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Abstract
Circuit-based Private Set Intersection (circuit-PSI) enables

two parties, a client and a server, with their input sets X and
Y respectively, to securely compute a function f on the inter-
section X ∩Y , while keeping X ∩Y secret from both parties.
Although several computationally efficient circuit-PSI proto-
cols have been proposed recently, they most focus on the bal-
anced scenario where |X | is similar to |Y |. However, in many
realistic scenarios, a circuit-PSI protocol may be performed
in the unbalanced case where |X | is remarkably smaller than
|Y | (e.g., the client is a constrained device holding a small
set, while the server is a service provider holding a large set).
Directly applying existing protocols to this scenario will lead
to significant efficiency issues because the communication
complexity of the protocols scales at least linearly with the
size of the larger set, i.e., max(|X |, |Y |).

In this work, we put forth efficient constructions for un-
balanced circuit-PSI with sublinear communication complex-
ity in the size of the larger set. The main insight is that we
formalize unbalanced circuit-PSI as obliviously retrieving
values corresponding to keys from a set of key-value pairs.
To this end, we present a new functionality called Oblivious
Key-Value Retrieval (OKVR) and design the OKVR protocol
from a new notion called sparse Oblivious Key-Value Stores
(sparse OKVS). We conduct extensive experiments and the
results show that our constructions remarkably outperform
the state-of-the-art circuit-PSI schemes (EUROCRYPT’19,
PETs’22, CCS’22), i.e., 1.84∼ 48.86× communication im-
provement and 1.50 ∼ 39.81× faster computation. Very re-
cently, Son and Jeong (AsiaCCS’23) also present unbalanced
circuit-PSI protocols, and our constructions outperform them
by 1.18∼ 15.99× and 1.22∼ 10.44× in communication and
computation overhead, respectively, depending on set sizes
and network environments.

1 Introduction

Private Set Intersection (PSI) [19, 22, 31, 33, 41–43, 47, 50]
enables two parties, a client and a server, with their input

sets X and Y respectively, to compute the intersection X ∩Y
without revealing any extra information about the items not in
the intersection. Depending on the output, there are broadly
two PSI categories, plain PSI and circuit-based PSI (circuit-
PSI) [27]. Among them, circuit-PSI has gained considerable
attentions recently [10, 44, 50]. Compared to plain PSI which
directly outputs the plaintext of X ∩Y , circuit-PSI allows se-
curely computing a function f on the intersection and only
outputs the result f (X ∩Y ) without leaking X ∩Y , which
greatly broadens the range of applications for PSI. More for-
mally, for each x ∈ X , the two parties obtain secret shares of
b, where b = 1 if x ∈ X ∩Y and b = 0 otherwise. These shares
can further be used to securely compute any function using
generic 2-party secure computation protocols [25,56]. Recent
circuit-PSI protocols [6, 10, 44, 47, 50] are computationally
efficient and achieve linear communication complexity with
the set size of the two parties.

Despite these advantages, existing circuit-PSI protocols
mostly focus on the setting where the parties’ sets are of
similar size (i.e., the balanced setting). However, in many
realistic scenarios especially for client-server applications, a
circuit-PSI protocol requires to be executed in the unbalanced
setting, where the client often holds a small set |X |, and the
server holds a much larger set |Y |. For example, considering
private contact tracing for infectious diseases [9, 54], a client
wants to privately check if the collected tracing data matches
the traces of diagnosed patients, without revealing the private
tracing data to the server. This can be achieved by computing
the cardinality function on the set intersection [54] and only
the client learns the count of matching traces. In this case, the
server may have a set of several million items, which is much
larger than the client’s set with only hundreds of items.

Moreover, Google [28] employed a private application for
measuring ad conversion rates, namely the revenues from ad
viewers who later perform a related transaction. Here, a client
(e.g., a transaction data holder) has customers’ transaction
records, while a server (e.g., an ad company) holds the records
of customers viewing ads. This task can be done by first
intersecting identifiers who have seen the specific ad and
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those who have completed a transaction, and then computing
an aggregation function on the intersection. In this setting,
the two sets are highly unbalanced, because the number of
ad impressions is typically orders of magnitude higher than
the number of transactions. Further, these transaction and
ad viewing records are privacy sensitive, which may contain
personal interests, preferences, and even health conditions.
Obviously, there is a pressing need for such an unbalanced
circuit-PSI protocol.

However, there are no desirable techniques for unbalanced
circuit-PSI. Existing solutions either leak crucial information
about private sets or are expensive in terms of the communica-
tion overhead. On the one hand, some works proposed unbal-
anced PSI protocols [11, 12, 15, 31, 49] that also consider the
server’s set is much larger than the client’s. Nevertheless, it is
difficult to extend them to the unbalanced circuit-PSI setting,
since they inherently reveal the intersection in plaintext. On
the other hand, one can directly apply state-of-the-art circuit-
PSI protocols [6,10,44,47,50] to the unbalanced setting. How-
ever, these protocols are specifically designed for parties’ sets
of similar size, and hence lead to at least linear communica-
tion complexity on the larger set. This significantly damages
the overall performance, especially in bandwidth-constrained
network environments. Refer to Section 1.3 for more details.
The above discussion raises the following natural question:

Can we construct concretely efficient unbalanced circuit-PSI
protocols with sublinear communication in the size of the

larger set?

1.1 Our Contributions
In this paper, we make an affirmative answer to the above
question. Our contributions can be summarized as follows:

• We construct efficient unbalanced circuit-PSI protocols,
while the communication overhead scales sublinearly
with the size of the large set. Similar to previous works,
our protocols are secure against semi-honest adversaries.

• The core building block is a newly introduced function-
ality called Oblivious Key-Value Retrieval (OKVR). We
provide its construction built on a new notion, named
sparse Oblivious Key-Value Stores (sparse OKVS).

• We implement our protocols and the state-of-the-art
circuit-PSI protocols in a unified framework. The results
show that our protocols notably improve the communi-
cation and computation overhead. In particular, the com-
munication cost of our protocol is 1.84∼ 48.86× lower
and the running time is 1.50∼ 39.81× faster than these
protocols. Very recently, Son and Jeong [53] also present
unbalanced circuit-PSI protocols, and our constructions
outperform them by 1.18∼ 15.99× and 1.22∼ 10.44×
in communication and computation overhead, respec-
tively, depending on set sizes and network environments.

FUCPSISec. 5

FOKVRSec. 4 FEQ

Sparse OKVSSec. 3 FmpOPRF BatchPIR

Figure 1: Overview of our unbalanced circuit-PSI framework.
Rounded rectangles are contributions of this work.

1.2 Overview of Our Techniques
The main insight of our framework is that unbalanced circuit-
PSI can be formalized as obliviously retrieving the value
corresponding to a key from a key-value store1 followed by
an equality test. We explain this insight below. For simplicity,
we assume the client’s set contains only a single element
x and the server’s set is Y = {y1, . . . ,yn}. Specifically, the
server first constructs a key-value store for key-value pairs
{(y1,r), . . . ,(yn,r)}, where each set item yi is viewed as a key
and the corresponding value is a random r. The client then
takes x as the query key and obliviously retrieves a value r∗

from the server, which should satisfy r∗ = r if x ∈ Y and r∗ is
uniformly random otherwise. Finally, the unbalanced circuit-
PSI evaluation is completed by computing a secret-shared
output of a private equality test on r∗ and r. To achieve the
fully-fledged construction based on the above insight, we take
three intermediate steps in Figure 1, and overview them in a
bottom-up manner.

1. We introduce a new notion called sparse Oblivious Key-
Value Stores (sparse OKVS), which encodes key-value
pairs into a compact representation for efficient retrieval.
We identify efficient instanstiations that fall within this
sparse OKVS abstraction.

2. We present a new functionality called Oblivious Key-
Value Retrieval (OKVR). This is used to obliviously
retrieve the values corresponding to keys from a key-
value store. We construct an efficient OKVR protocol
crucially utilizing the property of sparse OKVS.

3. We construct fully-fledged unbalanced circuit-PSI pro-
tocols with sublinear communication complexity in the
size of the larger set. The main building block is a spe-
cialized padding-free variant of OKVR, which addresses
an efficiency issue caused by widely used hash-to-bin
techniques in Circuit-PSI.

Below, we give more technical details to illustrate the above
three intermediate steps.

