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Abstract.
We introduce the Order vs. Chaos (OvC) classifier, a novel language-model approach
for side-channel attacks combining the strengths of multitask learning (via the use of
a language model), multimodal learning, and deep metric learning. Our methodology
offers a viable substitute for the multitask classifiers used for learning multiple targets,
as put forward by Masure et al. We highlight some well-known issues with multitask
classifiers, like scalability, balancing multiple tasks, slow learning, large model sizes,
and the need for complex hyperparameter tuning. Thus, we advocate language models
in side-channel attacks.
We demonstrate improvements in results on different variants of ASCAD-V1 and
ASCAD-V2 datasets compared to the existing state-of-the-art results. Additionally, we
delve deeper with experiments on protected simulated datasets, allowing us to control
noise levels and simulate specific leakage models. This exploration facilitates an
understanding of the ramifications when the protective scheme’s masks do not leak and
allows us to further compare our approach with other approaches. Furthermore, with
the help of unprotected simulated datasets, we demonstrate that the OvC classifier,
uninformed of the leakage model, can parallelize the proficiency of a conventional
multi-class classifier that is leakage model-aware. This finding implies that our
methodology sidesteps the need for predetermined a leakage model in side-channel
attacks.
Keywords: side-channel · masking · language model · deep metric learning · late
fusion · multimodal · multitask · NLP · NPLM · siamese network · order vs.
chaos

1 Introduction
In side-channel attacks (SCA), adversaries target cryptographic devices that emit mea-
surable physical leakages, such as power consumption [KJJ99,KJJR11], processing time
[Koc96], and electromagnetic emanation [GMO01] based on manipulated data and/or
executed operations. Assessing cryptographic implementations’ security is crucial, and
profiled attacks are vital in determining the worst-case security level of such implemen-
tations [SMY09]. In profiled attacks, evaluators use a test device to construct an attack
model (M) to estimate sensitive variables’ conditional distribution. Then, they exploit a
target device containing secret information to predict the sensitive variable and reduce the
entropy of the secret, ultimately undermining the device’s security through side-channel
leakage.

Background

The initial profiled SCA, known as template attacks (TA), was first introduced by Chari
et al. in their seminal work [CRR02]. They assumed that the actual leakage model
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coincides perfectly with the deterministic portion of the leakage alongside a Gaussian
noise assumption. Later, Schindler et al. presented what is termed as stochastic attacks
(SA) that try to approximate the actual leakage model better [SLP05]. Today, these
two methodologies are considered classical profiled SCA, and both can be thought of as
generative classifiers as they model the joint probability of the input and the output.

However, these classical techniques grapple with the curse of dimensionality [LPMS18]
and often struggle with translation invariance [CDP17]. In contrast, deep learning tech-
niques are known to address these issues via the use of stacks of convolution, pooling,
and dense layers [LBH15,GBC16]. The deep learning techniques used for SCA are gener-
ally posed as discriminative classifiers, which aim to learn a decision boundary directly
from the input features to classify data points into different categories. In this paper,
we refer to this approach as the standard classifier approach (denoted by the symbol
MStn). It is by far the most widely explored approach for side-channel attacks in recent
years [MPP16, CDP17, KPH+19, ZBHV20, WAGP20, WPP20, RWPP21, PWP22] and is
shown to outperform classical techniques. Apart from this, more recently, a deep learning-
based generative learning approach, namely conditional variational autoencoder, is also
proposed for SCA in [ZBC+23].

When it comes to deep learning-based SCA (DLSCA), the two variants (fixed key
and variable key) of ASCAD-V11 datasets introduced in [BPS+20] are used prominently in
literature. The standard classifier (MStn) approaches have successfully attacked ASCAD-V1
datasets, but their efficacy on the more challenging variable key ASCAD-V22 dataset,
introduced in [MS23], remains unproven. Interestingly, the new line of thinking as put
forward by Masure et al. [MS23] is to use multitask classifiers (denoted by the symbol
MMT ask) for targeting multiple intermediate values. The core idea here is to set a primary
task akin to a standard classifier, e.g., learning the S-Box output. In contrast, other
auxiliary tasks aim at learning targets like different masks and permutation indices. The
rationale is that learning auxiliary tasks in tandem with the primary one could enhance
the latter’s performance. This strategy reportedly succeeded in attacking the ASCAD-V2
dataset using just 60 traces, with the use of masks knowledge limited to the profiling
phase [MS23]. A noteworthy addition to this discourse is the work of Marquet et al. [MO23],
which showcased improved outcomes on the ASCAD-V2 dataset. It is essential to note the
distinction in datasets: Masure et al. use a dataset2 that has 15,000 point-of-interests
extracted from raw dataset, while Marquet et al. use a dataset3 that has 7,181 points-
of-interest extracted from raw dataset. For fair comparisons in this paper, we align with
Masure et al.’s results, given that we use the same dataset as them with 15,000 points of
interest.

Problems with Multitask Classifiers

Multitask classifiers, which aim to handle multiple tasks simultaneously, exploit commonal-
ities among tasks to potentially improve performance. However, there are known challenges
associated with multitask classifiers, and we will focus only on a few of those that our
approach can tackle.

• Scalability issues: If we want to experiment with all the bytes while trying more
than one intermediate value with accompanying masking schema-related information,
then the number of tasks needed will quickly explode. As the number of tasks grows,
the complexity of managing them concurrently escalates. Handling multiple tasks
often necessitates a more intricate model architecture, increased memory overhead for
storing intermediate activations, and can strain computational resources [ZY22]. This

1https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
2https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2
3https://zenodo.org/record/7885814

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/STM32_AES_v2
https://zenodo.org/record/7885814
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eventually leads to scalability issues where multitask classifiers become impractical to
use.

• Balancing multiple tasks: One of the most critical challenges in multitask learning
is ensuring that all tasks are learned equitably. If one task’s loss dominates, it can
overshadow others, leading to underperformance on non-dominant tasks. This interplay
between tasks, known as task interference, can also lead to the negative transfer where
learning one task adversely impacts another [Car97,KGC18]. In the context of SCA, we
are not sure which intermediate value is easy or difficult to attack and have no means
to decide the weight for each task. There are some ways to tackle this issue, like the
one introduced in [KGC18], but that adds to the extra effort of finding such weights.

• Slow learning: Incorporating multiple tasks can slow down the overall training process.
This sluggishness is attributed to the increased complexity, optimization challenges
from competing objectives, and additional overheads of evaluation across tasks. The
gradient updates from one task could counteract those from another, causing training
instability and potentially slower convergence [Rud17].

• Large model sizes: To accommodate the diverse needs of multiple tasks, multitask
models often require a significant number of parameters. While a portion of these
parameters is shared, task-specific layers or heads add to the model’s overall size.

• Complex hyperparameter tuning: Multitask learning exacerbates the already challenging
problem of hyperparameter tuning. Each task might require its own optimal learning
rate, batch size, or regularization. Balancing these hyperparameters to ensure stable
and efficient learning across all tasks becomes a substantial challenge, often requiring
sophisticated strategies or search algorithms [DWH+15].

In conclusion, while multitask classifiers hold promise for a wide range of applications,
their deployment necessitates careful consideration of the associated challenges. Achieving
a balance between tasks, managing model size, and ensuring efficient learning are active
research areas in this domain. In Section 5.4, we will provide insights on how the architecture
of our approach can alleviate these problems compared to multitask classifiers.

Motivation for Employing Language Models

Our motivation for employing language models in side-channel attacks is twofold:

1. Incorporation of NLP advances into side-channel attack: Traditional profiled attacks
primarily utilize variations of the original TA [CRR02] or adopt a multi-class classifier
approach [RN20,Vap98,NJ01]. Yet, recent breakthroughs in language models [JM23],
particularly transformer-based ones [VSP+17], made significant strides in Natural Lan-
guage Processing (NLP) tasks ranging from summarization and translation [LLG+20],
text generation [RWC+19], and question answering [DCLT19]. These strides have
extended beyond NLP, influencing audio classification [BZMA20], Automatic Speech
Recognition (ASR) [BZMA20], image classification [DBK+21, LMW+22], object de-
tection [CMS+20], image segmentation [CMS+22], depth estimation [KGA+22], and
more. Such developments prompt the question: “Can advances in the field of
NLP benefit side-channel attacks?” . To incorporate advancements in NLP into
side-channel attacks, the setting of side-channel attacks needs to be framed to include
language models. This work addresses this challenge and is the first attempt to utilize
language models for side-channel attacks. Our approach, which we term the Order
vs. Chaos (OvC) classifier, has the potential to spur discussions on the feasibility of
using language models for side-channel attacks, thereby adding to the existing array of
attack models for profiled attacks.
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2. Addressing multi-target learning challenges in SCA: While multitask learning is useful
in learning multiple targets in the field of SCA, it is not without its challenges. Our
approach, anchored in language models, seeks to alleviate some of these issues, paving
the way for enhanced multi-target learning.

Contributions

Our main contributions are as follows:

1. We introduce the first language model based approach for side-channel attack.

2. Our approach combines the strengths of multitask learning (via the use of a language
model), multimodal learning, and deep metric learning.

3. For a side-channel attack, it is usually challenging to find an effective leakage model to
generate labels for profiling. However, based on results from unprotected simulated
datasets, we believe our method can effectively address this issue.

4. Our approach presents a unified and simple loss function to learn multiple targets
during a side-channel attack. It facilitates implicit weighted learning for each target
during the profiling phase. By unifying all targets for binary classification, we ensure
a lower parameter count and less hyperparameter tuning demands compared to a
multitask classifier.

