Input Transformation Based Zero-Knowledge Argument
System for Arbitrary Circuits with High Efficiency

Frank Y.C. Lu

YinYao Inc.

Abstract. We introduce a new efficient transparent interactive zero-knowledge argument sys-
tem that is based on the new input transformation concept which we will introduce in this
paper. The core of this concept is a mechanism that converts input parameters into a format
that can be processed directly by the circuit so that the circuit output can be verified through
direct computation of the circuit or business logic per se. In our protocol, we convert circuit
inputs in Pedersen commitment form to linear polynomials in integer form so the verifiers can
use standard integer operations to compute and verify the circuit output.

This direct computation mechanism replaces the constraint system often found in popular zero-
knowledge protocols, and eliminates the need of using a front-end encoder to translate NP
relation R to some zero-knowledge friendly representation R (such as the RICS constraint
system) before the relation can be converted to a proof system, making our protocol easy to
implement and much easier to use compared to protocols using a constraint system.

Our benchmark result shows our approach can significantly improve verifier runtime performance
by more than one order of magnitude over the state of the art while keeping the prover runtime
and communication cost competitive with that of the state of the art.

1 Introduction

Ever since the discoveries of interactive proofs (IPs) [28] and probabilistically checkable proofs (PCPs)
[5] [] 3] [2] in the late last century, there has been a tremendous amount of research in the area of proof
systems. More recently, the rise of Blockchain and Web3 has finally triggered real-world deployments
of zero knowledge systems.

Popular zero knowledge systems are often divided into two phases: the first part, a “front-end” en-
coder converting a specification of an NP-relation R into a “zero-knowledge friendly” representation R
(e.g. rank-1 constraint system); and then another “back-end” system converting Rtoa zero-knowledge
proof system for R. The encoder based two-phased design has accelerated the development of zero
knowledge system applications, but it has added cost of running the encoder to translate circuit logic
to constraint system form.

Due to expensive computation during setup time of earlier SNARKs (Succinct Non-Interactive
Argument of Knowledge), it has become a significant interest to have the structured reference string
(SRS) be constructible in a “universal and updatable” fashion, meaning that the same SRS can be
used for statements about all circuits of a certain bounded size. The first universal SNARK was in
Groth et al [29], and Maller et al. improved the SRS size from quadratic to linear in Sonic [33]. More
recently developed protocols such as PLONK [26], MARLIN [21] are universal fully-succinct SNARK
with significantly improved prover runtime compared to the fully-succinct Sonic. However, there are
still two drawbacks with these SNARKSs: first, many of these universal succinct SNARKSs systems
require trusted setup; second, the prover run-time of these protocols are prohibitively expensive even
with latest improvements such as HyperPlonk [20], usually takes over 100 seconds on a single thread
CPU for a circuit with over 22Y constraints.

Protocols belong to the Goldwasser, Kalai, and Rothblum (GKR) class such as Hyrax [3§], Virgo
[43]; MPC-in-the-head class of Kushilevitz, Ostrovsky, and Sahai such as ZKBoo [27] and Ligero/Ligero++
[1] [9) offer efficient prover runtime that are at least one order of magnitude more efficient than pairing

based SNARKS, and many of these protocols do not require trusted setups. However, these protocols
are largely ignored by the industry (e.g. blockchain community) due to expensive verifier runtime
and high communication cost (hundreds of KBs) than fully succinct protocols such as STARK [7],
PLONK, MARLIN, and Supersonic [19]. Furthermore, state-of-the-art GKR protocols generally has
additional dependency on circuit depth where protocol complexity increases and performance signif-
icantly degrades as the circuit depth gets longer, making them less attractive to the industry where
complex business logics (e.g. inputs are floating point numbers) are expected on smart contracts.

Memory efficient privacy-free garbled circuits [31] [25] [30] and Vector Oblivious Linear Evaluation
(VOLE) protocols [14] [34] [16] [I5] [42] [40] [6] [41] generally offer better prover performance. However,
their verifier runtimes are just as expensive as their prover runtime and cannot be trivially made non-
interactive, and their communication cost is easily many orders of magnitude more expensive than
other approaches.

NIZKs such as SpartanNIZK [35] and later Lakonia [36] seems to offer a much more balanced
approach, where it offers efficient prover runtime (6-18 seconds single thread) and competitive com-
munication cost for large circuits (22° constraints) while not being layer dependent. However, the
downside of these protocols is that their verifier performance is still expensive, usually in the 400+
ms range on a single thread CPU.

Our aim is to create a new transparent zero knowledge protocol that is extremely easy to construct
for developers, while able to handle complex circuits s.t. prover runtime and communication cost
comparable to that of the state-of-the-art, and that shows significant improvement in verifier runtime
over that of the current state-of-the-art.

1.1 Summary of Contributions

Our approach is to design a new protocol that allows verifiers to efficiently validate circuit outputs
by directly examining circuit inputs and the circuit design without going through some intermediate
translation phase. In addition to performance gains, we believe such approach would allow developers
to code business rules exactly as they are and provide cost savings by minimizing the cost of translating
business/circuit language to that of a constraint system.

In the past, Cramer and Damgard [24] first introduced a mechanism where input commitments are
directly used in validating each multiplication gate. However, such an approach requires validation to
be performed on each multiplication gate and therefore introduces a large communication overhead
and requires both provers and verifiers to perform expensive operations in G for every multiplication
gate. Although this approach, combined with some clever design, is adopted in some more recent
protocols such as Hyrax [38], we still found such approach has some inherent inefficiencies and cannot
be used to get the desired result we are seeking.

In our protocol, we start by transforming each committed input parameter to a circuit to some
integer value in linear polynomial form, where verifiers can perform arithmetic operations (e.g., ad-
dition and multiplication) on them like they do on normal integers. Since field operations are cheap,
the verifier can perform this step with high efficiency.

For a simple circuit a;% + as? + a3? = r, circuit inputs are a1, as, a3 and the circuit output is r. In
our protocol, inputs a1, as, az and output 7 are committed by the prover using Pedersen commitment.
The prover then provides the transformed inputs a1, a2, as in linear polynomial form a}, a$,aj in Z,
s.t. a] = a1+ Xay € Zy (o is its blinding key). Since the transformed inputs are in IF, the verifier can
plug these values directly to the circuit to compute the output e.g. a1¢ + as? + az? = 0. The circuit
output o € Z,, is a polynomial evaluated at point x s.t. f(x) = o. Since the degree of a polynomial will
increase after it is multiplied with another polynomial, the degree of the circuit output polynomial
is d + 1. The constant term of this polynomial is the circuit output r and all other coefficients are
blinding values. If the prover can prove 1) it knows all coefficients of the output polynomial (e.g. using
a polynomial commitment) 2) all input transformations are legit, then we say the proof is legit.

The output polynomial in the example above has degree of d+1 because transformed inputs (linear
polynomials) are of degree of 1, multiplying them d times will get a polynomial with degree of d + 1.

So if the circuit is something like ay? + as? + as®+, ..., +a;2 = r, the degree of the output polynomial
is 3=d+1 (d = 2) regardless of the value of t. Throughout our paper, we use symbol m,, to denote
the maximum number of multiplications included in any path that leads to the circuit output.

This input transformation and direct computation approach of our protocol does not require a“front
end” encoder to compile business logic relation R into some zero-knowledge friendly representation
R. This construct makes our protocol relatively easy to implement and also makes it easier for end
developers to apply zero knowledge design to real world applications.

For a deep circuit (m,, value is large), the prover runtime of the base version of our protocol (Pro-
tocol 1) is dominated by O(m,?+m,,+1) field operations and O(m,, +m]19/ ® 1) group exponentiations,
where m,, stands for the total number of multiplication gates included in the path that contains most
multiplications and [stands for the number of inputs to a circuit; the verifier runtime is dominated
by O(n + m;/ % 4 1) field operations and O(m,"/? +1) group exponentiations; and the communication
cost is dominated by O(m,'/? + 1) group elements and O(m,,'/? + 1) field elements.

On the other hand, if the circuit is shallow (e.g. for a circuit with n addition operations and n
multiplication operations: r = Y1 | a - b where is the circuit output and a, b are circuit inputs, we
have m, = 1), the prover work would be dominated by O(n) field addition operations which is very
cheap.

Our protocol is specifically efficient for proving complex business logics where circuit depth is high.
For example, inputs are floating point numbers and the business logic requires the circuit to perform
a lot of floating point multiplications/divisions operations, a very likely scenario in the real world.

Specifically, when processing a circuit of 22° sequential multiplication gates with 960 input bits
representing 30 input integers on a single CPU thread, the prover runtime of our protocol is 5.5 seconds,
the verifier runtime is 26 milliseconds, and the communication cost is approximately 64 kilobytes. This
result shows a significant improvement in verifier runtime by more than one order of magnitude over
the state of the art while keeping the prover runtime and communication cost competitive with the
state of the art.

We introduce our protocol in an interactive setting where all verifier challenges are random field
elements. In practice, we assume the Fiat-Shamir heuristic is applied to our protocol to obtain a
non-interactive zero-knowledge argument in the random oracle model.