1A key-value store for K ×V is a data structure that represents a desired
mapping ki→ vi, where (ki,vi) ∈K ×V .
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Retrieving key-value pairs efficiently. The primary goal
of our framework is to efficiently and obliviously retrieve key-
value pairs. Thus, the starting point is to convert the server’s
key-value pairs into a compact representation that supports ef-
ficient retrieval. This functionality can be achieved by Oblivi-
ous Key-Value Stores (OKVS) [22,42]. However, the retrieval
efficiency can not be well guaranteed. Specifically, OKVS
consists of two algorithms (Encode,Decode). Encode takes
a set of key-value pairs {(ki,vi)}i∈[n] as input and returns a
vector D. Decode takes D and any key k as input, and gives
the output that is the corresponding vi if k is some ki used
to generate D. In our framework, Decode corresponds to the
retrieval procedure, which will be implemented obliviously.
Unfortunately, in many instances of OKVS (e.g., polynomial-
and random matrix-based solutions [22,42]), Decode requires
accessing all positions of the vector D, which will cause a
large retrieval overhead in our oblivious instantiations. The
main problem can be attributed to the lack of explicit require-
ments for decoding efficiency in existing OKVS.

We present a new OKVS notion, called sparse OKVS, to
enable efficient decoding by accessing a constant number of
positions of the encoded vector. The definition is similar to
the original OKVS, except that the output D of Encode can
be structured as D0∥D1 where |D0| = ω(|D1|), and Decode
only accesses a constant number of elements in large D0 and
an arbitrary number of elements in small D1. Hence, we call
D0 the sparse part and D1 the dense part. Later, we will make
the oblivious retrieval on D1 almost for free. Note that access-
ing a constant number of elements is a crucial property for
achieving efficient key-value retrievals. We identify existing
constructions that fall within the abstraction of sparse OKVS,
such as Garbled Cuckoo Tables (GCT) [22, 42].

Retrieving key-value pairs obliviously. With the above ef-
ficient retrieval strategy, the next goal is to enable the client to
obliviously retrieve the server’s key-value pairs, while neither
party should learn any extra information. In particular, the
server should not learn which value was retrieved, while the
client should not learn other key-value pairs in the server’s set.
We formulate this goal as a new functionality called Oblivi-
ous Key-Value Retrieval (OKVR). In OKVR, the server has a
large set of key-value pairs L = {(k1,v1), . . . ,(kn,vn)} and the
client holds a small query set Q = {q1, . . . ,qt}, where n≫ t.
For each qi ∈ Q, the client will obtain zi with zi = v j if qi
is some k j and (k j,v j) ∈ L, and a uniformly random value
otherwise.

Below, we introduce an efficient construction for OKVR
from sparse OKVS, which achieves sublinear communication
cost in the size of the server’s large set. The core idea is that
the server first executes sparse OKVS to encode the key-value
pairs into D0∥D1. Then, the client invokes Private Informa-
tion Retrieval (PIR)2 [5,37–39] to obliviously retrieve desired
items of D0∥D1 that are used to reconstruct the correspond-

2The communication complexity of PIR is sublinear to database size.

ing value of the query qi. However, this solution requires a
large number of PIR queries on the dense part D1. To solve
this efficiency issue, we present a hybrid PIR strategy ex-
ploiting the sparsity property of sparse OKVS. To retrieve
the desired items in D0∥D1, the two parties invoke PIR only
on D0, and the server directly sends D1 to the client due to
its small size. This requires retrieving a constant number of
items on D0 with PIR, while the client locally retrieves a large
number of items in D1 almost for free. Given the requirement
of multiple retrievals at once, we can further improve the
PIR efficiency by utilizing recent BatchPIR schemes [5, 39]
that achieve concretely low communication and computa-
tion overhead when performing batch retrievals. Besides, a
privacy issue about the server’s key-value pairs should be
addressed, because PIR can not protect the privacy of the
server’s database D0 in PIR and even worse D1 is directly
leaked. We fix it by first invoking an Oblivious Pseudoran-
dom Function (OPRF) [21], which gives the server a PRF
key k, and then computing D0∥D1 on PRF-masked key-value
pairs, i.e., {(k1,v1 +F(k,k1), . . . ,(kn,vn +F(k,kn))}. After
PIR, the client can only de-mask the retrieved values using
F(k,qi) obtained from OPRF.

Constructing fully-fledged unbalanced circuit-PSI. We
first give a basic solution for unbalanced circuit-PSI from
OVKR. To construct efficient circuit-PSI protocols [10, 44],
hash-to-bin techniques are employed to reduce the computa-
tion cost. Specifically, the client uses Cuckoo hashing [40] to
map the set X of size-t into a table TX of size m = (1+ ε) · t,
where ε > 0 is a constant, such that each bin of TX contains
at most one item. The server maps its items in Y to a table
TY of size m using simple hashing, in which each bin may
contain multiple items. After that, the client has to hide the
mapped positions by padding dummy points in empty bins of
TX [43, 44]. Since both parties use the same hash functions,
our scheme only requires checking whether the item placed in
a bin by the client is among the items placed in this bin by the
server. This is achieved by invoking the OKVR functionality,
where the client inputs TX and the server inputs {Pi}i∈[m] with
Pi := {(y′,ri)} for all y′ ∈ TY [i] and a random ri. Finally, the
unbalanced circuit-PSI evaluation is completed by invoking a
private equality test (EQ) [10] after OKVR.

However, these dummy points incur extra overhead of PIR
queries in the OKVR procedure, which dominates the over-
head of our unbalanced circuit-PSI protocol. To address this
issue, we propose a specialized padding-free OKVR solution
such that the client only inputs the key set of size t rather than
(1+ε) · t. The insight is that before PIR queries, the client has
known that these dummy points are not in the intersection,
and hence random values will be obtained according to the
functionality of OKVR. Recall that OKVR outputs a random
value when a query is not in the server’s key set. Therefore,
our padding-free OKVR protocol only invokes OKVR on the
bins of TX that the elements of X are mapped into and samples
uniformly random values for the dummy points.
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1.3 Related Works

We describe existing balanced circuit-PSI protocols as well as
related techniques in the unbalanced setting, and discuss the
essential differences between these works and our protocols.

Circuit-PSI. Huang et al. [27] introduced the first circuit-
PSI protocol. Their protocol entirely relies on generic se-
cure computation techniques, i.e., garbled circuits [56], and
employs optimized sort-compare-shuffle circuits to reduce
the evaluated circuit size. This optimized circuit computes
O(n logn) comparisons, where n is the set size. Following
this, several subsequent works [14,43,45] aimed to reduce the
number of comparisons and hence optimized asymptotic com-
putation and communication complexity. Pinkas et al. [44]
achieved the first circuit-PSI protocol with linear communica-
tion complexity. The main technical construction is a novel
batch Oblivious Programmable Pseudorandom Function (OP-
PRF) [34]. Similar to an oblivious PRF that provides the
sender with a key of PRF and the receiver with the outputs of
the PRF on points of his choice, an OPPRF enables the sender
to additionally send the receiver a hint that can program the
PRF to output specific values on certain input points privately
chosen by the sender. A main bottleneck of this work is that
the computation complexity of their protocol is super-linear
in the size of the server’s set [10,44]. This is caused by the ex-
pensive polynomial interpolation in their OPPRF construction.
As shown in recent works [6, 32, 47, 50], a desired solution to
address this problem is leveraging state-of-the-art OKVS such
as Garbled Cuckoo Tables (GCT) [22] that achieves linear
computation complexity. Chandran et al. [10] also proposed
specialized circuit-PSI protocols with both linear computation
and communication complexity. The main technique is a new
primitive called relaxed batch OPPRF. Moreover, Chandran et
al. [10] and Han et al. [26] also presented specialized equality
test protocols to further improve the concrete overhead of
circuit-PSI.

A potential limitation of the above circuit-PSI approaches
is the communication complexity, which scales at least lin-
early with the size of the two parties’ sets. Thus, directly
applying these protocols to the unbalanced setting will lead
to significant communication efficiency issues.

Unbalanced PSI-related works. There are some related
PSI protocols in the unbalanced setting. We discuss the main
differences between these works and ours. Several works
proposed several computation and communication efficient
schemes about unbalanced PSI [12, 15, 31, 49] and labeled
PSI [11,15] from fully homomorphic encryption (FHE). How-
ever, it is difficult to extend them to our circuit-PSI setting
because they focus on directly outputting the intersection to
the client. Further, the work of labeled PSI [11] also theoreti-
cally discussed the possibility of extending their protocol to
unbalanced circuit-PSI but without concrete constructions. Af-
ter that Lepoint et al. [35] proposed an unbalanced private join
and compute (PJC) scheme for the inner product and achieved

sublinear communication cost in the size of the larger set. It
focuses on computing the inner product of associated val-
ues in the intersection and also illustrates how to extend to
compute arbitrary functions. Their construction is based on
(garbled) Bloom filters [7, 18], which encode n items into a
vector of length O(λn) with the statistical security parame-
ter λ. However, despite achieving sublinear communication,
this leads to the communication and computation complexity
additionally depending on λ. In comparison, our unbalanced
circuit-PSI protocols can achieve a λ× improvement on both
the computation and communication overhead thanks to our
concretely and asymptotically efficient OKVR protocols.

