
Unleashing the Power of Differential Fault
Attacks on QARMAv2

Soumya Sahoo1, Debasmita Chakraborty2,3 and Santanu Sarkar1

1 Indian Institute of Technology Madras, Chennai, India
2 Indian Statistical Institute, Kolkata

3 TU Graz, Austria
soumyasahoo078@gmail.com,debasmitachakraborty1@gmail.com,sarkar.santanu.bir1@

gmail.com

Abstract. QARMAv2 represents a family of lightweight block ciphers introduced in
ToSC 2023. This new iteration, QARMAv2, is an evolution of the original QARMA
design, specifically constructed to accommodate more extended tweak values while
simultaneously enhancing security measures. This family of ciphers is available in
two distinct versions, referred to as QARMAv2-b-s, where ‘b’ signifies the block
length, with options for both 64-bit and 128-bit blocks, and ‘c’ signifies the key
length. In this paper, for the first time, we present differential fault analysis (DFA)
of all the QARMAv2 variants- QARMAv2-64, and QARMAv2-128 by introducing
an approach to utilize the fault propagation patterns at the nibble level, with the
goal of identifying relevant faulty ciphertexts and vulnerable fault positions. This
technique highlights a substantial security risk for the practical implementation of
QARMAv2. By strategically introducing six random nibble faults into the input of
the (r − 1)-th and (r − 2)-th backward rounds within the r-round QARMAv2-64,
our attack achieves a significant reduction in the secret key space, diminishing it
from the expansive 2128 to a significantly more smaller set of size 232. Additionally,
when targeting QARMAv2-128-128, it demands the introduction of six random nibble
faults to effectively reduce the secret key space from 2128 to a remarkably reduced
224. To conclude, we also explore the potential extension of our methods to conduct
DFA on various other iterations and adaptations of the QARMAv2 cryptographic
scheme. To the best of our knowledge, this marks the first instance of a differential
fault attack targeting the QARMAv2 tweakable block cipher family, signifying an
important direction in cryptographic analysis.
Keywords: Tweakable block cipher · Differential fault attack · Nibble fault · QARMAv2

1 Introduction
Fault analysis (FA), initially presented by Boneh et al. [BDL97,BDL01] targeting RSA-CRT
implementations, represents a potent method for attacking cryptographic primitives. This
technique enables the attackers to acquire supplementary side-channel data, facilitating
the practical attainment of key recovery attacks. Following this milestone, Biham and
Shamir [BS97] introduced differential fault analysis (DFA) on the DES block cipher during
CRYPTO 1997. Since then, various fault attacks are introduced such as (statistical)
ineffective fault analysis [DEK+18,DEG+18], collision fault analysis [BK06], fault intensity
analysis [ELH+15], persistent fault attack [ZLZ+18], fault template attack [SBR+20], and
other fault attacks [PAM19,GKPM18].

The Differential Fault Attack capitalizes on the distinction between accurate and faulty
ciphertexts, achieved by introducing faults in the internal state during the final rounds.

mailto:soumyasahoo078@gmail.com, debasmitachakraborty1@gmail.com, sarkar.santanu.bir1@gmail.com
mailto:soumyasahoo078@gmail.com, debasmitachakraborty1@gmail.com, sarkar.santanu.bir1@gmail.com

Using these pairs of correct and faulty ciphertexts, an adversary can employ cryptographic
analysis to recover the secret key. A significant aspect of DFA is its capability to analyze a
limited number of rounds of a block cipher. DFA has found extensive application in various
attacks targeting the AES [AMT13], TWOFISH [AM12], PRESENT [BEG13,JLSH13],
PRINCE [SH13], MIDORI [CZS16], SKINNY [YDQ+23] etc.

QARMAv2 is a family of tweakable block ciphers recently proposed by Avanzi et al.
[ABD+23]. It significantly enhances the original QARMA [Ava17] cipher introduced at
FSE 2017. The primary objective of QARMAv2 is to elevate its security capabilities
and accommodate longer tweak inputs, all while preserving similar levels of latency and
area efficiency. This extended tweak input capacity serves both specific application
scenarios and facilitates the development of modes of operation with enhanced security
attributes. The advancements in QARMAv2 are realized by introducing novel key and
tweak schedules, restructured choices for S-Box and linear layer components, and a more
thorough and comprehensive security analysis. In the realm of fully unrolled hardware
implementations, QARMAv2 remains competitive by offering a compelling combination
of low latency and efficient area utilization. The primary objective of the QARMAv2
design is to create a versatile Tweakable Block Cipher (TBC) that can serve as a general-
purpose solution while also excelling in cryptographic memory protection, as demonstrated
in [AMS+22]. Additionally, it should enable fast computation of short messages, which
is particularly useful for ensuring control flow integrity. The design allows for efficient
hardware implementations and aims to facilitate the development of optimized software
implementations.

1.1 Our Contributions
In this paper, we embark on a critical exploration of a significant vulnerability within
QARMAv2, which stems from its diffusion matrix. Our research begins with a thorough
examination of the fault propagation characteristics when a single fault is introduced
during the (r−1)-th backward round within the context of QARMAv2’s r-round encryption
function. Continuing our exploration, we undertake an exhaustive analysis of the difference
between correct and faulty ciphertexts, with a particular emphasis on non-zero differential
patterns. This idea reveals distinct and interesting patterns that establish a clear connection
between faulty positions and the locations of these non-zero differentials. Now, these
patterns represent a valuable opportunity for potential exploitation, as they offer insights
into the extraction of key bit information. To come up with some more interesting patterns,
we also induce a single fault at the beginning of the (r−2)-th backward round of QARMAv2
and study the fault propagation characteristics.

Building upon these insights, we introduce a nibble-oriented differential fault analysis
targeting both QARMAv2-64 and QARMAv2-128. It’s worth noting that these two variants
share an almost identical overall structural framework. As our fault model assumes that the
attacker lacks knowledge about the specific location of the faulted nibble, we also discuss
how the attacker can uniquely determine the fault positions based on some observations.
Therefore, using our method, we can reduce the secret key space from 2128 to 232 for
QARMAv2-64, and 2128 to 224 for QARMAv2-128-128 by only using six faults. Finally, we
discuss how our method can be extended to construct DFA against QARMAv2-128-192
and QARMAv2-128-256. The attack complexities with the number of fault injections for
all variants of QARMAv2 are given in Table 1. As far as our knowledge extends, this
represents the first differential fault analysis on QARMAv2.

2

Table 1: Summarization of Our Attack

Variant Key
Size

Number of Distinct
Fault Locations

Number
of Faults

Complexity

QARMAv2-64 2128 3 6 ≈ 232

QARMAv2-128-128 2128 4 6 ≈ 224

QARMAv2-128-192 2192 5 10 ≈ 240

QARMAv2-128-256 2256 6 12 ≈ 264

1.2 Organization of the Paper
The rest of this paper follows this structure: In Section 2, we provide a detailed specification
of the QARMAv2 cipher family along with fundamental insights into Differential Fault
Analysis (DFA) attacks. In Section 3, we explore the DFA attacks executed on all
versions of QARMAv2, and here we analyze the efficiency of our approach. Section 4
comprehensively explores complexity analysis and presents experimental results validating
our attack strategies. Lastly, in Section 5, we contemplate potential future directions and
offer concluding remarks for our paper.

2 Preliminaries
2.1 Brief Description of QARMAv2
In this section, we provide a concise introduction to the QARMAv2 specification. We start
by giving a glimpse of the cipher’s overall structure and follow it with brief explanations of
the sub-operations of the cipher that hold significance within the context of DFA attacks.
One may refer to [ABD+23] for a detailed description of each sub-operations.

2.2 General Description
The construction of QARMAv2 follows the same reflector design as utilized in PRINCE and
QARMA. The design consists of a forward function (F), a symmetric reflector (referred to
as the central construction), and a backward function (F̄), which is the functional inverse
of the forward function. In Figure 2, we sketch the reflector structure of QARMAv2. The
initial and final round consist only of the key addition and substitution layer. In the
reflector, tweak is not used. The keys and tweaks are generated from the master key K and
tweak T , respectively, using some simple operations. The function F consists of iterated
function R. Similarly, the function F̄ is generated by iterating the round function R̄. Here,
a bar over a function represents the inverse of the function. A typical round function R is
a composition of a state shuffle τ , a diffusion matrix M and a S-Box, i.e., R = S ◦M ◦ τ .

The encryption function of r-round QARMAv2 consists of r-rounds of the round
function R (forward function), the reflector in the middle, r-rounds of the round function
R̄ (backward function), and two half rounds consisting of key addition and substitution
layer at the beginning and the end of the encryption function. please refer to Algorithm 1
in [ABD+23] for more details.

3

2.2.1 Internal State

The internal state S of QARMAv2 is represented by a three-dimensional array comprising
l layers where l can be 1 or 2. It is b bits long. The one-layer and two-layer constructions
are denoted as QARMAv2-64 and QARMAv2-128, respectively. A layer can be viewed as
a 4 by 4 matrix of 4-bit cells.

