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Abstract
Secure inference of deep convolutional neural networks (CNNs) was recently demonstrated
under RNS-CKKS. The state-of-the-art solution uses a high-order composite polynomial to
approximate all ReLUs. However, it results in prohibitively high latency because bootstrap-
ping is required to refresh zero-level ciphertext after every Conv-BN layer. To accelerate
inference of CNNs over FHE and automatically design homomorphic evaluation architectures
of CNNs, we propose AutoFHE: a bi-level multi-objective optimization framework to auto-
matically adapt standard CNNs to polynomial CNNs. AutoFHE can maximize validation
accuracy and minimize the number of bootstrapping operations by assigning layerwise
polynomial activations and searching for the placement of bootstrapping operations. As
a result, AutoFHE can generate diverse solutions spanning the trade-off front between
accuracy and inference time. Experimental results of ResNets on encrypted CIFAR-10
under RNS-CKKS indicate that in comparison to the state-of-the-art solution, AutoFHE
can reduce inference time (50 images on 50 threads) by up to 3,297 seconds (43%) while
preserving accuracy (92.68%). AutoFHE also improves the accuracy of ResNet-32 by 0.48%
while accelerating inference by 382 seconds (7%).

Keywords: Fully Homomorphic Encryption, Deep Learning, Neural Architecture Search,
Automated Machine Learning

1. Introduction

MLaaS, machine learning as a service, is an exponentially growing market. Commercial
MLaaS platforms, like Amazon AWS, Google GCP, and Microsoft Azure, have proliferated.
As a novel Cloud computing service, MLaaS is driven by the great success of deep learning
on extensive tasks, like vision (Dosovitskiy et al., 2020; He et al., 2016), language (Devlin
et al., 2018; Vaswani et al., 2017), game (Schrittwieser et al., 2020; Silver et al., 2018),
science (Fawzi et al., 2022; Jumper et al., 2021), and many more. In the scenario of MLaaS,
the Cloud (Alice) holds pre-trained deep learning models, while the customer (Bob) has
private data and requests service from Alice. Bob wants to protect his private data and does
not want Alice to learn any sensitive information. Deep learning models, including neural
architectures and pre-trained weights, are properties of Alice. Alice spends considerable efforts
to design neural architectures, like ResNets (He et al., 2016), ViT (Dosovitskiy et al., 2020),
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Figure 1: AutoFHE is a bi-level multi-objective optimization framework to adapt standard
CNNs into polynomial CNNs automatically. AutoFHE takes as input a neural network
with ReLUs and generates a diverse set of polynomial networks by trading off accuracy and
inference time. We can deploy AutoFHE solutions on the Cloud to provide different kinds of
service to customers.

ResNet Conv BN ReLU

FHE-MP-CNN Conv BN Boot AppReLU

AutoFHE Conv BN Boot EvoReLU

Conv BN + ReLU
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Conv BN + Scale Boot EvoReLU
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Figure 2: Homomorphic evaluation architectures of the chain and residual connections. Top
row: standard ResNet Conv-BN-ReLU triplet (He et al., 2016). Middle row: FHE-MP-CNN.
Bottom row: AutoFHE, where dashed rectangles are placement of bootstrapping layers to
search.

and MLP-Mixer (Tolstikhin et al., 2021) and consumes huge computational resources to
search for novel neural architectures (Liu et al., 2018; Zoph and Le, 2016) or train network
weights (Goyal et al., 2017; Weng, 2021).
Fully Homomorphic Encryption: Secure inference of deep learning models under homo-
morphic encryption (HE)(Brutzkus et al., 2019; Gilad-Bachrach et al., 2016; Lou and Jiang,
2021) or fully homomorphic encryption (FHE) (Lee et al., 2022a,b) is a promising solution
for resolving security concerns between Alice and Bob in the context of MLaaS. FHE enables
us to evaluate a circuit with arbitrary depth and shows potential to embrace modern deep
CNNs (Lee et al., 2022a). Figure 1 shows secure inference of CNNs under FHE. First, Bob
generates a public key to encrypt his private data and sends Alice the ciphertext. Second,
Alice applies neural networks to process the ciphertext input and yields an encrypted result.
Finally, Bob uses the secret key to decrypt the encrypted result. Under FHE, Bob cannot
learn Alice’s neural architectures and pre-trained weights, while Alice is also not exposed to
both Bob’s data and result.
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Polynomial CNNs: Non-arithmetic activation functions, such as ReLU(x) = max(x, 0), are
widely used in modern CNNs to learn non-linear features. For example, Residual Networks (He
et al., 2016) are composed of Conv-BN-ReLU triplets (He et al., 2016) as shown in the top
row of Figure 2. Since FHE only supports multiplications and additions, ReLUs must be
replaced by polynomial approximations to evaluate CNNs under FHE. Existing methods to
generate polynomial CNNs can be categorized as training-based methods at the network
level and approximation-based methods at the function level.

Training-based methods adopt low-degree (typically ≤ 3) polynomials (Brutzkus et al.,
2019; Chou et al., 2018; Gilad-Bachrach et al., 2016; Lou and Jiang, 2021; Lou et al., 2020;
Mishra et al., 2020; Park et al., 2022) to substitute non-arithmetic activation functions
and then train polynomial neural networks from scratch. CryptoNets (Gilad-Bachrach
et al., 2016), LoLa (Brutzkus et al., 2019) and Delphi (Mishra et al., 2020) employ a
simple square activation function x2. Faster CryptoNets (Chou et al., 2018) exploit more
accurate low-degree approximation 2−3x2 + 2−1x+ 2−2. SAFENet (Lou et al., 2020) adopts
a1x

3+a2x
2+a3x+a4 or b1x2+b2x+b3 and HEMET (Lou and Jiang, 2021) uses ax2+bx+c.

After low-degree polynomials are plugged into networks, like ResNets, both network weights
and polynomial coefficients are trained from scratch using stochastic gradient descent (SGD).
Although Delphi (Mishra et al., 2020) and SAFENet are based on secure MPC, they use
polynomials to substitute a fraction of the ReLUs to decrease online communication and
computation costs. However, polynomial layers often lead to unstable training since they
may dramatically amplify gradients during back-propagation. Such gradient explosion was
observed in prior works (Lou et al., 2020; Mishra et al., 2020).

As such, training-based methods suffer from a dilemma. On the one hand, since low-degree
polynomials cannot precisely approximate ReLUs, we have to train polynomial networks
from scratch and suffer from poor prediction accuracy. On the other hand, using a higher
degree polynomial approximation of ReLU leads to training instability due to exploding
gradients. In either case, training-based methods report lower accuracy than ReLU-based
networks, e.g. on CIFAR-10 HEMET (Lou and Jiang, 2021) and SAFENet (Lou et al.,
2020) report 83.7% and 88.9% Top-1 accuracy, respectively. Training-based methods can save
depth consumption due to low-degree polynomials and evaluate polynomial networks under
leveled HE. However, they cannot inherit pre-trained weights from ReLU-based networks
and report lower accuracy.

Approximation-based methods use high-degree polynomials to approximate the ReLU
function precisely. So, approximation-based methods do not need to train polynomial
networks from scratch and can inherit pre-trained weights from ReLU-based networks. One
representative polynomial approximation of ReLU is Minimax composite polynomials (Lee
et al., 2021a,c). By expressing ReLU as ReLU(x) = x · (0.5 + 0.5 · sgn(x)), a composite
polynomial is used to approximate sgn(x). The approximation of ReLU is defined as
AppReLU(x) = x ·(0.5+0.5 ·pα(x)), x ∈ [−1, 1]. pα(x) is the composite Minimax polynomial,
and α quantifies the precision of approximation |pα(x)− sgn(x)| ≤ 2−α. Given x ∈ [−B,B],
the scaled AppReLU is defined as B ·AppReLU(x/B), with a precision of B · 2−α. However,
high-degree polynomials consume many levels and require bootstrapping, leading to a high
computational burden.
FHE-MP-CNN (Lee et al., 2022a), the state-of-the-art method for secure inference of
CNNs under RNS-CKKS, adopts Minimax composite polynomials with a precision of α = 13,
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leading to prediction accuracy comparable to ResNets, thanks to the precise approximation
of Minimax composite polynomials. However, FHE-MP-CNN is still limited in four respects:

• The high-precision AppReLU only considers function-level approximation and neglects the
potential for end-to-end optimization of the complete network response.