Very recently, Son and Jeong [53] provided two concrete
constructions to instantiate the theoretical extension from la-
beled PSI to unbalanced circuit-PSI [11]. However, their con-
structions have a significant trade-off between communication
and computation due to balancing the expensive homomor-
phic multiplication and the size of FHE ciphertexts. Moreover,
their protocols are limited to relatively large client’s set sizes,
resulting in almost no overhead savings as the set size de-
creases. As shown in Section 6.2, our protocols remarkably
outperform them in both computation and communication
costs (up to 15.99× and 10.44×, respectively), especially in
the extremely unbalanced setting.

2 Preliminaries

2.1 Notations

We denote the two parties as client C and server S . We use
κ and λ to denote the computational and statistical security
parameters, respectively. For two distributions X and Y , we
write X ≈c Y and X ≈s Y if X and Y are computationally
and statistically indistinguishable, respectively. We use [n]
to denote the set {1,2, . . . ,n} and D[i] to represent the i-th
element of a vector D. By a←A, we denote that a is randomly
selected from the set A. a← A(x) denotes that a is the output
of the randomized algorithm A on input x, and a := b denotes
that a is assigned by b. ⟨x,y⟩ denotes the inner product of x
and y. ⟨x⟩B0 and ⟨x⟩B1 denote Boolean shares of x. 1{x = y}
outputs 1 if x = y and 0 otherwise.

2.2 Threat Model

Similar to prior circuit-PSI schemes [10,44,47,50,53], in this
work, we consider static semi-honest probabilistic polynomial-
time (PPT) adversaries. Namely, a PPT adversary A passively
corrupts either the client C or the server S at the beginning of
the protocol and honestly follows the protocol specification.
We use the standard simulation-based security definition for
two-party computation [24]. Like these previous works, our
construction invokes multiple sub-protocols, and we use the
hybrid model to describe them. By convention, a protocol
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invoking a functionality F is referred to as the F -hybrid
model. We give the formal security definition as follows.

Definition 1. Let viewΠ
C (x,y) and viewΠ

S (x,y) be the views
(including input, random tape, and all received messages) of
C and S in a protocol Π, respectively, where x is the input of
C and y is the input of S . Let out(x,y) be the protocol’s output
of both parties and F (x,y) be the functionality’s output. Π

is said to securely compute a functionality F in the semi-
honest model if for every PPT adversary A there exists PPT
simulators SimC and SimS such that for all inputs x and y,

{viewΠ
C (x,y),out(x,y)} ≈c {SimC (x,FC (x,y)),F (x,y)},

{viewΠ
S (x,y),out(x,y)} ≈c {SimS (x,FS (x,y)),F (x,y)}.

(1)

2.3 Oblivious Key-Value Stores
A key-value store [22,42] is simply a data structure that maps
a set of keys to the corresponding values. The definition is as
follows:

Definition 2. A Key-Value Store (KVS) is parameterized by a
key space K , a value space V , a set of randomized functions
H, input length n and output length m, and consists of two
algorithms:

• EncodeH : on input key-value pairs {(ki,vi)}i∈[n] ∈ (K ×
V )n, outputs an object D ∈ V m (or an error indicator
⊥ with statistically small probability).

• DecodeH : on input D ∈ V m and a key k ∈K , outputs a
value v ∈ V .

Correctness. A KVS is correct if, for all L ∈ (K ×V )n

with distinct keys such that EncodeH(L) ̸=⊥, it holds that
DecodeH(EncodeH(L),k) = v, where (k,v) ∈ L.

Obliviousness [22]. A KVS is an Oblivious KVS (OKVS)
if, for all distinct {k0

1, . . . ,k
0
n} ∈ K n and {k1

1, . . . ,k
1
n} ∈ K n,

EncodeH does not output ⊥ on {k0
1, . . . ,k

0
n} or {k1

1, . . . ,k
1
n},

and then

{EncodeH({(k0
1,v1), . . . ,(k0

n,vn)}) | vi← V for i ∈ [n]} ≈s

{EncodeH({(k1
1,v1), . . . ,(k1

n,vn)}) | vi← V for i ∈ [n]}.
(2)

Double obliviousness [47, 50]. An OKVS is doubly
oblivious if, for all distinct {k1, . . . ,kn} ∈ K n and n val-
ues v1, . . . ,vn each drawn uniformly at random from V
such that EncodeH does not output ⊥ for {k1, . . . ,kn},
EncodeH({(k1,v1), . . . ,(kn,vn)}) is statistically indistinguish-
able from an uniformly random element in V m. Note that
double obliviousness directly implies obliviousness [6, 47].

Binary OKVS [22]. An OKVS is binary if, for any k,
DecodeH(D,k) can be expressed as a binary linear combina-
tion of D, i.e., DecodeH(D,k) := ⟨D,h(k)⟩ where h : K →
{0,1}m is some public function defined by H. In this work,
we restrict ourselves to binary OKVS schemes.

Functionality FmpOPRF

Parameters: A PRF F : {0,1}κ×{0,1}ℓ→{0,1}ℓ.
Functionality:

1. Wait for input {x1, . . . ,xn} ∈ ({0,1}ℓ)n from the re-
ceiver.

2. Wait for input k ∈ {0,1}κ from the sender.
3. Give {F(k,x1), . . . ,F(k,xn)} to the receiver.

Figure 2: Ideal functionality for multi-point OPRF

2.4 Batch Private Information Retrieval
In a Batch Private Information Retrieval (BatchPIR) scheme
[5, 13, 29, 36, 39], the client wants to privately download a
batch of b entries from the server’s dataset D of size n. A
BatchPIR consists of three routines, all taking the computa-
tional security parameter κ as an implicit input:

• Query({i1, . . . , ib})→ (qu,st): on input a set of distinct
indexes {i1, . . . , ib} ∈ ([n])b, outputs a query qu and a
private state st including the index set.

• Response(D,qu)→ res: on input the database D and the
query qu, outputs a response res.

• Extract(st,res) → {D[i1], . . . ,D[ib]}: given the state
st and the response res, outputs a batch of entries
{D[i1], . . . ,D[ib]}.

A BatchPIR protocol should satisfy the following proper-
ties:

Correctness. A BatchPIR is correct if for any dataset D
and all distinct inputs I = {i1, . . . , ib}, it holds that

Extract(st,Response(D,qu)) = D[i1], . . . ,D[ib], (3)

where (st,qu)← Query(I).
Client query privacy. The client’s query should reveal no

information about the query indexes. Formally, a BatchPIR
scheme satisfies client query privacy if, for all PPT adversaries
A and all distinct batch query sets I1, I2 with |I1|= |I2|,

Pr[A(qu) = 1 | (st,qu)← Query(I1)]

−Pr[A(qu) = 1 | (st,qu)← Query(I2)]≤ negl(κ).
(4)

Note that (Batch)PIR does not aim to protect the privacy of
the server’s dataset D [5].

2.5 Multi-point Oblivious Pseudorandom
Function

An Oblivious Pseudorandom Function (OPRF) [21] is a proto-
col involving two parties, i.e., the sender and the receiver. The
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Functionality FEQ

Parameters: Client C and server S .

Functionality:
1. Wait for input x ∈ {0,1}ℓ from C .
2. Wait for input y ∈ {0,1}ℓ from S .
3. Sample ⟨b⟩B0 , ⟨b⟩B1 uniformly at random from {0,1}

such that b = 1{x = y}.
4. Return ⟨b⟩B0 , ⟨b⟩B1 to C and S , respectively.

Figure 3: Ideal functionality for private equality test

sender inputs the key k∈ {0,1}κ of a PRF F and obtains noth-
ing, while the receiver takes x ∈ {0,1}ℓ as input and obtains
F(k,x) ∈ {0,1}ℓ. In a multi-point OPRF (mpOPRF) [30], the
receiver takes as input {x1, . . . ,xn} ∈ ({0,1}ℓ)n rather than a
single point and obtains {F(k,x1), . . . ,F(k,xn)} ∈ ({0,1}ℓ)n.
The mpOPRF functionality is shown in Figure 2.