5. We report new best results on ASCAD-V1 (both fixed key and variable key) and ASCAD-V2
dataset.

2 Related Works
Xiangjun et al.’s work [LZC+21] stands out for their utilization of transformer networks,
originally designed for NLP tasks. However, we argue that their application of transformer
networks cannot solely be viewed as a language-modeling approach. Essentially, Xiangjun
et al.’s strategy can be seen as substituting the conventional convolution and pooling layers
with a sophisticated transformer-based neural network, all while training with side-channel
measurements. Contrarily, our language model trains on specific cryptographic tokens
like plaintext, key, and ciphertext, as well as potential intermediary values we aim to
target, rather than relying on side-channel measurements. We do, however, incorporate raw
side-channel measurements through a distinct, parallel branch in a multimodal learning
framework. In short, our language model leans towards learning an array of targets used
to label side-channel measurements, contrasting with Xiangjun et al.’s strategy which does
not capitalize on multi targets.

Additionally, it is worth drawing attention to the efforts of Hettwer et al. [HGG18].
They enhanced CNNs with domain knowledge neurons, which provide the network with
added information, like plaintext, thereby delivering a marked advantage over traditional
profiling attacks. In contrast, our methodology leverages a language model to infuse
domain knowledge into the neural network, while utilizing embedding layers which are
more appropriate for such task [MCCD13]. Moreover, our approach employs binary labels,
emphasizing the learning of correct and wrong sequences of the multiple targets under
training, enabling the understanding of contextual relationships among these targets.
Complementing this, we integrate multimodal and deep metric learning techniques to
relate what we learned from language models with the side-channel measurements.
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3 OvC Classifier
This section presents the Order vs. Chaos (OvC) classifier. First, we explore the key NLP
concepts that are vital for understanding our methodology in Section 3.1. Subsequently,
in Section 3.2, we disclose the five core ideas underpinning the OvC classifier. Section 3.3
offers a detailed explanation of the OvC classifier’s architecture. Wrapping up in Section
3.4, we revisit the well-known profiling and attack phases of the standard classifier and
outline the changes needed to these phases when adopting the OvC classifier approach.

Before diving further, it is imperative to introduce some mathematical notations that
will aid our discussion in the ensuing subsections. For a profiled attack, it is essential to
produce labels (Y) to train the attack model, as illustrated in Eq. (1) below.

Yi = flk(fiv(Pi, Ki)) ∀i ∈ {1, ..., Nm}, (1)

with:

Nm — The number of side-channel measurements (i.e., traces) used for profiling.
P — A plaintext vector of length Nm. Note that we use only one byte.
K — A secret vector, i.e., key of length Nm. Note that we use only one byte.
fiv — An intermediate value generator function that gives us target labels using public

information (e.g., a plaintext Pi) and the secret Ki which is part of the secret that
the attacker wants to retrieve for ith measurement. If the target intermediate value
is 8-bit, then the label can take one of 256 (i.e., 28 values).

flk — A leakage model mapping function that is applied to intermediate targets (when
considered as an integer set) obtained from fiv. Here are some examples for an
8-bit intermediate target integer set (a domain with 256 values):
- Identity (ID): This mapping preserves the values as they are and maps them to a
codomain with 256 values.
- Hamming weight (HW): This mapping calculates the Hamming-weight of each value
and maps them to a codomain with nine values.
- Least significant bit (LSB): This mapping looks at only the least significant bit of
each value and maps them to a codomain with two values.

Y — A target vector of length Nm we want to use for the side-channel attack and is
defined by Eq. (1) above. The number of unique values this vector has depends on
the choice of surjective mapping function flk.

3.1 Natural Language Processing (NLP) Preliminaries
This section briefly explains concepts like language model, n-gram, integer tokenization, and
the sentence completion task that are related to NLP, which are essential for understanding
our approach. For more details on these concepts, refer to Jurafsky and Martin’s textbook
[JM23].

Language model: In NLP, a language model offers a way to assign probabilities to
sequences of words or characters. It understands the common patterns in a language, such
as how often words appear and their context, to estimate the probability of a specific
sequence. Language models are essential for various NLP tasks like machine translation,
speech recognition, text summarization, and autocomplete systems. They help predict
the next word or character in a sequence based on the context from previous words or
characters, allowing for a better understanding of the text and improved performance in
NLP tasks.



6 OvC Classifier

N-gram: An n-gram is a contiguous sequence of n items from a given text, where an
“item” can be a word, character, or any other unit of text. For example, in the sentence
“The cat in the hat” the 2-grams (bigrams) include “The cat”, “cat in”, “in the”, and
“the hat” while the 3-grams (trigrams) comprise “The cat in”, “cat in the”, and “in the
hat”. Multiple n-grams are obtained from text corpora to train language models, capturing
context and improving NLP task performance. Such language models are also called
N-gram Language model. Given any sequence of these n-grams, a n-gram language model
assigns a probability P (w1, w2, ..., wn) to the whole sequence. In short, it learns the joint
distribution of n word occurrences.

Integer tokenization: Integer tokenization, or indexing, is a critical NLP step that assigns
unique numerical identifiers to each token obtained during tokenization. This process
of converting tokens into integer representations benefits neural network approaches in
NLP [JM23]. For example, given the sentence “The cat in the hat” tokenization results
in the following tokens: “The”, “cat”, “in”, “the”, and “hat” Integer tokenization assigns
unique numerical identifiers to each token, e.g., 1 for “The”, 2 for “cat”, 3 for “in”, and 4
for “hat”. This transformation allows for efficient text processing, enabling neural networks
to analyze and learn from textual data effectively. This step is vital for preparing textual
data for machine learning algorithms, particularly deep learning architectures like recurrent
neural networks (RNNs) and transformers, which rely on numerical inputs for predictions
and output generation.

Sentence completion task: A language model uses the frequency of n-grams in a corpus
of text to predict the next word. For instance, consider the incomplete sentence “The
cat is sitting on the ”. Based on the trigram “cat is sitting” the language model
might predict “mat” instead of “moon” as the next word, as “The cat is sitting on the
mat” is more common than “The cat is sitting on the moon” in the text corpus used for
training. This is an example of how language models can be used to complete sentences
by predicting the most probable next word.

3.2 Five Key Ideas
In this section, we present the five ideas that underlie the design of the OvC classifier. The
architecture of the OvC classifier, to be elaborated upon in Section 3.3, comprises three
fundamental blocks: the language model, the deep metric learning, and the preprocessor.
The initial three ideas, explored in Sections 3.2.1, 3.2.2, and 3.2.3, facilitate a better
understanding of the language model block. Subsequently, the ideas presented in Sections
3.2.4 and 3.2.5 assist in comprehending the deep metric learning block. The final block,
the preprocessor block, is akin to the trunk or stem of a standard classifier. Since it is not
exclusive to the OvC classifier’s design, we will not go into its details here but will explore
it in Section 3.3.

3.2.1 Forming Sentences (introducing n-cryptograms)

In Section 3.1, we discussed how n-grams are extracted from sentences of arbitrary lengths
to train language models. In the context of side-channel attacks, we will explain how to
get n-grams essential to train our language model.

Let us start by explaining how to form sentences. For a side-channel attack the
measurement can be labeled in many ways, like plaintext, ciphertext, key, masks, or
output from an S-Box. These labels can be categorized into two groups: data tokens or
intermediate values. Data tokens might include elements such as plaintext, ciphertext, key,
and masks from a masking scheme. On the other hand, intermediate values represent the
outcomes after executing cryptographic operations on these data tokens, like the output
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from an S-Box, i.e., sbox-output. Let us assume that we have five such labels as given
by an example tuple (key, sbox-output, plaintext, ciphertext, mask). For every
given measurement, we can have such a tuple, which can be thought of as a “sentence”,
while the labels act as “words”. For these sentences to be meaningful, it is vital they
contain intermediate values, as they provide a contextual link to other labels. Without
these intermediate values, a sentence comprised only of data tokens will appear unrelated,
making it challenging for a language model to derive insights. Hence, incorporating one or
more intermediate values in our sentences is crucial.

Unlike NLP sentences with arbitrary lengths and words occurring in any position within
a n-gram, these side-channel attack sentences have two unique properties. First, they have
a fixed length. Second, a word (i.e., a value for some data token or intermediate value)
occurs in a fixed position based on the data token or intermediate value it represents. For
example, the word plaintext=5 always occurs in position 3 in the example tuple. Given
these two unique properties of sentences in the context of side-channel attacks, we propose
using these sentences directly as n-grams, eliminating the need for an n-gram extraction
phase. Furthermore, since words can appear in fixed positions, fewer possible sentence
combinations exist, making it possible to train the language model faster. We call these
special n-grams “n-cryptograms”.

Finally, we will discuss integer tokenization or indexing (see Section 3.1) that benefits
neural network-based language models. In NLP, the vocabulary size (V ) is the total
number of unique tokens appearing in all sentences from the text corpora on which we
train the language model. For side-channel attacks, using the example n-cryptogram
tuple above, the vocabulary size is V = 1280 (i.e., 5 ∗ 256), where 256 represents the
number of unique values a cryptogram can have, assuming each cryptogram represents
an 8-bit integer with 256 possible values. To make each word unique, we add a number
to its integer value. For example, in our example n-cryptogram tuple, if we have a word
with an integer value value related to the first cryptogram (i.e., key), its index (i.e., the
value after integer tokenization) is (value + 256 ∗ 0). If it is the second cryptogram (i.e.,
sbox-output), its index is (value + 256 ∗ 1). If it is the last cryptogram (i.e., mask),
its index is (value + 256 ∗ 4). Thus, for a given measurement with a n-cryptogram tu-
ple (key=065, sbox-output=024, plaintext=129, ciphertext=032, mask=234), the
integer tokenization or indexing results in the n-cryptogram (0065, 0280, 0641, 0800,
1258). We use such integer sequences to train the language model of our OvC classifier
approach.