• The same high-degree AppReLU replaces all ReLUs and consumes 47% levels. Thus, the
potential for using mixed-degree approximations across the different neural network layers
is not exploited.

• The ciphertext quickly exhausts levels and uses bootstrapping to refresh the zero-level
ciphertext. Bootstrapping operations consume 77% of inference time.

• The homomorphic evaluation architecture (middle row in Figure 2) lacks flexibility due to
the careful design of AppReLUs, cryptographic parameters, placement of bootstrapping
operations, and network architectures.

AutoFHE Motivation: To address the limitations of existing secure inference systems
of CNNs mentioned above, we propose AutoFHE drawing inspiration from the following
observations:

Observation 1

Mixed-degree layerwise polynomial networks can accelerate inference while preserv-
ing accuracy.

An intuitive solution to decrease computational burden is to assign mixed-degree layerwise
polynomials to different ReLUs across a network by assuming sensitivity to approximation
error is varying across different layers. SAFENet (Lou et al., 2020) demonstrates that mixed-
degree polynomials can take advantage of layerwise sensitivity. However, current mixed-degree
search frameworks are limited in two aspects. 1) Small search space: e.g. SAFENet only
provides two polynomials, degree 2 and degree 3. The small search space cannot include
all possible solutions from low-degree to high-degree polynomials. 2) Scalarization of
multiple objectives: a weighted sum is used to balance multiple objectives (Lou et al.,
2020; Mishra et al., 2020). However, such an approach requires a pre-defined preference
to weigh the different objectives. As such, they cannot generate diverse solutions to meet
different requirements in a single run.

Observation 2

Approximation-based methods can precisely approximate ReLU, while training-
based methods can jointly learn the polynomial coefficients and network weights
through gradient descent.

FHE-MP-CNN demonstrates the state-of-the-art accuracy of approximation-based meth-
ods. Training-based methods show that lower-degree polynomial networks are relatively
trainable. However, fine-tuning polynomial CNNs with high-degree polynomial
approximations of ReLU cannot match the accuracy of ReLU-based networks (Lee
et al., 2021c).
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Figure 3: Motivating AutoFHE. Left: depth consumption of AppReLUs based on ResNet-20
backbone on CIFAR-10. The purple line is when the same precision AppReLU is used in all
layers, while the red circles show 5000 randomly-sampled combinations of mixed-precision
layerwise AppReLUs. Middle: the number of bootstrapping operations where we show
trade-offs of the same AppReLU and mixed AppReLUs as in the top left panel. We also show
a multi-objective search result using mixed-precision layerwise AppReLUs and the trade-off
front of the proposed AutoFHE. Right: distributions of pre-activations (the maximum
absolute values) of ResNets on CIFAR-10 where the green line corresponds to B, the scale
value of AppReLU in FHE-MP-CNN.

We propose AutoFHE (Figure 1) to Automatically generate polynomial CNNs that span
a trade-off front of accuracy and inference latency under FHE. It is designed to address the
following questions and resolve the associated challenges:

• Question 1: Can we scale up the search space of layerwise polynomials to
incorporate both training- and approximation-based methods? Intuitively, we can
find better solutions in a large search space that includes both low-degree training-based
and high-degree approximation-based solutions. However, it brings Challenge 1: How
can we efficiently search for solutions in the huge search space?

• Question 2: Can we fine-tune mixed-degree polynomial networks to take
advantage of both function approximation and network learning ability? We
want to fine-tune such mixed-degree polynomial networks to improve accuracy after
discovering solutions in the search space. However, it brings Challenge 2: How can
we effectively prevent gradients from exploding when fine-tuning polynomial
networks, including low- and high-degree polynomials?

• Question 3: Can we trade off accuracy and inference time to generate solutions
toward the Pareto front to meet different customer requirements? Unlike existing
solutions that use a single objective, we design a multi-objective optimization framework to
generate solutions toward the Pareto front to satisfy different requirements. The bottleneck
of evaluating CNNs under FHE is bootstrapping. The number of bootstrapping operations
is a countable objective and can be used during the search. However, it brings Challenge
3: How can we automatically design homomorphic evaluation architectures for
every possible solution?

Case Study: We consider two plausible solutions to trade off accuracy and computational
burden of FHE-MP-CNN (Figure 3). (i) Same Precision AppReLU: We replace all
ReLU layers with AppReLU of a given precision. We can trade off (purple line in the left
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Figure 4: Trade-offs of AutoFHE versus FHE-MP-CNN on encrypted CIFAR-10 under the
RNS-CKKS FHE scheme.

panel) accuracy and depth consumption using AppReLU with different precision. However,
as the middle panel shows, these solutions (purple dots) do not necessarily translate to
a trade-off between accuracy and the number of bootstrapping operations due to many
wasted levels. All the trade-off solutions collapse to either 15 or 30 bootstrapping operations.
(ii) Mixed-Precision AppReLU: Each ReLU layer in the network can be replaced by
AppReLU of any precision. We randomly sample 5,000 combinations of mixed-precision
layerwise AppReLUs and show (red dots) their depth consumption and the number of
bootstrapping operations in the left and middle panels, respectively. Observe that layerwise
mixed-precision AppReLU leads to a better trade-off between accuracy and the number of
bootstrapping operations. However, FHE-MP-CNN neglects the layerwise sensitivity (range)
of ReLU pre-activations (the right panel shows the distribution of the layerwise maximum
absolute value of pre-activation) and uses AppReLU, which is optimized for a ReLU with a
large pre-activation range. Therefore, the trade-off of mixed-precision layerwise AppReLU
optimized by a multi-objective search algorithm NSGA-II (Deb et al., 2002) is still inferior
to AutoFHE by a significant margin.
Contributions: In this paper, we relax the design choices of existing secure inference
systems of CNNs under FHE and accelerate the inference of CNNs over homomorphically
encrypted data while maximizing performance. The central premise behind our approach is
to directly optimize the end-to-end function represented by the network instead of optimizing
the function represented by the activation function. This idea allows us to exploit the varying
sensitivity of activation function approximation across different layers in a network. Therefore,
theoretically, evolving layerwise polynomial approximations of ReLUs (EvoReLU) should
reduce the total multiplicative depth. We jointly search for placement of bootstrapping
(bottom row in Figure 2) and thus reduce the number of time-consuming bootstrapping
operations so we can finally minimize inference time on encrypted data. From a system
perspective, our contributions are three-fold:

1. Search Space: We design search space to include all possible polynomial networks to
enable us to discover better solutions. The search space size is 1079 ∼ 10230.
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2. Search Objective: We formulate the search problem as a bi-level multi-objective
optimization. We automatically generate diverse polynomial networks spanning the
trade-off front between accuracy and latency.

3. Search Algorithms: We propose a combination of search and training algorithms to
search over large search spaces efficiently, optimize coefficients of arbitrary polynomials,
and fine-tune mixed-degree polynomial networks. Specifically, we propose:

• MOCoEv, a multi-objective coevolutionary search algorithm to optimize high-dimensional
variables (114 ∼ 330) in large search space.

• R-CCDE, a gradient-free search algorithm to optimize coefficients of composite poly-
nomials by only using the difference between solutions.

• PAT, a fine-tuning algorithm that enables network weighs aware polynomial activations
and avoids exploding gradients.

