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Abstract. In this paper, we introduce the subfield bilinear collision
problem and use it to construct an identification protocol and a signature
scheme. This construction is based on the MPC-in-the-head paradigm
and uses the Fiat-Shamir transformation to obtain a signature.

1 Introduction

The use of the Multi-Party Computation in the Head (MPCitH) paradigm for
Zero-Knowledge (ZK) protocols was introduced in [16]. The general idea is to use
any NP-relationR(x, w) to obtain a ZK-protocol in which a prover P convinces a
verifier V that she knows a valid witness w for a given (public) value of x without
revealing any information about x. In this paper, we introduce a problem which
naturally arises by using the standard techniques for finding discrete logarithms
in small characteristic finite fields to construct such a protocol. We then use the
Fiat-Shamir heuristic [12] to turn the corresponding MPCitH protocol into a
signature scheme. The advantage of introducing this new problem is that it can
easily be transformed into an MPC protocol which yields a smaller signature
size compared to existing schemes.
The problem we consider throughout this paper uses three parameters: A prime
power q and two positive integers k, n.

The subfield bilinear collision (SBC) Problem.

– Problem instance: Two vectors u⃗, v⃗ ∈
(
Fqk

)n, which are linearly independent
over Fq.

– Solution: Two non-colinear vectors x⃗, y⃗ ∈ (Fq)n such that

(u⃗ · x⃗) (v⃗ · y⃗) = (u⃗ · y⃗) (v⃗ · x⃗) . (1)

We denote an instance of the SBC problem given by the two vectors u⃗, v⃗ ∈
(
Fqk

)n

by SBC[u⃗, v⃗]. If the vectors x⃗, y⃗ ∈ (Fq)n are a solution of SBC[u⃗, v⃗], we use the
notation (x⃗, y⃗) ∈ SBC[u⃗, v⃗].
Note that we use the canonical embedding from Fq to Fqk for the vectors x⃗ and y⃗.
Therefore, the operations in (1) are well-defined.
This problem originates from a heuristic discrete logarithm algorithm in small
characteristic finite fields and seems hard to solve for large n when n ≈ k
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2 Preliminaries

2.1 Notations

In this section, we introduce some standard (cryptographic) notation which we
need throughout this paper. The target security level of our scheme is denoted
by λ. For any positive integer m ∈ Z+, we denote the set {1, . . . , m} by [m]. Let
D denote any probability distribution. Then the notation s←$ D indicates that
s is sampled from D. If S is a finite set, then the notation s←$ S means that s is
uniformly sampled at random from S. By using the notation s

r←−$ S, we indicate
that s is sampled pseudorandomly from S based on the seed r. Additionally, we
assume the random oracle model and consider any hash function used in this
article to be a random oracle.

Let F be a finite field and let k, n be positive integers. Then we denote the set
of all n×k matrices over F byMn,k(F). For a fixed vector x⃗ ∈ Fn, the subspace
generated by x⃗ is denoted by ⟨x⃗⟩ and the projective space over F of dimension
n by Pn(F). We denote the polynomial ring over F in X by F[X].

2.2 Basic considerations about the SBC problem

Colinear collisions are easy to find. For any vector x⃗ ∈ (Fq)n and for any
scalar α ∈ Fq, we see that

(u⃗ · x⃗) (v⃗ · (αx⃗)) = α (u⃗ · x⃗) (v⃗ · x⃗) = (u⃗ · (αx⃗)) (v⃗ · x⃗) .

Therefore, the pair (x⃗, αx⃗) always yields a collision. This is why we insist on
non-colinear vectors x⃗, y⃗ in the definition of the SBC problem.

Choice of the parameters k and n. In this section, we examine the relation
between the parameters k and n and the hardness of the corresponding instances
of the SBC problem. Let SBC[u⃗, v⃗] be an instance of the SBC problem. By
rewriting Equation (1), we want to find non-colinear vectors x⃗, y⃗ ∈ (Fq)n such
that

u⃗ · x⃗
v⃗ · x⃗

= u⃗ · y⃗
v⃗ · y⃗

,

assuming that v⃗ · x⃗ ̸= 0 and v⃗ · y⃗ ̸= 0. Consider the map

ϕ:Pn−1(Fq)→ Fqk

x⃗ 7→ u⃗ · x⃗
v⃗ · x⃗

.

We do a heuristic analysis of the expected number of collisions of ϕ. For simplic-
ity, we assume that the range of ϕ is F∗

qk and that the scalar product v⃗ · x⃗ ̸= 0
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for every x⃗ ∈ Pn−1(Fq). We consider Q := qn−1
q−1 ≈ qn−1 vectors in the domain

of ϕ. Therefore, there are (
Q

2

)
= Q(Q− 1)

2 ≈ Q2

2

possible pairs of vectors which could be part of a collision. Assuming that the
range of ϕ is F∗

qk , the expected number of collisions depending on k and n can
be estimated by

Q(Q− 1)
2(qk − 1) ≈

Q2

2qk
≈ q2(n−1)

2qk
= q2n−k−2

2 .

First, we consider the case n > k + 1. Fix a random vector x⃗ ∈ Pn−1(Fq)
and let c = ϕ(x⃗). Finding a collision (x⃗, y⃗) is then equivalent to finding a vector
y⃗ ∈ Pn−1(Fq) with y⃗ ̸= x⃗ such that

(cv⃗ − u⃗) · y⃗ = 0.

Each entry of the vectors u⃗ and v⃗ is an element of Fqk . Let (α1, . . . , αk) be an
Fq basis of Fqk . We can express each entry of (cv⃗ − u⃗) using this basis to obtain
a matrix of the form

M =


a

(1)
1 . . . a

(1)
n

...
. . .

...
a

(k)
1 . . . a

(k)
n

 ∈Mk,n(Fq),

where cvi − ui =
∑k

j=1 a
(j)
i αj for i = 1, . . . , n. By construction, x⃗ is in the right

kernel of M. To obtain a collision, the goal is to find another vector y⃗ in the right
kernel of M with y⃗ ̸= x⃗ in Pn−1(Fq). If n > k + 1, such a vector y⃗ has to exist
and can be computed by solving the linear system My⃗ = 0.

Next, consider the case n ≤ k + 1. We pick N pairwise non-colinear vectors
x⃗1, . . . , x⃗N and want to estimate the probability that at least one of these N
distinct vectors is part of a collision with the remaining Q −N ≈ Q vectors. If
one of these N vectors, say x⃗j , is part of a collision, we can compute cj = ϕ(x⃗j)
and again solve the linear system

(cj v⃗ − u⃗) · y⃗ = 0

to find the vector y⃗. Following a standard heuristic argument, we expect such a
collision to appear if NQ > qk, i.e. if N > qk+1−n. By using this technique, we
get an attack against the SBC problem in O(qk+1−n), which is quite efficient for
n close to k.