3.2.2 Order vs. Chaos

Labels, determined by choices for flk and fiv as described by Eq. (1), may not truly
reflect the real leakage. This discrepancy can result in ambiguous labeling [KV22], which
can compromise the accuracy if applied directly to standard classifiers (MStn). In our
preceding research [KV22], we presented the ‘Multi-trunk Order Vs. Chaos’ classifiers,
which were based on the “Order vs. Chaos” concept. This approach indirectly utilizes
these ambiguous labels by converting the challenge into a binary classification task, thus
producing more appropriate binary labels. In the similar lines, this subsection delves into
adapting this concept for the OvC classifier. Simply put, for the OvC classifier, half of
the training samples are termed “Order” when every gram in the n-cryptogram tied to
each side-channel measurement is left unchanged. Conversely, the remaining half is labeled
“Chaos” when certain grams in the n-cryptogram linked to each side-channel measurement
undergo changes.

Let us begin by defining training tuples, which are composed of input-output pairs for
a standard classifier (MStn), as shown in Eq. (2), followed by the OvC classifier (MOvC)
in Eq. (4). For a typical standard classifier, the input consists of measurements (T), and
the output corresponds to a label (Y), as specified in Eq. (1).
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(
Ti, Yi

)
∀i ∈ {1, · · · , Nm}, (2)

with:

Nm — The number of side-channel measurements (i.e., traces) used for profiling.
Ns — The number of samples in side-channel measurements (i.e., trace).
T — The side-channel measurements 2D vector with a dimension of Nm × Ns.
Y — A target vector of length Nm we want to use for the side-channel attack and is

defined by Eq. (1) above. The number of unique values this vector has depends on
the choice of surjective mapping function flk.

For the OvC classifier, we initially define the training tuple as presented in Eq. (3).
Here, the “Ordered” samples are designated by the label ‘¥’, while the “Chaotic” (or
unordered) samples carry the label ‘q’, each represented in distinct sets. Subsequently, we
combine these two sets in Eq. (4) to yield the unified training tuple for the OvC classifier.

The input segment of the training tuple for each set is composed of n-cryptograms
and side-channel measurements (T). The n-cryptogram vector of size (Nm × (P + Q)) is
formed by joining two vectors: the guess-gram (GG/G̈G) with dimension (Nm × P ) and
the fix-gram (FG) with dimension (Nm × Q) as defined in Eq. (3) below. For the ordered
samples, the guess-gram reflects the actual values computed for the known correct key,
represented by GG. On the other hand, for the chaotic samples, the original guess-gram
(GG) undergoes mutations, producing entirely incorrect values. This results in a modified
guess-gram, represented by G̈G.

Given the above details, it is evident that the distinction in the set representing chaotic
examples emerges from the mutations we perform on the actual guess-gram. Yet, it is
crucial to note that the fix-gram and side-channel measurements stay unchanged across
both sets.

(((
GGi,1, · · · , GGi,K , FGi,1, · · · , FGi,L︸ ︷︷ ︸

n−cryptogram

)
, Ti

)
,¥

)
(((

G̈Gi,1, · · · , G̈Gi,K , FGi,1, · · · , FGi,L︸ ︷︷ ︸
n−cryptogram

)
, Ti

)
,q

) } ∀i ∈ {1, · · · , Nm}, (3)

with:

P — The number of guess-grams in the n-cryptogram.
Q — The number of fix-grams in the n-cryptogram.
GG — The guess-gram 2D vector with dimension Nm × P , part of the n-cryptogram

2D vector. Typically comprised of targets dependent on the key (K) as given by
Eq. (1). Even the key itself can be used. Basically, these are the targets that are
guessed, based on the key guess during the attack phase of the side-channel attack.

G̈G — The mutated guess-gram 2D vector with dimension Nm × P , part of the n-
cryptogram 2D vector. It is an altered version of guess-gram (GG) which is
obtained by mutating each of its value.

FG — The fix-gram 2D vector with dimension Nm × Q, part of the n-cryptogram
2D vector. Generally made up of targets that are independent of the key (K).
They consist of targets like plaintext, ciphertext, masks, etc. which do not have
key related component that needs to be guessed during the attack phase of the
side-channel attack.
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Now that we have defined fix-gram (FG), guess-gram (GG) and mutated guess-
gram (G̈G) let us examine it with reference to data token tuple (n-cryptogram) example
mentioned in Section 3.2.1, specifically (key, sbox-output, plaintext, ciphertext,
mask). The first two data tokens are key-dependent (i.e., guess-gram related), while the
last three data tokens are key-independent (i.e., fix-gram related). Therefore, in our
example, the n-cryptogram has n = 5 elements, with P = 2 representing the guess-gram
tokens and Q = 3 indicating the fix-gram tokens.

Furthermore, for the OvC classifier, we merge the two sets as outlined in Eq. (3). It is
important to note that, when generating the chaotic examples set, there’s a vast array of
potential examples that can be generated, as introducing various random mutations can
produce distinct guess-grams. However, since we’re training the OvC classifier — a binary
classifier — we limit ourselves to creating only Nm chaotic examples to maintain a balanced
dataset. Consequently, the merged dataset will encompass 2Nm samples. Additionally,
with each training epoch, we can introduce distinct mutations to craft the chaotic examples,
ensuring that the chaotic part of the merged dataset remains unique for every epoch.
Finally, we also randomize the consolidated dataset using a varying random shuffle seed
(R) for each epoch. This ensures a uniform distribution of both ordered and chaotic
samples throughout the dataset, and each epoch presents a different shuffle sequence of
these samples. All these operations result in merged vectors GG′ , FG′ , T′ , and Y′ , as
defined in the equation below.

(((
GG′

i,1, · · · , GG′
i,P , FG′

i,1, · · · , FG′
i,Q︸ ︷︷ ︸

n−cryptogram

)
, T′

i

)
, Y′

i

)
∀i ∈ {1, · · · , 2Nm}, (4)

with:

GG′ — Created using GG and G̈G (defined in Eq. (3)), with the first half elements
using guess-gram (GG) for ordered examples and the remaining half using mutated
guess-gram (G̈G) for chaotic examples. This is followed by a shuffle using the
random shuffle seed R.

FG′ — The fix-gram 2D vector with dimension 2Nm × Q, part of the n-cryptogram 2D
vector. Created using FG (defined in Eq. (3)) by duplicating it twice. This is
followed by a shuffle using the random shuffle seed R.

T′ — The side-channel measurements 2D vector with a dimension of 2Nm×Ns. Created
using T (defined in Eq. (2)) by duplicating it twice. This concatenated vector is
then shuffled with random shuffle seed R.

Y′ — A vector of length 2Nm that we want to use as label for training the OvC classifier.
Note that, unlike Y (defined in Eq. (1)), it has double the length and can only
have two unique values, representing Order and Chaos. Created by concatenating
two vectors of length Nm, where first vector is set with true (¥) and second vector
is set with false (q). This concatenated vector is then shuffled with random shuffle
seed R.

3.2.3 Binary Language Model (BLM)

The task here is to map 2Nm n-cryptograms from our training tuple, as detailed in Eq. (4),
to their corresponding binary labels representing Order vs. Chaos. Although the training
tuples input part also includes measurements (T′) as input, we disregard that for now and
address it in Section 3.2.5. Note that for simplicity in Figure 1, we show n-cryptogram for
ith example with P = 2 and Q = 2 as input to our language model.

One might consider using simple neural networks comprised of dense layers to learn the
mapping from n-cryptograms to binary labels. However, this approach presents challenges
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because our input, i.e., n-cryptograms, is not composed of real numbered features but
rather categorical features, with each feature having 256 possible values (if the target
is 8-bit integer). Using them as real-valued features can result in issues such as ordinal
assumptions, non-uniform scaling, and sparse representation [GBC16,MCCD13,GB16].
To tackle these challenges, categorical features are commonly converted into more suitable
representations, such as one-hot encoding or dense continuous embeddings (for instance,
using embedding layers). One-hot encoding generates binary vectors, with each category
represented as a separate dimension while embedding maps each category into a lower-
dimensional continuous space. Both methods allow neural networks to learn meaningful
representations of categorical features without assuming ordinal relationships or dealing
with scaling issues.

In our approach, we favor generating meaningful learnable embeddings with embedding
layers over using one-hot encoding before feeding the data into downstream dense layers,
as depicted in Figure 1. The rationale for avoiding one-hot encoding is: first, it leads to
high dimensional input vectors; second, it is computationally inefficient due to unnecessary
calculations, as most values in one-hot representation are zero; and finally, dense layers with
one-hot encoded inputs treat each input category as independent, without capturing any
relationships between them. Conversely, embedding layers learn continuous representations
that capture semantic and syntactic relationships between categories, making it easier for
the model to generalize and learn from the input data [BDVJ03,MCCD13,PSM14].

(a) NPLM [BDVJ03] (b) BLM

Figure 1: NPLM vs. BLM

We suggest treating the task of mapping n-cryptograms to binary labels as a sentence
completion task, where the objective is to predict the next word (a binary label) based on
the input sequence of words. We utilize the simplest version of a neural network-based
language model called Neural Probabilistic Language Model (NPLM), as introduced by
Bengio et al. in [BDVJ03] and shown in Figure 1a. More advanced language models
based on recurrent neural networks [KF17] or transformer-based models [VSP+17] could
be explored but we leave it as future work.

Our modified NPLM architecture, which we call Binary Language Model (BLM) as it
has a binary output, is shown in Figure 1b and involves three modifications. First, we use
embedding layers to map input words to feature vectors instead of using mapping matrix C.
Second we substitute the “tanh” layer with a stack of dense layers for learning hierarchical
representations. Third we use a perceptron layer with sigmoid loss at the output for binary
classification rather than using a softmax layer that was used by NPLM for predicting
multiple words. Our proposed binary language model has fewer parameters to learn at
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the output layer, as it does not require predicting a word from the input vocabulary, like
NPLM, and has a single output.