2 Preliminaries

2.1 Assumption

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and for all n > 2 there
exists a negligible function negl(\) s.t.

$ n—1 a;
pr| G= Setup(1*), gos-sgn-1 < G | Jai #0AT[1y gi" =1 < negl(\)
ag, ..., Ap—1 € Zp — A(gOa -"agn—l)

The Discrete Logarithmic Relation assumption states that an adversary can’t find a non-trivial
relation between the randomly chosen group elements go, ..., g,—1 € G™, and that H;:Ol gii=1isa

non-trivial discrete log relation among go, ..., gn—1.

2.2 Zero-Knowledge Argument of Knowledge

Interactive arguments are interactive proofs in which security holds only against computationally
bounded provers. In an interactive argument of knowledge for a relation R, a prover convinces a
verifier that it knows a witness w for a statement x s.t. (x,w) € R without revealing the witness itself
to the verifier. When we say knowledge of an argument, we imply that the argument has witness-
extended emulation.

Definition 2. (Interactive Argument) Let’s say (P, V) denotes a pair of PPT interactive algorithms
and Setup denotes a non-interactive setup algorithm that outputs public parameters pp given a
security parameter A that both P and V have access to. Let (P(pp, 2, w), V(pp, z)) denote the output
of V on input z after its interaction with P, who has knowledge of witness w. The triple (Setup, P, V)
is called an argument for relation R if for all non-uniform PPT adversaries A, the following properties
hold:

e Perfect Completeness

Pr

(pp, z,w) ¢ R or pp < Setup(1?)
(P(pp,z,w), V(pp,z)) =1 | (z,w) < Alpp)

e Computational Soundness

Pr < negl(\)

Yw(pp, z,w) € RA pp < Setup(1?)
(A(pp, z,s),V(pp,z)) =1 | (x,s) <+ Alpp)

e Public Coin All messages sent from V to P are chosen uniformly at random and independently of
P’s messages

Definition 3. (Computational Witness-Extended Emulation) Given a public-coin interactive argu-
ment tuple (Setup, P, V) and arbitrary prover algorithm P*, let Recorder (P*,pp,x,s) denote the
message transcript between P* and V on shared input z, initial prover state s, and pp generated by
Setup. Furthermore, let £ Recorder (P,pp,x,s) denote a machine £ with a transcript oracle for
this interaction that can rewind to any round and run again with fresh verifier randomness. The tuple
(Setup,P,V) has computational witness-extended emulation if for every deterministic polynomial
time P there exists an expected polynomial time emulator £ such that for all non-uniform polynomial
time adversaries A the following condition holds:

pp < Setup(1*)
PriA(r)=1 (z,s) « A(pp)] -
tr + Recorder(P*,pp,x, s)
A(tr) = 1A pp < Setup(1*)
Pr|tr accepting = (z,w) € R (z,5) « A(pp) < negl()\)
(t’l“, w) — gRecorder(’P*,pp,;c,s) (pp7 .’I})

Definition 4. (Perfect Special Honest Verifier Zero Knowledge for Interactive Arguments) An inter-
active proof is (Setup, P, V) is a perfect special honest verifier zero knowledge (PSHVZK) argument
of knowledge for R if there exists a probabilistic polynomial time simulator S such that all pairs of in-
teractive adversaries A, Ay have the following property for every (z,w, o) + Az(pp) A (pp, z,w) € R,
where o stands for verifier’s public coin randomness for challenges

Pr

Ai(tr) =1 pp + Setup(1*), _
tr < (P(pp, z,w),V(pp,z)) |

Pr

Ai(tr) =1 | pp + Setup(1*),
tr < S(pp,x,0)

Above property states that adversary chooses a distribution over statements x and witnesses w but is
not able to distinguish between the simulated transcripts and the honestly generated transcripts for
a valid statement/witnesses pair.

2.3 Polynomial Commitment Function

As in the case of other popular zero knowledge protocols that offer succinct proof size, our protocol
uses a polynomial commitment evaluation protocol to construct most of our proof transcript. Our
protocol uses a version of the polynomial commitment scheme defined by Bootle. et al. [I2] Others
have improved the square-root-based polynomial commitments by applying the inner product approach
defined by Bunez et. al. and adding support for multilinear polynomials such as Hyrax [39] and Spartan
[35]. Similar techniques may be used to improve our implementation in the future to reduce proof size
in the expense of longer verifier runtime. The polynomial commitment function PolyCommitEval is
defined as:

e PolyCommitEval(C,y,x;7,¢) — boolean C is the committed polynomial in G where 7 are its
coefficients and ¢ is its blinding key. The function returns a boolean value“atrue” if the polynomial
can be correctly evaluated at point z s.t. y = f(x).

Assume the polynomial commitment scheme we use in this paper is the one defined by Bootle et
al. [12]. In section 5, we will introduced a modified version of the polynomial commitment evaluation
scheme defined by Bootle et al. that tailors to our need.

2.4 Zero Knowledge Proof of Discrete Logarithm

For a prover to prove it has the knowledge of a discrete logarithmic x of some group element s =
h' € G. We define the relation for this protocol as Rp,p = {(h,s;k) : s = g"}. We also define two
functions (ProveDL,VerifyDL) for provers and verifiers to create and verify proof transcripts:

e ProveDL(g,k) — tr, generates proof transcript tr,, where is the witness.

e VerifyDL(g,s,tr,) — b€ {0,1} takes a proof transcript tr, and a pair of group elements with
discrete log relation (g,s € G A s = h*), and outputs true if the knowledge of the relation is
verified, false otherwise.

In this paper, we assume the underlying implementation of the proof of discrete logarithm protocol
is Schnorr’s protocol. We know for a fact that Shnorr’s protocol has perfect completeness, special
honest verifier zero knowledge, and computational witness-extended emulation.

2.5 Notations

Let G denote any type of secure cyclic group of prime order p, and let Z,, denote an integer field modulo
p. Group elements other then generators are denoted by capital letters. e.g., C' = uj'ug?..ul» € G
is a commitment commits to a vector @ denoted by a capital letter, and B € G is a random group
element also denoted by a capital letter. For generators used as base points to compute other group
elements in our protocol, such as g, h € G, we use lower case letters to denote them. Greek letters are
used to label hidden key values. e.g. v is the blinding key for Pedersen commitment P on generator
h € G s.t. P = g*h". Finally, we use standard vector notation v’ to denote vectors. i.e. @ € Zj is a list
of n integers a; for i = {1,2,...,n}.

We write R = {(Public Inputs ; Witnesses) : Relation} to denote the relation R using the
specified public inputs and witnesses.

2.6 The Input Transformation Concept

We first define the relation for the base version of our protocol. For [input parameters, let Cr represent
the set of arbitrary arithmetic circuits in IF, there exists a zero knowledge argument for the relation:

{(9,h,R€EG,PeG E.€Cr; G, TEL,,rc€Lp):

1
P, =g%h"" ¥V, € [1,]] N R=g¢g"h AN E.(d,v) =r,€} @

The above relation states that each input parameter to a circuit is represented by a commitment P; in
G, which hides input value a; with blinding key v;. The circuit output r is computed from processing
circuit F. with inputs P. The circuit output value is also represented by a commitment R € G with
blinding key e.

Despite being additively homomorphic, we cannot take Pedersen commitments as inputs to a
circuit because we cannot perform multiplications on them. We introduce a new concept called input
transformation. The main idea is to transform committed inputs in Perdersen commitment form
in G to linear polynomials in F where both the prover and the verifier can perform addition and
multiplication operations just as they add and multiply integers in F. For an input commitment P;
s.t. P = g%hV" € G where a; is the input value and v; is its blinding key, we create a corresponding
integer value in linear polynomial form a;" € Z,, :

ai' =a; +Xq; € Zp (2)

Note that the blinding key of each input is updated to a random «; s.t. «; # v;. Likewise, the
circuit output commitment R = g"h¢ € G also has a matching linear polynomial.

r=r+XecZ, (3)

Since inputs represented by linear polynomials are just integer values, verifiers can perform arith-
metic operations on them just as they do on integers. The output value of a circuit evaluation is now
a polynomial with m, + 1 degrees evaluated at point X. The constant term of the output polynomial
is the circuit output r and the coefficient of the degree one term is the blinding key of the circuit
output.

One of the key process of our protocol is to reduce this output polynomial of m, 4 1 degree to a
linear polynomial of degree 1 as stated in[3]by subtracting out all other terms of the output polynomial.

We are now ready to expand the definition of relation 1 above with the new blinding keys used
to hide inputs and outputs. We say witnesses 7, ¢, 7 are coefficients of the output polynomial after
evaluating circuit E. where 7 are coefficients of degree 2 term to degree m, + 1 term. The updated
relation is as follows:

{(9,h,R€ G, i€ G™,PeG E. €Cp;@,0 €L, re€ly,7eLl):

P, =g"h" V¥V, € [LLUNR=g"h* NE.(a,T) =r,¢,T} @

In our protocol, we can break the evaluation process into two sub-statements: in proving the

first sub-statement, the prover proves each input in G is correctly transformed to Z, by proving their

mapping is legit; in proving the second sub-statement, the prover proves the circuit output is correctly

computed from transformed inputs by showing the constant term of the output polynomial maps to
the committed circuit output value.