L = x0 ||x1 || · · · || x14 ||x15 =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15


So, b = 64l. For QARMAv2-128, l = 2, the state is defined as a 8 by 4 matrix.

2.2.2 Round Functions

QARMAv2 reuses the QARMA round functions with a single change for the two-layer
version. There are four types of round: the full round and the half round, and their inverses.
A full round has the following structure (Figure 1):

x
⊕
k

tw

ct

R X y

{ }

Figure 1: A full round of QARMAv2

where R = S ◦M ◦ τ . The notations k, ct, tw represent a round key, constant, and
tweak, respectively. The symbol τ signifies the MIDORI StateShuffle operation. The
matrix M is a 4 × 4 matrix that conducts left multiplication on each layer of a block,
working column-wise. Additionally, the symbol S denotes the simultaneous application of
identical S-Boxes to all cells of the state. Please note that comprehensive definitions for
these components will be provided later in this section.

In Figure 1, the letter X represents the eXchangeRows operation, specifically appli-
cable when l = 2. This operation involves swapping the first two rows between two layers.
It occurs every other full round, with two eXchangeRows operations always flanking the
reflector, or, in simpler terms, eXchangeRows is consistently included in Rounds r and
r + 1. It is worth noting that both X and S operations exhibit compatibility and can be
executed in any sequence.

2.2.3 Reflector Function

The reflector (or central construction) is similar to that of QARMA (Figure 2):

τx

k0

M

k1

τ̄ y

Figure 2: Reflector function of QARMAv2

where k0, k1 are two round keys. One can achieve the implementation of this function
by utilizing the original QARMA central construction, wherein the round key is derived as

4

M · k0 + k1. It’s worth noting that the reflector component, devoid of S-Box layers, is not
considered as a round in this context.

2.2.4 Round Keys

For l = 1, the admissible key size is 128 bits, and the master key is denoted by K = K0||K1.
The key schedule for the forward and backward functions can be implemented by two
registers k0 and k1 that are alternatingly added to that state. Encryption is initialized with
values K0 and K1, two halves of the key K. The two round keys added in the reflector
are W0 = o2(K0) and W1 = o−2(K1) where o is an orthomorphism defined as o : Fb2 → Fb2
such that:

o(w) := (w ≫ 1) + (w � (b− 1)).

During the computation of the backward function, K0 and K1 are subject to the transfor-
mation

ιe : (K0,K1) 7→ (L0, L1) := (o(K0) + α, o−1(K1 + β).

If k0 and k1 are instead initially set to the values L0 = o(K0) + α and L1 = o−1(K1) + β,
the inverse transformation is given by

ιd : (L1, L0) 7→ (o(L1) + o(β), o−1(L0) + o−1(α)) = (K1,K0).

Thus, for decryption we start with L1 7→ k0 and L0 7→ k1 and apply ιd instead of ιe, which
differ only in the constants.
Remark 1. For the detailed description of round constants and the round tweaks, please
refer to [ABD+23].

2.3 Specification of Sub-operations
The specification of the forward function F describes iterative rounds consisting of five sub-
operations (in order) -Add Round Key (ARK),Add Round Tweaks and Constants
(ART), State Shuffle (τ), MixColumns (M), and Substitution Layer (S). The
backward function F̄ consists of five sub-operations (in order) - Inverse Substitution
Layer (S̄), Inverse MixColumns (M̄), Inverse State Shuffle (τ̄), Add Round
Tweaks and Constants (ART), and Add Round Key (ARK).

2.3.1 State Shuffle

MIDORI’s shuffle τ is used as a state shuffle in QARMAv2 construction.

τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2]

τ operates on each layer in the following manner:

L =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 τ

−→


a0 a11 a6 a13
a10 a1 a12 a7
a5 a14 a3 a8
a15 a4 a9 a2

 = τ(L)

The state shuffle inverse τ−1 is defined as

τ−1 = [0, 5, 15, 10, 13, 8, 2, 7, 11, 14, 4, 1, 6, 3, 9, 12]

5

and its operates on each layer as follows:

L =


a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11
a12 a13 a14 a15

 τ−1

−−→


a0 a5 a15 a10
a13 a8 a2 a7
a11 a14 a4 a1
a6 a3 a9 a12

 = τ−1(L)

At any ith forward round, W̃ i and Z̃i present the input and the output state of the
State Shuffle operation, and at the ith backward round, Zi and W i present the input
and the output state of the Inverse State Shuffle operation. Following the notational
conventions of this paper, the State Shuffle operation can be represented as{

Z̃i = τ(W̃ i), with 1 ≤ i ≤ r
W i = τ̄(Zi), with 1 ≤ i ≤ r

2.3.2 Diffusion Matrix

Define a linear transformation ρ on F4
2 by ρ((x3, x2, x1, x0)) = (x2, x1, x0, x3) and ρ4 = I

where I is the identity map. Now, the diffusion matrix M is defined using the left cyclic
rotation function ρ by

M = circ(0, ρ, ρ2, ρ3) =


0 ρ ρ2 ρ3

ρ3 0 ρ ρ2

ρ2 ρ3 0 ρ
ρ ρ2 ρ3 0


For the involution property of M , we can write M̄ = M . At any ith forward round,

Z̃i and Ỹ i present the input and the output state of the MixColumns operation, and
at the ith backward round, Y i and Zi present the input and the output state of the
Inverse MixColumns operation. Following the notational conventions of this paper, the
MixColumns operation can be represented as{

Ỹ i = M(Z̃i), with 1 ≤ i ≤ r
Zi = M̄(Y i), with 1 ≤ i ≤ r

2.3.3 Substitution Layer

The Substitution layer sub-operation applies a non-linear bijective transformation on each
cell of the internal layer L . The following S-Box is used for QARMAv2 construction.

S = [4 7 9 B C 6 E F 0 5 1 D 8 3 2 A]

Optionally, one more S-Box is allowed for the PAC and memory authentication applications.

σ = [0 E 2 A 9 F 8 B 6 4 3 7 D C 1 5]

At any ith forward round, Ỹ i and X̃i+1 present the input and the output state of the
S-Box operation, and at the ith backward round, Xi and Y i present the input and the
output state of the Inverse S-box operation. Following the notational conventions of this
paper, the S-box operation can be represented as{

X̃i+1
j = S(Ỹ ij), with 1 ≤ i ≤ r, 0 ≤ j ≤ 15

Y ij = S̄(Xi
j), with 1 ≤ i ≤ r, 0 ≤ j ≤ 15

6

Hence, according to the notational description written above, we can simply describe
all the sub-operations involved in the ith forward and backward rounds as follows:{

X̃i ART−→ Ũ i
ARK−→ W̃ i τ−→ Z̃i

M−→ Ỹ i
S−→ X̃i+1

Xi S̄−→ Y i
M̄−→ Zi

τ̄−→W i ARK−→ U i
ART−→ Xi+1

Similarly, for the encryption of QARMAv2-128, we simply use the following notations in
order to describe all the sub-operations involved in the ith backward rounds:

Xi X−→ X ′
i S̄−→ Y i

M̄−→ Zi
τ̄−→W i ARK−→ U i

ART−→ Xi+1

where ‘X’ is the eXchangeRows operation in QARMAv2-128.

2.4 Differential Fault Analysis
Differential Fault Analysis (DFA) is a sophisticated side-channel attack that amalgamates
traditional differential analysis with advanced fault injection techniques. This form of
attack thrives on the discrepancies in information that are induced by deliberate fault
injections into a cryptographic device during its operation.

The complexity of executing a DFA is largely determined by the nature of the fault
injected. The fault models can be categorized based on two factors: the scale of fault-
injection and the ability to position the injected fault. Each of these categories is further
divided as follows:

Scale of Fault-Injection

1. Bit Flip: Here, the attacker has the capability to manipulate a single bit within a
specific word.

2. Byte Error: In this case, the attacker can modify a single byte within a specific
word, substituting it with a random value.

3. Word Error: This involves the attacker changing an entire word within the crypto-
graphic device to a random value.

Positioning Capability

1. Chosen Position: This implies that the attacker can accurately specify the location
for fault injection within the system.

2. Random Position: In this scenario, the attacker does not have control over the
exact location of fault injection. Instead, faults occur at random locations within
the system.

In cases where the fault-injection scale is smaller, the attacker’s assumptions become
stronger. Additionally, when a specific fault injection position can be determined, the
attacker’s assumptions gain strength. Fault injection attacks can be executed through
various techniques, including low-hammer attacks, laser fault injection, electromagnetic
fault injection, and more.

7

3 Differential Fault Analysis of QARMAv2
The fundamental principle underlying Differential Fault Analysis (DFA) attacks involves
deliberately introducing a targeted fault into a computational process and subsequently
examining the XOR (exclusive OR) discrepancy between the results of the correct compu-
tation and the flawed computation. Analysts can identify patterns that reveal sensitive
information about the cryptographic algorithm or key being used by comparing the
expected correct ciphertext with the ciphertext generated when a fault is introduced.

