
Privacy-preserving Cosine Similarity Computation with
Malicious Security Applied to Biometric Authentication

Nan Cheng

nan.cheng@unisg.ch

University of St. Gallen

Switzerland

Melek Önen

melek.onen@eurecom.fr

EURECOM

France

Aikaterini Mitrokotsa

aikaterini.mitrokotsa@unisg.ch

University of St. Gallen

Switzerland

Oubaïda Chouchane

oubaida.chouchane@eurecom.fr

EURECOM

France

Massimiliano Todisco

massimiliano.todisco@eurecom.fr

EURECOM

France

Alberto Ibarrondo

alberto.ibarrondo@idemia.com

IDEMIA

France

ABSTRACT
Computing Δ(𝑥,𝑦) ≥ 𝜏 , the distance between two vectors 𝑥 and 𝑦
chained with a comparison to a predefined public threshold 𝜏 , is an

essential functionality that is extensively used in privacy-sensitive

applications such as biometric authentication and identification, ma-

chine learning algorithms (e.g., linear regression, k-nearest neigh-
bors etc.) or typo-tolerant password-based authentication. Cosine

similarity is one of the most popular distance metrics employed in

these settings. In this paper, we investigate the privacy-preserving

computation of cosine similarity in a two-party distributed set-

ting i.e., where a client outsources the distance calculation to two

servers, while revealing only the result of the comparison to the

service provider. We propose two two-party computation (2PC)

protocols of cosine similarity followed by comparison to a public

threshold, one in the semi-honest and one in the malicious setting.

Our protocols combine additive secret sharing with function secret

sharing, saving one communication round by employing a new

building block to compute the composition of a bit and a binary

function 𝑓 , thus requiring only two communication rounds under

a strong threat model. We evaluate our protocols in the setting of

biometric authentication using voice biometrics. Our results show

that not only are the proposed protocols efficient, but they also

maintain the same accuracy as the plain-text systems.

KEYWORDS
privacy-preservation, malicious security, function secret sharing,

cosine similarity

1 INTRODUCTION
Computing distance metrics of sensitive data and comparing to

a predefined public threshold in a privacy-preserving way is an

indispensable building block for a wide range of applications in-

cluding privacy-preserving biometric authentication, 1:K biometric

identification, privacy-preserving machine learning (e.g., linear re-
gression, matrix multiplication) as well as typo-tolerant (fuzzy)

password based authentication. This thresholded distance computa-

tion is very challenging to evaluate on sensitive data when multiple

untrusted parties are involved in the process.

Although computing distance metrics in a privacy-preserving

way has been widely covered in the literature, protecting non-linear

,
.

computations such as the comparison to a predefined threshold is

not easy to achieve in an efficient way. In this paper, we focus on

the privacy-preserving computation of cosine similarity between

two vectors, one of the most commonly employed distance metrics,

subsequently comparing the computed result to a public value 𝜏

acting as threshold. We propose two novel privacy-preserving pro-

tocols to realize this thresholded distance functionality where the

computation is outsourced to two computing servers in a two-party

computation (2PC) scenario. We leverage recent advances of Func-

tion Secret Sharing (FSS) [10, 12] alongside additive secret sharing

to achieve strong privacy guarantees for both protocols, since the

only information revealed is the result of the comparison (and this

only to the service provider). Our protocols are proven secure in the

semi-honest setting and in the malicious setting respectively. Cru-

cially, the proposed protocols rely on a new building block named

CondEval, which can be employed to compute the composition

of an input bit 𝑠 and a binary function 𝑓 (evaluated via FSS) i.e.,
𝑠 ◦ 𝑓 (𝑥) for an input value 𝑥 . This building block is proven secure

under both the semi-honest and the malicious models, and may be

of independent interest for generic 2PC secure computation.

We apply and evaluate our protocols in the biometric authentica-

tion settingwith voice biometrics. Biometric authentication consists

of veryfing a the identty of a user by comparing a fresh compact

representation of the biometric trait with a pre-existing (claimed)

reference provided during the enrolment phase. The authentication

is granted or denied based on whether or not the obtained similarity

score is below a pre-fixed threshold. Although biometrics holds

significant promise as a convenient authentication method, pri-

vacy concerns have hindered public trust and created obstacles to

widespread adoption. For instance, in December 2021, the Flagstar

Bank data breach leaked sensitive data of 1.5 million customers

and forced the financial institution to pay 5.9 million Dollars in

out-of-court settlements
1
.

Furthermore, we provide a detailed experimental evaluation of

our proposed protocol by employing benchmark speech recogni-

tion datasets (i.e., VoxCeleb2). Our results show that the proposed

scheme is not only efficient requiring only two communication

rounds, but also maintains the same accuracy as the plain-text

systems while guaranteeing security under a strong threat model.

1
https://www.cpomagazine.com/cyber-security/flagstar-bank-data-breach-leaked-

sensitive-information-of-1-5-million-customers/

https://orcid.org/0000-0001-8208-9667

Table 1: Benchmark of theoretical costs on evaluating a scalar product and comparison to threshold between two vectors of l
n-bits integers

Work Type #Rounds Online Blocks Malicious Server

AriaNN [44]

2PC

SS: Arith, FSS
2(1+1)

SS Scalar product,

FSS Comparison
N

Boyle et. al [10]

2PC

SS: Arith, FSS
2(1+1)

SS Scalar product,

FSS IC gate
N

ABY [21]

2PC

SS: Boolean&Arith. GC
3(1+2+0)

SS scalar product,

Arith. to Yao conversion,

GC evaluation

N

ABY2.0 [40]

2PC

ΠSS: Boolean&Arith,GC
5(1+1+3)

ΠSS scalar product,

Arith. to Boolean conversion,

BitExtraction

N

CryptFlow [43]

2PC

SS: Arith, OT
5

Linear layer (1-dim weights),

dReLU
N

Falcon [53]

3PC

Replicated SS: Arith.
8(1+7)

MatMult with 1-dim matrices,

Private Compare
Y

Funshade [29]

2PC

ΠSS: Arithm., FSS
1

ΠSS scalar product,

FSS IC gate
N

Ours

2PC

SS: Arith., Boolean, FSS
2

SS scalar product

FSS IC gate
Y

Related Work. Several techniques based on advanced crypto-

graphic primitives like Fully Homomorphic Encryption (FHE) [24,

25], secure Multi-Party Computation (MPC) [26, 46, 54] and Func-

tional Encryption (FE) [1, 9], have been proposed in the literature

to address the privacy challenges for the computation of some dis-

tance measures (such as Hamming distance [35], cosine similarity)

followed by comparison with a public threshold. FHE solutions rely

on performing an arbitrary number of arithmetic operations (i.e.,
additions and multiplications) between ciphertexts, without inter-

mediate decryption. MPC-based techniques on the other hand in-

volve distributing data among non-colluding parties to collectively

compute a desired function over the private data. MPC protocols

cover two main security models: semi-honest or malicious models

depending on whether the involved parties follow the protocol or

deviate from it. FE approaches are based on a public-key encryption

scheme that enables authorized parties to evaluate specific linear

functions (e.g., inner products [3, 20, 49]) during ciphertext decryp-

tion. Efficient FE-based techniques are restricted to linear function

evaluations.

Privacy-preserving comparison: Although linear operations such

as scalar products are efficiently addressed by these techniques [28,

42, 47, 51], non-linear operations like comparisons to a public

threshold are still a challenge and are often inefficient for real-

time applications. Privacy-preserving comparison is possible with

FHE setting using computationally intensive polynomial approx-

imations [14, 30]. In contrast, many MPC-based solutions and

frameworks realize privacy-preserving comparison in various set-

tings [33, 43, 53]. Mixed protocols (i.e., protocols that combine the

use of arithmetic circuits with homomorphic encryption and/or

Boolean circuits) compute scalar products using arithmetic pro-

tocols and switch from arithmetic to binary circuits in order to

compute comparisons [21, 37, 40]. However, these frameworks

assume all parties to behave honestly, an often unrealistic assump-

tion for real-world applications. Veugen et al. [52] proposed a 2PC

framework that improves comparison computation in the SPDZ

protocol [17] which is a mixed protocol that takes into account the

presence of malicious parties. However, these proposed solutions

come with a notable drawback which is the intensive communica-

tion cost in terms of communication size and/or number of rounds.

Recently, Functional Secret Sharing (FSS)-based protocols have been

proposed to efficiently compute the comparison to a public thresh-

old operation [10, 12, 29, 45]. Nevertheless, the mentioned protocols

focus mainly on the semi-honest model and barely security against

malicious adversaries.

Privacy-preserving biometrics: Multiple initiatives have been pro-

posed in the literature to securely compute similarity distance and

comparison to a public threshold for biometric authentication ap-

plications. Boddeti [8] presented a privacy-preserving framework

for facial recognition based on FHE. The face dissimilarity score

is computed in the encrypted domain and consists of performing

scalar multiplications and scalar additions. In [38], the authors

made use of an FHE scheme to compute the Hamming distance in

the encrypted domain for iris authentication. The work proposed

in [41] makes use of FHE to privately compute the cosine similar-

ity for an Automatic Speaker Verification (ASV) system. However,

the authors focused solely on studying the similarity computation,

without carrying out the crucial step of comparing the result to the

threshold. They assumed that the decision score would be received

and decrypted by the client’s device, which could potentially create

a security vulnerability in the event of a malicious client attempting

to modify the score to gain unauthorized access. Kim et al. [32]
presented a fingerprint authentication system using FHE in which

fingerprint data is stored and processed in decrypted form. The

decision score is computed using the square of Euclidean distance

between two encrypted vectors. The threshold comparison is also

performed in the encrypted domain. Despite the potential shown by

FHE in the previously mentioned work, its utilization in real-world

circumstances is still restricted by the significant computational

overheads.

Additionally, MPC-based techniques have been successfully used

to protect sensitive data like face [4], iris [4, 23], and voice [39,

50]. Barni et al. [4] introduced a secure multi-modal biometric

authentication, that combines face and iris features, based on secure

two-party computation against one malicious party. The two non-

colluding parties compute the Hamming distance and the Euclidean

distance and later evaluate the comparison of the fused scores with

a public threshold. The work in [23] proposes a secure two-party

computation solution for an iris verification that is secure in the

semi-honest adversary model. The Hamming distance along with

the threshold comparison is computed securely.

Nautsch et al. [39] provided the first computationally feasible

privacy-preserving ASV system with cohort score normalization

based on 2PC. However, this work only considers the case where

the parties/servers are honest-but-curious, i.e., the parties will not
deviate from the described protocol, nevertheless, they can try

to collect extra information about the input of the other party.

In [50], Treiber et al. proposed a 2PC-based ASV system secure

against a malicious client device that can change the score to get

authenticated by the service provider. However, the 2PC servers

are assumed to be honest-but-curious and one party reconstructs

the decision.

Our Contributions. In this work, we propose a novel two-party
protocol for secure computation of cosine similarity followed by

comparison to a predefined threshold. Based on secure 2PC and FSS,

we prove two variants of our protocol secure in the semi-honest

and malicious settings respectively. Table 1 provides a detailed

comparison of our solution with prior work. Contrary to prior

work that assumes honest normalisation performed by the client,

we require the client to submit a non-normalised reference template

and we incorporate a mechanism to check that the secret sharing of

the fresh (as well as the reference) template has been secret shared

correctly. Falcon is the only work that considers a malicious server.

However, it is a symmetric 3PC solution and the maliciousness is

introduced thanks to Replicated Secret Sharing (RSS).

The main contributions of our paper are:

• We propose a 2PC framework for privacy-preserving co-

sine similarity computation and comparison to a pre-defined

threshold. We propose two variants: one protocol for the

semi-honest setting and one for the malicious setting. We

provide robustness guarantees, since the malicious protocol

allows us to control the malicious behaviour of one of the

servers. In both protocols, we consider that the normalisation

is performed by the servers. Our protocol for the malicious

setting relies on authenticated 2PC secret sharing as well as

recent advances of FSS.

• We introduce a new building block we call as CondEval that
can be employed to compute the composition of an input bit

and a binary function 𝑓 (evaluated via FSS) i.e., 𝑠 ◦ 𝑓 (𝑥) for an
input value 𝑥 . This building block is provably secure under

both the semi-honest and malicious model. This solution is

of independent interest and can be employed in a general

2PC secure computation.

• We provide a detailed security analysis of the introduced pro-

tocols as well as the new building block CondEval described
above.

• We evaluate the proposed protocols experimentally, employ-

ing voice biometrics as a use case. Our experiments show

that the proposed protocols are very efficient, requiring only

two communication rounds while maintaining the same ac-

curacy as the plain-text systems.

The paper is organised as follows. Section 2 describes the problem

statement, introducing the application scenario alongside the threat

model, and outlining a technical overview of our solution. In Section

3, we revisit the cryptographic 2PC primitives we rely on, namely

additive secret sharing and function secret sharing. In Section 4, we

introduce CondEval, a building block that allows the composition

of an input bit and a binary function 𝑓 evaluated via FSS, and

prove its security in both the semi-honest and malicious settings.

Section 5 covers our two novel protocols for the privacy-preserving

computation of thresholded cosine similarity for both the semi-

honest and the malicious settings as well as their corresponding

security analysis. Section 6 presents our experimental evaluation

and results, concluding the paper in Section 7.

2 PROBLEM STATEMENT
This section briefly introduces notations, the application scenario

and threat model considered as well as the technical overview of our

approach to compute cosine similarity and compare to a threshold

in a privacy-preserving way.

2.1 Notations
We use the following notations throughout the paper.

𝜀 empty string.

[𝑛] set of integers {1, 2, . . . , 𝑛} for a positive integer 𝑛.
𝑠 [𝑖] 𝑖th leftmost bit of a binary string 𝑠 , where 𝑖 ≤ |𝑠 |.
𝑠 [𝑖 .. 𝑗] substring {𝑠 [𝑖], 𝑠 [𝑖 + 1], . . . , 𝑠 [𝑗]} of binary string 𝑠 .

𝑎𝑖 : 𝑖
th
element of a vector 𝑎 where 𝑖 < |𝑎|.

IP(𝑥,𝑦) Inner product of two vectors 𝑥,𝑦.
Prod(𝑥,𝑦) Element-wise product of two vectors 𝑥,𝑦.
Shift(𝑥, 𝜌, ℓ) Outputs an encoding in Z

2
ℓ of left/right logical shift-

ing |𝜌 | bits over 𝑥 respectively if 𝜌 < 0 or 𝜌 > 0.

Sign(𝑥) Outputs 1 if 𝑥 ≥ 0 and 0 otherwise.

