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Abstract
Private Information Retrieval (PIR) facilitates the retrieval
of database entries by a client from a remote server without
revealing which specific entry is being queried. The prepro-
cessing model has emerged as a significant technique for con-
structing efficient PIR systems, allowing parties to execute a
one-time, query-independent offline phase, and then a fast on-
line retrieval phase. In particular, Corrigan-Gibbs and Kogan
(EUROCRYPT 2020) presented a new framework for con-
structing PIR with sublinear online time. Nevertheless, their
protocol is deemed impractical in the single-server setting due
to the heavy use of Fully Homomorphic Encryption (FHE).
More recently, two state-of-the-art (SOTA) single-server PIR
protocols (Zhou et al., S&P 2024 and Mughees-Ren, ePrint
2023) have eliminated FHE, at the price of linear offline com-
munication. However, the client-side storage is still relatively
large (Õ(

√
n)), which poses challenges to practical deploy-

ment, especially when the client has limited computation and
storage capabilities. To address such limitation, we propose a
novel PIR protocol Pai, which only requires constant online
time, communication, and client-side storage. The price we
pay is only a 1 - 5× increase in offline communication, which
would be acceptable since it is a one-time cost. Building upon
our Pai, we also present a Symmetric KPIR (KSPIR) PaiK-
SPIR and a Chargeable KSPIR (CKSPIR) PaiCKSPIR. These
two variants of PIR offer enhanced functionalities while main-
taining computational complexities similar to the original Pai.

In addition to providing rigorous theoretical proofs of cor-
rectness and privacy for Pai, we have undertaken compre-
hensive protocol implementations and conducted extensive
experiments to validate their high efficiency. Our empirical
findings demonstrate that our protocols achieve notably higher
online efficiency than SOTA protocols, e.g., Pai exhibits 8.8 -
91.8× better online communication cost and 2.5 - 8.8× better
online time. Given the superior online time and storage, our
protocol is well-suited for practical deployment.

∗ The first two authors contribute equally.

1 Introduction

Private Information Retrieval (PIR) allows a client to obtain
an entry from a public database hosted on a server without
revealing which entry is retrieved. PIR has been one of the
main research directions in cryptography since its inception
by Chor et al. [16,17].1 It has served as a key building block in
many privacy-preserving applications, such as private contact
tracing [51], safe browsing [32], and private blocklist lookups
[32]. The naive PIR solution is to have the server send the
whole database to the client for each query. However, this
solution involves a high communication cost, making it less
practical for databases (with large numbers of entries). A long
line of work [3, 4, 7, 10, 12, 14, 21, 23, 27, 28, 30, 31, 33, 37, 39–
41, 43, 45] has been devoted to designing PIR protocols with
sublinear communication cost.

Although PIR has been studied for nearly three decades, its
efficiency is still not satisfactory. One of the main reasons is
that all existing PIR protocols require linear computation. This
raises the question of designing PIR protocols with sublinear
computation. Unfortunately, there is a fundamental barrier
that the amount of server computation will inevitably be linear
in the size of the database, formally proved by Beimel et al. [5].
Intuitively, the server must touch every single entry during
some query; otherwise, the server learns that the queried entry
is not one of the untouched entries.

Several directions have been explored to circumvent the
fundamental barrier of linear computation. One approach is
to amortize the cost over multiple queries, which assumes
that the client submits a batch of queries at once. Several
studies have presented efficient PIR protocols in this sce-
nario [4, 31, 43]. However, the downside of these protocols is
that they do not support adaptive queries, limiting its scope
of application. Another approach for dealing with linear com-
putation is PIR with Differential Privacy (DP) [2, 50]. In
DP-based PIR, the server may learn some information about

1The seminal work [16, 17] considered PIR in the multi-server setting,
where the client can interact with multiple non-concluding servers. In this
work, we focus on the single-server setting.
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the client’s query location, which may cause security risks in
practical applications. In this work, we are more concerned
with PIR protocols that satisfy standard security definition
while supporting adaptive queries.

Single-Server PIR with Preprocessing. Beimel et al. [5]
proposed to use preprocessing to deal with the lower bound
of linear computation. Concretely, the protocol is divided into
two phases: an offline phase and an online phase. The offline
phase is a one-time and query-independent process, and its
one-time nature enables the cost to be amortized over multi-
ple (adaptive) queries. Furthermore, the query-independent
property allows the execution of the offline phase to occur
before the client decides its queries. The main goal of PIR
with preprocessing is to facilitate a fast online phase, with a
specific focus on achieving sublinear online computation. To
date, there are two classes of preprocessing models: global
preprocessing and client preprocessing.

(1) PIR with Global Preprocessing. In the global prepro-
cessing model, the server performs a global offline phase and
computes an encoding of the database upfront for all clients.
Doubly Efficient PIR (DEPIR) is defined as a PIR protocol
in the global preprocessing model with sublinear online time.
Two prior works of [11] and [9] took the first steps towards
constructing DEPIR. However, the security of their protocols
is based on a new non-standard computational hardness as-
sumption from permuted Reed-Muller codes, which makes
the security vulnerable to compromise [6,8] and their proposal
purely theoretical in nature. The first DEPIR protocol based
on standard computational assumption was given by Lin,
Mook, and Wichs [36]. In their protocol, for a database of size
n and any constant ε> 0, with O(n1+ε) offline time and server
storage, each online query can be done with poly(log1/ε n)
communications and server computation. However, since their
construction involves homomorphic evaluations of multivari-
ate polynomials, the concrete performance is rather far from
actual deployment. In fact, the recent work of [44] introduced
several optimizations for the DEPIR protocol of [36] that im-
prove both the asymptotic and concrete running times, as well
as storage requirements, by orders of magnitude. In spite of
this, the experimental results of [44] show that even for a very
small database (n≈ 215.5), the server-side storage can be as
large as 1TB on disk and 35GB on RAM, while the offline
time takes 46.3 hours. Therefore, the DEPIR protocol of [36]
is deemed impractical.

(2) PIR with Client Preprocessing. A more promising
and concretely efficient preprocessing model is the client-
preprocessing model (also called the subscription model or
stateful model). In this model, the client downloads and stores
“hints” from the server during the offline phase. Then, the
client can efficiently execute many online queries by consum-
ing these hints. Although the offline phase can be fairly expen-
sive or may even require downloading the entire database, the
amortized cost per query is extremely low, making the client-
preprocessing model promising. The client-preprocessing

model was initially introduced by Patel, Persiano, and Yeo
[47], with a concrete scheme that still needs linear server com-
putation per online query. Corrigan-Gibbs and Kogan [20]
proposed the first client-preprocessing PIR scheme with amor-
tized sublinear server computation. Follow-up works continue
to make further improvements [19, 32, 34, 35, 49, 52]. Very
recently, Zhou et al. [53] proposed an extremely simple effi-
cient client-preprocessing PIR scheme Piano (short for Private
Information Access NOw). The simplicity lies in that the con-
struction is completely self-contained and does not invoke
any existing PIR scheme as a building block. The efficiency
lies in that the scheme only needs lightweight cryptographic
primitives such as Pseudo-Random Functions (PRFs) (that
can be accelerated with AES-NI instructions), with Õ(

√
n)2

client storage and Õ(
√

n) online communication (both the
client request and the server response) and server computa-
tion per query. Mughees, I and Ren [42] further optimized
the hint system and online query construction and proposed a
simple and practical amortized sublinear PIR (for simplicity
of notations, we name their scheme as Spam, short for Simple
and Practical AMortized), achieving a server response with
constant overhead. Notice that,

• Lower Bound of Client-Preprocessing PIR. Corrigan-
Gibbs, Henzinger and Koga [19] showed a lower bound
for client-preprocessing PIR. In particular, if the server
stores the database in its original form and keeps no
additional state, then the online client-side storage S
and amortized online time T must satisfy that S ·T =
Ω̃(n). In fact, Piano and Spam almost match this lower
bound (up to poly-logarithmic factors). The theoretical
works [35, 52] showed that the asymptotic amortized
online communication cost can be further reduced to
poly-logarithmic in n. But to date, Piano and Spam are
concretely more efficient.

• Circumventing the Lower Bound via Database Encoding.
The lower bound given by [19] implies that we cannot
have o(

√
n) online communication and online client-side

storage at the same time. However, in some applications,
the client may have only a small amount of computation
and storage resources in the online phase. Note that the
lower bound of [19] is derived under the assumption that
the database is stored in unencoded form. To circumvent
this lower bound, we can use database encoding. In fact,
DEPIR achieves Õ(1) online communication and online
client-side storage by letting the server generate and store
an encoding of the database. However, as we have said,
existing DEPIR protocols are far from being practical.

As a result, we ask the following question.
Can we construct a concretely efficient PIR protocol with

o(
√

n) or even Õ(1) online time, communication, and
client-side storage in the preprocessing model?

2Throughout this work, we use Õ(·) to hide polylogarithmic terms, i.e.,
for any function f (n), we have Õ( f (n)) = O( f (n) ·poly(logn)).
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Table 1: Asymptotic Comparison of Single-Server PIR Schemes. n is the database size, ε > 0 is some suitable constant.
“Offline Comm.” means communication cost in preprocessing. “Online Comm.” means communication per online query. “*”
means the result is under simplified assumptions and additional cost will be incurred to address duplicate queries (assumptions
are posited without loss of generality). See Section 2.4 for details.

Scheme Offline Comm. Offline Time Online Comm. Online Time Online Client-Side Storage

Theoretical Single-Server PIR Schemes with Preprocessing

Corrigan-Gibbs-Kogan [20] Õ(
√

n) Õ(n) Õ(
√

n) Õ(
√

n) Õ(
√

n)

Corrigan-Gibbs-Henzinger-Kogan [19] Õ(
√

n) Õ(n) Õ(
√

n) Õ(
√

n) Õ(
√

n)

Lazzaretti-Papamanthou [35] Õ(
√

n) Õ(n) Õ(1) Õ(
√

n) Õ(
√

n)

Zhou et al. [52] Õ(
√

n) Õ(n) Õ(1) Õ(
√

n) Õ(
√

n)

Lin-Mook-Wichs (DEPIR [36]) 0 O(n1+ε) poly(log1/ε n) poly(log1/ε n) Õ(1)

Practical Single-Server PIR Schemes with Preprocessing

Zhou et al. (Piano [53]) O(n) O(n) O(
√

n) Õ(
√

n) Õ(
√

n)

Mughee-I-Ren (Spam [42]) O(n) O(n) O(
√

n) Õ(
√

n) Õ(
√

n)

Ours (Pai) Õ(n) Õ(n) Õ(1) Õ(1) Õ(1)*

1.1 Contributions

We present a new single-server PIR protocol called Pai (as
the conventional symbol name π for permutation) with many
asymptotically near-optimal (optimal up to polylogarithmic
factors) efficiency features.