Experimental results on encrypted CIFAR-10 and CIFAR-100 under RNS-CKKS show
that (Figure 4), compared to FHE-MP-CNN, the state-of-the-art approach, AutoFHE shows
better trade-offs between accuracy and inference time. On CIFAR-10, AutoFHE reduces
inference time (50 images on 50 threads) by up to 3,297 seconds (43%) while preserving the
accuracy (92.68%). Specifically, AutoFHE reduces inference time of ResNet-20, ResNet-32
(21 bootstrapping operations), and ResNet-56 by 25%, 23%, and 12%, respectively, while
improving accuracy up to 0.28%. AutoFHE also improves the accuracy of ResNet-32 (29
bootstrapping operations) on CIFAR-10 by 0.48% while accelerating inference by 382 seconds
(7%). On CIFAR-100, AutoFHE saves inference time by 972 seconds (17%) while preserving
accuracy.

2. Preliminaries

RNS-CKKS: The full residue number system (RNS) variant of Cheon-Kim-Kim-Song
(RNS-CKKS) (Cheon et al., 2017, 2018b) is a leveled homomorphic encryption (HE) scheme
for approximate arithmetic. Under RNS-CKKS, a ciphertext c ∈ R2

Qℓ
satisfies the decryption

circuit [⟨c, sk⟩]Qℓ
= m+ e, where ⟨·, ·⟩ is the dot product and [·]Q is the modular reduction

function. RQℓ
= ZQℓ

[X]/(XN + 1) is the residue cyclotomic polynomial ring. The modulus
is Qℓ =

∏ℓ
i=0 qℓ, where 0 ≤ ℓ ≤ L. ℓ is a non-negative integer referred to as level denotes the

capacity of homomorphic multiplications. sk is the secret key with Hamming weight h. m is
the original plaintext message, and e is a small error that provides security. A ciphertext has
N/2 slots to accommodate N/2 complex or real numbers. RNS-CKKS supports homomorphic
addition and multiplication:

Decrypt(c⊕ c′) = Decrypt(c) + Decrypt(c′) ≈ m+m′

Decrypt(c⊗ c′) = Decrypt(c)×Decrypt(c′) ≈ m×m′ (1)

Bootstrapping: Leveled HE only allows a finite number of homomorphic multiplications,
with each multiplication consuming one level due to rescaling. Once a ciphertext’s level
reaches zero, a bootstrapping operation is required to refresh it to a higher level and
allow more multiplications. The number of levels needed to evaluate a circuit is known
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as its depth. RNS-CKKS with bootstrapping (Cheon et al., 2018a) is an FHE scheme
that can evaluate circuits of arbitrary depth. It enables us to homomorphically evaluate
deep CNNs on encrypted data. Conceptually, bootstrapping homomorphically evaluates
the decryption circuit and raises the modulus from Q0 to QL by using the isomorphism
Rq0
∼= Rq0 ×Rq1 × · · · ×RqL (Bossuat et al., 2021). Practically, bootstrapping (Cheon et al.,

2018a) homomorphically evaluates modular reduction [·]Q by first approximating it by a scaled
sine function, which is further approximated through polynomials (Cheon et al., 2018a; Lee
et al., 2021b). Bootstrapping (Bossuat et al., 2021) has four stages: ModRaise, CoeffToSlot,
EvalMod, and SlotToCoeff. These operations involve a lot of homomorphic multiplications
and rotations, both of which are costly operations, especially the latter. The refreshed
ciphertext has level ℓ = L −K, where K levels are consumed by bootstrapping (Bossuat
et al., 2021) for polynomial approximation of modular reduction.
FHE-MP-CNN (Lee et al., 2022a) is the state-of-the-art framework for homomorphically
evaluating deep CNNs on encrypted data under RNS-CKKS with high accuracy. Its salient
features include 1) Compact Packing: All channels of a tensor are packed into a single
ciphertext. Furthermore, multiplexed parallel (MP) convolution was proposed to process the
ciphertext efficiently. 2) Homomorphic Evaluation Architecture: Bootstrapping operations
are placed after every Conv-BN (as shown in Figure 2), except for the first one, to refresh
zero-level ciphertexts. This hand-crafted homomorphic evaluation architecture for ResNets
is determined by choice of cryptographic parameters, the level consumption of operations,
and ResNet’s architecture. 3) AppReLU: It replaces all ReLUs with the same high-order
Minimax composite polynomial (Lee et al., 2021a,c) of degrees {15, 15, 27}. By noting that
ReLU(x) = x · (0.5 + 0.5 · sgn(x)), where sgn(x) is the sign function, the approximated
ReLU (AppReLU) is modeled as AppReLU(x) = x · (0.5 + 0.5 · pα(x)), x ∈ [−1, 1]. pα(x) is
the composite Minimax polynomial. The precision α is defined as |pα(x)− sgn(x)| ≤ 2−α.
AppReLU is expanded to arbitrary domains x ∈ [−B,B] of pre-activations in CNNs by
scaling it as B ·AppReLU(x/B). However, this reduces approximation precision to B · 2−α.
To estimate the maximum dynamic range B (40 for CIFAR-10 and 65 for CIFAR-100) of
ReLUs, FHE-MP-CNN evaluates the pre-trained network on the training dataset. FHE-MP-
CNN uses the same dynamic range B for all polynomials and neglects the uneven distribution
of pre-activations as shown in Figure 3. Explicitly accounting for this uneven distribution
allows us to use smaller B′ and α′ but with the same precision, i.e., B′ · 2−α′

= B · 2−α,
for B′ < B and α′ < α. 4) Cryptographic Parameters: FHE-MP-CNN sets N = 216,
L = 30 and Hamming weight h = 192. Please refer to (Lee et al., 2022a) for the detailed
implementation of FHE-MP-CNN and other parameters. These parameters provide 128-bits
of security (Cheon et al., 2019). 5) Depth Consumption: To reduce level consumption,
FHE-MP-CNN integrates scaling parameter B into Conv-BN. The multiplicative depth
consumption of Bootstrapping (i.e., K), AppReLU, Conv, DownSampling, AvgPool, FC, and
BN layers are 14, 14, 2, 1, 1, 1, 0, respectively. Statistically, when using FHE-MP-CNN to
homomorphically evaluate ResNet-18/32/44/56 on CIFAR-10 or CIFAR-100, AppReLUs
consume ∼ 47% of total levels, and bootstrapping operations consume ∼ 77% of inference
time.
Threat Model: In this paper, we assume the same threat model as FHE-MP-CNN. As
discussed in the MLaaS scenario, a customer generates a public key to encrypt the private
data under RNS-CKKS and then sends the ciphertext to an untrusted Cloud service provider.
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The Cloud uses neural networks to process the ciphertext without decryption, yielding an
encrypted result. The customer finally uses the secret key to decrypt the result. The Cloud
cannot learn any sensitive information from the customer’s data.

3. AutoFHE

Given a neural network f(ω0) with pre-trained weight ω0 and M ReLU layers, AutoFHE gen-
erates polynomial networks on a trade-off front by maximizing validation accuracy and
minimizing inference time. During the search, every solution has a triplet variable, the degree
vector of our polynomial approximations of ReLU, the corresponding coefficient vector, and
the network trainable weight {D,Λ,ω}. ω is initialized with ω0 and then fine-tuned on the
training dataset for only a few epochs. We will assign each solution with the minimization
objective o = {1− Acc,Boot}. 1− Acc is the validation error, and Boot is the number of
bootstrapping operations. A possible polynomial network is denoted as {D,Λ,ω} ⇒ o. Aut-
oFHE is a search-based system and comprises of 3.1 search space, 3.2 search objective
and 3.3 search algorithms.