(𝑀𝑏 , 𝜀) ← FOT (𝑏, {𝑀0, 𝑀1}) Given a pair of messages {𝑀0, 𝑀1}
from a sender and a choice bit 𝑏 ∈ {0, 1} from a receiver, it

returns𝑀𝑏 to the receiver and 𝜀 to the sender.

𝑟 ← Frand (1𝜆, 𝑛,U𝑁) Given a security parameter 𝜆 and a posi-

tive integer 𝑛, it outputs a random vector 𝑟 ∈ U𝑛
𝑁
.

FPermu (𝜋, {𝑎0, 𝑎1}) Given a list {𝑎0, 𝑎1} and a permutation bit

𝜋 ∈ {0, 1}, it outputs {𝑎0, 𝑎1} if 𝜋 = 0 and {𝑎1, 𝑎0} otherwise.
[𝑥]B Boolean secret sharing of 𝑥 ∈ Z2.

[𝑥]A Arithmetic/Additive secret sharing of 𝑥 ∈ U𝑁 .

Figure 1: Privacy-preserving biometric authentication system based on cosine similarity in the 2PC setting.

⟨𝑥⟩A Optimized secret sharing of 𝑥 .

[𝑥]A
𝑏
, [𝑥]B

𝑏
, ⟨𝑥⟩A

𝑏
Share of 𝑥 held by party 𝑏.

2.2 Application Scenario
Let us examine a scenario in which a client C requests access to a

service, such as an online bank, that uses a biometric-based authen-

tication system. During the authentication process, the client’s fresh

biometric template is compared to the stored reference biometric

template using the cosine similarity distance, and the authentica-

tion decision is taken based on a pre-determined threshold. This

application scenario is depicted in Figure 1.

For privacy reasons, the client does not want to disclose her

biometric data in clear to any party, considering their sensitive

nature and the high risk of a data breach in a centralised database.

We therefore consider two additional non-colluding servers, S0 and

S1, in charge of collecting and privately storing the secret shares of

the clients’ reference templates upon their registration during the

enrollment phase, performing the biometric verification process

(i.e., matching of the templates) and disclosing the decision output

to the service provider B (i.e., the bank).

2.3 Threat Model
In this paper, we assume that the client has already registered

and submitted her biometric data (e.g., voice reference template)

in a privacy-preserving manner to the two non-colluding servers.

Then, in the authentication process the comparison between the

fresh biometric template and the registered reference template is

performed by the two servers. Note that neither any server nor

the service provider have access to any biometric templates in

cleartext. We also assume that the protocol is running through

secure channels providing security against any external adversary

that can compromise the transmission.

In the considered setting, we have four players playing three

different roles. We assume a semi-honest dealer (e.g., the central
bank B) distributing reliable correlated randomness to two com-

puting servers in the setup phase. We consider that the client may

act maliciously i.e., may attempt to impersonate a legitimate user

and deduce information for the corresponding templates. Thus, we

require the client to submit a non-normalised reference template

and we incorporate a mechanism to check that the secret sharing

of the fresh (as well as the reference) template have been secret

shared correctly. Finally, we consider two non-colluding servers

that tolerate one corruption from an active adversary deviating

from the correct execution of the protocol (i.e., perform wrong

computation in the matching process between the fresh and stored

template and/or try to infer information about the fresh and/or

stored biometric templates). We highlight that if both servers de-

viate from the protocol, they don’t obtain any useful information

related to the client’s data as long as they don’t collude.

2.4 Privacy-preserving cosine similarity -
Technical Overview

Let 𝑥 and 𝑦 of dimension 𝑛 denote the fresh template received from

the user requesting to authenticate and the reference template sub-

mitted upon enrollment, respectively. The cosine similarity metric

would then computed as:

𝑐𝑜𝑠 (𝑥,𝑦) = IP(𝑥,𝑦)
∥𝑥∥ · ∥𝑦∥ =

∑𝑛
𝑖=1

𝑥𝑖 · 𝑦𝑖√︃∑𝑛
𝑖=1

𝑥2

𝑖
·
√︃∑𝑛

𝑖=1
𝑦2

𝑖

(1)

To authenticate the owner of 𝑥 against the reference 𝑦, the
resulting score of 𝑐𝑜𝑠 (𝑥,𝑦) would then compared with a public

threshold 𝜏 ∈ [−1, 1]. If the similarity score is greater than or equal

to 𝜏 , then the user is successfully authenticated, otherwise, the

authentication fails. Overall, we can define the biometric authenti-

cation functionality as:

FCosAuth (𝑥,𝑦, 𝜏) = Sign(𝑐𝑜𝑠 (𝑥,𝑦) − 𝜏) (2)

In order to design a privacy-preserving protocol for this function-

ality, we must define privacy-preserving protocols to realize all to

the underlying operations: addition, multiplication, inner product,

division, square-root and sign extraction. Arithmetic operators can

be straightforwardly instantiated using additive secret sharing [5].

In contrast, the square root is relatively complex to realize, thus

we choose instead to remove it by squaring the inputs to the Sign
function with additional terms to maintain the original signs. The

computation of FCosAuth = 𝑐 would proceed as follows:

• If 𝜏 > 0, we compute 𝑐 = 𝑐1 ∧ 𝑐2 where

𝑐1 = Sign([IP(𝑥,𝑦)]A)

𝑐2 = Sign([1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)]A)
(3)

• If 𝜏 = 0, we compute:

𝑐 = Sign(IP(𝑥,𝑦))
• Otherwise if 𝜏 < 0, we compute 𝑐 = 𝑐1 ∨ 𝑐2 where

𝑐1 = Sign([IP(𝑥,𝑦)]A)

𝑐2 = Sign([IP(𝑥,𝑥) · IP(𝑦,𝑦) − 1/𝜏2 · IP(𝑥,𝑦)2]A)
One can easily verify the correctness of this definition. For the

remnant of this paper, w.l.o.g., we assume 𝜏 > 0, and define the

computation pipeline defined in Equation 3 as a circuit C. When

naively implemented with a traditional 2PC protocols and FSS, this

circuit requires three communication rounds: one round to compute

𝑐1, one for 𝑐2 and one to compute 𝑐 = 𝑐1 ∧ 𝑐2.

We enhance the naïve solution by decreasing the number of

communication rounds to 2. To achieve this, we propose a new

2PC protocol named CondEval that combines 2PC authenticated

secret sharing and recent advances of FSS in order to compute the

composition of a Sign functionwith an∧ or∨ operation. Leveraging
new building block, the computation of 𝑐 = 𝑐1∧𝑐2 can be performed

at the same time as the computation of 𝑐2 performed through FSS,

saving up a communication round.

We prove the security of this new CondEval block, as well as
that of the complete privacy-preserving protocol realizing FCosAuth,
under the semi-honest and the malicious models admitting one cor-

ruption out of the two computing servers. For maliciously-secure

variants of our protocols we employ homomorphic MACs when

using additive secret shares (as in the SPDZ protocol [17]). Addi-

tionally, to provide active security in the FSS gates we resort to the

parallel execution of multiple instances of these gates with inde-

pendent FSS keys. A subset of these instances, chosen at FSS key

generation and unknown to the computing servers, act as "trap"

instances, allowing the detection of malicious behavior in a single

computing server.

The full maliciously-secure protocol, combining arithmetic secret

sharing with FSS, consists of the following four stages:

(1) Setup: Generation of relevant correlated randomness;

(2) Input: Both the client and B input their secret vectors 𝑥,𝑦
separately;

(3) Evaluation: The two servers:

• First round: Compute a Boolean sharing [𝑐1]B;

• Second round: Compute the final Boolean sharing [𝑐]B
= [𝑐1]B ◦ 𝑓 (𝑥) (or (𝑐)𝑚 along with a proof [𝜎]A for the

computation in the malicious setting);

(4) Reveal: The service providerB builds 𝑐 in cleartext (or verifies

(𝑐)𝑚 and check [𝜎]A in the malicious setting).

3 PRELIMINARIES
In this section, we describe notions used in the rest of the paper

i.e., two party secure computations, secure truncation and function

secret sharing.

3.1 Two-Party Secure Computation
Secure two-party computation allows two non-colluding parties

𝑃0 and 𝑃1 to compute a function 𝑓 on their private inputs (e.g., 𝑥
and 𝑦) without revealing any information beyond the final value of

𝑓 (𝑥,𝑦). 2PC protocols are based on either: (i) Secret Sharing (SS)

techniques i.e., arithmetic SS, like additive SS [5] and replicated

SS [2], or Boolean SS like GMW [36]; or (ii) Garbled Circuits (CG)

like Yao’s GCs [55], BMR [6].

Optimized Additive SS. In this work, we make use of an opti-

mized additive SS with function dependent pre-processing as our

building block [7]. In the setup phase, correlated random offset

shares are generated and computed for input wires and output

wires of each gate to the function circuit to be evaluated. These

correlated random shares are input-independent, i.e., they do not

depend on the private input of the parties and can be executed at

any time before the online/data-dependent phase where the actual

function 𝑓 is evaluated. In the evaluation phase, efficient online

secure computation is performed. We denote by ⟨𝑥⟩A the optimized

additive SS of a secret 𝑥 in a two-party setting of S0, S1, where

∀𝑏 ∈ {0, 1}, S𝑏 holds partial shares

⟨𝑥⟩A
𝑏

: (𝛿𝑥 , [𝑟𝑥]A𝑏)

in which 𝛿𝑥 = 𝑥 + 𝑟𝑥 , [𝑟𝑥]A is the associated random offset of

the secret value 𝑥 . One share alone does not disclose any infor-

mation about 𝑥 but when summed together, they reconstruct it

(𝑥 = 𝛿𝑥 − [𝑟𝑥]A
0
− [𝑟𝑥]A

1
). The parties interact with each other to

compute any desired function from the input secret shares. We

denote by FReveal ([𝑥]A) the functionality that inputs an arithmetic

secret sharing of 𝑥 from two servers and outputs 𝑥 . Given ⟨𝑥⟩A and

⟨𝑦⟩A, we demonstrate how addition and multiplication gates are

performed in the following.

Addition. It requires no communication between the two parties.

The two parties simply locally add the shares they hold. More

precisely, each party 𝑏 ∈ {0, 1} computes:

⟨𝑥 + 𝑦⟩A
𝑏
= (𝛿𝑥 + 𝛿𝑦, [𝑟𝑥]A𝑏 + [𝑟𝑦]

A
𝑏
)

Multiplication. It requires interaction between the two parties

and relies on additional input-independent but function-dependent

random pre-computed secret shares named Beaver’s triples [6]. To

compute [𝑧]A where 𝑧 = 𝑥𝑦, with the corresponding Beaver’s triples

[𝑟𝑥]A,[𝑟𝑥]A, [𝑟𝑥𝑟𝑦]A generated in the setup phase, the parties are

able to locally compute the additive secret shares of 𝑧. i.e., ∀𝑏 ∈
{0, 1}, S𝑏 holds {⟨𝑥⟩A

𝑏
= (𝛿𝑥 , [𝑟𝑥]A𝑏), ⟨𝑦⟩

A
𝑏

= (𝛿𝑦, [𝑟𝑦]A𝑏), [𝑟𝑥𝑟𝑦]
A
𝑏
}

FUNCTIONALITY [𝜍]A ← FMacVryGen ([Δ]A, 𝐿)
Players: S0, S1.

Input: An arithmetic secret sharing of the MAC authentication

key [Δ]A, along with a list 𝐿 = (𝑥𝑖 , [Δ · 𝑥𝑖]A, 𝑟𝑖)𝑖∈[𝑛] , in which

∀𝑖 ∈ [𝑛] that 𝑥𝑖 , 𝑟𝑖 is public and [Δ ·𝑥𝑖]A is the arithmetic secret

sharing over Δ · 𝑥𝑖 .
Output: [𝜍]A.
1: for 𝑏 = 0 to 1 do
2: [𝜍]A

𝑏
← 0

3: for 𝑖 = 1 to 𝑛 do
4: [𝜍]A

𝑏
← [𝜍]A

𝑏
+ 𝑟𝑖 · ([Δ]A𝑏 · 𝑥𝑖 − [Δ · 𝑥𝑖]

A
𝑏
)

5: Ouput [𝜍]A.

Figure 2: Homomorphic MAC Verification proof generation
in the malicious setting.

in which 𝛿𝑥 = 𝑥 + 𝑟𝑥 , 𝛿𝑦 = 𝑦 + 𝑟𝑦 . Then, 𝑆𝑏 computes:

[𝑧]A
𝑏
= 𝑏 · 𝛿𝑥𝛿𝑦 − 𝛿𝑥 [𝑟𝑥]A𝑏 − 𝛿𝑦 [𝑟𝑦]

A
𝑏
+ [𝑟𝑥𝑟𝑦]A𝑏 . (4)

However, to conform the multiplication output to an optimized

secret sharing format, the parties locally compute [𝑧 + 𝑟𝑧]A and

reveal 𝑧+𝑟𝑧 in one round, where 𝑟𝑧 is a pre-generated random output

wire offset in the setup phase. Thus, obtaining ⟨𝑧⟩A = (𝑧+𝑟𝑧 , [𝑟𝑧]A).
Throughout this paper, we denote [𝑥]A ← SS.Share(𝑥,Z

2
ℓ)

as the algorithm dividing a secret into secret sharing in the do-

main Z
2
ℓ , where 𝑥 can be a single value or an 𝑛-sized vector;

SS.MUL(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑟𝑥𝑟𝑦]A) as the multiplication process shown

in Eq. 4, SS.IP(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑢]A) as the inner product of two vec-
tors 𝑥,𝑦 where 𝑢 is the correlated product of randomness.

SPDZ2k protocol. The SPDZ protocol [16] is a MPC protocol

works in the context of the dishonest majority setting, or assum-

ing one malicious server in the 2PC setting. It performes secure

operations over authenticated secret sharing in a ring, and man-

ages to detect any cheating behavior by introducing a message

authentication code Δ secretly shared between the two servers.

Throught out this paper where we deal with 2PC setting, we denote

an authenticated arithemetic secret sharing of a secret 𝑥 as

J𝑥KA : ([𝑥]A, [Δ · 𝑥]A)

and ⟨⟨𝑥⟩⟩A as the authenticated optimized arithmetic secret sharing

of 𝑥 . Naturally, we use notations J𝑥KA
𝑏
and ⟨⟨𝑥⟩⟩A

𝑏
to denote the

share held by S𝑏 . After the online secure computation, two servers

work together to verify the integrity of every revealed value in the

secure computation. This is done by using a final MAC verification

algorithm FMacVryGen ([Δ]A, 𝐿) (as shown in Fig. 2), in which Δ

denotes the secret authentication key, 𝐿 = (𝑥𝑖 , [Δ · 𝑥𝑖]A, 𝑟𝑖)𝑖∈[𝑛] is
the list of all revealed values, their associated authenticated share,

and random numbers negotiated between two servers. If the verifi-

cation fails, malicious behaviors are detected and the parties abort

the procedure.