Table 1 summarizes the asymptotic complexity of PIR pro-
tocols in the preprocessing model. Compared to the SOTA
PIR schemes with preprocessing (Piano and Spam), Pai sig-
nificantly reduces the online costs (i.e., communication, com-
putation, and client-side storage) from sublinear to Õ(1).

PIR with Significantly Reduced Online Costs. Pai circum-
vents the lower bound by encoding the database with the help
of the client, i.e., encoding by encryption and permutation
(that is why we name it Pai), at the price of more offline com-
munication cost. Similar to Piano [53] and Spam [42], the
offline communication cost of Pai is still Õ(n). Considering
the offline phase in Pai is one-time, such offline communica-
tion can be amortized when the client has multiple queries.
As in Piano and Spam, when amortized over Õ(

√
n) queries,

the amortized offline communication for each query is merely
Õ(
√

n). Another rationale for accepting Õ(n) linear offline
communication is that, in many scenarios, the paramount re-
quirement for the client is fast online query response. Given
the capability to execute the offline phase prior to query sub-
mission, a slightly more expensive offline phase would be
acceptable for a more efficient online phase.

In Piano and Spam, the offline communication is linear
(the client downloads the whole database from the server).
This implies that the client must have O(n) transient stor-
age before submitting its query. To deal with this, they use
a streaming algorithm to achieve O(

√
n) bandwidth in the

offline phase, which reduces the transient client-side storage
to O(

√
n). Similar to their work, Pai also uses a streaming

algorithm to achieve Õ(
√

n) bandwidth in the offline phase.

Efficiently Supporting PIR Variants. Pai can be extended
to support other PIR variants with high efficiency, some of
which were briefly discussed in Piano [53]. Specifically,

(1) Keyword Symmetric PIR (KSPIR). Many variants of
PIR have also been studied since its initial proposal. For
example, Chor et al. [15] considered Keyword PIR (KPIR),
where the database is defined as a set of n key-value pairs and
the client uses a search key to retrieve the corresponding value.
Gertner et al. [29] introduced Symmetric PIR (SPIR), which
additionally requires that the client can only know its desired
entry. In this work, we consider both of these two extensions,
i.e., Keyword SPIR (KSPIR), also known as Labeled Private
Set Intersection (LPSI) [13, 18].

There exist general conversion methods from PIR to
KSPIR. For example, Ali et al. [3] introduced a method to
convert PIR to KPIR, and Freedman et al. [26] presented a
method to convert KPIR to KSPIR. Combining these two
ideas, we can derive a transformation from PIR to KSPIR.
However, to our best knowledge, for the most efficient PIR
protocols in the preprocessing model (e.g., Piano and Spam),
there is no implementation to verify the efficiency of the
KSPIR protocol resulting from the conversions.

We apply the transformations of [3, 26] to Pai, Piano, and
Spam, respectively. Then, we obtain three new KSPIR pro-
tocols, denoted as PaiKSPIR, PianoKSPIR, and SpamKSPIR.
To verify the efficiency of this transformation, we have im-
plemented all of these three KSPIR protocols, and compared
them with the state-of-the-art KSPIR protocol without pre-
processing by Cong et al. [18]. Our results concretely show
that KSPIR can also enjoy fast online query response in the
preprocessing model.

(2) Chargeable KSPIR (CKSPIR). We also explore an alter-
native variant of KSPIR, which arises from a specific applica-
tion context where the database contains valuable items (e.g.,
copyrighted music or movies), and the server seeks payment
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from the client for retrieval. Note that in KSPIR, the client
may fail to retrieve a value (if its search key is not in the key
set of the database). In this case, it is unreasonable to charge
the client for the failed retrieval attempt.

To address this issue, we let the server know whether the
client successfully obtains a value and charge if and only if
the retrieval is successful. We introduce CKSPIR as a novel
framework to model and address this particular variant of
KSPIR. We note that any KSPIR (e.g., [13, 18]) can be con-
verted to CKSPIR by letting the client send a bit indicating
whether it successfully retrieves a value with its key. Based
on the idea of Pai, we construct a more efficient CKSPIR pro-
tocol PaiCKSPIR by inherently allowing the server to know
whether the retrieved key matches some key in the database.

Open-Source Implementations and Evaluations. We imple-
mented Pai and other PIR variants in Java. The source code
is available at https://github.com/alibaba-edu/mpc4j.
It is our intention to open-source the code after publica-
tion. We conduct experiments with variants of database sizes
n = 220,222,224 and entry sizes 64,128,256. Pai and its vari-
ants enjoy good concrete efficiency, e.g., 8.8 - 91.8× better
online communication cost and 2.5 - 8.8× better online time
than SOTA PIR protocols (Paino and Spam). Our KSPIR
protocol with preprocessing also enjoys extremely fast on-
line queries, at least three orders of magnitude improvement
compared with the SOTA KSPIR without preprocessing [18].

2 Preliminaries

In this section, we introduce some preliminaries related to
this work. Some notations are first defined as below.

Math Notations. Let λ be the computational security parame-
ter and κ be the statistical security parameter. For any integer
n, we use [n] to represent the set {1, · · · ,n}. For any two dis-
tributions D0,D1, if no probabilistic polynomial time (PPT)
algorithm can distinguish them, then we say that D0 and D1
are computationally indistinguishable, denoted D0 ≈c D1.

Protocol Notations. All of our protocols proceed between
a server and a client. In PIR, we use DB = (v1, . . . ,vn) to
denote the database. In KSPIR and CKSPIR, the database DB
is a set of n key-value pairs, i.e., DB = {(ki,vi)}i∈[n]. Let lk
and lv denote the length of ki and vi, respectively. Namely, we
assume each ki belongs to K = {0,1}lk and each vi belongs to
V = {0,1}lv . Finally, we assume that the keys in the database
are distinct, which implies that lk ≥ logn.

2.1 Adversarial Model
In this work, we consider a semi-honest (or passive) adversary.
That is, the parties will not deviate from the protocol and will
not collude with each other. The adversary attacks the protocol
by corrupting one party and using its internal state to infer
information about the inputs of the other party.

2.2 Definitions of PIR and Its Variants
In this section, we present the formal definitions for PIR,
KSPIR, and CKSPIR. For the sake of simplicity, we present
the definitions in the single-query setting, where the client
only has a single query. When the client has multiple queries,
the corresponding definitions can be obtained naturally.

Definition 1 (PIR). In PIR, the server takes a database DB=
(v1, . . . ,vn) as input, and the client takes an index i ∈ [n] as
input. PIR has the following properties.

• Correctness. At the end, the client outputs vi.

• Client-Privacy. The server knows nothing about i. Let
Viewser(DB, i) be the view of the server in the protocol.
There exists a PPT algorithm Sim taking DB as input
such that

Viewser(DB, i)≈c Sim(DB).

Definition 2 (KSPIR). In KSPIR, the server takes a database
DB= {(ki,vi)}i∈[n] as input, and the client takes a search key
k as input. KSPIR has the following properties.

• Correctness. At the end, the client outputs z = vi if there
exists some i ∈ [n] such that ki = k; otherwise, the client
outputs z =⊥.

• Server-Privacy. The client knows nothing about DB ex-
cept information contained in the key k it requests and
the entry z it obtains. Namely, let Viewcli(DB,k) be the
view of the client in the protocol. There exists a PPT
algorithm Sim taking k,z as inputs such that

Viewcli(DB,k)≈c Sim(k,z).

• Client-Privacy. The server knows nothing about k. Let
Viewser(DB,k) be the view of the server in the protocol.
There exists a PPT algorithm Sim taking DB as input
such that

Viewser(DB,k)≈c Sim(DB).

Compared to KSPIR, CKSPIR additionally outputs a bit to
the server, which makes the server know whether the client
successfully obtained a value. This enables important real-
world applications, where the server has a database containing
valuable items and seeks payment from the client for retrieval.

Definition 3 (CKSPIR). In CKSPIR, the server takes a
database DB = {(ki,vi)}i∈[n] as input, and the client takes
a search key k as input. CKSPIR has the following properties.

• Correctness. If there exists some i ∈ [n] such that ki = k,
then the server outputs b = 1, and the client outputs
z= vi. Otherwise, the server outputs b= 0, and the client
outputs z =⊥.
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• Server-Privacy. The client knows nothing about DB ex-
cept the information contained in k,z. Let Viewcli(DB,k)
be the view of the client in the protocol. Then there exists
a PPT algorithm Sim taking k,z as inputs such that

Viewcli(DB,k)≈c Sim(k,z).

• Client-Privacy. The server knows nothing about k except
the information contained in b. Let Viewser(DB,k) be
the view of the server in the protocol. There exists a PPT
algorithm Sim taking DB,b as inputs such that

Viewser(DB,k)≈c Sim(DB,b).

2.3 Oblivious Pseudo-Random Function
Oblivious Pseudo-Random Function (OPRF) is a two-party
protocol between a server and a client, where the server has a
master key mk for a PRF F, and the client holds an input x. The
protocol requires that the server obtains nothing, and the client
obtains the value F(mk,x) and nothing else. In this work, we
will use the OPRF protocol of [22] that defines F(mk,x) =
H(x)mk, where H is a hash function modeled as a random
oracle. This protocol is secure under the Decisional Diffie-
Hellman (DDH) assumption against semi-honest adversaries.
We recall this protocol in the following.