3.1 Search Space

EvoReLU is a polynomial function used to replace non-arithmetic ReLU

y = EvoReLU(x) = x ·
(
0.5 + pd(x)

)
(2)

where x ∈ [−1, 1], y ∈ [0, 1]. The composite polynomial pd(x) is

pd(x) = (pdKK ◦ · · · ◦ p
dk
k ◦ · · · ◦ p

d1
1 )(x), 1 ≤ k ≤ K (3)

The composite polynomial pd(x) has K sub-polynomial functions and degree d =
∏K

k=1. This
structure for EvoReLU bears similarity to the Minimax composite polynomial in (Lee et al.,
2022a, 2021c). However, the objective for optimizing the coefficients is significantly different
in AutoFHE.
Representation: We represent the composite polynomial pd(x) by its degree vector d =
{di}dKi=1, di ∈ Z+, and each sub-polynomial pdkk (x) as a linear combination of Chebyshev
polynomials1 of degree dk, i.e.

pdkk (x) =
1

βk

dk∑
i=1

αiTi(x) (4)

where αi ∈ R and βk ∈ R. Ti(x) is the Chebyshev bases of the first kind, αi are the
coefficients for linear combination, and βk is a parameter to scale the output. The coefficients
αk = {αi}dki=1 control the polynomial’s shape, while βk controls its amplitude. A composite
polynomial with the degree vector d has learnable parameters:

λ = {α1, β1, · · · ,αk, βk, · · · ,αK , βK} (5)

1. AutoFHE is agnostic to the choice of polynomial bases and can use other ones like Hermite polynomials.
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Variable Option

# polynomials (K) 6
poly degree (dk) {0, 1, 3, 5, 7}
coefficients (Λ) R

Table 1: Search variables and options

Backbone #ReLUs Dimension of D Search Space Size

ResNet-20 19 114 1079

ResNet-32 31 186 10130

ResNet-44 43 258 10180

ResNet-56 55 330 10230

Table 2: Search space of AutoFHE for ResNet backbones.

A neural network with M ReLU layers needs M EvoReLU polynomial activations. D =
{d1,d2, · · · ,dM} is the degree vector of all EvoReLUs, the corresponding coefficient parame-
ters are Λ = {λ1,λ2, · · · ,λM}.
Homomorphic Evaluation Architecture: The ResNet architecture comprises two types
of connections, a chain, and a residual connection, as shown in Figure 2. To extend the
domain of EvoReLU from [−1, 1] to [−B,B] but avoid extra depth consumption for scaling,
we scale the plaintext weight and bias of BatchNorm by 1/B in advance for chain connections.
But for residual connections, we cannot integrate the scale 1/B into BatchNorm’s weight
and bias. In this case, we scale the ciphertext output of the residual connection by 1/B at
the expense of one level. Finally, we integrate B into coefficients of pdKK (x) to re-scale the
output of EvoReLU by B. Given the pre-activation x ∈ [−B,B], the scaled EvoReLU with
the degree d is parameterized by λ:

y = EvoReLU(x,λ;d) = x · (0.5 + pd(x)) (6)

where x ∈ [−B,B], y ∈ [0, B]. We estimate B values for layerwise EvoReLUs on the training
dataset. From Figure 2, FHE-MP-CNN places bootstrapping after every Conv-BN, while
AutoFHE will search for placement of bootstrapping operations by adjusting to different
depth consumption of layerwise EvoReLUs.
The Depth Consumption of EvoReLU is 1+

∑K
k=1⌈log2(dk+1)⌉ when using the Baby-Step

Giant-Step (BSGS) algorithm (Bossuat et al., 2021; Lee et al., 2021b) to evaluate pd(x).
Search Space: Our search space includes the number of sub-polynomials (K) in our
composite polynomial, the choice of degrees for each sub-polynomial (dk), and the coefficients
of the polynomials Λ. Table 1 shows the options for each of these variables. Note that choice
dk = 0 corresponds to an identity placeholder, so theoretically, the composite polynomial may
have fewer than K sub-polynomials. Furthermore, when the degree of (pdkk ◦ p

dk−1

k−1 )(x) is less
than or equal to 31 (maximum degree of a polynomial supported on RNS-CKKS (Lee et al.,
2021a,c)), we merge the two sub-polynomials into a single sub-polynomial pdkk (p

dk−1

k−1 )(x) with
degree dk · dk−1 ≤ 31 before computing its depth. This helps reduce the size of the search
space and leads to smoother exploration. Table 2 lists the number of ReLUs of our backbone
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Figure 5: AutoFHE search. The outer search algorithm is MOCoEv. Assume we maintain
N solutions during the search. We highlight two solutions in the illustration. We repeat the
iteration until m = M to finish one-generation evolution.

models and the corresponding dimension and size of search space for D. The extremely large
search space (1079 ∼ 10230) makes searching for solutions very challenging.

3.2 Search Objective

Multi-Objective Optimization: Given two solutions with minimization objectives o1 and
o2, we want to minimize o1 and o2. If o1,i ≤ o2,i, ∀i ∈ {1, 2} and o1,j < o2,j ,∃j ∈ {1, 2}, o1

dominates o2 (Deb et al., 2002; Srinivas and Deb, 1994). It means o1 is better than o2. It
is denoted as o1 ≺ o2. AutoFHE generates a class of solutions O = {oi}Ni=1 spanning the
trade-off front satisfying oi ⊀ oj and oj ⊀ oi, 1 ≤ i, j ≤ N , i ̸= j. The optimal O is called
Pareto front (Deb et al., 2002; Srinivas and Deb, 1994).
Search Objective: AutoFHE formulates the multi-objective search problem as a bi-level
multi-objective optimization

min
D

{1−Accval (f(ω
∗);D,Λ(D)) ,Boot(D)}

ω∗ = argmin
ω

Ltrain (f(ω);D,Λ(D))
(7)

where f(ω) is a neural network with M ReLU layers and the trainable network weight
ω. The degrees of layerwise EvoReLU’s D = {dm}Mm=1 is the upper-level variable, while
the network trainable weight ω is the lower-level variable. The outer multi-objective min-
imization formulation minD {1−Accval (ω

∗;D,Λ(D)) ,Boot(D)} for D is to maximize
the validation accuracy Accval as well as minimize the number of bootstrapping operations.
The coefficient vector Λ is a function of D. In Equation 7, Accval is the Top-1 accuracy on
a validation dataset val, Boot is the number of bootstrapping operations. To determine the
number of bootstrapping operations, we count the depth consumption of all EvoReLU’s to
determine when we need to call bootstrapping. By minimizing the number of bootstrapping
operations, we search for the placement of bootstrapping and minimize the wasted levels. For
example, consider that we have a ciphertext with a level equal to 2 but the next operation
consumes 10 levels. We must waste 2 levels and call bootstrapping to refresh the ciphertext
first. AutoFHE can minimize the wasted levels by adjusting the depth of EvoReLU. {Di,Λi}
has its corresponding network weight ωi that can compensate errors introduced by layerwise
EvoReLU {Di,Λi}. We initialize ωi with the weight ω0 from the pre-trained ReLU-based
network and then fine-tune the network f(ωi) to minimize the training loss Ltrain(ωi) on
the training dataset. In summary, the objective in Equation 7 guide the search algorithm
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to, i) explore layerwise EvoReLU, including its degrees and coefficients; 2) discover the
placement of bootstrapping to work well with EvoReLU; 3) trade off validation accuracy and
inference speed to return diverse polynomial networks. To optimize Equation 7, we propose
the following algorithms:

• MOCoEv is proposed to optimize the outer multi-objective
minD {1−Accval (f(ω

∗);D,Λ(D)) ,Boot(D)};

• R-CCDE is a gradient-free search algorithm to solve Λ(D);

• PAT is designed to fine-tune polynomial networks with EvoReLUs to minimize
Ltrain (f(ω);D,Λ(D)).