Lastly, we maintain using skip-connections from the original NPLM network, as shown
by dotted lines in Figure 1. We concatenate the input embeddings (by flattening the
embedding layer) and the output of dense layers before feeding them to the downstream
perceptron layer. The first advantage of using these connections is that the model can
learn direct associations between input and output words, capturing some of the simpler
relationships in the data without relying on intermediate hidden layers. This helps the
model to better generalize to unseen or rare word combinations [BDVJ03]. The second
advantage of direct connections is that they help maintain a more stable gradient flow during
training. By skipping the intermediate layers, the gradient information can propagate
more effectively through the network, enhancing the training process and making it easier
for the model to learn from the data [HZRS16].

3.2.4 Deep Metric Learning (DML)

Deep Metric Learning (DML), a burgeoning subfield of machine learning, leverages deep
neural networks to learn a distance function or similarity metric that operates on input
pairs [HCL06]. The core concept is to generate a representation, often referred to as an
embedding, for each input so that the embeddings of similar inputs are close together
and those of dissimilar inputs are farther apart in the learned embedding space [KB19].
Although DML is rooted in the principles of distance metric learning, it takes advantage
of deep learning models’ ability to generate complex, non-linear representations of input
data [BCV13, HA15]. The multiple layers of these models enable the learning of data
representations at different levels of abstraction, thereby augmenting the model’s ability
to detect and comprehend intricate patterns in the data.

Regarding the network architecture, Siamese neural networks, first introduced by
Bromley et al. [BGL+93] in 1993, have garnered significant attention in the field of DML.
These networks consist of two or more identical subnetworks or “branches” that process
individual data points. The same architecture and shared weights across these branches
allow the network to learn a single set of parameters that can generalize well across different
pairs of inputs [Chi21]. This weight sharing reduces the parameter space, thus decreasing
the risk of overfitting and improving generalization. Each pair of samples is fed into the
Siamese network, with each sample processed by a distinct subnetwork. The output is a
single value representing the similarity between the two inputs according to the learned
metric. Figure 2a demonstrates a typical Siamese network employed for metric learning.
This network is trained using two side-channel measurements (T). If the measurements
belong to the same category, that is, the corresponding intermediate value under attack is
the same, then they are deemed similar; otherwise, they are considered dissimilar.

The selection of an appropriate distance metric or similarity function is a crucial factor
influencing the overall performance of DML [Kul13, BHS13]. The literature describes
various prevalent similarity functions, including Euclidean distance, cosine similarity, and
Mahalanobis distance, among others. The suitability of these functions can differ based on
the nature of the task in question. For example, in text-related tasks, cosine similarity
is often preferred, as it emphasizes the orientation or angle of high-dimensional vectors,
typically word embeddings, over their magnitude [MCCD13]. Conversely, in image-related
tasks where the absolute difference in pixel intensities is crucial, Euclidean distance is
commonly used. In the context of our work, which involves word embeddings (as discussed
in Section 3.2.5), we favor using the cosine similarity function to train our OvC classifier.
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(a) Typical (b) Modified

Figure 2: Deep Metric Learning

3.2.5 Multimodal Learning

This subsection introduces a modification to the standard Siamese network, depicted
in Figure 2a. The proposed alteration, illustrated in Figure 2b, involves feeding one
subnetwork with word embeddings, which are dense vector representations, and the other
with side-channel measurements.

For simplicity, the figure shows a single guess-gram as an input. However, in actual
scenarios, we use an n-cryptogram, as outlined in Eq. (4) and further detailed in Subsection
3.3.2. We treat the n-cryptogram and the side-channel measurement as distinct modalities
as they come from different sources. However, they complement each other, promoting
multimodal learning. To ensure the downstream deep metric learning block functions
properly, the output dimensions of both modalities must align. Within this framework,
we capitalize on the information that links a specific n-cryptogram to its associated side-
channel measurement. Importantly, when the example is “Ordered” with the label as ¥, the
corresponding word embedding is considered similar to the side-channel measurement. If
the example is “Chaotic” with the label as q, the respective word embedding is considered
dissimilar to the side-channel measurement. Given the stark contrast between the two
modalities, we suggest that the adapted architecture we propose facilitates multimodal
learning.

Multimodal learning, which harnesses the unique and complementary insights offered by
various data types, combines different kinds of data to produce more accurate predictions
or richer representations. This approach advocates that blending different data types
provides a broader context, thereby enhancing the accuracy of results. When this strategy
is paired with Siamese networks, the efficiency of multimodal learning is significantly
improved [NKK+11]. In this setup, the two subnetworks of the Siamese structure handle
different data types separately and then merge and compare their outputs to detect patterns
or similarities. Consequently, each data type undergoes independent processing for the
majority of the network’s operation, with their representations consolidated only in the
final stages, a concept known as “late fusion” [KTS+14]. The combination of multimodal
learning with Siamese networks not only uncovers hidden connections between different data
types that might be overlooked when analyzed separately but also improves the model’s
robustness against noise or errors, as the presence of multiple data types adds a layer of
redundancy. More details on multimodal learning can be found in [NKK+11,BAM19].
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3.3 Architecture

In this section, we explain the OvC classifier’s architecture, which combines all the ideas
from Section 3.2. As illustrated in Figure 3, the architecture of the OvC classifier consists
of three essential blocks: the language model, deep metric learning, and the preprocessor.
This section is organized into three parts. The first part delves into the preprocessor block.
The second part describes how altering and merging BLM with DML forms the language
model and deep metric learning blocks. The last part widens the design to incorporate
masking scheme-aware profiling, where mask information is present during the profiling
stage but not available during the attack stage.

Figure 3: OvC Classifier

3.3.1 The Preprocessor Block

The preprocessor block functions in a manner akin to the stem of a standard classifier.
It is designed to carry out preprocessing tasks leading to dimensionality reduction and
translation invariance while also learning feature maps. To simplify, we opt for the same
neural network architectures for the preprocessor block that are applied in the standard
classifiers for the corresponding commonly used public datasets. Our only alteration is to
discard the softmax layer found in the standard classifier, substituting it with a dense layer.
The neuron count in this layer matches the output dimensionality of the language model
block, facilitating the alignment of the embeddings from both the language model and
preprocessor blocks. It is important to highlight that unlike the standard classifier, which
aims to learn discriminative embeddings that aid in distinguishing different intermediate
target values, the preprocessor block strives to learn embeddings that differentiate between
an n-cryptogram and a mutated n-cryptogram, with support from the deep metric learning
block and language model block.
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3.3.2 Integration of BLM and DML

The BLM and DML blocks strive to learn different aspects. The BLM aims to differentiate
between n-cryptograms and mutated n-cryptograms, whereas the DML seeks to bring
similar embeddings together and separate dissimilar ones. Interestingly, they can both
utilize the same training labels. For instance, a false label would be classified as a
mutated n-cryptogram by the BLM, while the DML would consider input embeddings
from two modalities as dissimilar. On the contrary, for a true label, BLM classifies it as
an n-cryptogram, while DML treats input embeddings from two modalities as similar.

We leverage this shared usage of labels between the two tasks to merge BLM and DML.
As depicted in Figure 3, we use DML for the deep metric learning block, using its binary
head to train the entire OvC classifier. For the language model block, we only consider
the base part of the BLM, without the head, composed of a single dense layer followed by
a sigmoid activation (as seen in Figure 1b). In the deep metric learning block, the output
from the language model block becomes one modality, while the other modality is the
output from the preprocessor block. The deep metric learning block’s input dimension is
defined by the language model block’s output. This includes the combined total of output
units from block ‘Dense Layers: B’ and the output units from the flattened n-cryptogram
embedding layer, which are accessible because of skip-layer connections. As stated in
Section 3.2.5, we ensure that the output units of block ‘Dense Layers: C’ align with the
output dimensionality of the language model block.

Finally, the training gradients derived from the deep metric learning block play a crucial
role in ensuring that the language model block can differentiate between n-cryptograms
and their mutated counterparts. Conversely, the DML employs cosine similarity loss to
attract the embeddings of the language model and preprocessor blocks closer together
when the language model block is fed an n-cryptogram, and to repel the embeddings when
the input is a mutated n-cryptogram.

3.3.3 Masking Scheme Aware Architecture

To enable our MOvC classifier to leverage mask-related knowledge akin to the MMT ask,
we introduce a modification to the basic architecture shown in Figure 3. The updated
architecture is presented in Figure 4. A simplistic method could incorporate mask-related
cryptogram in n-cryptogram as fix-gram (FG) since they are not related to key-guess data
tokens. However, this would require the presence of mask-related data during the attack.
To bypass this requirement, we construct a neural network identical to the preprocessor
block and add a softmax layer to execute multi-class classification with masks as target
labels. This resulting trained network, referred to as a “pre-trained neural network”
(PTNN), is shown in Figure 4. It is important to note that we assume the presence of
two mask tokens, but this can vary depending on the dataset and the understanding of
the cryptography implementation. The PTNN output is fed into the language model by
concatenating with its input. The language model treats this as a fix-gram token, but the
use of PTNN allows us to eliminate the necessity for masks during the attack phase.

3.4 Profiling and Attack Phase
In this section, we take a fresh look at the profiling and attack phases of the standard
classifier. Additionally, we identify and explain the adjustments needed in these stages to
ensure their compatibility with the OvC classifier.

3.4.1 Profiling Phase

In the profiling phase, we train both the standard classifier model, MStn, and the OvC
classifier model, MOvC , using their respective training tuples as outlined in Eq. (2) and
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Figure 4: OvC Classifier: Schema Aware Extension

Eq. (4), respectively. It is worth mentioning that the training dataset for the OvC classifier
consists of 2Nm examples, twice the size of the standard classifier dataset. This is due
to our approach of generating negative examples. For every training epoch, the dataset
for the standard classifier stays unchanged. However, for the OvC classifier, because of
different mutations to guess-gram per epoch and due to different shuffle sequence per epoch
we end up with unique dataset per epoch.