If we consider n ≪ k
2 , we do not expect any collisions to exist. Therefore, a

setup where n ≈ k
2 seems to be a good parameter choice for the SBC problem:

We expect collisions to exist, but the technique for finding collisions described
above is not efficient.
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Normalization of solutions. Consider a solution (x⃗, y⃗) ∈ SBC[u⃗, v⃗] of the
SBC problem. We define the matrix

N =
(

xn−1 yn−1
xn yn

)
∈M2,2(Fq).

First, we consider the case that N is singular. Let K⃗ ̸= (0, 0) be an element of
the left kernel of N , i.e. K⃗ ·(xn−1, xn) = 0 and K⃗ ·(yn−1, yn) = 0. We distinguish
two cases:

– K⃗ ∈ ⟨(1, 0)⟩: In this case, the entries xn−1 and yn−1 to not contribute towards
the sum in the scalar product computations. Therefore, we could decrease
the size of the vectors u⃗ and v⃗ to n − 1 by removing the entries un−1 and
vn−1 from u⃗ and v⃗ respectively. Afterwards, we can still obtain a solution(

x⃗′, y⃗′
)

to the SBC problem with smaller dimension n− 1 by removing the
entries xn−1 and yn−1 from x⃗ and y⃗ respectively.

– K⃗ ∈ ⟨(α, 1)⟩ for an α ∈ Fq: For simplicity, we normalize K⃗ to be of the form
K⃗ = (c, 1). Then the following equations hold:

(un−1, un) · (xn−1, xn) = (un−1, un) · (xn−1, xn)− unK⃗ · (xn−1, xn),
(un−1, un) · (yn−1, yn) = (un−1, un) · (yn−1, yn)− unK⃗ · (yn−1, yn),
(vn−1, vn) · (xn−1, xn) = (vn−1, vn) · (xn−1, xn)− vnK⃗ · (xn−1, xn),
(vn−1, vn) · (yn−1, yn) = (vn−1, vn) · (yn−1, yn)− vnK⃗ · (yn−1, yn).

If we replace un−1 by (un−1−cun) and vn−1 by (vn−1−cvn), we can remove
the entries un and vn from u⃗ and v⃗ respectively to obtain a new instance of
the SBC problem with smaller dimension n− 1. This new system still has a
solution of the form x⃗ = (x1, . . . , xn−1) and y⃗ = (y1, . . . , yn−1).

In both cases, we can reduce the dimension n of the vectors but still obtain a
solution of the SBC problem if N is singular. Since we do not want the dimension
of the problem to be easily reduced, we assume that the matrix N is non-singular
when we consider solutions of the SBC problem.
Assume that N is non-singular. Then, we can simplify the solutions in the fol-
lowing way: Compute the inverse of N , which we denote by

W =
(

w11 w12
w21 w22

)
∈M2,2(Fq).

We can use W to normalize the solution vectors x⃗, y⃗ and obtain

W ·
(

x⃗
y⃗

)
=
(

x⃗′ 1 0
y⃗′ 0 1

)
for some x⃗′, y⃗′ ∈ (Fq)n−2. The normalized vectors

((
x⃗′, 1, 0

)
,
(

y⃗′, 0, 1
))

are
also a solution of the same SBC problem SBC[u⃗, v⃗]. To see that, we check the
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equation[
u⃗ ·
(

x⃗′, 1, 0
)] [

v⃗ ·
(

y⃗′, 0, 1
)]

= [u⃗ · (w11x⃗ + w21y⃗)] [v⃗ · (w21x⃗ + w22y⃗)]

= w11w21 (u⃗ · x⃗) (v⃗ · x⃗) + w11w22 (u⃗ · x⃗) (v⃗ · y⃗)
+w12w21 (u⃗ · y⃗) (v⃗ · x⃗) + w12w22 (u⃗ · y⃗) (v⃗ · y⃗)

= w21w11 (u⃗ · x⃗) (v⃗ · x⃗) + w22w11 (v⃗ · y⃗) (u⃗ · x⃗)
+w21w12 (v⃗ · x⃗) (u⃗ · y⃗) + w22w12 (v⃗ · y⃗) (u⃗ · y⃗)

= [u⃗ · (w21x⃗ + w22y⃗)] [v⃗ · (w11x⃗ + w12y⃗)]

=
[
u⃗ ·
(

y⃗′, 0, 1
)] [

v⃗ ·
(

x⃗′, 1, 0
)]

.

In the third equation, we used the commutativity of the multiplication in Fqk

and the fact that (x⃗, y⃗) ∈ SBC[u⃗, v⃗]. By this argument, we can always normalize
a solution of the SBC problem to obtain vectors of the form x⃗ =

(
x⃗′, 1, 0

)
and

y⃗ =
(

y⃗′, 0, 1
)

. In this case, x⃗ and y⃗ are non-colinear. Throughout the rest of
this paper, we therefore assume any solution of the SBC problem to be of this
normalized form.

The normalized subfield bilinear collision (NSBC) Problem.

– Problem instance: Two vectors u⃗, v⃗ ∈
(
Fqk

)n, which are linearly independent
over Fq.

– Solution: Two vectors x⃗, y⃗ ∈ (Fq)n of the form x⃗ =
(

x⃗′, 1, 0
)

, y⃗ =
(

y⃗′, 0, 1
)

such that

(u⃗ · x⃗) (v⃗ · y⃗) = (u⃗ · y⃗) (v⃗ · x⃗) . (2)

Similar to before, we denote an instance of the NSBC problem given by the two
vectors u⃗, v⃗ ∈

(
Fqk

)n by NSBC[u⃗, v⃗]. If x⃗, y⃗ ∈ (Fq)n are a solution of NSBC[u⃗, v⃗],
we use the notation (x⃗, y⃗) ∈ NSBC[u⃗, v⃗].

Generation of normalized instances with a solution. Given q, k and n,
we can generate an instance of this problem that has a solution in the following
way: Uniformly at random choose two vectors x⃗′, y⃗′ ∈ (Fq)n−2, set x⃗ :=

(
x⃗′, 1, 0

)
and y⃗ :=

(
y⃗′, 0, 1

)
. Also, randomly choose the coordinates u1, . . . , un ∈ Fqk and

v1, . . . , vn−1 ∈ Fqk of u⃗ and v⃗. Lastly, compute vn as

vn =
(u⃗ · y⃗)

(∑n−1
i=1 vixi

)
− (u⃗ · x⃗)

(∑n−1
i=1 viyi

)
yn (u⃗ · x⃗) .

If the denominator yn (u⃗ · x⃗) happens to be zero, the computation of vn fails.
In this case, we can choose new random vectors and start the computation
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again or we can change the value of un−1 and compute vn successfully. If the
unlikely case that u⃗, v⃗ are linearly dependent over Fq appears, we can easily
adapt the vectors accordingly to avoid this case. By this construction, we have
that (x⃗, y⃗) ∈ NSBC[u⃗, v⃗].