Search Overview: Figure 5 provides a systematic overview of AutoFHE search framework,
including MOCoEv, R-CCDE, and PAT. MOCoEv is the outer search algorithm to solve
the bi-level multi-objective optimization in Equation 7. The current trade-off front is
{Di,Λi,ωi} ⇒ oi, 1 ≤ i ≤ N . In Figure 5, we highlight two solutions {D1,Λ1,ω1} ⇒ o1

and {D2,Λ2,ω2} ⇒ o2. MOCoEV has a network-level crossover to combine two solutions
to generate two new solutions. We can exchange degrees and coefficients of corresponding
EvoReLU layers. However, we cannot inherit network weights ω1 and ω2 because they are
fine-tuned for the combinations {D1,Λ1} and {D2,Λ2}. So, {D′

1,Λ
′
1} and {D′

2,Λ
′
2} inherit

the network weight ω0 from the ReLU-based network. Then, the m-layer EvoReLU’s are
mutated to explore better polynomials locally. R-CCDE is a gradient-free function-level
search algorithm to optimize coefficients. Third, PAT is proposed to fine-tune networks with
mixed-precision high-degree polynomials. After we obtain {D′

1,Λ
′
1,ω

′
1} and {D′

2,Λ
′
2,ω

′
2},

we can estimate objectives o′
1 and o′

2, namely the accuracy and the number of bootstrapping
operations. Finally, we get the new trade-off front from {o}Ni=1 ∪ {o′

j}Nj=1. We repeat the
process until we update all EvoReLU layers, namely m = M . These M -successive iterations
are referred to as one generation.

3.3 Search Algorithms

3.3.1 MOCoEv

Motivation: Assuming we have N solutions: {Di,Λi,ωi} ⇒ oi, 1 ≤ i ≤ N , these solutions
span the trade-off front. MOCoEv is proposed to improve the current trade-off front to better
trade off the accuracy of polynomial networks and the inference time under the RNS-CKKS.
Intuitively, we can explore polynomials to improve the trade-off. Due to the the extremely
large search space (1079 ∼ 10230) of the high-dimensional discrete variable D (114 ∼ 330),
random search or evolutionary algorithms for low-dimensional problems are not efficient. To
efficiently solve the high-dimensional search problem, we adopt a divide-and-conquer strategy
called cooperative coevolution (Ma et al., 2018; Mei et al., 2016; Yang et al., 2008),
which decomposes the high-dimensional problem into multiple low-dimensional sub-problems.
Every time, we can mutate the m-th EvoReLU and keep other layers fixed. To prevent
local optimization, we introduce a network-level crossover so that current solutions can share
global information.
MOCoEv: The proposed Multi-Objective CoEvolutionary search algorithm is called
MOCoEv. Algorithm 1 details the implementation of the MOCoEv algorithm. MOCoEv
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Algorithm 1: MOCoEv
Input :Pre-trained Network f(ω0) including M ReLUs, number of solutions N ,

number of sub-polynomial K, number of generations T , training dataset
Train, mini-validation dataset Minival;

Output :Trade-off front {Di,Λi,ωi} ⇒ oi, 1 ≤ i ≤ N ;
Initial : {Di}Ni=1 ← LHS(N,M,K) ;

{Λi}Ni=1 ← R-CCDE({Di}Ni=1) ;
{ωi}Ni=1 ← PAT(f(ω0), {Di,Λi}Ni=1, Train) ;
{oi}Ni=1 ← Eval({Di,Λi,ωi}Ni=1, Minival) ;
{Di,Λi,ωi} ⇒ oi, 1 ≤ i ≤ N ;

for t← 1 to T do
for m← 1 to M do
{Dj ,Λj}Nj=1 ← Select({Di,Λi,oi}Ni=1) ;
{D′

j ,Λ
′
j}Nj=1 ← Crossover({Dj ,Λj}Nj=1) ;

{D′
j [:,m]}Nj=1 ← Mutate({D′

j [:,m]}Nj=1) ;
{Λ′

j [:,m]}Nj=1 ← R-CCDE({D′
j [:,m]}Nj=1) ;

{ω′
j}Nj=1 ← PAT(f(ω0), {D′

j ,Λ
′
j}Nj=1, Train) ;

{o′
j}Nj=1 ← Eval({D′

j ,Λ
′
j ,ω

′
j}Nj=1, Minival) ;{

D′
j ,Λ

′
j ,ω

′
j

}
⇒ o′

j , 1 ≤ j ≤ N ;

{oi}Ni=1 ← Pareto({oi}Ni=1 ∪ {o′
j}Nj=1) ;

{Di,Λi,ωi} ⇒ oi, 1 ≤ i ≤ N ;

takes as input a neural network f(ω0) with M ReLUs that will be replaced by EvoReLUs.
We set the number of solutions to N , the number of sub-functions of a composite polynomial
to K, and the number of generations to T . We randomly select a small subset from a training
dataset as the mini-validation dataset (Tan and Le, 2021). The training dataset is used
to fine-tune polynomial networks, and the mini-validation dataset is used to estimate the
accuracy of the polynomial networks.

In the t-th generation, it is composed of M iterations. In iteration m, 1 ≤ m ≤M , we
explore a better trade-off front by exploring the m-th layer EvoReLU and freezing other
layer’s EvoReLU. It is inspired by coevolution that we improve the trade-off front by solving
the the m-th layer EvoReLU optimization and keeping other layers fixed. Assuming the
current trade-off front {Di,Λi,ωi}i=1 ⇒ {oi}i=1, 1 ≤ i ≤ N , one iteration includes the
following steps (as shown in Figure 5):

1○ Selection: We randomly select N solutions from the current trade-off front to build a
mating set {Dj ,Λj}Nj=1.

2○ Crossover enables network-level information exchange. As shown in Figure 5, every
two solutions are combined into two new solutions. Given two solutions D1 and D2,
we mate them to obtain D′

1 and D′
2 where D′

1 = {bm : bm ∈D1 ∪D2, 1 ≤ m ≤M},
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Algorithm 2: R-CCDE

Input :Composite polynomial pd(x) = (pdKK ◦ p
dk−1

k−1 ◦ · · · ◦ p
d1
1 )(x) with parameters

λ = {α1, β1, · · · ,αk, βk, · · ·αK , βK}, target function q(x), number of
generations T , scaling decay γ ;

Output :Context vector λ∗ = (α∗
1, β

∗
1 , · · · ,α∗

k, β
∗
k, · · · ,α∗

K , β∗
K);

Initial :λ∗ ← LHS(
∑K

k=1 dk +K)

for t← 1 to T do
for k ← 1 to K do

α⋆
k ← argminαk

Lpd,q(αk|λ∗) s.t. αk|λ∗ = (α∗
1, β

∗
1 , · · · ,αk, · · · ,α∗

K , β∗
K);

λ∗ ← (α∗
1, β

∗
1 , · · · ,α⋆

k, · · · ,α∗
K , β∗

K);
β⋆
k ← argminβk

Lpd,q(βk|λ∗) + γ · βk2 s.t. βk|λ∗ =

(α∗
1, β

∗
1 , · · · , βk, · · · ,α∗

K , β∗
K);

λ∗ ← (α∗
1, β

∗
1 , · · · , β⋆

k, · · · ,α∗
K , β∗

K);
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Figure 6: Composite polynomial mutation. Top row: randomly replace a sub-polynomial;
middle row: randomly remove a sub-polynomial; bottom row: randomly insert a sub-
polynomial.

D′
2 = {bm : bm ∈ (D1 ∪D2)/D

′
1, 1 ≤ m ≤M}. D′

1 and D′
2 can inherit corresponding

coefficients from Λ1 and Λ2 because we exchange polynomials of the same layer.

3○ Mutation is a coevolutionary operation. We only explore the m-th layer EvoReLU’s
and fix other layers. We design three types of operators to mutate a composite
polynomial function. i) randomly replace one polynomial sub-function with a new
polynomial. ii) randomly remove a sub-function. iii) randomly insert a new polynomial.
Figure 6 shows how to mutate EvoReLU(x) = x(0.5 + (p3 ◦ p2 ◦ p1)(x)) to generate
new EvoReLU. We can randomly choose a sub-polynomial p2 and replace it with a new
sub-polynomial p′2. We can randomly remove a sub-polynomial, like p1, or randomly
insert a sub-polynomial, like p4;

4○ R-CCDE optimizes polynomial coefficients.