Public Parameters. Let G be a DDH-hard cyclic group
with prime order p, and H : {0,1}∗ → G a hash function
modeled as a random oracle.
Input. The server has a master key mk ∈ Z∗p, and the client
has an input x ∈ {0,1}∗.
1. The client first samples β ∈ Z∗p and sends H(x)β to the
server, who responds with (H(x)β)mk.
2. The client outputs H(x)mk = ((H(x)β)mk)1/β.

2.4 Simplifying PIR Assumptions
We introduce several simplifying assumptions pertaining to
client-preprocessing PIR. Some of these assumptions are
needed in Piano, Spam, and our Pai. As shown in [53], we
can make all these assumptions without loss of generality.

• Handling Duplicate Queries. Piano, Spam, and our Pai
assume the client does not make any duplicate queries.
Piano and Spam leverage this assumption to prevent un-
necessary “hint” consumption, while Pai is to prevent
the client from generating identical requests. This as-
sumption is made without loss of generality by asking
the client to save the retrieved indices and their answers.
Whenever the client makes a duplicate query, it loops up
the answer locally and make a non-duplicated dummy
query instead. This method only introduces Õ(

√
n) client

storage cost in practice, as long as the total number of
queries is Õ(

√
n).

• Supporting Unbounded Queries from Bounded
Õ(
√

n) Queries. Piano, Spam and our Pai assume the
client makes Õ(

√
n) queries. Piano and Spam leverage

this assumption to prepare Õ(
√

n) “hints” in preprocess-
ing, and consume them during the online phase. Pai only
requires this assumption in practice to make the client
storage Õ(

√
n) for address the duplicate queries. We

can support unbounded queries simply by rerunning the
preprocessing every Õ(

√
n) queries, and amortizing the

periodic preprocessing cost.

• Supporting Target Queries from Random Queries.
Piano assumes the client queries indices that are sam-
pled at random without replacement. Otherwise, parts
of “hints” will be consumed quickly. This assumption is
without loss of generality, by letting the server randomly
permute the database upfront via a Pseudo-Random Per-
mutation (PRP) with a random key (independent of the
client queries) and then sharing the key to the client.
Spam and Pai do not require this assumption.

3 Pai Framework

The two main PIR frameworks with sublinear online time
are the PIR construction of [19, 20, 42, 52, 53] and the DE-
PIR protocol of [36]. The key idea of the first framework is
that the client interacts with the server to generates Õ(

√
n)

query-independent hints in the offline phase, and then con-
sumes those hints to achieve concretely efficient online
phase. DEPIR avoids hint storage costs by utilizing (global)
non-interactive preprocessing, where the server encodes the
database in the offline phase without interacting with the
client. However, current SOTA DEPIR protocol [36] has been
experimentally verified to be impractical due to considerable
storage and preprocessing time [44].

The main idea for devising Pai is to harness the capabilities
of both interaction and database encoding. Concretely, we in-
volve the client in assisting the server with database encoding
during the offline phase. We now give a technical overview
of Pai, and then briefly describe how to derive our CKSPIR
and KSPIR protocols, respectively.

Overview of Pai. Figure 1 illustrates the framework of Pai
(both offline and online phases). Similar to other client-
preprocessing PIRs, the design of Pai focuses on the offline
phase (preprocessing), including three key steps as below.

• Step 1: Encoding and Permuting the Database. Two ran-
dom encoding algorithms are used to encode the indices
and entries, respectively. The database is simultaneously
randomly permuted, making the encoded database pseu-
dorandom from the server’s view while allowing the
client to retrieve and decode in the online phase.

• Step 2: Encoding the Database with the Client. To avoid
heavy encoding procedures as in DEPIR, we introduce
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Figure 1: The Pai framework. Three key steps are embedded in the encoding & row permutation and encoding & column
permutation that are jointly performed by the server and client.

offline interaction so that the database encoding and
permutation are jointly executed by the server and client.

• Step 3: Reducing the Bandwidth via a Streaming Algo-
rithm. To achieve a low bandwidth in the offline interac-
tion, the database is represented in two-dimensions so
that the rows and columns of the database are encoded
and permuted respectively. As will be subsequently
demonstrated, this approach reduces the offline band-
width to Õ(

√
n), same as in Piano and Spam.

Finally, during the online phase, the client sends the en-
coded index to the server. The server finds and returns the
matching encoded value, which can be efficiently decoded
and by the client to derive the true result.

From PIR to KSPIR. We introduce cuckoo hashing table [3]
and OPRF [26] to concretely convert our Pai (as well as Piano
and Spam) to corresponding KSPIR. More details are deferred
to Section 5.

From PIR to CKSPIR. We can upgrade our PIR protocol
to obtain a more efficient CKSPIR. Due to limit of space,
we defer our CKSPIR to Appendix A, which also contains
the corresponding security proof, complexity analysis, and
implementation.

4 Pai Construction and Analysis

In this section, we are poised to delineate our PIR protocol
Pai. Furthermore, we provide formal security proof and com-
plexity analysis for Pai.

4.1 Pai Construction
Pai is designed in the client-preprocessing model and consists
of an offline phase and an online phase. In the offline phase,
the client helps the server encode the database to enable a
very fast online phase. Here we demonstrate how to design

the aforementioned three key steps in the offline phase. The
detailed construction is shown in Figure 2.
Step 1: Encoding and Permuting the Database. The foun-
dational concept behind our database encoding approach in-
volves both permutation and encryption of the database. To
be precise, given a database denoted as v j j∈[n], the encoding
procedure is articulated as follows.

1. Choose a random permutation π over [n].

2. Choose two encoding algorithms Eindex and Eentry, which
are used to encode the indices and entries, respectively.

3. Then, the encoded database is {(h j,e j)} j∈[n], where h j =
Eindex(π( j)),e j = Eentry(vπ( j)).

The main goal of the above encoding is to enable “secure”
retrieval against the original database by using “insecure”
retrieval against the securely encoded (key-value) database.
Specifically, we aim to design the following online phase.

1. When the client decides its search index i, it computes
h = Eindex(i) as the query message.

2. The server finds j ∈ [n] such that h = h j and returns
e = e j to the client as the response.

3. The client decodes e to v and outputs v.

To ensure the correctness of the protocol, it is imperative
that the client produces an output v = vi. Two primary con-
ditions must be satisfied: (1) the response message is eπ−1(i)
(which is the encoding of vi), and (2) extracting vi from eπ−1(i)
is easy. To meet this, the encoding functions are subjected to
the following requirements.

• Eindex is deterministic and collision-resistant.

• Eentry is invertible. That is, the client can easily inverse
v from e = Eentry(v).

6



Figure 2: The construction of Pai.

Protocol ΠPai: PIR with Õ(1) Client-Side Storage and Online Time

Input: The server S has a database DB= (v1, . . . ,vn), and the client C has an index i ∈ [n].
Output: C outputs vi.

Offline Phase: S represents the database as a matrix (v j0, j1) j0, j1∈[
√

n], where v j0, j1 = v( j0−1)
√

n+ j1 . S and C agree on an
IND-CPA-secure SKE scheme (SKE.Gen,SKE.Enc,SKE.Dec) and a PRP P : {0,1}λ×{0,1}l→{0,1}l with l≥⌈logn⌉.
Then, C chooses two random permutations π0,π1 over [

√
n], an SKE key ek, and two PRP keys pk0, pk1. We note that π0

is used for permuting the rows, and π1 is used for permuting the columns. S and C interact to encode the database in a
streaming way.

1. Row-Permuting. For each j1 ∈ [
√

n], S and C perform the following steps.

(a) S sends {v j0, j1} j0∈[
√

n] to C .

(b) For all j0 ∈ [
√

n], C sets j = (π0( j0)− 1)
√

n + j1, and then C computes t j0, j1 = P(pk0, j) and c j0, j1 =
SKE.Enc(ek,v j). Then, C sends {(t j0, j1 ,c j0, j1)} j0∈[

√
n] to S .

(c) Finally, C deletes {v j0, j1 ,(t j0, j1 ,c j0, j1)} j0∈[
√

n] from its local storage.

2. Column-Permuting. For each j0 ∈ [
√

n], S and C perform the following steps.

(a) S sends {(t j0, j1 ,c j0, j1)} j1∈[
√

n] to C .

(b) For all j1 ∈ [
√

n], C computes h j0, j1 = P(pk1, t j0,π1( j1)), and e j0, j1 = SKE.Enc(ek,SKE.Dec(ek,c j0,π1( j1))).
Then, C sends {(h j0, j1 ,e j0, j1)} j1∈[

√
n] to S .

(c) Finally, C deletes {(t j0, j1 ,c j0, j1),(h j0, j1 ,e j0, j1)} j0∈[
√

n] from its local storage.

Online Phase: To query an index i ∈ [n], S and C proceed as follows.

1. Query. C computes h = P(pk1,P(pk0, i)) and sends h to S .

2. Response. S finds h j0, j1 such that h j0, j1 = h. Then, it sends e = e j0, j1 to C .

3. Extract. C decrypts and outputs z = SKE.Dec(ek,e).

For the client-privacy guarantee, recall that the query mes-
sage is h = h j = Eindex(i) with j = π−1(i), and the response
message is e j = eπ−1(i). We need to guarantee that the server
obtains nothing about i by seeing j, h j and e j with the knowl-
edge of all vi. We have the following requirements.

• π−1 should be a random permutation that is unknown to
the server.

• Eindex is pseudorandom to the server, which guarantees
that h j leaks nothing about i.

• Eentry is pseudorandom to the server, which guarantees
that e j leaks nothing about vi.

For the deterministic, collision-resistant, and pseudoran-
dom encoding function Eindex, we choose a Pseudo-Random
Permutation (PRP) (e.g., AES) with the client holding the

PRP key. For the invertible and pseudorandom encoding func-
tion Eentry, we instantiate it with an IND-CPA secure SKE
scheme with the client holding the SKE key.

Step 2: Encoding the Database with the Client. We now dis-
cuss how to encode the database with the client holding the
corresponding keys. While it is feasible for the client to ini-
tially transmit the encrypted keys and subsequently permit the
server to employ FHE for computing the encoded database,
this would lead to a rather high computational overhead.