Most DFA attacks on block ciphers primarily exploit the construction of fault difference
equations across the non-linear layers, such as S-Boxes, in order to recover the secret keys.
To express this more formally, our interest lies in finding solutions for the variable x in
equations of the form, SC(x + δi) + SC(x) = δo for forward operations, and SC−1(x +
δo) + SC−1(x) = δi for inverse operations. Here, δi and δo represent the input and output
differentials of the non-linear layers, respectively. SC denotes the non-linear sub-operation,
typically an S-Box for most modern block ciphers. The operator “ + ” shall always denote
the binary XOR in the whole paper. These equations are symmetric for both forward
and inverse operations. In the Differential Fault Analysis (DFA) context, x represents a
portion of the unknown secret key. Typically, the focus is on solving the inverse S-Box
equations or fault difference equations.

In our case the fault difference equations are S-Box equations rather than inverse S-Box.
For each S-Box under consideration, several such equations can be written. The primary
goal here is to successfully solve this system of equations to recover the secret keys. While
we have knowledge of the output differentials δo, the input differentials δi may not be
entirely disclosed to the adversary. Nonetheless, the adversary must possess at least some
partial understanding of δi to distinguish between correct and incorrect key candidates.

An essential factor in this process is determining the number of solutions for the keys
in the fault difference equations. S-Boxes typically behave as non-bijective mappings
when given a differential as input, resulting in Differential Distribution Tables (DDTs).
Consequently, multiple solutions for x may exist for the same input-output differential,
or some input-output differentials may have no solution at all, referred to as impossible
differentials. DFA calculates the average number of solutions for one difference equation
over the complete DDT to address situations with multiple solutions. When both δi and
δo are precisely known, impossible differentials do not occur. In such cases, the average is
calculated over the non-zero portion of the DDT [TF08]. In supplementary material, table
2 presents the DDT for the S-Box of QARMAv2.

Attack Idea. Our key recovery attack focuses on a thorough investigation of a major
vulnerability found in QARMAv2, which stems from its diffusion matrix. We start our
research by carefully studying how faults introduced during different rounds and positions
within the encryption process affect the security of QARMAv2. We pay close attention to
how these faults spread through the system under different circumstances. Our analysis
looks deeply into the differences between the correct and faulty ciphertexts produced
during the encryption process.

In particular, when we deliberately introduce a single fault during the (r − 1)-th
backward round of QARMAv2, we discover interesting connections between faults in
different stages exploiting the structure of diffusion matrix. We select these connections
strategically to create a set of equations that involve the unknown key components. To
gain a better understanding of these unknown key components, and specifically to reduce
complexity of our attack, we also introduce a fault at the beginning of the (r − 2)-th
backward round. This helps us to further analyze the impact of faults on the security of
the encryption process.

For all the variants, we have assumed that the round constants and tweaks are not

8

present because they are already known to the attacker and do not play any role in the
differential model. In the following subsection, we present the attack model. In subsequent
subsections, we presented key recovery attacks on two QARMAv2 variants - QARMAv2-64
and QARMAv2-128. Also we have discussed the potential extension of our methods to
conduct the DFA on the other variants of QARMAv2.

3.1 Fault Model
The attacks in the paper are based on the following assumptions:

• The adversary has the capability to introduce arbitrary nibble faults into the data
path of the QARMAv2 cryptographic algorithm. These injected faults can be precisely
timed to corrupt data during a particular round of computation. This approach is
practical and considered a minimal requirement within the scope of DFA attacks.

• Additionally, it is assumed that the attacker lacks knowledge about the specific
location of the corrupted byte or nibble. This assumption is also reasonable and
lenient in the context of fault-based attacks.

3.2 Key Recovery Attack of QARMAv2-64
Let a nibble fault be injected at the first cell of the QARMAv2-64 state at the beginning
of the (r − 1)-th backward round. Here, we consider the round after the reflector, and the
beginning of the (r − 1)-th backward round refers to the position before three S-Boxes
from the last round of the encryption algorithm. The fault goes through twice a inverse
round function R̄ followed by a inverse S-Box S̄ where R̄ = τ̄ ◦ M̄ ◦ S̄. The propagation
of the fault f is depicted in Fig. 4. In Fig. 4, we have introduced some notations. After
applying S̄ on the fault f , it converted to f ′. Then, the Mix-column operation distributes
the fault in three cells. Here f ′i = ρi(f ′) ∀ 1 ≤ i ≤ 3. State shuffle is applied to the faults.
Application of Add Round Key (ARK) and Add Round Tweak (ART) does affect the
faults. This completes one inverse round function R̄. Similarly, one more inverse round
function R̄ is applied to the state where we have introduced more variables (like l, j, g, h
with their subscripts). Finally, we apply the inverse S-Box and Add Round Key to get
a1, a2, a3, b1, b2, b3 and d1, d2, d3 which help us to create a set of equations for our key
recovery attacks. The remaining notations are explained whenever needed.

3.2.1 Identifying the Fault Injection Location

Fig. 3 describes all the fault propagation patterns for all 16 possible fault injections at the
beginning of the (r − 1)-th backward round. The patterns are computed up to the last
round. An interesting observation is that all the patterns are distinct, corresponding to a
distinct fault position. Due to this distinctness, an attacker who only have the knowledge
that one fault is injected at the beginning of the (r − 1)-th backward round, the attacker
can uniquely determine the fault location. Moreover, the uniformity of the patterns gives
more relaxation to choose the fault position in most cases.

3.2.2 L1 Recovery

From Fig. 3, it can be observed that injecting the fault f at any location from all possible
16 locations gives the same number of affected cells. Another important observation is that
choosing random faults at any two distinct locations always affects exactly but different
14 cells. Again, the distinctness of all the patterns gives the information about in which
cell the initial fault was injected, assuming that the random fault was initially injected
at the beginning of the (r − 1)-th backward round. However, the attacker does not know

9

f f f f

f f f f

f f f f

f f f f

Figure 3: Fault propagation pattern in QARMAv2-64 for each fault location at the
beginning of the (r− 1)-th backward round. f denotes the fault injection location and the
coloured cells denote the fault diffusion pattern up to and including the inverse S-Box of
the last half round function.

the fault injection cell. For the L1 key recovery of QARMAv2-64, we need random fault
injection at two randomly chosen cell locations. For the discussion, we have assumed that
the faults are injected at 0th and 1st position of the state at the beginning of the (r− 1)-th
backward round, i.e., at Xr−1

0 and Xr−1
1 . Fig. 4 shows the fault propagation with fault

induced at 0th cell. The last grid denotes the cipher text differential ∆C

∆C =


0 0 0 0
b2 0 d2 a2
a1 d3 0 b1
d1 a3 b3 0

 .

Denote the original ciphertext text originating from random plaintext by C and the
faulty ciphertext originating from the same plaintext using the same key with fault f at
Xr−1

0 by C∗ where C∗ = C + ∆C and

C =


c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15

 , C∗ =


c∗0 c∗1 c∗2 c∗3
c∗4 c∗5 c∗6 c∗7
c∗8 c∗9 c∗10 c∗11
c∗12 c∗13 c∗14 c∗15

 .

During the computation of the backward function, two round keys, L0 and L1, are
used attentively. This section discusses the key recovery of L1, which is XORed with Y r−1,
just before the last grid in Fig.4.

10

L1 =


k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

 .

In section 2.2.4, we have mentioned how the round keys L0 and L1 are generated from
the master key K = K0|| K1. Also, this transformation is invertible, i.e., recovering the
keys L0 and L1 is equivalent to recovering the master key K = K0|| K1. For this reason,
we only concentrate on the recovery of L0 and L1.
Fault Injection at Xr−1

0 . Referring to the Fig. 4, lets consider the differential state ∆Ur.
The same coloured differences are interrelated. We will use these relations to construct a
set of equations in unknown key variables. Here, the interrelations between the cells are
given.

∆Ur =


0 0 0 0
g2 0 h2 j2
j1 h3 0 g1
h1 j3 g3 0

 =


0 0 0 0

ρ2(l2) 0 ρ2(l3) ρ2(l1)
ρ(l1) ρ3(l3) 0 ρ(l2)
ρ(l3) ρ3(l1) ρ3(l2) 0

 .

f

S̄

∆Xr−1

f′

M̄

∆Y r−1

f′3

f′2

f′1

τ̄

∆Zr−1

f′2

f′3

f′1

ARK

∆W r−1

f′2

f′3

f′1

∆Ur−1

ART
f′2

f′3

f′1

S̄

∆Xr

l2

l3

l1

M̄

∆Y r

g1

g3

g2

h2

h1

h3

j3

j2

j1

τ̄

∆Zr

g2

j1

h1

h3

j3

h2

g3

j2

g1

ARK

∆W r

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆Ur

ART
g2

j1

h1

h3

j3

h2

g3

j2

g1

S̄

∆Xr+1

b2

a1

d1

d3

a3

d2

b3

a2

b1

ARK

∆Y r+1

b2

a1

d1

d3

a3

d2

b3

a2

b1

∆C

Figure 4: Fault propagation in QARMAv2-64 with fault induced at 0th cell at the beginning
of the (r − 1)-th backward round. Each variable represents a non-zero fault value and an
empty cell corresponds to a zero differential.