5○ PAT fine-tunes new solutions {D′
j ,Λ

′
j}Nj=1.
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6○ Evaluation: We can count the number of bootstrapping and evaluate {D′
j ,Λ

′
j ,ω

′
j}Nj=1

on the minival dataset to estimate accuracy. We have a set of new solutions
{
D′

j ,Λ
′
j ,ω

′
j

}
⇒

o′
j , 1 ≤ j ≤ N .

7○ Update: We obtain a new trade-off front from {oi}Ni=1 ∪ {o′
j}Nj=1. We apply nondomi-

nated sorting (Deb et al., 2002) to find trade-off fronts. These 2N solutions will be
categorized into multiple trade-off fronts. We retrain the first N solutions.

We repeat steps 1○→ 7○ until m = M , which is one generation in MOCoEv. When initializing
solutions, we randomly sample {Di}Ni=1 using the Latin hypercube sampling (LHS) method.

3.3.2 R-CCDE

Motivation: The EvoReLU in Equation 6 is a composite polynomial: y1 = pd11 (x|α1, β1), y2 =

pd22 (y1|α2, β2), · · · , y = pdKK (yK−1|αK , βK). The forward architecture of composite polyno-
mials, x 7→ y1 7→ y2 · · · 7→ yK−1 7→ y is suitable for coevolution and provides a natural
decomposition. We can sequentially adjust every sub-polynomial to push the output y
close to the target non-arithmetic function. Given the degree d, the learnable parameter
of EvoReLU λ = (α1, β1, · · · ,αK , βK) is grouped into {α1}, {β1}, · · · , {αK}, {βK}. The
coefficient α controls the shape of the sub-polynomial output, while the scaling parameter β
controls the amplitude. We sequentially update {αk} followed by βk, 1 ≤ k ≤ K. Because i)
sub-polynomials close to input will greatly affect the output; ii) it is easier to learn coefficients
by decoupling the amplitude from the coefficients.
Differentiable Evolution: The EvoReLU variables {αk}Nk=1 and {βk}Nk=1 are in the
continuous space. We adopt a simple yet effective search algorithm to optimize these
variables. Differentiable evolution (DE) (Rauf et al., 2021) by only using the difference
between solutions to optimize continuous variables. Given the following minimization problem
in the continuous space

x∗ = argmin
x

F (x) (8)

where x ∈ Rd and F is the minimization objective. DE maintains a set of solutions
X = {xi}Ni=1,xi ∈ Rd. The mutation, crossover, and selection of DE are defined as:

Mutation: v = xi + F · (xj − xk) , 1 ≤ i, j, k ≤ N

Crossover: u[t] =

{
v[t], U(0, 1) ≤ CR

xi[t], Otherwise
, 1 ≤ t ≤ d

Selection: u =

{
u, F(u) ≤ F(xi)

xi, Otherwise

(9)

where F ∈ R is the scaling factor, CR ∈ R is the crossover rate, and U(0, 1) is the uniform
distribution between 0 and 1. Equation 9 shows a simple strategy to update solutions by only
using difference. First, mutation updates xi with the scaled difference F · (xj − xk). Then,
we randomly select bits from v or xi to generate a new solution u. Finally, we evaluate F(u)
and use u to replace xi if F(u) ≤ F(xi). DE only uses difference and does not suffer from
gradient exploding. It maintains a set of solutions and is not initialization sensitive.
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R-CCDE: We propose Regularized Cooperative Coevolution Differentiable Evolution,
called R-CCDE, to search for parameters of EvoReLU(x,λ;d), namely λ = {αk, βk}Kk=1.
The scaling parameters {βk}Kk=1 are used to adjust the amplitude of sub-polynomials during
the search. After the search, {βk}Kk=1 will be used to scale {αk}Kk=1 and obtain coefficients
of polynomials. The decomposition makes the search easier by decoupling the shape and
amplitude of polynomials. We detail the implementation of R-CCDE in Algorithm 2. R-CCDE
takes as input a composite polynomial pd(x) = (pdKK ◦ p

dk−1

k−1 ◦ · · · ◦ p
d1
1 )(x) with parameters

λ = {α1, β1, · · ·αk, βk · · ·αK , βK}. Because EvoReLU is defined as y = EvoReLU(x) = x ·(
0.5 + pd(x)

)
in Equation 6, we set the target function q(x) = 0.5 ·sgn(x). We set the number

of generations and the scaling decay parameter to T and γ, respectively. The objective function
Lpd,q(·) is the ℓ1 distance between the composite polynomial pd(x) and the target function
q(x). R-CCDE maintains a context vector (Mei et al., 2016) λ∗ = (α∗

1, β
∗
1 , · · · ,α∗

K , β∗
K) as

the best solution so far. λ∗ is initialized via Latin hypercube sampling (LHS). In Algorithm 2,
αk and βk 1 ≤ k ≤ K are optimized using DE sequentially and alternatively. In generation
t, given the k-th position, we optimize αk as

α⋆
k = argmin

αk

Lpd,q(αk|λ∗)

s.t. αk|λ∗ = (α∗
1, β

∗
1 , · · ·αk, · · · ,α∗

K , β∗
K)

(10)

where αk is a variable, while other α’s and β’s are fixed. A candidate solution of αk is plugged
into λ∗. Then, we evaluate the candidate solution αk by evaluating Lpd,q (α∗

1, · · · ,αk, · · · , β∗
K).

We adopt DE to solve the single-objective optimization problem in the continuous space.
We maintain a set of candidate solutions of αk, namely X = {xi}Ni=1 ,xi ∈ Rdk . Mutation,
crossover, and selection defined in Equation 9 is applied to update solutions in X. Then, the
best solution in X is assigned to α⋆

k. We use α⋆
k to replace α∗

k in the context vector λ∗ to
update λ∗

λ∗ = (α∗
1, β

∗
1 , · · ·α⋆

k, · · · ,α∗
K , β∗

K) (11)

In summary, i){αk}Kk=1 and {βk}Kk=1 separately maintain their sets of solutions that are
optimized by DE; ii) the context vector λ∗ is not only the best solution so far. It allows
different variables to share information. When evolving {βk}Kk=1, the objective introduces a
regularization term

β⋆
k = argmin

βk

Lpd,q(βk|λ∗)︸ ︷︷ ︸
ℓ1 Distance

+ γ · βk2︸ ︷︷ ︸
Regularization

s.t. βk|λ∗ = (α∗
1, β

∗
1 , · · · , βk, · · · ,α∗

K , β∗
K)

(12)

where γ · β2
k is the regularization term and γ is the scaling decay parameter. Without

the regularization γ · β2
k, we observe {βk}Kk=1 prefers large numbers. Because pdkk (x) =

1
βk

∑dk
i=1 αiTi(x), large {βk}Kk=1 numbers can make the composite polynomial numerical

stable because the polynomial output is scaled to a small number. However, it is hard to
distinguish different solutions of {αk}Kk=1. By introducing the regularization term γ · β2

k , DE
prefers large numbers in earlier generations and gradually pushes βk to 1. Therefore, DE is
not biased toward solutions with large βk numbers.
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Figure 7: The 41-st EvoReLU of ResNet-56 backbone on CIFAR-10 with B = 39.74. Left:
depth=2 corresponding to 25-bootstrapping solution; middle: depth=7 corresponding to
39-bootstrapping solution; right: depth=13 corresponding to a 47-bootstrapping solution.