To prove the first sub-statement we show how to prove each input transformation from P; to
a; is legit. Unlike commitments, the linear polynomial @] € Z, is not binding to a; as we can easily
manipulate the value of a; by altering its blinding key if the value of challenge X is known. e.g.
a; = (a; +0) + z(v; — §/x) (the “committed” value a; is altered to a; +). This is ok because the
prover must commits to circuit output 7’ and its blinding key e before the evaluation point X is
known.

The prover commits to the differences between blinding key pairs (a; — v;) using blinding key
. The verifier uses a random challenge k& to generate k= k', ..., k! so that verifiers can verify all
transformed inputs in batch s.t.:

(Oz,; — U,)k’z € Zp (5)

l
K =

%

PK,, = h"u" € G (6)

If the prover can prove the knowledge of , u on generator h,u € G using any proof of knowledge
(proof of discrete logarithm) protocol, we can confirm that only the sum of products of blinding
keys (exponent of h) are being updated except for a negligible probability. To prove and verify the
knowledge of two exponents on two generators of a committed value, we extend the functionality of
proveDL and verifyDL defined earlier:

e ProveEDL(h,u,k, i) — try, generates proof transcript trip, where k, u are witnesses.

e VerifyEDL(h,u, PK,,,tr.,) — b € {0,1} takes a proof transcript tr., and verify a pair of
discrete log relation (PK,, = h"u*), and outputs true if the knowledge of these relation is
verified, false otherwise.

Neither of these two functions above will be used in the final version of our protocol, we use them
to get a secure version of our base protocol (Protocol 1). The implementation of the two functions
above is trivial, one such example is the extended Shnorr protocol find in halo [I3]. The key is to
not allow attackers to retrieve h* and u* from proof transcripts. In protocol 1, the prover creates the
proof transcript for the knowledge of x, u on generators h,u € G as follows:

tre, = ProveEDL(h,u, k, i) (7)

To verify all input mappings in one batch, the verifier adds the commitment to blinding key
differences PK,,, back to the sum of products of all input commitments:

l
:(szkl)PKK;LEG (8)

The prover use the new blinding keys @ to create linear polynomials a; such that a;' = a; + za;
for all 7. After challenge k is available, the prover can batch prove the mapping between committed
values and their linear polynomial values by providing transcripts for tr,,.

1
= (wk' €z, 9)
i=1
tra,u = ProveEDL((h/g"),u, o, 1) (10)

The verifier computes the sum of products of @ and powers of k. With sum of products of both
P,a’ (P, t) available, the verifier can trivially compute PK,, s.t

l
t=> alk' €, (11)
i=1
PKo,u = Pi/g" = (h/g")* u" (12)

If the prover can prove the knowledge of oy on generator (h/g*) € G using any proof of knowledge
protocol, we know that the mapping between P and o is correct except for a negligible probability.

To prove the second sub-statement To prove the circuit output is correctly computed from
transformed inputs d@’, the prover needs to show it knows the coefficient of all terms of the output
polynomial. For example, for a simple circuit that just outputs the sum of two inputs, the prover
needs to show it knows the constant term r and the coefficient of the degree 1 term e of the output
polynomial :

o=a'+a)’ =r+X-e (13)

Computing the output polynomial is the same as adding two polynomials, where r = (a1 +a2) and
the blinding key is € = (a1 + @2). Likewise, multiplying two inputs ay’, as’ is the same as multiplying
two polynomials:

o=a-as=r+X-e+ X7 (14)

Where r = a1 - as, € = asag + a1z, and 7 = a; - as. We use the label “0” to represent the
circuit output, which is equivalent to the output polynomial evaluated at a point X. The degree of the
polynomial will increase after each multiplication operation, so the efficiency will drop as the maximum
number of multiplications included in any path that leads to the circuit output (m,) increases.

We also need the reduce the circuit output from a degree m,+ 1 polynomial to a linear polynomial
r" = r 4+ Xe maps to the commitment R = g"h¢. To get the linear polynomial we need from the raw
output o, the verifier needs to subtract out all terms with degree higher than one. In the multiplication
circuit above, the verifier needs to eliminate the term of degree 2 to get the linear polynomial. To do
so, the prover commits to 7 before the challenge x is known. When the challenge z is available, the
prover sends the evaluation of terms with degree higher than one y to the verifier and engage with
the verifier to prove f(z) = X217 = y. With y = X?7 validated, the verifier can subtract y from o to
get the output in linear polynomial form:

r=o0—y (15)

We call y the “breaker” of our protocol, because it subtracts all noises (polynomial terms of degree
higher than one) from the raw circuit output o. In practice, the prover and the verifier engages in a
polynomial commitment protocol to confirm f(z) = y.

C:ﬁu? eG (16)

i=1

In the final version of our protocol, the polynomial commitment evaluation logic is broken apart and
integrated with our protocol (protocol 3), so that we no longer need to call a polynomial commitment
evaluation function as we do in Protocol 1 and Protocol 2 (see section 5).

We define two more functions for our protocol. function computeKeys is used by the prover to
compute keys of a polynomial, and function computeCircuit is used by verifiers to compute the
value of the result polynomial at evaluation point X:

1. function computeK eys(circuit, “input values”, “input keys”) take input values @ and keys ¥ to
compute 7, ¢, 7 (coefficients of o) using the circuit provided to the protocol. function computeKeys
uses function Multiply and function Add defined above to compute coefficients of o.

2. function computeClircuit(circuit, “input values in linear polynomial form”) trivially compute the
result o from the inputs provided as they are integer values.

We don’t waste space describing them in detail here since they are trivial to implement. With all
the information available, we now formally introduce Protocol 1:

Input: (P € G, i€ G™,g,h€G,ad,veZ) (17)
P'sinput : (P, @, g, h;@,0) (18)

V's input : (13, i, g, h) (19)

P compute : (20)

o &7, i=1{1,..,1} (21)

r,e, T = computeK eys(equation, @, &) (22)
R=¢"h* G (23)

tre = ((h/g"), €) (24)

c=]]ureG
i=1

P—V:C R,tr.
VY compute :

xﬁZp
V—->P:x
P compute :

a;=a;+zo; €Z, i={1,..,1}

mp

y:ZTi-xiH € Zy
i

P—=V:ad,y
VY verify final output R :
o = computeCircuit(circuit,a’)
r=o0-yeG
PK.=R/g" €G
if PolyCommitEval(C,y,x;T)
then continue
else reject
if VerifyDL((h/g"), PK.,tre)
then continue
else reject
VY compute :
ki z,
V—P:k

P compute :

l
oy = Zaiki € Ly
i=1

tra,u = ProveEDL((h/g"), u, o4, 1)
!

K= Z(ai —v)k' €7,

i=1
PK,, =h"u" G
tre, = ProveEDL(h,u, K, 1)
P—=V:PKu,treutra,u
V verify inputs :

l
p=(][PF) PK.. €G
i=1

l
t=> a/k' €,
i=1

PK,,, = P/q" (57)
if VerifyEDL(h,u, PK ., tre), (58)
and VerifyEDL((h/g9"),u, PKa,;,tra,u) (59)

then accept (60)
else reject (61)

Protocol 1

Theorem 1. (Zero Knowledge Argument with Practical Efficiency). The proof system presented in
this section has perfect completeness, perfect special honest verifier zero-knowledge, and computational
witness extended emulation.

The proof for Theorem [1|is presented in Appendix A.

The main idea of Protocol 1 is to convert commitments P; to its linear polynomial form a) so
that the verifier can just take linear polynomials as input values to the circuit and use standard
integer operations to compute the circuit. The circuit output o is a polynomial with m, + 1 degree.
By subtracting out all term with degree greater than one as in equation |15 explained, the verifier gets
the circuit output in linear polynomial form that maps to the commitment R.

3 Making Input Transformation Based Zero Knowledge Protocol Efficient
with NTT

Protocol 1’s prover isn’t efficient because O(m,,?) field operations in prover work can become expensive
as my gets big. In this section, we introduce a mechanism that allows us to use the number theoretic
transform (NTT) to cut prover’s field operation work to m, log m,.

3.1 Using Number Theoretic Transform to Improve Prover Performance in Field
Operations

The objective of NTT is to multiply two polynomials such that the coefficients of the resultant polyno-
mials are calculated under a particular modulo in m, log m,, a major improvement over m,? runtime
of the trivial approach. However, a major drawback of NTT is that it requires a prime modulo g of the
form ¢ = r-2¥ +1 to be the prime order of the group, where k and c are arbitrary constants. Since the
prime order of widely used G in cryptography is usually not a prime with the aforementioned form, we
need a mechanism to map linear polynomials with a prime modulo ¢ that satisfies the aforementioned
form to a group G with prime order p. g is expected to be smaller than p because: 1) computation
in p (e.g. polynomial commitment evaluation) won’t overflow 2) the smaller the ¢ value in bits, the
lower the communication cost. In our benchmark testing, we set ¢ to a 61-bit prime number.