Origin of the SBC problem. Consider the discrete logarithm problem (DLP)
in the group G = F∗

qk for some large extension degree k. Let Fq[X] denote the set
of polynomials in X with coefficients in Fq. We can represent F∗

qk as the quotient
ring Fq[X]/(Ik(X)), where Ik is an arbitrary irreducible polynomial of degree k.
We briefly describe a heuristic algorithm to solve the DLP in this group, which
is based on the function field sieve. This family of algorithms, called Frobenius
Representation algorithms, was for example studied in [19]. In the represen-
tation phase of the algorithm from [19], the goal is to find two polynomials
h0, h1 ∈ Fq[X] of degree at most 2 such that there exists an irreducible poly-
nomial Ik of degree k > 2 with Ik(X)|(h1(X)Xq − h0(X)). Let θ be a root of
Ik in the algebraic closure of Fq. Using Ik, we can represent Fqk

∼= Fq[θ] as
Fq[X]/(Ik(X)). In this representation, we see that

θq = h0(θ)
h1(θ) .

We follow the approach in [19]: In the descent phase of the algorithm, the goal
is to find the discrete logarithm of an element T (θ) ∈ Fqk . Without loss of
generality, we can assume that T is an irreducible polynomial over Fq[X].1 Let
ξ ∈ Fqdeg(T ) be a root of T . We try to find polynomials A, B ∈ Fq[X, Y ] of degree
d ≈ k/2 such that

B(ξ, 1)A(h0(ξ), h1(ξ))−A(ξ, 1)B(h0(ξ), h1(ξ)) = 0 in Fqdeg(T ) ,

or equivalently

T (x)|[B(x, 1)A(h0(x), h1(x))−A(x, 1)B(h0(x), h1(x))] ,

where A and B are the two homogeneous polynomials

A(x, y) :=
d∑

i=0
aix

iyd−i and B(x, y) :=
d∑

i=0
bix

iyd−i.

This is in fact a special case of the SBC problem: Define

H⃗ :=


h1(ξ)d

h1(ξ)d−1h0(ξ)
...

h0(ξ)d

 and G⃗ :=


1
ξ
...

ξd

 .

1 Otherwise, we can factor T into irreducible polynomials and consider each factor
individually.
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Then the goal is to find two non-colinear vectors a⃗, b⃗ ∈ (Fq)d with(
H⃗ · a⃗

)(
G⃗ · b⃗

)
−
(
H⃗ · b⃗

)(
G⃗ · a⃗

)
= 0 in Fqdeg(T ) ,

i.e.
(

a⃗, b⃗
)
∈ SBC[H⃗, G⃗]. In this case, the vectors a⃗, b⃗ represent the coefficients of

the polynomials A and B, respectively. In [18], the limiting factor of the discrete
logarithm problem computation comes from this variant of the SBC problem.
Improving attacks against the SBC problem would therefore lead to improve-
ments of the discrete logarithm computations using the method described above.

Known attacks. Consider an instance NSBC[u⃗, v⃗] of the normalized SBC prob-
lem. By rewriting Equation (2), the goal is to find vectors x⃗, y⃗ ∈ (Fq)n of the
form x⃗ =

(
x⃗′, 1, 0

)
, y⃗ =

(
y⃗′, 0, 1

)
such that

(u⃗ · x⃗) (v⃗ · y⃗)− (u⃗ · y⃗) (v⃗ · x⃗) = 0.

This is a bilinear equation given by the polynomial

g(x1, . . . , xn−2, y1, . . . , yn−2) :=
(

n−2∑
i=1

uixi + un−1

)(
n−2∑
i=1

viyi + vn

)

−

(
n−2∑
i=1

uiyi + un

)(
n−2∑
i=1

vixi + vn−1

)
.

Since u⃗, v⃗ ∈ (Fqk )n, the polynomial g is an element of the polynomial ring
Fqk [X1, . . . , Xn−2, Y1, . . . , Yn−2] in (2n−2) variables. We can express this polyno-
mial with k polynomials in the base field Fq by choosing an Fq basis (α1, . . . , αk)
of Fqk . Therefore, we obtain a system of k bilinear equations of the form

g1(x1, . . . , xn−2, y1, . . . , yn−2) = 0,

...
gk(x1, . . . , xn−2, y1, . . . , yn−2) = 0,

where gi ∈ Fq[X1, . . . , Xn−2, Y1, . . . , Yn−2] for i ∈ [k]. We can solve this bilin-
ear system using Gröbner basis algorithms, for example the so-called F5 algo-
rithm [9]. For details about Gröbner basis algorithms, see for example [10,25].
We recall the following result from [10]:

Theorem 1 ([10, Corollary 3]). The complexity of computing a Gröbner basis
of a generic bilinear system g1, . . . , gnx+ny

∈ K[x1, . . . , xnx
, y1, . . . , yny

] with the
F5 algorithm is upper bounded by

O
((

nx − 1 + ny − 1 + min(nx, ny)
min(nx, ny)

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant.
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In out setting, we have that nx = ny ≈ k
2 , which means we can upper bound the

complexity of solving the obtained system of bilinear equations by

O

(( 3k
2
k
2

)ω)
.

By using Stirling’s formula, we can asymptotically estimate the binomial coeffi-
cient by 2H( 1

3 ) 3k
2 , where H(p) = −p log p−(1−p) log(1−p) is the binary entropy

function, which yields an estimate of roughly 21.38kω for the upper bound of the
complexity. For a security level of λ = k = 128 and the best case scenario for
the linear algebra constant of ω = 2, this would yield a complexity of 2354.

The upper bound given in Theorem 1 is not tight, there are practical examples
of Gröbner basis computations which are faster. In [18, Section 6], a discrete
logarithm computation based on the same bilinear system is feasible to compute
up to the extension degree of k = 36. However, our suggested parameter choice
of k ≥ 128 seems completely out of the reach of these techniques.

2.3 Notations for Multi-Party Computations (MPC)

We briefly introduce the notation we use in the Multi-Party Computation (MPC)
protocols throughout this paper. We use additive sharings of finite field elements.
Let N be the number of parties. Then an N -sharing of a finite field element x ∈ F
is an N -tuple

JxK =
(

xJ1K, . . . , xJNK
)

such that

x =
N∑

i=1
xJiK mod |F|.

We call each xJiK a share of x. In the MPC protocol which we use, each party
receives one of the N shares. With these shares, the parties can then perform
computations independently: Assume each party i ∈ [N ] receives the shares xJiK

and yJiK corresponding to sharings of x and y. Let α be a constant. Then the
parties can perform the following operations:

– Addition: they locally compute Jx + yK by adding their shares:

(x + y)JiK := xJiK + yJiK

for i ∈ [N ]. We denote this by Jx + yK = JxK + JyK.
– Multiplication by a constant: they locally compute JαxK by multiplying

their respective shares by α:

(αx)JiK := αxJiK

for i ∈ [N ]. We denote this by JαxK = αJxK.
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– Adding a constant: the constant α can be shared in a trivial way as JαKT :=
(α, 0, . . . , 0), where the subscript indicates a trivial sharing. The parties then
compute Jx + αK = JxK + JαKT . We denote this by Jx + αK = JxK + α.