3.3.3 PAT

Motivation: Replacing ReLU with EvoReLU in pre-trained neural networks injects minor
approximation errors, which leads to performance loss. Fine-tuning can mitigate this
performance loss by allowing the learnable weights (e.g., convolution or fully connected) to
adapt to the approximation error. However, backpropagation through EvoReLU easily leads
to exploding gradients. Because backpropagating gradients may be exponentially amplified
due to a lot of composite polynomials. We note R-CCDE can precisely evolve coefficients of
EvoReLU in function level. In Figure 7, we show curves of the 41-st EvoReLU of ResNet-56
backbone on the CIFAR-10 dataset. We show three precision solutions corresponding to
25, 39, and 47 bootstrapping operations. These EvoReLU’s consumes 2, 7, and 13 levels.
The 7-level and 13-level solutions can precisely approximate ReLU, while the 2-level solution
is a quadratic function and relatively precisely approximates ReLU. If we use ReLU for
backpropagation, the gradient error is small, and we can avoid exploding gradients.
PAT: Thanks to the precise forward approximation of EvoReLU, we can use gradients
from the original non-arithmetic ReLU function for backpropagation, specifically, during
the forward pass, EvoReLU injects slight errors, which are captured by objective functions
like Cross-Entropy loss. During the backward pass, we bypass EvoReLU and use ReLU
to compute gradients to update the weights of the linear trainable layers. We refer to
this procedure as Polynomial-Aware Training (PAT). PAT is inspired by STE (Bengio
et al., 2013) and QAT (Jacob et al., 2018), which uses two different functions for forward-
and back-propagation. Given a polynomial network with EvoReLU {D,Λ}, we obtain
polynomial-aware weight by ω∗ = argminω Ltrain (f(ω);D,Λ(D)) in Equation 7. We
inherit pre-trained ω0 from the ReLU-based network to initialize ω. Ltrain is Cross-Entropy
loss on the training dataset. We fine-tune ω for a few epochs to get ω∗ compatible with
layerwise EvoReLU’s. The following pseudocode illustrates this procedure for a simple
example, EvoReLU(x) = x(0.5 + (p3 ◦ p2 ◦ p1)(x)). In the forward function, we first scale
the coefficients of p3 by B so that the output range of y is [0, B].

de f forward (x , B ) :
p3 = p3 ·B
y = p3(p2(p1(x)))
y = x(0.5 + y)
re turn y
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In the backward function, we compute the gradient ∂y/∂ReLU(x) instead of ∂y/∂EvoReLU(x)
to avoid exploding gradients.
de f backward (x , grad) :

y = ReLU(x)
dy = ∂y/∂x
grad = grad · dy
re turn grad

4. Experiments

Setup: We benchmark AutoFHE on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009).
Both datasets have 50,000 training and 10,000 validation images at a resolution of 32× 32.
CIFAR-10 has 10 classes, while CIFAR-100 includes 100 classes. The validation images are
treated as private data and used only for evaluating the final networks. We randomly select
5,120 images from the training split as a minival (Tan and Le, 2021) dataset to guide the
search process. The Top-1 accuracy on the minival dataset optimizes Equation 7. In addition,
PAT uses the training split to fine-tune polynomial networks. Finally, as our final result,
we report the Top-1 accuracy on the encrypted validation dataset under RNS-CKKS. To
evaluate AutoFHE under RNS-CKKS, we adopt the publicly available code of FHE-MP-CNN
and adapt it for inference with layerwise EvoReLU. During inference, we keep track of the
ciphertext levels and call the bootstrapping operation when the level reaches zero, thanks to
the optimal placement of bootstrapping operations found by AutoFHE. For a fair comparison
between AutoFHE and the baseline FHE-MP-CNN, we use the pre-trained network weights
provided by FHE-MP-CNN.
Hyperparameters: For MOCoEv, we use a set of 50 solutions and run it for 20 generations.
For mutation of MOCoEv, we replace a sub-polynomial, remove a sub-polynomial and insert
a sub-polynomial with probabilities 0.5, 0.4 and 0.1, respectively. For R-CCDE, we set the
search domain of α to [−5, 5] and that of β to [1, 5]. We use the set of 20 solutions for
optimizing β. For α, we set the number of solutions equal to 10× the number of variables.
We set the scaling decay to γ = 0.01 and the number of iterations to 200. For PAT, we
use a batch size of 512 and weight decay of 5× 10−3 and clip the gradients to 0.5. We use
learning rates of 5 × 10−4 for CIFAR-10 and 2 × 10−4 for CIFAR-100. During MOCoEV
search, we set the fine-tuning epoch to one. After the search is done, we fine-tune searched
polynomial networks for ten epochs. On one NVIDIA RTX A6000 GPU, the search process
for ResNet-20/32/44/56 on CIFAR-10 took 59 hours, 126 hours, 200 hours, 281 hours,
respectively. The search for ResNet-32 on CIFAR-100 took 140 hours.

4.1 AutoFHE Trade-Off Fronts

Figure 9 shows trade-off fronts found by AutoFHE on CIFAR-10 and CIFAR-100 for different
ResNet models. The trade-offs are between the Top-1 validation accuracy on plaintext
validation datasets and the number of bootstrapping operations required for the corresponding
homomorphic evaluation architecture. Please note we report accuracy on plaintext data
to show overall trade-off fronts discovered by AutoFHE. By optimizing the bi-level multi-
objective in Equation 7, AutoFHE adapts to the differing sensitivity of the activation layers
to approximation errors and reduces the number of levels required compared to using the
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Figure 9: AutoFHE Pareto trade-off fronts on ResNet backbones. We report the accuracy
on plaintext validation datasets and the number of bootstrapping operations. Left: ResNet-
20/32/44/56 on CIFAR-10; Right: ResNet-32 on CIFAR-100.

same high-degree AppReLU in all the layers. Thus, AutoFHE significantly reduces the
number of bootstrapping operations. For ResNet-32 on CIFAR-10, AutoFHE removes 10
bootstrapping operations (33.33%) compared to FHE-MP-CNN with the negligible accuracy
loss 0.08% compared to the original network with ReLUs. Lastly, AutoFHE provides a family
of solutions offering different trade-offs rather than a single solution, thus providing flexible
kinds of service to meet different requirements.

4.2 AutoFHE under RNS-CKKS

Due to the high computation cost of validating networks performance on encrypted data
under the RNS-CKKS, we select nine solutions for evaluation on a machine with AMD
EPYC 7H12 64-Core Processor and 1000 GB RAM. In Table 3, we evaluate three solutions for
ResNet-32 on both CIFAR-10 and CIFAR-100 and evaluate one solution for ResNet-20/-44/-
56. We estimate the inference time for 50 images on 50 CPU threads. Amortized inference
time is amortized runtime for each image. We report the Top-1 accuracy of AutoFHE on all
(10,000) encrypted validation images under the RNS-CKKS. We plot trade-off fronts on
CIFAR-10 of AutoFHE versus FHE-MP-CNN in Figure 4. Figure 8 shows trade-off fronts of
AutoFHE of ResNet-32 on encrypted CIFAR-10/-100.

We observe that, on CIFAR-10, AutoFHE provides significant acceleration while having
better accuracy or preserving accuracy. AutoFHE of ResNet-32 with 21 bootstrapping
operations has slightly better accuracy than the baseline of ResNet-44 and accelerates
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Dataset Backbone FHE-MP-CNN AutoFHE
Network Top-1 Boot Top-1∗(%) Inference Amortized Boot Top-1(%) Inference Amortized

CIFAR-10

ResNet-20 91.86 18 91.31 3,532s 71s 13 91.39 2,643s 53s

ResNet-32 92.80 30 92.40 5,768s 115s
20 92.25 4,201s 84s
21 92.68 4,435s 89s
29 92.88 5,386s 108s

ResNet-44 93.13 42 92.65 7,732s 155s 38 92.04 7,209s 144s

ResNet-56 93.49 54 93.07 9,837s 197s 47 93.27 8,684s 174s

CIFAR-100 ResNet-32 69.38 30 69.43 5,684s 114s
21 67.75 3,908s 78s
22 68.66 4,573s 91s
23 69.37 4,712s 94s

Table 3: AutoFHE under the RNS-CKKS scheme. Top-1∗ accuracy for FHE-MP-CNN, as
reported in (Lee et al., 2022a). The inference time for 50 images is evaluated on AMD
EPYC 7H12 64-core processor using 50 threads. Boldface denotes the best criterion on
a backbone network, like the best Top-1 accuracy and the least inference time; underline
denotes AutoFHE outperforms FHE-MP-CNN. AutoFHE even discovers two polynomial
CNNs of ResNet-32 showing better accuracy compared with FHE-MP-CNN’s ResNet-44
solution.