We redefine equation [2[s.t. a; and its blinding key «; are now in prime field ¢ instead of the larger
prime field p.

a; =a; +xo; € Ly i={1,..1} (62)

We define a new blinding key w; € Z, and mix that with blinding key v; in P; and its corresponding
blinding key «; in a’ to create S;,T;.

S;=g“ecG i={1,..,1} (63)
Ti=g" G i={1,..,1} (64)

The prover then sends S;, T; for i = {1,..,1} to the verifier. When the challenge x € Z, is available,
the prover sends e; s.t.:

ei = ((za; mod q) —ze;) x4+ w;-q i={1,..,1} (65)

10

e; does not need to be in Z,, but it is a good idea to keep e; smaller than p to keep the communication
cost low. The idea here is that when we subtract e; from a;, we can subtract out the blinding modulo ¢
element (zo; mod q) from @) (e.g. @} -z —e; = (a; + xa;) - & — w;q). The verifier can replace x%; — w;q
part with the new blinding element x?v; as the exponent of generator g by adding the previously

committed values S;, T;.
guTTE LT LG = (¢T) T e G i ={1,...,1} (66)

With (g%)%+*vi available, the verifier can trivially divide each P; and taking their sum with powers
of k to get PK,,.

l pe K
PK,, = H (Qa;m—ei .lT?D2 . S'> €G (67)
i=1 i v

PK,, = ((h/g)*)v*. The verifier can confirm the correctness of the transformation except with negli-
gible probability if the prover can prove the knowledge of v; on generator (h/g)* € G.

Finally, the verifier needs to make sure e; doesn’t alter the value of a;. This can be done by taking
the modulus ¢ of e; and checking if it returns 0. This is trivial to understand since a} is in Z,. If ¢; is
a multiple of ¢ then it is obvious that it cannot alter the value of a;.

?
if (e; mod ¢q) = 0, then continue (68)

This test also implies the transformation process explained in this section is sound since soundness of
equation [67] is trivial to prove. This will be explained in more detail along with rest of the protocol in
Appendix B.

This transformation process is zero-knowledge because e; does not leak any information to the
verifier either. This is because the first part of e;: ((xa; mod q¢) — xza;) - = is a multiple of ¢, and
can be represented as s - g for some s. This implies e; = (s + w) - ¢ for some randomly chosen w.
Since every other transcript (in G) is trivially zero-knowledge, we say this transformation process is
zero-knowledge if w is correctly chosen (e.g. any number between —s to p/q s.t. e; <p).

We have so far skipped the overflow problem. If a; + (xa; mod ¢) > ¢, then we will have an overflow
problem in equation when computing a} - x — e;. To get around this the prover simply needs to
check if a; + (za;) mod ¢ overflows ¢, and subtracts ¢ - « from e; if that’s the case.

if a; + (xa; mod q) > ¢, thene;, =¢; —q-x i={1,...,1} (69)

We now merge the NTT conversion code introduced in this section and formally define the efficient
version of our protocol in Protocol 2.

Input: (P €G' @€ G™, g,h € G,a,v € L)
P'sinput : (P, ,g,h;d, o)
V'sinput : (]3, i, g,h)

P compute :

(70)
(71)
(72)
(73)
a; &7, i={1,..,1} (74)
w; & Z,, i={1,..,1} (75)
r,e,T = compute K eys(equation, d, @) € Z;”PJFQ (76)
R=g¢"h* G (77)
tre = ((h/g"), €) (78)

11

C=][uiec
i=1
Si=g""1€G i={1,..,1}
T;i=¢g""%eG i={1,...,1}
P—=V: §,f,C,R,tr6
V compute :
z & Ly,
V—=P:x
P compute :
a, = a; +xa; € Z, i={1,..,1}
ei = ((za; mod q) — va;)z + wiq € Zy i={1,..,1}
if a; + (za; mod q) > ¢q, thene; =¢; —q-z i={1,..,1}

Mp
y:ZTi-x”’l € Zy
i

P—=V:ga,y

YV verify final output :
o = compute Equation(equation,d’) € Z,
r=o0o—y€Z, [/r+xz-e
PK,. = R/gT/ €G //equal to (h/g®)*
if PolyCommitEval(C,y,x;T), then continue
else reject
if VerifyDL((h/¢"), PK.,tr.), then continue
else reject

VY compute :
ke z,

V—-P:k

P compute :

l
vy = Z vkt € Ly,
i=1
tr,, = ProveDL((h/g)®,vt)
P—=Vitr,
V verify inputs :
if (e; mod q) < 0, then continue i={1,...,1l}

else reject

l pe K*
PK,, =] (ga;_w_ei T s) €G

i=1
if VerifyDL((h/g)*, PK,,,tr,,), then accept

else reject

12

—~
©
(=}

=

© © © O
U

Ne)
ot

©
o

=~~~ o~~~ —~ —~
Ne) N
Ne] D

el
=}

—
o Nej
— J

D D D D DD DO —

~ o~~~
—_ =
o O
w N

—
—
o
=~

~

Protocol 2

Theorem 2. (Efficient Zero Knowledge Protocol for Arbitrary Circuit with Practical Succinctness).
The proof system presented in this section has perfect completeness, perfect special honest verifier
zero-knowledge, and computational witness extended emulation.

The proof for Theorem [2]is presented in Appendix B.

Since we are now evaluating the output polynomial at a smaller field ¢, the soundness error is in-
creased due to existence of polynomial roots. The NTT acceptable prime we use in our implementation
is ¢ = 1945555039024054273, where r = 27,k = 56,9 = 5 s.t. ¢ = r % 2F + 1.

3.2 The Asymptotic Cost of Protocol 2

The prover runtime of Protocol 2 is dominated by O(m,, log m,, +m, +1) field operations and O(m,, +
mpl/ 2 +1) group exponentiations; the verifier runtime is dominated by O(n—l—mpl/ 2+1) field operations
and O(m,,'/? 4+ 1) group exponentiations; and the communication cost is dominated by O(m,'/? +1)
group elements and O(mpl/ 2 +1) field elements.

The worst possible scenario for our protocol is when we have a sequence of multiplications where
both multiplier and multiplicand are the product of the previous multiplication operation (e.g. ((a?)?)?
is technically 3 multiplications, but it will result in m, = 23), in such case m, will grow exponentially.
One way to tackle such problem is to break the circuit into segments of smaller sub-circuits so that
m, value will be refreshed whenever it grows oversize, similar to the idea of bootstrapping in fully
homomorphic encryption. We will explore this option in the next section.

4 Enhancing Efficiency for Circuits with High Depth

The efficiency of protocol 2 will degrade as the total number of multiplications in the path computing
the output (m, value) grow larger, a not-so-uncommon scenario for circuits with high depth. One way
to get around this problem is to have multiple breakers so that the number of polynomial terms will

never exceed b s.t. b= %ﬁ (symbol my, stands for the number of breakers).

4.1 Batch Verification With Multiple Breakers

Each breaker y; is an evaluation at point x for terms z2, ..., 2! of the polynomial accumulated thus

far in the computation. Obviously, it is not efficient for us to commit and evaluate m number of
polynomials, where m stands for the number of breakers (y1, ..., ym) We use to evaluate a circuit.

Fortunately, we just need to make a simple modification to the polynomial commitment evaluation
protocol defined by Bootle et al. to enable verifiers to evaluate my breakers all at once. We start by
aligning each breaker y; to the coefficients of the ith generator of vector commitments (columns of
the my, x b matrix).

T T T1,b
ud?! wtt o owtt L ugh x?
/
T T T
ud? Uyt uy? L uy” x3
/
Y3 73,1 73,2 T3,b 4
uz® | ug Ug .. Ug T
’
Ymy, Tmy,,1 Tmy,,2 Tmy,b b+1
my Umy, my B mp T

13

Figure 1

Let y; = (y}) mod ¢, we can observe from figure 1 that each y, can be computed from the sum
of products of exponents of u; (e.g. yi = 7;12% + 7003 + ... 4+ 75 p20).

In our protocol, the prover commits to the columns of the matrix in figure 1 in the same way as
that in Bootle et al.’s polynomial commitment evaluation scheme.

mp

Cj=[Jui” for j={1,..,b} (113)
i=1
When the evaluation point z is known, the verifier computes the exponent of each Cj. If the
equality below is true, all breakers are verified.

b

T[T (114)
=1

Jj=1

Note that if each breaker y; is equal to the sum of products of b terms and each term is a product
of z7t1 € Z, and 7;; € Z,, then the bit length of |y| is approximately |yi| < 2 |q| + |b|. The value
of y, can also be expressed as y; = y; + z - ¢ for some z and |z| < |q| + |b]. However, passing raw y,
values to the verifier may leak some information about the coefficients.