In practice, a sharing of x is usually computed by choosing N −1 random values
xJ1K, . . . , xJN−1K and by setting

xJNK = x−
N−1∑
i=1

xJiK mod |F|

afterwards. Then the N -tuple
(
xJ1K, . . . , xJNK

)
is actually a sharing of x. In this

paper, we instead mostly use completely random sharings by using N random
values R

J1K
x , . . . , R

JNK
x in our MPC protocol to obtain a sharing of x. If we do

that, we need an auxiliary value

δx := x−
N∑

i=1
RJiK

x mod |F|,

to be able to reconstruct x. The value of x can then be obtained by calculating
the sum

x = δx +
N∑

i=1
RJiK

x mod |F|.

In the usual setting, this can be viewed as a sharing of the value x between
N + 1 parties. By using auxiliary values of the form δx instead, we can simplify
the notation which we need in the identification scheme in Section 3 and choose
random values for the sharings.

MPC-in-the-Head Paradigm. Our construction of the identification protocol
uses the MPC-in-the-Head (MPCitH) paradigm introduced in [16]. Consider an
MPC protocol in which N parties P1, . . . ,PN securely and correctly compute the
output of a function f , given a secret input x. The secret x is hereby given as a
sharing JxK and each party Pi receives the share xJiK. Additionally, the function
f should output either 1 or 0, corresponding to accept or reject, respectively.
For our protocol, we also require that the views of N − 1 parties do not reveal
any information about x. If this is the case, we say that the protocol is (N − 1)-
private. This type of MPC protocol can be used to construct a Zero-Knowledge
proof of an x for which f(x) = 1. The prover proceeds in the following way:

– she generates a random sharing JxK of x.
– she simulates privately (“in the head”) all N parties of the MPC protocol.
– she sends commitments to the views of each party to the verifier.
– she sends the output shares Jf(x)K of the parties to the verifier.
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The verifier then randomly chooses N − 1 parties for which the prover has to
reveal the views. Since the protocol is (N − 1)-private, this does not reveal any
information about the secret. The verifier can then check if these views are
consistent with an honest execution of the MPC protocol as well as with the
commitments from the prover. Since the choice of the N − 1 opened parties
was random, a malicious prover might be able to cheat with probability 1

N
by corrupting the computation of one (unopened) party. Therefore, the Zero-
Knowledge protocol constructed using this paradigm has soundness error 1

N .

Puncturable PRFs. We use a puncturable pseudo-random function, or punc-
turable PRF for short, for the MPC protocol in Section 3. A family F of punc-
turable PRFs on [N ] is a PRF family F indexed by a key K with domain [N ]
satisfying the following properties:

– For each key K and index i ∈ [N ] there exists a punctured key Ki∗ and an
algorithm A such that

for each j ∈ [N ] \ {i} : A(Ki∗ , j) = FK(j).

– The punctured key Ki∗ does not reveal any information about FK(i).

In practice, puncturable PRFs are usually constructed using tree PRFs (or GGM
trees [14]), as mentioned for example in [7,22]. In this construction, the idea is
to build a binary tree of depth ⌈log2(N)⌉. The root of this tree is labeled with a
master root seed, while the other nodes are labeled inductively by using PRFs on
the parent node to get to the left and right children. To reveal all the N leaves
except one leave i∗ ∈ [N ], the idea is to reveal all the labels of the siblings of the
path from the root seed to the leave i∗. By using this method, all leaves except i∗

can be reconstructed by communicating ⌈log2(N)⌉ seeds instead of N − 1 seeds.

3 Main Zero-Knowledge Protocol

In this section, we describe an MPC protocol based on the SBC problem. Let
u⃗, v⃗ ∈

(
Fqk

)n, consider the NSBC problem NSBC[u⃗, v⃗] and let x⃗, y⃗ ∈ (Fq)n. Let
X1, X2, Y1, Y2 ∈ Fqk be random values. Consider the following polynomial in t:

F x⃗,y⃗
X1,X2,Y1,Y2

(t) = (X1 + t (u⃗ · x⃗)) (Y1 + t (v⃗ · y⃗))− (X2 + t (v⃗ · x⃗)) (Y2 + t (u⃗ · y⃗))
= X1Y1 −X2Y2

+ [X1 (v⃗ · y⃗) + Y1 (u⃗ · x⃗)−X2 (u⃗ · y⃗)− Y2 (v⃗ · x⃗)] t

+ [(u⃗ · x⃗) (v⃗ · y⃗)− (u⃗ · y⃗) (v⃗ · x⃗)] t2.

Remark. For this polynomial, we see that deg
(

F x⃗,y⃗
X1,X2,Y1,Y2

)
< 2 if and only if

(x⃗, y⃗) ∈ NSBC[u⃗, v⃗]. In that case, we can write

F x⃗,y⃗
X1,X2,Y1,Y2

(t) = A + Bt

10



with A = AX1,X2,Y1,Y2 = X1Y1 − X2Y2 and B = Bx⃗,y⃗
X1,X2,Y1,Y2

= X1 (v⃗ · y⃗) +
Y1 (u⃗ · x⃗) − X2 (u⃗ · y⃗) − Y2 (v⃗ · x⃗). This property of F x⃗,y⃗

X1,X2,Y1,Y2
(t) is a crucial

part of our MPC protocol.

3.1 Basic multiparty protocol for the SBC problem
In this protocol, we share the two coefficients A and B and want to prove that
F x⃗,y⃗

X1,X2,Y1,Y2
(t) = A+Bt, which means that (x⃗, y⃗) ∈ NSBC[u⃗, v⃗]. Let P1, . . . ,PN

be a group of N provers which want to verify that (x⃗, y⃗) is a solution of (2). The
basic protocol contains the following steps:

– The parties run an auxiliary protocol to obtain a random value t0 ∈ Fqk .
– The parties evaluate FX1,X2,Y1,Y2 at t0.
– The parties evaluate A + Bt0.
– The parties output accept if FX1,X2,Y1,Y2(t0) = A+Bt0 and reject otherwise.

Assume that x⃗ and y⃗ are shared as

x⃗ = δ⃗x + JR⃗xK,

y⃗ = δ⃗y + JR⃗yK

and the coefficients A and B are shared as

A = δA + JRAK,
B = δB + JRBK.