To make our offline phase practical, we follow the basic
idea of Piano and Spam and let the client download the en-
tire database and encode it. Specifically, the client chooses a
PRP key pk and an encryption key ek of an IND-CPA secure
SKE scheme. Moreover, the client chooses a random permu-
tation π over [n]. Then, the client encrypts the database as
{(h j,e j)} j∈[n], where h j = P(π( j)),e j = SKE.Enc(ek,vπ( j)).
Finally, the client sends {(h j,e j)} j∈[n] to the server. Com-
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pared with Piano and Spam, the clients further needs to up-
load the encoded database, which incur some extra offline
communication.

Step 3: Reducing the Bandwidth via a Streaming Algorithm.
The basic idea involves bandwidth Õ(n) during the offline
phase. This makes it necessary for the client to have Õ(n)
transient storage (in the offline phase). To solve a similar
problem, Piano [53] and Spam [42] leverage a streaming
algorithm to reduce the bandwidth to O(

√
n), which signifi-

cantly reduces the amount of storage required by the client
in the offline phase. Their idea is that the server sends O(

√
n)

entries each time, and the client processes and then deletes
those entries from its storage. However, this idea is not ap-
plicable to our protocol since we need to permute the entire
database. If the client downloads O(

√
n) entries each time and

uploads the processed entries, then the server knows that the
encoded entries it receives are the permutation of the entries
that the client downloaded previously, which leaks informa-
tion about the permutation. To reduce the bandwidth of Pai,
we instead use the folding technique of [33], which represents
the database as a 2-dimensional hypercube. Then, the parties
permute the rows and columns of the database, respectively.
As we will see, this allows us to reduce the offline bandwidth
to be Õ(

√
n). By representing the database as a hypercube

with a higher dimension d, we can further reduce the band-
width to Õ(n1/d). However, the offline communication of our
protocol will also increase by a factor of O(d). To make a fair
comparison with Piano and Spam, we set d = 2 in both the de-
scription and implementation of our protocol. In practice, one
can obtain the required tradeoff between offline bandwidth
and offline communication by using different d.

The above three steps lead to an extremely simple online
phase in Pai. Assume that the client has an index i, the client
first computes and sends h = P(i) to the server. The server
finds j ∈ [n] such that h = h j and returns e = e j to the client,
where j = π−1(i). By decrypting e j using the SKE key ek,
the client obtains the value vπ( j) = vi.

4.2 Security Analysis for Pai

We show the security of our protocol by proving the following
theorem.

Theorem 1. ΠPai is a secure PIR protocol.

Proof. We show the correctness and client-privacy of ΠPai.
Correctness. To show correctness, we need to prove that the
client’s output is vi. Assume that i0, i1 ∈ [

√
n] satisfy that

i = (i0−1)
√

n+ i1, then we have

h =P(pk1,P(pk0, i)) = P(pk1,P(pk0,(i0−1)
√

n+ i1))

=P(pk1, tπ−1
0 (i0),i1

) = h
π
−1
0 (i0),π

−1
1 (i1)

.

This means that e = e
π
−1
0 (i0),π

−1
1 (i1)

. Following the procedures

in the offline phase, we know that for any j0, j1 ∈ [
√

n], e j0, j1

is an encryption of vπ0( j0),π1( j1), which implies that e is an
encryption of vi0,i1 = vi. Note that the output of the client is
the decryption of e. Therefore, the output of the client is vi.
Client-Privacy. Let Viewser(DB, i) be the view of the server.
We need to construct a PPT simulator Sim taking DB as input
such that

Viewser(DB, i)≈c Sim(DB).

Note that Viewser(DB, i) consists of

(DB,{(t j0, j1 ,c j0, j1)} j0, j1∈[
√

n],{(h j0, j1 ,e j0, j1)} j0, j1∈[
√

n],h),

where h = P(pk1,P(pk0, i)). To simulate this view, Sim pro-
ceeds as follows.

1. Sample two sets {t∗j0, j1} j0, j1∈[
√

n],{h∗j0, j1} j0, j1∈[
√

n] of el-
ements from {0,1}l , where each set contains n distinct
and random elements.

2. Sample 2n ciphertexts {c∗j0, j1 ,e
∗
j0, j1} j0, j1∈[

√
n] of zero.

3. Pick two random elements j∗0, j∗1 ∈ [
√

n] and sets

h∗ = h∗j∗0 , j∗1 .

4. Output the simulated view

(DB,{(t∗j0, j1 ,c
∗
j0, j1)} j0, j1∈[

√
n],

{(h∗j0, j1 ,e
∗
j0, j1)} j0, j1∈[

√
n],h

∗).

Now, we show that the real and simulated views are in-
distinguishable. Firstly, since P is a PRP over {0,1}l , both
{t j0, j1} j0, j1∈[

√
n] and {h j0, j1} j0, j1∈[

√
n] contain n distinct and

random elements in {0,1}l . Secondly, for any j0, j1 ∈ [
√

n],
by the IND-CPA security of the underlying SKE scheme, we
know that the distribution of both c j0, j1 and e j0, j1 is indis-
tinguishable from the distribution of a fresh encryption of
zero. Finally, by the correctness of our protocol, we know
that h = h

π
−1
0 (i0),π

−1
1 (i1)

. Note that π0,π1 are random permu-

tations over [
√

n] that are unknown to the server, hence h is
a random element in {h j0, j1} j0, j1∈[

√
n]. From what has been

discussed above, we know that the real and simulated views
are indistinguishable.

We remark that the security of Pai needs the assumption
that the client does not make any duplicate queries. The under-
lying reason is that the client’s query is deterministic w.r.t. the
client’s indices, which allows the server to determine whether
two queries correspond to the same index. This would violate
the security definition. Fortunately, as shown in Section 2.4,
this assumption can be relaxed without loss of generality by
letting the client save the retrieved indices and their answers
locally, with additionally Õ(

√
n) client storage cost.

Complexity Analysis. We analyze the asymptotic complex-
ity of ΠPai from four aspects: communication, computation,
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bandwidth, and storage. This analysis encompasses both the
offline and online phases.

We first consider the offline phase. During this phase, the
parties are required to transmit n plaintexts, 3n ciphertexts,
and 3n strings, each of a length l, where l ≥ ⌈logn⌉. Hence,
the total communication cost is Õ(n). In addition, the client
needs to compute P 2n times, 2n encryptions, and n decryp-
tions, which means the total computation is also Õ(n). More-
over, since parties run the offline phase in a streaming way,
and each message sent by the parties only contains

√
n plain-

texts or ciphertexts (and
√

n l-bit long bitstrings), the band-
width of the protocol is Õ(

√
n). Finally, it is easy to see that

the server-side and client-side storage are Õ(n) and Õ(
√

n),
respectively.

Next we consider the online phase. For each query in the
online phase, the parties transmit an l-bit string h and a ci-
phertext e. Hence, the communication cost per query is Õ(1).
In addition, the client needs to compute the PRP P one time
in addition to executing a single decryption. Since the com-
putational complexity of the permutations is a polynomial of
the input length O(logn), and the computational cost of the
decryption is independent of n, the total computational cost is
Õ(1). The bandwidth of the online phase is Õ(1), for sending
h and e. The server-side storage is Õ(n), and the client-side
storage is Õ(1) for pk0, pk1 and ek.

5 PIR Extensions

In this section, we introduce how Pai can be extended to
support other variants of PIR with high efficiency.

5.1 Overview

Pai, Piano and Spam consider the public database as an array,
and the client is allowed to retrieve the i-th entry from the
database. In most real-world applications, the database is
organized as key-value pairs, and the client wants to retrieve
the value associated with a certain key. For example, in private
Wikipedia3, the client wants to retrieve Wikipedia articles
with article titles. This PIR variant has been considered as
Keyword PIR (KPIR) by Chor, Gilboa, and Naor [15].

KPIR without preprocessing has been studied adequately.
Several schemes have been proposed with concrete implemen-
tations and evaluations [1, 38, 48]. In contrast, there are few
studies on KPIR in the preprocessing model. Zhou et al. [53]
demonstrated that Piano can be modified to be KPIR, but no
implementations are provided.

In some applications, the server may further restrict the
client to retrieve nothing beyond its chosen key. For exam-
ple, in data marketing, data sellers may share customized
databases with valuable items (e.g., copyrighted music or

3See https://spiralwiki.com/ for the demo.

movies) in exchange for money, and buyers pay for their de-
sired data [25]. Allowing the client to retrieve more data than
it requests leads to the loss of revenue for data sellers. Such a
kind of KPIR is called Symmetric KPIR (KSPIR), introduced
by Gertner et al. [29]. To the best of our knowledge, there are
no concrete constructions or implementations for KSPIR in
the preprocessing model.

In this section, we show that it is possible to obtain pre-
processing KPIR and KSPIR based on Piano, Spam, and our
Pai. However, the construction is non-trivial, and additional
privacy problems should be considered. We also provide con-
crete implementations for KSPIR and compare their efficiency
with SOTA KSPIR without preprocessing. The experimental
results show that preprocessing KSPIR also enjoys extremely
low online communication and computation costs.

In addition, we can leverage our idea of Pai to construct a
more efficient CKSPIR, allowing the server to know whether
it contains the key that the client retrieves. This is normally
considered as an “extra leakage” in KSPIR. However, such
“extra leakage” is necessary in practice. For example, in data
marketing, the data sellers can decide how many entries the
client is truly retrieved based on that “extra leakage” and ask
for data pricing.

5.2 KPIR from PIR

Zhou et al. [53] proposed to use cuckoo hashing table [46] to
construct KPIR from Piano. Their construction can be traced
back to the idea introduced by Ali et al. [3].

A cuckoo hashing table is specified by v hash functions
H1, . . . ,Hv with range [m], where m = (1+ε) ·n for some ε >
0. The goal of the cuckoo hashing table is to locate n elements
into m bins so that each bin contains at most 1 element. The
cuckoo hashing table avoids possible collisions by inserting
elements using a recursive eviction procedure with the help of
these v hash functions: whenever an element is located in an
occupied bin, the occupying element is evicted and recursively
relocated with a different hash function. By choosing suitable
ε, we can always find suitable v hash functions with high
probability. Like [3], we formalize the procedure of finding
suitable v hash functions as Cuckoo.KeyGen(EB), where EB
is a database containing n elements.