When working with authenticated optimized secret sharing

in the malicious setting, we use same notation SS.MUL(⟨⟨𝑥⟩⟩A,
⟨⟨𝑦⟩⟩A, J𝑟𝑥𝑟𝑦KA) and SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑢KA) to denote secure

multiplication and secure inner product, respectively.

3.2 Secure Truncation
Given an arithmetical secret sharing [𝑥]A where 𝑥 ∈ Zℓ and a trun-
cation parameter 𝜌 ∈ Z+, a secret sharing based truncation opera-

tion aims to compute the truncated secret sharing [Shift(𝑥, 𝜌, ℓ)]A.
In the proposed protocols of section 5, we use a secure truncation

operation over random secret sharing results in the pre-processing

model. We employ the truncation pair (𝑟, Shift(𝑟, 𝜌, ℓ)) introduced
in [37]. More precisely, in our model, we generate a truncation pair

(𝑟, Shift(𝑟, 𝜌, ℓ)) as follows:
(1) In the setup phase, a random offset 𝑟 ∈ Z

2
ℓ is generated,

both [𝑟]A and [Shift(𝑟, 𝜌, ℓ)]A are distributed among S0 and

S1;

(2) In the evaluation phase, to truncate a secret sharing [𝑥]A
where 𝑥 ∈ Z

2
ℓ , the servers run Freveal ([𝑥 + 𝑟]A) to ob-

tain 𝑥 + 𝑟 , ∀𝑏 ∈ {0, 1} then S𝑏 computes Shift(𝑥 + 𝑟, 𝜌, ℓ) −
[Shift(𝑟, 𝜌, ℓ)]A

𝑏
as [Shift(𝑥, 𝜌, ℓ)]A

𝑏
.

3.3 Function Secret Sharing
Function Secret Sharing (FSS) was first introduced by Boyle et
al. [11] as a cryptographic primitive that secretly shares a function

𝑓 . Informally, in a two party settingwith a function 𝑓 : D→ R, func-
tion secret sharing comprises a key generation algorithm Gen𝑓 (1𝜆)
producing a key pair (𝑘0, 𝑘1), and an evaluation algorithm Eval𝑓 ,
which takes in one shared key and a value 𝑥 , ensuring that ∀𝑥 ∈ D
that the sum of Eval𝑓 (𝑘0, 0, 𝑥) and Eval𝑓 (𝑘1, 1, 𝑥) is equal to 𝑓 (𝑥).

Shortly after, a secure computation scheme with pre-processing

via FSS was proposed by Boyle et al. [12]. In this scheme, nonlin-

ear gates (e.g., for equality tests, integer comparison, etc.) can be

computed with a relatively small amount of communication in one

round. We give an example how in this model a secure equality

check is conducted between S0 and S1.

Let us consider the case of a point function 𝑓𝑎 : {0, 1}ℓ → {0, 1}
corresponding to a special point 𝑎 ∈ {0, 1}ℓ , ∀𝑥 ∈ {0, 1}ℓ that

outputs 1 if 𝑥 = 𝑎 and outputs 0 otherwise. In the pre-processing

phase, a trustworthy dealer respectively distributes S0, S1 additive

secret shares 𝑟0, 𝑟1 of a random mask value 𝑟 ← {0, 1}ℓ and FSS key
shares 𝑘0, 𝑘1 correspond to the random point function 𝑓𝑟 . In the

online phase, ∀𝑖 ∈ {0, 1}, 𝑃𝑖 holds 𝑥𝑖 , 𝑟𝑖 and 𝑘𝑖 , and 𝑃𝑖 exchanges
𝑥𝑖 +𝑟𝑖 with 𝑃1−𝑖 . After revealing the masked value 𝑥 +𝑟 , ∀𝑖 ∈ {0, 1},
𝑃𝑖 computes 𝑓𝑟,𝑖 (𝑥 + 𝑟 − 𝑎) and thus, obtains secret shares of 𝑓𝑎 (𝑥).
Boyle et al. also proposed FSS schemes for comparison functions

in [11, 13].

In constructing all our protocols, we make use the interval con-

tainment function secret sharing (IC-FSS) ([10], Section 4.1) as our

secure comparison primitive.

Definition 1. Interval containment function secret sharing. There
is a key generation algorithm Gen[𝑝,𝑞]

ℓ
(·), and an evaluation al-

gorithm Eval[𝑝,𝑞]
ℓ
(·), given an interval containment [𝑝, 𝑞] where

𝑝, 𝑞 ∈ Z
2
ℓ and 𝑝 < 𝑞, ∀𝛼 ∈ Z

2
ℓ , ∀𝛽1, 𝛽2 ∈ U𝑁 ,

(𝑘0, 𝑘1) ← Gen[𝑝,𝑞]
ℓ
(1𝜆, 𝛼, 𝛽1, 𝛽2,U𝑁)

for ∀𝑥 ∈ Z
2
ℓ denote 𝛿𝑥 = 𝑥 + 𝛼 , it holds that:

1∑︁
𝑏=0

Eval[𝑝,𝑞]
ℓ
(𝑘𝑏 , 𝑏, 𝛿𝑥) =

{
𝛽1, if 𝑥 ∈ [𝑝, 𝑞]
𝛽2, if 𝑥 not in [𝑝, 𝑞]

4 REALIZING CONDEVAL IN 2PC
In order to design our privacy-preserving biometric matching solu-

tion in an optimized manner, we propose a new building block that

helps us in reducing the number of communication rounds. Indeed,

as explained in Section 2.4, the evaluation of a biometric matching

protocol consists of the following steps: (i) computing shares of

the Boolean values 𝑐1 and 𝑐2 (see Equation 3) and then, depending

on the value of 𝜏 , (ii) computing 𝑐1 ∧ 𝑐2 or 𝑐1 ∨ 𝑐2. Since 𝑐1 and 𝑐2

are the output of the Sign operation, FSS can be used efficiently.

On the other hand, because computing a Boolean gate (∧ or ∨) in
secret sharing requires at least one communication round, we pro-

pose a new building block CondEval that integrates this operation
within the FSS computation of 𝑐2 and hence, reduces the number

of communication rounds to one.

It is worth to note that such a building block can be used as

an independent scheme, whenever there is a need to compute the

Boolean composition of a certain bit 𝑠 with a certain function 𝑓

evaluated with FSS with an input 𝑥 :

[𝑠 ◦ 𝑓 (𝑥)]B ← CondEval(◦,K◦, [𝑠]B, [𝑥]A)

In the context of biometric matching 𝑠 corresponds to the already

computed 𝑐1 and 𝑓 (𝑥) corresponds to the evaluation of 𝑐2, namely,

Sign([1/𝜏2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)]A).
Thanks to this newly proposed solution, CondEval is realized in

only one communication round (instead of two) among two parties

in the pre-processing model. In this Section, we consider only the

∧ operation and we describe how CondEval computes 𝑠 ∧ 𝑓 (𝑥)
in a symmetric two-party setting. Two versions of CondEval are
described: one in the semi-honest model and another one in the

malicious model in which one of the servers does not follow the

protocol correctly.

4.1 High-level Overview
As previously mentioned the goal ofCondEval is to evaluate 𝑠◦ 𝑓 (𝑥)
using FSS in a 2PC setting where two computing servers, S0 and S1,

engage in symmetric computation and communication. The input

to this protocol is mainly secret shares of a bit 𝑠 and an input 𝑥 .

In the sequel of this paper, we consider the ∧ operation only and

details on the ∨ operation are provided in Appendix C. In order

to avoid the additional communication round that is due to the ∧
operation, we propose to integrate this particular operation through

the FSS evaluation of 𝑥 . Indeed, from Table 2 (which corresponds

to the truth table of 𝑠 ∧ 𝑓 (𝑥)), we observe that if 𝑠 = 0, then the

output is 0 and if 𝑠 = 1 then the output is the actual output of

𝑓 (𝑥). In the case when the output range is in Z2, 𝑓 (𝑥) is obtained
when each server S𝑏 (𝑏 ∈ {0, 1}) runs Eval𝑓 (𝑘𝑏 , 𝑥) and the output

is reconstructed with an XOR of these. If each server runs Eval𝑓 over

the same keys, the reconstructed output would become 0, which

corresponds to the case when 𝑠 = 0. Hence, the overall idea is to

make sure that when running Eval, the two servers use the same

FSS key if 𝑠 = 0 and different FSS keys if 𝑠 = 1. This is illustrated

in the 2PC setting (note that 𝑠 is secretly shared among the two

servers as well) in Table 2. The goal is therefore to make sure that

each server retrieves the correct FSS key according to 𝑠 , without

leaking any information neither about 𝑠 , nor the other FSS key.

𝑠 𝑠 ∧ 𝑓 (𝑥) 𝑠0 𝑠1 [𝑦]B
0

[𝑦]B
1

[𝑦]B
0
⊕ [𝑦]B

1

0 0

0 0 Eval𝑓 (𝑘0, 0, 𝛿𝑥) Eval𝑓 (𝑘0, 0, 𝛿𝑥)
0

1 1 Eval𝑓 (𝑘1, 1, 𝛿𝑥) Eval𝑓 (𝑘1, 1, 𝛿𝑥)

1 𝑓 (𝑥) 1 0 Eval𝑓 (𝑘0, 0, 𝛿𝑥) Eval𝑓 (𝑘1, 1, 𝛿𝑥)
𝑓 (𝑥)

0 1 Eval𝑓 (𝑘1, 1, 𝛿𝑥) Eval𝑓 (𝑘0, 0, 𝛿𝑥)
Table 2: The truth table of [𝑠 ∧ 𝑓 (𝑥)]B.

Such a protocol could be easily designed if the trusted bank,

would store these two FSS keys 𝑘0 and 𝑘1 and randomly map them

to the values of 𝑠 (𝑘𝑡 if 𝑠 = 0, 𝑘1−𝑡 is 𝑠 = 1, where 𝑡 ←$ {0, 1}).
Then, each server would run a private information retrieval pro-

tocol with the bank to retrieve the actual key corresponding to its

share without revealing the actual share. In order not to involve

an additional party on the computation and save in the number

of communication rounds, we propose to store these two keys at

both servers in an encrypted manner. More precisely, server S0

will store the two FSS keys, encrypted beforehand and will receive

one decryption key from server S1 based on its share of 𝑠 and vice

versa. Hence, the key required to decrypt the FSS key (stored on

one server) is stored on the other server.

This implies that, each server S𝑏 will store both FSS keys in an

encrypted manner but will only be able to decrypt one of them

according to the value of 𝑠 . The goal is to receive and decrypt the

correct FSS key, without disclosing 𝑠 nor the FSS key not used by

S𝑏 .
To prevent any leakage about [𝑠]B

𝑏
from S

1−𝑏 , and the other FSS

key not used by S
1−𝑏 where 𝑏 ∈ {0, 1}, CondEval integrates the

following measures:

• since Eval𝑓 takes as input not only one FSS key but also this

FSS key’s corresponding index (0 or 1), this index information

should not leak any information about 𝑠 . Hence, the mapping

between the FSS key index and [𝑠]B
𝑏
needs to be protected

as well, this is realized by set the initial FSS key pair as

(𝑘𝑡 , 𝑘1−𝑡) where 𝑡 ←$ {0, 1}.
• to protect the value of [𝑠]B

𝑏
, a random permutation is applied

to (𝑘𝑡 , 𝑘1−𝑡);
• to protect one of the FSS key not used, the permuted key pair

are encrypted through one-time-pad before their storage and

only one decryption key will be sent from S𝑏 to S
1−𝑏 in the

key decryption step.

In a highlevel overview, CondEval consists of four algorithms

executed in two phases:

• During the setup phase, a trusted dealer generates the key-

ing material using CondEval.KeyGen and protects the FSS

key pair with CondEval.KeyEnc. These encrypted FSS keys

and the keying material are distributed to the servers;

• During the online phase, each server who has received

the share of 𝑠 and the randomized input 𝛿𝑥 = 𝑥 + 𝑟 , will
send the correct decryption key 𝑠𝑘 according to its share of

𝑠 to the other server. Once the correct FSS key is decrypted

using CondEval.KeyDec, the server finishes the protocol by
executing the FSS Eval function (CondEval.Eval) to obtain

the share of the output 𝑠 ∧ 𝑓 (𝑥).

KeyGen

𝑟 ←$Z
2
ℓ , [𝑟]A ← SS.Share(𝑟,Z

2
ℓ)

(𝑘0, 𝑘1) ← Gen𝑓 (1𝜆, 𝑟 , 1, 0,Z2) (|𝑘0 | = |𝑘1 | = 𝐾);
𝑡 ←$Z2, 𝜋0 ←$Z2, 𝜋1 ←$Z2;𝐿 := 𝐾 + 1;

sk(0)
0
∥sk(0)

1
∥sk(1)

0
∥sk(1)

1
←$ {0, 1}4𝐿,

|sk(0)
0
| = |sk(0)

1
| = |sk(1)

0
| = |sk(1)

1
| = 𝐿.

KeyEnc

𝑚0 = {sk(0)
0
⊕ (𝑘𝑡 ∥𝑡), sk(0)

1
⊕ (𝑘1−𝑡 ∥(1 − 𝑡))}

𝐶0 = FPermu (𝜋0,𝑚0); SK0 = {(sk(1)
0
, sk(1)

1
), 𝜋1}

𝑚1 = {sk(1)
0
⊕ (𝑘𝑡 ∥𝑡), sk(1)

1
⊕ (𝑘1−𝑡 ∥(1 − 𝑡))}

𝐶1 = FPermu (𝜋1,𝑚1); SK1 = {(sk(0)
0
, sk(0)

1
), 𝜋0}

Outputs K∧ = {𝐶𝑖 , SK𝑖 , [𝑟]A𝑖 }𝑖∈{0,1}
Table 3: The construction ofK∧ ← CondEval.Setup(∧, 1𝜆, ℓ) in
the semi-honest setting, where 𝜆 is the security parameter
used in generating FSS keys, ℓ defines the domain of the
secret sharing.

In the following, we describe CondEval in both the semi-honest

and malicious settings. Specifically, we consider the cases of com-

puting 𝑠∧ 𝑓 (𝑥) and 𝑠∨ 𝑓 (𝑥). We only demonstrate the construction

of CondEval for the case of computing 𝑠 ∧ 𝑓 (𝑥) in both the semi-

honest and malicious settings; The protocol for computing 𝑠 ∨ 𝑓 (𝑥)
is defined similarly and can be performed either by using:

𝑠 ∨ 𝑓 (𝑥) = ¬(¬𝑠 ∧ ¬𝑓 (𝑥))

or directly by relying on a slightly different key preparation and

evaluation comparedwith computing 𝑠∧𝑓 (𝑥). The second approach
due to space constraints, we have attached in the Appendix C.