We use (exact) sharings given by JX1K, JX2K, JY1K, JY2K for the random values
X1, X2, Y1, Y2. Since we only consider normalized solutions of the SBC problem,
the last two entries of x⃗ and y⃗ can be excluded from the sharing as they are
known already.
In particular, the protocol runs as follows:

– Each party i ∈ [N ] receives their private inputs

R⃗x
JiK

, R⃗y
JiK

, X
JiK
1 , X

JiK
2 , Y

JiK
1 , Y

JiK
2 , R

JiK
A , R

JiK
B

as well as the (public) auxiliary values δ⃗x, δ⃗y, δA, δB .
– Each party Pi chooses a random t

JiK
0 ∈ Fqk and all parties simultaneously

broadcast their shares.
– The parties reconstruct t0 :=

∑N
i=1 t

JiK
0 .

– Each party i ∈ [N ] computes

(X1 + t0 (u⃗ · x⃗))JiK = X
JiK
1 + t0

(
u⃗ · R⃗x

JiK)
,

(X2 + t0 (v⃗ · x⃗))JiK = X
JiK
2 + t0

(
v⃗ · R⃗x

JiK)
,

(Y1 + t0 (v⃗ · y⃗))JiK = Y
JiK

1 + t0

(
v⃗ · R⃗y

JiK)
,

(Y2 + t0 (u⃗ · y⃗))JiK = Y
JiK

2 + t0

(
u⃗ · R⃗y

JiK)
,

(A + Bt0)JiK = R
JiK
A + R

JiK
B t0

11



and broadcasts their shares.
– The parties reconstruct

X1 + t0 (u⃗ · x⃗) =
N∑

i=1
(X1 + t0 (u⃗ · x⃗))JiK + t0un−1 + t0

(
u⃗ · δ⃗x

)
,

X2 + t0 (v⃗ · x⃗) =
N∑

i=1
(X2 + t0 (v⃗ · x⃗))JiK + t0vn−1 + t0

(
v⃗ · δ⃗x

)
,

Y1 + t0 (v⃗ · y⃗) =
N∑

i=1
(Y1 + t0 (v⃗ · y⃗))JiK + t0vn + t0

(
v⃗ · δ⃗y

)
,

Y2 + t0 (u⃗ · y⃗) =
N∑

i=1
(Y2 + t0 (u⃗ · y⃗))JiK + t0un + t0

(
u⃗ · δ⃗y

)
,

A + Bt0 =
N∑

i=1
(A + Bt0)JiK + δA + δBt0.

The parties output accept if

A + Bt0 = F x⃗,y⃗
X1,X2,Y1,Y2

(t0)
= (X1 + t0 (u⃗ · x⃗)) (Y1 + t0 (v⃗ · y⃗))− (X2 + t0 (v⃗ · x⃗)) (Y2 + t0 (u⃗ · y⃗))

and reject otherwise.
The protocol is correct: Every party accepts if the shares are correct and if

each party is honest. The protocol accepts a wrong instance of vectors if t0 is a
root of the degree 2 polynomial

(A + Bt)− F x⃗,y⃗
X1,X2,Y1,Y2

(t).

If at least one of the N parties is honest, the value of t0 obtained in the protocol
is random. Therefore, the probability of accepting a wrong pair of vectors (x⃗, y⃗)
is bounded by 2

qk . We also note that the protocol is (N − 1)-private. Indeed,
if the sharing of the values is performed uniformly at random, no information
about the secret vectors x⃗, y⃗ is revealed if at least one of the N parties is honest.

The view of each party. During the protocol execution, each party keeps a view
of their computation. The view of party i consists of the following six elements:

Viewi = (tJiK
0 , (X1 + t0 (u⃗ · x⃗))JiK

, (X2 + t0 (v⃗ · x⃗))JiK
,

(Y1 + t0 (v⃗ · y⃗))JiK
, (Y2 + t0 (u⃗ · y⃗))JiK

, (A + Bt0)JiK).

Security improvement against adversarial selection of t0. We want to
slightly adapt the basic MPC protocol to be able to use it in an identification
protocol. If the parties do not broadcast their shares simultaneously, a malicious

12



party can wait until he receives all the other shares of t0 and choose his share
such that t0 is a root of the polynomial

(A + Bt)− F x⃗,y⃗
X1,X2,Y1,Y2

(t).

In this section, we adapt the protocol to prevent this. For a first new version,
instead of randomly choosing the value of t

JiK
0 , party i uses the random oracle H

on their private input shares and the public auxiliary values to compute

t
JiK
0 = Ht

(
i ∥ R⃗x

JiK
, R⃗y

JiK
, X1

JiK, X2
JiK, Y1

JiK, Y2
JiK, R

JiK
A , R

JiK
B ∥ δ⃗x, δ⃗y, δA, δB

)
.(3)

Here, the subscript t indicates that we use domain separation for the random
oracle H to derive t0. In particular, for any input string str, define Ht(str) :=
H(“t commit”∥str).

In a second new version, the dealer distributes purely random shares of each
private input to the provers. He achieves this by sending each party a random
value ri, which party i can use to derive the shares of

R⃗x
JiK

, R⃗y
JiK

, R
JiK
A , R

JiK
B , X1

JiK, X2
JiK, Y1

JiK, Y2
JiK.

To still have valid sharings, the dealer also publishes the auxiliary values

δ⃗x, δ⃗y, δA, δB .

By using the random oracle to obtain the shares of t0, we can make sure that the
value of t0 was not maliciously chosen by a prover to be a root of the polynomial

(A + Bt)− F x⃗,y⃗
X1,X2,Y1,Y2

(t),

which would make the protocol succeed even if (x⃗, y⃗) ̸∈ NSBC[u⃗, v⃗].

3.2 Identification protocol using MPCitH

We can transform the multiparty protocol from Section 3.1 into an interactive
Zero-Knowledge proof of knowledge of a solution (x⃗, y⃗) ∈ NSBC[u⃗, v⃗] between a
prover P and a verifier V. In a basic version of this protocol, the prover creates
sharings of all the inputs of the MPC protocol. In particular, the sharings

R⃗x
JiK

, R⃗y
JiK

, X1
JiK, X2

JiK, Y1
JiK, Y2

JiK, R
JiK
A , R

JiK
B

as well as the auxiliary values δ⃗x, δ⃗y, δA, δB . The prover executes the MPC pro-
tocol and commits to the views of each party. She sends the commitment hash
h = Hv(View1, . . . , ViewN ) together with the values

X1 + t0 (u⃗ · x⃗) , X2 + t0 (v⃗ · x⃗) , Y1 + t0 (v⃗ · y⃗) , Y2 + t0 (u⃗ · y⃗) , A + Bt0, t0

and the auxiliary values δ⃗x, δ⃗y, δA, δB to the verifier. The subscript v for the ran-
dom oracle indicates domain separation, i.e. Hv(str) := H(“view commit”∥str)
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for any string str. The verifier randomly chooses an index i∗ ∈ [N ] and sends
it to the prover. The prover then sends all the shares of the values R⃗x

JiK
, R⃗y

JiK
,

X1
JiK, X2

JiK, Y1
JiK, Y2

JiK, R
JiK
A , R

JiK
B for i ̸= i∗ to the verifier. Using these val-

ues, the verifier can recompute Viewi of each party for i ̸= i∗. In particu-
lar, the values of t

