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Abstract. We introduce a new efficient, transparent, interactive zero-knowledge argument sys-
tem that is based on the new input transformation concept that we will introduce in this paper.
The core of this concept is a mechanism that converts input parameters into a format that can
be processed directly by the circuit so that the circuit output can be verified through direct
computation of the circuit.
Our benchmark result shows our approach can significantly improve both prover runtime and
verifier runtime performance by either close to or more than one order of magnitude over the
state of the art while keeping the communication cost competitive with that of the state of the
art. Specifically, when processing an deep circuit of 220 sequential multiplication gates with 960
input bits on a single CPU thread, the performance of the BinaryBoost version of our protocol
is: 0.8 seconds for the prover runtime cost; 17 milliseconds for the verifier runtime cost; and 55
kilobytes for the communication cost.
Our approach also allows our protocol to be memory-efficient without forcing it to require a

designated verifier. The theoretical memory cost of our protocol is ≤ O(mp
1
2 ) without requiring

a designated verifier.

1 Introduction

Ever since the discoveries of interactive proofs (IPs) [22] and probabilistically checkable proofs (PCPs)
[5] [4] [3] [2] in the late last century, there has been a tremendous amount of research in the area of proof
systems. More recently, the rise of blockchain and Web3 has finally triggered real-world deployments
of zero-knowledge systems.

Due to the expensive computation cost in the setup phase of earlier SNARKs (Succinct Non-
Interactive Argument of Knowledge), it has become a significant interest to have the structured refer-
ence string (SRS) be constructible in a “universal and updatable” fashion, meaning that the same SRS
can be used for statements about all circuits of a certain bounded size. The first universal SNARK
was in Groth et al. [23], and Maller et al. improved the SRS size from quadratic to linear in Sonic [26].
More recently developed protocols such as PLONK [20], MARLIN [15] are universal fully-succinct
SNARK with significantly improved prover runtime compared to the fully-succinct Sonic. However,
many of these universal succinct SNARKs systems require trusted setup, and the prover run-time of
these protocols is prohibitively expensive even with the latest improvements such as HyperPlonk [14],
usually takes over 100 seconds on a single-threaded CPU for a circuit with over 220 constraints.

Protocols belong to the Goldwasser, Kalai, and Rothblum (GKR) class such as Hyrax [31], Virgo
[36]; MPC-in-the-head class of Kushilevitz, Ostrovsky, and Sahai such as ZKBoo [21] and Ligero/Ligero++
[1] [8] offer efficient prover runtimes that are at least one order of magnitude more efficient than pairing-
based SNARKs, and many of these protocols do not require trusted setups. However, these protocols
are largely ignored by the industry (e.g., the blockchain community) due to their expensive verifier
runtime and high communication cost (hundreds of KBs) compared to fully succinct protocols such
as STARK [7], PLONK, MARLIN, and Supersonic [13]. Furthermore, state-of-the-art GKR proto-
cols generally have additional dependency on circuit depth, where protocol complexity increases and
performance significantly degrades as the circuit depth gets longer, making them less attractive to
the industry where complex business logics (e.g., inputs are floating point numbers) are expected on
smart contracts.



Memory-efficient privacy-free garbled circuits [25] [19] [24] and Vector Oblivious Linear Evaluation
(VOLE) protocols [10] [28] [12] [11] [35] [32] [6] [34] generally offer better prover performance. However,
their verifier runtimes are just as expensive as their prover runtime and generally cannot be easily
made fully non-interactive, and their communication cost is easily many orders of magnitude more
expensive than other approaches.

NIZKs such as SpartanNIZK [29] and later Lakonia [30] seem to offer a much more balanced
approach, where they offer efficient prover runtime (6-18 seconds single thread) and competitive com-
munication costs for large circuits (220 constraints) while not being layer dependent. However, the
downside of these protocols is that their verifier performance is still expensive, usually in the 400+
ms range on a single-threaded CPU.

Our aim is to create a new transparent zero-knowledge protocol that offers great flexibility to
optimize and the best overall performance. Specifically, we want to keep the prover runtime cost and
communication cost comparable to those of the state-of-the-art and improve the verifier runtime by
one order of magnitude over that of the state-of-the-art. Finally, we also want our new system to be
memory-efficient, or at least have the option to be memory-efficient.

1.1 Summary of Contributions

Our approach is to design a new class of protocols that allows verifiers to validate circuit outputs
by directly examining circuit inputs without going through some intermediate translation phase. In
our protocol, circuit inputs in the Pedersen commitment form are converted to linear polynomials
in the integer field so that verifiers can use standard integer operations to compute and verify each
circuit output. In addition to performance gains, we believe such an approach offers more flexibility
in designing customized sub-circuits/gates and would allow developers to code business rules exactly
as they are described in business language.

There were past attempts that somewhat enabled verifiers to “execute” each multiplication gate on
its own, such as Cramer and Damg̊ard [16] and more recent designated-verifier (which is a limitation
itself) VOLE (LPKZ in particular) [18] [34] [17] [33] based protocols. In these older strategies,
each multiplication gate computation is actually not computed but “confirmed” by the verifier using
transcripts tight to each multiplication gate. As a result, the communication/verifier costs of these
earlier protocols are generally linear with the number of multiplication gates in a circuit.

On the other hand, the input transformation technique introduced by our protocol allows verifiers
to use transformed inputs to directly (one operation for each operation, like we do with clear text
data) compute the circuit (important), and the verifier computed output is still bound to the chal-
lenge x. This is a first and brings us three direct benefits; 1) After “computing” the whole circuit
using transformed inputs, the verifier can now validate sub-linear sized proof transcripts in sub-linear
runtime. 2) Since the whole circuit is linearly/directly computed by the verifier, we can break a large
circuit into several smaller sub-circuits, minimizing the memory footprint to that of a sub-circuit. 3)
Because the circuit is linearly “computed” by both the prover and the verifier, it gives the developer
the power to significantly reduce the size of the circuit by combining “other” protocols in the middle
and bypassing the “inactive” part of the circuit logic.

In our protocol, we begin by transforming each committed input parameter in G into its linear
polynomial form in Zq. For a simple circuit a1

d + a2
d + a3

d = r s.t. circuit inputs are a1, a2, a3 and
the circuit output is r. In our protocol, inputs a1, a2, a3 and output r are committed by the prover
using Pedersen commitment. The prover then provides the transformed inputs a1, a2, a3 in the linear
polynomial form a′1, a

′
2, a
′
3 ∈ Zq s.t. a′i = ai +Xαi ∈ Zq (αi is its blinding key). Since the transformed

inputs are in F, the verifier can plug these values directly into the circuit and just “execute” them to
get the output o e.g. a′d1 + a′d2 + a′d3 = o. The circuit output o ∈ Zp is the evaluation at point x of a
degree d polynomial s.t. f(x) = o. The constant term of this polynomial is the circuit output r and
all other d coefficients are its blinding keys. If the prover can prove 1) it knows all coefficients of the
output polynomial before the evaluation point is given (e.g., using a polynomial commitment) 2) all
input transformations are legit, then we say the proof is legit.
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The output polynomial in the example above has a degree of d because the transformed inputs
(linear polynomials) are of degree 1. Taking to its dth power will give a polynomial with a degree of d.
So if the circuit is something like a1

3 +a2
3 +a3

3+, ...,+at
3 = r, the degree of the output polynomial is

3 regardless of the value of t. Throughout our paper, we use the symbol mp (short for “multiplication
path”) to denote the maximum number of multiplications included in the path that leads to the
circuit output, which is one less than the degree of the output polynomial (e.g. if the degree of the
output polynomial is 3, then mp = 2). mp is different from “multiplication depth”. For example, for
a circuit a1

3 · a25 + a3
6 = r, mp = 7 (a1

3 · a25 = a polynomial of degree 8), which is bigger than the
multiplication depth (5) but smaller than the total number of multiplications (12).

For a deep circuit where mp value is large (unlike GKR based protocols, layers made up of addition
gates make negligible performance impact in our protocol), the prover runtime of the base version of

our protocol (Protocol 1) is dominated by O(mp
2 + mp + l) field operations and O(mp + m

1/2
p + l)

group exponentiations, where mp stands for the total number of multiplication gates included in the
path that contains most multiplications and l stands for the number of inputs to a circuit; the verifier

runtime is dominated by O(n + m
1/2
p + l) field operations and O(mp

1/2 + l) group exponentiations;
and the communication cost is dominated by O(mp

1/2 + 1) group elements and O(mp
1/2 + l) field

elements.
On the other hand, if the circuit is shallow (e.g., for a circuit with n/2 addition operations and

n/2 multiplication operations: r =
∑n
i=1 a · b where r is the circuit output and a, b are circuit inputs

and n stands for the total number of gates in a circuit., we have mp = 1), the prover work would be
dominated by O(n/2) field addition operations, which is very cheap.

Our protocol is specifically efficient for proving complex application logic where the circuit depth
is high and can be greatly simplified using customized gates. Furthermore, our protocol gives the
developer the power to significantly reduce the size of the circuit by bypassing the “inactive” part of
the circuit logic.