2.6 Secret Sharing and Equality Test

Our construction uses 2-out-of-2 boolean secret sharing tech-
niques [52]. The boolean shares of x ∈ {0,1} are ⟨x⟩B0 and
⟨x⟩B1 , held by the client C and the server S respectively, satis-
fying x = ⟨x⟩B0 ⊕⟨x⟩B1 . In our protocols, ⟨x⟩B denotes that C
and S hold boolean shares of x. Our construction also invokes
a private equality test, which takes as input two ℓ-bit values
x,y and outputs the boolean shares of b, where b := 1{x = y}.
We present the functionality in Figure 3. We use the state-of-
the-art construction [10] to instantiate this functionality.

2.7 Cuckoo Hashing

Cuckoo hashing [40] uses α random hash functions
h1, . . . ,hα : {0,1}∗ → [m] to map n elements into m bins,
where m = (1+ ε) ·n with the constant ε > 0. The mapping
procedure is as follows. An element x is inserted into the bin
hi(x), if this bin is empty for some i∈ [α]. Otherwise, we pick
a random i ∈ [α], insert x in hi(x), evict the item currently in
hi(x) and recursively insert the evicted item. The recursion
proceeds until no more evictions are necessary or a threshold
number of re-allocations are done. If the recursion stops for
the latter reason, it is considered a failure event, meaning there
exists at least an element that is not mapped to any bins. Some
variants of Cuckoo hashing maintain a set called the stash, to
store such elements. Stash-less Cuckoo hashing is where no
special stash is maintained. In this work, we only leverage
stash-less Cuckoo hashing.

3 Sparse Oblivious Key-Value Stores

3.1 Definition
We present a new notion called sparse Oblivious Key-Value
Stores (sparse OKVS), which adds a sparsity property on
OKVS introduced in Section 2.3. A formal definition is given
as follows.

Definition 3. An OKVS is sparse if (1) the output D of
EncodeH can be structured as D = D0∥D1 with |D0| ≫
|D1|, and (2) for any k,DecodeH(D,k) := ⟨l(k)∥r(k),D0∥D1⟩,
where two mappings l,r are defined by H such that l : K →
{0,1}|D0| outputs a sparse binary vector with a constant
weight α and r : K →{0,1}|D1| outputs a dense binary vector.

In other words, the sparsity property allows Decode to only
access a constant number of elements in large D0 and an arbi-
trary number of elements in small D1. Thus, we refer D0 and
D1 to the sparse and dense parts, respectively. Besides, the cor-
rectness and (double) obliviousness properties follow those
of OKVS in Section 2.3. For convenience in our construc-
tion, we use α mappings {li : K → [|D0|]}i∈[α] to equivalently
represent the mapping l : K →{0,1}|D0|, namely the output
of {li}i∈[α] are α non-zero positions of the mapping l’s out-
put. We emphasize that the sparsity property latter will be
importantly utilized to facilitate the efficiency of our oblivious
key-value retrieval constructions in Section 4.

3.2 Instantiation
Before giving instantiations that fall within our definition of
sparse OKVS, we first note that many recent instances of
OKVS are not sparse OKVS. Counterexamples include the
ones based on polynomials or random matrices [22, 42], as
Decode in these constructions requires accessing all positions
of the output of Encode. Besides, although RB-OKVS [6]
and Garbled Bloom Filter (GBF) [18] satisfy the definition
of sparse OKVS, they access O(λ) positions of the Encode’s
output. This is concretely inefficient in our following con-
structions.

In this work, we instantiate sparse OKVS using Garbled
Cuckoo Table (GCT) [22, 42]. In a GCT, a set of n key-
value pairs is encoded into a vector D0∥D1, where the sparse
part D0 is of size s = O(n) and the dense part D1 has very
few d = λ+O(logn) items. Generally speaking, for a set
of key-value pairs L = {(k1,v1), . . . ,(kn,vn)}, the encoding
algorithm constructs a matrix A based on the values of the
keys k1, . . . ,kn, where the i-th row of A equals l(k)∥r(k) for
two mappings l : {0,1}∗ → {0,1}s with constant weight-α
output and r : {0,1}∗→{0,1}d . Here, l can be represented by
{li : {0,1}∗→ [s]}i∈[α], where α is a small constant (e.g., 2 or
3). Namely, l(k) is 1 only in α positions, i.e., l1(k), . . . , lα(k).
Thus, it holds the sparsity property as defined in the above.
The output D0∥D1 satisfies that A · (D0∥D1)

T = (v1, . . . ,vn).
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Functionality FOKVR

Parameters: Client C and server S . The input sizes of C
and S are t and n, respectively, where n≫ t. The output
size of C is t. The key space K and the value space V .

Functionality:
1. Wait for input a set of keys Q = {q1, . . . ,qt} ∈ K t

from C .
2. Wait for input a set of key-value pairs L =
{(k1,v1), . . . ,(kn,vn)} ∈ (K ×V )n from S .

3. Output Z := {z1, . . . ,zt} ∈ V t to C , where zi = v j
if qi = k j and (k j,v j) ∈ L, otherwise zi is uniformly
sampled from V .

Figure 4: Ideal functionality for oblivious key-value retrieval

To address this equation, there are several novel methods
such as Cuckoo graph strategies [22, 42] and triangulation-
based techniques [47]. We refer the interested readers to their
works [22, 42, 47].

4 Oblivious Key-Value Retrieval

4.1 Definition

We propose a new functionality called Oblivious Key-Value
Retrieval (OKVR). The formal definition of OKVR is given
in Figure 4. Generally speaking, the server has a large set
of key-value pairs L = {(k1,v1), . . . ,(kn,vn)} and the client
holds a small set of keys Q = {q1, . . . ,qt}, where n≫ t. For
each qi ∈Q, the client wants to obtain the corresponding value
v j if qi = k j and (k j,v j) ∈ L, and a uniformly random value
otherwise. After the protocol execution, neither party should
learn any extra information. In particular, the server should
not learn which value was retrieved, while the client should
not learn the other key-value pairs in the server’s set.

A similar functionality is Batch Oblivious Programmable
Pseudorandom Function (B-OPPRF) [44]. We explain the dif-
ferences between our OKVR and Batch OPPRF as follows. (1)
While B-OPPRF requires a specific distribution (e.g., related
but uniform distribution) of values, our OKVR functional-
ity relaxes this restriction and supports arbitrary values. (2)
Unlike B-OPPRF, we particularly focus on the unbalanced
setting and aim to achieve sub-linear communication on the
larger set. Given these features, OKVR itself may be of in-
dependent interest and be employed for key-value retrieval
scenarios to ensure both parties’ privacy in the client-server
setting. Below, we give an efficient construction of OKVR,
which is built on sparse OKVS in Section 3 and crucially
exploits its sparsity to facilitate efficiency.

4.2 Construction
We show the construction of OKVR in Figure 5 based on
sparse OKVS, which achieves sublinear communication cost
in the size of the server’s large set. The core idea of our
OKVR protocol is that the server first exploits a sparse OKVS
to encode L = {(k1,v1), . . . ,(kn,vn)} into a compact vector
D0∥D1. Then, the client leverages a Batch Private Information
Retrieval3 (BatchPIR) protocol [5, 39] to secretly retrieve
the desirable items of D0∥D1 that are used to compute the
corresponding values of the query Q = {q1, . . . ,qt}. Note
that this requires t · (α+ |D1|) PIR queries, where α is the
access number on the sparse part D0 required for decoding.
Such a large number of PIR queries on the dense part D1, e.g.,
|D1|= λ+O(logn) for GCT [22], will dominate the overhead
of this solution.

To further improve performance, we present a hybrid PIR
strategy exploiting the sparsity property of sparse OKVS.
That is the decoding process requires only accessing a small
constant number α of positions from the sparse part D0 while
accessing a large number of positions from the dense part D1
of small size. Our hybrid PIR strategy is that the two parties
invoke PIR only on D0, while D1 is directly sent to the client
by the server. As a result, this strategy takes α · t PIR queries
in total, significantly saving t · |D1| PIR invocations.

Besides, to hide information of the server’s key-value pairs
L, we additionally invoke a multi-point Oblivious Pseudoran-
dom Functions (mpOPRF) protocol [30]. It takes the query
Q = {q1, . . . ,qt} from the client and the PRF key k from the
server, and returns F(k,qi) to the client for qi ∈ Q. We let
the server compute D0∥D1 on PRF-masked key-value pairs,
i.e., L′ = {(ki,vi +F(k,ki))}i∈[n]. After PIR, the client can
de-mask retrieved items using {F(k,qi)}i∈[t] to obtain the
desired values.