To cope with that, we make the prover commit to a blinding vector 5 € Z™ where |m| ~ 2-|q|+]b|,
s.t. the exact upper bond for m is unknown to the verifier. As a result, each y} is now computed as:

b
Y= ZTi’jxj +8; for i={1,...,mp} (115)
j=1
Note that the power (exponent) of in each term in the equation above is one degree lower than
it needs to be, so to get y; from y. the verifier needs to multiply x one more time:

yi=(yi-z)mod g €Z, for i={1,...,mp} (116)

This implies the value of the circuit output ' is now updated to m, number of r; = r; +x(e; + ;) €
Zg, so we need to adjust the blinding key of ' by adding 8; to it in the computeKeys function. The
updated equality graph is shown in figure 2 below.

’
Yy 11 T1,2 T1b B1
uy Uy Uy Ly T uf
’
Ys T2,1 T2,2 T2,b 2 B2
Uy Ug Uy C Uy x U,
’
Y3 73,1 73,2 T3,b 3 Bs
uz® | ug Ug N V% T Us
v, T, T, Ty b B
m my,1 mp,2 my, b m
Uiy’ my My Ce Umy” T Uy’
Figure 2
Let B = H;’;”l uf ‘ the equality in figure 2 can also be expressed using the equality check below:
mypy b
yi 7 2
[Iw=]]cy B (117)
i=1 j=1

If the commitments 6, B and vector ¥ satisfy the equation above, then we know breakers ¢ are
valid. The verifier applies equation to each y; to get the actual breakers y; used in computing o.

We are now ready to introduce Protocol 3, which replaces the generic polynomial commitment
evaluation in Protocol 2 with the multi-breaker mechanism we introduced in this section.

Input: (PG, 7€ G™,g,h € G,a,7 € Z) (118)
P'sinput (]3, i, g, h;d,v) (119)
V'sinput : (P, i, g, h) (120)
P compute : (121)

a; &7, i={1,..,1} (122)
wi & 7, i={1,..,0} (123)
ﬂi i ana Z = {17 "'7mb} (124)
r,e, T = compute K eys(equation, @, &, B) € Z;“P“ (125)
R=gh €G (126)
tro = ((h/g).0) (127)
mp
Ci=[[u" eG i={1,...,b} (128)
i=1
Si=¢""1€G i={1,..,1} (129)
T, =g % cG i={1,..1} (130)
mp
B=][w ec (131)
i=1
P—V:S8 T C, B, R,tr (132)
V compute : (133)
$
+ &z, (134)
V=P (135)
P compute : (136)
a; =a; + xoy € Z, i={1,..,1} (137)
e; = ((za; mod q) — za;)z + wiq € Zy i1={1,..,1} (138)
if a; + (xa; mod q) > ¢, thene;, =¢; —q-z ={1,..,1} (139)
b
yi=> Tijal +Bi €Ly i={1,...,mp} (140)
J
PoV:edy (141)
VY verify final output : (142)
mp b .
if (H ult z H ij - B) then continue (143)
i=1 j=1
else reject (144)
for i=1,..my { (145)
0; = compute Equation(equation,da’,r") € Z, (146)
yi = (y; -) mod q € Z, (147)

15

ri' =0; —yi € Ly (148)
r=r'€l, (149)

} (150)
PK.=R/g" €G //equal to (h/g") (151)

if VerifyDL((h/g"), PK,,tr.), then continue (152)
else reject (153)

VY compute : (154)
ke z, (155)
VPik (156)
P compute : (157)

1
v =Y vk €7, (158)
i=1
try, = ProveDL((h/g)%,vt) (159)
P—=V:itr, (160)
V verify inputs : (161)
if (e; mod q) < 0, then continue i={1,...,1} (162)
else reject (163)
l pe K

PK,, = ; t eG 164

if VerifyDL((h/g)*, PK,,,try,,), then accept (165)
else reject (166)

Protocol 3

Theorem 3. (Efficient Zero Knowledge Argument for Arbitrary Circuits with Practical Efficiency).
The proof system presented in this section has perfect completeness, perfect special honest verifier
zero-knowledge, and computational witness extended emulation.

The proof for Theorem [3|is presented in Appendix C.

From line [T46] to [I5]] in protocol 3 we assumed our circuit is a linear circuit where there is only
one path because it is easy to model. In practice, binary circuits generally have multiple ”bit” paths
that executes in parallel.

4.2 Booleanity Check and Bit Decomposition/Reposition

A common requirement in proving binary circuits is the need to enforce input data a; € {0,1} for
some i € {1,...,1}. In practice, it is useful to decompose [full integer inputs into [- 32 bits (assuming
we use 32 bits to represent a full integer, like the int type in Java) in order to perform comparison
operations on input data. If a committed value a; is in [0, 1], then its linear polynomial form a; must
have the following property:

(a} - a; —al) = Bra + Box? (167)

Where 2 = o?, and 1 = a when a; is 1 and f; = —a when a; is 0. To prove the correctness for all
a; € {0,1} , the prover commits to two polynomials K, Ks s.t.

K, = uflluglz ...uf” h# and Ky = uf21u§22 ...ule h#? (168)

16

Where K3 commits to coefficients on x term for ¢ € {1,...,1-32} and K5 commits to coefficients on
22 term for i € {1,...,1-32}. The prover sends K1, K to the verifier. When the challenge k is received,
the prover sends the evaluation results yi,ys to the verifier, and the verifier uses the polynomial
commitment protocol to verify the correctness of y1,y2 at point k, and checks if the equality below is
true:

1-32
yioztys-a?=) (af-a;—a))- ¥ (169)

j=1

Once we know all linear polynomials maps to either 0 or 1, it is trivial to recompose the linear
polynomial form of a full integer input a; from 32 decomposed bits a; ; for j = {1, ..., 32}.

32
=Y d ;-2 (170)
j=1

In practice, we will conduct booleanity test on all [-32 bit values at once and then use equation [I70]
to convert them into [full integer values so that we can perform the ”linear polynomial to Pedersen
commitment” mapping test explained in the last two sections.

4.3 The Asymptotic Cost of Protocol 3

For a circuit with [input parameters s.t. each input parameter is composed of 32 bits, the prover
runtime of the final version (Protocol 3) of our protocol is dominated by O(m,, log m,lj/ >4 my + 1+
32. 1Y %) field operations (assuming additive operations in I are practically free) and O(m, +mp1/ 24
1+ 32-1'/2) group exponentiations; the verifier runtime is dominated by O(n +m,/? +1 + 32 -1'/?)
field operations and O(mpl/ 24 0432.0Y 2) group exponentiations; and the communication cost is
dominated by O(m,"/2 41 + 32 -1/?) group elements and O(m,,'/2 + 1 + 32 - 1*/?) field elements.

5 Performance Comparison

We compare the performance of our protocol to some of the most popular transparent Zero Knowledge
Protocols for which open source codes are available. Our test runs are performed on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60 Ghz. Only one core is being utilized, and all tests are run on a
single CPU thread. Our test code is a non-interactive implementation (using Fiat-Shamir heuristic)
of Protocol 3.

The baseline protocols we picked are Hyrax, Ligero, Aurora, and Spartan-NIZK. These protocols
are chosen because they are the most representative of popular zero-knowledge protocols and can
be verified with open source code. In particular, Aurora outperforms STARK in all key parameters
(prover runtime, verifier runtime, proof size), and the NIZK version of Spartan offers the most balanced
performance across all performance parameters. We also do not consider SNARKSs even though most
of them can be made transparent by switching to a transparent polynomial commitment scheme, as
they are hardly efficient after the switch.

We didn’t consider transparent protocols that highly depend on circuit depth such as GKR based
protocols simply because they can’t handle 22 sequential multiplications. We also don’t consider
VOLE based protocols as they are only optimized for prover work. Other popular transparent schemes
such as Bulletproofs are also not being considered because they have linear verifier runtime and
therefore are not succinct.

Spartan+-+ and Lakonia are two more recent developments that we didn’t include in our benchmark
testing but are worth mentioning. The improvement of Spartan+-+ over SpartanNIZK is marginal, and
the performance of Lakonia is largely comparable to that of SpartanNIZK (the prover performance of

17

SpartanNIZK is approximately 3X more efficient, and the verifier performance is 1.5X more efficient
than that of Lakonia, while Lakonia is 4X more efficient than SpartanNIZK in proof size).

We set the number of inputs to our protocol to 30 integers, and each input is represented by 32
bits so that there are a total of 30 - 32 = 960 input bits to the circuit. The circuit we use performs
n sequential multiplications on ! inputs, so we have m, = n, likely much closer to the worst case
scenario of our protocol than the test cases of other protocols that we are comparing against. If we
run a shallow circuit where m, number is small, the benchmark result will likely be significantly
better. For example, if we have a circuit where m, = 1, then its prover runtime performance will be
comparable to that of verifier runtime.