Specifically, when processing an deep circuit of 220 sequential multiplication gates (mp = n) with
960 input bits on a single CPU thread, the performance of the BinaryBoost version of our protocol
is: 0.8 seconds for the prover runtime cost; 17 milliseconds for the verifier runtime cost; and 55
kilobytes for the communication cost. To the best of our knowledge, our protocol offers the best
prover/verifier runtime performance in literature (transparent/non-interactive/high-depth protocols)
by a large margin.

On the memory side, the theoretical memory cost of our protocol is ≤ O(mp
1
2 ). This makes our

protocol extremely attractive because VOLE-based memory-efficient protocols generally require one
round of interaction and are extremely expensive in terms of verifier runtime cost and communication
cost.

We introduce our protocol in an interactive setting where all verifier challenges are random field
elements. In practice, we assume the Fiat-Shamir heuristic is applied to our protocol to obtain a
non-interactive zero-knowledge argument in the random oracle model.

2 Preliminaries

2.1 Assumption

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and for all n ≥ 2 there
exists a negligible function negl(λ) s.t.

Pr

[
G = Setup(1λ), g0, ..., gn−1

$←− G ∃ ai 6= 0 ∧
∏n−1
i=0 g

ai
i = 1

a0, ..., an−1 ∈ Zp ← A(G, g0, ..., gn−1)

]
≤ negl(λ)

The Discrete Logarithmic Relation assumption states that an adversary can’t find a non-trivial
relation between the randomly chosen group elements g0, ..., gn−1 ∈ Gn, and that

∏n−1
i=0 g

ai
i = 1 is a
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non-trivial discrete log relation among g0, ..., gn−1. Please note the generators we use in this paper are
g, h, ~u ∈ G.

2.2 Zero-Knowledge Argument of Knowledge

Interactive arguments are interactive proofs in which security holds only against computationally
bounded provers. In an interactive argument of knowledge for a relation R, a prover convinces a
verifier that it knows a witness w for a statement x s.t. (x,w) ∈ R without revealing the witness itself
to the verifier.

Let (P,V) denote a pair of PPT interactive algorithms, and Setup denotes a non-interactive setup
algorithm that outputs public parameters pp given a security parameter λ. Let 〈P(pp, x, w),V(pp, x)〉
denote the output of V on input x after its interaction with P, who has knowledge of witness w. The
triple (Setup,P,V) is called an argument for relation R if for all non-uniform PPT adversaries A it
satisfies completeness, soundness, and zero-knowledge definitions defined below:

Definition 2. (Perfect Completeness) The triple (Setup,P,V) satisfies perfect completeness if for
all PPT A:

Pr

[
(pp, x, w) /∈ R or pp← Setup(1λ)

〈P(pp, x, w),V(pp, x)〉 = 1 (x,w)← A(pp)

]
= 1

The soundness notion we consider in this work is computational witness-extended emulation.

Definition 3. (Computational Witness-Extended Emulation or CWEE) Given a public-coin inter-
active argument tuple (Setup,P,V) and arbitrary prover algorithm P∗, let Recorder (P∗, pp, x, s)
denote the message transcript between P∗ and V on shared input x, initial prover state s, and pp
generated by Setup. Furthermore, let E Recorder (P , pp, x, s) denote a machine E with a transcript
oracle for this interaction that can rewind to any round and run again with fresh verifier random-
ness. The tuple (Setup,P,V) has CWEE if for every deterministic polynomial time P there exists
an expected polynomial time emulator E s.t. for all non-uniform polynomial time adversaries A the
following holds: ∣∣∣∣∣Pr

[
pp← Setup(1λ)

A(tr) = 1 (x, s)← A(pp)
tr ← Recorder(P∗, pp, x, s)

]
−

Pr

[ A(tr) = 1∧ pp← Setup(1λ)
tr accepting (x, s)← A(pp)

=⇒ (x,w) ∈ R (tr, w)← ERecorder(P∗,pp,x,s)(pp, x)

]∣∣∣∣∣ ≤ negl(λ)

The zero-knowledge property requires that the verifier doesn’t learn anything about the witness
from its interaction with an honest prover.

Definition 4. (Perfect Special Honest Verifier Zero Knowledge for Interactive Arguments) An inter-
active proof is (Setup,P,V) is a perfect special honest verifier zero knowledge (PHVZK) argument
of knowledge for R if there exists a probabilistic polynomial time simulator S such that all pairs of in-
teractive adversaries A1,A2 have the following property for every (x,w, σ)← A2(pp)∧ (pp, x, w) ∈ R,
where σ stands for verifier’s public coin randomness for challenges

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← 〈P(pp, x, w),V(pp, x)〉

]
=

Pr

[
A1(tr) = 1 pp← Setup(1λ),

tr ← S(pp, x, σ)

]
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Above property states that the adversary chooses a distribution over statements x and witnesses w
but is not able to distinguish between the simulated transcripts and the honestly generated transcripts
for a valid statement/witnesses pair, and that the simulator has access to the randomness used by the
verifier.

Definition 5. (Public Coin) All messages sent from V to P are chosen uniformly at random and
independently of P’s messages.

2.3 Polynomial Commitment Function

As in the case of other popular zero-knowledge protocols that offer succinct proof size, our protocol uses
a polynomial commitment evaluation protocol to construct most of our proof transcript. Our protocol
uses a version of the polynomial commitment scheme defined by Bootle. et al. [9]. The polynomial
commitment function PolyCommitEval is defined as:

• PolyCommitEval(C, y, x;~τ , φ) → boolean C = uτ11 u
τ2
2 , ..., u

τn
n is the committed polynomial (vec-

tor commitment) in G where ~u are generators, ~τ are its coefficients and φ is its blinding key. The
function returns a boolean value“true” if it can be correctly evaluated at point x s.t. y = f(x).

The polynomial commitment scheme we use in our benchmark testing is based on the one defined
by Bootle et al. [9].

2.4 Zero Knowledge Proof of Discrete Logarithm

For a prover to prove it has the knowledge of a discrete logarithmic κ of some group element s = gκ ∈ G.
We define the relation for this protocol as RPoD = {(h, s;κ) : s = gκ}. We also define two functions
(ProveDL,V erifyDL) for provers and verifiers to create and verify proof transcripts:

• ProveDL(g, κ) → trκ generates the proof transcript trκ, where κ is the witness.

• V erifyDL(g, s, trκ) → b ∈ {0, 1} takes a proof transcript trκ and a pair of group elements with
discrete log relation (g, s ∈ G ∧ s = hκ), and outputs true if the knowledge of the relation is
verified, false otherwise.

In this paper, we assume the underlying implementation of the proof of discrete logarithm protocol
is Schnorr’s protocol [27]. We know for a fact that Schnorr’s protocol has perfect completeness, special
honest verifier zero knowledge, and computational witness-extended emulation.

2.5 Notations

Let G denote any type of secure cyclic group of prime order p, and let Zp denote an integer field modulo
p. Group elements other than generators are denoted by capital letters. e.g., C = ua11 u

a2
2 ...u

an
n ∈ G

is a commitment committed to a vector ~a denoted by a capital letter, and B ∈ G is a random group
element also denoted by a capital letter. For generators used as base points to compute other group
elements in our protocol, such as ~g, h ∈ G, we use lower case letters to denote them. Greek letters are
used to label hidden key values. e.g., υ is the blinding key for Pedersen commitment P on generator
h ∈ G s.t. P = gahυ. Finally, we use standard vector notation ~v to denote vectors. i.e., ~a ∈ Znp is a
list of n integers ai for i = {1, 2, ..., n}.

We write R = {(Public Inputs ;Witnesses) : Relation} to denote the relation R using the
specified public inputs and witnesses.
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3 Protocol for Arbitrary Circuits

We first define the relation for the base version of our protocol. For l input parameters, let CF represent
the set of arbitrary arithmetic circuits in F, there exists a zero knowledge argument for the relation:

{(g, h, ~u, ~P ,R ∈ G, E ∈ CF ; ~a, ~υ, r, φ ∈ Zq) : E(~a) = r

∧ Pi = gaihυi∀i ∈ [1, |~P |] ∧ R = grhφ}
(1)

g, h, ~u are initial public parameters pp generated during setup. The above relation states that each
input parameter to a circuit is represented by a commitment Pi in G, which hides each input value ai
with a blinding key υi. r is the output of circuit E computed from inputs ~a, which is also a committed
value R ∈ G with blinding key φ.

The main idea behind the “input transformation” concept is the process of transforming committed
inputs in G to linear polynomials in F, where the verifier can perform addition and multiplication
operations “as is”. For an input commitment Pi s.t. P = gaihυi ∈ G where ai is the input value and
υi is its blinding key, we create a corresponding integer value in linear polynomial form ai

′ ∈ Zq :

ai
′ = ai +Xαi ∈ Zq (2)

Note that the blinding key of each input is replaced by a random αi s.t. αi 6= υi. Likewise, the
circuit output commitment R = grhφ ∈ G also has a matching linear polynomial in Zq with blinding
key ε.

r′ = r +Xε ∈ Zq (3)

Since inputs represented by linear polynomials are just integer values, verifiers can perform arith-
metic operations on them just as they do on decrypted numbers. The output value of a circuit evalua-
tion is now a polynomial with mp + 1 degrees evaluated at point X. The constant term of the output
polynomial is the circuit output r and the coefficient of the degree one term is the blinding key ε of
the circuit output.