We analyze the asymptotic communication complexity,
which consists of three parts. (1) The mpOPRF protocol re-
quires O(t) communication cost. (2) α · t PIR queries on D0
consume O(t ·

√
n) or O(t · logn) depending on PIR schemes

[5,37,39]. (3) Taking GCT as an example, sending D1 requires
λ+O(logn) communication cost. Therefore, the asymptotic
communication cost of OKVR scales sublinearly with the
server’s set size n.

Theorem 1. Given a BatchPIR scheme with client query
privacy and a sparse OKVS algorithm, the protocol in Figure
5 securely computes FOKVR in Figure 4 against semi-honest
adversaries in the FmpOPRF-hybrid model.

Proof. We prove the following two properties.
Correctness. There are two cases for the correct-

ness analysis. (1) In the case qi ∈ {k1, . . . ,kn} and
qi = k j, according to the correctness of mpOPRF, sparse
OKVS, and BatchPIR, zi =DecodeH(D0∥D1,qi)−F(k,qi)=

3Compared to PIR, BatchPIR [5,39] has concretely lower communication
and computation overhead when performing batch retrievals.
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Protocol ΠOKVR

Parameters: Client C and server S . Functionality FmpOPRF for F : {0,1}κ×{0,1}∗ → F in Figure 2. A sparse OKVS
scheme (EncodeH ,DecodeH) with K = {0,1}∗ and V = F over a field F, where H consists of α+1 random mappings
{li : {0,1}∗→ [s]}i∈[α] and r : {0,1}∗→{0,1}d . A BatchPIR scheme (Query,Response,Extract).

Inputs: C inputs a set of keys Q = {q1, . . . ,qt} ∈ ({0,1}∗)t . S inputs a set of key-value pairs L = {(k1,v1), . . . ,(kn,vn)} ∈
({0,1}∗×F)n.

Protocol execution:

1. C and S invoke FmpOPRF, in which C acts as the receiver with the input Q and S acts as the sender with the input
k←{0,1}κ. Then, C obtains Q′ := {q′1, . . . ,q′t}, where q′i := F(k,qi) ∈ F for i ∈ [t].

2. S invokes sparse OKVS to compute D0∥D1 := EncodeH(L′) ∈ Fs×Fd , where L′ := {(k1,v1 +F(k,k1)), . . . ,(kn,vn +
F(k,kn))}.

3. C computes a set I := {l j(qi)}i∈[t], j∈[α] of size αt. When there are collisions, I needs to be filled with distinct values to
size αt. C executes Query(I)→ (st,qu) of BatchPIR and sends qu to S .

4. S executes Response(D0,qu)→ res on the sparse part D0 and sends res to C . In parallel, S also sends the dense part
D1 to C .

5. C invokes Extract(st,res) to learn {D0[l j(qi)]}i∈[t], j∈[α]. C computes and outputs Z := {z1, . . . ,zt} with zi :=
DecodeH(D0∥D1,qi)−q′i, where DecodeH(D0∥D1,qi) := ∑ j∈[α] D0[l j(qi)]+ ⟨r(qi),D1⟩ over F.

Figure 5: Protocol for oblivious key-value retrieval

DecodeH(D0∥D1,k j) − F(k,k j) = v j with overwhelming
probability. (2) In the case qi /∈ {k1, . . . ,kn}, due to
the pseudorandomness of the underlying PRF, zi =
DecodeH(D0∥D1,qi)−F(k,qi) is pseudo-random.

Security. We exhibit simulators SimC and SimS for simu-
lating the view of the corrupt client C and server S , respec-
tively, and prove that the simulated view is indistinguishable
from the real one via standard hybrid arguments.

Corrupt client. SimC (Q,Z) simulates the view of the cor-
rupt C . It executes as follows:

• SimC samples uniform values q′i ← F for i ∈ [t].
Then, it invokes the mpOPRF receiver’s simulator
SimR

mpOPRF(Q,Q′), where Q′ := {q′1, . . . ,q′t}, and ap-
pends the output to the view.

• SimC uniformly samples D0∥D1 ← Fs×Fd such that
for qi ∈ Q, Decode(D0∥D1,qi) = zi +q′i, where q′i ∈ Q′.
Moreover, SimC follows the real protocol to generate qu
and computes Response(D0,qu)→ res, and appends res
and D1 to the view.

We argue that the view output by SimC is indistinguishable
from the real one. We first define three hybrid transcripts
T0,T1,T2, where T0 is the real view of C , and T2 is the output
of SimC .

1. Hybrid0. The first hybrid is the real interaction described
in Figure 5. Here, an honest S uses real inputs and inter-
acts with the corrupt C . Let T0 denote the real view of
C .

2. Hybrid1. Let T1 be the same as T0, except that the
mpOPRF execution is replaced by the mpOPRF re-
ceiver’s simulator SimR

mpOPRF(Q,Q′), where Q′ has t el-
ements {q′1, . . . ,q′t}, each of which is uniformly sampled
from F. The simulator security of mpOPRF and pseudo-
randomness of the underlying PRF guarantee this view
is indistinguishable from T0.

3. Hybrid2. Let T2 be the same as T1, except that D0∥D1
is sampled uniformly from Fs×Fd such that for qi ∈
Q, Decode(D0∥D1,qi) = zi + q′i, where q′i ∈ Q′. More-
over, SimC follows the real protocol to generate qu and
Response(D0,qu)→ res is executed locally by SimC .
By the double obliviousness property of sparse OKVS,
the simulated D0∥D1 has the same distribution as it
would in the real protocol, namely, both distribution
of D0∥D1 is randomly uniform with the constraint
Decode(D0∥D1,qi) = zi +q′i. Hence, T1 and T2 are sta-
tistically indistinguishable. This hybrid is exactly the
view output by the simulator.

Corrupt server. SimS (L,⊥) simulates the view of the cor-
rupt S . It executes as follows:
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• SimS generates a random key k. Then, it invokes the
mpOPRF sender’s simulator SimS

mpOPRF(k,⊥) and ap-
pends the output to the view.

• SimS samples uniformly random I = {i1, · · · , iαt} ←
[n]αt and invokes Query(I)→ qu. SimS appends qu to
the view.

We argue that the view output by SimS is indistinguishable
from the real one. We first define three hybrid transcripts
T0,T1,T2 where T0 is the real view of S , and T2 is the output
of SimS .

1. Hybrid0. The first hybrid is the real interaction described
in Figure 5. Here, an honest C uses real inputs Q and
interacts with the corrupt S . Let T0 denote the real view
of S .

2. Hybrid1. Let T1 be the same as T0, except that the
mpOPRF execution is replaced by its sender’s simulator
SimS

mpOPRF(k,⊥) where k is uniformly sampled by SimS .
The security of the mpOPRF functionality guarantees
the view is indistinguishable from the real execution.

3. Hybrid2. Let T2 be the same as T1, except that the query
index set I is replaced by uniformly random i1, · · · , iαt ∈
[n]αt . This hybrid is computationally indistinguishable
from T1 by the client query privacy of the BatchPIR
scheme. Specifically, if there is a distinguisher D that
can distinguish T1 and T2 with non-negligible probabil-
ity, then we can construct a PPT adversary A to break
the client query privacy of the BatchPIR scheme as fol-
lows: A sends I0 and I1 as the challenge message to the
challenger, where I0 is the query index generated using
C ’s real inputs and I1 is uniformly sampled. Then, A
receives the query ciphertext Query(Ib)→ qu from the
challenger, where b is uniformly sampled. Then, A ex-
ecutes as C in Hybrid1 with the corrupt S except the
BatchPIR query generation step. After that, A invokes
D with S ’s view in the above interaction and outputs
D ’s output. Note that if qu← Query(I0), the view of
the corrupt S is exactly T1. If qu← Query(I1), the view
corresponds to T2. Therefore, A can break the client
query privacy of the BatchPIR scheme with the same
advantage as D .

5 Unbalanced Circuit-PSI

5.1 Definition
We give the formal definition of the unbalanced circuit-PSI
(UCPSI) functionality in Figure 6. This functionality directly
follows prior circuit-PSI works [44, 50] except with a par-
ticular focus on the unbalanced setting. Generally speaking,

Functionality FUCPSI

Parameters: Client C and server S . The input sizes of C
and S are t and n, respectively, where n≫ t. The output
size is m = (1+ ε) · t with a constant ε > 0. A function
Reorder : ({0,1}∗)t → (π : [t]→ [m]), which on input a
set of size t outputs an injective mapping π.

