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Abstract.
Post-quantum cryptographic (PQC) algorithms, especially those based on the learning
with errors (LWE) problem, have been subjected to several physical attacks in the
recent past. Although the attacks broadly belong to two classes – passive side-channel
attacks and active fault attacks, the attack strategies vary significantly due to the
inherent complexities of such algorithms. Exploring further attack surfaces is, therefore,
an important step for eventually securing the deployment of these algorithms. Also, it is
important to test the robustness of the already proposed countermeasures in this regard.
In this work, we propose a new fault attack on side-channel secure masked implementa-
tion of LWE-based key-encapsulation mechanisms (KEMs) exploiting fault propagation.
The attack typically originates due to an algorithmic modification widely used to en-
able masking, namely the Arithmetic-to-Boolean (A2B) conversion. We exploit the
data dependency of the adder carry chain in A2B and extract sensitive information,
albeit masking (of arbitrary order) being present. As a practical demonstration of
the exploitability of this information leakage, we show key recovery attacks of Kyber,
although the leakage also exists for other schemes like Saber. The attack on Kyber
targets the decapsulation module and utilizes Belief Propagation (BP) for key recovery.
To the best of our knowledge, it is the first attack exploiting an algorithmic component
introduced to ease masking rather than only exploiting the randomness introduced by
masking to obtain desired faults (as done by Delvaux). Finally, we performed both
simulated and electromagnetic (EM) fault-based practical validation of the attack for an
open-source first-order secure Kyber implementation running on an STM32 platform.
Keywords: Post-quantum cryptography · Fault attack · Key-encapsulation mech-
anism · Masked implementation · arithmetic to Boolean conversion

1 Introduction
Post-quantum cryptography (PQC) comprises cryptosystems that are designed using hard
problems that an adversary cannot solve easily using a sizeable quantum computer. PQC
has been developed as a contingency plan in anticipation of the invention of sizeable quantum
computers that can break our prevalent classical cryptosystems in the near future. A remark-
able step in this direction is the recently concluded post-quantum standardization procedure
initiated by the National Institute of Standards and Technology (NIST). NIST proposed
some standard Digital Signatures, Key-Encapsulation Mechanisms (KEM), and Public-Key
Encryption schemes [AAC+22], which can be used to replace our current cryptosystems.
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Therefore, we should put more focus on practical issues such as the physical security of PQC
so that it generates enough confidence to be deployed in the near future.

Countermeasures for two different types of physical attacks i.e. side-channel attacks
(SCA) and Fault Attacks (FA) differ greatly from each other. Usually, countermeasures for
one type of physical attack do not guarantee any security against another type of physical
attack. However, if an SCA countermeasure is not applied carefully, its application sometimes
opens up new vulnerable points for SCA. One such attack is shown in [FRVD08]. This
paper exploited carry leakage from the randomized exponent of RSA. Masking [CJRR99] is
a well-known and provably secure countermeasure against SCA. Masking alone provides no
assurance of security against FAs, except in some special cases of Statistical Ineffective Fault
Attack (SIFA) [SJR+19]1. However, protection against both attacks is desired and, therefore,
it is important to understand the robustness of each dedicated countermeasure against the
other attack vectors, e.g. masking against FAs. It is especially important to understand
whether one such countermeasure results in some new vulnerabilities that are exploitable by
attack vectors. Recent work on symmetric key ciphers has shown that the interaction between
two countermeasure classes is tricky and often leads to new attacks [SBJ+21, SRJB23]. We
find that there is a lack of study on such cross-attack strategies i.e. FAs on schemes with SCA
countermeasures or vice versa for PQC schemes. Therefore, in this work, we ask: Does one
countermeasure create new vulnerabilities for another class of attacks in the PQC context?
Specifically, since there exist many SCA secure masking schemes [BDK+20, BGR+21,
HKL+22, KDVB+22] for learning with errors (LWE) [Reg09]-based PQC key-encapsulation
mechanisms (KEM), in this work, we will limit our focus to these schemes only.

Most of the LWE-based KEMs (e.g. Kyber [BDK+17], Saber [DKRV18], NewHope
[ADPS16], etc.) use a variant of the Fujisaki-Okamoto (FO) [FO99] transformation [JZC+17]
to achieve security against Chosen Ciphertext Attack (CCA) attacks. A CCA-secure KEM
consists of three algorithms: Key generation, Encapsulation, and Decapsulation. Al-
though the key generation and encapsulation algorithms can be attacked using fault or
side-channel [RRB+19, VOGR18], the decapsulation algorithm is especially exploitable as it
contains the secret key [PP19]. The secret key of KEM is non-ephemeral i.e. the same secret
key is repeatedly used in the decapsulation for different ciphertexts from various sources.
Therefore, an attacker can refine their attack and improve their success probability by observ-
ing multiple traces with different inputs or by applying the fault in different executions while
the key remains fixed. The decapsulation operation includes decryption and re-encryption
and only returns a session key if the given ciphertext and re-encrypted ciphertext are the
same. Otherwise, it returns a random key indicating decryption failure. These steps of the
FO transformation inherently resist DFA [OSPG18, TMA11], which require faulty outcomes
to proceed. However, a fault to bypass the equality check (between the received ciphertext
and the re-encrypted ciphertext) can enable DFA. While this attack is simple, it is not
the only attack possible. More precisely, equality check is not the only place where faults
can be injected. Generally, ineffective FAs, similar to SIFA [SJR+19] and Fault Template
Attacks (FTA) [SBBR+20], have been quite successful so far [PP21, HPP21, Del22]. Such
attacks extract information from two events: a) in case there is decryption failure due
to faults (effective fault), and b) the decryption succeeds even though a fault has been
injected (ineffective fault). The “effectiveness” of a fault depends on the decryption noise,
which depends on the long-term secret key sss. Therefore, each decryption failure or success
provides an inequality involving sss. The attacker can accumulate a sufficient number of such
inequalities by injecting several faults and can retrieve sss by solving this system of inequalities.

Several works [BMR21, PP21, HPP21, Del22] have proposed efficient ineffective FAs
on LWE-based KEM schemes. In [PP21], Pessl et al. used an instruction-skip fault in the

1Masking alone provides some SIFA security only for cases where faults cannot be injected inside S-Boxes
and the faulty outputs are blocked leaving SIFA as the only option (ruling out Differential Fault Attacks aka.
DFAs). However, this guarantee does not hold when faults can corrupt the S-Box internals and fine-grained
error correction is needed along with masking.
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Decode part (Figure 3) of the decapsulation of Kyber and then observed if this fault resulted
in the correct session key or not. The attack proposed in [HPP21] is similar to [PP21] but
uses a different location to inject fault, which also belongs to the category of ineffective
fault attack. Later, Jeroen Delvaux extended the fault locations of [HPP21] and improved
the inequality solver in [Del22]. There is another recent class of attack (not ineffective
faults), which injects faults in the constants of the Number-Theoretic-Transform (NTT)
computation, reducing the entropy of the LWE instances leading to key recovery [RYB+23].
Notably, in all of these cases, the main difference comes from the fault location – finding
out new attack location is always beneficial from a security assessment perspective. It also
indicates where one should put the countermeasures and what kind of countermeasures are
needed. In this regard, the contributions of this paper are as follows:

• We propose an FA by injecting faults in a previously unexplored location present in
many LWE-based KEMs. The attack falls in the category of ineffective FAs. However,
the new location we explore (the Arithmetic-to Boolean mask conversion module aka.
A2B) is an artifact of masking. Therefore, our attack can be seen as a “side-effect” of
masking. There exists a previous attack due to [Del22] which is aided by masking.
The reason was that masking randomizes the variable to be faulted and increases the
chance of realizing a desired (e.g. single-bit) fault model with different executions.
Our exploration is different – we show that an algorithmic change, which is essential
for efficient masking, is problematic. Also, we shall later in this paper that preventing
these two attacks have very different requirements, and anticipate that our attack
would be difficult to prevent using standard techniques, such as duplication (in Sec. 6).

• The proposed vulnerability originates from a fault-induced information-leakage chan-
nel through the carry propagation logic of a masked adder. While we restrict our
discussion mostly to Kyber in this paper, the channel exists for Saber (we will explain
this briefly) and maybe for many other schemes that utilize such adders. Moreover, the
leakage is oblivious to the masking order, and, therefore, the attack remains unaffected
by the increase in SCA security.

• We realize the key recovery algorithm using the Belief Propagation algorithm provided
in [Del22]; however, with important customizations needed for our purpose. While the
exact version of the attack requires a single-bit fault at a specific bit, we show that the
effectiveness remains unchanged for much relaxed multi-bit fault models – although
at the cost of more observations. This interesting observation is due to the nature
of carry propagation through the adder and the restricted range and distribution of
values the message coefficients can take.

• Our final contribution is a practical realization of the attack on an STM32-based
open-source first-order masked implementation of Kyber. We used electromagnetic
(EM) faults for this purpose and effectively recovered the key with 1.9 million injections.