4.2 CondEval in the Semi-Honest setting
We propose the building block CondEval which can be used to

evaluate 𝑠 ◦ 𝑓 (𝑥). In this section, we introduce the CondEval con-
struction that is secure in the semi-honest setting and focus on

the ∧ operation only. It works in the pre-processing model, and is

composed of two functionalities:

K∧ ← CondEval.Setup(∧, 1𝜆, ℓ) and

[𝑦]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A)

that are run respectively in the setup and online phase. The construc-

tion ofCondEval.Setup is shown in Table 3.CondEval.Setup, inputs
a security parameter 1

𝜆
and outputsK∧. After KeyGen and KeyEnc,

it outputs correlated random keys which are then distributed to

the two servers. CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) inputs K∧ gen-

erated by CondEval.Setup as well as [𝑠]B, [𝑥]A. Then, within one

round of communication, 𝛿𝑥 is revealed and one cleartext FSS key

is obtained from both servers with KeyDec being performed, and

finally it outputs [𝑦]B.

Theorem 1. Correctness. If two servers follow CondEval.Eval(
∧,K∧, [𝑠]B, [𝑥]A) honestly, then it outputs [𝑦]B = [𝑠 ∧ 𝑓 (𝑥)]B.

Proof. If 𝑠 = 0, then ([𝑠]B
0
, [𝑠]B

1
) is equal to either (0, 0) or

(1, 1). Thus, in the online phase after the decryption of FSS keys,

the servers obtain either {𝑘𝑡 , 𝑘𝑡 } or {𝑘1−𝑡 , 𝑘1−𝑡 }, which implies

Functionality [𝑠 ∧ 𝑓 (𝑥)]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A)
Players: S0, S1.

Functionality: [𝑠 ∧ 𝑓 (𝑥)]B ← CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) .
Input: [𝑠]B, [𝑥]A from two servers, and K∧ prepared in the setup phase as

shown in Table 3 where K∧ = {𝐶𝑏 , SK𝑏 , 𝑟𝑏 }𝑏∈{0,1} , more specifically

each S𝑏 (𝑏 ∈ {0, 1}) inputs {𝐶𝑏 , SK𝑏 , 𝑟𝑏 }. (Note that (𝑟0, 𝑟1) consti-
tutes [𝑟]A).

Output: [𝑠 ∧ 𝑓 (𝑥)]B.
1: 𝛿𝑥 ← FReveal ([𝑥]A + [𝑟]A)
2: for 𝑏 = 0 to 1 do
3: S𝑏 : 𝑝 (1−𝑏) ← [𝑠]B𝑏 ⊕ 𝜋

1−𝑏 , sk(1−𝑏) ← sk(1−𝑏)
[𝑠]B

𝑏

.

4: S𝑏 : Sends 𝑝 (1−𝑏) ∥sk(1−𝑏) to S
1−𝑏 . ⊲ Key decryption

5: for 𝑏 = 0 to 1 do
6: S𝑏 : 𝑘 (𝑏) ∥ id(𝑏) ← 𝐶𝑏 [𝑝 (𝑏)] ⊕ sk(𝑏)

7: S𝑏 : [𝑦]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿𝑥)
8: Outputs [𝑦]B.

that:

𝑦 =

{
Eval𝑓 (𝑘0, 0, 𝛿𝑥) ⊕ Eval𝑓 (𝑘0, 0, 𝛿𝑥) or
Eval𝑓 (𝑘1, 1, 𝛿𝑥) ⊕ Eval𝑓 (𝑘1, 1, 𝛿𝑥) .

In either case, 𝑦 = 0, as desired. On the other hand, if 𝑠 = 1, then

([𝑠]B
0
, [𝑠]B

1
) equals either (0, 1) or {1, 0}, which implies that 𝑦 =

⊕1

𝑡=0
Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥). In either case, we obtain 𝑦 = 𝑓 (𝑥), as desired.

Thus, 𝑦 = 𝑠 ∧ 𝑓 (𝑥). □

Theorem 2. Security. In the presence of a passive PPT adver-

saryA corrupting one of the two servers in CondEval.Eval (∧,K∧,
[𝑠]B, [𝑥]A), we assert that A learns nothing about the inputs 𝑥 , 𝑠 ,

nor about the output 𝑠 ∧ 𝑓 (𝑥).

Proof. After online evaluation, for each 𝑏 ∈ {0, 1} we denote
S𝑏 ’s transcript view as:

View𝑏 := {[𝑟]A
𝑏
, 𝛿𝑥 , 𝑘𝑡⊕[𝑠]B

1−𝑏
∥(𝑡 ⊕ [𝑠]B

1−𝑏), [𝑠]
B
1−𝑏 ⊕ 𝜋𝑏 }

From this transcript, {𝑘𝑡⊕[𝑠]B
1−𝑏
, [𝑟]A

𝑏
, 𝛿𝑥 } correspond to the FSS

evaluation in the pre-processing model, and we resort to the secu-

rity proof in [12] (Definition 2) of Boyle et al. to argue the compu-

tational indistinguishability of the ideal and real-world executions;

Regarding the remaining items of the view transcripts, since both 𝜋𝑏
and 𝑡 are uniformly selected, both [𝑠]B

1−𝑏⊕𝜋𝑏 and 𝑡⊕[𝑠]
B
1−𝑏 provide

information-theoretic secrecy for [𝑠]B
1−𝑏 . Therefore, from View𝑏 ,

A learns nothing about the input 𝑥 , 𝑠 , nor the output 𝑠 ∧ 𝑓 (𝑥). □

4.3 CondEval in the Malicious Setting
We extend the setting and consider one of the servers be an ac-

tive adversary. Since the two servers are symmetric (and execute

the same protocol), for the sake of clarity, we consider that S0 is

malicious. Assume we run CondEval.Eval(∧,K∧, [𝑠]B, [𝑥]A) in the

malicious setting where S0 is malicious and K∧ is the output of

K∧ ← CondEval.Setup(∧, 1𝜆,Z
2
ℓ), then we report three disrup-

tions from S0 that might compromise the correctness or security of

the scheme:

• S0 may dishonestly report [𝑥 + 𝑟]A
0
when revealing 𝑥 + 𝑟 to

introduce errors and thus disrupt the computation;

• S0 may flip [𝑠]B
0
during the key decryption step, thus poten-

tially flipping [𝑦]B to be equal to [¬(𝑠 ∧ 𝑓 (𝑥))]B;
• After the online evaluation, S0 may submit ¬[𝑦]B

0
to B, thus

potentially resulting in a flipped authentication bit𝑦 = ¬(𝑠∧
𝑓 (𝑥)).

To counter the first attack, we incorporate a homomorphic MAC

scheme from the spdz2k framework [16]. More specifically, dur-

ing the setup phase, a trustworthy dealer generates random offset

shares and the corresponding authenticated shares. This enables

an additional verification step to be performed over all partially

disclosed intermediate values at the end of the online evaluation

phase. The final output is only deemed valid if the verification is

successful, thereby deterring any fraudulent disclosure of secret

sharing. In order to safeguard against the remaining attacks, we

require a separate scheme that protects Boolean secret sharings.

As a solution, we propose the use of authenticated Boolean secret
sharing defined as below.

Definition 2. An authenticated Boolean secret sharing (𝑣)𝑚 of bit

𝑣 ∈ {0, 1} is a list of Boolean secret shares defined with a secret

authentication key𝜓 ∈ {0, 1}𝑚,𝑚 ∈ Z+, denoted as:

(𝑣)𝑚 : {[𝑣1]B, · · · , [𝑣𝑚]B}
where ∀𝑖 ∈ [𝑚],

𝑣𝑖 =

{
𝑣, if𝜓 [𝑖] = 0

0, if𝜓 [𝑖] = 1

By extending the semi-honest CondEval constructions with the

above two authentication schemes, we realize CondEval in a mali-

cious setting which contains three functionalities:

K∗∧ ← CondEval.Setup∗ (∧, 1𝜆, ℓ0, ℓ1,𝑚),

(𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) and

𝑧 ← CondEval.Verify((𝑦)𝑚, [𝜎]A,𝜓)
CondEval.Setup∗ is shown in Table 4, where a trustful dealer pre-

pares 𝑚 instances of FSS key pairs based on a uniform random

string 𝜓 ←$ {0, 1}𝑚 . More precisely, for all 𝑖 ∈ [𝑚], let us denote
𝐾𝑖 as the 𝑖

th
FSS key pair prepared. Then, if 𝜓 [𝑖] = 0, the dealer

outputs 𝐾𝑖 as a normal FSS key pair, which means that the evalua-

tion result is equal to 𝑠 ∧ 𝑓 (𝑥); Otherwise, if 𝜓 [𝑖] = 1, the dealer

outputs 𝐾𝑖 as a trap FSS key pair which guarantees that the corre-

sponding evaluation result will be equal to 0 for whatever value of

𝑥 . Furthermore CondEval∗ .Setup generates additional proof string

differently due to the FSS key type (normal or trap) which are ap-

pended at each FSS key. With these designs, any manipulation from

A in the KeyDec step of CondEval.Eval∗ will be captured with high
probability (assuming that A does not know 𝜓). As a result, the

probability that A flips (𝑠 ∧ 𝑓 (𝑥))𝑚 to (¬(𝑠 ∧ 𝑓 (𝑥)))𝑚 without

being detected is in negligible probability. In conclusion, compared

with the construction of CondEval.Eval, this extended construction
CondEval.Eval∗ comes at a cost of𝑚 times the computation time

and communication volume when dealing with FSS gates; Never-

theless this malicious construction retains the advantage of the

optimized one round communication which is of more impact in

practice.

The concrete construction of CondEval.Eval∗ is shown in the

following pseudo code, where it takes in the desired operation ∧,

as well as K∗∧, (𝑠)𝑚, J𝑥KA from the two servers; During the online

evaluation, for each 𝑖 ∈ [𝑚], within one round of communication

𝛿𝑥𝑖 is revealed, and simultaneously one cleartext FSS key is ob-

tained by each of the two servers by decrypting one FSS key from

other party’s choice; Finally, CondEval.Eval∗ outputs (𝑦)𝑚 and an

associated proof [𝜎]A which can only be validated if they could

pass the verification procedure in functionality CondEval.Verify as

shown below.

Functionality (𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA)
Players: S0, S1.

Functionality: (𝑦)𝑚, [𝜎]A ← CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA) .
Input: For each 𝑏 ∈ {0, 1} that K∗∧ [𝑏] = {{𝐶𝑖,𝑏 , SK𝑖,𝑏 , J𝑟𝑖KA𝑏 }𝑖∈ [𝑚] ,
[𝜓]B

𝑏
, [Δ]A

𝑏
} are obtained by S𝑏 in the setup phase, and authenticated

secret sharing (𝑠)𝑚 whose secret authentication key is equal to𝜓 in

K∗∧.
Output: ((𝑠 ∧ 𝑓 (𝑥))𝑚, [𝜎]A) .
1: ({ [𝑠1]B, · · · , [𝑠𝑚]B}) ← (𝑠)𝑚
2: �̄� ← Frand (1𝜆,𝑚,Z

2
ℓ
0
+ℓ

1
)

3: 𝑉 ← [∅]𝑚
4: for 𝑏 = 0 to 1 do
5: [𝜎]A

𝑏
← 0

6: {𝐶𝑏 , SK𝑏 , J𝑟KA
𝑏
, [𝜓]B

𝑏
} ← K∗∧ [𝑏]

7: for 𝑖 = 1 to𝑚 do
8: J𝛿

𝑥 (𝑖) K
A ← J𝑥KA + J𝑟𝑖KA

9: 𝛿
𝑥 (𝑖) ← FReveal ([𝛿𝑥 (𝑖)]

A)
10: 𝑉 [𝑖] ← (𝛿

𝑥 (𝑖) , [Δ · 𝛿𝑥 (𝑖)]
A, �̄�[𝑖])

11: for 𝑏 = 0 to 1 do
12: S𝑏 : Sends { [𝑠𝑖]B𝑏 ⊕𝜋1−𝑏 , sk

(1−𝑏)
[𝑠𝑖]B𝑏

} to S
1−𝑏 as {𝑝 (1−𝑏) , sk(1−𝑏) }

⊲ Key decryption

13: for 𝑏 = 0 to 1 do
14: S𝑏 : 𝑘 (𝑏) ∥ id(𝑏) ∥𝜉 (𝑏) ← 𝐶𝑖,𝑏 [𝑝 (𝑏)] ⊕ sk(𝑏)

15: [𝜎]A
𝑏
← [𝜎]A

𝑏
+ 𝜉 (𝑏)

16: [𝑦𝑖]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿
𝑥 (𝑖))

17: [𝜍]A ← FMacVryGen ([Δ]A,𝑉)
18: [𝜎]A ← [𝜍]A + [𝜎]A
19: (𝑦)𝑚 ← {[𝑦1]B, · · · , [𝑦𝑚]B}
20: Output (𝑦)𝑚, [𝜎]A.

As the same as in CondEval in the semi-honest setting, we also

have correctness, security and additional soundness proof of our

constructions in the malicious setting. However, due to page limit,

we have attached the corresponding theorems and their associated

proofs in Appendix A.

5 SECURE COSINE SIMILARITY
COMPUTATION AND VERIFICATION

In this section, we provide comprehensive constructions for co-

sine similarity back-end verification (matching fresh and reference

templates) in both semi-honest and malicious settings, utilizing

building blocks from Section 4. For example, in the semi-honest

setting within a pre-processing model, our proposed protocol ini-

tially calculates a Boolean secret sharing [𝑐1]B and an arithmetic

secret sharing [𝑧]A using optimized secret sharing and FSS. Then, it

employsCondEval.Eval(∧, [𝑐1]B, [𝑥]A) to compute [𝑐1∧Sign(𝑧)]B
as the final authentication bit.