In the next two sub-sections, we explain our protocol in two steps: In the first step, we introduce
a sub-protocol (Protocol InputMapping) that allows the prover to prove each input in G is correctly
transformed to that in Zq; In the second step, we introduce the full protocol (Protocol Baseline) that
uses the aforementioned sub-protocol to validate transformed inputs and prove the circuit output is
correctly computed from circuit inputs as relation 1 states.

3.1 The Sub-Protocol for Linear Polynomial to Pedersen Commitment Mapping
Validation

A sub-protocol that validates committed inputs in G is correctly mapped to transformed inputs in
Zq. The relation we try to prove for this sub-protocol is:

{(g, h ∈ G, ~P ∈ Gl,~a ′,∈ Zlq ; ~a, ~α ∈ Zlq, ~υ ∈ Zlp) :

Pi = gaihυi ∧ a′i = ai +Xαi ∧ ∀i ∈ [1, l]}
(4)

An important requirement for input transformation is that we need to transform the hidden value
in Pedersen commitment to a prime field that is friendly to NTT. When multiplying two polynomials
of degree mp, the trivial approach to compute the resultant polynomial’s coefficients would require a
runtime cost of O(mp

2), whereas the NTT based approach would reduce that to O(mp logmp).
NTT requires a prime modulo q of the form q = r · 2k + 1 to be the prime order of the group,

where k and c are arbitrary constants, so we need to pick a prime q that is NTT friendly. Also note

6



that the prime q is expected to be smaller than p because: 1) computation in p must not overflow 2)
the smaller the q value in bits, the lower the communication cost.

To start, the prover commits to a new set of blinding elements to facilitate the transformation:

Si = gωi·quυi ∈ G i = {1, ..., l} (5)

Ti = gυi−αi ∈ G i = {1, ..., l} (6)

The prover then sends Si, Ti for i = {1, .., l} to the verifier. When the challenge x ∈ Zq is available,
the prover sends ei s.t.:

ei = ((xαi mod q)− xαi) · x+ ωi · q i = {1, ..., l} (7)

The idea here is that when we subtract ei from ai · x in the next step, we can subtract out the
blinding modulo q element (x αi mod q) from a′i (e.g., a′i · x − ei = (ai + xαi) · x − ωiq), assuming
there is no overflow. The verifier can replace the x2αi − ωiq part with the new blinding element x2υi
as the exponent of generator g by adding the previously committed values Si, Ti.

ga
′
i·x−ei · T x

2

i · Si = (gx)ai+xυiuυi ∈ G i = {1, ..., l} (8)

With (gx)ai+xυi available, the verifier can trivially divide each Pi and take their sum with powers of
k to get PKυt .

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (9)

PKυt = (hx/(gx
2

u))υt . The verifier can confirm the correctness of the transformation except with

negligible probability if the prover can prove the knowledge of υt on generator hx/(gx
2

u) ∈ G.
Finally, the verifier needs to make sure ei doesn’t alter the value of ai. This can be done by taking

the modulus q of ei and checking if it returns 0. This is trivial to understand since a′i is in Zq. If ei is
a multiple of q then it is obvious that it cannot alter the value of ai.

if (ei mod q)
?
= 0, then continue (10)

This test also implies the transformation process explained in this section is sound since the soundness
of equation 9 is trivial to prove except for a negligible probability. For example, if a′∗i = a∗i + xαi =
ai+δ+ xαi. Knowing that ei must be a multiple of q for equation 10 to be true, we have a′∗i ·x−ei =
(ai + xαi) · x− ωiq = x(ai + xαi) + xδ. In order for equality 8 to be true, the left side of the equality
8 must offset xδ using committed values Ti and Si, s.t. xδ will be removed after applying challenge x
to these elements (i.e., T x

2

i · Si, note exponents are different powers of x), which only happens for a
negligible chance of 1/q when the dishonest prover successfully guessed x correctly.

This transformation process is zero-knowledge because ei does not leak any information to the
verifier either. This is because the first part of ei: ((x αi mod q)− x αi) · x is a multiple of q, and can
be represented as s · q for some s. This implies ei = (s + ω) · q for some randomly chosen ω where
ω >> s. Since every other transcript (in G) is trivially zero-knowledge, we say this transformation
process is zero-knowledge if ω is correctly chosen. See full proof in Appendix A.

We have so far skipped the overflow problem. If ai + (x αi mod q) > q, then we will have an
overflow problem in equation 8 9 when computing a′i · x − ei. To get around this, the prover simply
needs to check if ai + (x αi) mod q overflows q, and subtract q · x from ei if that’s the case.

if ai + (xαi mod q) ≥ q, then ei = ei − q · x i = {1, ..., l} (11)

The sub-protocol for input validation is defined in two parts: Setup and Verify. We omit the
challenge generation part since that is also part of the main protocol.
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Input : (~P , g, h ∈ G;~a ∈ Zq, ~υ ∈ Zp)

P ′s input : (~P , g, h;~a, ~υ); V ′s input : (~P , g, h)

P compute :

αi
$←− Zp i = {1, ..., l}

ωi
$←− Zp i = {1, ..., l}

Si = gωi·quυi ∈ G i = {1, ..., l}
Ti = gυi−αi ∈ G i = {1, ..., l}

P → V : ~S, ~T

Protocol InputMapping - Setup

The verifier generates challenge x and send it to the prover. After the challenge is received, the
prover generates ~a ′ and sends them to the verifier. Since this challenge generation part is shared with
the main protocol, we omit it here. Next, the verify part of the protocol validates the mapping between
transformed inputs in field Zq to those in group G.

Input : (~P , ~T , g, h ∈ G,~a ′ ∈ Zq;~a, ~α ∈ Zq, ~υ ∈ Zp)

P ′s input : (~P , ~T , g, h;~a, ~υ); V ′s input : (~P , ~Tg, h)

P compute :

ei = ((xαi mod q)− xαi)x+ ωiq i = {1, ..., l}
if ai + (xαi mod q) > q, then ei = ei − q · x i = {1, ..., l}

P → V : ~e,~a ′

V → P : k
$←− Zp

P compute :

υt =

l∑
i=1

υik
i ∈ Zp

trυt = ProveDL((hx/(gxu)), υt)

P → V : trυt

V verify inputs :

if (ei mod q)
?
= 0, then continue i = {1, ..., l}

else reject

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G

if V erifyDL((hx/(gx
2

u)), PKυt , trυt), then accept

else reject

Protocol for InputMapping - Verify

Theorem 1. (The Input-Mapping Protocol). The proof system presented in this section has perfect
completeness, PHVZK, and CWEE. The proof for Theorem 1 is presented in Appendix A.
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3.2 The Baseline Protocol

To prove the circuit output is correctly computed from transformed inputs ~a′, the prover needs to show
it knows all coefficients of the output polynomial. For example, for a simple circuit that just outputs
the sum of two inputs, the prover needs to show it knows the constant term r and the coefficient of
the degree 1 term ε of the output polynomial :

o = a1
′ + a2

′ = r +X · ε (12)

Computing the output polynomial of the addition operation is the same as adding two polynomials,
where r = (a1 + a2) and the blinding key is ε = (α1 +α2). Likewise, multiplying two inputs a1

′, a2
′ is

the same as multiplying two polynomials:

o = a1
′ · a2′ = r +X · ε+X2 · τ (13)

Where r = a1 · a2, ε = a2α1 + a1α2, and τ = α1 · α2. We use the label “o” to represent the
circuit output, which is equivalent to the output polynomial evaluated at a point X. The degree
of the polynomial will increase after each multiplication operation, so the efficiency will drop as the
maximum number of multiplications that leads to the circuit output (mp) increases.

To get the linear polynomial we need from the raw output o, the verifier needs to subtract out
terms with degrees higher than one. In the multiplication circuit above, the verifier needs to eliminate
the term of degree 2 to get the linear polynomial. To do so, the prover commits to τ before the
challenge x is known. When the challenge x is available, the prover sends the evaluation value y to
the verifier and proofs to prove f(x) = X2τ = y. The verifier can subtract y from o to get the output
in linear polynomial form:

r′ = o− y

We call value y a “breaker”. Breaker(s) subtracts all “noises” (polynomial terms of degree higher than
one) from the raw output o. The prover and the verifier can engage in a polynomial commitment
evaluation protocol to confirm f(x) = y.

C =

mp∏
i=1

uτii ∈ G (14)

We can compute the whole circuit in one run s.t. the protocol evaluates to one polynomial of mp

degrees as its output and use just one breaker y to get the circuit output r′. However, that would be
pretty inefficient because the bigger the polynomial gets, the less efficient it would be to compute its
coefficients (even with NTT). Instead, we can break a big circuit into mb smaller sub-circuits. Each
sub-circuit computes a polynomial of at most b+ 1 degrees, which evaluates to an intermediate result
r′i s.t.:

r′i = oi − yi for i = {1, ...,mb} (15)

Each oi is the output of a degree b + 1 polynomial at evaluation point x, and each breaker yi is
the breaker for that polynomial.