It is worth mentioning that there exist multiple works targeting the masked implementations
of KEMs using SCA analysis [NDGJ21, NWDP22]. Most of them, such as [NDGJ21], exploit
the inherent weaknesses of masked software implementations of these algorithms due to low
noise and microarchitectural leakages. The attack proposed by us depends on the algorithm
and, therefore, does not depend much on such implementation-specific physical assumptions
other than that of the fault. In other words, our attack remains unchanged for hardware
implementations, provided one can realize the desired fault model, even if the masking is
implemented very carefully with sufficient noise.
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2 Preliminaries
Notations: The k-th bit of an integer u∈Z is denoted as u(k). Zq is a ring of integer modulo q
andRq is a polynomial ringZq[X]/(Xn+1). Rl

q is a ring containing vectors with l polynomials
of Rq and we use Rl×l

q to represent a ring with l×l matrices over Rq. We denote a single
polynomial with lower case letter (e.g., x∈Rq), a vector of polynomials with bold lower case
letter (e.g., yyy∈Rl

q), and a matrix of polynomials with bold upper case letter (e.g.,AAA∈Rl×l
q ).

We denote the i-th (i∈{0, 1, ..., n−1}) coefficient of a polynomial x as x[i] and the i-th (i∈
{0, 1, ..., n−1}) coefficient of j-th (j∈{0, 1, ..., l−1}) polynomial in a vector of polynomials y
as y[j][i]. If an element v is sampled from a set S according to a distribution χ, we present it by
v←χ(S). However, if the element v is generated from a seedv with the help of a pseudorandom
number generator and follows the distribution χ over the set S, then we denote it by
v←χ(S;seedv). We use U as uniform distribution, and βµ as Centered Binomial Distribution
(CBD) with standard deviation

√
µ/2. ⊕ denotes bit-wise XOR operation and & denotes bit-

wise AND operation. ⌊w⌉ represents the rounding operation that outputs the closest integer of
w and is rounded upwards in case of ties (i.e., ifw=1/2 then ⌊w⌉=1). w≪b andw≫b denotes
logical shifting of w by b positions to left or right respectively. Here, w is an integer, and b is
a natural number. These operations can be extended for a polynomial x by performing them
coefficient-wise (e.g., x≫b = x[i]≫b, for each i∈{0, 1, ..., n−1}). If u∈{0,1} then u=1⊕u.

2.1 LPR Public-Key Encryption
The Ring-LWE (RLWE) [LPR10] problem is a variant of the Regev’s LWE [Reg09] problem
introduced by Lyubashevsky et al. The decision version of RLWE problem states that if
a←U(Rq), s,e←χ(Rq), b′←U(Rq), and b=as+e, then distinguishing (a, b) and (a, b′) is
hard. The authors also proposed a public-key encryption scheme based on RLWE problem,
which is commonly known as the LPR scheme. This scheme consists of three algorithms:
(i) key generation (LPR.PKE.KeyGen), (ii) encryption (LPR.PKE.Enc), and (iii) decryption
(LPR.PKE.Dec), which are presented in Figure 1. The key generation algorithm generates
the public key and secret key pairs. In this algorithm, secret polynomial s and the noise
polynomial e are sampled using a narrow distributionχ over the setRq. The public polynomial
a’s coefficients are drawn using a uniform distribution over the set Zq, and the other part
of the public key is the polynomial b is computed by computing as+e. The Encryption
algorithm takes input as the public key pk and message m and produces the ciphertext
pair (u, v). Here, u is the key containing part of the ciphertext and generated like b in key
generation. v is the message containing components of the ciphertext. To generate v, an n-bit
messagem is encoded to a message polynomial with mapping Encode. One such mapping can
be Encode :R2→Rq defined by Encode(m)=

∑n
i=1⌊q/2⌉m[i], and then added with bs′+e2.

The decryption algorithm computes m′ =v−us to obtain a noisy version of the message m.

m′ =v−us=bs′+e2+Encode(m)−(as′+e1)s
=(as+e)s′+e2+Encode(m)−(as′+e1)s=Encode(m)+es′−e1s+e2

Here, es′−e1s+e2 is known as decryption noise. Also, e, s′, e1, s, and e2 are all sampled
from a small distribution χ. So, the decryption noise can be removed with a very high
probability. This is performed by the Decode operation, which takes input as m′∈Rq and
outputs m∈R2 (shown in Figure 3).

The chosen plaintext attack (CPA)-secure LPR.PKE can be converted to a CCA (chosen
ciphertext attack)-secure key encapsulation mechanism (KEM) using a post-quantum variant
of the Fujisaki-Okamoto (FO) transformation proposed by Jiang et al. [JZC+17].

We call this FO transformation integrated CCA secure KEM as LPR.KEM, and present
in Figure 2. G, H, and KDF are three hash functions employed in this KEM as a part of FO
transformation. This FO transformation is used in Kyber and Saber.
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LPR.PKE.KeyGen()
1. a←U(Rq)
2. s, e←χ(Rq)
3. b=(as+e)∈Rl

q

4. return (pk =(a, b), sk =(a, s))

LPR.PKE.Enc(pk =(a, b), message m∈Zn
2 )

1. s′, e1, e2←χ(Rq)
2. u=(as′+e1)∈Rq

3. v =bs′+e2+Encode(m)
4. return c=(u, v)

LPR.PKE.Dec(sk =(a, s), c=(u, v))
1. m′ =v−us∈Rq

2. m=Decode(m′)∈R2
3. return m

Figure 1: LPR.PKE [LPR10]

LPR.KEM.KeyGen()
1. (pk, sk)=LPR.PKE.KeyGen()
2. pkh=H(pk)
3. z←U({0, 1}n)
4. return (pk, s̃k =(sk, z, pkh))

LPR.KEM.Encaps(pk)
1. m←U({0, 1}n)
2. m=H(m)
3. (K̂, r)=G(H(pk),m)
4. c=LPR.PKE.Enc(pk, m; r)
5. K =KDF(K̂, H(c))
6. return (c, K)

LPR.KEM.Decaps(s̃k =(sk, z, pkh), pk, c)
1. m=LPR.PKE.Dec(sk, c)
2. (K̂′, r′)=G(pkh, m)
3. c∗ =LPR.PKE.Enc(pk, m; r′)
4. if: c=c∗
5. return K =KDF(K̂′, H(c))
6. else:
7. return K =KDF(z, H(c))

Figure 2: CCA secure LPR.KEM [JZC+17]

2.2 PQ KEM Schemes Kyber and Saber
Kyber is a LPR.KEM like CCA secure KEM, but its security is based on the Module Learning
with Errors (MLWE) problem. Here, the public polynomial of LPR.PKE a is a matrix of
polynomials AAA∈Rl×l

q , the secret polynomial s is a vector of polynomials sss∈Rl
q, and the

error polynomial e is a vector of polynomials eee∈Rl
q. The MLWE problem states that if

AAA← U(Rl×l
q ), sss← βµ(Rl

q), eee← βµ(Rl
q), bbb′ ← U(Rl

q), and bbb = (AAAsss) + eee, then (AAA, bbb) and
(AAA, bbb′) are hard to distinguish. Kyber uses number-theoretic transformations to perform
polynomial multiplication. Three security versions of Kyber named Kyber512, Kyber768,
and Kyber1024, depending on different values of the parameter set, and are presented in
Table 1. The parameter set of Kyber contains prime modulus q and two power-of-two moduli
p and t, which form the rings Rq, Rp, Rt. In the Kyber.PKE.Enc, the Compress function
shortens each coefficient of the ciphertext c=(u, v). Each coefficient of u is reduced from
Rq to Rp, and each coefficient of v is reduced from Rq to Rt. Conversely, the Decompress
function in Kyber.PKE.Dec, extend the ciphertext bits and maps each element of Rp or Rt

to Rq. The Encode :{0,1}n→Rq function converts n-bit message to a polynomial in Rq, and
the Decode :Rq→{0,1}n function reverse the effect of the Encode function.This is shown in
Figure 3. Kyber uses two CBD distributions βη1 and βη2 to sample secret and error vector.
Here, we brief the Kyber scheme and recommend [BDK+17] for additional details.