Let𝜓 ←$ {0, 1}𝑚, [𝜓]B
0
←$ {0, 1}𝑚, [𝜓]B

1
← 𝜓 ⊕ [𝜓]B

0
;Δ←$Z

2
ℓ
1
, [Δ]A ← SS.share(Δ,Z

2
ℓ
0
+ℓ

1
)

then it does KeyGen and KeyEnc for each 𝑖 ∈ [𝑚] as follows:

KeyGen

If𝜓 [𝑖] = 0 (Normal) Otherwise if𝜓 [𝑖] = 1 (Trap)
𝛽1 ← 1, 𝛽2 ← 0 𝛽1 ← 0, 𝛽2 ← 0

𝑟𝑖 ←$Z
2
ℓ
0
, [𝑟𝑖]A ← SS.share(𝑟𝑖 ,Z2

ℓ
0
+ℓ

1
), J𝑟𝑖KA ← {[𝑟𝑖]A, SS.share(𝑟𝑖 · Δ,Z2

ℓ
0
+ℓ

1
)};

(𝑘0, 𝑘1) ← Gen(1𝜆, 𝑟𝑖 , 𝛽1, 𝛽2,Z2) (|𝑘0 | = |𝑘1 | = 𝐾)
𝑡 ←$Z2, 𝜋0 ←$Z2, 𝜋1 ←$Z2;𝜔 ←$Z2; 𝜉1 ←$Z

2
ℓ
0
+ℓ

1
, 𝜉2 ←$Z

2
ℓ
0
+ℓ

1
;𝐿 := 𝐾 + ℓ0 + ℓ1 + 1;

sk(0)
0
∥sk(0)

1
∥sk(1)

0
∥sk(1)

1
←$ {0, 1}4𝐿, |sk(0)

0
| = |sk(0)

1
| = |sk(1)

0
| = |sk(1)

1
| = 𝐿

KeyEnc

𝑀𝑖,0 = {𝑘𝑡 ∥𝑡 ∥𝜉1, 𝑘1−𝑡 ∥(1 − 𝑡)∥𝜉1} 𝑀𝑖,0 = {𝑘𝑡 ∥𝑡 ∥𝜉1, 𝑘1−𝑡 ∥(1 − 𝑡)∥𝜉2}
𝑀𝑖,1 = {𝑘𝑡 ∥𝑡 ∥(−𝜉1), 𝑘1−𝑡 ∥(1 − 𝑡)∥(−𝜉1)} 𝑀𝑖,1 = {𝑘𝑡 ∥𝑡 ∥(−𝜉1), 𝑘1−𝑡 ∥(1 − 𝑡)∥(−𝜉2)}
𝐶𝑖,0 = FPermu (𝜋0, {𝑀𝑖,0 [0] ⊕ sk(0)

0
, 𝑀𝑖,0 [1] ⊕ sk(0)

1
}), SKi,0 = {(sk(1)

0
, sk(1)

1
), 𝜋1}

𝐶𝑖,1 = FPermu (𝜋1, {𝑀𝑖,1 [0] ⊕ sk(1)
0
, 𝑀𝑖,1 [1] ⊕ sk(1)

1
}), SKi,1 = {(sk(0)

0
, sk(0)

1
), 𝜋0}

Outputs𝜓,K∗∧ = {{𝐶𝑖, 𝑗 , SK𝑖, 𝑗 , J𝑟𝑖KA}𝑖∈[𝑚], 𝑗∈{0,1} , [Δ]A}
Table 4: The construction of K∗∧ ← CondEval.Setup∗ (∧, 1𝜆, ℓ0, ℓ1,𝑚) in the malicious setting, it inputs a security parameter 𝜆, ℓ0
and ℓ1, where ℓ0 is both used in generating FSS keys and it also defines the domain of the input secrets, ℓ1 defines the domain of
authenticated secret key Δ,𝑚 ∈ Z+ defines the secret key for authenticated Boolean secret sharing.

Functionality 𝑧 ← CondEval.Verify((𝑦)𝑚, [𝜎]A,𝜓)
Players: S0, S1,B.
Functionality: 𝑠 ← CondEval.Verify({ ((𝑦)𝑚

𝑏
, [𝜎]A

𝑏
) }𝑏∈{0,1},𝜓) .

Input: ((𝑦)𝑚
𝑏
, [𝜎]A

𝑏
) from S𝑏 for each 𝑏 ∈ {0, 1}, and𝜓 from B.

Output: 𝑧 ∈ {−1, 0, 1,⊥}.
1: 𝑧 ← −1

2: if 𝜓 ≠ {1}𝑚 then
3: if [𝜎]A

0
+ [𝜎]A

1
= 0 then

4: for 𝑖 = 1 to𝑚 do
5: 𝑦𝑖 ← [𝑦𝑖]B

0
⊕ [𝑦𝑖]B

1

6: if 𝜓 [𝑖] = 0 then
7: if 𝑧 = −1 then
8: 𝑧 ← 𝑦𝑖

9: else
10: if 𝑦𝑖 ≠ 𝑠 then
11: 𝑧 ← ⊥, abort
12: else
13: if 𝑦𝑖 ≠ 0 then
14: 𝑧 ← ⊥, abort
15: else
16: 𝑧 ← ⊥, abort
17: Outputs 𝑧.

The solutions we propose for evaluating the circuit C in a 2PC

model has the dual objectives of minimizing the number of commu-

nication rounds and communication volume. Our method leverages

optimized secret sharing and CondEval to perform secure addition,

multiplication, and comparison operations within C. The online
evaluation process requires two communication rounds, with a

communication cost of four ring elements (corresponds to the four

times of Freveal invocations) and two decryption keys transmitted

for decrypting the FSS keys.

When using floating-point numbers as input for a secure com-

putation framework, these secret floating-point numbers need to

be converted to fixed-point representation by multiplying them

by a precision parameter 2
𝜌
. This process occurs before entering

the secure computation framework, where 𝜌 defines the preserved

FUNCTIONALITY ⟨𝑥⟩A or ⊥ ← FInput (𝑥, [𝑟in]A):
Players: A client C, S0 and S1.

Input: A secret 𝑥 from C, and [𝑟in]A from S0, S1.

Output: ⟨𝑥⟩A or ⊥.
1: ∀𝑏 ∈ {0, 1}, S𝑏 sends [𝑟in]A𝑏 to C.

2: ∀𝑏 ∈ {0, 1}, C returns 𝛿𝑏𝑥 = 𝑥 + [𝑟in]A
0
+ [𝑟in]A

1
to S𝑏 .

3: ∀𝑏 ∈ {0, 1}, S𝑏 exchanges 𝛿𝑏𝑥 with S
1−𝑏 to check if 𝛿𝑏𝑥 is equal

to 𝛿1−𝑏
𝑥 . If both the verification pass, denote 𝛿𝑥 = 𝛿0

𝑥 = 𝛿1

𝑥 , then

servers output ⟨𝑥⟩A = (𝛿𝑥 , [𝑟in]A𝑏), otherwise output ⊥.

Figure 3: Robust input protocol in the semi-honest setting.

precision in the fraction part. In a standard way, a secure truncation

operation is required to obtain the same precision when performing

one multiplication over two fixed point values. This is meaningful

in the sense of performing an operation within a smaller ring and

also outputs an arithmetical result with the same precision. How-

ever, in the context of secure cosine similarity computation, where

the input vectors are small float point numbers, while the compari-

son the circuit C outputs a secret bit that does not depends on the

precision, in order to reduce the complexity our final scheme, we

perform truncation once over 1/𝑡2 · IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)
in C.

5.1 Full protocol in the semi-honest setting
In the semi-honest setting, our final solution comprises of three

sub-protocols: CS.Setup, FInput and CS.Eval, executed in the Setup,

Input, and Evaluation phases, respectively. Protocol 1 details the

setup phase, integrating CondEval.Setup and generating correlated
randomness based on circuit C. Next, the client and B input their

secret vectors 𝑥,𝑦 by running FInput through FInput, as shown
in Fig. 3. Lastly, with correlated randomness and input prepared,

CS.Eval produces the boolean secret sharing of the desired authen-

tication bit [𝑦]B, where 𝑦 = Sign (cos(x, y) − 𝜏).

5.1.1 Correctness. From Theorem 1 we know that Protocol 2 out-

puts [𝑐]B where 𝑐 = 𝑐1∧𝑐2, 𝑐1 = Sign(IP(𝑥,𝑦)) and 𝑐2 = Sign(1/𝑡2 ·
IP(𝑥,𝑦)2 − IP(𝑥,𝑥) · IP(𝑦,𝑦)), thus computes Sign (cos(x, y) − 𝜏)
as shown in Eq. 3.

5.1.2 Security. Our goal is to prove that Protocols 1 and 2 provide

a secure implementation of the circuit C when faced with a semi-

honest PPT adversary A in a 2PC setting. We assert that, with the

correlated randomness provided in protocol 1, and following the

online evaluation of protocol 2, A learns nothing about the input

𝑥, 𝑦, or Sign(cos(𝑥,𝑦) − 𝜏).

Proof. By applying Theorem 2, we ensure that there is no infor-

mation leakage from the internal view tapes of CondEval.Evaltrunc
(∧, ¯K∧, [𝑐1]B, [𝑧]A). However, we need to consider the other view

transcripts View𝑏 for each 𝑏 ∈ {0, 1}, where:

View𝑏 := {𝑘 (1)
𝑏
, 𝛿𝑢 , 𝛿𝑣, 𝛿𝑤}

As 𝛿𝑣 and 𝛿𝑤 hide the correlated intermediate values of 𝑥 and

𝑦, we argue that the view 𝑘
(1)
𝑏

is pseudo-random (computationally

indistinguishable from the real random key) as proved in Fig. 1

in [10], thereby concealing the information of 𝛼 (1) that is contained
in (𝑘 (1)

0
, 𝑘
(1)
1
) from A. □

Protocol 1 ([R]A,K∧,K0) ← CS.Setup(1𝜆, ℓ, 𝜌)
Players: The central bank B.
Functionality: ([R]A,K) ← CS.Setup(1𝜆, ℓ, 𝜌) .
Input: A security parameter 𝜆, element encoding length ℓ , and a truncation

parameter 𝜌 ∈ Z+ where 𝜌 < ℓ .

Output: ([R]A,K) .
1: (𝑥𝑖𝑛,𝑦𝑖𝑛) ←$Z2𝑛

2
ℓ ,𝑢𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑦𝑖𝑛)

2: 𝑣𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑥𝑖𝑛),𝑤𝑖𝑛 ← Prod(𝑦𝑖𝑛,𝑦𝑖𝑛)
3: K∧ ← CondEval.Setup(∧, 1𝜆, ℓ)
4: {𝐶𝑖 , SK𝑖 , [𝑟]A𝑖 }𝑖∈{0,1} ← K∧
5: 𝛼 (2) ← [𝑟]A

0
+ [𝑟]A

1

6: 𝑣 ←$Z
2
𝜌 , [𝜂]A ← SS.Share(Shift(𝛼 (2) , −𝜌, ℓ) + 𝑣,Z

2
ℓ+𝜌)

7:
¯K∧ ← {𝐶𝑖 , SK𝑖 , [𝜂]A𝑖 }𝑖∈{0,1}

8: 𝛼 (1) ←$Z
2
ℓ

9: (𝑘0, 𝑘1) ← Gen[0,2
ℓ−1]

ℓ (1𝜆, 𝛼 (1) , 1, 0,Z2)
10: R ← {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2), 𝛼 (1) , (𝛼 (1))2}
11: K0 ← {𝑘0, 𝑘1}
12: Outputs ([R]A, ¯K∧,K0)

We have also realized the full protocol in the malicious setting,

due to page limit, we have attached it in Appendix B.

6 EXPERIMENT & RESULTS
In this section, to demonstrate how practical our solution is, we

present experimental assessments of the proposed solution through

a use case of voice biometric authentication. We first describe the

experimental setting and then further evaluate our solution in the

malicious model. With the same input data, we compare the perfor-

mance results between a regular cleartext version implementation,

an invocation of spdz2k.x from MP-SPDZ[31] and our own imple-

mentation of protocol CSB.Eval∗ over the circuit C.

Protocol 2 [𝑐]B ← CS.Eval([R]A, ¯K∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A, 𝜏, 𝜌, ℓ)
Players: S0, S1.

Functionality: [𝑐]B ← CS.Eval([R]A, ¯K∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A, 𝜏, 𝜌, ℓ) .
Input: [R]A,K∧,K0, ⟨𝑥⟩A, ⟨𝑦⟩A from S0 and S1 respectively. A public

threshold 𝜏 ∈ (0, 1], element encoding length ℓ ∈ Z+, and a truncation

parameter 𝜌 ∈ Z+ where 𝜌 < ℓ .

Output: [𝑐]B.
1: {𝑘0, 𝑘1} ← K0

2: {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2), 𝛼 (1) , (𝛼 (1))2} ← R
3: [𝑢]A ← SS.IP(⟨𝑥⟩A, ⟨𝑦⟩A, [𝑢𝑖𝑛]A)
4: [𝑣]A ← SS.IP(⟨𝑥⟩A, ⟨𝑥⟩A, [𝑣𝑖𝑛]A)
5: [𝑤]A ← SS.IP(⟨𝑦⟩A, ⟨𝑦⟩A, [𝑤𝑖𝑛]A)
6: 𝛿𝑢 ← FReveal ([𝑢 + 𝛼 (1)]A) ⊲ First round

7: ⟨𝑢 ⟩A ← (𝛿𝑢 , [𝛼 (1)]A)
8: ⟨𝑣⟩A ← (FReveal ([𝑣 + 𝑟1]A), [𝑟1]A) ⊲ First round

9: ⟨𝑤⟩A ← (FReveal ([𝑤 + 𝑟2]A), [𝑟2]A) ⊲ First round

10: for 𝑏 = 0 to 1 do
11: [𝑐1]B𝑏 ← Eval[0,2

ℓ−1]
ℓ (𝑘𝑏 , 𝑏, 𝛿𝑢)

12: 𝑇 ← Shift(1

𝜏2
, −𝑝, ℓ) ⊲ after shifting,𝑇 ∈ Z

2
ℓ

13: [𝑧]A ← 𝑇 · SS.MUL(⟨𝑢 ⟩A, ⟨𝑢 ⟩A, [(𝛼 (1))2]A)
14: [𝑧]A ← [𝑧]A − 2

𝜌 · SS.MUL(⟨𝑣⟩A, ⟨𝑤⟩A, [𝑟1𝑟2]A)
15: [𝑐]B ← CondEval.Evaltrunc (∧, ¯K∧, [𝑐1]B, [𝑧]A) ⊲ Second round

16: Outputs [𝑐]B.

FAR (%) FRR (%) LAN (ms) WAN (ms) Com(KB)

Cleartext 0.575 0.575 0.17 - -

spdz2k 0.573 0.580 74 8020 1789

Ours (m=10) 0.573 0.580 57 457 3.5

Ours (m=20) 0.573 0.580 102 500 6.9

Ours (m=40) 0.573 0.580 201 628 13.72

Table 5: Evaluation comparison results between the cleartext
version, spdz2k and CSB.Eval∗. The computation and commu-
nication cost are measured per party.