JiK
0 , (X1 + t0 (u⃗ · x⃗))JiK, (X2 + t0 (v⃗ · x⃗))JiK, (Y1 + t0 (v⃗ · y⃗))JiK,

(Y2 + t0 (u⃗ · y⃗))JiK, (A + Bt0)JiK for i ̸= i∗. Note that for this basic protocol, the
prover uses the random oracle to derive t

JiK
0 as described in (3). For the missing

shares corresponding to party i∗, the verifier can recompute the shares by using
the received values from the verifier. In particular, she computes

(X1 + t0 (u⃗ · x⃗))Ji∗K = (X1 + t0 (u⃗ · x⃗))− t0un−1 − t0

(
u⃗ · δ⃗x

)
−
∑
i ̸=i∗

(X1 + t0 (u⃗ · x⃗))JiK
,

(X2 + t0 (v⃗ · x⃗))Ji∗K = (X2 + t0 (v⃗ · x⃗))− t0vn−1 − t0

(
v⃗ · δ⃗x

)
−
∑
i ̸=i∗

(X2 + t0 (v⃗ · x⃗))JiK
,

(Y1 + t0 (v⃗ · y⃗))Ji∗K = (Y1 + t0 (v⃗ · y⃗))− t0vn − t0

(
v⃗ · δ⃗y

)
−
∑
i̸=i∗

(Y1 + t0 (v⃗ · y⃗))JiK
,

(Y2 + t0 (u⃗ · y⃗))Ji∗K = (Y2 + t0 (u⃗ · y⃗))− t0un − t0

(
u⃗ · δ⃗y

)
−
∑
i̸=i∗

(Y2 + t0 (u⃗ · y⃗))JiK
,

(A + Bt0)Ji∗K = (A + Bt0)− δA − δBt0 −
∑
i ̸=i∗

(A + Bt0)JiK
,

t
Ji∗K
0 = t0 −

∑
i ̸=i∗

t
JiK
0 .

With these values, the verifier can compute h′ = Hv(View1, . . . , ViewN ), check
if it matches the commitment hash h and accept or reject accordingly.

Reducing the communication. To reduce the required communication in the basic
protocol described above, we can use punctured PRFs. The prover chooses a
random key K and sets ri = PRFK(i) using a tree PRF. Using ri, the prover
pseudo-randomly generates all of her shares, namely:

R⃗x
JiK

, R⃗y
JiK

, R
JiK
A , R

JiK
B , X1

JiK, X2
JiK, Y1

JiK, Y2
JiK

and computes the auxiliary values

δ⃗x, δ⃗y, δA, δB .
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In this case, the prover uses the random oracle to derive t
JiK
0 as described in

(3). After receiving the value i∗ ∈ [N ] from the verifier, the prover returns the
punctured PRF key Ki∗ to the verifier. With this, the verifier can compute every
ri except ri∗ and derive every input share of the MPC protocol except the shares
of party i∗. By using the auxiliary values, the verifier can still compute the shares
of the missing party and verify the commitment hash as before. We also note
that the prover does not have to send the value of A+Bt0, as it can be computed
by the verifier from the other received values by using the formula

A + Bt0 = (X1 + t0 (u⃗ · x⃗)) (Y1 + t0 (v⃗ · y⃗))− (X2 + t0 (v⃗ · x⃗)) (Y2 + t0 (u⃗ · y⃗)) .

A malicious prover P ′ who does not have a valid sharing of the secret has to
cheat by creating an invalid sharing in at least one position. This only remains
undetected by the verifier if this position equals i∗. We have seen in Section 3.1
that the protocol has a false positive probability of 2

qk . Therefore, the soundness
of the Zero-Knowledge protocol is 1

N + 2
qk . We prove this formally in Theorem 2.

Hypercube technique. A common idea in MPCitH schemes is to use the hypercube
technique introduced in [2]. Applied to the SBC identification protocol, it can
reduce the number of scalar products that need to be computed during a protocol
execution. To apply this technique, assume that N is a power of two, i.e. N = 2m.
Denote the j-th bit of the binary decomposition of an integer i by Bj(i). The
idea is to transform one instance of the protocol with N = 2m parties into m
instances of the protocol with 2 parties. Consider the sharing of an element s of
the form

s = δs +
N∑

i=1
RJiK

s .

For any fixed value j ∈ {0, . . . , m− 1}, we see that

s = δs +
∑

Bj(i)=0

RJiK
s +

∑
Bj(i)=1

RJiK
s .

After receiving the punctured PRF key, the verifier only knows one of the two
sums. This reduces the amount of scalar products that are needed in the protocol
execution: In the basic version, four scalar products are computed by each of the
N parties. In particular, these scalar products are needed to compute the values

(X1 + t0 (u⃗ · x⃗))JiK
, (X2 + t0 (v⃗ · x⃗))JiK

, (Y1 + t0 (v⃗ · y⃗))JiK
, (Y2 + t0 (u⃗ · y⃗))JiK

.

In the commitment step of the hypercube version, these 4N scalar product com-
putations are replaced by 8m scalar product computations. For the verification,
the verifier only has to compute 4m scalar products instead of 4(N − 1). By
using this technique, the amount of multiplications between elements of Fqk and
Fq during the protocol execution decreases. The computations can therefore be
performed faster in this version.
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Inputs:
– Public key (u⃗, v⃗) (Verifier)
– Secret key (x⃗, y⃗) ∈ NSBC[u⃗, v⃗] (Prover)

Step 1: Commitment
1. Sample K ←$ {0, 1}λ

2. For i ∈ [N ]:
– ri ← Ki

– X1
JiK, X2

JiK, Y1
JiK, Y2

JiK, R
JiK
A , R

JiK
B

ri←−$ Fqk

– R⃗x
JiK

, R⃗y
JiK ri←−$ (Fq)n

3. X1 ←
∑N

i=1 X
JiK
1

X2 ←
∑N

i=1 X
JiK
2

Y1 ←
∑N

i=1 Y
JiK

1

Y2 ←
∑N

i=1 Y
JiK

2
4. A← X1Y1 −X2Y2

B ← X1 (v⃗ · y⃗) + Y1 (u⃗ · x⃗)−X2 (u⃗ · y⃗)− Y2 (v⃗ · x⃗)
5. δA ← A−

∑N

i=1 R
JiK
A

δB ← B −
∑N

i=1 R
JiK
B

δ⃗x ← x⃗−
∑N

i=1 R⃗x
JiK

δ⃗y ← y⃗ −
∑N

i=1 R⃗y
JiK

6. t
JiK
0 ← Ht

(
i ∥ R⃗x

JiK
, R⃗y

JiK
, X1

JiK, X2
JiK, Y1

JiK, Y2
JiK, R

JiK
A , R

JiK
B ∥ δ⃗x, δ⃗y, δA, δB

)
7. t0 ←

∑N

i=1 t
JiK
0

8. Viewi ← (tJiK
0 , (X1 + t0 (u⃗ · x⃗))JiK , (X2 + t0 (v⃗ · x⃗))JiK , (Y1 + t0 (v⃗ · y⃗))JiK ,

(Y2 + t0 (u⃗ · y⃗))JiK , (A + t0B)JiK)
9. h← Hv(View1, . . . , ViewN )