Saber is also a CCA secure KEM, and its security depends on the Module Learning with
Rounding (MLWR) problem. The MLWR problem states that ifAAA←U(Rl×l

q ), sss←βµ(Rl
q),

bbb′←U(Rl
p), q>p and bbb=⌊(q/p)(AAAsss)⌉, then (AAA, bbb) and (AAA, bbb′) are hard to distinguish. Here
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Compress(v′, t) (referred as Comp)
1. v =⌊(t/q)v′⌉ mod t
2. return (v)

Decompress(v, t) (referred as Decomp)
1. v′ =⌊(q/t)v⌉
2. return (v′)

Encode(m)
1. for i=1 to n:
2. m′[i]=⌊q/2⌉m[i]∈Zq

3. return (m′∈Rq)

Decode(m′)
1. for i=1 to n:
2. m[i]=(((m′[i]≪1)+⌊q/2⌉)/q)&1∈Z2
3. return (m∈{0,1}n)

Figure 3: Compress, Decompress, Encode, and Decode functions of Kyber [BDK+17]

Table 1: Parameters of Kyber with security and failure probability [BDK+17]
Scheme
Name

Parameters Post-quantum
Security

Failure
Probability

NIST
Security

Levell n q p t η1 η2

Kyber512 2
256 3329

210 24 3 2 2107 2−139 1
Kyber768 3 210 24 2 2 2165 2−164 3
Kyber1024 4 211 25 2 2 2232 2−174 5

the error vector of the MLWE problem is replaced by the rounding operation. The moduli
q, p, t that are used to form the ringsRq, Rp, Rt in Saber algorithms are all power-of-two. The
number of bits in each coefficient of a polynomial of the corresponding ring can be calculated
as log2(q)=ϵq, log2(p)=ϵp, and log2(t)=ϵt. The encoding and decoding operations of Saber
are similar to LPR.PKE, and these operations are realized by using the shift operation due
to the power-of-two moduli. There are three security versions of Saber named LightSaber,
Saber, and FireSaber, depending on different values of the parameter set, which is shown
in Table 2. We suggest the original paper [DKRV18] for further specifics.

Table 2: Parameters of Saber with security and failure probability [DKRV18]
Scheme
Name

Parameters Post-quantum
Security

Failure
Probability

NIST
Security

Levell n q p t µ

LightSaber 2
256 213 210

23 5 2107 2−120 1
Saber 3 24 4 2172 2−136 3
FireSaber 4 26 3 2236 2−165 5

2.3 Masking Saber and Kyber
Due to many successful SCAs [PP19, KPP20, MBB+22, RRCB20] on the decapsulation
algorithm of the NIST KEM candidates, many masked implementations for those schemes
have been proposed to prevent SCA [BDK+20, HKL+22]. In this work, we also target the
masked decapsulation procedure of an LWE-based KEM. Therefore, we briefly describe the
first-order masked decapsulation algorithm below, which can prevent first-order SCA.

The decapsulation of a general LWE-based KEM follows three steps: (i) decryption, (ii)
re-encryption, and (iii) ciphertext comparison (Figure 2). We must mask each of these three
steps to protect the decapsulation algorithm from SCA. In first-order masking, the sensitive
variable w is split into two shares, w1 and w2. The relation between w and (w1, w2) for arith-
metic masking is (w1+w2) mod q=w and for Boolean masking it is w1⊕w2 =w. LWE-based
KEMs primarily utilize linear polynomial arithmetic operations over a ring Rq, such as ring
multiplication with one masked and another unmasked input, ring addition, and ring subtrac-
tion. These operations are duplicated and performed on each share independently in masked
settings. For masking them, arithmetic masking techniques are used. The decapsulation also
has non-linear arithmetic over Rq. Those are shift operations on polynomials, and hash func-
tions H, G, the extension function used for sampling pseudorandom numbers XOF, the CBD
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βµ, and ciphertext equality checking operation =?. These operations are expressed in bit
operations and masked with Boolean masking. Except for these operations, the masked decap-
sulation needs two share conversion algorithms i.e. arithmetic to Boolean (A2B) and Boolean
to arithmetic (B2A) conversions. The B2A conversion occurs inside the masked CBD (βµ).

In Saber’s decapsulation operation, the ring isRp instead ofRq. A pictorial version of this
masked decapsulation operation of Saber is presented in Figure 4. In this work, we will focus
on the part surrounded by the red rectangle in the figure, which includes the A2B conversion
and shift operations. A version of A2B conversion used in Saber is shown in Algorithm 1.

Xuuu

sss1

X

sss2

+

hhh2

v ≪

−
A2B

≫

≫
G

pkh

K̂ ′

XOF βµ

X

X

UseedAAA

X

X

bbb

+

hhh

+

h1

+

+

A2B

A2B

≫

≫

≫

≫

uuu∗1

uuu∗2

v∗1

v∗2

=?

return H(K̂ ′,c)

yes

return H(z,c)

no

Figure 4: First-order masked Saber.KEM.Decaps algorithm [BDK+20]. The highlighted
operations in color gray are influenced by the non-ephemeral secret-key sss and use masking to
prevent SCA. The component we focus on in this work is enveloped with the red rectangle.

Algorithm 1: First-order masked arithmetic to Boolean conversion (A2B) [CGV14]
Input :(a1, a2)∈R2k×R2k such that (a1+a2) mod 2k =w∈R2k

Output :(b1, b2)∈R2k×R2k such that b1⊕b2 =w

1 u1←U(R2k ); u2 =u1⊕a1
2 v1←U(R2k ); v2 =v1⊕a2
3 (b1, b2)=SecAdd((u1, u2), (v1, v2), k) [Algorithm 2]
4 return(b1, b2)

Algorithm 2: SecAdd [CGV14]
Input :(u1, u2), (v1, v2)∈R2k×R2k such that u1⊕u2 = û and v1⊕v2 = v̂
Output :(z1, z2)∈R2k×R2k such that z1⊕z2 =(û+v̂) mod 2k

1 (c1
1, c

1
2)=(0, 0)

2 r0, r1, r2←U(R2k )
3 for i=1 to k-1 do
4 tmp11 =(ui

1&vi
1)⊕ri

0; tmp12 =(ui
2&vi

2)⊕ri
0

5 tmp21 =(ui
1&ci

1)⊕ri
1; tmp22 =(ui

2&ci
2)⊕ri

1
6 tmp31 =(vi

1&ci
1)⊕ri

2; tmp32 =(vi
2&ci

2)⊕ri
2

7 ci+1
1 = tmp11⊕tmp21⊕tmp31; ci+1

2 = tmp12⊕tmp22⊕tmp32

8 z1 =u1⊕v1⊕c1; z2 =u2⊕v2⊕c2
9 return (z1, z2)
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In Kyber, the ring modulus q is prime, the share conversion algorithms A2B (A2Bq) and
B2A (B2Aq) are different compared to Saber, which uses power-of-two modulus. In Kyber, the
shares are first transferred from prime to a power-of-two modulus, and the aforementioned A2B
conversion (Algorithm 1) or a B2A conversion algorithm with input in power-of-two modulus
is performed. For this reason, a couple of extra masked modules, such as Decode, Encode,
Compress, and transform-power-of-2 are required in masked Kyber. In Kyber, the A2B
conversions are used inside the Decode and Comp components, and the B2A conversions are
inside the Encode. Figure 5 is an illustrated version of the first-order masked decapsulation
algorithm of Kyber. The function we exploit in this work is the A2B conversion in the Decode
module, which is surrounded by the red rectangle in the figure. We present a first-order masked
Decode procedure in Algorithm 3. According to this algorithm, (m′

a1
,m′

a2
) are arithmetically

masked shares of the input of the Decode operationm′. We use Figure 5 to illustrate the steps
of the masked decoding algorithm for a coefficient ofm′, saym′[i]. Here, the first figure shows
the distribution of a coefficient of m′[i]. The second figure presents the distribution of that
coefficient after the subtraction with q/4. The third figure expresses the distribution of that
coefficient after the transformation from Zq to Z2k+1 , where k=⌈log2(q)⌉. The last figure
displays the distribution of that coefficient after the subtraction with q/2. After this, the A2B
conversion takes place and produces Boolean shares (db1 [i], db2 [i]) in Algorithm 3. Then the
most significant bits (MSBs) of (db1 [i], db2 [i]) are calculated by applying MSB coefficient-wise.
(db1 [i], db2 [i]) act as the Boolean shares of m[i]= (mb1 [i], mb2 [i]). Here, kth and (k+1)th
bit of (db1 [i], db2 [i]) both can serve as the Boolean shares of the message bit m[i]. Therefore,

(db1 [i](k+1), db2 [i](k+1))=(db1 [i](k), db2 [i](k))=(mb1 [i], mb2 [i]) (1)

All other bits of (db1 [i], db2 [i]) act as decryption noise. As noted in Section 1, the decryption
noise is linearly related to the secret key.

Algorithm 3: First-order masked decode algorithm [OSPG18]
Input :(m′

a1
, m′

a2
)∈Rq×Rq such that m′ =(m′

a1
+m′

a2
) mod q, and k=⌈log2(q)⌉

Output :(mb1 , mb2)∈R2×R2 where m=mb1⊕mb2 =Decode((m′
a1

+m′
a2

) mod q)
1 m′

a1
=m′

a1
−⌊q/4⌋

/* transfers arithmetic shares from mod q to mod 2k+1 */
2 (ga1 , ga2)=transform-power-of-2(m′

a1
, m′

a2
, (k+1))

3 ga1 =ga1−⌊q/2⌋
4 (db1 , db2)=A2B((ga1 , ga2), (k+1)) [Algorithm 1]
5 mb1 =MSB(db1); mb2 =MSB(db2)
6 return(mb1 , mb2)

3 Fault Propagation through the Carry Chain
In this section, we present our main observation, which results in key recovery fault attacks
on the masked decapsulation algorithms of certain CCA secure LWE-based KEMs. Broadly,
our attack exploits the Decode component (ref. Figure 6) that removes the decryption noise
and produces the message in the decapsulation algorithm. However, unlike [PP21], which
skips the first subtraction operation (line 1. in Algorithm 3) in the Decode module, we target
the A2B algorithm. The A2B adds the arithmetic shares using Boolean masking and generates
Boolean shares amenable to the shift operation so that the message bits can be extracted
easily. More precisely, we target one of the arithmetic shares input to this module with
faults. For simplicity, we limit our discussion to two shares (ref. Algorithm 3) in the next
few paragraphs, and later explain the many shares case. Moreover, for ease of explanation,
we limit the discussion to the Decode module of Kyber only (described in the last section).
The differences for the Saber case will be explained at the end.
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Figure 5: The steps of the masked decoding algorithm of Kyber presented in Algo-
rithm 3[OSPG18].