6.1 Data preparation
We propose to use a pre-trained model of the ECAPA-TDNN [22]

model available in [18] to extract speaker embeddings. The model

was trained using the development part of the VoxCeleb2 dataset [15]

with 5994 speakers. The datasets RIR [34] and MUSAN [48] were

also used for data augmentation. The model is composed of 3 SE-

Res2Block modules. The channel size and the dimension of the

bottleneck in the SEBlock are set to 1024 and 256, respectively [19].

The entire utterance is fed into the ECAPA-system to finally ob-

tain a vector of 192-dimensional speaker embedding. We get our

experiments’ input from the test set of VoxCeleb1, which consists

of 37720 pairs of enrolment and verification ECAPA-TDNN em-

beddings, in which we have approximately half target and half

non-target speakers.

6.2 Evaluation setting
We perform all benchmarks on three droplets provided by DigitalO-

cean where two of them are in the same LAN located in Singapore,

and the third one located in Frankfurt connected by WAN with one

of the two droplets in Singapore. We measured 0.47ms latency with

1.8Gbps in our LAN setting, and 152ms latency with 130Mbps in

our WAN setting. All of the droplets have similar configurations,

with each one having a relatively low specification of 4GB mem-

ory and 2-core CPUs, running Ubuntu 22.04 LTS. The cleartext

version implementation of C is in Python 3.10, directly using float

point numbers as input. We implemented our protocol CSB.Eval∗

in Python 3.10, in which the IC-FSS module are implemented from

Fig. 3 of [10].

To use our implementation of CSB.Eval∗ and spdz2k for the raw
input vectors, we need to convert them from floating-point numbers

to integers while maintaining precision in the fractional part. We

achieve this by multiplying the floating-point numbers with 2
8

(𝜌 = 8) and keeping only the integer digits. In our experiments, we

set the same parameters for both experiments, namely 𝜆 = 40, ℓ0 =

64, ℓ1 = 48. This ensures a fair performance comparison between

our implementation and the procool spdz2k from MP-SPDZ. We

also set the input domain of IC-FSS as 32 bits, which covers our use

case. To evaluate the practical performance with different levels of

soundness (Theroem 5) where the value of𝑚 is dominant, we vary

the value of𝑚 between 10, 20, 40.

6.3 Evaluation results
Table 5 presents the experimental results of computing functionality

C with one pair of enrolment (reference template) and verification

vectors (fresh template) as input. The costs shown for spdz2k and

CSB.Eval∗ exclude the offline phase generation cost, and the com-

putation time cost in both LAN and WAN settings is measured for

100 runs on average.

Our observations reveal that employing a conversion parameter

of 𝜌 = 8 yields a non-significant deviation (0.003%) in performance,

as represented by the false acceptance rate (FAR) and false rejection

rate (FRR), when compared to the cleartext version. It is important

to note that the threshold was established at a point where the FAR

and FRR are equal in the cleartext scenario.

In terms of communication cost, our protocol outperforms spdz2k
from MP-SPDZ by more than 100 times for all our test cases (𝑚 =

10, 20, 40). With respect to computation cost, our round-efficient

design enables our protocol to complete the online evaluation in

less than 700 milliseconds for all test cases in the WAN setting,

whereas spdz2k takes around 8 seconds. However, in a LAN set-

ting where the network latency can be ignored (less than 0.47ms),

spdz2k performs better than our system due to their efficient C++

implementation. Since our current implementation is a fast proto-

type, there is significant room for improvement. This could involve

reimplementing our protocol using C++ or using a more efficient

variant construction for the core FSS module, such as the one pro-

posed in [27].

In summary, our experimental results demonstrate that our

CSB.Eval∗ offers a practical solution even in the WAN setting,

where the network latency is a bottleneck for efficient secure com-

putation, surpassing the state-of-the-art in terms of the communi-

cation volume and the computation time for computing circuit C,
making it suitable for real-world applications.

7 CONCLUSION
Privacy-preserving cosine similarity computation and comparison

to a predefined threshold is an important building block that has

multiple applications (e.g., biometric authentication and identifi-

cation, privacy-preserving machine learning). In this paper, we

introduce two novel protocols to compute the cosine similarity and

compare to a threshold in a privacy-preserving way. One protocol

is suitable for both the semi-honest and malicious setting, both

protocols rely on the recent advances of Function Secret Sharing

(FSS) [10, 12], and the one for malicious setting addtionally relies

on 2PC authenticated secret sharing and our proposed use of mul-

tiple instances of random FSS keys (either normal or trap). All our
protocols are based on a new building block we introduce called

CondEval that allows computing the composition of an input bit 𝑠

and a binary function 𝑓 (evaluated via FSS) on an input 𝑥 i.e., 𝑠◦𝑓 (𝑥).
This introduced building block is provably secure under both the

semi-honest and malicious setting, is general and of independent

interest; Thus, could be used in general 2PC computations.

Furthermore, we provide a detailed security analysis of the pro-

posed protocols and introduced building block and evaluate the

proposed protocols in the biometric authentication setting. Our

results show that the proposed protocols are not only efficient (re-

quiring two communication rounds) but also maintain the same

accuracy as plain-text systems. To the best of our knowledge this is

the first biometric authentication protocol in the malicious setting.

ACKNOWLEDGMENTS
This work is supported by the TReSPAsS-ETN project funded from

the European Union’s Horizon 2020 research and innovation pro-

gramme under the Marie Skłodowska-Curie grant agreement No.

860813. It is also supported by the ANR-DFG RESPECT project.

REFERENCES
[1] Shashank Agrawal and David J Wu. 2017. Functional encryption: deterministic

to randomized functions from simple assumptions. In Advances in Cryptology–
EUROCRYPT 2017: 36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings,
Part II 36. Springer, 30–61.

[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-throughput semi-honest secure three-party computation with an

honest majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 805–817.

[3] Manuel Barbosa, Dario Catalano, Azam Soleimanian, and Bogdan Warinschi.

2019. Efficient function-hiding functional encryption: From inner-products to

orthogonality. In Topics in Cryptology–CT-RSA 2019: The Cryptographers’ Track
at the RSA Conference 2019, San Francisco, CA, USA, March 4–8, 2019, Proceedings.
Springer, 127–148.

[4] Mauro Barni, Giulia Droandi, Riccardo Lazzeretti, and Tommaso Pignata. 2019.

SEMBA: secure multi-biometric authentication. IET Biometrics 8, 6 (2019), 411–
421.

[5] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.

In Advances in Cryptology — CRYPTO ’91, Joan Feigenbaum (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 420–432.

[6] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity

of secure protocols. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing. 503–513.

[7] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. 2019. Turbospeedz: double

your online SPDZ! improving SPDZ using function dependent preprocessing. In

International Conference on Applied Cryptography and Network Security. Springer,
530–549.

[8] Vishnu Naresh Boddeti. 2018. Secure face matching using fully homomorphic

encryption. In 2018 IEEE 9th International Conference on Biometrics Theory, Appli-
cations and Systems (BTAS). IEEE, 1–10.

[9] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Defini-

tions and challenges. In Theory of Cryptography: 8th Theory of Cryptography Con-
ference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8. Springer,
253–273.

[10] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. 2021. Function secret sharing for mixed-mode

and fixed-point secure computation. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part
II. Springer, 871–900.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In Annual
international conference on the theory and applications of cryptographic techniques.
Springer, 337–367.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with prepro-

cessing via function secret sharing. In Theory of Cryptography: 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1–5, 2019, Proceedings, Part
I 17. Springer, 341–371.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure computation with pre-

processing via function secret sharing. In Theory of Cryptography Conference.
Springer, 341–371.

[14] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo Lee.

2019. Numerical method for comparison on homomorphically encrypted numbers.

In Advances in Cryptology–ASIACRYPT 2019: 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8–12, 2019, Proceedings, Part II. Springer, 415–445.

[15] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. 2018. Voxceleb2: Deep

speaker recognition. arXiv preprint arXiv:1806.05622 (2018).
[16] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPDZ
2
𝑘 : efficient MPC mod 2

𝑘
for dishonest majority. In Annual

International Cryptology Conference. Springer, 769–798.
[17] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P Smart. 2013. Practical covertly secure MPC for dishonest majority–

or: breaking the SPDZ limits. In European Symposium on Research in Computer
Security. Springer, 1–18.

[18] Rohan Kumar Das, Ruijie Tao, and Haizhou Li. 2021. HLT-NUS SUBMISSION FOR

2020 NIST Conversational Telephone Speech SRE. arXiv preprint arXiv:2111.06671
(2021).

[19] Rohan Kumar Das, Ruijie Tao, and Haizhou Li. 2021. HLT-NUS submission for

2020 NIST conversational telephone speech SRE. arXiv preprint arXiv:2111.06671
(2021).

[20] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. 2016. Functional encryp-

tion for inner product with full function privacy. In Public-Key Cryptography–PKC
2016: 19th IACR International Conference on Practice and Theory in Public-Key
Cryptography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I. Springer, 164–
195.

[21] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In NDSS.
[22] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. 2020. Ecapa-

tdnn: Emphasized channel attention, propagation and aggregation in tdnn based

speaker verification. arXiv preprint arXiv:2005.07143 (2020).
[23] Diana-Elena Fălămaş, KingaMarton, and Alin Suciu. 2021. Assessment of Two Pri-

vacy Preserving Authentication Methods Using Secure Multiparty Computation

Based on Secret Sharing. Symmetry 13, 5 (2021), 894.

[24] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-

phic encryption. Cryptology ePrint Archive (2012).
[25] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental

game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. 307–328.

[27] Xiaojie Guo, Kang Yang, XiaoWang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and

Zheli Liu. 2023. Half-tree: Halving the cost of tree expansion in cot and dpf. In

Advances in Cryptology–EUROCRYPT 2023: 42nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Lyon, France, April
23-27, 2023, Proceedings, Part I. Springer, 330–362.

[28] Haiping Huang, Tianhe Gong, Ping Chen, Reza Malekian, and Tao Chen. 2016.

Secure two-party distance computation protocol based on privacy homomor-

phism and scalar product in wireless sensor networks. Tsinghua Science and
Technology 21, 4 (2016), 385–396.

[29] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2022. Funshade: Func-

tional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation.

Cryptology ePrint Archive (2022).
[30] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-

tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264.

[31] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party com-

putation. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1575–1590.

[32] Taeyun Kim, Yongwoo Oh, and Hyoungshick Kim. 2020. Efficient privacy-

preserving fingerprint-based authentication system using fully homomorphic

encryption. Security and Communication Networks 2020 (2020), 1–11.

[33] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-

putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021), 4961–4973.

[34] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev

Khudanpur. 2017. A study on data augmentation of reverberant speech for robust

speech recognition. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 5220–5224.

[35] Shaofeng Lu, Cheng Li, Xinyi Feng, Yuefeng Lu, Yulong Hu, and Wenxi Li. 2021.

Privacy-preserving Hamming distance Protocol and Its Applications. In 2021
2nd International Conference on Electronics, Communications and Information
Technology (CECIT). IEEE, 848–853.

[36] Silvio Micali, Oded Goldreich, and Avi Wigderson. 1987. How to play any mental

game. In Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC.
ACM, 218–229.

[37] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework for

machine learning. In Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security. 35–52.

[38] Mahesh Kumar Morampudi, Munaga VNK Prasad, and USN Raju. 2020. Privacy-

preserving iris authentication using fully homomorphic encryption. Multimedia
Tools and Applications 79 (2020), 19215–19237.

[39] Andreas Nautsch, Jose Patino, Amos Treiber, Themos Stafylakis, Petr Mizera,

Massimiliano Todisco, Thomas Schneider, and Nicholas Evans. 2019. Privacy-

preserving speaker recognition with cohort score normalisation. arXiv preprint
arXiv:1907.03454 (2019).

[40] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. {ABY2.
0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation. In 30th
USENIX Security Symposium (USENIX Security 21). 2165–2182.

[41] Yogachandran Rahulamathavan. 2022. Privacy-preserving similarity calcula-

tion of speaker features using fully homomorphic encryption. arXiv preprint
arXiv:2202.07994 (2022).

[42] Yogachandran Rahulamathavan, Safak Dogan, Xiyu Shi, Rongxing Lu, Muttukr-

ishnan Rajarajan, and Ahmet Kondoz. 2020. Scalar product lattice computation

for efficient privacy-preserving systems. IEEE Internet of Things Journal 8, 3
(2020), 1417–1427.

[43] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party

secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 325–342.

[44] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2020. Ariann:

Low-interaction privacy-preserving deep learning via function secret sharing.

arXiv preprint arXiv:2006.04593 (2020).
[45] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2022. Ariann:

Low-interaction privacy-preserving deep learning via function secret sharing.

Proceedings on Privacy Enhancing Technologies 2022, 1 (2022), 291–316.
[46] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[47] LI Shundong, ZHANG Mengyu, and XU Wenting. 2021. Secure Scalar Product

Protocols. Chinese Journal of Electronics 30, 6 (2021), 1059–1068.
[48] David Snyder, Guoguo Chen, and Daniel Povey. 2015. Musan: A music, speech,

and noise corpus. arXiv preprint arXiv:1510.08484 (2015).
[49] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. 2016. Efficient functional

encryption for inner-product values with full-hiding security. In Information
Security: 19th International Conference, ISC 2016, Honolulu, HI, USA, September
3-6, 2016. Proceedings 19. Springer, 408–425.

[50] Amos Treiber, Andreas Nautsch, Jascha Kolberg, Thomas Schneider, and

Christoph Busch. 2019. Privacy-preserving PLDA speaker verification using

outsourced secure computation. Speech Communication 114 (2019), 60–71.

[51] Florian Van Daalen, Lianne Ippel, Andre Dekker, and Inigo Bermejo. 2023. Privacy

Preserving 𝑛-Party Scalar Product Protocol. IEEE Transactions on Parallel and
Distributed Systems (2023).

[52] Thijs Veugen, Robbert de Haan, Ronald Cramer, and Frank Muller. 2014. A

framework for secure computations with two non-colluding servers and multiple

clients, applied to recommendations. IEEE Transactions on Information Forensics
and Security 10, 3 (2014), 445–457.

[53] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek

Mittal, and Tal Rabin. 2021. F: Honest-majority maliciously secure framework

for private deep learning. Proceedings on Privacy Enhancing Technologies 2021, 1
(2021), 188–208.

[54] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
annual symposium on foundations of computer science (Sfcs 1986). IEEE, 162–167.

[55] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

A FURTHER THEOREMS AND ASSOCIATED
PROOFS

We attach these theorems and their proofs of our CondEval con-

structions of section 4.3 in the following.