The NTT acceptable prime number we picked for our benchmark testing is ¢ = 1945555039024054273,
a 61-bit number that implies the soundness error will be at most 2751 for a circuit with 22° sequential
multiplications where m, = n, more than enough in most real-life applications. If this is not enough,
one can pick a bigger NTT acceptable prime number. For example, if we use a 90 bit prime number
(soundness error at most 278°), the size of @ will increase by approximately 1/2 or approximately 29
kb for 960 input bits, and additional (to a lesser extent) prover and verifier costs will also increase
marginally as we move field computations from int64 to int128.

To maximize the advantage of the NTT algorithm in computing sequential multiplications, we
process each segment (1, ...,my) of our circuit in binary tree format, such tuning may not be required
in real-world applications since large circuits should have multiplication gates somewhat balanced out
across layers.

For group operations, we use curve25519-dalek implementation, and Pippenger acceleration is
applied to all sum-of-product group operations. For field operations, we use Montgomery algorithm
to accelerate modular multiplications on the 61-bit NTT prime gq.

Circuit size 210 212 o4 216 218 220
Hyrax 1 2.8 9 36 117 486
Ligero 0.1 0.4 1.6 4 17 69
Aurora 0.5 1.6 6.5 27 116 485
SpartanNIZK 0.02 0.05 0.16 0.6 1.7 6.2
This Work(m, = n) 0.04 0.08 0.2 0.6 1.7 5.5

Table 1. Prover performance comparison (seconds)

Table 1 shows that as the circuit size gets bigger, the prover performance of our protocol is becoming
increasingly more efficient than all of our baseline protocols. This is because the cost associated with
the number of inputs to the circuit is fixed (960 bits), and its impact relative to the cost of evaluating
the whole circuit gradually declines as the circuit size gets bigger (the same effect will also apply to
verifier runtime and proof size benchmarks below).

From the chart, we can observe that only SpartanNIZK offers comparable (only slightly worse)
prover runtime performance to that of our protocol, but it is worth to note that this is not a fair com-
parison in our favor since we’re comparing the evaluation of 22° constraints in SpartanNIZK (provided
by its test code) with the unlikely scenario of 220 sequential multiplications in that of our protocol.

Table 2 shows that the communication cost of our protocol dominates that of Ligero and Aurora,
while largely comparable to SpartanNIZK and Hyrax. For higher input number counts, see Table 4
for more detail.

Table 1 and 2 shows that our protocol is largely comparable to the current state of art in prover
runtime and communication cost. Table 3 demonstrates that our protocol achieves significant im-

18

Circuit size 210 212 21 216 2!8 220
Hyrax 14 17 21 28 38 58
Ligero 546 1,076 2,100 5,788 10,527 19,828
Aurora 477 610 810 1,069 1,315 1,603
SpartanNIZK 9 12 15 21 30 48
This Work(m, = n) 16 17 22 27 39 65

Table 2. Proof size comparison (kilobytes)

Circuit size 210 212 214 216 218 220
Hyrax 206 253 331 594 1.6s 8.1s
Ligero 50 179 700 2s 7.5s 33s
Aurora 192 590 2s 7.2s 29.8s 118s
SpartanNIZK 7 11 17 36 103 387
This Work(m, = n) 8 9 11 13 17 26

Table 3. Verifier performance comparison (milliseconds)

provement by at least one order of magnitude in verifier runtime over all baseline protocols we are
comparing against. Like that of communication cost, the verifier runtime of our protocol will grow
when the number of inputs to the protocol grows.

Some may consider 30 integer inputs and 960 input bits to a circuit too small, so in table 4
we list performance benchmarks for different number of inputs (1) to a circuit with 220 sequential
multiplications.

Input bits (I - 32)|Input Integers (I)|Prover time(s)|Verifier time(ms)|Proof size(kb)
960 30 5.5 26 65
1,280 40 5.5 27 69
1,600 50 5.5 27 73
1,920 60 5.5 28 7
2,240 70 5.5 29 81
2,560 80 5.5 30 85
2,880 90 5.6 30 88
3,200 100 5.6 31 93

Table 4. Performance comparison for different input numbers on circuits with 22° sequential multiplications
s.t.mp =n

In table 4 we can observe that increases in prover runtime and verifier runtime are small as the
input bits count approaching 3,200. This is because the total input number is still small compared to
the size of the circuit (22 sequential multiplications). Communication cost gets impacted the most
as the input count gets higher. This is because the prover have to send [- 32 linear polynomials to
the verifier. Technically speaking, more inputs usually implies lower circuit depth and less complex
business logic.

6 Related Work

Recursive SNARK is a hot area of research of late, they are especially useful for Blockchain use cases
where the proof of the earlier block can be used as an input to the circuit of proving the later block.

19

Early recursive SNARKs [37] [23] [10] [8] [22] built a prover for the whole SNARK circuit and then
reuse this prover repeatedly. More recent recursive SNARKS are built on accumulation schemes [13]
[18] [I1] [I7] [32] that are more scalable. One requirement for recursive SNARKs is that the protocol
needs to have succinct proof size and verification time. Although our protocol performs well in practice,
it is not fully succinct as the verifier runs a linear number of field operations (in compute Equation
function). This linear operation part constitutes approximately 25% of the total verification cost when
running a circuit with 22° sequential multiplications.

Appendix

A. Proof for Theorem One

Proof. Perfect completeness follows from the fact that Protocol 1 is trivially complete. To prove per-
fect honest-verifier zero-knowledge, we define a simulator S to show that protocol 1 has perfect special
honest verifier zero-knowledge for relation [& uses simulator Sg to simulate proof transcripts for
proof of knowledge (or proof of discrete logarithm, which we know for a fact that it exists) proto-
cols, and simulator S, to simulate proof transcripts for polynomial commitment evaluation function
PolyCommitEval.

Simulator S generates random group elements for C, R, proof of knowledge transcript tr.. After
receiving challenge x from the verifier, the simulator generates [random integers to represent linear
polynomials @ and one random integer to represent y and sends them to the verifier.

The verifier follows the protocol to compute PK,, then simulator S calls simulator Sg to interact
with the verifier and generate all necessary transcripts to prove it knows the value of €. This makes
sense since we already know for a fact that schnorr and many other proof of knowledge protocols
have perfect special honest verifier zero-knowledge. Similarly, the simulator S calls simulator Sp to
simulate the transcripts for proving y is the evaluated value at point x for polynomial commitment
C.

The simulator then simulates the transcripts to prove it knows «a; and k. The simulator simply
sends randomly generated PK,, and random transcripts for ¢r,, and tr.,,, and calls simulator Sg
to simulate transcripts needed to prove the knowledge of k and .

Simulator S chooses all proof elements and challenges according to the randomness supplied by the
adversary from their respective domains or computes them directly as described in the protocol. Since
all elements in proof transcripts are either independently randomly distributed or their relationship is
fully defined by the verification equations, we can conclude that protocol 1 has perfect special honest
verifier zero-knowledge.

To prove computational witness extended emulation, we construct an extractor X, which uses
extractor X' to extract witnesses from proof of knowledge transcripts and extractor X to extract
witnesses from polynomial commitments.

We validate the soundness of Protocol 1 in three steps. First, we show how to construct an extractor
X for Protocol 1 s.t. on input Pe G',R € G, it either extracts witnesses r, e, 7 for relation [4] or
discovers a non-trivial discrete logarithm relation among g, h, 4 € G. Next, we show that the extractor
X either extracts witnesses d, U s.t. ¥ maps to & or discovers a non-trivial discrete logarithm relation
among ¢, h,u € G. Finally, we validate the proof by checking if r, ¢, 7 can be computed from witnesses
a,da.

In step one, extractor X interacts with the prover in the same way as any verifier would and
receives C, R, tr. from the prover. The extractor X then generates a challenge z; and forwards it to
the prover. After receiving a,y1, the extractor rewinds the prover and sends another challenge x2 to
retrieve @b, Y.

The extractor then follows the protocol and computes o and PK., then calls extractor Xg to extract
€ from tr. and PK.. With either x; or x5, we can trivially retrieve r, e from 7’ since r’' = r + x - ¢,

20

and validate if R = ¢g"h°. To validate if r, e is correctly computed from the circuit, extractor X calls
extractor X'p to retrieve set 7 from polynomial commitment C.

We have now retrieved witnesses r, €, 7 using the prover committed values C, R, tr., and we know
for a fact that o must also be computed from @, @ and evaluation point = since:

o:r+e~x+2n~x”1 (171)
i=1

If the prover is honest, r, e, 7 must be computed by the prover from witnesses @, &

So in the second step, we validate if witnesses of @’ (d@, @) used in computing o maps to @, in P
by checking if we can extract these witnesses. With @) and @, extractor X retrieved earlier, we can
trivially retrieve @, & since for all i = {1, ...,1} we have:

ay, —ay, = oz — 2)

We then extracts witnesses @, ¥ using @’ and input commitments P. The extractor first generates ki
and then follows the protocol to get PK,,,,t7cpu, s PKa,uy 10, p, from the prover. The extractor then
calls extractor Xg to retrieve k1 and «y1. Rewind and repeat this procedure for another [times to
retrieve Ko, ..., Kj+1 and qqs, ..., 41 using evaluation points ko, ..., k1. (The extractor also retrieves
blinding keys [in the process, but we don’t use them here)

Through interpolation technique the extractor retrieves (o; — v;) and «; for 4 in {1,...,1}. With
these information, we can now trivially compute ¢ and verify if they can be mapped Pst. P = g hvi
unless we found a non-trivial relationship among generators g, h.