The output of the Decode stage are the message bits (masked), which are inputs to the
re-encryption stage. As described in the last section, these (masked) message bits are derived
from the (masked) message coefficients containing (masked) noise. The faults induced by us
at the input of the A2B (at a specific bit of any one of the shares) propagate to these decoded
(masked) message bits, conditioned on a specific (unmasked) bit of the noise. In other words,
whether or not the fault propagates to the (masked) message bits (and, therefore, causes
a decryption failure) depends on the actual unmasked value of some noise bit. Now the noise
is dependent on the secret key sss. Therefore, based on this fault propagation property, we can
construct inequalities (each corresponding to one ciphertext) involving the secret, and solve a
system of such inequalities using the Belief Propagation (BP) algorithm. The BP algorithm
finally returns the long-term secret key. Note that, in this attack, we always work with valid
ciphertexts, i.e. the ciphertexts that will be generated using proper execution of the encapsula-
tion mechanism of the scheme. So, the probability of decryption failure (without fault) during
the decapsulation procedure is identical to the preassigned decryption failure probability of
the scheme, which is very small (<2−128). Therefore, we can safely assume that all the ob-
served decryption failures happen due to the induced faults. Next, we explain the information
leakage that we exploit due to the fault propagation through carry chains of the A2B.

3.1 Fault Propagation through First-order Masked A2B

We begin our discussion with stuck-at faults. Without loss of generality, suppose we introduce
stuck-at-1 bit-fault (on an input share) at the (k−1)th bit of the i-th input coefficient (i.e.
ga1 [i](k−1)) to the A2B conversion. Here i∈{0, 1, ..., n−1}2. Let g=(ga1 +ga2) mod 2k+1 =
(db1⊕db2). Here, g[i](k+1) =(db1 [i](k+1)⊕db2 [i](k+1))=(mb1 [i]⊕mb2 [i])=m[i] (m[i]s are the
bits of the message). Henceforth in this section, we will only focus on a single coefficient.
So, for the sake of simplicity, we rename the following:

• ga1 [i] as x, ga2 [i] as y, and g[i] as z. These are (k+1) bit registers.
2Please note that we start counting of the index k from 1.
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Decompuuu X

sss1

X

sss2
v Decomp

−
Decode G

pkh

K̂ ′

Re−encryption

(uuu∗1,uuu∗2)

(v∗1,v∗2)

=?

return H(K̂ ′,c)

yes

return H(z,c)

no

Figure 6: First-order masked decapsulation algorithm of LW(E/R) based schemes. The
highlighted operations in color gray are influenced by the non-ephemeral secret-key
sss=(sss1, sss2). The function we exploit in our attack is enveloped with the red rectangle.

• mb1 [i] as m1, mb2 [i] as m2, and m[i] as m̂. These are 1 bit registers.

Let us assume after the application of the stuck-at-1 fault at x(k−1), x becomes x∗,
z=(x+y) mod 2(k+1) becomes z∗, and the message bit m̂ becomes m̂∗. We introduce the
following two events:

• Fault activation: The injected stuck-at-1 fault at x(k−1) is active if x(k−1) =0, else
it is inactive. If the fault is active, then x∗(k−1) =x(k−1) (the value of the bit changes
from 0 to 1).

• Fault propagation: The injected stuck-at-1 fault at x(k−1) propagates to z(k)

if and only if z∗(k) = z(k). The injected fault propagates to z(k+1) if and only if
z∗(k+1) =z(k+1). A fault propagation happens only if the fault is “active”

The main operation of A2B is to compute z=x+y mod 2(k+1), and it performs this by
utilizing Boolean masking. However, for our purpose, we just need to focus on the addition
functionality and the arithmetic shares (x and y). We can write:

z(j) =x(j)⊕y(j)⊕c(j−1), (2)

where 1≤ j≤ (k+1), c(j−1) is the carry for (j−1)-th bit, and c(0) = 0. The carry can be
written further as:

c(j−1) =(x(j−1)&y(j−1))⊕((x(j−1)⊕y(j−1))&c(j−2))
=(x(j−1)&y(j−1))⊕(x(j−1)&c(j−2))⊕(y(j−1)&c(j−2))
=((y(j−1)⊕c(j−2))&x(j−1))⊕(y(j−1)&c(j−2)).

(3)

The relation between x, y, z and m1, m2, m̂ is given as:

z(k+1) =x(k+1)⊕y(k+1)⊕c(k) =m1⊕m2 =m̂, (4)

c(k) =((y(k)⊕c(k−1))&x(k))⊕(y(k)&c(k−1)). (5)

Next, we present the following lemmas:

Lemma 1. If we introduce a stuck-at-1 fault at x(k−1), the fault activates with probability
1
2 . The activated fault propagates to z(k) (i.e. z∗(k) =z(k)) if and only if z(k−1) =1.
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Proof. The introduced stuck-at-1 fault at x(k−1) is active, i.e. x∗(k−1) = x(k−1), only
if x(k−1) is equal to 0. Since x is a random arithmetic share, x(k−1) = 0 happens with
probability 1

2 . If the fault is active then x∗(k−1) = 1. From Equation 2, we get that
the introduced fault at x(k−1) can only propagate to z(k) through c(k−1). Let us as-
sume c becomes c∗ after the fault injection. Now, from Equation 3, we get c∗(k−1) =
((y(k−1)⊕c(k−2))&x∗(k−1))⊕(y(k−1)&c(k−2)). The fault propagation (i.e. c∗(k−1) =c(k−1))
happens only if (y(k−1)⊕c(k−2))=1. This implies that one of y(k−1) and c(k−2) is zero, i.e.
(y(k−1)&c(k−2))=0. So, from Equation 2, we get that z(k−1) =x(k−1)⊕(y(k−1)⊕c(k−2))=
0⊕1 = 1. This is the unmasked value of the (k−1)th bit of the coefficient that we target.
The fault injection undoes the masking for this specific bit, thanks to the fault propagation.
Overall, the fault reaches to z(k) with probability 1

2 when z(k−1) =1.

Lemma 2. If we introduce a stuck-at-1 fault at x(k−1), the fault activates with probability
1
2 . The activated fault propagates to z(k+1), i.e. (z∗(k+1) =z(k+1)) if and only if z(k−1) =1
and z(k) =1.

Proof. According to Lemma 1, the fault at x(k−1) is active with probability 1
2 . Also, the

activated fault propagates only if z(k−1) =1. Now, z(k+1) =x(k+1)⊕y(k+1)⊕c(k). The fault
can only reach z(k+1) through c(k). Next we observe that c(k) = ((y(k)⊕ c(k−1))&x(k))⊕
(y(k)&c(k−1)). Therefore, the only path for the fault to reach ck from x(k−1) is via c(k−1). Now
as shown in Lemma 1, c(k−1) gets corrupted (i.e. c(k−1) ≠c∗(k−1)) only if x(k−1) =0. So we
only need to determine when a fault in c(k−1) propagates to c(k). According to the equation
of c(k) (Equation 5), this is only possible if x(k)⊕y(k) =1. Finally, we observe that c(k−1) =
((y(k−1)⊕c(k−2))&x(k−1))⊕(y(k−1)&c(k−2)) = (1&0)⊕0 = 0 (from the proof of Lemma 1).
Therefore, it is evident that z(k) =x(k)⊕y(k)⊕c(k−1) =1. This proves the lemma.

Example: Now, let us provide a very simple example to visualize Lemma 2. Let us consider
k=2 (therefore, we have a 3-bit register). In this case, we introduced a stuck-at-1 fault at
x(1). The fault is active only if x(1) is equal to 0. If the fault is active then z∗ =(z+1) mod 23.
Table 3 presents the values of z and z(3) before the stuck-at-1 fault at x(1) together with the
values of z∗ and z∗(3) after the fault, when the stuck-at-1 fault at x(1) is active. From this
example, we can observe that the fault at x(1) only propagates to z(3), if z(1) =1 and z(2) =1.