Theorem 3. Correctness. Assuming all servers indeed honestly

follow CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA), i.e., none of the servers
deviate from the protocol description, then they obtain ((𝑦)𝑚, [𝜎]A).
Denote 𝑝 the probability that CondEval.Verify((𝑦)𝑚, [𝜎]A, 𝜓) is
equal to 𝑠 ∧ 𝑓 (𝑥), we claim 𝑝 = 1 − 1/2𝑚 .

Proof. Assume all servers honestly followCondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA).
∀𝑖 ∈ [𝑚], if𝜓 [𝑖] = 0. From Theorem 1, we know [𝑦𝑖]B is equal to

[𝑠 ∧ 𝑓 (𝑥)]B as expected. Otherwise if 𝜓 [𝑖] = 1, since [𝑠]B
0
, [𝑠]B

1

is either {0, 0} or {1, 1}, which implies 𝑦𝑖 = Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕
Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) or 𝑦𝑖 = Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ Eval𝑓 (𝑘1−𝑡 , 1 −
𝑡, 𝛿𝑥), then [𝑦𝑖]B is equal to [0]B. Thus, the functionality out-

puts a valid authenticated Boolean secret sharing. However, in

the case of𝜓 = {0, 1}𝑚 which has a probability of 1/2𝑚 the proto-

col CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓) outputs −1. Thus, 𝑝 is equal to

1 − 1/2𝑚 . □

Theorem 4. Security. In the presence of an active PPT adversaryA
among two servers in CondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA), where
K∗∧ comes from the output of functionality CondEval.Setup∗, we
assert that A learns no information about 𝑥 , 𝑠 , 𝑠 ∧ 𝑓 (𝑥) or𝜓 .

Proof. After online evaluation, for each 𝑏 ∈ {0, 1} we denote
S𝑏 ’s transcript view are composed of transcript views ofCondEval.Eval(K∗∧ [𝑖], [𝑠𝑖]B, [𝑥]A)
for each 𝑖 ∈ [𝑚], thus, fromTheorem 2, we know thatCondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚, J𝑥KA)
does not leak any information about 𝑥 , 𝑠 , or 𝑠 ∧ 𝑓 (𝑥). Furthermore,

owing to the computational indistinguishability of FSS keys from

entirely random keys, based on the security of the pseudorandom

generator [10], a probabilistic polynomial-time (PPT) bounded A
cannot distinguish between a trap key instance, a completely ran-

dom key, or a normal key instance with significant probability.

Consequently, A gains no information about𝜓 . □

Theorem5. Soundness. Assuming the existence of an active PPT ad-

versaryA (S0 or S1) when performingCondEval.Eval∗ (∧,K∗∧, (𝑠)𝑚 ,

J𝑥KA) that outputs ((𝑦)𝑚, [𝜎]A). We denote by 𝑝 the probability

that CondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓) = ¬(𝑠 ∧ 𝑓 (𝑥)). We claim

𝑝 < 2
−ℓ1+log (ℓ1+1) + 2

1−𝑚 +
(3

4

)𝑚 · 2−(ℓ0+ℓ1)
where ℓ1 denotes the length of the MAC key.

Proof. IfCondEval.Verify((𝑦)𝑚 , [𝜎]A,𝜓) = ¬(𝑠∧𝑓 (𝑥)),w.l.o.g.,
we assume S0 is the malicious server in the functionalityCondEval∗.
The actual computation can be performed in two ways:

• S0 honestly follows CondEval.Eval∗ (∧, K∗∧, (𝑠)𝑚, J𝑥KA).
• S0 arbitrarily deviates from CondEval.Eval∗ (∧, K∗∧, (𝑠)𝑚 ,

J𝑥KA), either by flipping [𝑠𝑖]B
0
(𝑖 ∈ [𝑚]) when performing

the KeyDec step OT, or dishonestly flipping partial shares

when reporting (𝑠)𝑚 to the receiver.

We denote by 𝑝1 and 𝑝2 as the probability that CondEval.Verify
((𝑦)𝑚, [𝜎]A, 𝜓) = ¬(𝑠 ∧ 𝑓 (𝑥)) for each of the two cases above

respectively.

In the first case, from Theorem 1 we know with probability of

1/2𝑚 the protocol outputs −1, and with probability of 1 − 1/2𝑚 it

outputs 𝑠 ∧ 𝑓 (𝑥), but it never outputs ¬(𝑠 ∧ 𝑓 (𝑥)). Thus, 𝑝1 = 0.

For the second case, there are three events A, B, C that S0 may

manipulate the protocol and thus, may result in outputting a flipped

authentication bit (¬(𝑠 ∧ 𝑓 (𝑥)))𝑚 :

(1) 𝐴: S0 reports one or more dishonest arithmetical shares,

submits a manipulated proof 𝜏∗
0
such that it still guarantees

𝜏∗
0
+ 𝜏1 = 0, and resulting to a valid flipped authenticated bit

(𝑦∗)𝑚 where 𝑦∗ = ¬(𝑠 ∧ 𝑓 (𝑥)).
(2) B: S0 manages to flip the compuation result (𝑦)𝑚 to (¬𝑦)𝑚

by flipping [𝑠𝑖]B
0
for all𝜓 [𝑖] = 0, 𝑖 ∈ [𝑚] when performing

the KeyDec step, and also presents a correct proof that passes
the final verification.

(3) C: ∀𝑖 ∈ [𝑚], S0 manages to guess each𝜓 [𝑖] correctly, thus,
S0 flips [𝑦𝑖]B

0
if 𝜓 [𝑖] = 0, otherwise if 𝜓 [𝑖] = 1 keeps [𝑦𝑖]B

0

unchanged. In the end S0 submits his manipulated sharing

of (𝑦)𝑚 to B.

Each event is considered independently. Concerning event 𝐴, ac-

cording to [16], it is known that the probability of event𝐴 occurring

is no greater than 2
−ℓ1+log (ℓ1+1)

.

Regarding event 𝐵, the final outcome is only altered when 𝑓 (𝑥) =
1 and all the normal indexes (𝜓 [𝑖] = 0) must be flipped during the

oblivious transfer, as we know𝜓 is uniformly determined. We anal-

yse the probability of S0 successfully flipping all normal indexes
without being detected as follows. First, we distinguish two com-

plementary events 𝐵1, 𝐵2 that are covered by 𝐵. We denote 𝐵1 as

the event that S0 correctly guesses 𝜓 [𝑖] for all 𝑖 ∈ [𝑚]. Then we

have

𝑃 (𝐵1) =
(1

4

+ 1

4

)𝑚
=

1

2
𝑚
.

Additionally, we denote𝐵2 as the eventwhen S0 correctly guesses

all𝜓 [𝑖] where𝜓 [𝑖] = 0, but not perfectly correctly guesses all𝜓 [𝑖]
where𝜓 [𝑖] = 1, i.e., S0 wrongly determined𝜓 [𝑗] = 0 by at least one

index 𝑗 where in fact𝜓 [𝑗] is equal to 0. The reason why we distin-

guish 𝐵1 and 𝐵2 is because for event 𝐵1 the adversary S0 does not

need to do anything to pass the verification. However, for the event

𝐵2 the adversary S0 needs to select a random offset value 𝑒 added to

[𝜎]A
0
to pass the verification (it happens with probability 2

−(ℓ0+ℓ1)
),

the reason is because in event 𝐵2 that S0 wrongly assumed𝜓 [𝑗] = 0

by at least one index 𝑗 where in fact when𝜓 [𝑗] = 1, under this case

servers obtain an associated secret sharing of a non-zero random

value. Thus, we have

𝑃 (𝐵2) =
((3

4

)𝑚 − 𝑃 (𝐵1)
)
· 2−(ℓ0+ℓ1) <

(3

4

)𝑚 · 2−(ℓ0+ℓ1) .
Denote 𝑝∗ ∈ [0, 1] the probability when the input 𝑓 (𝑥) is equal to
1, then we have

𝑃 (𝐵) = 𝑃∗ · (𝑃 (𝐵1) + 𝑃 (𝐵2)) < 𝑃∗ · (
1

2
𝑚
+
(3

4

)𝑚 · 2−(ℓ0+ℓ1))
Denote 𝑃 (𝐵∗) the probability that an occurrence of event 𝐵 results

in an flipped result 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)), which we know it happens

only when𝜓 ≠ {1}𝑚 , so we have 𝑃 (𝐵∗) < 𝑃 (𝐵).

For event C, 𝑃 (𝐶) = 1/2𝑚 . Thus,

𝑝2 < 𝑃 (𝐴) + 𝑃 (𝐵∗) + 𝑃 (𝐶)
< 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶)

< 2
−ℓ1+log (ℓ1+1) + 𝑝

∗ + 1

2
𝑚
+
(3

4

)𝑚 · 2−(ℓ0+ℓ1)
< 2
−ℓ1+log (ℓ1+1) + 2

1−𝑚 +
(3

4

)𝑚 · 2−(ℓ0+ℓ1) .
In conclusion,

𝑝 = 𝑝1 + 𝑝2 < 2
−ℓ1+log (ℓ1+1) + 2

1−𝑚 +
(3

4

)𝑚 · 2−(ℓ0+ℓ1) .
□

B FULL PROTOCOL IN THE MALICIOUS
SETTING

We now present Protocols 3 and 4 which evaluate the circuit C in a

stronger threat model, with one malicious server whomight deviate

from the protocol description in Protocol 2. More specifically:

• In protocol 3, B first runs CondEval∗ .Setup(1𝜆), then from

those results it obtains Δ and 𝜓 , which are secret keys for

authenticating an arithmetical revelation and a Boolean rev-

elation in the later online evaluation. Afterwards, B addi-

tionally generates an authenticated random secret sharing

I𝑥 ,I𝑦 to be used in input phase. It also generates a function

dependent authenticated correlated random secret sharing

JRKA from Δ, and random function secret sharing keys K0

from𝜓 for computing 𝑐1;

• After the setup phase is done, whenever the input is ready,

(i.e., the client provides her fresh template 𝑥), the client and
the two servers coordinately run:

⟨⟨𝑥𝑖 ⟩⟩A ← FInput∗ (𝑥𝑖 , [Δ]A, J𝑟 (𝑥)𝑖𝑛
[𝑖]KA, J𝑥𝑖𝑛 [𝑖]KA)

where FInput∗ is shown in Fig. 4;

• Then in the evaluation phase, the two servers execute the on-

line evaluation Protocol 4 CS.Eval∗ in which we incorporate

a variant version ofCondEval.Eval∗ denoted asCondEval.Eval∗trunc,
whose sole difference to the former is to perform a local

truncation after each 𝛿𝑥 is revealed (similarly to the process

applied in the semi-honest setting);

• After completing the evaluation phase in Protocol 4, the

servers obtain a final authenticated boolean secret sharing

(𝑦)𝑚 and an associated proof [𝜎]A.
• Upon receiving (𝑦)𝑚 and [𝜎]A from the servers, with value

𝜓 already known in the setup phase, B runs CondEval.Verify
((𝑦)𝑚, [𝜎]A,𝜓) and outputs a symbol 𝑧 ∈ −1, 0, 1,⊥. B ac-

cepts the authentication bit as 𝑧 if 𝑧 is not in {−1,⊥}.
We note here that via Protocol 4, we are able to capture a client

who may act maliciously i.e., may attempt to impersonate a legiti-

mate user and deduce information for the corresponding templates.

Thus, we incorporate a mechanism to check that the secret sharing

of the fresh (as well as the reference) template have been secret

shared correctly.

Protocol 3 (I𝑥 ,I𝑦, JRKA, ¯K∗∧,K0) ← CS.Setup∗ (1𝜆,𝑚, ℓ0, ℓ1, 𝜌)
Players: B.
Functionality: (I𝑥 , I𝑦, JRKA, ¯K∗∧,K0) ← CS.Setup∗ (1𝜆,𝑚, ℓ0, ℓ1, 𝜌) .
Input: A security parameter 𝜆, ℓ, ℓ1, 𝜌 ∈ Z+.
Output: (I𝑥 , I𝑦, JRKA, ¯K∗∧,K0) .
1: K∗∧ ← CondEval∗ .Setup(∧, 1𝜆, ℓ0, ℓ1,𝑚)
2: {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝑟𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓]B, [Δ]A} ← K∗∧
3: Δ← [Δ]A

0
+ [Δ]A

1
,𝜓 ← [𝜓]A

0
⊕ [𝜓]A

1

4: 𝑟
(𝑥)
𝑖𝑛
←$Z𝑛

2
ℓ , J𝑟

(𝑥)
𝑖𝑛

KA ← SS.Share({𝑟 (𝑥)
𝑖𝑛

,Δ · 𝑟 (𝑥)
𝑖𝑛
},Z

2
ℓ
0
+ℓ

1
)

5: 𝑟
(𝑦)
𝑖𝑛
←$Z𝑛

2
ℓ , J𝑟

(𝑦)
𝑖𝑛

KA ← SS.Share({𝑟 (𝑦)
𝑖𝑛

,Δ · 𝑟 (𝑦)
𝑖𝑛
},Z

2
ℓ
0
+ℓ

1
)

6: (𝑥𝑖𝑛,𝑦𝑖𝑛) ←$Z2𝑛

2
ℓ , 𝑢𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑦𝑖𝑛)

7: 𝑣𝑖𝑛 ← Prod(𝑥𝑖𝑛,𝑥𝑖𝑛),𝑤𝑖𝑛 ← Prod(𝑦𝑖𝑛,𝑦𝑖𝑛)
8: (𝑟1, 𝑟2) ←$Z2

2
ℓ

9: for 𝑖 = 1 to𝑚 do
10: 𝛼 (1,𝑖) ←$Z

2
ℓ

11: 𝑟 ←$Z
2
𝜌

12: 𝛼 (2,𝑖) ← [𝑟𝑖]A
0
+ [𝑟𝑖]A

1

13: 𝜂𝑖 ← Shift(𝛼 (2,𝑖) , −𝜌, ℓ) + 𝑟
14: (𝑘 (1,𝑖)

0
, 𝑘
(1,𝑖)
1
) ← Gen[0,2

ℓ−1]
ℓ (1𝜆, 𝛼 (1,𝑖) , 1 −𝜓 [𝑖], 0,Z2)

15: J𝜂𝑖KA ← (SS.Share(𝜂𝑖 ,Z
2
ℓ
0
+ℓ

1
), SS.Share(Δ · 𝜂𝑖 ,Z

2
ℓ
0
+ℓ

1
))

16:
¯K∗∧ ← {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝜂𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓]B, [Δ]A}

17: R ← {𝑥𝑖𝑛,𝑦𝑖𝑛,𝑢𝑖𝑛,𝑣𝑖𝑛,𝑤𝑖𝑛, (𝑟1, 𝑟2, 𝑟1𝑟2), (𝛼 (1,1))2}
18: JRKA ← (SS.Share(R,Z

2
ℓ
0
+ℓ

1
), SS.Share(R · Δ,Z

2
ℓ
0
+ℓ

1
))

19: K0 ← {𝑘 (1,𝑖)
0

, 𝑘
(1,𝑖)
1
}𝑖∈ [𝑚]

20: I𝑥 ← (J𝑟 (𝑥)𝑖𝑛
KA, J𝑥𝑖𝑛KA), I𝑦 ← (J𝑟 (𝑦)𝑖𝑛

KA, J𝑦𝑖𝑛KA)
21: Outputs (I𝑥 , I𝑦, JRKA, ¯K∗∧,K0)

FUNCTIONALITY ⟨⟨𝑥⟩⟩A or ⊥ ← FInput∗ (𝑥, [Δ]A, J𝑟KA, J𝑟inKA):
Players: A client C, S0 and S1.