Functionality:
1. Wait for input a set X = {x1, . . . ,xt} ∈ ({0,1}∗)t

from C .
2. Wait for input a set Y = {y1, . . . ,yn} ∈ ({0,1}∗)n

from S .
3. Compute π← Reorder(X).
4. For i ∈ [m], sample ⟨bi⟩B0 ,⟨bi⟩B1 ∈ {0,1} uniformly

such that ⟨bi⟩B0 ⊕ ⟨bi⟩B1 = 1 if ∃xi′ ∈ X ,y j ∈
Y s.t. xi′ = y j where i = π(i′), and ⟨bi⟩B0 ⊕⟨bi⟩B1 = 0
otherwise.

5. Output ({⟨bi⟩B0}i∈[m],π) to C and {⟨bi⟩B1}i∈[m] to S .

Figure 6: Ideal functionality for unbalanced circuit-PSI

it allows the client to input a small set X of size t and the
server to input a large set Y of size n, where n≫ t. After the
protocol, the two parties will learn secret shares of whether
an element of X lies in the intersection. These secret-shared
outputs along with X can then be used in any subsequent
secure computation [35, 51].

5.2 Construction

We propose the construction of UCPSI from OKVR in Fig-
ure 7. We emphasize that the main difference from previous
circuit-PSI works [10, 44, 47, 50] is our UCPSI achieves sub-
linear communication complexity on the size of the larger
set. Below, we explain our idea by first giving a basic con-
struction from our OKVR functionality, and then propose
an optimized version by employing a padding-free OKVR
technique tailored to UCPSI.

Basic construction. Following circuit-PSI, we utilize hash-
to-bin techniques [43, 44], which reduce the intersection eval-
uation on all items to only execute on bins with fewer items.
The construction contains the following three steps.

(1) Hash-to-bin. The hash-to-bin technique makes use of
Cuckoo hashing [40] and simple hashing as follows. Given the
set X of size t, the client creates a Cuckoo hash table TX of size
m= (1+ε) ·t with β hash functions h1, . . . ,hβ : {0,1}∗→ [m],
where ε > 0 is a constant. It ensures that for each xi ∈ X , xi∥ j
is stored at TX [h j(xi)] for some j ∈ [β]. Due to m > t, there
are some empty bins and we require padding these bins with
dummy items that are marked as ⊥. On the other hand, the
server creates a simple hash table TY of size m using the same

9



hash functions as the above. Specifically, given the set Y of
size n, for each yi ∈ Y , this table stores yi∥ j at all locations
TY [h j(yi)] for j ∈ [β]. In TY , each bin may hold more than
one item. Unlike other works [15, 35] that pad all bins to
a pre-defined maximum size with dummy items, we do not
need padding as our protocol will combine the items of all
TY ’s bins into a single set for subsequent steps. Obviously, the
total number of items in all TY ’s bins is fixed, i.e., βn.

(2) OKVR. Since both parties use the same hash functions,
our scheme only requires checking whether the item placed
in a bin by the client is among the items placed in this bin by
the server. We invoke our OKVR to achieve this functionality.
Specifically, for i-th bin, the server samples a random value
ri and constructs a set of key-value pairs Pi := {(y′,ri)} for
all y′ ∈ TY [i]. The client and the server invoke the OKVR
protocol with input TX and {Pi}i∈[m], respectively. After the
protocol, the client will obtain r∗i for i ∈ [m].

(3) Private equality test. In this step, the client and server
want to check ri = r∗i , and compute boolean secret shares of
bi that indicates whether the client’s i-th element is in the
server’s set. This operation is achieved by the private equality
test (EQ) functionality FEQ in Figure 3. This operation causes
a small overhead in our unbalanced case since we only require
O(t) invocations, where t≪ n.

Optimization from padding-free OKVR. The dominant
cost of the basic construction is the OKVR step because
it requires BatchPIR with m = (1 + ε) · t queries on the
server’s dataset {Pi}i∈[m]. To reduce this overhead, we propose
padding-free OKVR such that we only consume t BatchPIR
queries. We emphasize this reduction is important, since as
shown in our analysis of Section 6.1, ε should be large espe-
cially in the unbalanced setting.

The main insight is that OKVR outputs a random value
when a query is not in the server’s key set and this is actually
the case for dummy items ⊥ in the table TX . In detail, before
BatchPIR queries, the client has known that these ⊥ items
are not in the intersection, and hence a random r∗i will be
obtained according to the functionality of OKVR. Therefore,
we present an efficient padding-free strategy for invoking
OKVR. In particular, let π : [t]→ [m] be an injective mapping
that maps an element index of X to the position in TX , i.e.,
π(i) = h j(xi) such that TX [h j(xi)] = xi∥ j. Then, the client in-
vokes FOKVR only with{TX [π(i)]}i∈[t] and learns {r∗

π(i)}i∈[t],
and for j ∈ [m]\{π(i)}i∈[t], r∗j is sampled uniformly from
{0,1}ℓ by the client. One may question whether it leaks to
the server the mapping of the client’s Cuckoo hashing table,
which depends on the client’s private input set. We note that
this is not the case because the client combines all queries into
a batch to perform BatchPIR on a single database from key-
value pairs of all server’s bins. We give the formal description
of our UCPSI protocol in Figure 7, and the correctness and
security are rigorously analyzed below.

Theorem 2. The protocol in Figure 7 securely computes

FUCPSI in Figure 6 against semi-honest adversaries in the
(FOKVR,FEQ)-hybrid model.

Proof. We prove the following two properties.
Correctness. There are three cases for the correctness anal-

ysis. (1) In the case x ∈ X ∩Y , there exists a unique j such
that TX [h j(x)] = x∥ j and y∥ j ∈ TY [h j(y)] and x = y with an
overwhelming probability according to the statistical analysis
of Cuckoo hashing. From the correctness of OKVR, when
S samples r, C will obtain r∗ such that r∗ = r. From the
correctness of EQ, C and S obtain secret shares of b = 1.
(2) In the case x ∈ X \Y , there exists a unique j such that
TX [h j(x)] = x∥ j but TX [h j(x)] /∈ TY [h j(x)]. According to the
correctness of OKVR, C will obtain a random r∗. It is pos-
sible that the collision occurs namely r∗ = r∧ x /∈ Y , which
violates the correctness. The false positive error probability in
each bin equals 2−ℓ. By setting ℓ= λ+ logm, a union bound
shows the overall probability of false positive is 2−λ, which
is negligible. Due to r∗ ̸= r with overwhelming probability
and the correctness of EQ, C and S obtain secret shares of
b = 0. (3) In the case of dummy points, C directly samples r∗

uniformly at random. The correctness of this case is the same
as the second case.

Security. We exhibit simulators SimC and SimS for simu-
lating corrupt C and S , respectively, and argue the indistin-
guishability of the produced transcript from the real execution.

Corrupt client. SimC (X ,(π,{⟨bi⟩B0}i∈[m])) simulates the
view of the corrupt C . It executes as follows:

• SimC uniformly samples R∗ := {r∗1, . . . ,r∗m},
and invokes the OKVR’s client simulator
SimC

OKVR({TX [π(i)]}i∈[t],{r∗π(i)}i∈[t]). SimC appends the
output to the view.

• SimC invokes the EQ’s client simulator SimC
EQ(r

∗
i ,⟨bi⟩B0 )

for i ∈ [m], where r∗i ∈ R∗, and appends the output to the
view.

The view simulated by SimC is computationally indistin-
guishable from the real one by the underlying simulators’
indistinguishability. It is worth noting that although for all
keys in each set Pi of key-value pairs, the corresponding value
is always a uniformly random ri, the client’s output {r∗i }i∈[m]

of OKVR is still uniformly random. The reason is that for
each Pi, at most one value is retrieved by the client according
to the property of Cuckoo hashing.

Corrupt server. SimS (Y,{⟨bi⟩B1}i∈[m]) simulates the view
of the corrupt S . It executes as follows:

• SimS samples uniformly random {r1, . . . ,rm} and gen-
erates {Pi}i∈[m] like Figure 7, and invokes the OKVR’s
server simulator SimS

OKVR({Pi}i∈[m],⊥). SimS appends
the output to the view.

• For i ∈ [m], SimS invokes the EQ’s server simulator
SimS

EQ(ri,⟨bi⟩B1 ) where ri is sampled as above, and ap-
pends the output to the view.

10



Protocol ΠUCPSI

Parameters: Client C and server S . β hash functions {hi : {0,1}∗→ [m]}i∈[β] used in Cuckoo hashing, where m = (1+ε) · t
with a constant ε > 0. Ideal functionalities FEQ in Figure 3 with input bitlength ℓ := λ+ logm and FOKVR in Figure 4.