In the last step, we must be able to re-compute witnesses r, ¢, 7 from d@,a for equality to be
true except for a negligible probability or we found a non-trivial relationship among generators g, h, .
We can therefore conclude Protocol 1 has computational witness extended emulation.

B. Proof for Theorem Two

Proof. Perfect completeness follows from the fact that Protocol 2 is trivially complete. To prove perfect
honest-verifier zero-knowledge, we define a simulator S to show that protocol 2 has perfect special
honest verifier zero-knowledge for relation [f] S uses simulator Sg to simulate proof transcripts for
proof of knowledge (discrete logarithm) protocols, and simulator S, to simulate proof transcripts for
polynomial commitment evaluation function PolyCommitEval.

The simulator S generates random group elements for S ,T,C,R, proof of knowledge transcript tr..
After receiving challenge = from the verifier, the simulator generates [random integers to represent
€, | random integers to represent @', and one random integer to represent y and sends them to the
verifier.

The simulator follows the protocol to compute 0o and PK,, then the simulator S calls simulator
Sg to interact with the verifier and randomly generate all necessary transcripts to prove it knows
the value of e. This makes sense since we already know for a fact that schnorr and many other proof
of knowledge protocols have perfect special honest verifier zero-knowledge. Similarly, the simulator
S also calls simulator Sp to simulate transcripts for proving y is the evaluated value at point x for
polynomial commitment C'

Next, simulator S simulates transcripts for proving the mapping from d’ to P. After challenge k
is received from the prover, the simulator follows the protocol to compute PK,,, then calls simulator
Ss to simulate transcripts needed to prove knowledge of vy;.

The simulator chooses all proof elements and challenges according to the randomness supplied by
the adversary from their respective domains or computes them directly as described in the protocol.
Since all elements in proof transcripts are either independently randomly distributed or their relation-
ship is fully defined by the verification equations, we can conclude that protocol 2 is perfect special
honest verifier zero-knowledge.

21

To prove computational witness extended emulation, we construct an extractor X, which uses
extractor X' to extract witnesses from proof of knowledge transcripts and extractor X to extract
witnesses from polynomial commitment C'.

Like that of Protocol 1, we validate the soundness of Protocol 2 in three steps. First, we show how
to construct an extractor X for Protocol 2 s.t. on input Pe G', R € G, it either extracts witnesses
r, €, T for relation [4] or discovers a non-trivial discrete logarithm relation among g, h, 4 € G. Next, we
show that the extractor X either extracts witnesses @, v s.t. U maps to @ or discovers a non-trivial
discrete logarithm relation between g, h € G. Finally, we validate the proof by checking if r, €, 7 can
be computed from witnesses a, &.

In step one, the extractor X interacts with the prover in Protocol 2 and receives S , T , C, R,
tre from the prover. The extractor X then generates a challenge x; and forward it to the prover.
After receiving €1, d’, y1, the extractor rewinds the prover and sends another challenge xo to receive
523 Ei/Za Ya.

The extractor then follows the protocol and calls extractor Xg to extract € from tr. and PK..
With either z; or 2, we can trivially retrieve r from r’ since r’ = r + z - € and validate R = g"h®.
Likewise, the extractor X calls extractor Xp using either x1,y; or xo,ys pair to retrieve coefficient
set 7 from polynomial commitment C'. Like that of Protocol 1, we can compute o from r, e at any
evaluation point z as equality states.

We have now retrieved witnesses r, €, T using transcripts C, R, tr.. If the prover is honest, r, ¢, 7 are
coeflicients computed by the prover from a, @, where as @ maps to blinding keys v.

In step two, we validate if witnesses of @’ used in computing o maps to @,v in P by checking
if we can extract these witnesses. The extractor first generates k; and then follows the protocol to
get PK,,,,try,,, then calls extractor Xg to retrieve vy; . The extractor then rewinds and repeats the
above step [times to retrieve vo, ..., vy41. Through interpolation the extractor retrieves witnesses v;
for all ¢ in {1,...,!}. Dividing dividing P; by h"i we will get:

Pi/hV = g% (172)

Using the two different challenges 1, z2 we mentioned earlier, the extractor gets @, and @, from the
prover, which we can trivially retrieve a, & for all ¢ = {1, ...,1} since:

ay, — ay, = oz — 2)
If each v; maps to each «, then a; must be the exponent of g in equality [[73 or we found a non-trivial
relationship among generators g, h.

In step three, we check that if we can re-compute witnesses 7, ¢, 7 from a, @ . This must be true
for equality to be true except for a negligible probability or we found a non-trivial relationship
among generators g, h, @W. We can therefore conclude Protocol 2 has computational witness extended
emulation.

C. Proof for Theorem Three

Proof. Perfect completeness follows from the fact that Protocol 3 is trivially complete. To prove perfect
honest-verifier zero-knowledge, we define a simulator S to show that protocol 3 has perfect special
honest verifier zero-knowledge for relation {4l S uses simulator Sg to simulate proof transcripts for
proof of knowledge (or proof of discrete logarithm) protocols.

The simulator S generates random group elements to represent S , f, C_",B,R, and the proof of
knowledge transcript tr.. After receiving challenge x from the verifier, the simulator generates [random
integers to represent €, [random integers to represent @', and my, random integers to represent breakers
yy. The simulator sends them to the verifier.

The simulator follows the protocol to compute r’ and PK,, then the simulator S calls the simulator
Ss to interact with the verifier to randomly generate all the necessary transcripts to prove it knows

22

the value of e. This makes sense since we already know for a fact that schnorr and many other proof
of discrete log protocols have perfect special honest verifier zero-knowledge.

Next, simulator S simulates transcripts for proving the mapping from @ to P. After challenge k
is received from the verifier, the simulator randomly generates tr,, and then follows the protocol to
compute PK,,. In the final step, the simulator calls S the simulator Ss to simulate transcripts needed
to prove knowledge of vy.

The simulator chooses all proof elements and challenges according to the randomness supplied by
the adversary from their respective domains or computes them directly as described in the protocol.
Since all elements in proof transcripts are either independently randomly distributed or their relation-
ship is fully defined by the verification equations, we can conclude that protocol 3 is perfect special
honest verifier zero-knowledge.

To prove computational witness extended emulation, we construct an extractor &X', which uses
extractor Xg to extract witnesses from proof of knowledge transcripts.

Like that of Protocol 1 and 2, we validate the soundness of Protocol 3 in three steps. First, we
show how to construct an extractor X for Protocol 3 s.t. on input Pe G', R € G, it either extracts
witnesses r, €, 7 for relation [4] or discovers a non-trivial discrete logarithm relation among g, h, 4 € G.
Second, we show that the extractor X either extracts witnesses @, v s.t. U maps to @ or discovers a
non-trivial discrete logarithm relation between g, h,« € G. Third, we complete validating the proof
by checking if 7, €, 7 can be computed from witnesses @, &'

In the first step, the extractor X interacts with the prover in Protocol 3 and receives S , i 6,
B, R, tr. from the prover. The extractor X then generates at least b + 3 challenges ¥ and forwards
them to the prover. After receiving €1, d;, 71, the extractor rewinds and repeats this step b + 2 times
to receive €y, ..., €43, @y, ..., Ay g, and Ua, ..., Yoy 3.

The extractor then follows the protocol and calls extractor Xg to extract € from tr. and PK.. With
any two challenges x;,x;11, we can trivially retrieve r, e since v’ = r 4+ x - ¢, which must match the
witness r, € retrieved from R = g"h® and PK,. using extractor Xs except with a negligible probability
or discover a non-trivial discrete log relation among generators g, h € G.

With challenges x4, ..., 2513 and evaluation (breaker) sets ¢, ..., §p+3, we apply Lagrange polyno-
mial interpolation to retrieve witnesses 71, ..., T, and ﬁ, coefficients of commitments 6, B.

We have now retrieved witnesses r,€, 7, ..., Tm, using transcripts C, B, R,tr.. If the prover is
honest, 7, €, 71, ..., Tm, are coeflicients computed by the prover from @, &, where as & maps to blinding
keys .

In the second step, we validate if witnesses @, @ of @’ used in computing o map to witnesses d, v
of P by checking if we can extract these witnesses and that & map to U. The extractor first generates
k1 and then follows the protocol to get tr,,,, PK,,,, then calls the extractor Xg to retrieve vy . The
extractor then rewinds and repeats this step [times to retrieve wvyo, ..., vy 1. Through interpolation,
the extractor retrieves witnesses v; for all 4 in {1,...,{}. Dividing dividing P; by h' we will get:

P,/hY = g% (173)

Using any two different challenges x;, 2,11 we mentioned earlier, the extractor gets @; and a4 from
the prover, which we can trivially retrieve @, & for all ¢ = {1, ...,1} since:

ay, — ay, = oz — 2)

If each v; maps to each «;, then a; must be the exponent of g in equality or we found a non-trivial
relationship among generators g, h.