3.4.2 Attack Phase

To understand the attack phase, we first define attack tuples, i.e., input-output pairs
used during the attack phase. We define them in Eq. (5) for the standard classifier,
followed by Eq. (6) for the OvC classifier. Further, in Eqs. (7) and (8), we illustrate how
probabilities obtained by feeding attack tuples to MStn and MOvC can be consolidated to
determine the sum of log probabilities over Na side-channel measurements. By presenting
comparative equations for both methodologies, our intention is to deepen the understanding
of the OvC classifier in the context of the standard classifier. Concluding this section, we
delve into TGE0, a metric frequently employed to quantify the strength of a side-channel
attack [SMY09]. This value represents the necessary number of side-channel measurements
to achieve a guessing entropy of zero.

Attack tuple for MStn: The attack tuple for the standard classifier mirrors the structure
of the training tuple employed during profiling. The only difference is that there are Nk

sets of labels corresponding to each potential key guess. The following illustrates the attack
tuple for the standard classifier under the assumption that the key guess is k.
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(
Ti, Yk

i

)
∀i ∈ {1, · · · , Na} and k ∈ {0, · · · , Nk − 1}, (5)

with:

Na — The number of side-channel measurements (i.e., traces) used for an attack.
Nk — The number of guess values the key (k) can take. The value can be any number

between 0 and Nk − 1. For a 8-bit target Nk is equal to 256.
T — This represents a 2D vector of side-channel measurements with a dimension of

Na ×Ns. Like in Eq. (2), where T stands for the side-channel measurements during
the profiling phase, here it’s reutilized to depict the side-channel measurements in
the attack phase. Please bear in mind that unlike profiling phase these traces are
typically tied to a specific key, which remains undisclosed during an attack.

Yk — A target vector of length Na which is generated using Eq. (1), uses the key guess
(k) in place of the correct key (k∗). This substitution is necessary as the correct
key remains undisclosed during the attack phase.

Attack tuple for MOvC : The attack tuple of the OvC classifier somewhat mirrors
the structure of the training tuple used during the profiling phase, albeit with certain
differences. This procedure necessitates calculating the guess-gram – a key-dependent
segment of the n-cryptogram – Nk times for every possible key guess. Hereafter GGk

denotes the guess-gram associated with key guess k. It is worth noting that, unlike in the
case of the standard classifier, the key guess doesn’t influence the OvC classifier’s labels.
In fact, the attack phase doesn’t require the generation of negative examples. The attack
tuple is created Nk times, each construction corresponding to a potential key guess. We
proceed with the assumption that all attack tuples, for every plausible key guess, are true
(i.e., “Ordered”), and hence indicated by an all-ones label (1⃗). If the OvC classifier has
learned effectively during the profiling phase, it is expected to yield larger probabilities
for the correct key guess. Conversely, for incorrect guesses, the input tuple appears as
a negative example for the OvC classifier, thereby generating smaller probabilities. The
following equation showcases the attack tuple for the OvC classifier, for a given key guess
k.

(((
GGk

i,1, · · · , GGk
i,P , FGi,1, · · · , FGi,Q︸ ︷︷ ︸

n−cryptogram

)
, Ti

)
, 1⃗i

)

∀i ∈ {1, · · · , Na} and k ∈ {0, · · · , Nk − 1},

(6)

with:

FG — This denotes the fix-gram 2D vector with dimension Na × Q, which forms part of
the n-cryptogram 2D vector and comprises Q fix-grams. While it shares similarity
with the FG term as outlined in Eq. (3), this FG term is redefined specifically for
the attack phase and is independent of key guess assumptions.

GGk — This denotes the guess-gram 2D vector with dimension Na × P , which forms part
of the n-cryptogram 2D vector and comprises P guess-grams. While it is similar to
the term GG as defined in Eq. (3) for the profiling phase when the correct key is
known, in the attack phase, the correct key (k∗) remains unknown. Consequently,
we employ the key guess (k) to compute GGk.

1⃗ — This is a target 1D vector of length Na with all elements set to one (i.e., the
label for positive examples). Please note that the MOvC is binary with a singular
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output. During the attack phase, the key-dependent part is represented by GGk

for the hypothesized key guess (k) instead of the classifier labels. As such, for every
assumed key guess, we use the probabilities derived directly from this model. To
obtain probabilities for each key guess (k), it’s necessary to compute GGk for each
key guess k, then formulate the attack tuple with the corresponding FG and T
and feed them into the MOvC .

Cumulative sum of log probabilities (S) for MStn: In the profiling phase, we prepare
the standard classifier to estimate the intermediate value target Y, as defined in Eq.
(1). In the attack phase, when we feed side-channel measurements corresponding to an
undisclosed fixed key into MStn, it produces a 2D probability vector (Pr) for possible
intermediate values, as demonstrated at the start of Eq. (7). Assuming a key guess k,
the intermediate value target vector is labeled Yk. Extracting from vector Pr using Yk

(specifically, Pri,Yk
i

for the ith measurement), we gather probabilities for the key guess
k, providing a measure of the model’s confidence about a particular key usage. Then,
the log of these probabilities is typically computed, followed by the aggregation of log
probabilities across multiple side-channel measurements, as seen in the lower part of Eq.
(7). This leverages the statistical independence of different side-channel measurements,
translating multiplication in probabilities into addition in the logarithmic domain – a
more computationally efficient and numerically stable process. The key guess boasting
the largest sum of log probabilities – or the highest rank – is then deemed the most likely
correct key. To track the progress of the correct key rank over Na measurements, where
the contribution of each measurement is incrementally added, we compute and save the
cumulative sum. The following equation showcases the computation of the cumulative
sum of log probabilities over Na measurements for the standard classifier, given that the
key guess is k.

Pri = MStn

(
Ti

)
∀i ∈ {1, · · · , Na},

Sj,k =
j∑

i=1
log
(

Pri,Yk
i

)
∀j ∈ {1, · · · , Na} and ∀k ∈ {0, · · · , Nk − 1},

(7)

with:

Pr — This denotes a 2D probability vector with dimensions Na × Nk, produced by the
standard classifier (MStn). It’s important to note that this 2D vector encompasses
probabilities for all key guesses. In order to extract probabilities for a specific key
guess (k), it’s required to index this 2D vector with the target label Yk.

S — This represents a 2D vector with dimensions Na × Nk, that stores the cumulative
sum of log probabilities from the standard classifier for all potential key guesses.

Cumulative sum of log probabilities (†S) for MOvC : Contrasting with the standard
classifier, the guessed key does not directly influence the labels in the OvC classifier.
Instead, it influences the guess-gram, which also serves as one of the inputs for MOvC .
With an assumed key guess k in mind, we calculate the corresponding GGk and create an
attack tuple for side-channel measurements tied to an undisclosed fixed key. Introducing
this attack tuple for key guess k into MOvC results in a direct yield of a 1D probability
vector (†Prk), as indicated in the initial segment of Eq. (7). Subsequently, we typically
compute the log of these probabilities and aggregate the log probabilities across various
side-channel measurements, as displayed in the lower part of Eq. (8). The key guess with
the largest sum of log probabilities - or the highest rank - is then considered the most
probable correct key. To monitor the correct key rank’s development over Na measurements,
with incremental additions from each measurement, we compute and store the cumulative
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sum. The following equation demonstrates this cumulative sum’s calculation over Na

measurements for the OvC classifier, assuming the key guess is k.

†Prk
i = MOvC

((
GGk

i,1, · · · , GGk
i,P , FGi,1, · · · , FGi,Q

)
, Ti

)
∀i ∈ {1, · · · , Na} and k ∈ {0, · · · , Nk − 1},

†Sj,k =
j∑

i=1
log
(

†Prk
i

)
∀j ∈ {1, · · · , Na} and ∀k ∈ {0, · · · , Nk − 1},

(8)

with:
†Prk — Represents a 1D probability vector with a length of Na, generated by the OvC

classifier (MOvC). Note that it only contains probabilities for specified key guess
(k), and this process needs to be repeated Nk times to acquire probabilities for all
possible key guesses.

†S — This represents a 2D vector with dimensions Na × Nk, that stores the cumulative
sum of log probabilities from the OvC classifier for all potential key guesses.

Metric TGE0: TGE0 is a commonly used metric in side-channel attacks, indicating the
necessary number of side-channel measurements to achieve a guessing entropy GE of zero.
GE denotes the average ranking of the secret key (k∗) across a multitude of experiments. In
this study, we conducted 100 separate experiments using unique sets of Na measurements.
For each trained model (M), we employed these sets to compute 100 distinct cumulative
sums of log probabilities, as denoted by S and †S in Eqs. (7) and (8) for the standard
and OvC classifiers, respectively. Within each cumulative sum of log probabilities, each
ith row represents the probability of a particular guessed key being correct given i attack
measurements. Knowing the secret true key k∗ allows us to position that key in the
sorted ith row, which indicates the rank of the real key when i attack measurements are
used. We further average the rank of the secret key (k∗) over multiple experiments (about
hundred times) where we use a different set of attack measurements per experiment, which
gives us GE. Consequently, TGE0 can be conceptualized as any minimum value for i (≤
Na) for which the probability of k∗ is highest, meaning GE = 0. If, after all Na attack
measurements, k∗ fails to attain the highest rank, we consider the attack as failed.

4 Results
This section presents the results from our study, split into four parts: a review of the
datasets we utilized, the choices made in the network design of our OvC classifier, the
results for the real datasets, and finally, the results for the simulated datasets.