Inputs: C inputs a set X = {x1, . . . ,xt} ∈ ({0,1}∗)t . S inputs a set Y = {y1, . . . ,yn} ∈ ({0,1}∗)n.

Protocol execution:

1. C maps X into a Cuckoo hash table TX of m bins, such that for any x∈X , there exists an j∈ [β] satisfying TX [h j(x)] = x∥ j.
Define a function π : [t]→ [m] that maps an element index of X to the position in TX , i.e., π(i) = h j(xi) such that
TX [h j(xi)] = xi∥ j.

2. S maps Y into a simple hash table TY of m bins, such that for any y ∈ Y and all j ∈ [β], it holds that y∥ j ∈ TY [h j(y)].

3. For i ∈ [m], S samples random ri ∈ {0,1}ℓ, and defines Pi := {(y′,ri)} for all y′ ∈ TY [i].

4. C and S invoke FOKVR with input {TX [π(i)]}i∈[t] and {Pi}i∈[m], respectively. C initializes empty R∗ := {r∗1, . . . ,r∗m} and
assigns the output of FOKVR to {r∗

π(i)}i∈[t]. For j ∈ [m]\{π(i)}i∈[t], r∗j is sampled uniformly from {0,1}ℓ.

5. For i ∈ [m], C and S invoke FEQ with input r∗i and ri, respectively. As a result, they learn boolean shares ⟨bi⟩B0 and
⟨bi⟩B1 , respectively, where bi = 1 if r∗i = ri and bi = 0 otherwise.

Figure 7: Protocol for unbalanced circuit-PSI

It is straightforward to see that the view simulated by SimS
is computationally indistinguishable from the real one by the
OKVR and EQ simulators’ indistinguishability.

6 Implementation and Evaluation

We implement our protocols in Java, and run the experiments
on a single Intel Core i9-9900K with 3.6GHz and 128GB
RAM. All evaluations are performed using 8 threads. We
simulate the network connection using the Linux tc command.
The simulated network settings include LAN (10Gbps band-
width and 0.05ms RTT latency) and WAN (50Mbps band-
width with 80ms RTT latency). Given that we focus on the un-
balanced setting, where the client may only have constrained
resources (e.g., very low bandwidth), we also test our pro-
tocols on a simulated mobile network setting (1Mbps band-
width and 80ms RTT latency). Our source code is available at
https://github.com/alibaba-edu/mpc4j.

6.1 Implementation Details
A unified circuit-PSI framework. We provide a unified
circuit-PSI framework for implementing our proposed proto-
cols. We also fully re-implement state-of-the-art circuit-PSI
schemes in our framework, including the general circuit-PSI
protocols4 (PSTY19 [44], CGS22 [10] and RR22 [47]) and the

4Bienstock et al. [6] recently propose nearly-optimal OKVS and also
apply it in circuit-PSI (called BPSY23). Currently, we do not include this

unbalanced circuit-PSI protocol SJ23 [53]. The main reason
for large-scale re-implementation is their original implementa-
tions are carried out under different protocols and experimen-
tal settings, and hence it is difficult to conduct fair compar-
isons. Specifically, (1) some previous implementations, e.g.,
CGS22, only focus on balanced circuit-PSI and lack support
for unbalanced cases.5 (2) Prior works evaluate performance
in different thread settings. Specifically, PSTY19, CGS22, and
SJ23 evaluate their protocols in the single-thread setting, but
RR22 employs multi-thread execution. (3) Previous works uti-
lize different protocols to instantiate underlying cryptographic
primitives. For example, for the equality test, PSTY19 and
CGS22 utilize IKNP OT, while RR22 and SJ23 invoke silent
OT variants, i.e., Silver OT [17] and Ferret OT [55], respec-
tively. Given these issues, we provide unified implementations
and fair comparisons in our framework, and the details are
illustrated in the following.

Implementation details of our protocols. We set the com-
putational security parameter κ = 128 and the statistical se-
curity parameter λ = 40. To complete our constructions, we
implement the following components.

Stash-less Cuckoo hashing. We use stash-less Cuckoo
hashing with 3 hash functions that store n elements into
⌈(1 + ε) · n⌉ bins, where ε > 0. Based on the analysis of

baseline because (to the best of our knowledge) we cannot find a way of
supporting multi-thread encoding for their OKVS construction without in-
creasing the encoding rate. Note that BPSY23 has a similar performance as
RR22 (Refer to Figure 7 of BPSY23).

5See Issue #4 of the CGS22 open-source implementation for details.
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Table 1: Communication and runtime comparison of our protocols with previous works. The best result is marked in green, and
the second best result is marked in blue.

Param. Protocol Comm. (MB) Time LAN (s) Time WAN (s) Time Mobile (s)
n t Setup Online Setup Online Setup Online Setup Online

220

24

PSTY19 [44] 0.308 32.859 0.100 7.020 2.224 18.035 5.162 356.548
CGS22 [10] 0.317 30.978 0.117 10.866 2.581 21.736 5.377 340.301
RR22 [47] 1.882 33.087 0.137 7.941 3.386 19.778 21.067 358.152

SJ23-C1 [53] 1.994 5.938 7.996 4.232 10.380 8.567 18.581 58.258
SJ23-C2 [53] 3.958 18.608 2.750 2.252 7.599 9.669 40.451 164.546

Our UCPSI 2-Hash 18.172 1.872 82.666 3.655 87.271 7.310 236.127 23.341
Our UCPSI 3-Hash 18.172 2.457 58.875 1.937 64.045 5.610 214.787 26.816

28

PSTY19 [44] 0.405 33.057 0.077 6.965 2.188 17.816 5.787 358.192
CGS22 [10] 0.415 31.196 0.075 11.674 2.575 22.412 6.235 343.088
RR22 [47] 1.980 33.278 0.134 8.028 3.386 19.117 21.935 360.385

SJ23-C1 [53] 1.994 5.938 8.265 3.843 9.812 8.752 18.284 57.751
SJ23-C2 [53] 3.957 18.609 2.828 2.021 7.565 9.247 41.127 165.253

Our UCPSI 2-Hash 18.270 3.336 113.585 2.616 117.690 6.843 267.438 35.475
Our UCPSI 3-Hash 18.269 3.921 80.066 1.521 83.482 6.012 235.190 39.270

212

PSTY19 [44] 0.687 34.028 0.175 8.221 2.350 18.510 8.380 365.269
CGS22 [10] 0.697 32.537 0.110 12.426 2.678 23.398 8.767 353.945
RR22 [47] 2.352 34.080 0.186 8.521 3.459 20.147 25.007 369.325

SJ23-C1 [53] 4.854 9.669 6.393 11.932 8.955 17.296 41.982 96.145
SJ23-C2 [53] 3.958 18.607 2.715 1.917 7.960 9.164 40.486 164.379

Our UCPSI 2-Hash 18.551 17.616 191.363 5.157 199.714 12.317 350.308 158.070
Our UCPSI 3-Hash 18.551 25.149 161.069 6.254 165.943 14.949 315.529 222.685

222

24

PSTY19 [44] 0.308 130.148 0.090 31.202 2.237 62.721 5.067 1,405.807
CGS22 [10] 0.318 122.418 0.095 61.104 2.591 91.548 5.343 1,352.874
RR22 [47] 1.882 130.376 0.133 34.840 3.343 67.732 20.567 1,407.752

SJ23-C1 [53] 5.227 6.618 102.531 10.102 103.283 15.881 112.038 70.543
SJ23-C2 [53] 3.958 42.674 11.998 3.728 16.224 15.202 44.846 369.253

Our UCPSI 2-Hash 18.172 2.856 287.176 7.330 295.251 11.241 443.559 36.117
Our UCPSI 3-Hash 18.172 2.668 323.034 7.627 316.533 11.544 483.251 35.354

28

PSTY19 [44] 0.405 130.346 0.077 31.955 2.255 64.689 5.838 1,407.101
CGS22 [10] 0.415 122.636 0.080 64.442 2.670 93.478 6.361 1,357.350
RR22 [47] 1.980 130.567 0.318 35.146 3.331 64.838 21.478 1,410.698

SJ23-C1 [53] 5.226 6.618 103.195 9.663 101.296 15.717 111.341 70.589
SJ23-C2 [53] 3.957 42.673 11.075 3.555 16.572 15.720 45.625 368.650

Our UCPSI 2-Hash 18.269 5.583 398.922 5.785 399.003 10.471 557.363 57.775
Our UCPSI 3-Hash 18.269 7.291 287.933 5.425 297.677 10.449 446.333 71.604

212

PSTY19 [44] 0.687 131.322 0.281 35.768 2.355 66.032 8.363 1,416.060
CGS22 [10] 0.697 123.982 0.112 66.434 2.633 101.694 8.766 1,369.970
RR22 [47] 2.352 131.369 0.162 39.705 3.584 69.666 25.332 1,422.936

SJ23-C1 [53] 5.227 6.618 101.144 10.897 104.207 16.169 112.113 71.405
SJ23-C2 [53] 3.957 42.675 11.639 3.464 16.575 15.108 44.739 368.319

Our UCPSI 2-Hash 18.551 33.130 623.735 13.086 631.618 20.526 795.836 295.674
Our UCPSI 3-Hash 18.551 25.361 672.840 12.123 674.243 19.188 843.413 230.016

PSZ18 [46], ε is usually chosen as 0.27, which has been
widely used in prior works [10, 44, 50].