Input: A secret 𝑥 from C, and J𝑟KA, J𝑟inKA from S0, S1.

Output: ⟨⟨𝑥⟩⟩A.
1: ∀𝑏 ∈ {0, 1}, S𝑏 sends [𝑟]A

𝑏
to C.

2: ∀𝑏 ∈ {0, 1}, C returns 𝛿𝑏𝑥 = 𝑥 + [𝑟]A
0
+ [𝑟]A

1
to S𝑏 .

3: ∀𝑏 ∈ {0, 1}, S𝑏 computes

J𝑥KA
𝑏
= (𝑏 · 𝛿𝑏𝑥 − [𝑟]A𝑏 , [Δ]

A
𝑏
· 𝛿𝑥 − [Δ · 𝑟]A𝑏)

4: Servers run FReveal ([𝑥 + 𝑟in]A) and obtain 𝑥 + 𝑟in. After that,
∀𝑏 ∈ {0, 1} S𝑏 computes

⟨⟨𝑥⟩⟩A
𝑏
= (𝑥 + 𝑟in, J𝑥KA𝑏 , J𝑟inK

A
𝑏
)

5: Ouput ⟨⟨𝑥⟩⟩A.

Figure 4: Robust input protocol in the malicious setting.

B.0.1 Soundness. In Protocol 4, assuming an active adversary A,

the soundness of functionality CondEval.Eval∗trunc has been proven

in Theorem 5. Furthermore, due to the protection provided by the

MAC scheme of other operations using authenticated arithmetic

sharing, let 𝑝 represent the probability that CondEval.Verify((𝑦)𝑚 ,

[𝜎]A, [𝜓]B) = 1−Sign(cos(𝑥,𝑦)−𝜏). Consequently, we can deduce

𝑝 < 2
−ℓ1+log (ℓ1+1) + 2

1−𝑚 +
(3

4

)𝑚 · 2−(ℓ0+ℓ1) .
B.0.2 Security. We assert that, Protocols 3 and 4 provide a secure

implementation of the circuit C when faced with an active PPT

Protocol 4 ((𝑦)𝑚, [𝜎]A) ← CS.Eval∗ (JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, ¯K∗∧,K0,

𝜏, 𝜌)
Players: S0, S1.

Functionality: ((𝑦)𝑚, [𝜎]A) ← CS.Eval∗ (JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, ¯K∗∧,K0,

𝜏, 𝜌) .
Input: Secret sharing [Δ]A, JRKA, ⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A and K1 from S0, S1, K2

from B, a public threshold 𝜏 ∈ (0, 1] and a truncation parameter 𝜌 ∈ Z+.
Output: ((𝑦)𝑚, [𝜎]A) .
1: 𝑝← [∅]𝑚+2
2: 𝑟 ← Frand (1𝜆,𝑚 + 2,Z

2
ℓ
0
+ℓ

1
)

3: J𝑢KA ← SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑢𝑖𝑛KA)
4: J𝑣KA ← SS.IP(⟨⟨𝑥⟩⟩A, ⟨⟨𝑥⟩⟩A, J𝑣𝑖𝑛KA)
5: J𝑤KA ← SS.IP(⟨⟨𝑦⟩⟩A, ⟨⟨𝑦⟩⟩A, J𝑤𝑖𝑛KA)
6: 𝛿𝑣 ← FReveal ([𝑣 + 𝑟1]A) ⊲ First round

7: 𝛿𝑤 ← FReveal ([𝑤 + 𝑟2]A) ⊲ First round

8: 𝑝[1] ← (𝛿𝑣, [Δ · 𝛿𝑣]A, 𝑟[1]),𝑝[2] ← (𝛿𝑤 , [Δ · 𝛿𝑤]A, 𝑟[2])
9: ⟨⟨𝑣⟩⟩A ← (𝛿𝑣, J𝑣KA, J𝑟1KA)
10: ⟨⟨𝑤⟩⟩A ← (𝛿𝑤 , J𝑤KA, J𝑟2KA)
11: {{𝐶𝑖,𝑗 , SK𝑖,𝑗 , J𝑟𝑖KA}𝑖∈ [𝑚], 𝑗 ∈{0,1}, [𝜓]B, [Δ]A} ← K∗∧
12: {𝑘 (1,𝑖)

0
, 𝑘
(1,𝑖)
1
}𝑖∈{0,1} ← K0

13: for 𝑖 = 1 to𝑚 do
14: J𝛿

𝑢 (𝑖) K
A ← J𝑢KA + J𝛼 (1,𝑖) KA

15: 𝛿
𝑢 (𝑖) ← FReveal ([𝛿𝑢 (𝑖)]

A) ⊲ First round

16: for 𝑏 = 0 to 1 do
17: [𝑠𝑖]B𝑏 ← Eval[0,2

ℓ−1]
ℓ (𝑘 (1,𝑖)

𝑏
, 𝑏, 𝛿

𝑢 (𝑖))
18: 𝑝[2 + 𝑖] ← (𝛿

𝑢 (𝑖) , [Δ · 𝛿𝑢 (𝑖)]
A, 𝑟[2 + 𝑖])

19: (𝑠)𝑚 ← {[𝑠1]B, · · · , [𝑠𝑚]B}
20: 𝑇 ← Shift(1

𝜏2
, −𝜌, ℓ)

21: J𝑧KA ← 𝑇 · SS.MUL(⟨⟨𝑢 (1) ⟩⟩A, ⟨⟨𝑢 (1) ⟩⟩A, J(𝛼 (1,1))2KA)
22: J𝑧KA ← J𝑧KA − 2

𝜌 · SS.MUL(⟨⟨𝑣⟩⟩A, ⟨⟨𝑤⟩⟩A, J𝑟1𝑟2KA)
23: ((𝑦)𝑚, [𝜎]A) ← CondEval.Eval∗trunc (∧, ¯K∗∧, (𝑠)𝑚, J𝑧KA) ⊲ Second

round

24: [𝜍]A ← FMacVryGen ([Δ]A,𝑝)
25: [𝜎]A ← [𝜎]A + [𝜍]A
26: Outputs ((𝑦)𝑚, [𝜎]A) .

A in the 2PC setting. Specifically, with the correlated randomness

provided in Protocol 3, following the online evaluation of Protocol 4,

A learns nothing about the inputs 𝑥, 𝑦, or Sign(cos(𝑥,𝑦) − 𝜏).

Proof. From Theorem 4, we first exclude information leak-

age within CondEval.Eval∗trunc (∧, ¯K∗∧, (𝑠)𝑚, J𝑧KA). Still, we need

to prove that the view transcript

View𝑏 := {{𝑘 (1,𝑖)
𝑏

, 𝛿𝑢 (𝑖) }𝑖∈[𝑚] , 𝛿𝑣, 𝛿𝑤}
of S𝑏 for each 𝑏 ∈ {0, 1} does not leak any information. This is true,

as 𝛿𝑣, 𝛿𝑤 ∼ U𝑁 information theoretically hide the associated inter-

mediate computation results; Nevertheless, for {(𝑘 (1,𝑖)
𝑏

, 𝛿𝑢 (𝑖))}𝑖∈[𝑚]
which are correlated, we argue that A has only the view 𝑘

(1,𝑖)
𝑏

which is pseudo-random (computationally indistinguishable from

a real random key) as proved in Fig. 1 in [10]; Thus, hiding the

information of 𝛼 (1,𝑖) contained in (𝑘 (1,𝑖)
0

, 𝑘
(1,𝑖)
1
) from A. □

B.1 Truncating 𝛿𝑥
It is worth to note that while executing CS.Eval, a variant ver-

sion of CondEval.Eval which we denote as CondEval.Evaltrunc is
incorporated whereby 𝛿𝑥 is truncated additionally. Namely, in

CondEval.Evaltrunc it performs

𝛿𝑥 ← Shift(𝛿𝑥 , 4𝜌, ℓ)

while the remaining steps in CondEval.Eval remain unchanged.

Previously, when dealing with the truncation of [𝑥]A, [𝜂]A was

generated and corresponds to the secret sharing result of the sum

of the shifting of 𝑟 to the left by 𝜌 and a random value 𝑣 ∈ Z2
𝜌 ; In

the above equation, the fractional part of 𝛿𝑥 is truncated by 4𝜌 bits

due to the accumulation of the three multiplications over secret

sharing and one multiplication over a public scalar value (𝑇, 2𝜌

resp. in line 12,14). Such a truncation does not imply any additional

communication round and is performed during the second com-

munication round. Furthermore, as it will be shown in section 6.3,

such a truncation has almost no impact on the actual accuracy of

the protocol.

C CONDEVAL OVER THE OR GATE
In this section, we demonstrate a direct method of computing 𝑠 ∨
𝑓 (𝑥) instead of computing ¬(¬𝑠∧¬𝑓 (𝑥)). The pipeline is similar to

that of computing a logical-and gate, including the CondEval.Setup
and CondEval.Eval functions. In Table 6 we provide the details

of CondEval.Setup (∨, 1𝜆, ℓ) for the semi-honest setting, which

only differs from the construction of CondEval.Setup((∧, 1𝜆, ℓ))
by appending an additional random secret bit 𝜔 . We construct

CondEval.Eval(∨,K∨, [𝑠]B, [𝑥]A) fromCondEval.Eval(∧,K∧, [𝑠]B,
[𝑥]A), which follows all the steps except tweaking the evaluation

step for each 𝑏 ∈ {0, 1} where i.e., we perform

[𝑦𝑖]B𝑏 ← Eval𝑓 (𝑘 (𝑏) , id(𝑏) , 𝛿𝑥) ⊕ 𝜔 (𝑏) .

Theorem6. Correctness. If S0 and S1 honestly followCondEval.Eval
(∨,K∨, [𝑠]B, [𝑥]A), which uses the correlated FSS key pairs pre-

pared in Table 6, then CondEval.Eval(∨,K∨, [𝑠]B, [𝑥]A) outputs
[𝑦]B = [𝑠 ∨ 𝑓 (𝑥)]B.

Proof. If 𝑠 = 0, then ([𝑠]B
0
, [𝑠]B

1
) is equal to either (0, 0) or (1, 1),

which implies

𝑦 = (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ 𝜔)

⊕ (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ 𝜔)

or

𝑦 = (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))

⊕ (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))

In either case, 𝑦 = 𝑓 (𝑥), as desired. On the other hand, if 𝑠 = 1, then

([𝑠]B
0
, [𝑠]B

1
) equals either (0, 1) or (1, 0), which implies

𝑦 = (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))

⊕ (Eval𝑓 (𝑘1−𝑡 , 1 − 𝑡, 𝛿𝑥) ⊕ 𝜔)

or

𝑦 = (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ 𝜔)

⊕ (Eval𝑓 (𝑘𝑡 , 𝑡, 𝛿𝑥) ⊕ (1 − 𝜔))

In either case, 𝑦 = 1, as desired. Thus, 𝑦 = 𝑠 ∨ 𝑓 (𝑥). □

KeyGen

𝑟 ←$Z
2
ℓ , [𝑟]A ← SS.share(𝑟,Z

2
ℓ);

(𝑘0, 𝑘1) ← Gen𝑓 (1𝜆, 𝑟 , 1, 0,Z2) (|𝑘0 | = |𝑘1 | = 𝐾);
𝑡 ←$Z2;𝜋0 ←$Z2, 𝜋1 ←$Z2;𝜔 ←$Z2;𝐿 := 𝐾 + 2

sk(0)
0
∥sk(0)

1
∥sk(1)

0
∥sk(1)

1
←$ {0, 1}4𝐿,

|sk(0)
0
| = |sk(0)

1
| = |sk(1)

0
| = |sk(1)

1
| = 𝐿.

KeyEnc

𝑚0 = {sk(0)
0
⊕ (𝑘𝑡 ∥𝑡 ∥𝜔), sk(0)

1
⊕ (𝑘1−𝑡 ∥(1 − 𝑡)∥(1 − 𝜔))}

𝐶0 = FPermu (𝜋0,𝑚0), SK0 = {(sk(1)
0
, sk(1)

1
), 𝜋1}

𝑚1 = {sk(1)
0
⊕ (𝑘1−𝑡 ∥(1 − 𝑡)∥𝜔), sk(1)

1
⊕ (𝑘𝑡 ∥𝑡 ∥(1 − 𝜔))}

𝐶1 = FPermu (𝜋1,𝑚1), SK1 = {(sk(0)
0
, sk(0)

1
), 𝜋0}

Ouputs K∨ = {𝐶𝑖 , SK𝑖 , [𝑟]A𝑖 }𝑖∈{0,1}
Table 6: The construction of K∨ ← CondEval.Setup(∨, 1𝜆,Z

2
ℓ)

in the semi-honest setting, where 𝜆 is the security parameter
used in generating FSS keys, Z

2
ℓ defines the domain of the

secret sharing.

Naturally, we have same security guarantee for CondEval.Eval
(∨,K∨, [𝑠]B, [𝑥]A) following theorem 2. The detailed construction

in the case of malicious setting follows similarly with the protocols

in section 4.3 and we omit the detials here.

	Abstract
	1 Introduction
	2 Problem statement
	2.1 Notations
	2.2 Application Scenario
	2.3 Threat Model
	2.4 Privacy-preserving cosine similarity - Technical Overview

	3 Preliminaries
	3.1 Two-Party Secure Computation
	3.2 Secure Truncation
	3.3 Function Secret Sharing

	4 Realizing CondEval in 2PC
	4.1 High-level Overview
	4.2 CondEval in the Semi-Honest setting
	4.3 CondEval in the Malicious Setting

	5 Secure Cosine similarity Computation and Verification
	5.1 Full protocol in the semi-honest setting

	6 Experiment & results
	6.1 Data preparation
	6.2 Evaluation setting
	6.3 Evaluation results

	7 Conclusion
	Acknowledgments
	References
	A Further theorems and associated proofs
	B Full protocol in the malicious setting
	B.1 Truncating _x

	C CondEval over the OR gate