The KPIR construction works as follows. Let EB =
{(hi,ei)}i∈[n] be the key-value pair database held by the server.
The server chooses suitable v hash functions by running
(H1, . . . ,Hv)← Cuckoo.KeyGen(EB). The server then inserts
each (hi,ei) in the bin BHτ(hi) for some τ ∈ [v]. We remark
that whether the insertion succeeds depends on the selected
hash functions. This means that the client may be able to
learn information about the database based on the selected
hash functions that result in a successful insertion. However,
this does not violate privacy since the database is not private
in KPIR. For empty bins, the server pads with dummy val-
ues that are denoted by ⊥. The server finally sets the PIR
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Figure 3: KPIR from PIR.

database as DB= (x1, . . . ,xm), where each x j is the element
in B j containing some (hi,ei), and sends the descriptions of
(H1, . . . ,Hv) to the client.

Whenever the client wants to query the key h, it first com-
putes i j = H j(h), j ∈ [v]. Then, the client runs PIR with the
server, where the server takes DB as the database, and the
client takes indices i1, . . . , iv as inputs. At the end of the pro-
tocol, the client obtains xi1 , . . . ,xiv . The client finds xi j such
that the first entry of xi j is h and outputs the second entry of
xi j . If no such xi j exists, then the client outputs ⊥. See Figure
3 for a tiny example with n = 5 and v = 3.

It seems trivial to directly leverage the construction into
Piano, Spam, and our Pai to obtain corresponding KSPIR pro-
tocols. However, recall that some preprocessing PIR introduce
simplifying assumptions shown in Section 2.4, i.e., no dupli-
cate queries and random queries. Although these assumptions
can be made without loss of generality (as shown in [53]. We
stress that the methods for achieving these assumptions are
necessary for KPIR constructions.

Duplicated Queries Suppression via Dummy Queries. Pi-
ano, Spam and Pai assume that the client does not make any
duplicate queries. For every key query in KSPIR, the client
needs to request corresponding v PIR queries determined by
the output of v hash functions. This implies that in the adap-
tive key query setting, the client may make duplicate PIR
queries for different keys k and k′ when some hash functions
output the same index, which happens with non-negligible
probability.

Although we can allow the client to retrieve previously
queried results locally, we remark that the making dummy
queries is necessary in the KSPIR construction. Otherwise,
the server would notice that the client retrievals a key h′ with
less than v requests, which implies that some i j′ = H j′(h′)
is equal to previously retrieved key h with i j = i j′ for some
j ∈ [v], resulting in some leakages.

Random Queries without Permutation. Piano assumes that
each client queries indices that are sampled at random without
replacement. This assumption is naturally satisfied in the

ℎ! 𝑒! = Sym.Enc 𝑒𝑘!, 𝑣!

ℎ" 𝑒" = Sym.Enc 𝑒𝑘", 𝑣"

… …

ℎ# 𝑒# = Sym.Enc 𝑒𝑘#, 𝑣#

𝑚𝑘 ←$ 𝒦%
ℎ& , 𝑒𝑘& = 𝐹 𝑚𝑘, 𝑘&

ℎ, 𝑒𝑘 = 𝐹 𝑚𝑘, 𝑘
OPRF

𝑘 𝑚𝑘

𝑒 = Sym.Dec 𝑒𝑘, 𝑣 /⊥
KPIR

ℎ 𝐸𝐵

𝐸𝐵

Query for 𝑘

Figure 4: KSPIR from KPIR.

KPIR construction by modeling v hash functions as random
oracles. Since the queried indices are determined by the key
h and v hash functions, as long as the client does not make
duplicate key queries (which have been handled by duplicated
suppression), they look random from the server side.

5.3 KSPIR from KPIR
Freeman et al. [26] presented a method to construct (K)SPIR
from (K)PIR based on OPRF. The key idea is to let the server
encrypt each entry in the database by a session key eki derived
from PRF F with the master key mk and each retrieval key
ki. The server and the client then run (K)PIR, and the client
obtains the encrypted entry corresponding to its retrieval key
k. To enable the client to decrypt, they invoke OPRF that
allows the client to only obtain the corresponding session
key ek for the retrieval key k without the server obtaining any
information about k.

For the sake of completeness, we review the transformation
in detail. See Figure 4 for a tiny example. The security proof
of this transformation can be found in [26, Section 4.2].

Let {ki,vi}i∈[n] be the database in KSPIR. The server first
encodes the database as follows.

1. Let (SKE.Gen,SKE.Enc,SKE.Dec) be an semantically
secure SKE scheme.

2. Let F be a PRF for an OPRF protocol. The server sam-
ples a master key mk.

3. For each i ∈ [n], the server parses F(mk,ki) as (hi,eki),
where hi serves as the key of the encoded database, and
eki is a SKE key.

4. For each i ∈ [n], the server computes ei =
SKE.Enc(eki,vi).

5. Let EB= {(hi,ei)} be the encoded database.

Now, we can obtain a KSPIR protocol from a KPIR proto-
col and an OPRF protocol as follows.
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1. To query the key k, the parties run an OPRF, where the
server takes mk as input, and the client takes k as input.
At the end of OPRF, the client obtains ek = F(mk,k).
The client parses ek as (h,ek).

2. The parties run a KPIR protocol, where the server takes
EB as input and the client takes h as input. Let e be the
output of the client.

3. If e =⊥, then the client outputs ⊥; otherwise, the client
runs v = SKE.Dec(ek,e) to decrypt e and outputs v.

5.4 More Efficient CKSPIR
Due to the page limitation, the detailed construction and its
experimental results are shown in Appendix A.

6 Implementations and Evaluations

In this section, we illustrate the details for the implementa-
tion and experimental results, benchmarking with the SOTA
schemes: Piano, Spam, and APSI (for KSPIR).

6.1 Implementation Details
We implement all our schemes and compare them with
several baselines. To eliminate performance gaps caused
by programming languages, we carefully study existing
open-source codes, and re-implement baselines mainly us-
ing Java. The source code is available at https://github.
com/alibaba-edu/mpc4j. Here, we summarize each base-
line with implementation details.
Piano by Zhou et al. [53]. The authors provide a full imple-
mentation in Go. Both are open-sourced at https://github.
com/pianopir/Piano-PIR. Our re-implementation exactly
follows all parameter settings shown in their implementa-
tion. In their full implementation, the client generates online
queries with random indices. To support our KSPIR construc-
tion, our re-implementation additionally allows the client to
query specific indices.
Spam by Mughees et al. [42]. The authors implement their
scheme in C++. They set the computational security param-
eter λ to 80 rather than 128 used in other baselines. To date,
we have not found the open-source repository. We fully im-
plement Spam with the parameter setting shown in their work
with λ = 128. We also try our best to implement some opti-
mizations shown in their work, including two subset encoding
(Section 3.2), pair backup “hints” generation (Section 3.4),
and improved median finding (Section 4.1).
APSI by Chen et al. [18]. We choose Labeled Private Set
Intersection (LPSI) as the baseline for KSPIR. LPSI is a spe-
cific type of PSI that allows the client to learn the labels of the
elements in the intersection. Chen et al. [13] pointed out that
LPSI is equivalent to KSPIR in the batching setting, in the

sense that the client can ask multiple keys (elements) for en-
tries (labels) in one query. The state-of-the-art labeled PSI was
proposed by Chen et al. [18], with the open-sourced library
APSI available at https://github.com/microsoft/APSI.
Their implementation invokes Microsoft SEAL library4 for
Fully Homomorphic Encryption (FHE) and FourQ5 for Ellip-
tic Curve Cryptography (ECC).

We implement Piano, Spam, and Pai under a unified API.
Then, we implement the transformation from preprocessing
PIR to KSPIR by invoking these schemes in a black-box man-
ner with a cuckoo hash. Following the estimates in [24], we
choose the cuckoo hash parameters as containing 3 hashes
and the number of bins b= 1.5n such that inserting n elements
in the cuckoo hash fails with probability at most 2−κ. In this
way, we obtain the corresponding KSPIR, namely, PianoK-
SPIR, SpamKSPIR, and PaiKSPIR. We finally implement our
PaiCKSPIR with FourQ ECC as the DDH-hard group.

In our implementation, we set the statistical security param-
eter κ to 40 and the computational security parameter λ to 128
for all schemes. We utilize AES-NI hardware instruction that
is inherently supported by modern Java Virtual Machines for
fast PRF and PRP evaluations. The CPA-secure SKE used in
Pai and PaiCKSPIR is instantiated as AES with OFB encryp-
tion mode. The semantic-secure SKE used in PianoKSPIR,
SpamKSPIR, and PaiKSPIR is instantiated as AES with CTR
encryption mode.

6.2 Experimental Setup
We evaluate all schemes on a single Intel Core i9-9900K with
3.6GHz and 128GB RAM. Our platform runs Ubuntu 20.04.6
LTS, with Microsoft SEAL 4.1.1, FourQ v3.1, and Java 17.0.1.
All query costs are computed as the average over 1000 queries,
except the somewhat inefficient APSI, which we average the
cost over 100 queries. All experiments are run on a single
machine with the 10Gbps bandwidth and 0.05ms RTT latency
simulated by the Linux tc command. All computations for the
server and the client are performed on 8 threads.

We analyze the performance of all schemes for databases
with n = 220,222,224 entries. The entry sizes are 64,128,256
bytes. Since our experiments consider single-query setting
rather than batch-query setting, for APSI, we choose the single-
query parameter 1M-1-326 for n= 220 entries, and 16M-1-327

for n = 222 and n = 224 entries.