We just need to make a simple modification to the polynomial commitment evaluation protocol
defined by Bootle et al. to enable verifiers to evaluate mb breakers all at once. We start by aligning
each breaker yi to the coefficients of the ith generator of vector commitments (columns of the mb × b
matrix).

u
y′1
1

.

.

u
y′mb
mb

=


u
τ1,1
1 u

τ1,2
1 . . u

τ1,b
1

. . . .

. . . .

u
τmb,1

mb u
τmb,2

mb . . u
τmb,b

mb




x2

.

.

xb+1


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Figure 1

Let yi = (y′i) mod q, we can observe from figure 1 that each y′i can be computed from the sum
of products of exponents of ui (e.g. y′i = τi,1x

2 + τi,2x
3 + ...+ τi,bx

b+1).
In our protocol, the prover commits to the columns of the matrix in figure 1 in the same way as

in Bootle et al.’s polynomial commitment evaluation scheme.

Cj =

mb∏
i=1

u
τi,j
i for j = {1, ..., b} (16)

When the evaluation point x is known, the verifier computes the exponent of each Cj . If the
equality below is true, all breakers are verified.

b∏
j=1

Cx
j

j
?
=

mb∏
i=1

u
y′i
i (17)

Note that if each breaker y′i is equal to the sum of products of b terms and each term is a product
of xj ∈ Zq and τi,j ∈ Zq, then the bit length of |y′i| is approximately |y′i| ≤ 2 · |q| + |b|. The value of
y′i can also be expressed as y′i = yi + v · q for some v and |v| ≤ |q|+ |b| (this is important in Protocol
BinaryBoost we will cover in the next section). However, passing raw y′i values to the verifier may
leak some information about the coefficients.

To cope with that, we make the prover commit to a blinding vector ~µ ∈ Zmb
m . Each y′i is now

computed as:

y′i =

b∑
j=1

τi,jx
j + µi for i = {1, ...,mb} (18)

If |m| >> |
∑b
j=1 τi,jx

j |, then Zm perfectly hides
∑b
j=1 τi,jx

j (130-bit for 61-bit prime and b=28)
with high probability. For example, if we set m to a randomly chosen 216-bit value, then there is less
than a 2−85 probability that µj does not perfectly hide ~τj (e.g. when yi overflows m or less than 131
bits). Note that the power (exponent) of x in each term in the equation above is one degree lower
than it needs to be, so to get yi from y′i the verifier needs to multiply x one more time:

yi = (y′i · x) mod q ∈ Zq for i = {1, ...,mb} (19)

We also need to adjust the blinding key of r′ by adding µi to each ri. The updated equality graph
is shown in figure 2 below.

Let M =
∏mb

i=1 u
βi

i , the equality in figure 2 can also be expressed using the equality check below:

b∏
j=1

Cx
j

j ·M
?
=

mb∏
i=1

u
y′i
i (20)

If the commitments ~C,M and vector ~y ′ satisfy the equation above, then we know breakers ~y ′ are
valid. The verifier applies equation 19 to each y′i to get the actual breakers yi used in computing o.

We define two more functions for our protocol. function
computeSubCircuitKeys is used by the prover to compute the keys of each sub-circuit or “row”
in Figure 1, and function computeSubCircuit is used by the verifier to compute the value of a
sub-circuit at the evaluation point x:
1. function computeSubCircuitKeysi(“input values”, “input keys”): for i = {1, ..,mb}, it takes
input values ~a and keys ~α to evaluate the sub-circuit and outputs ri, εi, ~τi (coefficients of oi).

10



2. function computeSubCircuiti (“inputs in linear polynomial form”, “output from the previous
computeSubCircuit function”): for i = {1, ..,mb}, it trivially computes the result oi from the inputs
to the sub-circuit.

For example, if the logic of the ith sub-circuit is to return the product of l inputs, then the
computeSubCircuiti function simply performs oi = a1 × a2×, ...,×al. Since a1, ..., al are linear poly-
nomials evaluated at point X, oi is the evaluation of the output polynomial at point X, and the
computeSubCircuitKeysi function computes all coefficients of the output polynomial. We are now
ready to introduce Protocol Baseline as follows:

Input : (g, h, ~u, ~P ∈ G,~a ′ ∈ Zlq ; ~a, ~υ ∈ Zq) (21)

P ′s input : (g, h, ~u,R,~a ′; ~a, ~α, φ); V ′s input : (g, h, ~u,R,~a ′) (22)

P compute : (23)

ρi
$←− Zm, i = {1, ...,mb} (24)

M =

mb∏
i=1

uµi

i ∈ G (25)

r1, ε1, ~τ1 = computeSubCircuitKeys1(~a, ~α); (26)

ε1 = (ε1 − µ1) mod q ∈ Zq (27)

for i = 2, ...,mb { (28)

~a′ = ~a || ri−1, ~α′ = ~α || εi−1; (29)

ri, εi, ~τi = computeSubCircuitKeysi(~a
′, ~α′); (30)

εi = (εi − µi) mod q ∈ Zq } (31)

Cj =

mb∏
i=1

u
τi,j
i ∈ G i = {1, ..., b} (32)

φ
$←− Zp (33)

R = grmbhφ ∈ G (34)

InputMapping-Setup(~P ||R, g; ~υ||φ)→ P : ~S, ~T (35)

P → V : ~C,M, ~S, ~T (36)

V → P : x
$←− Zq (37)

P compute : (38)

a′i = ai + x · αi ∈ Zq i = {1, ..., l} (39)

y′i =

b∑
j

τi,j · xj + βi ∈ Zp i = {1, ...,mb} (40)

P → V : ~y′, ~a′ (41)

V verify final output : (42)

if (

mb∏
i=1

u
y′i
i

?
=

b∏
j=1

Cx
j

j ·M) then continue (43)

else reject (44)

for i = 1, ...,mb { (45)

oi = computeSubCircuiti(~a
′) ∈ Zq (46)

11



yi = (y′i · x) mod q ∈ Zq (47)

r′i = oi − yi ∈ Zq (48)

~a ′ = ~a ′||r′ ∈ Zq } (49)

if InputMapping-Verify(~P ||R, ~S, ~T , g, h,~a ′||r′mb
;~a||rmb

, ~α||ε, ~υ||φ) (50)

then continue (51)

else reject (52)

Protocol Baseline

Theorem 2. (The Baseline Protocol). The proof system presented in this section has perfect com-
pleteness, PHVZK, and CWEE. The proof for Theorem 2 is presented in Appendix B.

3.3 Optimization Techniques and Customized Sub-Circuit

We can optimize performance through the use of specially designed sub-circuits. The idea is similar to
that of “custom gates” found in SNARKs protocols in principle but very different in implementation. In
our case, the goal is to utilize existing algorithms/protocols to handle operations that would otherwise
be expensive in our protocol (or any other protocol).

In particular, we can use range proof inside an arithmetic circuit to handle all comparison opera-
tions (>,<,≥, ≤) and decimal point reductions. This is huge in practice because either using a boolean
circuit directly or converting to/from a boolean circuit inside an arithmetic circuit is expensive.

For example, to prove a1 > a2 (or P1 > P2), the prover can do the following:

1. Commit to their difference C = gchυ s.t. c = a1 − a2 (or compute C from P1, P2 using additive
homomorphism e.g. C = P1/P2).

2. Call protocol InputMapping to check c′ = a′1 − a′2 ∈ Zq maps C ∈ G;
3. Use a range-proof protocol to prove C > 0. If returns true, then we know a1 > a2.

An example usage is as follows:

computeSubCircuit : (~a ′ ∈ Zq, ~C ∈ G)

c′1 = a′1 − a′2 ∈ Zq
if Protocol RangeProof(C1, 0)

c′2 = a′3 − a′4 ∈ Zq
if Protocol RangeProof(C2, 0)

o = do something

else

o = do something else

else

o = do something

if Protocol InputMapping(C1||C2, c
′
1||c′2) return o

else reject

Function computeSubCircuit (Customized)

In the computeSubCircuit function defined above, the circuit first tests if a′1 > a′2 and then tests if
a′3 > a′4. Before the function returns o, it batch checks the mapping between each c′i and Ci pair. In
practice, all calls to range proof should also be batch verified at the end of the function.

12



We can bypass the “inactive” part of the circuit (similar to that of suBlonk (ePrint)). For example,
if the first range proof returns false (e.g., a1 < a2), then both the prover and the verifier can bypass the
two ”else” parts of the circuit above. However, it is worth noticing that using a customized sub-circuit
bypassing parts of the circuit may leak information about data to attackers, so one must use such a
strategy with extreme caution.

We believe combining the arithmetic circuit and range-proof protocols is the most efficient way to
run a zero-knowledge test in the real world. What makes our protocol unique in such an approach is
that we can batch proof all comparison logics using one range proof while still keeping the main line
of the circuit process inside one protocol run. If it were done in SNARK protocols, it would require
cutting a large circuit into multiple smaller ones, making both the communication cost and verifier
runtime cost linear to the number of smaller circuits (or the number of comparisons in a circuit).