10. msg← (X1 + t0 (u⃗ · x⃗) , X2 + t0 (v⃗ · x⃗) , Y1 + t0 (v⃗ · y⃗) , Y2 + t0 (u⃗ · y⃗) , t0)
11. Send (h, msg, δ⃗x, δ⃗y, δA, δB) to the verifier

Step 2: Challenge
1. Sample i∗ ←$ [N ]
2. Send i∗ to the prover

Step 3: Response
1. Compute punctured PRF key Ki∗

2. Send Ki∗ to the verifier

Step 4: Verification
1. For i ∈ [N ] \ {i∗}:

– Compute ri from Ki∗

– Compute X1
JiK, X2

JiK, Y1
JiK, Y2

JiK, R
JiK
A , R

JiK
B , R⃗x

JiK
, R⃗y

JiK
, t

JiK
0 from ri and

δ⃗x, δ⃗y, δA, δB

2. Compute (X1 + t0 (u⃗ · x⃗))Ji∗K , (X2 + t0 (v⃗ · x⃗))Ji∗K , (Y1 + t0 (v⃗ · y⃗))Ji∗K ,

(Y2 + t0 (u⃗ · y⃗))Ji∗K , (A + t0B)Ji∗K , t
Ji∗K
0 from msg and δ⃗x, δ⃗y, δA, δB

3. For i ∈ [N ]: Compute Viewi

4. Compute h1 = Hv(View1, . . . , ViewN )
5. Output accept if and only if h1 = h

Table 1. Identification protocol for the SBC problem
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4 Signature Scheme

We can turn the Honest Verifier Zero Knowledge (HVZK) protocol from Sec-
tion 3 into a signature scheme by using the Fiat-Shamir transform [12] with r
repetitions to obtain a security level of λ = r log2(N). The public key consists
of the two vectors u⃗, v⃗ ∈

(
Fqk

)n and the private key is (x⃗, y⃗) ∈ NSBC[u⃗, v⃗]. The
prover executes r rounds of the MPC protocol and commits to all of them by
sending one commitment hash. After receiving the commitment hash to the r
round protocol, the auxiliary values and the broadcast shares for each round,
the verifier picks a random i∗ ∈ [N ] for each round and sends each of these r
values to the prover. The prover sends the punctured PRF keys for each round
to the verifier, which allows the verifier to validate the commitment hash by
recomputing the missing shares for each round.

4.1 Key and Signature size

Signature size. To avoid collisions in the hash function, we need outputs on
2λ bits. Since we use the GGM construction for the puncturable PRF, we can
instead use a random global salt on λ bits and outputs of size λ for the hash
function in the tree. By doing this, we reduce the PRF key size to λ log2(N)
bits. To avoid generic attacks, we also need the bitsize of the elements of Fqk to
be 2λ. Our assumption that n ≈ k

2 implies that the bitsize of the elements of
(Fq)n is λ. The signature consists of the following elements:

– One hash value h corresponding to a global commitment to the r round
protocol of size 2λ and one salt of size λ.

– One punctured PRF key for each round.
– The auxiliary values δA, δB ∈ Fqk and δ⃗x, δ⃗y ∈ (Fq)n for each round.
– The values X1+t0 (u⃗ · x⃗) , X2+t0 (v⃗ · x⃗) , Y1+t0 (v⃗ · y⃗) , Y2+t0 (u⃗ · y⃗) , t0 ∈ Fqk

for each round.

The total communication cost in bits of the protocol is therefore

r · (λ log2(N)) + 6rλ + 10rλ + 3λ = λ2 + 16rλ + 3λ bits,

where we use the fact that λ = r log2(N) in the equation. For λ = 128, we can
for example choose N = 216, r = 8 and obtain a signature of size 4.144 KB.

Key size. The public key can be derived from a seed of size λ together with one
element in Fqk . By using the seed, the elements u1, . . . , un and v1, . . . , vn−1 can
be derived using a PRF and the missing element vn is sent separately. The key
size in bits is therefore 3λ. For λ = 128, this yields a public key size of 48 bytes.

4.2 Comparison with other MPCitH-based signature schemes

We compare our scheme with the current state of the art MPCitH-based sig-
natures for the 128-bit security level and list the corresponding public key sizes
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|pk| and signature sizes |sgn|. The SBC signature scheme yields smaller signa-
ture sizes and smaller public key sizes compared to previously known signature
schemes based on the MPCitH paradigm.

Name Year |pk| |sgn|
Syndrome Decoding in the Head [11] 2022 0.144 KB 8.481 KB

RYDE [6] 2023 0.086 KB 5.956 KB
MinRank in the Head [1] 2022 0.129 KB 5.673 KB

MIRA [3] 2023 0.084 KB 5.640 KB
Biscuit [5] 2023 0.050 KB 4.758 KB

SBC 2023 0.048 KB 4.144 KB

Table 2. Comparison of the SBC scheme with signatures from the literature for 128-
bits security.

5 Formal schemes

In this section, we give a formal description of the identification scheme proposed
in Section 3 with a target security of λ bits. We assume that the random oracleH
has an output size of λ bits and that the size of the finite field Fqk is 22λ to avoid
generic attacks faster than 2λ. We first give the description of the puncturable
PRF which we use in our construction. In these functions, a salt of λ bits and
internal nodes of size λ in the GGM tree are used. The number of leaves of
the puncturable PRF is a power of two, i.e. N = 2m. To obtain a finite field
element, we expand the leaves of the tree to size 3λ before applying the map
γField to convert the leaves to field elements. Hereby, we assume that there exists
an efficient bijective map γField from Zqk to Fqk . Similarly, we assume there is
an efficient bijective map γVec from Zqn to (Fq)n. To obtain vectors in (Fq)n,
where n ≈ k/2, we apply the map γVec to a leaf. Before applying these maps,
we first expand the bitstring of the respective leaf and then map the extended
bitstring to an integer using the function ToInteger. By doing this, we can obtain
pseudorandom field elements and vectors. We use domain separation to be able
to use the same random oracle H for each hash function.