The variables l1, l2 & l3 are as in Fig. 4. The variables j1, j2 & j3 are related by the
relation ρ(j2) = j3 = ρ2(j1), where

j1 = S(c8 + k8) + S(c∗8 + k8)
j2 = S(c7 + k7) + S(c∗7 + k7)
j3 = S(c13 + k13) + S(c∗13 + k13)

11

These relations give a set of two linearly independent equations such as Eqn. (1) which
involve the keys k7, k8 & k13.{

ρ[S(c7 + k7) + S(c∗7 + k7)] = S(c13 + k13) + S(c∗13 + k13)
ρ2[S(c8 + k8) + S(c∗8 + k8)] = S(c13 + k13) + S(c∗13 + k13)

(1)

Now, we have two independent equations with three unknown key variables k7, k8
& k13. Solving these two equations, we will get approximately 24 solutions. Due to the
non-bijective nature of S-Box for a given differential input, the number of solutions will
not be exactly 24 but approximately 24. This approximately reduces the key space 212 to
24. Changing the fault value once, the keys k7, k8 & k13 are determined uniquely with
probability almost one. Similarly, we can deduce two more sets of equations. From the
relation ρ(g2) = g3 = ρ2(g1), and from ρ(h2) = h3 = ρ2(h1), the following set of equations
are generated.

ρ[S(c4 + k4) + S(c∗4 + k4)] = S(c14 + k14) + S(c∗14 + k14)
ρ2[S(c11 + k11) + S(c∗11 + k11)] = S(c14 + k14) + S(c∗14 + k14)
ρ[S(c6 + k6) + S(c∗6 + k6)] = S(c9 + k9) + S(c∗9 + k9)
ρ2[S(c12 + k12) + S(c∗12 + k12)] = S(c9 + k9) + S(c∗9 + k9)

(2)

As in the case of Eqn. (1), from Eqn. (2), the keys k4, k11 & k14; and k6, k9 & k12

are determined uniquely with probability almost one. Therefore, due to fault injection at
Xr−1

0 we have the 9 unique keys k4, k6, k7, k8, k9, k11, k12, k13 & k14 out of 16.
Fault Injection at Xr−1

1 . Similarly, one more fault injection at Xr−1
1 generates 6 more

independent equations written in Eqn. (3), and by changing the fault value once we can
retrieve uniquely nine key cells of L1 which are precisely k0, k1, k3, k4, k5, k6, k12, k14 &
k15. Note that in Eqn. (3), some of the key variables are already retrieved from the fault
injection at Xr−1

0 . This makes the key recovery easier.

ρ[S(c15 + k15) + S(c∗15 + k15)] = S(c5 + k5) + S(c∗5 + k5)
ρ2[S(c0 + k0) + S(c∗0 + k0)] = S(c5 + k5) + S(c∗5 + k5)
ρ[S(c12 + k12) + S(c∗12 + k12)] = S(c6 + k6) + S(c∗6 + k6)
ρ2[S(c3 + k3) + S(c∗3 + k3)] = S(c6 + k6) + S(c∗6 + k6)
ρ[S(c14 + k14) + S(c∗14 + k14)] = S(c1 + k1) + S(c∗1 + k1)
ρ2[S(c4 + k4) + S(c∗4 + k4)] = S(c1 + k1) + S(c∗1 + k1)

(3)

Combining the solutions for the faults at Xr−1
0 and Xr−1

1 , we have 14 unique keys k0, k1,

k3, k4, k5, k6, k7, k8, k9, k11, k12, k13, k14 & k15 out of 16. We are left with two keys
k2 & k10. A brute force search can be done for these two keys.

3.2.3 L0 Recovery

For the simplicity of notations here again we represent the key L0 as

L0 =


k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

 .

For L0 key recovery, we will take advantage of the faults at ∆Xr−1
0 and ∆Xr−1

1 , which
was earlier induced for the key recovery of the key L1.

12

Relations for random fault at ∆Xr−1
0 . As we already know the key L1, referring to

the Fig. 4, for fault at ∆Xr−1
0 we know the original Ur and faulty Ur∗ with fault ∆Ur.

These are the states just after the addition of the round key L0, i.e., the fourth grid from
the last in Fig. 4. We define

Ur =


u0 u1 u2 u3
u4 u5 u6 u7
u8 u9 u10 u11
u12 u13 u14 u15

 , Ur∗ =


u∗0 u∗1 u∗2 u∗3
u∗4 u∗5 u∗6 u∗7
u∗8 u∗9 u∗10 u∗11
u∗12 u∗13 u∗14 u∗15

 .

To recover the key L0, we will concentrate on the fifth grid ∆Ur−1 in Fig. 4. The three
non-zero differentials in this grid are interrelated. Again, we will use these relations to
construct a set of equations in unknown key variables. Here, the interrelations between
the cells are given.

∆Ur−1 =


0 0 0 0
0 f ′2 0 0
0 0 f ′1 0
0 0 0 f ′3

 =


0 0 0 0
0 ρ2(f ′) 0 0
0 0 ρ3(f ′) 0
0 0 0 ρ(f ′)

 .

Where
f ′1 = S(ρ(u13 + k13) + ρ2(u7 + k7) + ρ3(u8 + k8)) + S(ρ(u∗13 + k13) + ρ2(u∗7 + k7) + ρ3(u∗8 + k8))
f ′2 = S(ρ(u14 + k14) + ρ2(u4 + k4) + ρ3(u11 + k11)) + S(ρ(u∗14 + k14) + ρ2(u∗4 + k4) + ρ3(u∗11 + k11))
f ′3 = S(ρ(u9 + k9) + ρ2(u6 + k6) + ρ3(u12 + k12)) + S(ρ(u∗9 + k9) + ρ2(u∗6 + k6) + ρ3(u∗12 + k12))

So, we have the following relations,

ρ2(f ′1) = f ′3 = ρ(f ′2)

Relations for random fault at ∆Xr−1
1 . Similarly, for a random fault at ∆Xr−1

1 , a set
of relations can be generated. To distinguish the relations from the previous one, we define
the ∆Ur−1 as

∆Ur−1 =


0 p′3 0 0
p′1 0 0 0
0 0 0 0
0 0 p′2 0

 .

where
p′1 = S(ρ(u5 + k5) + ρ2(u15 + k15) + ρ3(u0 + k0)) + S(ρ(u∗5 + k5) + ρ2(u∗15 + k15) + ρ3(u∗0 + k0))
p′2 = S(ρ(u6 + k6) + ρ2(u12 + k12) + ρ3(u3 + k3)) + S(ρ(u∗6 + k6) + ρ2(u∗12 + k12) + ρ3(u∗3 + k3))
p′3 = S(ρ(u1 + k1) + ρ2(u14 + k14) + ρ3(u4 + k4)) + S(ρ(u∗1 + k1) + ρ2(u∗14 + k14) + ρ3(u∗4 + k4))

Again, we get the following relations,

ρ2(p′1) = p′3 = ρ(p′2)

Relations for random fault at ∆Xr−2
0 . To recover the key L0, faults at only two

different locations are not sufficient. We need some more faults. However, to minimize the
number of faults, one more fault is induced at ∆Xr−2

0 at the beginning of the (r − 2)-th
backward round. It is necessary here to mention that, again, the value of the fault is
random, and the cell location can also be random. For a fault at any cell in ∆Xr−2, the

13

f

S̄

∆Xr−2

f′

M̄

∆Y r−2

f′3

f′2

f′1

τ̄

∆Zr−2

f′2

f′3

f′1

ARK

∆W r−2

f′2

f′3

f′1

∆Ur−2

ART
f′2

f′3

f′1

S̄

∆Xr−1

l2

l3

l1

M̄

∆Y r−1

g1

g3

g2

h2

h1

h3

j3

j2

j1

τ̄

∆Zr−1

g2

j1

h1

h3

j3

h2

g3

j2

g1

ARK

∆W r−1

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆Ur−1

ART
g2

j1

h1

h3

j3

h2

g3

j2

g1

S̄

∆Xr

b2

a1

d1

d3

a3

d2

b3

a2

b1

M̄

∆Y r

e12

e8

e4

e0

e13

e9

e5

e1

e14

e10

e6

e2

e15

e11

e7

e3

τ̄

∆Zr

e6

e11

e13

e0

e3

e14

e8

e5

e9

e4

e2

e15

e12

e1

e7

e10

ARK

∆W r

e6

e11

e13

e0

e3

e14

e8

e5

e9

e4

e2

e15

e12

e1

e7

e10

∆Ur

ART

e6

e11

e13

e0

e3

e14

e8

e5

e9

e4

e2

e15

e12

e1

e7

e10

S̄

∆Xr+1

t6

t11

t13

t0

t3

t14

t8

t5

t9

t4

t2

t15

t12

t1

t7

t10

ARK

∆Y r+1

t6

t11

t13

t0

t3

t14

t8

t5

t9

t4

t2

t15

t12

t1

t7

t10

∆C

Figure 5: Fault propagation in QARMAv2-64 with fault induced at 0th cell at the beginning
of the (r − 2)-th backward round. Each variable represents a non-zero fault value and an
empty cell corresponds to a zero differential.

same type of equations can be derived, and a similar process can be done as we will discuss
here for the fault at ∆Xr−2

0 . We have chosen the random fault at ∆Xr−2
0 only for the

discussion purpose. In Fig. 5, we have presented the fault propagation of the random fault
f injected at ∆Xr−2

0 . Referring to Fig.5, as we know the key L1, we know the original Ur
for a random plaintext and the faulty Ur∗ for the same plaintext and the same key with
the fault ∆Ur. Again we define

Ur =


v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

 , Ur∗ =


v∗0 v∗1 v∗2 v∗3
v∗4 v∗5 v∗6 v∗7
v∗8 v∗9 v∗10 v∗11
v∗12 v∗13 v∗14 v∗15


where the ∆Ur is known to us and defined as in Fig. 5.