Blazing-fast OKVS. We implement the blazing-fast OKVS
with clustering proposed by RR22 [47] as our sparse OKVS,
following their open-source code [2]. The field F is instan-
tiated as GF(2ℓ). In blazing-fast OKVS with clustering, the
elements are divided into several buckets by hash function.
Each bucket creates an OKVS separately and these OKVS are
finally merged together. The OKVS encoding of each bucket
is independent and can be processed in parallel, which greatly
improves the efficiency. Blazing-fast OKVS has two variants
with different numbers of hashing functions, i.e., α = 2 and
α = 3. We include them both in our evaluation.

BatchPIR. We implement the state-of-the-art vectorized
BatchPIR [39] following their open-source code [4]. We
choose vectorized BatchPIR because it supports batch PIR
queries with low communication costs. Our implementation
uses the JNI technique to invoke the BFV homomorphic en-
cryption [8, 20] provided by Microsoft SEAL library v4.1 [3].
In our implementations, we use the same parameter settings as
their implementation [4], and also use the modulus switching
technique to reduce the size of response ciphertexts.

mpOPRF. We implement OMG-DH-based OPRF [30, 49]
so that the server can encode inputs and initialize PIR pro-
tocols in the setup phase (the setup setting will be detailed
later). For efficiency, we use FourQ elliptic curve [16], which
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provides fast scalar multiplication of random points and a fast
implementation of hash-to-curve. We note that existing unbal-
anced PSI protocols introduce FourQ and similar methods to
speed up the setup phase [11, 12, 15].

Equality test. We implement the private equality test (EQ)
protocol in CGS22 [10]. This protocol has low communi-
cation cost and is built on the idea of solving Millionaires’
problem in CrypTFlow2 [48]. It recursively performs equality
tests on substrings organized in a tree and uses 1-out-of-2s

OT for tests on leave substrings, where s is a constant and we
set s = 4 as in [10]. Our OT implementation employs a silent
OT variant, i.e., Ferret OT [55].

Pre-processing setting. Similar to unbalanced PSI proto-
cols [11,12,15], we build our framework in the pre-processing
setting, where the server can pre-process its input set in the
setup phase to facilitate the online performance. More pre-
cisely, the pre-processing in our protocol includes hashing the
input set to bins, encoding the elements in bins with sparse
OKVS, and initializing BatchPIR. We note that these tasks
are independent of the client’s inputs and can be completed
in the setup phase [12].

Implementation details of baselines. We re-implement
state-of-the-art circuit-PSI schemes including PSTY19 [44],
CGS22 [10], and RR22 [47], and SJ23 [53], and introduce the
following advanced optimizations in their implementations.
We also note that all their implementations support multi-
thread execution and are compatible with both balanced and
unbalanced settings.

SJ23. We fully re-implement the two constructions of
SJ23 [53] since there is no open-source implementation avail-
able for it. In more detail, we set the polynomial degree and
modulus coefficient following the analysis of SJ23, and also
choose the query power based on the APSI parameters [1].
For their first construction, we use the noise flooding tech-
nique [23], which adds an encryption of zero with 40-bit noise
in the response generation phase. For their second construc-
tion, we use SEAL’s default configurations for the ciphertext
modulus to make noise budget enough to multiply a multi-
plicative mask. Note that partition numbers per bin in SJ23
are fixed for several specific set sizes. To support arbitrary set
sizes, we leverage the lookup table method found in the RR22
implementation [2] to estimate partition numbers per bin.

PSTY19. We re-implement PSTY19 with the following two
important optimizations. First, the polynomial interpolation
(MegaBin) is stated as one of the major computational bot-
tlenecks of PSTY19 [10, 44]. We replace this operation with
the 3-Hash Garbled Cuckoo Table (3H-GCT) [22]. Second,
we use the state-of-the-art equality test protocol of CGS22 in
PSTY19 and instantiate it with Ferret OT, which effectively
reduces the communication cost.

CGS22 and RR22. We re-implement CGS22 and RR22
based on their experimental settings except that we use the
equality test protocol of CGS22 with Ferret OT in our imple-
mentations to reduce the communication cost.

6.2 Experimental Results
We compare our protocols with the state-of-the-art balanced
circuit-PSI, i.e., PSTY19 [44], CGS22 [10], and RR22 [47],
and unbalanced circuit-PSI SJ23 [53], which consists of two
constructions, called SJ23-C1 and SJ23-C2. The runtime and
communication costs of our constructions and previous works
are shown in Table 1. Note that in the setup phase, the commu-
nication is dominated by sending Galois and relinearization
keys of the underlying homomorphic encryption in BatchPIR
to the server. Since the keys are independent of the server’s
set, they can be sent only once and cached for repeated proto-
col executions [12,15]. Thus, this communication cost can be
amortized over multiple client requests.

Communication comparison. We first compare our con-
structions with recent balanced circuit-PSI techniques, i.e.,
PSTY19, CGS22, and RR22. From Table 1, our UCPSI pro-
tocols achieve the lowest online communication cost, and
outperform them by 1.18∼ 15.99×. Moreover, our protocols
are more advantageous when the difference between the set
sizes of the client and server is significant. On the other hand,
when comparing with SJ23, the communication of our con-
structions is 1.18∼ 15.99× better than their protocols in the
extremely unbalanced setting, e.g., the client set of size 24

and 28. For the client size 212, our protocols still outperform
the second construction of SJ23.

Runtime comparison. On the one hand, our UCPSI pro-
tocols consistently outperform balanced circuit-PSI works
PSTY19, CGS22, and RR22 over all set sizes and network
setups. Specifically, the runtime cost of our constructions
is 1.50 ∼ 39.81× better than these protocols. On the other
hand, compared with SJ23, the runtime of our constructions
is 1.22∼ 10.44× better than their protocols in the extremely
unbalanced setting, e.g., the client set of size 24 and 28. More-
over, our protocols particularly perform better in bandwidth-
limited settings such as WAN and mobile networks. Note
that the two constructions of SJ23 have a significant tradeoff
between computation and communication costs, while our
protocols achieve a good balance.

7 Conclusion

In this work, we introduce unbalanced circuit-PSI construc-
tions that achieve sublinear communication complexity in
the size of the larger set. The core idea is the functionality
and construction of Oblivious Key-Value Retrieval (OKVR),
which may be of independent interest. We fully implement
our constructions and state-of-the-art circuit-PSI protocols in
a unified framework for fair comparisons. We evaluate the
efficiency of our constructions and the results show that our
scheme achieves up to 48.86× communication improvement
and 39.81× runtime reduction over previous works.
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A Unbalanced Circuit-PSI with Payloads

In some scenarios, each input item of the parties has an as-
sociated payload. The task is to compute a function of the
payloads of the items in the intersection. In this section, we
extend our unbalanced circuit-PSI protocol to support com-
puting functions on the intersection of input sets along with
associated payloads.

Formally, the client inputs a small set X of size t along
with an associated value set X̃ , and the server inputs a large
key set Y of size n along with an associated value set Ỹ . Af-
ter the protocol, the two parties will compute a function on
the intersection and the corresponding payloads. This con-
struction is significantly built on our unbalanced circuit-PSI
protocols in Figures 7 except for the following parts. (1) In
step 3 of the unbalanced circuit-PSI protocol, the client sam-
ples random ri,wi, and defines Pi := {(y′,ri∥(ỹ−wi))}, where
y′ = y∥ j ∈ TY [i] for some j ∈ [β] and ỹ is the payload of y.
(2) In step 4, the two parties invoke FOKVR on this new key-
value pairs Pi, and the client obtains r∗i ∥w∗i . After FOKVR, the
generic 2PC functionality will then take as input (r∗i ,w

∗
i ,xi, x̃i)

from the client and (ri,wi) from the server.
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