4.1 Datasets
To present the datasets that we used for our experiments, we need to introduce the following
notations:

SBO = S-Box[PLAINTEXT ⊕ KEY] (also referred to as S-Box Output)
UI = SBO (unprotected implementation to be simulated which is devoid of masking

countermeasure)
MI = MASK (mask implementation to be simulated which is used by the masking

countermeasure)
PI = SBO ⊕ MASK (protected implementation to be simulated which is inclusive of a

masking countermeasure)
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Unless otherwise mentioned, SBO is chosen as the fiv to generate labels as per Eq. (1)
for profiling and attack across all the datasets. Meanwhile, UI, PI, and MI are the targets
used by the simulated datasets to simulate leakages.

4.1.1 Real Datasets

For our real dataset experiments, we employ both ASCAD datasets. The first, ASCAD-V1,
is detailed in [BPS+20] and captures measurements from an ATMega8515 executing a
first-order Boolean-masked AES implementation. It is available in two distinct variants:
one with a fixed key and another with variable keys. In contrast, ASCAD-V2, introduced
in [MS23], provides enhanced security over ASCAD-V1. Derived from readings of an STM32
running an affine-masked and shuffled AES implementation, this latter version exclusively
features a variable key setup.

To keep the number of model parameters reasonable, the authors of the ASCAD dataset
chose to use a limited number of trace samples. Nonetheless, studies [LZC+21,MBC+20]
have shown that using entire raw traces is more conducive to achieving the best results.
However, these complete traces necessitate a greater number of network parameters and
extended training durations. Therefore, Perin et al. [PWP22] turned to subsampling,
especially for datasets with a sufficiently high Signal-to-Noise Ratio (SNR) and minimal
translation invariance. This is particularly relevant for ASCAD-V1 datasets, prompting us
to explore both limited sample range and full raw traces with subsampling. In the case of
the ASCAD-V2 dataset, using the complete traces becomes challenging due to their huge
sample size, at about 1 000 000. Our subsampling efforts for these were not successful,
leading us to rely solely on the limited 15,000 samples, as mentioned in [MS23]. This study
uses five real-world datasets that are primarily derived from the ASCAD-V1 and ASCAD-V2
datasets, the details of which are as follows.

ASCAD-V1-FK: The fixed-key variant of the ASCAD-V1 dataset has 100,000 samples per
trace. For this dataset, we selected 700 samples that contain information on the first
round of S-box (SBO) processing for the third byte, as recommended in [BPS+20]. We
use a ‘desync=0’ version, that is, traces with no simulated desynchronization. Besides,
we use 50,000 traces for profiling, with a 90%–10% split for training and validation. For
the attack, we use 10,000 traces. Note that this dataset uses the same fixed key for the
profiling and attack phases.

ASCAD-V1-FK-F: All the settings for this dataset are the same as for ASCAD-V1-FK. The
only difference is that we consider the entire raw trace and perform average subsampling
with a window of size 40 and a 50% overlap. This reduces the sample size from 100,000 to
5,000.

ASCAD-V1-VK: The variable-key variant of the ASCAD-V1 dataset has 250,000 samples per
trace. For this dataset, we selected 1400 samples that contain information on the first
round of S-box (SBO) processing for the third byte, as recommended in [BPS+20]. We
use a ‘desync=0’ version as previously, and we employ 200,000 traces for profiling, with a
90%–10% split for training and validation. Although there are 100,000 traces available for
an attack, we use only 10,000 in the attack phase.

ASCAD-V1-VK-F: All the settings for this dataset are the same as for ASCAD-V1-VK. The
only difference is that we consider the entire raw trace and perform average subsampling
with a window of size 40 and a 50% overlap. This reduces the samples from 250,000 to
12,500.
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ASCAD-V2: While the initial raw dataset comprises 1,000,000 samples, we adhere to the
reduced sample set recommended in [MS23], bringing it down to 15,000 samples for each
trace. Our analysis targets the first key byte. As previously, we split the 500,000 traces
available for profiling 90%–10% between training and validation; in the attack phase, we
use 10,000 traces.

4.1.2 Simulated Datasets

Within actual public datasets gathered from real devices, the precise nature of the leakage
remains uncertain. Thus, we introduce simulated datasets that allow us to evaluate targets
with known leakages paired with noise that we can control within the readings. Two
distinct versions of these simulated datasets exist: unprotected and protected, utilizing
SBO as a target. For a successful attack, it becomes necessary to simulate leakages in
our readings correlated with this target. For an unprotected version, the simulation of
leakage is solely tied to UI (identical to SBO), while simulating leakages for PI and MI
is unnecessary (as they are related to protected implementations). As exhibited in the
first column of Table 3, only the leakage related to UI is simulated for a particular choice
of flk. In contrast, for the protected variant, the simulated leakages of both PI and MI
must be present for the evaluation, as it is the protected implementation that is subject
to leakage. The first columns of Table 2 show which of PI and/or MI are simulated for a
specific choice of flk. Finally, in Tables 2 and 3, “–-” symbolizes the absence of leakage
for the corresponding target.

In the simulated experiments, we add random noise generated with a normal distribution
and a unit standard deviation. This translates to 68.2% of data points within each
cluster not overlapping upon the adjacent cluster. As a final step, we perform standard
normalization across each dimension, thus ensuring a mean of zero and a unit variance.
It is important to recognize that the dimensionality of a measurement can be either one
or two, as the leakages do not simultaneously involve all three targets. For unprotected
implementations, the leaks relate solely to UI, while for protected ones, they concern either
PI or a combination of PI and MI.

4.2 Results for Real Datasets
In this section, we report results for publicly available datasets. We evaluate three
architectural setups: the standard classifier (MStn), the multitask classifier (MMT ask),
and our newly introduced OvC classifier (MOvC). For all datasets, MMT ask results are
possible to obtain, but we only conducted such experiments for ASCAD-V2 due to additional
work of finding suitable network architectures. Thus, MMT ask architecture results for the
other datasets are not available (NA) in Table 1.

All results feature the Acc metric, which represents the highest observed validation
accuracy during profiling. First, for the standard classifier, Acc is calculated for labels
derived following Eq. (1), with fiv = SBO (as it is S-Box Output) and flk = ID. Second, for
the multitask classifier, Acc is displayed as “<Acc for primary task>/<Acc’s for secondary
tasks>”. The primary task mirrors the standard classifier, and secondary tasks are intended
to learn masks or other beneficial information that can enhance the primary task’s learning.
In the case of ASCAD-V2 dataset, the secondary task is to learn rm, β, and p[i] as suggested
in [MS23]. Lastly, for the OvC classifier, the reported Acc metric represents the binary
accuracy. In addition, we also report TGE0, as defined in Section 3.4.2 for both the standard
and OvC classifiers. Conversely, when it comes to a multitask classifier, the computation
of TGE0 parallels that of a standard classifier, taking advantage of probabilities derived
from the primary task, which uses SBO as labels.

Reviewing the data presented in Table 1 provides the following insights. In the case
of the ASCAD-V1-FK dataset, the OvC classifier consistently outperforms the standard
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Table 1: Results for protected real datasets

Dataset
Acc TGE0

MStn MMT ask MOvC MStn MMT ask MOvC

ASCAD-V1-FK 0.009 NA 1.000 87 [PWP22] NA 1
ASCAD-V1-VK 0.009 NA 0.721 78 [WPP22] NA 61
ASCAD-V1-FK-F 0.972 NA 1.000 1 [PWP22] NA 1
ASCAD-V1-VK-F 1.000 NA 1.000 1 [PWP22] NA 1
ASCAD-V2 0.004 0.016/* 0.742 ✗ [MS23] 60 [MS23] 47

∗ = (0.992, 0.211, 0.889): accuracies for (rm, β, p[i]) respectively as reported in [MS23].
NA: results are not available

classifier. However, the advantage narrows for the ASCAD-V1-VK dataset, with only a
slight edge. When examining the ASCAD-V1-FK-F and ASCAD-V1-VK-F datasets, which
encompass full traces (possible due to subsampling strategy), both the standard classifiers
and the OvC classifier have same performance leading to a successfull attack with one trace.
This disparity implies that datasets like ASCAD-V1-FK and ASCAD-V1-VK being limited by
the number of samples used, may omit critical data found in their full-version counterparts.

Turning to the ASCAD-V2 dataset, the standard classifier’s shortcomings become evident.
In comparison, while the multitask classifier necessitates 60 traces for a successful attack,
the OvC classifier improves the attack, achieving success with only 47 traces. The full-
version ASCAD-V1 datasets, due to the benefit of subsampling, may come across as less
intimidating than the ASCAD-V2 ones. Still, it is clear that the original ASCAD-V1 datasets,
which used limited samples to train the neural network models as described in [BPS+20],
remain quite challenging. This observation hints at the potential benefit of expanding the
ASCAD-V2 dataset beyond its current 15,000 samples. Our present subsampling methods
on ASCAD-V2 raw traces have not been fruitful, indicating a notable loss of information.
Therefore, it becomes crucial that more efforts be made to identify more potent data points
or samples for the ASCAD-V2 dataset.

4.3 Results for Simulated Datasets
In this section, we present an analysis of the results obtained from simulated datasets. We
commence our discussion with Table 2, which outlines the results for protected simulated
datasets. The format of the results in Table 2 aligns with that of Table 1. However, in the
context of the MMT ask model applied to the protected simulated dataset, there exists a
solitary secondary task, namely MI. Hence, we showcase Acc as “<Acc for SBO>/<Acc for
MI>” for the MMT ask model targeting the protected simulated dataset. It is noteworthy
that, just as in Table 1, all the results discussed here rely on label utilization where flk is
set to ID. To recap, for simulated datasets, the targets UI, PI, and MI (italicized) undergo
leakage simulation in side-channel measurements, while SBO serves as the training target
for our neural network models. Notably, for the protected simulated datasets, we refrain
from simulating leakage for UI; instead, leakage is simulated for PI and optionally for MI.
The insights drawn from Table 2 are as follows:

1. In protected setups, when information leakage linked to masking strategies, exemplified
by MI, is absent, all three attack models fail to target SBO. This observation is clear from
the first three rows of the table, which indicate the ineffectiveness of attack strategies
when no simulated leakage for MI is present. However, successful attacks are possible
when both PI and MI leakages are present in side-channel evaluations, as evidenced
by the results in the last four rows. This underscores that the target like SBO (which
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does not leak in side-channel measurements for protected implementations, i.e., UI),
can lead to successful attacks if both the protected target (PI) and the associated
protection-based masks (MI) exhibit leakage.