Now to recover the key L0 we will concentrate on the grid ∆Ur−1 in Fig. 5. The
non-zero differentials in this grid are interrelated. Again we will use these relations to
construct a set of equations in unknown key variables. Here the interrelation between the
cells are given.

∆Ur−1 =


0 0 0 0

∆Ur−1
4 0 ∆Ur−1

6 ∆Ur−1
7

∆Ur−1
8 ∆Ur−1

9 0 ∆Ur−1
11

∆Ur−1
12 ∆Ur−1

13 ∆Ur−1
14 0

 =


0 0 0 0

ρ2(l2) 0 ρ2(l3) ρ2(l1)
ρ(l1) ρ3(l3) 0 ρ(l2)
ρ(l3) ρ3(l1) ρ3(l2) 0

 .

14

where
∆Ur−1

8 = S(ρ(v15 + k15) + ρ2(v0 + k0) + ρ3(v10 + k10)) + S(ρ(v∗15 + k15) + ρ2(v∗0 + k0) + ρ3(v∗10 + k10))
∆Ur−1

7 = S(ρ(v8 + k8) + ρ2(v2 + k2) + ρ3(v13 + k13)) + S(ρ(v∗8 + k8) + ρ2(v∗2 + k2) + ρ3(v∗13 + k13))
∆Ur−1

13 = S(ρ(v11 + k11) + ρ2(v1 + k1) + ρ3(v14 + k14)) + S(ρ(v∗11 + k11) + ρ2(v∗1 + k1) + ρ3(v∗14 + k14))

From the equations provided above, we can derive the following relation,

ρ2(∆Ur−1
8) = ∆Ur−1

13 = ρ(∆Ur−1
7)

Similarly, from ∆Ur−1, we can write the other equations as follows,

∆Ur−1
11 = S(ρ(v2 + k2) + ρ2(v13 + k13) + ρ3(v7 + k7)) + S(ρ(v∗2 + k2) + ρ2(v∗13 + k13) + ρ3(v∗7 + k7))

∆Ur−1
4 = S(ρ(v5 + k5) + ρ2(v15 + k15) + ρ3(v0 + k0)) + S(ρ(v∗5 + k5) + ρ2(v∗15 + v15) + ρ3(v∗0 + k0))

∆Ur−1
14 = S(ρ(v6 + k6) + ρ2(v12 + k12) + ρ3(v3 + k3)) + S(ρ(v∗6 + k6) + ρ2(v∗12 + k12) + ρ3(v∗3 + k3))

∆Ur−1
12 = S(ρ(v0 + k0) + ρ2(v10 + k10) + ρ3(v5 + k5)) + S(ρ(v∗0 + k0) + ρ2(v∗10 + k10) + ρ3(v∗5 + k5))

∆Ur−1
6 = S(ρ(v3 + k3) + ρ2(v9 + k9) + ρ3(v6 + k6)) + S(ρ(v∗3 + k3) + ρ2(v∗9 + k9) + ρ3(v∗6 + k6))

∆Ur−1
9 = S(ρ(v4 + k4) + ρ2(v11 + k11) + ρ3(v1 + k1)) + S(ρ(v∗4 + k4) + ρ2(v∗11 + k11) + ρ3(v∗1 + k1))

Hence, by considering the above set of six equations mentioned earlier, we can extract the
following connections, and by strategically selecting these relations, we can significantly
reduce the key space for L0.{

ρ2(∆Ur−1
11) = ∆Ur−1

14 = ρ(∆Ur−1
4)

ρ2(∆Ur−1
12) = ∆Ur−1

9 = ρ(∆Ur−1
6)

Now, let’s discuss how to recover the key denoted as L0 using the aforementioned rela-
tionships. First, let’s examine the relationships: ρ2(p′1) = p′3, ρ2(∆Ur−1

8) = ∆Ur−1
13 &

ρ2(∆Ur−1
12) = ∆Ur−1

9 . We have three independent equations involving eight unknown key
variables: k0, k1, k4, k5, k10, k11, k14 & k15. By solving these equations, we can reduce
our key space from approximately 232 to 220. Due to the non-bijective nature of S-Box for
a given differential input, the number of solutions may not be precisely 220, but it will be
approximately 220. By employing these same relationships with a different fault, we can
similarly reduce the key space to around 220.

Now consider the relations ρ(f ′1) = f ′2, ρ(∆Ur−1
8) = ∆Ur−1

7 & ρ(∆Ur−1
11) = ∆Ur−1

4 .
Once again, we have three independent equations, but this time, they involve only four
unknown key variables: k2, k7, k8 & k13. By solving these equations for two fault values,
we can further reduce our key space 248 to 220 × 24 = 224 for the key variables k0, k1, k2,
k4, k5, k7, k8, k10, k11, k13, k14 & k15.

Finally we have four more independent equations ρ2(f ′1) = f ′3, ρ(p′1) = p′2, ρ
2(∆Ur−1

11) =
∆Ur−1

14 & ρ(∆Ur−1
12) = ∆Ur−1

6 with four unknown key variables k3, k6, k9 & k12. In a
similar fashion, these four unknown key variables can be determined by solving the four
equations. Furthermore, it’s also worth noting that the key space remains consistent when
considering the common keys that fulfill the four equations for two distinct fault values.
After all these calculations, the key space for L0 is reduced to 224 from 264 approximately.
With the reduced key space, we can now perform a brute-force search. Therefore, both
L0 & L1 can be recovered using six random faults at three distinct locations, two at
the beginning of the (r − 1)-th backward round and one at the beginning of (r − 2)-th
backward round.
Remark 2. The process of selecting the specific relations and fault locations for the recovery
of the key L0 is by no means a simple task. Our findings involve an exhaustive exploration

15

of multiple alternatives, leading us to conclude that the aforementioned combination of
relations and fault locations strikes the most optimal balance. This delicate balance is
crucial for achieving the desired outcomes, considering the intricate interplay between
complexity and the occurrence of minimal faults. Such a selection necessitated thorough
analysis and critical decision-making, underscoring the nontrivial nature of our technique.

3.3 Key Recovery Attack of QARMAv2-128-128
The key recovery attack of QARMAv2-128-128 is similar to the L1 key recovery of
QARMAv2-64. In QARMAv2-128-128, the same key is used in every round. Some
interesting facts can be observed during the fault propagation. Similar to the QARMAv2-
64, a random fault is injected at the beginning of the (r− 1)-th backward round. However,
the fault propagation differs for an even number of rounds and an odd number of rounds.
For a random fault injection at Xr−1, if r is even, the eXchangeRows operation is done in
the (r − 1)-th backward round, but if r is odd, then the eXchangeRows operation is done
in backward round r. The fault propagations for even and odd rounds are presented in
Fig. 6 and Fig. 7 in the supplementary material, respectively. One interesting fact is that
we can choose a single fault cell location such that the faulty ciphertexts will be in a single
layer, which is valid for both even and odd round cipher. This fact can be observed from
Fig. 6 and 7. To recover the unique key L1 of QARMAv2-128-128, when r is even, we
require two distinct fault locations from one layer and another two different fault locations
from the other layer within Xr−1 and when r is odd, we have the flexibility to select two
fault locations from Xr−1

0 , Xr−1
5 , Xr−1

10 , Xr−1
15 in the first layer and two additional fault

locations from Xr−1
16 , Xr−1

21 , Xr−1
26 , Xr−1

31 in the second layer of Xr−1. It’s worth noting
that there may be other viable choices as well.

Denote the original ciphertext text originating from random plaintext by C and the
faulty ciphertext by C∗ originating from the same plaintext using the same key L1 with a
random fault at a cell at the beginning of the (r − 1)-th backward round i.e., in Xr−1.

C =



c0 c1 c2 c3
c4 c5 c6 c7
c8 c9 c10 c11
c12 c13 c14 c15
c16 c17 c18 c19
c20 c21 c22 c23
c24 c25 c26 c27
c28 c29 c30 c31


, C∗ =



c∗0 c∗1 c∗2 c∗3
c∗4 c∗5 c∗6 c∗7
c∗8 c∗9 c∗10 c∗11
c∗12 c∗13 c∗14 c∗15
c∗16 c∗17 c∗18 c∗19
c∗20 c∗21 c∗22 c∗23
c∗24 c∗25 c∗26 c∗27
c∗28 c∗29 c∗30 c∗31


, L1 =



k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15
k16 k17 k18 k19
k20 k21 k22 k23
k24 k25 k26 k27
k28 k29 k30 k31


.