Table 3: The value of z and z(3) before and after the stuck-at-1 fault at x(1)

Before the fault injection After the fault injection
z(3) z(2) z(1) z z∗ z∗(3)

0 0 1 00 1 1 2 0
0 2 3 00

1 1 3 4 1
0 4 5 10 1 5 6 1
0 6 7 11

1 1 7 0 0

Lemma 3. A stuck-at-1 fault at x(k−1) activates with probability 1
2 and propagates to z(k+1)

and causes decryption failure if and only if z(k−1) =1 and corresponding message bit m̂=1.
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Proof. From Equation 1 and Equation 4, we have z(k) = z(k+1) = m̂. So, the stuck-at-1
fault at x(k−1) propagates to z(k+1) =m̂, only if z(k−1) =1 and the corresponding message
bit is 1 (according to the previous lemmas). As the fault propagates to m̂ then m̂∗ =m̂. This
event will cause decryption failure as the decoded message bit is different before and after
the fault injection. Once again we remind that m̂ will remain as two shares. However, by the
correctness of the Boolean masking, the properties described in these lemmas will follow.

In a nutshell, fault propagation provides information about z(k−1), and propagates till
z(k+1) conditioned on z(k). Further, since z(k) and z(k+1) are the message bits (and assumed
known in our attacks), if corrupted, they lead to decryption failure. Overall, we obtain a
(unmasked) bit (z(k−1)) which exposes partial information about the secret-dependent noise.
Notably, we receive similar results if we use stuck-at-0 fault. However, the fault propagation
would happen when z(k−1) =0, in that case. However, bit-flip faults do not provide infor-
mation in this case. For a bit-flip fault at x(k−1), it is active for both possible cases, when
x(k−1) =0 or when x(k−1) =1. The injected fault will propagate to z(k) and cause successful
decryption failure for 2k−1 instances out of 2k instances when z(k−1) = 1 and also when
z(k−1) =0. Hence, successful decryption failure does not provide knowledge regarding z(k−1).

3.2 Fault Propagation for the Higher-Order Masking
We now discuss the effect of our stuck-at fault on the higher-order masked decapsulation
algorithms. In t-th order masking, the input of A2B conversion g[i] has t+ 1 arithmetic
shares. For the sake of simplicity, let us assume z= g[i] and its (t+1) arithmetic shares
are (x1, x2, ..., xt+1). So, (

∑(t+1)
j=1 xj) mod 2(k+1) = z. Now, this multi-share sum can be

written as a two-share case z=(x1+y) mod 2(k+1), where y :=(
∑(t+1)

j=2 xj) mod 2(k+1). This
brings back the two-share scenario explained in the previous subsection. More precisely,
we introduce a stuck-at-1 fault at xk−1

1 . The fault is active only if xk−1
1 =0. The injected

fault at xk−1
1 will not affect y, and can propagate to z(k+1) only through xk−1

1 . Therefore, by
applying Lemma 3, the stuck-at-1 fault at xk−1

1 will propagate to zk+1 only if z(k−1) =1
and z(k) =1. The conclusion is that the fault propagation scenario we describe here does
not get affected by the order of masking.

3.3 Application of Our Fault Attack on Kyber
In Kyber, q=3329 and hence k=12. So, each coefficient of m′∈Rq are of 12 bits. However,
in order to enable message extraction in a masked setting, the shares are transferred from
mod q to mod 2(k+1), making each share a 13-bit value. We inject stuck-at-1 bit-fault at
the 11th bit of the i-th coefficient of an input share of the A2B of the masked Decode algorithm.
Whether or not the fault propagates to the 13-th bit (which remains in a Boolean shared
form) exposes the 11-th bit.

According to our nomenclature defined in the previous section, we denote the target
11-th bit (to be faulted) as ga1 [i](11), and the 11-th-bit value to be extracted as g[i](11), where
g=(ga1 +ga2) mod 213. From Lemma 3, we obtain that the stuck-at-1 fault at ga1 [i](11)

propagates to the corresponding i-th message bit m[i] and causes decryption failure ( with
probability 1/2) when g[i](11) =1 and m[i]=1. Figure 7a presents the value ranges for g[i],
where the stuck-at-1 fault will propagate and cause decryption failure, and in which cases
the fault will not cause decryption failure for Kyber. The value range of g[i], which will
cause decryption failure are {212+211+210, 212+211+210+1, ..., 213−1} (coloured in red).
The value range of g[i], which will not cause decryption failure are {213−⌈q/2⌉, 213−⌈q/2⌉+
1, ..., 212 +211 +210−1}(coloured in blue). One important point is that the distributions
are bell-shaped, i.e. the mean values occur more often than any other value, and the values
at the tails are extremely rare. This fact will be used later for relaxing the fault model to
tolerate multi-bit faults. Similarly, the stuck-at-0 fault at ga1 [i](11) propagates to m[i] and
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(a) stuck-at-1 fault (b) stuck-at-0 fault

Figure 7: Results of stuck-at fault attacks on Kyber. The solid curve represents the
probability distribution of a coefficient that decoded to the message value m[i]=0 and the
dashed curve represents the probability distribution of a coefficient that decoded to the
message value m[i]=1. This picture also presents that the injected fault will corrupt the
message value whenever it lies on the red part.

causes decryption failure when g[i](11) =0 andm[i]=0 with probability 1/2. Figure 7b shows
the value of g[i] where the stuck-at-0 fault will propagate and cause decryption failure
and where the fault will not cause decryption failure. The values of g[i], which will cause
decryption failure are {0, 1, ..., 210−1} (coloured in red) and only whenm[i]=0 and the fault is
active. There are some implementations of masked Kyber where 16 bit register is used for g[i]
instead of 13 bit. One such implementation is [HKL+22] (We used this implementation in our
practical setup). We note that if the stuck-at-1 fault at g[i](11) propagates to g[i](13) then it
will propagate to g[i](16). This can be proven by repeated application of Lemma 2. Therefore,
working with the 13th or the 16th bit is the same for us, and we stick with the 13th bit case.

Now, we recall that the 11th bit corresponds to the (secret dependent) noise. After the
injection of the stuck-at-1 fault at g[i](11), it will cause a decryption failure if g[i](11) =1
and the corresponding message bit m[i]=1. If m[i]=1 and g[i](11) =1, then the associated
decryption noise is ≥⌊q/4⌋−(210−⌊q/4⌋). So, it can create a partition in the distribution
of the decryption noise depending on the decryption failure. This partition leaks some
information regarding the secret key, and we can eventually form inequalities involving the
secret key (described in the next subsection). Note that the partition we received from our
fault attack is different from the attacks available in the literature [PP21, HPP21, Del22].
In the previous works, if the message bit m[i] = 1, then after the injection of the fault for
almost half of the possible values of g[i] (around q/4 values out of q/2 values) the fault will
cause decryption failure, and for the other half of the possible values of g[i] will not cause
decryption failure. The same incident happens when the message bit m[i] = 0. However,
in our stuck-at-1 attack, we observed decryption failures only when the corresponding
message bit m[i]=1. If m[i]=1, then in our experiments, we have noticed 99.3% decryption
failure and only 0.7% decryption success by applying stuck-at-1 fault at 11th bit of a share
of g[i] for Kyber512. We provide more details in Section 5.

3.4 Recovery of the Secret Key for Kyber
This subsection will describe the final stage of our attack i.e. recovering the secret key for
Kyber. As mentioned earlier, decryption noise forms a linear equation with the secret key
sss and error eee. The decryption noise for LWE-based KEM is equal to eeeTsss′[i]−sssT (e1e1e1[i]+
∆uuu[i])+e2[i]+∆v[i], where ∆uuu and ∆v are the noise introduced because of the compression
operation over uuu and v, respectively. In our case, a decryption failure is observed only when
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(a) Stuck-at-1 fault (b) Stuck-at-0 fault

Figure 8: Results of stuck-at fault attacks on Saber. The probability distribution of m′[i]
is shown in these figures. The solid curve represents all the values of m′[i] that decoded
to the message value 0, and the dashed curve represents all the values of m′[i] that decoded
to the message value 1. The inserted fault will corrupt the message value whenever the
value of m′[i] lies on the red part.

the message bit m[i]=1, and the corresponding 11-th bit is also 1. If the fault is active and
decryption failure happens, then the decryption noise satisfies the following inequality.

(eee, sss)T (sss′[i], −(e1e1e1[i]+∆uuu[i]))+e2[i]+∆v[i]≥⌊q/4⌋−(210−⌊q/4⌊)⌋. (6)

If the fault is active and decryption success happens, then the decryption noise satisfies the
following inequality.

(eee, sss)T (sss′[i], −(e1e1e1[i]+∆uuu[i]))+e2[i]+∆v[i]<⌊q/4⌋−(210−⌊q/4⌋). (7)

Note that the fault is active with probability 1
2 . As mentioned in Section 1, the attacker

has access to the encapsulation oracle and works with self-generated ciphertexts. So, the
attacker knows all the values in Equation 6 & 7, except (eee, sss). The attacker can find the
polynomials (eee, sss) by solving these linear inequalities.