It is also not necessary that all breakers y1, ..., ymb
have the same b value. For example, if some

value ai is taken to its 100th power (a′100i , degree term mp = 100) and will be used as inputs in
multiple places of a circuit, then it would be wise to use a breaker to cut its degree to 1 (in linear
polynomial form a100i +Xαi) before being used as inputs in other places of a circuit.

3.4 Memory Efficiency

The memory consumption cost of protocol Baseline is O(mp). We can improve the memory consump-

tion cost of our protocol to O(b) or approximately O(m
1
2
p ).

Instead of computing ~C after all ~τ are computed s.t. |~τ | = mp. We ask the prover to compute ~C
iteratively. When the prover computes ri, εi, ~τi in each loop for i = {1, ...,mb}, the prover also updates
~C with each new “row” of coefficients ~τi. This can be achieved by replacing lines 28 - 32 with the
following lines:

Cj = u
τ1,j
i ∈ G i = {1, ..., b} (53)

for i = 2, ...,mb { (54)

~a′ = ~a || ri−1, ~α′ = ~α || εi−1; (55)

ri, εi, ~τi = computeSubCircuitKeysi(~a
′, ~α′); (56)

εi = (εi − µi) mod q ∈ Zq } (57)

Because the coefficients of each iteration ~τi will get discarded from the memory after each iteration
completes, we can therefore achieve a memory cost of O(b). However, we now have to recompute ~τi
after challenge x is available so that ~y ′ can be computed ( in line 42 ).

The obvious caveat is that we can no longer use Pippenger acceleration to compute each Cj as we
did in protocol Baseline, and we also have to recompute coefficients for each sub-circuit to get ~y.

A meet-in-the-middle approach is to break the computation of ~C into tb segments, and in each
segment we compute 1

tbmp coefficients and update ~C after each segment. By doing so, we can achieve
a consumption cost of O( 1

tbmp).

4 The Binary-Boost Protocol for Boolean Circuits

For boolean circuits, we can leverage the fact that all input/output values of each gate can only be
either 0 or 1 to construct a more efficient protocol-BinaryBoost.

4.1 Protocol for boolean circuit validation

A common requirement in proving boolean circuits is to enforce input data bi ∈ {0, 1} for i ∈ {1, ..., l}
(this is not new, but we need this sub-protocol defined to make our main protocol easier to parse),
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such relation is defined as:

{(~b′,∈ Zlq ; ~b, ~β ∈ Zlq) : b′i = bi +Xβi ∧ ∀bi ∈ [0, 1] ∧ ∀i ∈ [1, .., l]} (58)

In practice, it is useful to decompose l full integer inputs into l · 32 bits (assuming we use 32 bits
to represent a full integer). If a committed value bi is in [0, 1], then its linear polynomial form bi must
have the following property:

(b′i · b′i − b′i) = δ1,ix+ δ2,ix
2 (59)

Where δ2,i = β2
i , and δ1,i = βi when bi is 1 and δ1,i = −β when bi is 0. To prove the correctness for

all bi ∈ {0, 1} , the prover commits to polynomials D1, D2:

D1 = u
δ1,1
1 u

δ1,2
2 ...u

δ1,l
l hρ1 , D2 = u

δ2,1
1 u

δ2,2
2 ...u

δ2,l
l hρ2

Where D1 commits to coefficients on the x term and D2 commits to coefficients on the x2 term.
The prover can easily join two polynomial commitments into one and sends only one element D to
the verifier.

D =

l∏
i=1

uδ1ii ·
l∏
i=1

uδ2ii+l · h
ρ ∈ G (60)

When the challenge k is received, the prover sends the evaluation results y1, y2 to the verifier, and
then engages with the verifier to verify the correctness of y1, y2 at point k, and checks if the equality
below is true:

y1 ·X + y2 ·X2 =

l·32∑
j=1

(b′i · b′i − b′i) · ki (61)

Once we know all linear polynomials map to either 0 or 1, it is trivial to recompose the linear
polynomial form of a full integer input a′i from 32 decomposed bits b′i,j for j = {1, ..., 32}.

a′i =

32∑
j=1

b′i,j · 2j (62)

We define the protocol BooleanityTest using two sub-protocols:

Input : (~b ′ ∈ Zq : ~b, ~β ′ ∈ Zq)
P compute :

l = |~b ′| ∈ Zq

ρ
$←− Zq

δ1i = biβi + biβi − βi ∈ Zq i = {1, ..., l}
δ2i = β2

i ∈ Zq i = {1, ..., l}

D =

l∏
i=1

u
δ1,i
i ·

l∏
i=1

u
δ2,i
i+l · h

ρ ∈ G

Protocol BooleanityTest-Setup

After a challenge x is sent from the verifier to the prover, the protocol moves to the verification
stage defined by the following sub-protocol.
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Input : (~b ′ ∈ Zq; ρ, ~δ1, ~δ2
′
∈ Zq)

P ′s input : (~b ′; ρ, ~δ1, ~δ2
′
); V ′s input : (~b ′)

V → P : k
$←− Zq

P compute :

y1 =

l∑
i=1

δ1,ik
i ∈ Zq, y2 =

l∑
i=1

δ2,ik
i ∈ Zq

P → V : y1, y2

P,V engate to evaluate :

if PolyCommitEval(D, y1 + y2k
l, k; ~δ1||~δ2, ρ)

∧ y1 · x+ y2 · x2
?
=

l·32∑
j=1

(b′i · b′i − b′i) · ki

return true

else return false

Protocol BooleanityTest-Verify

Theorem 3. (The Booleanity Test Protocol). The proof system presented in this section has perfect
completeness, PHVZK, and CWEE. The proof for Theorem 3 is presented in Appendix C.

4.2 Batch Validate Subcircuit Rows

In a boolean circuit, we know for a fact that each ri must be either 0 or 1 s.t.

oi − yi = ri +Xεi s.t. ri ∈ [0, 1]

We can confirm the boolean property of ~r with the booleanityTest protocol. This property implies
a dishonest prover can only alter each yi by ±1 s.t.

y∗i = yi ± 1;

The equation above also implies y∗′i = y′i ± 1 as far as our protocol is concerned since y∗i =
(y∗′i · x) mod q. Leveraging this fact, we can now batch commit each Cj (committing coefficients
τ1,j , ..., τmb,j) with fewer generators by using a simple binary trick: multiply each row i by a power of
2i.

Instead of committing τ1,j , .., τmb,j using mb generators u1, .., umb
, the prover now uses mb

tb gener-
ators u1, .., utb to commit each Cj , where tb is the size of each batch i′. Each i′ covers tb “rows” (See
Figure 2). Let st = (i′ − 1) · tb we have:

γi′,j =

tb∑
i=1

τst+i,j · 2i j = {1, ..., b} (63)

Cj =

mb/tb∏
i′=1

u
γi′,j
i′ ∈ G i′ = {1, ...,mb/tb} (64)

This can be visualized in Figure 2. For example, the exponent of generator u1 in Cj is γ1,j =∑32
i=1 τst+i,j · 2i, and its (batched) blinding key is µi′ =

∑tb
i=1 µst+i · 2i. After applying evaluation
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point x, the opening of each ui (“row”) is the summation of tb values:

tb∑
i=1

y′st+i · 2i =

mb/tb∑
i′=1

(γi′,j · xj + µi′) (65)

A dishonest prover cannot convince verifiers ~y ′∗ 6= ~y ′ by committing to ~γ ∗ 6= ~γ s.t. ~r ′∗ 6= ~r ′ still
passes the booleanity test. For example, let’s say y ′∗i = y′i + di s.t. di ∈ {0,±1} and γ ∗i′,j = γi′,j + fi′

where fi′ ∈ {0, δi}. To convince ~r ∗ the dishonest prover needs to find a pair of sets ~d, ~f that satisfies
the following equality before committing ~γ∗:

tb∑
i=1

dst+i · 2i =

mb/tb∑
i′=1

fi′,j · xj (66)

Which cannot be done without prior knowledge of x. Note that although ~y ′∗ is provided by the
prover after x is known, the prover needs to set ~d, which defines committed values ~r ∗,~ε ∗, ~γ∗, before x
is available. The binary trick (multiplying each “row” by 2i) guards against the case where a dishonest

prover finds a ~y ′∗ set s.t.
∑tb
i=1 y

′∗
st+i =

∑tb
i=1 y

′
st+i, in which case the dishonest prover would not need

to find a set ~f since
∑tb
i=1 dst+i = 0.

To protect our protocol from the overflow attack, the tb value (we default to 32) must be smaller

than |q|, or else equation 19 would not be safe (e.g., a dishonest prover can find a set ~d s.t. (
∑tb
i=1 dst+i)

mod q = 0).

u
y′1 · 2

1

1

.

u
y′32 · 2

32

1

u
y′33 · 2

1

2

.

u
y′64 · 2

32

2

u
y′65 · 2

1

3

.