In the final step, we validate the proof by checking if r, ¢, 7 can be computed from witnesses @, &.
This must be true for equality to be true except for a negligible probability or we found a non-
trivial relationship among generators g, h, 1. We can therefore conclude Protocol 3 has computational
witness extended emulation.

23

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without
a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087—
2104. ACM Press, Dallas, TX, USA (Oct 31 — Nov 2, 2017). |https://doi.org/10.1145/3133956.3134104

. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approxima-

tion problems. In: 33rd FOCS. pp. 14-23. IEEE Computer Society Press, Pittsburgh, PA, USA (Oct 24-27,
1992). |https://doi.org/10.1109/SFCS.1992.267823

Arora, S., Safra, S.: Probabilistic checking of proofs; A new characterization of NP. In: 33rd
FOCS. pp. 2-13. IEEE Computer Society Press, Pittsburgh, PA, USA (Oct 24-27, 1992).
https://doi.org/10.1109/SFCS.1992.267824

Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic
time. In: 23rd ACM STOC. pp. 21-31. ACM Press, New Orleans, LA, USA (May 6-8, 1991).
https://doi.org/10.1145/103418.103428

Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive proto-
cols. In: 31st FOCS. pp. 16-25. IEEE Computer Society Press, St. Louis, MO, USA (Oct 22-24, 1990).
https://doi.org/10.1109/FSCS.1990.89520

Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-knowledge proofs for boolean
and arithmetic circuits with nested disjunctions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021,
Part IV. LNCS, vol. 12828, pp. 92-122. Springer, Heidelberg, Germany, Virtual Event (Aug 16-20, 2021).
https://doi.org/10.1007/978-3-030-84259-84

Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 701-732. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18-22, 2019). https://doi.org/10.1007/978-3-030-
26954-823

Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves.
Cryptology ePrint Archive, Report 2014/595 (2014), https://eprint.iacr.org/2014/595

Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.: Ligero++: A new
optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 2025—
2038. ACM Press, Virtual Event, USA (Nov 9-13, 2020). https://doi.org/10.1145/3372297.3417893
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS
and proof-carrying data. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp.
111-120. ACM Press, Palo Alto, CA, USA (Jun 1-4, 2013). https://doi.org/10.1145/2488608.2488623
Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying data from additive polynomial
commitments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 649-
680. Springer, Heidelberg, Germany, Virtual Event (Aug 16-20, 2021). https://doi.org/10.1007/978-3-
030-84242-023

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arith-
metic circuits in the discrete log setting. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 327-357. Springer, Heidelberg, Germany, Vienna, Austria (May 8-12, 2016).
https://doi.org/10.1007/978-3-662-49896-51 2

Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a trusted setup. Cryptology
ePrint Archive, Report 2019/1021 (2019), https://eprint.iacr.org/2019/1021

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018. pp. 896-912. ACM Press, Toronto, ON, Canada (Oct 15-19, 2018).
https://doi.org/10.1145/3243734.3243868

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient two-round
OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 291-308. ACM Press, London, UK (Nov 11-15, 2019).
https://doi.org/10.1145/3319535.3354255

Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation
generators: Silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 489-518. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18-22,
2019). https://doi.org/10.1007/978-3-030-26954-8: 6

Biinz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without succinct arguments. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 681-710. Springer, Heidelberg,
Germany, Virtual Event (Aug 16-20, 2021). https://doi.org/10.1007/978-3-030-84242-0,4

24

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1145/103418.103428
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://eprint.iacr.org/2014/595
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2019/1021
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-84242-0_24

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Biinz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from accumulation schemes.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 1-18. Springer, Heidelberg,
Germany, Durham, NC, USA (Nov 16-19, 2020). https://doi.org/10.1007/978-3-030-64378-21

Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKSs from DARK compilers. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 677-706. Springer, Heidelberg, Germany,
Zagreb, Croatia (May 10-14, 2020). https://doi.org/10.1007/978-3-030-45721-124

Chen, B., Biinz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with linear-time prover and high-degree
custom gates. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS, vol. 14005, pp. 499-
530. Springer, Heidelberg, Germany, Lyon, France (Apr 23—-27, 2023). https://doi.org/10.1007/978-3-031-
30617-4,7

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Preprocessing zkSNARKs
with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I
LNCS, vol. 12105, pp. 738-768. Springer, Heidelberg, Germany, Zagreb, Croatia (May 10-14, 2020).
https://doi.org/10.1007/978-3-030-45721-126

Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive proofs from hologra-
phy. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 769-793. Springer,
Heidelberg, Germany, Zagreb, Croatia (May 10-14, 2020). https://doi.org/10.1007/978-3-030-45721-157
Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: Yao, A.C.C.
(ed.) ICS 2010. pp. 310-331. Tsinghua University Press, Tsinghua University, Beijing, China (Jan 5-7,
2010)

Cramer, R., Damgard, 1.: Zero-knowledge proofs for finite field arithmetic; or: Can zero-knowledge be for
free? In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 424-441. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 23-27, 1998). https://doi.org/10.1007/BFb0055745

Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with applications to efficient
zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
191-219. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26-30, 2015). https://doi.org/10.1007/978-
3-662-46803-67

Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019), https://
eprint.iacr.org/2019/953

Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz,
T., Savage, S. (eds.) USENIX Security 2016. pp. 1069-1083. USENIX Association, Austin, TX, USA
(Aug 10-12, 2016)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended
abstract). In: 17th ACM STOC. pp. 291-304. ACM Press, Providence, RI, USA (May 6-8, 1985).
https://doi.org/10.1145/22145.22178

Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference
strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III.
LNCS, vol. 10993, pp. 698-728. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19-23,
2018). https://doi.org/10.1007/978-3-319-96878-024

Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut, A., Ishai,
Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 569-598. Springer, Heidelberg, Germany,
Zagreb, Croatia (May 10-14, 2020). |https://doi.org/10.1007/978-3-030-45727-319

Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryptosystems. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 943-954. ACM Press, Berlin, Germany (Nov 4-8, 2013).
https://doi.org/10.1145/2508859.2516691

Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments from folding schemes.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 359-388. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15-18, 2022). https://doi.org/10.1007/978-3-031-
15985-5:3

Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs from linear-
size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2111-2128. ACM Press, London, UK (Nov 11-15, 2019).
https://doi.org/10.1145/3319535.3339817:

Schoppmann, P., Gascén, A., Reichert, L., Raykova, M.: Distributed vector-OLE: Improved constructions
and implementation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 1055—
1072. ACM Press, London, UK (Nov 11-15, 2019). https://doi.org/10.1145/3319535.3363228

25

https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1145/2508859.2516691
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3363228

35.

36.

37.

38.

39.

40.

41.

42.

43.

Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 704-737. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 17-21, 2020). https://doi.org/10.1007/978-3-030-56877-125
Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKSs. Cryptology ePrint Archive, Report
2020/1275 (2020), https://eprint.iacr.org/2020/1275

Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1-18. Springer, Heidelberg, Germany, San Francisco,
CA, USA (Mar 19-21, 2008). https://doi.org/10.1007/978-3-540-78524-8;

Wahby, R.S., Tzialla, 1., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKSs without trusted
setup. Cryptology ePrint Archive, Report 2017/1132 (2017), https://eprint.iacr.org/2017/1132
Wahby, R.S., Tzialla, 1., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted
setup. In: 2018 TEEE Symposium on Security and Privacy. pp. 926-943. IEEE Computer Society Press,
San Francisco, CA, USA (May 21-23, 2018). https://doi.org/10.1109/SP.2018.00060

Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In: 2021 IEEE Symposium on Security and Pri-
vacy. pp. 1074-1091. IEEE Computer Society Press, San Francisco, CA, USA (May 24-27, 2021).
https://doi.org/10.1109/SP40001.2021.00056

Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable zero-knowledge proofs for
circuits and polynomials over any field. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp. 2986-3001. ACM
Press, Virtual Event, Republic of Korea (Nov 15-19, 2021). https://doi.org/10.1145/3460120.3484556
Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for correlated OT with small
communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 1607-1626. ACM
Press, Virtual Event, USA (Nov 9-13, 2020). https://doi.org/10.1145/3372297.3417276

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero
knowledge proof. In: 2020 IEEE Symposium on Security and Privacy. pp. 859-876. IEEE Computer Society
Press, San Francisco, CA, USA (May 18-21, 2020). https://doi.org/10.1109/SP40000.2020.00052

26

https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://doi.org/10.1007/978-3-540-78524-8_1
https://eprint.iacr.org/2017/1132
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SP40000.2020.00052

	Input Transformation Based Zero-Knowledge Argument System for Arbitrary Circuits with High Efficiency