Recently, a few inequality solvers have been proposed [PP21, HPP21, Del22, HMS+23].
All these solvers are based on BP in order to tolerate errors and solve the system with a
large number of inequalities in a reasonable amount of time. In this work, we have used the
inequality solver proposed by Delvaux et al. in [Del22] to solve the inequalities obtained from
the stuck-at-1 fault on Kyber. We always inject the fault at some fixed coefficient. If we
consider ω numbers of inequalities, then the system of inequality contains ω inequalities with
ψ unknowns. Here the value ofψ is the total number of coefficients ofsss andeee, which is 2∗l∗256,
l=2 for Kyber-512. This inequality solver uses an iterative method to solve the system of ω
inequalities by maintaining a probability mass function (PMF) for each of ψ unknowns. The
PMF for each unknown initiated with the CBD on [−η, η] and updated in each iteration.
The updation of PMF for each unknown is performed by calculating the probability to
satisfy each of the ω inequalities for each possible value [−η, η] of the unknown, and then
all the 2∗η∗ω probabilities are combined. [Del22] accelerates the computation time of their
solver by applying the central limit theorem. The iteration of the updation of PMF for each
unknown continues until a sufficiently approximate one-point distribution on [−η, η] is found.

3.5 Application of Our stuck-at Fault Attack on Saber
In Saber, q=p=2ϵp is a power-of-two moduli and k=ϵp (ϵp =10 for the medium security ver-
sion of Saber). The decoding algorithm in Saber has only two steps. The input of the decoding
algorithm of Saber is arithmetic shares of m′∈Rp. First, the algorithm performs the A2B
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conversion on the arithmetic shares ofm′ to convert them into Boolean shares. Then the most
significant bit (ϵpth bit) is extracted from the Boolean shares ofm′ by using (ϵp−1) right shift
operation. This final output is the message polynomialm, which is the output of the decoding
in Saber. m′[i] follows a bell-shaped distribution with a peak at p/4 whenm′[i](ϵp) is 0, i.e. for
the corresponding message bit 0. The values of m′[i] follow a bell-shaped distribution with a
peak at 3p/4 when m′[i](ϵp) is 1, i.e. for the corresponding message bit 1. From Lemma 1, we
get that the injected stuck-at-1 fault at the (ϵp−1)-th bit (9th bit for the medium security
version of Saber) of a share ofm′[i] propagates and causes decryption failure if it is active and
m′[i]∈{(p/4), (p/4)+1, ..., (p/2)−1}∪{3(p/4), 3(p/4)+1, ..., p−1} (coloured in red). The
injected fault is active with 1/2 probability. Also, ifm′[i]∈{0, 1, ..., (p/4)−1}∪{(p/2), (p/2)+
1, ..., 3(p/4)−1}, then the fault does not propagate and hence does not cause decryption failure
(coloured in blue). We use Figure 8a to show the values ofm′[i] in which the stuck-at-1 fault
propagation is successful and the values of m′[i] in which this fault will not cause decryption
failure. In this figure, we use a solid bell curve to denote the distribution for the message bit 0
and a dashed bell curve to indicate the distribution for the message bit 1. Similarly, we get that
the injected stuck-at-0 fault at the (ϵp−1)-th bit of a share ofm′[i] propagates and causes de-
cryption failure if it is active andm′[i]∈{0, 1, ..., (p/4)−1}∪{(p/2), (p/2)+1, ..., 3(p/4)−1}
(coloured in red). Also, ifm′[i]∈{(p/4), (p/4)+1, ..., (p/2)−1}∪{3(p/4), 3(p/4)+1, ..., p−1}
then decryption failure does not arise(coloured in blue). Figure 8b represents the values
of m′[i] for both cases when the stuck-at-0 fault propagation is successful and when fault
propagation is not. Overall, we see that the fault propagation and the nature of the infor-
mation leakage are quite similar to that of Kyber’s.This gives enough evidence that our fault
attack can be applied to any LWE-based KEM with some minor changes, as the leakage
pattern from the masked decode algorithm is similar for all these schemes, such as we can
use Kyber’s analysis to NewHope [ADPS16] just by changing the parameters. However, we
left this for the extended version of this work. Hereon, we shall mainly focus on the Kyber
scenario in this paper and develop the BP-based key recovery algorithm for it.

4 Relaxation of the Fault Model
The attack described so far in this paper requires faults to be injected at a specific bit (the
11th bit) of a register. While such a precise injection has been demonstrated previously in
literature [DBC+18, BH22, SBBR+20], injection at a specific bit is always probabilistic and
depends on the precision of the injection mechanism. Therefore, we can only expect the
fault to happen at the 11th bit with some probability p. On the other hand, research has
shown that limiting the width of faults to one bit is feasible [GYTS14] even with low-cost
injection mechanisms such as clock-glitch. However, the location of the faulted bits is not
well-controllable in many situations. Furthermore, with low-cost setups, multi-bit faults
also occur quite frequently. Therefore, it is practical to assume a fault model that injects
single-bit faults at random locations, or even multi-bit in a register. Depending on the
injection mechanism, the fault model may vary. However, stuck-at faults can be observed
in several practical scenarios, such as clock-glitch or EM. Even in our practical experiments
with EM injection described in Section 5, we observed single/multi-bit stuck-at-1 faults.

We now analyze the effect of such a relaxed fault model (single/multi-bit faults at different
locations) assumption on the proposed attack. One should note that the proposed fault
attack utilizes the inequalities constructed from the decryption failures/successes. There
is no direct way to distinguish whether or not the fault has been injected at the desired
location (11th bit for Kyber) in the case of a decryption failure. Similarly, in the case of a
decryption success, it is hard to determine if it is due to the fault at 11-bit or some other
fault. The injections at the undesired locations may generate noisy equations, hindering
the convergence of the BP algorithm to the correct key value. Generally, BP algorithms can
tolerate noise only up to a certain extent [HPP21, Del22].

Interestingly, we have observed that our attack is not significantly affected by such
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injection noise. The signal, in our case, is a single-bit injection (stuck-at-1) at the 11th bit.
The main reason behind such observation is that due to the carry chain structure, many faults
do not propagate till the most significant bit of the addition operation. More precisely, the
only way to observe a fault is to observe it at the MSB bit, and a fault in some least significant
bits can propagate to the MSB only through the carry chain. The carry chain contains several
AND operations, which makes the fault propagation conditional on many bits, making it rare.
It is also due to the normally distributed data that we are dealing with. The target variable
assumes only a specific set of values with high probability among the entire range, which
further hinders the fault propagation from most of the least significant bits. The probability of
fault propagation is the highest for the two most significant bits, 12th and 13th bit for Kyber,
and the second highest is for the next significant bit, 11th bit for Kyber. However, for the
lower-order bits, the probability of fault propagation is negligible. In the next few paragraphs,
we further elaborate on why the fault propagation probability is low for lower-order bits.

For the time being, let us further narrow down our discussion to Kyber-512, although the
conclusions made would be similar for other variants. As already mentioned in Section 3.4,
we extract a single-bit of the decryption noise via faults, which provides us with some
information on the secret key. For Kyber512, the mean of the decryption noise is 0 associated
with any of the message bits. Furthermore, decryption noise remains between (−⌊ q

4⌋, ⌊
q
4⌋)

with probability (1− 1
2139 ) [BDK+17] (as the failure probability for Kyber512 is 2−139).

The decryption noise associated stays in between (−⌊ q
8⌋, ⌊

q
8⌋) with probability (1− 1

226 ).
Concretely it means that obtaining any noise value out of this range would happen only once
in 67 million executions. From a physical attack perspective, it is a quite low probability.
These observations indicate that (due to the bell curve of noise distribution) the noise values
are highly likely to belong within a small range3.

Let us now analyze the distribution of the message coefficients (g[i]) just before the
extraction of the message using the A2B algorithm (i.e. before line 4 in Algorithm 3).
These coefficients contain the message added with the decryption noise. At the input
of A2B, g[i] ∈ (0, ⌊ q

2⌋) = (0,1664), if the corresponding message bit m[i] = 0, and g[i] ∈
(213−⌊ q

2⌋, 213−1)=(6528,8191), when the corresponding message bit m[i]=1. These two
ranges are clearly disjoint between 1664 and 6528. For the other end (i.e. 0 and 8191), they
are quite close as 0 = 8192 in the ring. The main observation at this point is that if a fault
corrupts the message bit, then it must be strong enough to take the value of g[i] from one
range to the other range (e.g. from the value range of message value 0 to the value range of
the message value 1). As we can see, it is indeed possible if the value of g[i] is close to 0 or
8191. However, such values occur with extremely low probability.

Now we consider the following scenarios, which model various single/multi-bit fault
models on this variable g[i]. For the sake of explanation, we consider the fault width to be
8 bit, in this case, limited to the least significant bits (in fact, we mostly observe such faults
in our practical setup). However, the argument is similar for any bit width. We note that
the faults are actually injected on one of the shares of g[i]. However, the impact is realized
on the unmasked g[i] as the shares are added with A2B.