Dataset Backbone FHE-MP-CNN AutoFHE
Boot AppReLU Bootstrapping Inference Boot EvoReLU Bootstrapping Inference

CIFAR-10

ResNet-20 18 331± 13s 2, 651± 29s 3, 450± 40s 13 208± 4s 1,767± 10s 2, 626± 9s

ResNet-32 30 537± 16s 4, 309± 69s 5, 577± 96s
20 273± 5s 2,731± 34s 4, 136± 42s
21 293± 8s 2,907± 42s 4, 340± 53s
29 380± 8s 3,835± 41s 5, 270± 59s

ResNet-44 42 724± 23s 5, 850± 90s 7, 551± 117s 38 499± 12s 5,183± 49s 7, 112± 66s

ResNet-56 54 929± 22s 7, 363± 118s 9, 525± 155s 47 642± 14s 6,243± 68s 8543± 94s

CIFAR-100 ResNet-32 30 536± 24s 4, 236± 60s 5, 526± 86s
21 305± 8s 2,566± 30s 3, 852± 46s
22 338± 9s 3,012± 57s 4, 446± 69s
23 359± 9s 3,225± 23s 4, 660± 33s

Table 4: Average runtime of AppReLU/EvoReLU and bootstrapping operations. We report
the average runtime of operations of 50 images in Table 3. Inference time is the average
runtime of 50 threads that is a slightly different from inference time in Table 3 because of
multi-thread overhead. Bootstrapping operations dominate the inference latency in FHE-MP-
CNN. AutoFHE effectively accelerates inference by reducing the number of bootstrapping
operations.
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Figure 10: Depth consumption distribution of EvoReLUs of ResNet-56. Top: depth con-
sumption distributions of layerwise EvoReLUs of solutions spanning the trade-off front with
different bootstrapping consumption. Bottom: the distribution of scaling parameters (B) of
layerwise EvoReLUs. The green dashed lines show the depth consumption or B of AppReLUs
of FHE-MP-CNN.

inference by 3,297 seconds (43%). AutoFHE reduces inference time of ResNet-20, ResNet-
32 (21 bootstrapping operations) and ResNet-56 by 25%, 23% and 12% compared with
the corresponding solutions of FHE-MP-CNN while improving accuracy up to 0.28%.
AutoFHE with 29 bootstrapping operations improves accuracy of ResNet-32 by 0.48%
while accelerating inference by 382 seconds (7%). AutoFHE can achieve a Top-1 accuracy of
91.39% on encrypted CIFAR-10 under the RNS-CKKS at an amortized inference latency of
under one minute (53 seconds) per image, which brings us closer towards practically
realizing secure inference of deep CNNs under RNS-CKKS. On CIFAR-100, AutoFHE saves
inference time by 972 seconds (17%) while preserving the accuracy. The experiments prove
that AutoFHE can find trade-off fronts of accuracy and inference time. Furthermore, the
results validate our assumption that directly reducing the number of bootstrapping operations
can effectively accelerate inference speed.

We provide average runtime of different operations in FHE-MP-CNN and AutoFHE in
Table 4. From Table 4, we conclude:

• Bootstrapping dominates inference time (77%), while high-degree AppReLUs incurs high
consumption of bootstrapping operations but only consumes inference time (10%).

• AutoFHE can effectively accelerates CNN inference on RNS-CKKS by removing boot-
strapping operations. AutoFHE also slightly benefits from evaluating cheaper EvoReLU.
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• Bootstrapping still dominates inference time in AutoFHE. This will be even more prominent
when considering larger networks on more challenging datasets like ImageNet (Russakovsky
et al., 2015). Therefore, we believe that saving levels → saving bootstrapping is an
important and an exciting direction of future research.

4.3 AutoFHE Depth Consumption

To verify the layerwise assumption of AutoFHE, depth consumption distribution of Layerwise
EvoReLU for ResNet-56 with different bootstrapping operations are in shown Figure 10. We
make three observations that can guide designing polynomial neural networks under FHE.

Observation 1

Activation position affects depth consumption

Residual EvoReLUs consume more levels than chain EvoReLUs, suggesting that residual
ReLU layers have less tolerance to approximation errors

Observation 2

Normalization decreases depth consumption

Since pre-activations of chain EvoReLUs are normalized, they follow a tighter distribution
and need smaller scaling values. We can consider using more BN layers to design FHE-friendly
networks.

Observation 3

Output layer prefers low-degree polynomials

The last EvoReLU close to the output does not need high-degree polynomials. They are
close to the loss function and are better suited to learn polynomial-aware weights.

5. Conclusion

This paper introduces AutoFHE, a multi-objective search system for generating polynomial
networks under FHE. AutoFHE enables us to use pre-trained CNNs and provide different
service to customers. AutoFHE seeks to search and learn the end-to-end function represented
by the network instead of approximating each activation. We exploit layerwise polynomial
activations across different layers in a network and jointly search for placement of bootstrap-
ping operations for evaluation under RNS-CKKS. Experimental results over ResNets on
CIFAR-10 and CIFAR-100 indicate that AutoFHE can reduce the inference time by up to
3,297 seconds (43%) while preserving the accuracy. AutoFHE also improves the accuracy
by up to 0.48%. Although our focus in this paper is on ResNets, and consequently ReLU,
AutoFHE is a general-purpose algorithm that is agnostic to the network architecture or the
type of activation function.
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Figure 11: Evaluate AutoFHE over ResNet-18 on ImageNet.

A. AutoFHE on ImageNet

It is not practical to evaluate high-resolution images under the RNS-CKKS scheme due to the
extremely high memory footprint and computational complexity constraints. We evaluate
AutoFHE on plaintext ImageNe (Russakovsky et al., 2015) to demonstrate its efficacy on the
large-scale high-resolution dataset. We set the number of generations to 10, the size of the
minival dataset to 2,560, and the solution size to 30. Other hyper-parameters are as same as
CIFAR experiments. We turn off fine-tuning during the search and fine-tune the final result
for one epoch. The search experiment took 18 hours. We estimate accuracy on the plaintext
validation dataset and use depth consumption as the inference cost under the RNS-CKKS.
We adopt the Minimax polynomials with precision from 4 to 13 (Lee et al., 2021c) as our
baseline and set B = 100. Figure 11 shows trade-off fronts of AutoFHE and Minimax.
AutoFHE has 69.26% accuracy with a depth consumption of 91, while Minimax consumes
126 depth to have the same accuracy. AutoFHE can reduce 28% depth consumption. When
depth consumption is equal to 99, Minimax has an accuracy 14.71%. AutoFHE reports
accuracy 65.56% with the same depth consumption. This experiment demonstrates that
AutoFHE can effectively trade off the accuracy and the depth consumption on large-scale
high-resolution datasets.

B. Layerwise EvoReLUs of ResNet-56

27



1

25 29 32 34 36 39 40 41 42 44 45 47

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

Ev
oR

eL
U 

La
ye

r I
nd

ex

#Bootstrapping

Figure 12: EvoReLUs of ResNet-56 from layer 1 to 27.
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Figure 13: EvoReLUs of ResNet-56 from layer 28 to 55.
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