2. Focusing on the fourth and fifth rows, it is evident that a higher number of traces are
required for a successful attack under HW leakage simulation compared to ID leakage
simulation. This discrepancy arises due to the presence of 256 clusters simulated within
samples under the ID leakage model, facilitating easier correlation with the intended
target. In contrast, the HW leakage model simulates only nine clusters within samples,
making it more challenging to correlate with a target featuring 256 potential parts. This
suggests that the datasets where leakages can correlate to each part of the intended
target uniquely need fewer traces for successful attack.

3. The OvC classifier consistently outperforms both the standard and multitask classi-
fiers, especially when dealing with noisy protected simulated datasets. Moreover, the
multitask classifier slightly edges out the standard classifier in performance.

Table 2: Results for protected simulated datasets

Leakage Acc TGE0

UI PI MI MStn MMT ask MOvC MStn MMT ask MOvC

–- ID –- 0.005 0.005/0.005 0.509 ✗ ✗ ✗

–- HW –- 0.006 0.005/0.006 0.509 ✗ ✗ ✗

–- L3B –- 0.006 0.005/0.005 0.508 ✗ ✗ ✗

–- ID ID 0.113 0.071/0.654 0.962 4 4 4
–- HW HW 0.014 0.015/0.037 0.851 13 13 11
–- L3B HW 0.009 0.009/0.038 0.761 80 65 57
–- HW L3B 0.009 0.009/0.037 0.758 71 66 56

For completeness, we present in Table 3 results on unprotected simulated datasets.
Note that we omit to report results for the MMT ask model, as its viability hinges on the
availability of secondary tasks related to the employed masking scheme. Nevertheless, the
MOvC model can be applied to unprotected datasets. The absence of secondary tasks
simply means skipping the use of PTNN blocks. This results in using an architecture
similar to Figure 3 instead of Figure 4. Additionally, we present findings for M†

Stn, which
is similar to the MStn classifier, the only difference being that it uses labels generated
by applying the same leakage model used for simulating the UI leakage in side-channel
measurements to SBO. In other words, M†

Stn shows the performance of an attacker using
MStn exactly tailored to the underlying leakage model of the target device (an ideal case).
We highlight two points:

1. In terms of attack results, the OvC classifier matches the results of the ideal case of a
standard classifier with a known leakage model while not making any assumption on
the leakage model. This suggests that the OvC design is more appropriate to solve
the task at hand where the real leakage model is unknown than the standard classifier
design.

2. The accuracy of the M†
Stn increases when the number of classes decreases. This is

expected since designing a multi-class classifier for a large number of classes (256
in the case of ID) poses challenges in maintaining balanced representation and high
accuracy [DHS01,Bis07]. However, note that the opposite is true for MOvC : it achieves
near-to-one accuracy in the ID leakage model, while the accuracy drops to about 0.75
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with the binary LSB leakage model. We believe that this behavior is inherent to the
design of the OvC classifier, as “Chaos” examples used in the training phase can be
accidentally equal to “Order” ones with a probability inversely proportional to the
number of leakage classes.

Table 3: Results for unprotected simulated datasets

Leakage Acc TGE0

UI PI MI MStn M†
Stn MOvC MStn M†

Stn MOvC

ID –- –- 0.884 0.884 0.958 5 3 2
HW –- –- 0.037 0.954 0.923 20 8 7
L3B –- –- 0.034 0.940 0.900 15 4 5
LSB –- –- 0.010 0.957 0.751 32 13 13

5 Discussion
In this section, we delve into the merits of the OvC classifier and reference relevant reported
results to support our assertions.

5.1 First Language Model-based Approach
Traditionally, techniques for side-channel attacks revolve around modified versions of the
original TA or supervised learning-based classifier strategies. However, acknowledging the
influential strides of NLP techniques in advancing other domains within machine learning
and artificial intelligence (elaborated in Section 1), we introduce a novel approach. This
approach brings language models to the forefront of side-channel analysis.

While analyzing an intermediate value for profiling, conventional methods like TA
or supervised learning classifiers often overlook the rich knowledge embedded in other
data tokens, such as plaintext, ciphertext, key, masks, and other potential intermediate
values. In contrast, both the multitask classifier and the OvC classifier are adept at
harnessing this additional knowledge. Specifically, the OvC classifier achieves this by
creating an n-cryptogram that feeds into the language model block. Importantly, if we
want to increase the number of targets, OvC classifiers demonstrate superior scalability
compared to multitask classifiers — a topic further delved into in Section 5.4. Hettwer et
al.’s work [HGG18] similarly aims to leverage this knowledge. However, the distinctions
between our approach and theirs are detailed in Section 2.

What distinguishes the OvC classifier from other multi-target strategies (like the
multitask classifier) is its foundation on language models. It can learn the contextual
relationships between multiple targets, constructing a joint distribution over n-cryptograms.
Given their training to understand and predict word or token sequences, language models
intrinsically grasp the context binding these elements. On the other hand, multitask
classifiers are designed to solve multiple classification problems simultaneously but do
not inherently capture the sequential or contextual relationships between inputs unless
explicitly designed to do so (e.g., combining with architectures like LSTMs) [DCLT19].

5.2 A Multitask and Multimodal Approach
Language models inherently function as unsupervised multitask learners [RWC+19]. By
employing n-cryptogram in training the language model within the OvC classifier, every
gram in n-cryptogram takes on a task role, making our method inherently multitask.
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Multitask learning is a technique that enhances generalization by utilizing domain-specific
knowledge present in the training signals of related tasks as an inductive bias. By learning
tasks simultaneously using a shared representation, it can improve the learning of each
task through knowledge gained from other tasks [Car98]. Therefore, in the context of
side-channel attacks, learning multiple relevant intermediate-value targets, plaintext, key,
and masks concurrently can improve the performance of each individual task.

Additionally, as indicated in Section 3.2.5, our methodology is multimodal. Multimodal
learning offers several advantages over unimodal learning. By integrating information from
multiple sources, it can enhance the accuracy and robustness of machine learning models,
particularly in complex and uncertain environments. It can also be beneficial in cases
where a single modality may be inadequate or unreliable, such as in noisy or ambiguous
data. Furthermore, multimodal learning can facilitate more efficient and effective learning
by reducing the amount of data required for training and enabling transfer learning across
different tasks and domains [SS14]. Therefore, in the context of side-channel attacks, if
the labels are ambiguous or uncertain, or if the measurements do not precisely reflect the
leakage corresponding to the label, multimodal learning can be advantageous.

5.3 Getting Away from Assuming the Leakage Model Function (flk)
For side-channel attacks, assigning appropriate labels to measurements is vital. Typically,
labels for such attacks are determined by Eq. (1), dependent on two critical components
built on assumptions: the intermediate-value generator function (fiv) and the leakage
model function (flk). In real-world applications, flk choice hinges on the dataset and
fiv assumptions, mandating heuristic-based or experimental selection. Although the
identity (ID) function is the go-to for MStn, alternate flk choices have also been explored
[Tim19,WPP22,PWP22,KWPP22]. Notably, there is no conclusive evidence suggesting
flk = ID outperforms other options for a standard classifier. However, the OvC classifier,
without the knowledge of an explicit simulated leakage model, showcases performance akin
to the standard classifier equipped with knowledge of an explicit simulated leakage model
(denoted as M†

Stn). This adaptability shown by OvC classifiers indicates the possibility of
bypassing flk choices. This finding can benefit researchers seeking to narrow down the
search for label-generating strategies for side-channel attacks.

Our observation in Section 4.3 (the third observation for Table 3) alludes to the potential
of bypassing flk assumptions. While these insights originate from simulated, unprotected
datasets and call for further exploration on real datasets, it is essential to interpret these
results with caution. Due to the unknown nature of leakage models in real datasets, framing
the experiments posed challenges, which led us to use simulated datasets. Similarly, Wu et
al. [WAR+23] emphasized the importance of removing leakage model assumptions while
offering experiments on real datasets. They conducted experiments using the same neural
network architectures across various leakage models for a fair comparison, demonstrating
that their multi-bit approach outperforms others. In future work, we aim to explore using
analogous or enhanced approaches to evaluate our approach on real datasets. However,
currently, our conclusions pertain solely to simulated datasets.

5.4 Address Problems with Multitask Classifiers
In the introduction, we highlighted problems with multitask classifiers. Next, we will discuss
how they could be addressed. Both the multitask classifier and the OvC classifier aim to
leverage additional information such as masks, permutation indices, various intermediate
values, and data tokens like key, plaintext, or add-round-key. The OvC classifier employs a
single binary head, whereas the multitask classifier requires a separate head for each task.
As the number of targets rises, the multitask classifier faces scalability challenges due to
its multiple heads. In contrast, the OvC classifier’s design, with its singular head, offers
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scalability, allowing for the addition of more interesting targets. Next, we dive deeper into
how parameter complexity is reduced, how the balancing learning across tasks is achieved,
and how the hyperparameter tuning complexity gets reduced.