• stuck-at-1 fault at least significant 8 bits in a share of g[i]: In this case, random
bits in between 1 to 8 gets faulted to 1 if its value is 0. If the j-th bit is flipped from
0 to 1, then 2j−1 gets added with g[i] after the fault. As we are introducing fault at
a random share, the maximum added term to g[i], that can occur from stuck-at-1
fault at least significant 8 bits in a share of g[i], is (1+2+4+ ···+128) = 255. This
happens when all of the 8 least significant bits in a share are 0, and all of them flip
to 1. So the resulting value addition with g[i] is 255.

• stuck-at-0 fault at least significant 8 bits in a share of g[i]: Here, random bits
3Note that all these analyses are for Kyber512 and the probability and ranges will slightly vary for other

security versions of Kyber. However, the overall pattern remains the same thanks to the bell pattern of
the distribution.
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in between 1 to 8 get changed from 1 to 0. If the j-th bit is faulted from 1 to 0, then
2j−1 gets subtracted from g[i] after the flip (as we are introducing fault at a masking
share). So, the maximum subtracted term, that can occur from stuck-at-0 fault at
least significant 8 bits in a share of g[i], is (1+2+4+···+128)=255.

• bit-flip fault at least significant 8 bits in a share of g[i]: In this case, random
bits in between 1 to 8 get flipped from either 0 to 1 or 1 to 0. If the j-th bit is flipped from
0 to 1, then 2j−1 gets added with g[i] after the flip, and if the j-th bit is flipped from 1 to
0, then 2j−1 gets subtracted from g[i] after the flip. So, the maximum added term that
can occur in this case is 255, as well as it is the maximum subtracted term that can occur.

Let us first consider the scenario when the message bit m[i] associated with g[i] is 1. The
decryption failure happens when we can change g[i] to some values that decode to 1, and we
want to do it with 8-bit fault models described before. This can indeed happen for g[i]=8191 or
values closer to it if we add 255 with it. However, the least possible value for which this would be
feasible is 7937, which occurs with a very low probability. If we consider values from the higher
probability range, such as (6944, 7776) (happens with probability 1− 1

226 ), the chances that
it will go to the ranges where the message value is 0 by adding (resp, subtracting) 255 is zero.
In other words, the probability of changing a message value from 1 to 0 with an 8-bit fault is
definitely< 1

226 , which we consider as quite low in terms of physical attacks. This is illustrated
in Table. 4. In conclusion, we point out that with multi-bit faults at LSB positions up to 8 bits,
it is highly improbable to change the value of the message bit. In other words, the faults at lower
order bits never reach the 12/13th bit and, therefore, do not cause noise in our observations.

It is worth mentioning that the probability of fault propagation to the message bit indeed
increases if we consider multi-bit faults up to 9th bits. However, in simulation, we observed
that the probability of such propagation is still low (e.g. no decryption failure for up to 9th-bit
injection even if we simulate for 1 million cases). For faults up to 10/11 bits, the probability is
significantly high for random bit-flip faults (nearly 50%), but lower for stuck-at faults (nearly
30%). The 11th bit is our signal and therefore, we always want a single bit fault individually
occurring there. This also happens with some probability and in the experimental section, we
show that it is indeed possible to increase this probability by careful adjustment of fault param-
eters. Finally, for 12th and 13th bits, the fault happens with 50% probability and carries no in-
formation. The takeaway of this section, therefore, is we have to carefully avoid injecting faults
in these MSB bits and keep the width of multi-bit faults low. Interestingly, most of the single-
bit faults, even while occurring at random locations other than the 11/12/13th bit, never prop-
agate. Overall, we see that the fault models can be significantly relaxed for our case, and even
with a few single bit stuck-at faults hitting the 11th bit, we can perform the desired fault propa-
gation. There are many situations where the probability of noise is low (or, in fact, zero), and if
the fault model can be tuned for any one of those situations, the attack would work seamlessly.

Table 4: The effect of stuck-at-1, stuck-at-0, and bit-flip fault at the least significant
8 bits of g[i]

Before the fault injection After the fault injection

g[i] g∗[i]Fault model Message
m[i] Min Max Min Max

Message
m∗[i]

Approximate
probability of the

fault-induced
decryption failure

stuck-at-1 6944 8031 1
stuck-at-0 6689 7776 1
bit-flip

1 6944 7776
6689 8031 1

1
226

5 Experiments
In this section, we validate the attack on Kyber in simulation and also through practical
fault injections. We begin with simulating the ideal scenario, i.e. injecting stuck-at-1 at
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the 11th bit of an arithmetic share of g[i] for every execution of the decapsulation algorithm.
The outcomes are then fed to the BP algorithm to recover the secret key. The simulated
experiment helps us to find the right parameter settings for the BP algorithm. Next, we
move to our practical setup with EM-based fault injections on a software implementation.
We further tune the BP algorithm to perform key recovery from these practical fault cases.

5.1 Noise Removal from Inequalities
Given a fault injected in the masked decapsulation algorithm with a ciphertext C, the
decryption failure provides the information that g[i](11) =1. The decryption success indicates
that g[i](11) =0. The fault must be active in both cases. However, in a single execution with
C, it might happen that we observe successful decryption even though g[i](11) = 1 due to
the fact that the fault is not activated. Note that fault activation happens with probability
1
2 since we fault the masked values. In order to remove the uncertainty (which results in
wrong information and is interpreted as noise in the BP algorithm) due to probabilistic fault
activation, our strategy is to execute the decapsulation of C multiple times (of course, with
fault injection). In our injection campaign, we repeat C, β times until we see a decryption
failure for it. In case no decryption failure is observed after β executions, we decide g[i](11) =0.
Once we see a decryption failure, we stop the execution with C, conclude g[i](11) =1, and
move to the next ciphertext.

In our simulation, we begin with β=20. This is an empirically chosen value. However, we
checked (through simulation) that the probability of getting a wrong decision about the value
of g[i](11) is negligible for this choice of β. Moreover, as mentioned before, the probability
of g[i](11) =1 is significantly higher (99.3%) than g[i](11) =0, by the nature of the decryption
noise distribution. A result of such bias in the distribution is that we get a very low number of
decryption “success” cases compared to the decryption “failure” cases. Since we stop execu-
tion for a givenC upon seeing a decryption failure, the average number of repetitions we need is
quite low compared toβ. Empirically, we observed that, on average, we need to repeat our fault
injection 2.67 times for each ciphertext (We tried with 100K ciphertext, and the total fault re-
quired there was 2.67K). The parameter setting for the ideal simulation is presented in Table 5.

Table 5: The parameter settings of the BP algorithm for recovering the whole secret key
Fault model Required inequalities Different ciphertexts Repetition

(β) Required Faults

Simulated ideal
fault model 30,000 60,000 20 160,719

Practical fault
model 35,000 70,000 180 1,857,294

5.2 Configuring and Running the BP Algorithm
As mentioned in Section 3.4 we have utilized the inequality solver proposed by [Del22]. In our
stuck-at-1 fault injection attack at g[i](11), we are only dealing with the inequalities that are
generated from the message bit m[i]=1. This follows from the Lemmas in Section 3.1, which
says that the fault propagates to the 13th bit only when the 12th bit is 1. Since for Kyber,
both the 12th and 13th bit are the same message bit, this means that the message bit must be
1. The corresponding inequalities for decryption success and failures are given in Equation 7
and Equation 6, respectively, in Section 3.4. However, due to such a highly unbalanced value
distribution for g[i](11), the BP solver might end up having a negligible number of inequalities
corresponding to the correct cases compared to the faulty cases. The ratio is originally 0.7:
99.3, which improves to 3:97 by applying a filtering strategy described in the next paragraph.
This ratio, however, hinders the BP solving, making it converge to a wrong value quite often.
To stabilize this, we introduce a strategy called sample rejection. More precisely, we randomly
reject 50% of the inequalities among the total inequalities generated, but these rejected
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inequalities are only chosen from the decryption failure cases. This improves the ratio between
correct and faulty cases, making it 7:93. We found that this ratio is sufficient for consistently
solving the system for several random secret key choices. With this new balanced system
of inequalities, we need roughly 30k inequalities to recover the whole secret key (shown in
Figure 11), and to obtain these 30k inequalities (i.e. 60k different ciphertexts, as we reject 50%
of the total inequalities and all are generated from decryption failures), we require to continue
the fault simulation 160k times (= repetitions required for noise removal × ciphertexts
required to enable 50% sample rejection = 2.67×60k). We present this result in Table 5.

Another important parameter that controls the BP solving is the filtering strategy orig-
inally presented in [Del22]. Filtering basically chooses the smallest value among the message
coefficients (i.e. g[i]) for fault injection in order to assist the BP algorithm. Also, in our case,
it has some impact on improving the ratio of correct and faulty executions, as mentioned
in the last paragraph. While directly implementing this strategy can be costly from the
implementation perspective of the injection setup (as we need to change the fault location for
every ciphertext), this is functionally similar to the following strategy: fixed the fault location
at some coefficient index i, and then choose a ciphertext having the minimum value for this
coefficient (among several randomly generated ciphertexts) for fault injection. This strategy,
however, increases our simulation time, as we now need to generate several encapsulations to
enable the minimum value selection. Owing to the similarity of the original filtering strategy,
we, therefore, used the original filtering already implemented in the BP code. However, we
take the minimum value for which the message bit is also 1. Also, it is worth mentioning that
during the practical attack, we keep the fault location fixed, mimicking the second strategy.