.

u
y′mb

· 232

mb/Tb

=
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u
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1 . u
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1

. . .

u
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1 . . u
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1

u
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2 . . u

τ33,b · 21
2

. . .

u
τ64,1 · 232
2 . . u

τ64,b · 232
2

u
τ65,1 · 21
3 . . u

τ65,b · 21
2

. . .

. . .

u
τmb,1

· 232

mb/tb
. . u

τmb,b
· 232
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2

.
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3

.

.

u
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Figure 2

The verifier can now batch commit tb “rows” by using their “binary sum” zi′ :

zi′ =

tb∑
i=1

y′st+i · 2i for i′ = {1, ...,mb/tb} (67)

The equation 20 is now updated to batch validate tb “rows” at once.

b∏
j=1

Cx
j

j ·M
?
=

mb/tb∏
i′

u
zi′
i′ (68)
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4.3 Leveraging Batched Rows to Shrink Communication Cost

We can leverage the batch validation approach to reduce the communication cost. To do so, the prover
now computes and sends ~y ∈ Zq to the verifier instead of ~y ′. Since |yi| ≈ 1

4 |y
′
i|, sending ~y will save

approximately 24×mb bytes in communication cost.
The equation 19 will now be performed by the prover instead of the verifier. From equation 19,

we can infer that (yi · x−1) mod q = (y′i) mod q. We can therefore conclude that each y′i can be
represented as:

y′i = (yi · x−1) mod q + vi · q

Note that the equation above must not create an overflow in Zp (e.g. y′i < P ). Rearranging the
equation above, we get an equation that computes vi:

vi = (y′i − (y′i) mod q)/q

Since we want to prove the committed value in batch, we need vi′ =
∑tb
i=1 vst+i · 2i instead, which

we can compute directly from:

vi′ = (

mb/tb∑
i=1

(y′st+i − (y′st+i) mod q) · 2i)/q (69)

Since the prover now passes ~y,~v instead of ~y ′ to the verifier, the verifier needs to compute zi′ with
the following equation instead of equation 67:

zi′ = (

mb/tb∑
i=1

(yst+i · x−1) mod q · 2i) + vi′ · q (70)

Lastly, vi′ must not overflow p because it can be used as an attacking surface:

zi′ < p (71)

We now define the updated protocol for the boolean circuit - BinaryBoost:

Input : (g, h, ~u, ~P ∈ G,~a ′ ∈ Zlq ; ~a, ~υ ∈ Zq) (72)

P ′s input : (g, h, ~u,R,~a ′; ~a, ~α) V ′s input : (g, h, ~u,R,~a ′) (73)

P compute : (74)

µi
$←− Zm, i = {1, ...,mb} (75)

µi′ =

tb∑
i=1

µ(i′−1)tb+i · 2i i′ = {1, ...,mb/tb} (76)

M =

mb∏
i=1

u
µi′
i ∈ G (77)

bi ∈ Z2 , βi
$←− Zq i = {1, ..., l · 32} (78)

r1, ε1, ~τ1 = computeSubCircuitKeys1(~b, ~β); (79)

ε1 = (ε1 − µ1) mod q ∈ Zq (80)

for i = 2, ...,mb { (81)

~b = ~b || ri−1, ~β = ~β || εi−1; (82)
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ri, εi, ~τi = computeSubCircuitKeysi(~b, ~β); (83)

εi = (εi − µi) mod q ∈ Zq } (84)

φ
$←− Zp (85)

R = grhφ ∈ G (86)

InputMapping-Setup(~P ||R, g; ~υ||φ)→ P : ~S, ~T (87)

for i′ = 1, ...,mb/tb { (88)

st = (i′ − 1) · tb (89)

γi′,j =

tb∑
i=1

τst+i,j · 2i−1 ∈ Zp j = {1, ..., b} (90)

Ci′,j = u
γi′,j
i′ ∈ G j = {1, ..., b} } (91)

Cj =

mb/tb∏
i′=1

Ci′,j ∈ G i′ = {1, ...,mb/tb} (92)

Booleanity-Setup(~b||~r, ~β||~ε)→ P : D, ρ, ~δ1, ~δ2 (93)

P → V : ~C,M,D, ~S, ~T (94)

V → P : x
$←− Zq (95)

P compute : (96)

a′i = ai + x · αi ∈ Zq i = {1, ..., l} (97)

y′i =

b∑
j

τi,j · xj + βi ∈ Zp i = {1, ...,mb} (98)

yi = (y′i · x) mod q ∈ Zq i = {1, ...,mb} (99)

for i′ = 1, ...,mb/tb { (100)

st = (i′ − 1) · tb (101)

vi′ = (

mb/tb∑
i=1

(y′st+i − (y′st+i) mod q) · 2i)/q } (102)

P → V : ~a ′,~b ′, ~y,~v (103)

V verify final output : (104)

for i′ = 1, ...,mb/tb { (105)

st = (i′ − 1) · tb (106)

zi′ = (

mb/tb∑
i=1

(yi · x−1) mod q · 2i) + vi′ · q } (107)

if (

mb/tb∏
i′

u
zi′
i′

?
=

b∏
j=1

Cx
j

j ·M) then continue (108)

else reject (109)

for i = 1, ...,mb { (110)

oi = computeSubCircuiti(~b
′) ∈ Zq (111)

r′i = oi − yi ∈ Zq (112)

~a ′ = ~a ′||r′i ∈ Zq } (113)
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if InputMapping-Verify(~P ||R, ~S, ~T , g, h,~a ′||r′;~a||r, ~α||ε, ~υ||φ) (114)

∧ Booleanity-Verify(~b ′; ρ, ~δ1, ~δ2
′
) (115)

∧ a′i =

32∑
j=1

b′i,j · 2j i = {1, ..., l} (116)

then accept (117)

else reject (118)

Protocol BinaryBoost

Theorem 4. (Input Transformation Protocol with Binary Boost). The proof system presented in this
section has perfect completeness, PHVZK, and CWEE. The proof for Theorem 4 is presented in
Appendix D.

4.4 The Asymptotic Cost

The prover runtime of our baseline protocol (Protocol Baseline) is dominated by O(ιmp logmp + l)
field operations and O(mp + l) group exponentiations. The value of ι depends on how the circuit

is wired. For the sequential multiplication test case that we benchmark against, ι = mb

∑log b
i=1 i; the

verifier runtime is dominated by O(n+m
1
2
p + l) field operations and O(mp

1
2 + l) group exponentiations;

and the communication cost is dominated by O(mp
1
2 +l) group elements and O(mp

1
2 +l) field elements.

The binary-boost protocol improves the asymptotic group exponentiation cost of the prover run-
time to O(ιmp logmp + l) field operations and O( 1

tbmp +mp
1
2 + l) group exponentiations, where tb

is set to 32. While the asymptotic cost of the communication cost is the same, the concrete commu-
nication cost is reduced by approximately 20%, which is achieved by sending the smaller ~y instead of
the larger ~y ′.

Our protocol is also natively faster than its asymptotic cost indicates because group exp. operations
of our protocol operate mostly in q (61-bits or 93-bits), which is significantly smaller than p in ECC.
This gives us approximately 2-2.5X performance gains when performing multi-exponentiations. If the
circuit is shallow (e.g., for a circuit with the final output r =

∑n
i=1 a · b where a, b are circuit inputs

and n stands for the total number of gates in a circuit., we have mp = 1), the prover work would be
dominated by inexpensive O(n/2) field addition operations.

5 Performance Comparison

We compare the performance of our protocol to some of the most popular transparent zero-knowledge
protocols for which open source codes are available. Our test runs are performed on an Intel(R)
Core(TM) i7-9750H CPU @ 2.60 Ghz. Only one core is being utilized, and all tests are run on a
single CPU thread. Our test code is a non-interactive implementation (using Fiat-Shamir heuristic)
of Protocol 3 (not the memory-efficient option mentioned in section 4.5 because we want to leverage
the Pippenger acceleration to get the most optimal runtime result).

The baseline protocols we picked are Hyrax, Ligero, Aurora, and Spartan-NIZK. These protocols
were chosen because they are the most representative of popular zero-knowledge protocols and can
be verified with open source code. In particular, Aurora outperforms STARK in all key parameters
(prover runtime, verifier runtime, proof size), and the NIZK version of Spartan offers the most balanced
performance across all performance parameters. We also do not consider SNARKs even though most
of them can be made transparent by switching to a transparent polynomial commitment scheme, as
they are hardly efficient after the switch.
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We didn’t consider transparent protocols that depends on circuit depth such as GKR-based proto-
cols simply because they can’t handle 220 sequential multiplications. We also don’t consider voice-based
protocols, as they are only optimized for prover work and generally require one round of interaction.
Other popular transparent schemes such as Bulletproofs are also not being considered because they
have a linear verifier runtime and therefore are not succinct.

Spartan++ and Lakonia are two more recent developments that we didn’t include in our benchmark
testing but are worth mentioning. The improvement of Spartan++ over SpartanNIZK is marginal, and
the performance of Lakonia is largely comparable to that of SpartanNIZK (the prover performance of
SpartanNIZK is approximately 3X more efficient, and the verifier performance is 1.5X more efficient
than that of Lakonia, while Lakonia is 4X more efficient than SpartanNIZK in proof size).