When the round is even, we have assumed that the four different faults are induced at
Xr−1

0 , Xr−1
1 , Xr−1

16 & Xr−1
17 .

Equations for fault injection at Xr−1
0 . The fault propagation of the random fault f

injected at Xr−1
0 is shown is Fig. 6 in supplementary material which is actually the similar

propagation as in Fig 4. Similar to the L1 key recovery of QARMAv2-64, we can construct
a set of six independent equations as follows:

ρ[S(c23 + k23) + S(c∗23 + k23)] = S(c29 + k29) + S(c∗29 + k29)
ρ2[S(c24 + k24) + S(c∗24 + k24)] = S(c29 + k29) + S(c∗29 + k29)
ρ[S(c20 + k20) + S(c∗20 + k20)] = S(c30 + k30) + S(c∗30 + k30)
ρ2[S(c27 + k27) + S(c∗27 + k27)] = S(c30 + k30) + S(c∗30 + k30)
ρ[S(c22 + k22) + S(c∗22 + k22)] = S(c25 + k25) + S(c∗25 + k25)
ρ2[S(c28 + k28) + S(c∗28 + k28)] = S(c25 + k25) + S(c∗25 + k25)

(4)

16

As in the case of L1 key recovery of QARMAv2-64, changing the fault value once, the keys
k20, k22, k23, k24, k25, k27, k28, k29 & k30 can be determined uniquely.
Equations for fault injection at Xr−1

1 . Likewise, the introduction of random fault
injections at Xr−1

1 assists us in deriving the following equations.

ρ[S(c31 + k31) + S(c∗31 + k31)] = S(c21 + k21) + S(c∗21 + k21)
ρ2[S(c16 + k16) + S(c∗16 + k16)] = S(c21 + k21) + S(c∗21 + k21)
ρ[S(c28 + k28) + S(c∗28 + k28)] = S(c22 + k22) + S(c∗22 + k22)
ρ2[S(c19 + k19) + S(c∗19 + k19)] = S(c22 + k22) + S(c∗22 + k22)
ρ[S(c30 + k30) + S(c∗30 + k30)] = S(c17 + k17) + S(c∗17 + k17)
ρ2[S(c20 + k20) + S(c∗20 + k20)] = S(c17 + k17) + S(c∗17 + k17)

(5)

We already know the unique key cells k20, k22, k28 & k30 from two random faults injection
at Xr−1

0 . Utilizing the above system of equations i.e., Eqn. (5), the key space for the
unknown key cells k16, k17, k19, k21 & k31 is reduced to 24 from 220. Note that, here, we
have not changed the fault value, i.e., only one fault is injected at the cell Xr−1

1 because
the information of the known key cells makes the job simpler with an increased complexity
of 24. Combining the solutions for two faults injections at Xr−1

0 and one fault at Xr−1
1 ,

we have reduced the key space for the 14 keys, k16, k17, k19, k20, k21, k22, k23, k24, k25,
k27, k28, k29, k30 & k31 to 24 from 256.
Equations for fault injection at Xr−1

16 . Similarly, a set of six independent equations
can be generated due to the fault injection at Xr−1

16 .

ρ[S(c7 + k7) + S(c∗7 + k7)] = S(c13 + k13) + S(c∗13 + k13)
ρ2[S(c8 + k8) + S(c∗8 + k8)] = S(c13 + k13) + S(c∗13 + k13)
ρ[S(c4 + k4) + S(c∗4 + k4)] = S(c14 + k14) + S(c∗14 + k14)
ρ2[S(c11 + k11) + S(c∗11 + k11)] = S(c14 + k14) + S(c∗14 + k14)
ρ[S(c6 + k6) + S(c∗6 + k6)] = S(c9 + k9) + S(c∗9 + k9)
ρ2[S(c12 + k12) + S(c∗12 + k12)] = S(c9 + k9) + S(c∗9 + k9)

(6)

Changing the fault value once we can recover the unique keys k4, k6, k7, k8, k9, k11,
k12, k13 & k14.
Equations for fault injection at Xr−1

17 . Likewise, the following equations can be derived
for introduction of a random fault injection at Xr−1

17 .

ρ[S(c15 + k15) + S(c∗15 + k15)] = S(c5 + k5) + S(c∗5 + k5)
ρ2[S(c0 + k0) + S(c∗0 + k0)] = S(c5 + k5) + S(c∗5 + k5)
ρ[S(c12 + k12) + S(c∗12 + k12)] = S(c6 + k6) + S(c∗6 + k6)
ρ2[S(c3 + k3) + S(c∗3 + k3)] = S(c6 + k6) + S(c∗6 + k6)
ρ[S(c14 + k14) + S(c∗14 + k14)] = S(c1 + k1) + S(c∗1 + k1)
ρ2[S(c4 + k4) + S(c∗4 + k4)] = S(c1 + k1) + S(c∗1 + k1)

(7)

Similar to the case of fault injection at Xr−1
0 & Xr−1

1 , injecting two random faults at
Xr−1

16 & one random fault at Xr−1
17 and solving the corresponding generated equations,

here also we can determine the key cells k0, k1, k3, k4, k5, k6, k7, k8, k9, k11, k12, k13, k14
& k15 with a complexity of 24. So using six random faults at four different locations we
have recovered 28 keys: k0, k1, k3, k4, k5, k6, k7, k8, k9, k11, k12, k13, k14, k15, k16, k17,
k19, k20, k21, k22, k23, k24, k25, k27, k28, k29, k30 & k31 with 24 × 24 = 28 complexity.

17

We are left with four keys k2, k10, k18 & k26. A simple brute force can be used to recover
these four keys.

For odd r, similarly, we can construct four sets of equations for four different fault
locations, of which two are injected in random but different locations of the first layer,
and the other two are injected in random but different locations of the second layer. By
solving these equations, we can recover the key L1.

3.4 Key Recovery Attack of QARMAv2-128-192 and QARMAv2-128-
256

The key recovery attacks on QARMAv2-128-192 and QARMAv2-128-256 are analogous to
those on QARMAv2-64 and QARMAv2-128-128. The primary distinction lies in the number
of fault injections increases as the key size grows. Specifically, the fault injection count
for both QARMAv2-64 and QARMAv2-128-128 is six. In the case of QARMAv2-128-192
and QARMAv2-128-256, it becomes ten and twelve, respectively. We will first discuss how
twelve random faults can recover the key L0 and L1 of QARAMAv2-128-256. Note that
both keys are 128 bits, and both are independent. So, we need to recover both. The key
recovery attack for QARMAv2-128-256 closely resembles the attack on QARMAv2-64. The
key difference is that QARMAv2-128-256 comprises a block with two layers. Consequently,
the number of faults required to recover the key of QARMAv2-128-256 is doubled. To
recover the key, we must introduce four faults at two different locations of one layer and
four faults at two different locations of another layer at the commencement of the (r−1)-th
backward round. Additionally, we need to inject two faults at a location in one layer and
two faults at a location in the other layer at the beginning of the (r − 2)-th backward
round.

In the context of QARMAv2-128-192, the process of recovering the key differs slightly
compared to other variants. This divergence is primarily a result of variances in the key
schedule and the key stretching algorithm employed. The 192-bit master key, denoted as
K, is structured as three 64-bit segments: K = Y0|| Y1|| Y2 where Yi are 64-bit values.
Then define K0 = Y0|| Y1 and K1 = Y2|| (MAJ(Y0, Y1, Y2) ≫ 17) and the keys L0 and L1
are generated by key scheduling algorithm from using K0 and K1 respectively. Due to the
key scheduling algorithm, in order to recover the master key K, it is necessary to retrieve
both L0 and L1, and this can be done with twelve random faults injections as in the case
of QARMAv2-128-256. However, to minimize the fault injection, we adopt an alternative
approach.

3.4.1 Reducing Faults in QARMAv2-128-192

For QARMAv2-128-192, we will inject the fault in the decryption process instead of in the
encryption process. This approach is ideal for our purposes. Referring to the Fig. 8 in
supplementary material, if we inject eight faults at four different locations of X̃3 , we can
recover the key K0, similar to the case of QARMAv2-128-128 with the only difference is
that here we recover the key K0 instead of L1. At this point, we have successfully retrieved
the values of Y0 and Y1, and our remaining objective is to recover Y2 rather than the
key K1. To achieve this, we only require two additional faults at a single location in the
first layer of X̃4. Hence, the master key K = Y0|| Y1|| Y2 can be recovered with ten fault
injections at five different locations. However, a challenge arises with the eXchangeRows
operation. It becomes evident that when r is even, the faults at X̃4

0 are instrumental in
recovering Y2. This can be visualized by considering an additional layer at every step with
no faults in any cell in Fig. 5. There are numerous other viable fault injection locations as
well. Again, when r is odd, the faults at X̃4

16 can recover Y2. It can also be visualized from
Fig. 5 with the same assumption as for the case of even r albeit with a minor adjustment

18

in the initial state X̃4. Here the fault is injected at X̃4
16 instead of X̃4

0 . Nevertheless,
after the first eXchangeRows operation, the fault will come to the 0th cell. Again, various
other favourable fault injection locations can be considered. Therefore, irrespective of
whether r is even or odd, the master key K can be successfully recovered with just ten
fault injections.