5.3 Practical Setup
After establishing the simulated evidence for the attack, we now move to the practical fault
injection experiments. For our experiments, we target the reference first-order masked
implementation of the considered scheme built for the ARM Cortex-M4 family of microcon-
trollers [HKL+22]. We ported the reference implementation to the STM32F4-DISCOVERY
board (DUT) housing the STM32F407 – an ARM Cortex-M4 microcontroller running at
a clock frequency of 24 MHz. For the compilation of the reference implementation, we
have used arm-none-eabi-gcc version 10.3.1 with compiler flags -O3 -std=gnu99 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16 . We have used a generic USB 2.0
to TTL converter for USART communication with the DUT. EM Fault Injection (EMFI)
was utilized to inject faults into the target device.

The most formidable challenge in executing the aforementioned attack is inducing the
faults accurately at desired locations. We have established an injection setup to address this
challenge, illustrated in Figure 9. This setup consists of several components, including an
arbitrary waveform generator (Keysight 81160A), a constant-gain power amplifier (Teseq
CBA 400M-260), a high-frequency near field H-probe (Rigol Near-field Probe 30MHz-3GHz),
and an XYZ table (Thorlabs SMC100). Figure 10 shows the position of the near-field EM
probe on the DUT.

After being triggered by a signal from the evaluation board hosting the target implemen-
tation, the waveform generator produces a high-frequency pulse train. Following this, the
amplifier boosts the intensity of this pulse train, and the H-probe generates a magnetic field
above the target. It’s important to highlight that the pulse train’s amplitude, frequency,
and burst count can be customized to meet particular needs. It was observed that by
manipulating the position of the probe over the target using the XYZ table, with some
necessary adjustments to the pulse parameters, fault can be induced in specific bits of the
target register. However, this positioning process must rely on a trial-and-error approach
due to the absence of internal register visibility. We have also utilized an oscilloscope to
observe the execution timing of the target instruction so that the pulse delays can be adjusted
accordingly and the trial-and-error can take the least amount of time. Initially, we analyzed
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Figure 9: Schematic of the attack platform

Figure 10: The position of the probe on the STM32F4 Discovery board

the target object file to get an insight into the occurrence of a particular instruction where
we can inject the desired fault. In the masked_poly_tomsg() function of the reference
implementation, we have targeted a specific arithmetic instruction to induce the fault in
the desired register, which corresponds to line 3 of Algorithm 3.

5.4 Attack with Practical Faults
We do not expect the practically injected faults to exactly follow the ideal distribution (i.e.
stuck-at-1 fault at 11th bit with 100% probability). It is more judicious to assume that
the desired fault (stuck-at-1 at g[i](11)) will occur with a certain probability p. If p is
significant, then we can expect some signal (the desired fault event) to construct useful
inequalities. Injections at undesired locations cause noise. However, we can handle such
noise quite well, thanks to the two observations made in this paper: 1) A significant part
of the induced faults on a share of g[i] does not propagate to the 12th or the 13th bit (ref.
Section 4), and 2) The uncertainty (noise) due to undesired injections can be largely removed
through repeated execution of the same ciphertext (Section 5.1). In Section 5.1, the second
observation was utilized to remove the uncertainty arising due to fault activation. However,
the same strategy can be utilized to remove the uncertainties for undesired fault locations.

We, therefore, follow the same strategy as before: Upon repeating injection several (β)
times for the same ciphertextC, if we see a decapsulation failure, we decide g[i]11 =1. If we do
not observe any decapsulation failure, g[i]11 =0. The choice of β is crucial here, as a very low
choice might lead to several wrong inequalities being added to the system. A very high choice,
on the other hand, may increase the attack time. We note that even after choosing a proper β,
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we may end up having some wrong equations. However, the BP algorithm inherently tolerates
some (low) noise. Therefore, it does not create an issue for us. The most obvious (albeit slow)
way or finding β is to do some trial-and-error. We did this for the first set of outcomes from
our practical setup with the same β=20 value chosen for the ideal simulation. This did not
work for obvious reasons. In order to speed up our experiments, we, therefore, extract the
fault model directly from the setup, assuming an offline profiling stage. Analyzing faults at
the target location, we observed that multi-bit faults were also induced, specifically towards
the LSB side of the target register. After tweaking the pulse and burst parameters from the
waveform generator, we were able to obtain 10% single-bit stuck-at-1 faults at the 11th bit and
90% random single-bit/multi-bit stuck-at-1 faults, mostly concentrated at the bit positions
1−8 (the LSB is at position 1). The pulse parameters are presented in Table 6. From this,
we empirically estimate the value of β as 180. The interpretation is that if we repeat the fault
injection β times for the decapsulation of the same ciphertext, then the probability of the fault
getting activated at the 11th bit position at least once is significant. Interestingly, if the faults
happen at any of the 1−8 LSB positions, it does not propagate to the message bit (13th bit of
g[i])4. Therefore, with this observed fault model, we can ensure that if a decryption failure is
observed, it is always due to the propagation of our desired fault. The g[i](11) =0 case, though,
may have noise. However, β = 180 successfully removes this noise for most of the cases,
enabling key recovery. We notice that, on average, for a single ciphertext, we need to repeat
the fault injection 26.53 times only. As shown in Figure 11, we could recover the secret key
with 35k inequalities even with this fault model. To obtain 35k different balanced inequalities,
we are required to continue the fault simulation 1,857k times (= repetitions required for
noise removal × ciphertexts required to enable 50% sample rejection = 26.53×70k). We
present this result in Table 5. It is interesting to observe that the number of inequalities
is roughly the same for the ideal and the practical case. This is mainly attributed to the
fault model we observe and the potentially removable noise by the structure of the attack.

Table 6: Pulse parameters
Pulse Amplitude Pulse Frequency Burst Count

-5.6 dBm 200 MHz 2

6 Discussion on Potential Countermeasures
FA countermeasures use some form of redundant computation to detect/correct the fault
[PM18]. Considering the previous attacks on the LWE-based KEMs, many of them can be
prevented using this strategy. For example, consider the attack due to [PP21], which skips a
subtraction operation. Duplication of the subtraction followed by a check can prevent such
attacks. Quite similarly, the attack due to [PP21] can be prevented by duplicating different
parts of the re-encryption module as the fault is mainly injected at that part. The reason why
duplication works for these cases is that the attacks strongly rely on the Decode or the final
check operation of the FO transform. Unless the fault reaches these operations, it cannot be
exploited. Therefore, preventing the fault from reaching these operations can stop the attack.

In this regard, the proposed attack has some interesting properties. Although we still tar-
get the Decode, our injection happens much later than the fault location of the attack in [PP21].
In some sense, we target the penultimate step of the decoding operation itself rather than
sending some faulty value to decode as in [HPP21, Del22]. The most important fact is that if
duplication and detection are used to detect our fault injection, that would result in the same
information leakage that we utilize. Error correction might be somewhat useful, however, as
shown in recent work [SBJ+21], error correction too leaks if the FA is combined with SCA. We

4This is the reason why we mainly describe the 8-bit fault case in Section 4.
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Figure 11: Number of inequalities required to recover partial or entire secret key for Kyber-512
with our simulated and practical fault model. Here, success probability indicates the number
of coefficients recovered out of 1024(= 512+512) coefficients of the secret key. (Success
probability equal to 1 means full secret key recovery.) The green coloured curve represents
the simulated fault model, and the red coloured line represents the practical fault model.

anticipate that recent combined-attack secure gadgets [FGM+23] can be a proper direction to
prevent this attack. However, such gadgets are based on Boolean or polynomial masking, while
we target arithmetic masking. Shuffling can be useful in this context, but, again, the adver-
sary can perform a combined attack to extract the permutation used for shuffling and thereby
remove the noise induced by it. Note that, we already consider masking (even higher-order)
for our target implementations. So, extracting only the shuffling permutation would not result
in a successful SCA attack. But such extraction would definitely help our FA. With all these
observations, we leave a sound countermeasure development as an interesting future work.

7 Conclusions
In this work, we propose a new FA on the SCA-secure masked decapsulation algorithm for
generic LWE-based KEMs and elaborate the attack for Kyber. Our attack exploits the
A2B component used in the masked implementations and appears due to the presence of
masking. So, it can be considered as a vulnerability introduced from the algorithmic changes
introduced due to masking. The attack results due to fault propagation through the A2B
component and leaks a secret-dependent noise bit by unmasking it due to faults. Eventually,
we show a practical validation of the attack on ARM Cortex-M4 microcontrollers using
EMFI. A direct consequence of the attack is that one must be careful while designing masking
algorithms. One also has to be careful while introducing fault countermeasures to prevent
this attack, as we anticipate that state-of-the-art duplication-based countermeasures would
not be sufficient. Overall, our work encourages more study in this direction, in general, to
eventually construct truly secure implementations.
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