We set the number of inputs to our protocol to 30 integers, and each input is represented by 32
bits so that there are a total of 30 · 32 = 960 input bits to the circuit. The circuit we use performs
n sequential multiplications on l inputs, so we have mp = n, likely much closer to the worst-case
scenario of our protocol than the test cases of other protocols that we are comparing against. If we
run a shallow circuit where mp number is small, the benchmark result will likely be significantly
better. For example, if we have a circuit where mp = 1, then its prover runtime performance will be
comparable to the verifier runtime of our protocol.

We picked two NTT prime numbers for our benchmark testing, one for the interactive case and
another for the non-interactive case.

The NTT prime number we picked for the non-interactive case is q = 1945555039024054273, a
61-bit number that implies the soundness error will be at most 2−51 for a circuit with 220 sequential
multiplications wheremp = n, which is more than enough in real-life applications where one interaction
is allowed.

For the non-interactive case (through using the Fiat-Shamir heuristic), the prime number for our
integer field is 5241902353849032101525979137, a 93-bit prime that implies the soundness error will
be at most 2−83 for a deep circuit with 220 sequential multiplications where mp = n.

To maximize the advantage of the NTT algorithm in computing sequential multiplications, we
process each segment (1, ...,mb) of our circuit in binary tree format to represent layers we would see
in the real world. Such tuning will likely not be required in real-world applications since large circuits
are usually layered and multiplication gates should be somewhat balanced out across layers already.

For group operations, we use the curve25519-dalek implementation, and Pippenger acceleration is
applied to all sum-of-product group operations. For field operations, we use the Montgomery algorithm
to accelerate modular multiplications on the prime q. One challenge we had was building an efficient
128-bit multiplication function. Unlike the 64-bit (provided by the CPU) and 256-bit (heavily opti-
mized with assembly code for various crypto computations such as ECC) multiplications, we couldn’t
find any efficient multiplication function for 128-bit multiplication so we had to do it ourselves. We
did the best we could to optimize our 128-bit multiplication without using assembly code, so there
are still rooms for improvement if assembly code is used.

We set mb = b to get a more balanced result. Alternatively, one can set mb > b to get better
prover runtime performance in exchange for more expensive communication costs. This is because
doing so will 1) evade expensive NTT computations at high degrees and 2) better leverage Pippenger

acceleration in computing ~C, which will continuously improve group exponentiation operations before
peaking out at around mb = 214.

Table 1 shows that as the circuit size gets bigger, the prover performance of our protocol is becoming
increasingly more efficient than all of our baseline protocols. This is because the cost associated with
the number of inputs to the circuit is fixed (960 bits), and its impact relative to the cost of evaluating
the whole circuit gradually declines as the circuit size gets bigger (the same effect will also apply to
verifier runtime and proof size benchmarks below). To the best of our knowledge, our protocol offers
the best prover performance in the non-interactive setting in the literature.
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Circuit size 210 212 214 216 218 220

Hyrax 1 2.8 9 36 117 486
Ligero 0.1 0.4 1.6 4 17 69
Aurora 0.5 1.6 6.5 27 116 485
SpartanNIZK 0.02 0.05 0.16 0.6 1.7 6.2

Baseline(61 bit) 0.008 0.02 0.05 0.18 0.7 2.5
Baseline(93 bit) 0.06 0.12 0.3 0.6 1.7 4.9

B-Boost(61 bit) 0.01 0.01 0.02 0.06 0.2 0.8

Table 1. Prover performance comparison (seconds)

Circuit size 210 212 214 216 218 220

Hyrax 14 17 21 28 38 58
Ligero 546 1,076 2,100 5,788 10,527 19,828
Aurora 477 610 810 1,069 1,315 1,603
SpartanNIZK 9 12 15 21 30 48

Baseline(61bit) 16 17 21 27 39 65
Baseline(93bit) 20 22 26 33 48 77

B-Boost(61bit) 15 16 19 24 34 55

Table 2. Proof size comparison (kilobytes)

Table 2 shows that the communication cost of our protocol dominates that of Ligero and Aurora,
while largely comparable to SpartanNIZK and Hyrax.

Circuit size 210 212 214 216 218 220

Hyrax 206 253 331 594 1.6s 8.1s
Ligero 50 179 700 2s 7.5s 33s
Aurora 192 590 2s 7.2s 29.8s 118s
SpartanNIZK 7 11 17 36 103 387

Baseline(61bit) 2 2 3 4 7 16
Baseline(93bit) 5 5 6 8 15 37

B-Boost(61bit) 2 2 3 4 6 17

Table 3. Verifier performance comparison (milliseconds)

Table 3 demonstrates that our protocol achieves a significant improvement of over one order of
magnitude in verifier runtime compared to other protocols.

It is worth noticing that input transformation costs can be shared across multiple circuits if the
inputs are reused in other circuit verifications. Only the “base” case is the pure circuit cost that cannot
be shared between circuits; this may lead to further reductions in communication costs in the real
world.

6 Conclusion

We believe the best way to run our protocol in the real world is to use protocol Baseline to run an
arithmetic circuit and embed an existing range-proof protocol to perform comparison operations as
explained in section 3.3. We also present an ultra-efficient boolean circuit protocol BinaryBoost just
in case a boolean circuit is necessary.
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Appendix

A. Proof for Theorem One

Proof. Perfect completeness follows from the fact that protocol InputMapping Validation is trivially
complete.

To prove PHVZK for relation 4, we define a simulator Sinput. To start, simulator Sinput randomly

generates ~S, ~T and sends them to the verifier. After receiving challenge x from the verifier, the simulator
randomly generates and sends ~a ′, ~e according to the protocol specification (s.t. (ei) mod q = 0) and
sends them to the verifier.

When challenge k is received, the simulator Sinput calls simulator Sdlog to generate transcript trvt
and send it to the verifier.

The verifier then follows the protocol to compute PKvt using transcripts ~S, ~T ,~a ′, ~e and calls the
V erifyDL function to test it against the input transcript trvt , We already know for a fact that
simulator Sdlog can extract witnesses from any discrete-log relation and that simulators Sinput and
Sdlog choose all proof elements and challenges according to the randomness supplied by the adversary
from their respective domains or compute them directly as described in the protocol. Since all elements
in proof transcripts are either independently randomly distributed or their relationship is fully defined
by the verification equations, we can conclude that protocol InputMapping is PHVZK.

To prove CWEE, we construct an extractor X that also uses extractor Xdlog to extract witnesses
from proof of knowledge transcripts. To start, the extractor X interacts with the prover and receives
~S, ~T from the prover. The extractor X then generates a challenge x1 and forwards it to the prover.
After receiving ~e1,~a

′
1, the extractor rewinds and repeats this step with another challenge x2 to retrieve

~e2, ~a′2.

After receiving transcripts ~S, ~T and transformed inputs ~a ′ from the prover, the extractor generates
k1 and then follows the protocol to get trυt1 (from prover), PKυt1 . The extractor X then calls the

extractor Xdlog to retrieve υt1 from generator hx/(gx
2

u). The extractor then rewinds and repeats this
step l times to retrieve υt2, ..., υtl+1. Through interpolation, the extractor retrieves witnesses υi for

all i in {1, ..., l}. Since we know for a fact that ei cannot alter ai and committed values ~P , ~S, ~T all
applied to different powers of x, a cannot be altered except for a negligible probability or we find a
non-trivial relationship between generators g, h, u.

Using any two different challenges xi, xi+1 we mentioned earlier, the extractor gets ~a′1 and ~a′2 from
the prover, which we can trivially retrieve ~α for all i = {1, ..., l} using the equation below.

a′1i − a
′
2i = αi(x1 − x2) (119)

With ~a, ~α extracted, we can also extract ω from equation 7. Plugging witnesses ~a, ~α, ~υ, ~ω to gener-
ators g, h, u we can re-write the left and right sides of equation 9 to:

(hx/(gx
2

u))
∑l

i υi·ki = PKυt =

l∏
i=1

(
gai·xhυi·x

ga
′
i·x−ei+(υi−αi)·x2+ωi·q · uυi

)ki
∈ G (120)

The equality above must be true for a computationally bounded prover, or we find a non-trivial
relationship between generators g, h, u.

B. Proof for Theorem Two

Proof. Perfect completeness follows from the fact that the protocol Baseline is trivially complete.
To prove PHVZK for relation 1, we define a simulator S. Simulator S calls on simulators Sinput

defined earlier to generate transcripts and simulate interactions in the InputMapping sub-protocol
used in our baseline protocol.
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We have already showed Sinput can simulate all interactions needed in sub-protocol InputMapping,

which includes generating transcripts ~S, ~T . We now show how S generates the rest of the transcripts
according to the randomness supplied by the adversary from their respective domains or computes
them directly as described in the protocol.