3.5 Discussion
In this study, we present a method for constructing a DFA attack on QARMAv2-64,
QARMAv2-128-128, and extend our approach to target other variants of the QARMAv2
cipher. Our method exploits the structural attributes of the diffusion matrix, requiring
fault injection at the initiation of specific backward rounds to construct relations among
the key bits, and non-zero differentials. Notably, we discover that the injection of two
faults at distinct locations at the beginning of the (r − 1)-th backward round facilitates
the retrieval of information pertaining to 14 key cells of L1 of QARMAv2-64. As far as
our approach is concerned, this minimal number of faults, represents the most optimal
solution we have identified.
Exploiting the characteristics of the S-box, we further demonstrate that the application of
four faults enables the nearly unique recovery of the 14 cells of L1, resulting in a reduction
of the secret key space from 264 to 28. However, recognizing the considerable complexity
associated with retrieving L1 solely from these relations, we are prompted to explore
additional patterns. Pursuing this line of motivation, we succeed in reducing the secret key
space of L0 from 264 to 224 by introducing only two faults at the beginning of the (r−2)-th
backward round. It is noteworthy that the number of faults utilized in our approach is
optimally minimal, ensuring a substantial reduction of the key space from 2128 to 232.

4 Fault Attack Complexity and Experimental Results
Differential Fault Analysis takes advantage of the interrelationship between the input and
output differentials of the S-Box. Referring to the DDT table 2 of QARMAv2 S-Box, note
that the maximum differential probability of S-Box is 2−2. That is, for fixed δi and δ0,
the maximum number of x, satisfying the difference equation SC(x+ δi) + SC(x) = δo is
16× 2−2 = 4. Define

Ns(δi, δo) = #{ x | x ∈ F24 , SC(x+ δi) + SC(x) = δo}

If Ns(δi, δo) is not null, then it is equals to 2 with probability of 84.9% (90/106) for
QARMAv2. This indicates that for a given fault difference equation, to recover the unique
key, at least two faults are required at the same location, i.e., changing the fault value at
least once we expect the unique key.

Attack Complexity for QARMAv2-64. In the case of L1 key recovery of QARMAv2-
64, solving the independent equations such as Eqn. (1), the key space for k7, k8 & k13
reduces to approximately 24 from 212. Changing the fault at least once the keys k7, k8 &
k13 are determined uniquely with probability almost one. Similarly, from Eqn. (2), the
keys k4, k11, k14 and k6, k9, k12 are recovered uniquely with probability almost one. So
these nine keys can be recovered almost uniquely injecting two different random faults
at Xr−1

0 at the beginning of the (r − 1)-th backward round. In a similar way, injecting
two different faults at Xr−1

1 at the beginning of the (r − 1)-th backward round, we can
recover the keys k0, k1, k3, k4, k5, k6, k12, k14, & k15. In total, 14 out 16 keys are
recovered almost uniquely. The remaining two keys can be recovered by a brute-force
search. Therefore, using four faults at the beginning of the (r− 1)-th backward round, the
key L1 of QARMAv2-64 is recovered with complexity 28 approximately.

19

To recover the key L0 of QARMAv2-64 two extra faults are injected at Xr−2
0 at the

beginning of the (r − 2)-th backward round. The relations ρ2(p′1) = p′3, ρ2(∆Ur−1
8) =

∆Ur−1
13 & ρ2(∆Ur−1

12) = ∆Ur−1
9 give the key variables k0, k1, k4, k5, k10, k11, k14 &

k15. Utilizing the same relations with the new fault, the key space reduces to 220 from
232. In a similar way the key variables k2, k7, k8 & k13 are recovered using the relations
ρ(f ′1) = f ′2, ρ(∆Ur−1

8) = ∆Ur−1
7 & ρ(∆Ur−1

11) = ∆Ur−1
4 . Therefore, the key variables

k0, k1, k2, k4, k5, k7, k8, k10, k11, k13, k14 & k15 can be recovered with 220 × 24 = 224

complexity. Finally, we can recover the remaining key variables k3, k6, k9 & k12 almost
uniquely utilizing the four equations ρ2(f ′1) = f ′3, ρ(p′1) = p′2, ρ

2(∆Ur−1
11) = ∆Ur−1

14 &
ρ(∆Ur−1

12) = ∆Ur−1
6 . Therefore, along with the four faults, injected to recover the key L1,

two more faults at the beginning of the (r − 2)-th backward round recovers the key L0
with complexity 224 approximately. So, using four faults at the beginning of the (r− 1)-th
backward round and two faults at the beginning of the (r − 2)-th backward round, the
round keys L0 and L1 of QARMAv2-64 can be recovered with complexity 28 × 224 = 232

approximately. So, the overall complexity is reduced to 232 from 2128.

Attack Complexity for QARMAv2-128-128. In the case of QARMAv2-128-128, to
recover the key L1, we need six faults injections, two at Xr−1

0 , one at Xr−1
1 , two at Xr−1

16
and one at Xr−1

17 . The keys k16, k17, k19, k20, k21, k22, k23, k24, k25, k27, k28, k29, k30 &
k31 are recovered using the faults at Xr−1

0 and Xr−1
1 with a complexity of 24. In a similar

way, due to the faults injections at Xr−1
16 and Xr−1

17 , the keys k0, k1, k3, k4, k5, k6, k7, k8,
k9, k11, k12, k13, k14 & k15 are recovered with a complexity of 24. The remaining four
keys k2, k10, k18 & k26 can be recovered using a simple brute-force with a complexity of
216. Therefore, the total complexity to recover the whole key L1 for QARMAv2-128-128 is
24 × 24 × 216 = 224 approximately, reduced from 2128.

Attack Complexity for QARMAv2-128-192 and QARMAv2-128-256. The key
recovery for QARMAv2-128-192 and QARMAv2-128-256 can be viewed as special cases
of the recovery process for QARMAv2-64, as elaborated in section 3.4. In the case of
QARMAv2-128-256, the recovery of keys requires twice as many faults compared to
QARMAv2-64, specifically twelve faults. This key recovery process can be accomplished
with a complexity of 264 approximately. In the case of QARMAv2-128-192, we need ten
faults of which eight at four different locations of X̃3 and two at one location of X̃4. The
complexity of the key recovery attack is 240 approximately. Please note that the key
recovery attacks on QARMAv2-128-192 and QARMAv2-128-256 closely resemble the key
recovery attack on QARMAv2-64. Therefore, it is not necessary to reiterate the same
details. The complexity calculations for these attacks are also quite similar and can be
readily confirmed.

We have successfully executed the L1 key recovery attack on QARMAv2-64 using a
standard PC and Python 3 programming language. Specifically, we were able to uniquely
recover the keys k7, k8, k13 by solving Eqn. (1) with the introduction of two faults at Xr−1

0
at the start of the (r − 1)-th backward round. This outcome aligns with the conclusions
drawn from our theoretical analysis.

5 Conclusion and Future Directions
In this paper, we present a comprehensive analysis of the nibble-oriented fault propagation
patterns within QARMAv2, a recently developed block cipher. Our focus lies in demon-
strating the efficiency of the differential fault attack on the two variations of the cipher,
QARMAv2-64 and QARMAv2-128-128, induced by random faults, a contribution that
marks a first in the literature. Furthermore, we investigate the potential applicability of
our attack approach to other variations of the cipher. Notably, we observe a noteworthy
reduction in the secret key space, from 2128 to 232 for QARMAv2-64 and from 2128 to 224

20

for QARMAv2-128-128, leading to the feasible recovery of the secret key within a practical
timeframe for both variants.
Moving forward, it is imperative to extend our research efforts beyond the current scope,
delving into other potential fault attack methodologies such as meet-in-the-middle dif-
ferential fault analysis, integral fault attack, and algebraic fault attack. These distinct
approaches offer promising avenues for further enhancing the resilience of cryptographic
systems, providing insights into potential vulnerabilities that might not be apparent
through our current methodology.

References
[ABD+23] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam

Ghosh, Marcel Nageler, and Francesco Regazzoni. The tweakable block cipher
family qarmav2. IACR Cryptol. ePrint Arch., page 929, 2023.

[AM12] Subidh Ali and Debdeep Mukhopadhyay. Differential fault analysis of twofish.
In Miroslaw Kutylowski and Moti Yung, editors, Information Security and
Cryptology - 8th International Conference, Inscrypt 2012, Beijing, China,
November 28-30, 2012, Revised Selected Papers, volume 7763 of Lecture Notes
in Computer Science, pages 10–28. Springer, 2012.