6.3 Evaluation Results
We analyze the experimental results for PIR and KSPIR, re-
spectively. The metrics include the costs of the queries in

4https://github.com/microsoft/SEAL
5https://github.com/microsoft/FourQlib
6https://github.com/microsoft/APSI/blob/main/parameters/

1M-1-32.json
7https://github.com/microsoft/APSI/blob/main/parameters/

16M-1-32.json
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Table 2: Performance of Pai, Piano and Spam on n = 220,222,224 database sizes and 64,128,256 bytes entry sizes. “Comm.”
stands for communication cost. Offline costs are the whole preprocessing. Online costs are amortized over 1000 queries.

n = 220 n = 222 n = 224

64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes

Offline
Comm. (MB)

Piano 64.0 128.0 256.0 256.0 512.0 1024.0 1024.0 2048.0 4096.0
Spam 64.0 128.0 256.0 256.0 512.0 1024.0 1024.0 2048.0 4096.0

Pai 352.0 608.0 1120.0 1408.0 2432.0 4480.0 5632.0 9728.0 17920.0

Offline
Time (s)

Piano 4.730 4.610 5.737 18.352 16.434 19.738 78.094 69.327 86.643
Spam 7.462 7.999 8.313 23.573 26.214 33.434 92.303 102.933 132.366

Pai 4.504 5.238 6.798 14.496 16.988 22.777 57.525 66.840 90.584

Online
Comm. (KB)

Piano 65.998 129.998 257.998 131.998 259.998 515.998 263.998 519.998 1031.998
Spam 2.250 2.375 2.625 4.375 4.500 4.750 8.625 8.750 9.000

Pai 0.094 0.156 0.297 0.094 0.156 0.297 0.094 0.156 0.297

Online
Time (ms)

Piano 1.184 1.509 1.906 1.575 2.244 2.833 2.816 4.375 5.492
Spam 0.905 1.088 1.144 0.977 1.094 1.306 1.542 1.935 2.241

Pai 0.357 0.364 0.281 0.245 0.253 0.281 0.210 0.221 0.281
Online

Client-Side
Storage (MB)

Piano 17.177 22.143 32.398 30.747 41.373 62.848 60.125 82.627 127.847
Spam 16.841 22.191 32.218 28.595 39.070 59.347 52.462 73.182 113.964

Pai 5.131 5.097 4.907 4.960 4.959 4.734 4.959 4.958 4.734

the online phase, as well as the one-time pre-processing cost
in the offline phase. We further obtain the online client-side
storage cost by using the JOL (Java Object Layout) library8

to measure the deep sizes (i.e., the size of an object including
the size of all referred objects, in addition to the size of the
object itself) of Objects packaging the client.

Evaluations for PIR. Table 2 shows the detailed experiment
results for Pai, Piano, and Spam. Similar to results provided
in [42], our re-implementation of Spam also achieves better
communication and computation than Piano. Under our fair
comparisons, the online communication cost is 29.3 - 114.7×
better, and the online computation cost is 1.3 - 2.5× better.
Compared with Spam, Pai further reduces the online com-
munication cost by 8.8 - 91.8×, and the online time by 2.5 -
8.8×. In addition, since Pai does not require the client to store
any hints, the online client-side storage is constant, compared
to Piano and Spam that sublinearly increase in n. Based on
our parameter setting, the concrete storage costs of Pai are
only 3.7%−30.5% than Piano and Spam.

The offline time of Pai is also similar to that of Piano and
lower than that of Spam. The only possible disadvantage of
Pai is it introduces additional offline communication costs,
which are about 4 - 6× compared to that of Piano and Spam.
Since the server and the client can enjoy the extremely fast
online phase by performing the preprocessing upfront only
once, a relatively high but reasonable offline communication
is acceptable.

Evaluations for KSPIR. Table 3 shows the detailed experi-
ment results for APSI, PianoKSPIR, SpamKSPIR, and PaiK-

8http://hg.openjdk.java.net/code-tools/jol

SPIR. The online complexity of APSI is much higher than that
of the other three protocols, at least three orders of magnitude
more expensive. This shows that introducing preprocessing in
KSPIR extremely decreases the online costs. The advantage
of APSI is that the communication in the offline phase is very
low. However, due to the high offline computation complexity
of APSI, its overall offline time is similar to that of the other
three protocols. We can argue that the application scenario
of APSI is different from that of the other three protocols.
In particular, when low offline communication complexity is
required, APSI will be a better choice than others.

Now, let us compare the complexity of the other three
protocols. The experimental results show that SpamKSPIR
achieves better communication and computation than PianoK-
SPIR. Under our fair comparisons, the online communication
cost is 36.1 - 122.4× better, and the online computation cost
is 1.4 - 2.4× better. PaiKSPIR further achieves more effi-
cient online phase than SpamKSPIR. Concretely, PaiKSPIR
reduces the online communication cost by 9.9 - 81.3×, and
the online time by 2.3 - 8.9×. In addition, PaiKSPIR inherits
the storage advantages of Pai. Under the parameters we tested,
the concrete storage cost of PaiKSPIR is only 2.9%−23.4%
than that of PianoKSPIR and SpamKSPIR.

Finally, we consider the offline complexity of the protocols.
Similar to the comparisons between Pai, Piano, and Spam, the
offline time of PaiKSPIR is similar to that of PianoKSPIR and
lower than that of SpamKSPIR. Also, PaiKSPIR inherits the
disadvantage of high offline communication from Pai, which
is about 4 - 6× than that of PianoKSPIR and SpamKSPIR.
Given that we have an extremely fast online phase, a relatively
high but reasonable offline communication is acceptable.
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Table 3: Performance of APSI, PaiKSPIR, PianoKSPIR and SpamKPSIR on n = 220,222,224 database sizes and 64,128,256
bytes entry sizes. “Comm.” stands for communication cost. Offline costs are the whole preprocessing. Online costs are amortized
over 1000 queries except APSI that are amortized over 100 queries.

n = 220 n = 222 n = 224

64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes

Offline
Comm. (MB)

APSI 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PianoKSPIR 120.069 216.124 408.235 480.085 864.153 1632.289 1920.341 3456.613 6529.158
SpamKSPIR 120.069 216.124 408.235 480.085 864.153 1632.289 1920.341 3456.613 6529.158

PaiKSPIR 624.359 1008.581 1777.023 2496.443 4032.715 7105.260 9985.771 16130.862 28421.042

Offline
Time (s)

PianoKSPIR 17.388 15.517 18.294 70.225 63.999 69.712 288.962 255.728 296.759
SpamKSPIR 20.544 20.918 24.371 82.174 82.754 104.972 329.514 331.764 417.963

APSI 23.697 35.538 61.234 82.641 128.631 230.835 338.196 542.071 938.441
PaiKSPIR 16.218 17.331 20.157 60.437 67.729 78.297 249.635 275.815 308.757

Online
Comm. (KB)

APSI 5769.693 9401.396 17270.112 13517.358 22959.823 43418.503 47413.396 82277.844 157817.458
PianoKSPIR 301.311 536.436 1006.686 602.564 1072.814 2013.314 1205.313 2146.000 4027.375
SpamKSPIR 8.351 8.726 9.476 16.158 16.533 17.283 31.773 32.148 32.898

PaiKSPIR 0.391 0.578 0.953 0.391 0.578 0.953 0.391 0.578 0.953

Online
Time (ms)

APSI 3067.12 4072.03 6249.78 5464.79 8034.68 13886.16 15149.30 25075.80 47133.38
PianoKSPIR 4.398 5.208 6.754 7.121 9.032 11.323 14.363 17.201 21.827
SpamKSPIR 3.178 3.235 3.378 4.065 4.497 4.793 7.702 8.021 8.940

PaiKSPIR 1.391 1.436 1.444 1.045 1.031 1.071 1.055 0.989 1.008

Online
Client-Side

Storage (MB)

APSI 5.260 5.256 5.436 5.274 5.271 5.272 5.271 5.266 5.437
PianoKSPIR 21.888 28.172 40.740 40.272 53.444 79.789 81.095 109.272 165.626
SpamKSPIR 21.114 27.396 39.963 37.123 49.682 74.801 69.485 94.598 144.824

PaiKSPIR 4.931 5.161 4.950 4.760 4.990 4.778 4.758 4.988 4.776

Evaluations for CKSPIR. For our CKSPIR protocol, we
defer the corresponding experimental results to Appendix A.

7 Conclusion

In this work, we propose a novel PIR framework Pai under the
client-preprocessing model. This new paradigm of PIR is com-
pelling both from theoretical and practical perspectives. The-
oretically, Pai boasts near-optimal online time and client-side
storage, with the optimality retained up to a poly-logarithmic
factor. As a comparison, the online time and online client-
side storage of the state-of-the-art PIR protocols Piano and
Spam under the client-preprocessing model are both Õ(

√
n).

It is pivotal to emphasize that the low client-side storage, ren-
dering our protocol considerably more feasible for practical
implementation and deployment in a wide variety of comput-
ing environments. Beyond the theoretical contributions of our
protocols, we have also demonstrated practical efficiency of
Pai through substantial experiments. Our findings indicate
that across all evaluated databases, Pai consistently outper-
forms in terms of online communication, execution time, and
client-side storage. A limitation of our protocol is the req-
uisite for the database to undergo an offline phase for each
client. This stipulation results in the server’s preprocessing

time scaling linearly with the client count. However, under
the assumption of non-collusion between any client and the
server, by letting the clients share the outputs in the offline
phase, the server only needs to run the offline phase once.
As a consequence, one problem is how to enable the server
to perform the offline phase only once, while allowing some
clients to collude with the server to attack other clients.

We also extended our PIR framework to construct two vari-
ants of PIR, i.e., KSPIR and CKSPIR. Our KSPIR protocol
PaiKSPIR is obtained by applying the ideas from [26] and [3]
to our PIR protocol. In order to verify the efficiency of the con-
version, we also apply the conversion to Piano and Spam, ob-
taining two KSPIR protocols PianoKSPIR and SpamKSPIR,
respectively. We implement all the KSPIR protocols, and our
experimental results show that PaiKSPIR has higher efficiency
than PianoKSPIR and SpamKSPIR. We also introduce CK-
SPIR, which is a variant of KSPIR. CKSPIR is mainly used
when the server intends to charge the client for a successful
query. By using different cryptography techniques, we con-
vert Pai to a CKSPIR protocol PaiCKSPIR. Since any KSPIR
protocol can be converted to a CKSPIR protocol by adding
one bit of communication, we also compare the efficiency
of PaiCKSPIR and our KSPIR protocol, and the experimen-
tal results show that our PaiCKSPIR protocol achieves lower
online time and similar client-side storage.
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A More Efficient CKSPIR

Since PaiKSPIR is the KSPIR protocol with the best online
efficiency, the CKSPIR protocol converted from PaiKSPIR
is the CKSPIR protocol with the best online efficiency at
present. In this section, we present a new CKSPIR protocol
that achieves better online efficiency than PaiKSPIR.
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The Construction. Our CKSPIR protocol PaiCKSPIR is con-
structed based on our PIR protocol Pai. However, since CK-
SPIR implements stronger functionality (keyword search) and
requires higher privacy (symmetric privacy), PaiCKSPIR has
a much more complicated offline phase than PaiPIR. Con-
cretely, the offline phase PaiCKSPIR is mainly different from
that of PaiPIR in the following aspects (let {(ki,vi)}i∈[n] be
the database).