Simulator S randomly generates committed transcripts ~C, M and sends them to the verifier.
After receiving challenge x from the verifier, the prover rewinds and regenerates M with a randomly
generated ~y ′ s.t. the updated M∗ is:

M∗ =

∏mb

i uy
′
i∏b

j=1 C
xj

j

∈ G (121)

The simulator then randomly generates ~a before sending them to the verifier. Since all elements in
proof transcripts are either independently randomly distributed or their relationship is fully defined
by the verification equations, we can conclude that the protocol Baseline is PHVZK.

To prove CWEE, we define extractor X that calls on extractors Xinput defined earlier to extract
witnesses for the two sub-protocols used in the protocol Baseline.

We already know X can extract ~a, ~α, ~υ and ~r,~ε using extractor Xinput from committed transcripts
~S, ~T . Using input witnesses, we can use the function computeSubCircuitKeys to compute circuit
witnesses ~r,~ε, ~τ .

Next, we verify the validity of circuit witnesses ~r,~ε, ~τ by checking if we can extract the same
circuit witnesses from commitments ~C,M . The extractor X interacts with the prover and receives
~C,M from the prover. The extractor X then generates b + 1 challenges ~x and forwards them to the
prover. After receiving circuit inputs ~a ′ and circuit evaluation transcripts ~y ′1 computed from the first
challenge x, the extractor rewinds and repeats this step b times to generate challenges x2, ..., xb+1

and retrieve witnesses ~y ′2, ..., ~y
′
b+1 from interpolation. The retrieved witnesses must pass equality 17

for a computationally bounded prover, or else we find a non-trivial discrete log relationship between
generators ~u.

We then apply polynomial interpolation to retrieve circuit witnesses ~τ1, ..., ~τmb
and ~µ from ~y ′1, ..., ~y

′
b+1,

The extractor then follows the protocol to compute ~r ′, and then trivially extracts ~r,~ε with any pair
of challenge x1, x2.

Finally, we check if the extracted circuit witnesses ~r,~ε, ~τ match that computed from input witnesses
~a, ~α using computeSubCircuitKeys functions, which must be true for a computationally bounded
prover except with negligible probability s.t. the dishonest prover made a correct guess on challenge
x or else we find a non-trivial discrete log relationship between generators g, h (for input witnesses)
and/or between generators ~u (for circuit witnesses).

C. Proof for Theorem Three

Proof. Perfect completeness follows from the fact that the protocol BooleanityTest is trivially com-
plete.

To prove PHVZK for relation 58, we define a simulator Sb−test. To start, Sb−test randomly generates
a group element D, which represents the committed polynomial. After challenge x is received from
the verifier,

Sb−test uses a simulator Sp to simulate proof transcripts needed for polynomial commitment eval-
uation, which we know exist for a fact [9].

The simulators Sb−test and Sp choose all proof elements and challenges according to the randomness
supplied by the adversary from their respective domains or compute them directly as described in the
protocol. Since all elements in proof transcripts are either independently randomly distributed or their
relationship is fully defined by the verification equations, we can conclude that protocol BooleanityTest
is PHVZK.
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To prove this protocol has CWEE, we first define an extractor Xb−test for Protocol Booleanity

that extracts witnesses ~b, ~β.
The extractor first receives a vector commitment D from the prover. The extractor then generates

2l + 1 challenges k1, ..., k2l+1 and retrieves 2l + 1 ~y1 and 2l + 1 ~y2 through repeated rewinding. The
extractor Xb−test then calls on an extractor for the polynomial commitment evaluation protocol (which

we know exists for a fact [9]) to extract witnesses ~δ1, ~δ2, φ or else we find a non-trivial relationship
between elements in ~u, h.

It is trivial to extract witnesses bi, βi from δ1.δ2 for i = {1, ..., l} s.t. they must pass the equality
test defined in equation 61 except with negligible probability of a dishonest prover making the right
guess on x

D. Proof for Theorem Four

Proof. Perfect completeness follows from the fact that the protocol Binary Boost is trivially complete.
To prove PHVZK for relation 1, we define a simulator S. Simulator S calls on simulators Sinput

and Sb−test defined earlier to generate transcripts and simulate interactions in the two sub-protocols
used in the Binary Boost protocol.

We have already shown Sinput can simulate all interactions needed in sub-protocol Input-Mapping,

which includes generating transcripts ~S, ~T . We have also shown that Sb−test can simulate all inter-
actions needed in the sub-protocol Booleanity Test, which covers generating transcripts D. We now
show S generates the rest of the transcripts according to the randomness supplied by the adversary
from their respective domains or computes them directly as described in the protocol.

Simulator S randomly generates committed transcripts ~C,D,M and sends them to the verifier.
After receiving challenge x from the verifier, the prover rewinds and regenerates M∗ with a randomly
generated ~zi′ s.t. M∗ is:

M∗ =

∏mb/tb
i′ uzi′∏b
j=1 C

xj

j

∈ G (122)

The simulator then reversely computes ~y,~v from generated ~zi′ and randomly generates ~a ′ and
~b ′ according to protocol specification before sending them to the verifier. Since all elements in proof
transcripts are either independently randomly distributed or their relationship is fully defined by the
verification equations, we can conclude that the protocol Binary Boost is PHVZK.

To prove CWEE, we define an extractor X that calls on extractors Xinput and Xb−test defined
earlier to extract witnesses for the two sub-protocols used in the BinaryBoost protocol.

We already know we can extract input witnesses ~a, ~α, υ and ~r,~ε using extractor Xinput from ~a ′, ~r ′

and committed transcripts ~S, ~T . We also know that we can extract boolean witnesses ~b, ~β from ~b ′ and
committed value D using extractor Xb−test. Since we can extract witnesses for ~a ′ and that of their
boolean constituents ~a ′, equality (line TBD-115 of the protocol) 62 must be true for a computationally
bounded prover except for the negligible chance of making the right guess on x.

Using these boolean witnesses, we can use the function computeSubCircuitKeys to compute circuit
witnesses ~r,~ε, ~τ . We validate the CWEE of the protocol by testing if the witnesses computed from
input witnesses match those committed by the prover using commitments ~C,M .

The extractor X interacts with the prover and receives ~C,M,D from the prover, then generates b+1
challenges ~x and forwards them to the prover. After receiving circuit inputs ~a ′,~b ′ and circuit evaluation
transcripts ~y1, ~v1 computed from the first challenge x, the extractor rewinds and repeats this step b
times to retrieve ~y2, ..., ~yb+1, ~v2, ..., ~vb+1. We then apply polynomial interpolation to retrieve circuit
witnesses ~τ and ~µ from ~y1, ..., ~yb+1, and retrieve batched circuit witnesses ~γ and ~µ′ from ~y1, ..., ~yb+1

and ~v1, ..., ~vb+1. Where each element γi′,j in ~γ is the sum of the products of tb elements in ~τj as defined
in equation 63.
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Apply any challenge x to each γi′,j and masking key µi we get the exponents of the left hand side

generators of equality 68, which are exponents of ~C(~τ) multiplied by powers of x plus exponents of
M(~µ). Apply any challenge x to ~y and multiply each element in ~v by q, we get the exponents of the
right-hand side of equality 68 ~u(zi′) (defined in equation 70):

b∑
j=1

γi′,jx
j + µ = (

mb/tb∑
i=1

(yi · x−1) mod q · 2i) + vi′ · q

The equality above must be true for each i′ = {1, ...,mb/tb} unless we find a non-trivial discrete
log relation between generators ~u. After checking that the that the exponents of both sides do not
overflow p and tb < |q|, we multiply both sides by x and then apply mod q to both sides we get:

b∑
j=1

γi′,jx
j+1 + µi′x =

tb∑
i=1

yi · 2i ∈ Zq (123)

We know that yi =
∑b
j=1 τi,jx

i+1 + µix ∈ Zq by protocol definition, so we can replace yi by using
in ~τ , ~mu received from the prover.

b∑
j=1

γi′,jx
j+1 + µi′x =

tb∑
i=1

(

b∑
j=1

τi,jx
i+1 + µix) · 2i ∈ Zq (124)

Assuming the dishonest prover can only alter y∗i by yi ± 1, the right hand side of the equality above

can only be altered to
∑tb
i=1(

∑b
j=1 τi,jx

i+1 + µix) · 2i ± 2i. Since ±2i is in the constant term and no

combination of
∑tb
i=1± 2i can possibly compute to 0, we say that ~τ is legit except for a negligible

probability of making a correct guess on challenge x.
This (±1) property can be validated by checking if we can successfully extract witnesses ~r,~ε from

transcripts ~r ′ (computed by the verifier following the protocol) and D using extractor Xb−test s.t.
each ri ∈ {0, 1}. If we can confirm each ri ∈ {0, 1}, then we know y∗i can only be altered by ±1 since
oi = ri + yi.

Finally, we check if the extracted circuit witnesses ~r,~ε, ~τ match that computed from input witnesses
~b, ~β using computeSubCircuitKeys functions, which must be true for a computationally bounded prover
except with negligible probability s.t. the dishonest prover made a correct guess on challenge x or else
we find a non-trivial d-log relationship between generators g, h (for input witnesses) and/or between
generators ~u (for circuit witnesses).
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