[AMS+22] Roberto Avanzi, Ionut Mihalcea, David Schall, Andreas Sandberg, and Héctor
Montaner. Cryptographic protection of random access memory: How incon-
spicuous can hardening against the most powerful adversaries be? IACR
Cryptol. ePrint Arch., page 1472, 2022.

[AMT13] Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall. Differential fault
analysis of AES: towards reaching its limits. J. Cryptogr. Eng., 3(2):73–97,
2013.

[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptol., 14(2):101–119,
2001.

[BEG13] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. New differential fault
analysis on PRESENT. EURASIP J. Adv. Signal Process., 2013:145, 2013.

[BK06] Johannes Blömer and Volker Krummel. Fault based collision attacks on AES.
In Luca Breveglieri, Israel Koren, David Naccache, and Jean-Pierre Seifert,
editors, Fault Diagnosis and Tolerance in Cryptography, Third International
Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006, Proceedings,
volume 4236 of Lecture Notes in Computer Science, pages 106–120. Springer,
2006.

21

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997.

[CZS16] Wei Cheng, Yongbin Zhou, and Laurent Sauvage. Differential fault analysis on
midori. In Kwok-Yan Lam, Chi-Hung Chi, and Sihan Qing, editors, Information
and Communications Security - 18th International Conference, ICICS 2016,
Singapore, November 29 - December 2, 2016, Proceedings, volume 9977 of
Lecture Notes in Computer Science, pages 307–317. Springer, 2016.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Florian
Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II,
volume 11273 of Lecture Notes in Computer Science, pages 315–342. Springer,
2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. Exploiting ineffective fault inductions on
symmetric cryptography. IACR Cryptol. ePrint Arch., page 71, 2018.

[ELH+15] Sho Endo, Yang Li, Naofumi Homma, Kazuo Sakiyama, Kazuo Ohta, Daisuke
Fujimoto, Makoto Nagata, Toshihiro Katashita, Jean-Luc Danger, and Taka-
fumi Aoki. A silicon-level countermeasure against fault sensitivity analysis and
its evaluation. IEEE Trans. Very Large Scale Integr. Syst., 23(8):1429–1438,
2015.

[GKPM18] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew
McLauchlan. Practical fault injection attacks on SPHINCS. IACR Cryp-
tol. ePrint Arch., page 674, 2018.

[JLSH13] Kitae Jeong, Yuseop Lee, Jaechul Sung, and Seokhie Hong. Improved differen-
tial fault analysis on PRESENT-80/128. Int. J. Comput. Math., 90(12):2553–
2563, 2013.

[PAM19] Antoon Purnal, Victor Arribas, and Lauren De Meyer. Trade-offs in protecting
keccak against combined side-channel and fault attacks. In Ilia Polian and Marc
Stöttinger, editors, Constructive Side-Channel Analysis and Secure Design -
10th International Workshop, COSADE 2019, Darmstadt, Germany, April 3-5,
2019, Proceedings, volume 11421 of Lecture Notes in Computer Science, pages
285–302. Springer, 2019.

[SBR+20] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer
Science, pages 612–643. Springer, 2020.

[SH13] Ling Song and Lei Hu. Differential fault attack on the PRINCE block cipher. In
Gildas Avoine and Orhun Kara, editors, Lightweight Cryptography for Security

22

and Privacy - Second International Workshop, LightSec 2013, Gebze, Turkey,
May 6-7, 2013, Revised Selected Papers, volume 8162 of Lecture Notes in
Computer Science, pages 43–54. Springer, 2013.

[TF08] Junko Takahashi and Toshinori Fukunaga. Improved differential fault analysis
on CLEFIA. In Luca Breveglieri, Shay Gueron, Israel Koren, David Naccache,
and Jean-Pierre Seifert, editors, Fifth International Workshop on Fault Di-
agnosis and Tolerance in Cryptography, 2008, FDTC 2008, Washington, DC,
USA, 10 August 2008, pages 25–34. IEEE Computer Society, 2008.

[YDQ+23] Qingyuan Yu, Xiaoyang Dong, Lingyue Qin, Yongze Kang, Keting Jia, Xiaoyun
Wang, and Guoyan Zhang. Automatic search of meet-in-the-middle differential
fault analysis on aes-like ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2023(4):1–31, 2023.

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):150–172, 2018.

6 Supplementary Material

Table 2: Differential Distribution Table for S-box of QARMAv2

Differential Output Differential
0 1 2 3 4 5 6 7 8 9 A B C D E F

Input Differential

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 2 2 0 2 0 0 2 0 2 2 2 0 0 0
2 0 2 2 0 0 0 0 0 2 4 2 0 2 2 0 0
3 0 2 2 2 2 0 0 0 2 0 0 0 0 2 2 2
4 0 2 0 2 2 0 2 4 4 0 0 0 0 0 0 0
5 0 0 2 2 0 2 2 0 0 0 0 4 0 2 0 2
6 0 2 2 0 0 2 0 0 2 2 2 0 0 2 2 2
7 0 0 2 0 0 2 0 4 0 2 2 2 0 0 0 2
8 0 0 2 0 4 4 2 0 2 0 0 0 2 0 0 0
9 0 2 0 0 4 0 0 2 0 0 2 0 0 2 2 2
A 0 0 0 0 0 2 2 0 0 2 2 0 4 0 4 0
B 0 0 0 0 2 0 4 2 0 2 0 2 2 2 0 0
C 0 2 2 2 2 0 0 0 0 0 0 2 4 0 0 2
D 0 0 0 4 0 0 2 2 0 4 0 0 0 0 2 2
E 0 2 0 0 0 0 2 0 2 0 2 2 0 4 2 0
F 0 2 0 2 0 2 0 2 0 0 2 2 0 0 2 2

23

f

X

∆Xr−1

f

S̄

∆X ′r−1

f′

M̄

∆Y r−1

f′3

f′2

f′1

τ̄

∆Zr−1

f′2

f′3

f′1

∆W r−1

ARK

f′2

f′3

f′1

∆Ur−1

ART

f′2

f′3

f′1

∆Xr

S̄

l2

l3

l1

M̄

∆Y r

g1

g3

g2

h2

h1

h3

j3

j2

j1

τ̄

∆Zr

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆W r

ARK

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆Ur

ART

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆Xr+1

S̄

b2

a1

d1

d3

a3

d2

b3

a2

b1

ARK

∆Y r+1

b2

a1

d1

d3

a3

d2

b3

a2

b1

∆C

Figure 6: Fault propagation in QARMAv2-128 with fault induced at 0th cell at the
beginning of the (r − 1)-th backward round where r is even. Each variable represents a
non-zero fault value and an empty cell corresponds to a zero differential.

24

f

S̄

∆Xr−1

f′

M̄

∆Y r−1

f′3

f′2

f′1

τ̄

∆Zr−1

f′2

f′3

f′1

ARK

∆W r−1

f′2

f′3

f′1

∆Ur−1

ART

f′2

f′3

f′1

X

∆Xr

f′2

f′3

f′1

S̄

∆X ′r

l2

l3

l1

M̄

∆Y r

g1

g3

g2

h2

h1

h3

j3

j2

j1

τ̄

∆Zr

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆W r

ARK

g2

j1

h1

h3

j3

h2

g3

j2

g1

∆Ur

ART

g2

j1

h1

h3

j3

h2

g3

j2

g1

S̄

∆Xr+1

b2

a1

d1

d3

a3

d2

b3

a2

b1

ARK

∆Y r+1

b2

a1

d1

d3

a3

d2

b3

a2

b1

∆C

Figure 7: Fault propagation in QARMAv2-128 with fault induced at 16th cell at the
beginning of the (r − 1)-th backward round where r is odd. Each variable represents a
non-zero fault value and an empty cell corresponds to a zero differential.

25

SP

K0 (k0) K1 (k1)

T1

R{X}

K0

ϕr−1(T0)

R

ct2
K0

ϕ
r+1

2 (T0)

R

ctr−1
K1

ϕ
r−1

2 (T1)

R{X}

ctr

τ

M

τ̄

W0

W1

R̄{X}

L0

ϕ
r−1

2 (T0)

R̄

ctrL1

ϕ
r+1

2 (T1)

ctr−1

R̄

ct2L1

ϕr−1(T1)

R̄{X}

L0 (k0)

T0

S̄

L1 (k1)

C

Figure 8: QARMAv2 encryption for odd r. If r is even, W0 and W1 are swapped and the
forward function starts with R instaed of R{X}.

26

	Introduction
	Our Contributions
	Organization of the Paper

	Preliminaries
	Brief Description of QARMAv2
	General Description
	Specification of Sub-operations
	Differential Fault Analysis

	Differential Fault Analysis of QARMAv2
	Fault Model
	Key Recovery Attack of QARMAv2-64
	Key Recovery Attack of QARMAv2-128-128
	Key Recovery Attack of QARMAv2-128-192 and QARMAv2-128-256
	Discussion

	Fault Attack Complexity and Experimental Results
	Conclusion and Future Directions
	Supplementary Material