• Encoding Functions. The two encoding algorithms Ekey

and Evalue (which play the roles of Eindex and Eentry in
PaiPIR) are used to encode the keys and values, respec-
tively. Instead of using a PRP, we instantiate Ekey with the
function fβ(k) = H(k)β, where H is a collision-resistant
hash function (CRHF) that maps the keys to elements
of a DDH-hard group of order p for some large prime
p, and β ∈ Zp is random key held by the client. In the
random oracle model, the function fβ(k) is a PRF under
the Decisional Diffie–Hellman (DDH) assumption [22].
As in PaiPIR, Evalue is still instantiated with an IND-CPA
secure SKE scheme.

• Offline Phase. In PaiPIR, the server directly sends the
database to the client. In PaiCKSPIR, we must protect
the privacy of the database. Therefore, we let the server
send an encryption of the database. Concretely, we let
the server sends (ti,ci) = (H(ki)

α,vi⊕ ri) instead of just
(ki,vi), where α ∈ Zp is random, and ri is a random
value. This prevents the client from obtaining informa-
tion about (ki,vi). Now, we can let the client encrypt the
new database {(ti,ci)}i∈[n] using Ekey and Evalue. Con-
cretely, the client chooses a random β ∈ Zp and an en-
cryption key ek of an IND-CPA secure SKE scheme.
Moreover, the client chooses a random permutation
π over [n]. Then, the client encrypts the database as
{(hi,ei)}i∈[n], where hi = tβ

π(i),ei = SKE.Enc(ek,cπ(i)).
Finally, the client sends {(hi,ei)}i∈[n] to the server. We
remark that using the same idea as in PaiPIR, we can
also reduce the offline bandwidth from Õ(n) to Õ(

√
n).

• Online Phase. Since the server also participates in en-
coding the database, PaiCKSPIR will have a different
online phase from PaiPIR. Assume that the client has a
search key k, the client first computes hc = H(k)β and
then sends hc to the server. Then the server computes
h = hα

c and checks whether there exists some h j such
that h j = h. By the properties of H, we can easily verify
the correctness. If the server finds that h = h j, then it
sends e j to the client. By decrypting e j using the SKE
key ek, the client obtains the value cπ( j) = vπ( j)⊕ rπ( j).
To let the client obtain the value vπ( j), we still need to
let the client obtain rπ( j), which seems impossible due
to that the server does not know the permutation π. To
deal with this, we use oblivious pseudorandom function
(OPRF) in our protocol. Concretely, instead of choosing

ri at random, we let ri = F(mk,ki), where F is a PRF and
mk is a PRF key sampled by the server. Then, the client
can obtain the value rπ( j) = F(mk,kπ( j)) = F(mk,k) by
running an OPRF protocol with the server.

Finally, we remark that our protocol may leak information
about i to the client if k = ki for some i ∈ [n], while we only
want to leak vi to the client. In fact, this has no effect on the
considered application, where the server wants the client to
pay for its successful retrieval. However, this problem can be
resolved by simply letting the server permute its database at
the beginning of the offline phase, which does not affect the
efficiency of the online phase of our protocol.

Now, we are ready to present the description of PaiCKSPIR,
which is shown in Figure 5.
Security Proof. We prove the following theorem to state the
security of ΠPaiCKSPIR.

Theorem 2. ΠPaiCKSPIR is a secure CKSPIR protocol.

Proof. We need to show the correctness, server-privacy, and
client-privacy of ΠPaiCKSPIR.
Correctness. If k = k′i0,i1 for some i0, i1 ∈ [

√
n], then h =

h
π
−1
0 (i0),π

−1
1 (i1)

, and the server will output b = 1. More-
over, by the collision-resistance of H, for any ( j0, j1) ̸=
(π−1

0 (i0),π−1
1 (i1)), with overwhelming probability it holds

that h ̸= h j0, j1 . Therefore, with overwhelming probability,
the server will return e

π
−1
0 (i0),π

−1
1 (i1)

to the client. By the of-
fline phase, we know that e

π
−1
0 (i0),π

−1
1 (i1)

is an encryption of
mi0,i1 = v′i0,i1 ⊕ ri0,i1 . Therefore, the client will output

v = SKE.Dec(ek,e)⊕ r = v′i0,i1⊕ ri0,i1⊕F(mk,ki0,i1) = v′i0,i1 .

If k ̸= k′j0, j1 for any j0, j1 ∈ [
√

n], then by the collision-
resistance of H, the probability that there exists some i0, i1 ∈
[
√

n] such that H(k′i0,i1)
αβ =H(k)αβ is negligible (α,β are ran-

dom). Therefore, with overwhelming probability, the server
will output b = 0 and the client will output ⊥.
Server-Privacy. Let Viewcli(DB,k) be the view of the client.
We need to construct a PPT simulator Sim taking (k,z) as
input such that

Viewcli(DB,k)≈c Sim(k,z).

Note that Viewcli(DB,k) consists of

(k,{(s j0, j1 ,m j0, j1)} j0, j1∈[
√

n],

{(t j0, j1 ,c j0, j1)} j0, j1∈[
√

n], resp,vcoprf ,z)

where resp is the message received from the server in the
online phase, and vcoprf is the view of the client in the OPRF
protocol. To simulate this view, Sim performs as follows.

1. Sample two random permutations π∗0,π
∗
1 over the set

[
√

n], two random values β∗0,β
∗
1 ∈ Zp (set β∗ = β∗0β∗1),

and one SKE key ek∗.
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Figure 5: The construction of PaiCKSPIR.

Protocol ΠPaiCKSPIR: CKSPIR with Õ(1) Client-Side Storage and Online Time

Input: The server S has a database DB= {(k j,v j)} j∈[n] ∈ (K ×V )n, and the client C has a search key k ∈K .
Output: If there exists some i ∈ [n] such that ki = k, then S outputs b = 1, and C outputs z = vi. Otherwise, S outputs
b = 0, and C outputs z =⊥.

Offline Phase: S first samples a random permutation π over [n] and permutes its database as DB′ = {(k′j,v′j)} j∈[n],
where (k′j,v

′
j) = (kπ( j),vπ( j)). Then, S represents the database as DB′ = {(k′j0, j1 ,v

′
j0, j1)} j0, j1∈[

√
n]. S and C agree on the

following three cryptographic primitives.

• A hash function H : K →G, where G is a DDH-hard group of order p for some large prime p.

• An IND-CPA secure SKE scheme (SKE.Gen,SKE.Enc,SKE.Dec).

• A PRF F : KF×K → V with an OPRF protocol, where KF is the key space of F.

The parties choose the required parameters.

• S chooses a master key mk ∈KF and a random value α ∈ Zp.

• C chooses two random permutations π0,π1 over the set [
√

n], two random values β0,β1 ∈ Zp (set β = β0β1), and
one SKE key ek.

Now S and C interact to encode the database in a streaming way.

1. Row-Permuting. For each j1 ∈ [
√

n], S and C perform the following steps.

(a) For all j0 ∈ [
√

n], S computes s j0, j1 = H(k′j0, j1)
α.

(b) For all j0 ∈ [
√

n], S first computes r j0, j1 = F(mk,k′j0, j1) and m j0, j1 = v′j0, j1 ⊕ r j0, j1 . Then, S sends
{(s j0, j1 ,m j0, j1)} j0∈[

√
n] to C .

(c) For all j0 ∈ [
√

n], C first computes t j0, j1 = (sπ0( j0), j1)
β0 and c j0, j1 = SKE.Enc(ek,mπ0( j0), j1). Then, C sends

{(t j0, j1 ,c j0, j1)} j0∈[
√

n] to S .

(d) C deletes {(s j0, j1 ,m j0, j1),(t j0, j1 ,c j0, j1)} j0∈[
√

n] from its local storage.

2. Column-Permuting. For each j0 ∈ [
√

n], S and C perform the following steps.

(a) S sends {(t j0, j1 ,c j0, j1)} j1∈[
√

n] to C .

(b) For all j1 ∈ [
√

n], C computes h j0, j1 = tβ1
j0,π1( j1)

and decrypts x j0, j1 = SKE.Dec(ek,c j0, j1).

(c) For all j1 ∈ [
√

n], C computes e j0, j1 = SKE.Enc(ek,x j0,π1( j1)). Then, C sends {(h j0, j1 ,e j0, j1)} j1∈[
√

n] to S .

(d) C deletes {(t j0, j1 ,c j0, j1),(h j0, j1 ,e j0, j1)} j1∈[
√

n] from its local storage.

Online Phase: To query the key k, the parties proceed as follows (and they run the OPRF protocol to let C obtain
r = F(mk,k).

1. Query. C first computes q = H(k)β and sends q to S .

2. Response. S computes h = qα and checks whether there exists some h j0, j1 such that h j0, j1 = h. If the answer is yes,
S outputs b = 1 and sends e = e j0, j1 to C . Otherwise, S outputs b = 0 and sends ⊥ to C .

3. Extract. If receiving ⊥ from S , then C outputs z =⊥. Otherwise, C computes v = SKE.Dec(ek,e)⊕ r and outputs
z = v.
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2. Choose n random group elements {s∗j0, j1} j0, j1∈[
√

n] from
G and n random values {m∗j0, j1} j0, j1∈[

√
n] from V .

3. Compute t∗j0, j1 = (s∗
π∗0( j0), j1

)β∗0 and c∗j0, j1 =

SKE.Enc(ek∗,mπ∗0( j0), j1) for all j0, j1 ∈ [
√

n].