Parameter complexity: The number of targets (Nt) directly influences the parameters
used in the networks we are considering. When comparing parameter needs between the
multitask and OvC classifiers, we can simplify by breaking down the parameter complexity
discussion into three parts. First, both the multitask classifier’s common trunk and the
OvC classifier’s preprocessor block have the same structure. The parameters they require
scale linearly with the sample count (Ns from side-channel measurement, leading to a
complexity of O(Ns) for both. Second, the parameters of the language model block scale
with the target count Nt, resulting in a complexity of O(Nt), while the multitask classifier
lacks the language model block. Third, when considering the multitask classifier’s heads
and the OvC classifier’s deep metric learning block, we can assume that the output size for
both the multitask classifier’s common trunk and the OvC classifier’s preprocessor block
is a constant No. If each head in the multitask classifier and deep metric learning block
in the OvC classifier share the same structure, their complexity is O(No). The multitask
classifier has Nt heads, leading to O(Nt × No) complexity, while the OvC remains at
O(No). Summing it up, the multitask classifier’s complexity is O(Ns + (Nt × No)), and
the OvC classifier has a complexity of O(Ns + Nt + No).

For clearer notation, let us omit the constant term Ns, which dictates the size of either
the multitask classifier’s common trunk or the OvC classifier’s preprocessor block. It is
essential to understand that No is not constant for the OvC classifier and is influenced by
Nt, resulting in an OvC classifier complexity of O(2Nt). For a multitask classifier, No can
be assumed to be constant if it is large enough, or else it should scale with Nt. Having a
large No is vital for a larger Nt to avoid information bottlenecks, as it might not carry
enough information for all the upstream heads. Moreover, it provides flexibility and can
capture the nuances of more complex and diverse tasks. Thus, the multitask classifier’s
complexity could be either O(Nt × No) or O(N2

t ), contingent on how No is interpreted.
In conclusion, this analysis suggests that the number of parameters needed by the OvC
classifier is less than that needed by the multitask classifier, especially when the number
of targets (Nt) is large.

Balanced learning across tasks: In the context of side-channel attacks, multitask classi-
fiers presented in [MS23] employ multiple targets during training. These targets are treated
with equal weight during loss backpropagation. Yet, this strategy may not always be
optimal, as highlighted in [Car97,Rud17], primarily due to two reasons. The first concern
is the risk of negative transfer: when tasks are not closely related or exhibit negative
correlation, shared representations might deteriorate performance rather than enhance
it. The second challenge arises in optimization: managing multiple loss functions proves
difficult. Should one task dominate others due to its scale or inherent difficulty, it might
slow down the learning of the remaining tasks.

In contrast, the OvC classifier inherently addresses these concerns. Each target
undergoes a transformation into a uniform, dense input feature vector thanks to the
embedding layers. During backpropagation, the unified binary task evaluates these
input features via the language model block. Over multiple training iterations, it can
prioritize each target based on its influence on the classification loss. In essence, by
training collaboratively on dense target representations and corresponding side-channel
measurements, each target gets an implicit weight.

Hyperparameter tuning complexity: In the domain of machine learning, using multitask
classifiers with multiple heads, each having its own unique loss function, often leads to
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extended learning periods. This subsequently increases the model search time, given
the need to navigate a myriad of hyperparameters. Each head contributes its own
hyperparameters, ranging from the number of layers and units within those layers to
distinct loss functions, optimizers, etc. All these elements compound to expand the
hyperparameter search space, intensifying the optimization’s duration and computational
demands. On the other hand, employing a singular-head strategy, as exemplified by
the OvC classifier, significantly narrows down the hyperparameter tuning landscape.
This streamlined approach also tends to improve model convergence due to the reduced
parameter complexity. We have detailed our network choices in Appendix A.

6 Conclusion
We have introduced the OvC classifier, a novel approach merging principles from NLP and
deep metric learning to execute side-channel attacks. This classifier is a notable alternative
to multitask classifiers, especially when handling multiple targets and executing masking
scheme-aware profiling. Drawing strengths from both the multitask and multimodal
learning paradigms, our proposed architecture holds several advantages. Leveraging an
integrated language model allows it to learn contextual relationships between numerous
targets. This approach relaxes assumptions on the leakage model and narrows the search for
possible targets to be used for side-channel attacks. Additionally, its single-head approach
with unified and simple loss minimizes parameter requirements, ensures balanced learning
across multiple tasks, and shrinks the hyperparameter exploration space. Finally, our
approach is scalable if needed to add more targets to the attack.

However, every advantage comes with its own set of challenges. Our model’s reliance
on PTNN blocks, geared towards deciphering masking scheme targets, requires an initial
pre-training phase before training the OvC classifier. Eliminating this pre-training step
is one of our future goals. Additionally, our observation that assumptions related to flk

can be relaxed is derived from simulated datasets, not real-world ones, primarily because
simulated datasets offer more control over pertinent leakages. This finding warrants further
examination using real datasets, a direction we plan to undertake in subsequent research.
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A Network Design Choices
We elaborate in this section on the various network design choices for the OvC classifier.
Note that we have not performed hyperparameter optimizations, and most of the parameters
are heuristically selected.

A.1 Language Model Block
The input dimension of the language model block depends on the number of data tokens
in n-cryptogram and the output size of PTNNs. It is essential to note that PTNNs are
geared towards learning targets emerging from the specific protection scheme in use, such
as masks and permutation indices, among others. Illustratively, in Figure 4, the size of
the n-cryptogram is four where the number of fix-gram tokens (Q) and guess-gram tokens
(P ) are two. Every data token in n-cryptogram is an integer that is transformed into a
dense vector of dimension five using an embedding layer. Thus, the input size due to
n-cryptogram equates to 4 × 5, totaling 20. The subsequent input comprises the output
from a pair of PTNN blocks. Assuming these blocks are trained for 8-bit masks, they yield
256 outputs. Thus, the two PTNN blocks collectively account for 512 input dimensions.
Consequently, the aggregate input dimension for the language model block becomes 20 +
512, resulting in 532. This aforementioned input size relates specifically to the figure and
might vary based on the dataset in question.

The number of grams in n-cryptogram for fixed key datasets we are considering is two,
with Q = 1 symbolizes plaintext, and P = 1 signifies SBO. In contrast, for variable-key
ASCAD-V1 datasets, there is the added advantage of leveraging key-related data and using
it as a guess-gram. This leads to a n-cryptogram size of three, where P = 2. This results
in input sizes of 10 (2 × 5) and 15 (3 × 5), respectively. The subsequent input comprises
the output from the PTNN blocks. For ASCAD-V1 datasets, we have two PTNN blocks
âĂŞ one trained for the state mask ri for the particular ith byte, and the second for mask
rout. The number of unique values for both ri and rout is 256, resulting in an input size
of 512 for two PTNN blocks. Furthermore, for ASCAD-V2 datasets, we have three PTNN
blocks designed to learn affine masks and permutation indices rm, β, and p[i], as introduced
in [MS23]. The number of possible values is 255 for rm, 256 for β, and 16 for p[i]. The
output size of each corresponding PTNN block reflects these values and totals 527. Finally,
for the unprotected simulated dataset, we do not use any PTNN blocks while for the
protected simulated dataset, we have only one PTNN block for the mask with the output
of size 256. In summary, the input size for ASCAD-V1 fixed key datasets is 10 + 512 =
522. For ASCAD-V1 variable key datasets, it is 15 + 512 = 527. For the ASCAD-V2 dataset,
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which is variable key, it is 15 + 527 = 542. For the unprotected variable key simulated
dataset, it is 15. For the protected variable key simulated dataset, it is 15 + 256 = 271.

As can be seen in the language model block of Figure 4, the output from flattened
embedding layers and PTNN blocks is concatenated, and the resulting input is fed to the
“Dense Layers: B” block and also concatenated to its output via skip layer connections.
The “Dense Layers: B” block comprises three dense layers, with the number of units
reduced by a fraction of 0.2 from that of the previous layer. If this reduction results in a
fractional number, we simply round up to the nearest integer. The first dense layer size is
dictated by the dataset used and is specified in the previous paragraph.

A.2 Preprocessor Block
In the preprocessor block, we employ a dense network of six layers. The initial layer
comprises units that are 70% the size of the input samples (rounded up if necessary).
Following this, we have five layers, each packed with 512 units. However, for simulated
datasets, where the sample points per trace can be just one or two (which is relatively
low), we adapt and equip all six layers with 10 units each.

Subsequent to this, we introduce an additional dense layer. The unit count in this layer
is adjusted to correspond with the output from the language model block. The design of
the language model block and the selected dataset dictate this number. Considering the
three layers in the language model block and noting that each subsequent layer contains 0.8
times the units of the preceding one, the output size of the “Dense Layers: B” is 0.64 times
the initial input size. We then round this number up if necessary. It is also vital to factor
in the units originating from the skip layer connections. Therefore, if we label the input
size as Nin, the output size of the language model block is Nin + round(0.64 × Nin). Based
on this formula, the resulting number of units in the seventh dense layer for ASCAD-V1
fixed key datasets is 856. For ASCAD-V1 variable key datasets, it is 864. For the ASCAD-V2
dataset, it is 889. For the unprotected variable key simulated dataset, it is 25. For the
protected variable key simulated dataset, it is 444.

A.3 Deep Metric Learning Block
In the deep metric learning block, the “Dense Layers: A” comprises three dense layers.
The initial input layer size is determined as 80% of the output from the language model
block. Successively, each of these three layers is reduced by a factor of 0.2 compared to
its predecessor. The network’s weights are shared across both modalities. Deep metric
learning is facilitated by the employment of multiple layers. At the terminal stage, a cosine
similarity loss is utilized to carry out metric learning between the distinct modalities.

A.4 Miscellaneous Settings
Across our network structures featuring dense layers, we consistently employ the ‘mish’
activation function as described in [Mis20]. Each model undergoes training for a total of
100 epochs, utilizing the ‘lion’ optimizer [CLH+23]. We have set the learning rate at 5-e4
and maintain a batch size 32.
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