (c, d) = (ad+ bc, bd).

The details of the example are almost the same, we only need to see
how extension works here. To compute ad + bc and bd it is enough to
consider squares of following elements: a, b, c, d, b + d, a + d, b + c. Indeed,
2bd = (b + d)2 − b2 − d2, and ad and bc are similarly expressed through
squares of a+ d and b+ c.

6

References

[1] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegat-
ing computation: Interactive proofs for muggles. J. ACM, 62(4):27:1–
27:64, 2015.

[2] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859–868,
oct 1992.

[3] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative
lookups using gkr. Cryptology ePrint Archive, Paper 2023/1284, 2023.
https://eprint.iacr.org/2023/1284.

[4] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup
singularity with lasso. Cryptology ePrint Archive, Paper 2023/1216,
2023. https://eprint.iacr.org/2023/1216.

[5] Justin Thaler. Time-optimal interactive proofs for circuit eval-
uation. Cryptology ePrint Archive, Paper 2013/351, 2013.
https://eprint.iacr.org/2013/351.

7