4. If z ̸=⊥, then choose random i∗0, i
∗
1 ∈ [
√

n] and compute
r∗ = m∗i∗0,i∗1 ⊕ z. Otherwise, choose a random value r∗

from V .

5. If z ̸=⊥, then compute resp∗ = SKE.Enc(ek∗,z⊕ r∗).
Otherwise, compute resp∗ =⊥.

6. Invoke the OPRF simulator on (k,r∗) and let vc∗oprf be
the output.

7. Output the simulated view

(k,{(s∗j0, j1 ,m
∗
j0, j1)} j0, j1∈[

√
n],

{(t∗j0, j1 ,c
∗
j0, j1)} j0, j1∈[

√
n], resp

∗,vc∗oprf ,z).

It remains to show that the simulated view is indistinguish-
able from the real view. Firstly, note that fα(k) = H(k)α is
a PRF in the RO model, hence each s j0, j1 is indistinguish-
able from a random value. Moreover, t j0, j1 = (sπ0( j0), j1)

β0 ,
where π0 is a random permutation over [

√
n] that is sam-

pled by the client. Therefore, we know that sπ0( j0), j1 and
s∗

π∗0( j0), j1
are indistinguishable, which implies that t j0, j1 and

t∗j0, j1 are indistinguishable. On the other hand, by the prop-
erty of F, we know that every r j0, j1 = F(mk,k′j0, j1) is a pseu-
dorandom value, hence every m j0, j1 = v j0, j1 ⊕F(mk,k′j0, j1)
is indistinguishable from a random value. Moreover, note
that c j0, j1 = SKE.Enc(ek,mπ0( j0), j1), where ek is a SKE key
sampled by the client. Since mπ0( j0), j1 and m∗

π∗0( j0), j1
are in-

distinguishable, c j0, j1 and c∗j0, j1 are indistinguishable. Now,
we consider the message (resp,vcoprf). We first consider the
case of z =⊥. In this case, we have resp=⊥, and moreover,
k ̸= k′j0, j1 for all j0, j1 ∈ [

√
n], which implies that the OPRF

output r = F(mk,k) has not been used in the offline phase, and
we can just use a random value r∗ to simulate r. Let Simoprf be
the OPRF simulator, then we know that vcoprf = Simoprf(k,r)
and vc∗oprf = Simoprf(k,r∗) are indistinguishable. For the case
of z ̸=⊥, by the correctness of our protocol, we know that
k = k′i0,i1 for some i0, i1 ∈ [

√
n]. Note that the database has

been permuted by the server, hence i0, i1 are in fact two ran-
dom values. Furthermore, we have h = h

π
−1
0 (i0),π

−1
1 (i1)

, which
implies that the response message is e = e

π
−1
0 (i0),π

−1
1 (i1)

, which
is an encryption of mi0,i1 . Since i0, i1 are two random val-
ues, we can just simulate e by samples two random values
i∗0, i
∗
1 ∈ [
√

n] and encrypts m∗i∗0,i∗1 to e∗, which guarantees that e∗

and e are indistinguishable. Moreover, since m∗i∗0,i∗1 and mi0,i1

are indistinguishable, r∗ = m∗i∗0,i∗1 ⊕ z and r = mi0,i1 ⊕ z are in-
distinguishable. This implies that vcoprf = Simoprf(k,r) and
vc∗oprf = Simoprf(k,r∗) are indistinguishable.

Client-Privacy. Let Viewser(DB,k) be the view of the server.
We need to construct a PPT simulator Sim taking DB as input
such that

Viewser(DB,k)≈c Sim(DB).

Note that Viewser(DB,k) consists of

(DB,{(t j0, j1 ,c j0, j1)} j0, j1∈[
√

n],

{(h j0, j1 ,e j0, j1)} j0, j1∈[
√

n],query,vcoprf ,b),

where query = q is the query message received from the
client in the online phase, and vcoprf is the view of the
server in the OPRF protocol. Since the client offers no in-
puts in the offline phase, Sim can simulate the messages
({(t j0, j1 ,c j0, j1)} j0, j1∈[

√
n],{(h j0, j1 ,e j0, j1)} j0, j1∈[

√
n]) perfectly.

Moreover, since the server has no outputs in the OPRF proto-
col, Sim can simulate vcoprf by invoking the OPRF simulator
on mk and let vc∗oprf be the output. The security of the OPRF
protocol guarantees that vc∗oprf and vcoprf are indistinguishable.
To simulate the message query, Sim performs as follows.

1. If b = 0, sample a random value q ∈ V .

2. Otherwise, choose two random values i∗0, i
∗
1 ∈ [
√

n] and
compute q∗ = h1/α

i∗0,i
∗
1
.

We show that q and q∗ are indistinguishable. First, consider
the case of b= 1, which implies that k = k′i0,i1 for some i0, i1 ∈
[
√

n]. In this case, the query message in the real view is q =

H(k)β = H(k′i0,i1)
β = h1/α

π
−1
0 (i0),π

−1
1 (i1)

, and the simulated query

message is q∗ = h1/α

i∗0,i
∗
1

for random i∗0, i
∗
1 ∈ [
√

n]. Note that

π0 and π1 are two random permutations over [
√

n] that are
unknown to the server. Therefore, π

−1
0 (i0),π−1

1 (i1) are two
random values of [

√
n] and q and q∗ are indistinguishable.

Now, consider the case of b = 0, which implies that k ̸=
k j0, j1 for any j0, j1 ∈ [

√
n]. In this case, the real query mes-

sage q is H(k)β, where β is sampled by the client. And the
simulated query message q∗ is a random element of V . Since
β is unknown to the server, H(k)β is indistinguishable from a
random element. Therefore, q and q∗ are indistinguishable.

Complexity Analysis. We analyze the asymptotic complexity
of ΠPaiCKSPIR from four aspects: communication, computa-
tion, bandwidth, and storage.

Let us first consider the offline phase. In the offline phase,
the parties need to send 4n group elements, n plaintexts, and
3n ciphertexts. Hence, the communication cost is Õ(n). In
addition, the server needs to compute H and F n times, n Xors
and exponentiations. Moreover, the client needs to compute
2n exponentiations, 2n encryptions, and n decryptions. Over-
all, the offline computational cost is Õ(n). Furthermore, since
each message sent by the parties contains

√
n group elements
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Table 4: Performance of PaiKSPIR and PaiCKSPIR on n = 220,222,224 database sizes and 64,128,256 bytes entry sizes. “Comm.”
stands for communication cost. Offline costs are the whole preprocessing. Online costs are amortized over 1000 queries. Data for
PaiKSPIR are from Table 3.

n = 220 n = 222 n = 224

64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes 64 bytes 128 bytes 256 bytes

Offline

Comm. (MB)

PaiKSPIR 624.359 1008.581 1777.023 2496.443 4032.715 7105.260 9985.771 16130.862 28421.042

PaiCKSPIR 432.0 688.0 1200.0 1728.0 2752.0 4800.0 6912.0 11008.0 19200.0

Offline

Time (s)

PaiKSPIR 16.218 17.331 20.157 60.437 67.729 78.297 249.635 275.815 308.757

PaiCKSPIR 33.311 33.525 35.030 119.743 123.880 128.781 470.224 487.166 516.738

Online

Comm. (KB)

PaiKSPIR 0.391 0.578 0.953 0.391 0.578 0.953 0.391 0.578 0.953

PaiCKSPIR 0.172 0.234 0.359 0.172 0.234 0.359 0.172 0.234 0.359

Online

Time (ms)

PaiKSPIR 1.391 1.436 1.444 1.045 1.031 1.071 1.055 0.989 1.008

PaiCKSPIR 0.883 0.906 0.878 0.671 0.673 0.670 0.634 0.649 0.617

Online Client-Side

Storage (MB)

PaiKSPIR 4.931 5.161 4.950 4.760 4.990 4.778 4.758 4.988 4.776

PaiCKSPIR 5.139 4.921 5.156 4.969 4.749 4.985 4.969 4.753 4.985

and
√

n plaintexts or ciphertexts, the bandwidth of the proto-
col is Õ(

√
n). Finally, it is easy to see that the server-side and

client-side storage are Õ(n) and Õ(
√

n), respectively.
Now, we consider the online phase. Note that the OPRF

protocol (described in Section 2.3) requires the parties to send
two group elements and compute the hash function one time
and three exponentiations, hence both the communication
and computational costs are Õ(1). In addition to executing
the OPRF protocol, the parties need to send a group element
and a ciphertext (as well as a bit b), which requires Õ(1)
communication. Moreover, the parties need to compute the
hash function H one time and two exponentiations, which
consumes Õ(1) amount of computation. Finally, it is easy to
see that the bandwidth of the online phase of the protocol is
Õ(1), and the server-side and client-side storage are Õ(n) and
Õ(1), respectively.

A.1 Implementation and Evaluation
We also implement PaiCKSPIR. Since there is no known
implementation of CKSPIR, and any KSPIR protocol can be
converted to KSPIR by having the client send an additional
bit, we directly compare our CKSPIR protocol to KSPIR.
Since we are more concerned about the online complexity of
the protocol, we only need to compare it with our PaiKSPIR
(which has lower online complexity than PianoKSPIR and
SpamKSPIR). The experimental results are shown in Table
4. We use the experimental setup that has been described in
Section 6.

Evaluation. The experimental results show that for online
communication, PaiCKSPIR is 2.3 - 2.7× better than PaiK-
SPIR, and for online time, PaiCKSPIR is 1.5 - 1.7× better
than PaiKSPIR. The main reason why PaiCKSPIR has better

online efficiency than PaiKSPIR is that in the general transfor-
mation from PIR to KSPIR (described in Section 5.2), a single
keyword query requires the client to make v = 3 index queries.
For the offline phase, since PaiKSPIR uses our PIR protocol
with a database containing b = 1.5n entries, PaiCKSPIR has a
lower offline communication, which is 1.4 - 1.5× better than
PaiKSPIR. Moreover, since that PaiCKSPIR uses much more
public-key operations (i.e., exponentiations), the offline time
of PaiCKSPIR is 1.6 - 2.1× higher than PaiKSPIR.
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