Algorithm 1 is the implementation of the random oracle, Algorithms 2 to
10 are the implementations of the puncturable PRF. In Algorithms 11 to 14,
we provide implementations of the four step identification protocol described in
Section 3.2, i.e. Commitment, Challenge, Response and Verification.
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Algorithm 1 Random Oracle H
Input

A bitstring Message
Output

A bitstring of size λ

1: Let Dict be a global dictionary initially empty
2: if Message appears in Dict then
3: return Dict[Message]
4: else
5: Let Value be a uniformly random λ-bitstring
6: Define Dict[Message] = Value
7: return Value

Algorithm 2 Descendant
Input

An integer Level corresponding to the current level of the node in the tree
A bitstring Salt of size λ
A bitstring Node of size λ corresponding to the current node in the tree
A bitstring SubPath of the path from the root to a sibling of the node

Output
A bitstring of size λ corresponding to the sibling node along the subpath

1: return H(“Descendant”∥Level∥Salt∥Node∥SubPath)

Algorithm 3 RecursiveDescend
Input

An integer Level corresponding to the current level of the node in the tree
A bitstring Salt of size λ
A bitstring Node of size λ corresponding to the current node in the tree
A bitstring Path corresponding to the descend path from the root to the leaf

Output
A bitstring of size λ corresponding to the leaf node along the subpath

1: if Level is equal to the length of Path then
2: return Node
3: else
4: Let SubPath = Path[1 . . . Level + 1]
5: Let NextNode = Descendant(Level, Salt, Node, SubPath)
6: return RecursiveDescent(Level + 1, Salt, NextNode, Path)
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Algorithm 4 ExpandNode
Input

A bitstring Sep for domain separation
A bitstring Salt of size λ
A bitstring Leaf of size λ corresponding to a leaf of the tree
A bitstring PathLeaf corresponding to the path from the root to the leaf

Output
A bistring of size 3λ

1: Let ExpandedNode = H(“Expand0”∥Sep∥Salt∥Leaf∥PathLeaf)
∥H(“Expand1”∥Sep∥Salt∥Leaf∥PathLeaf)∥H(“Expand2”∥Sep∥Salt∥Leaf∥PathLeaf)

2: return ExpandedNode

Algorithm 5 FieldEltFromLeaf
Input

A bitstring Sep for domain separation
A bitstring Salt of size λ
A bitstring Leaf of size λ corresponding to a leaf of the tree
A bitstring PathLeaf corresponding to the path from the root to the leaf

Output
An element of the finite field F

1: Let Value = ToInteger(ExpandNode(Sep, Salt, Leaf, PathLeaf))
2: return γField(Value mod |F|)

Algorithm 6 VecFromLeaf
Input

A bitstring Sep for domain separation
A bitstring Salt of size λ
A bitstring Leaf of size λ corresponding to a leaf of the tree
A bitstring PathLeaf corresponding to the path from the root to the leaf

Output
A vector in Fn

1: Let Value = ToInteger(ExpandNode(Sep, Salt, Leaf, PathLeaf))
2: return γVec(Value mod |Fn|)
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Algorithm 7 PuncturedKey
Input

A bitstring Salt of size λ
A bitstring RootKey of size λ corresponding to the root of the tree
A bitstring PathLeaf corresponding to the path from the root to a leaf

Output
A bitstring corresponding to the punctured key along the path

1: Init PuncturedKey (as an empty array)
2: Let PuncturedKey[0] = PathLeaf
3: for Level from 1 to TreeDepth do
4: Set Path = PathLeaf[1 . . . Level]
5: Flip Bit Path[Level]
6: Set PuncturedKey[Level] = RecursiveDescend(0, Salt, RootKey, Path)
7: return PuncturedKey

Algorithm 8 LeafFromPuncKey
Input

A bitstring Salt of size λ
A PuncturedKey
A bitstring PathLeaf corresponding to the path from the root to a leaf

Output
A bitstring of size λ corresponding to the leaf node along the path

1: Set ForbiddenPath = PuncturedKey[0]
2: if PathLeaf is equal to ForbiddenPath then
3: return ⊥
4: Let Level be the first bit position where PathLeaf differs from ForbiddenPath
5: Let Leaf = RecursiveDescend(Level, Salt, PuncturedKey[Level], PathLeaf)
6: return Leaf
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Algorithm 9 FieldEltFromPuncKey
Input

A bitstring Sep for domain separation
A bitstring Salt of size λ
A PuncturedKey
A bitstring PathLeaf corresponding to the path from the root to a leaf

Output
An element of the finite field F corresponding to the leaf of PathLeaf

1: Set ForbiddenPath = PuncturedKey[0]
2: if PathLeaf is equal to ForbiddenPath then
3: return ⊥
4: Let Level be the first bit position where PathLeaf differs from ForbiddenPath
5: Let Leaf = RecursiveDescend(Level, Salt, PuncturedKey[Level], PathLeaf)
6: return FieldEltFromLeaf(Sep, Salt, Leaf, PathLeaf)

Algorithm 10 VecFromPuncKey
Input

A bitstring Sep for domain separation
A bitstring Salt of size λ
A PuncturedKey
A bitstring PathLeaf corresponding to the path from the root to a leaf

Output
A vector in Fn corresponding to the leaf of PathLeaf

1: Set ForbiddenPath = PuncturedKey[0]
2: if PathLeaf is equal to ForbiddenPath then
3: return ⊥
4: Let Level be the first bit position where PathLeaf differs from ForbiddenPath
5: Let Leaf = RecursiveDescend(Level, Salt, PuncturedKey[Level], PathLeaf)
6: return VecFromLeaf(Sep, Salt, Leaf, PathLeaf)
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Algorithm 11 Step 1: Commitment
1: Let RootKey be a uniform random bitstring (of the expected size λ)
2: Let Salt be a uniform random bitstring (of the expected size λ)
3: Let CommitString be the empty string
4: Let X1, X2, Y1, Y2, t0 = 0
5: for i from 1 to N do
6: Let Path be the m-bit binary encoding of i− 1
7: Let ri = RecursiveDescent(0, Salt, RootKey, Path)
8: Let X1

i = FieldEltFromLeaf(“X1 derivation”, Salt, ri, Path)
9: Let X2

i = FieldEltFromLeaf(“X2 derivation”, Salt, ri, Path)
10: Let Y1

i = FieldEltFromLeaf(“Y1 derivation”, Salt, ri, Path)
11: Let Y2

i = FieldEltFromLeaf(“Y2 derivation”, Salt, ri, Path)
12: Set X1 = X1 + X1

i

13: Set X2 = X2 + X2
i

14: Set Y1 = Y1 + Y1
i

15: Set Y2 = Y2 + Y2
i

16: Let Ri
A = FieldEltFromLeaf(“A derivation”, Salt, ri, Path)

17: Let Ri
B = FieldEltFromLeaf(“B derivation”, Salt, ri, Path)

18: Let R⃗x
i

= VecFromLeaf(“x derivation”, Salt, ri, Path)
19: Let R⃗y

i
= VecFromLeaf(“y derivation”, Salt, ri, Path)

20: Let A = X1Y1 −X2Y2
21: Let B = X1 (v⃗ · y⃗) + Y1 (u⃗ · x⃗)−X2 (u⃗ · y⃗)− Y2 (v⃗ · x⃗)
22: Let δA = A−

∑N

i=1 Ri
A

23: Let δB = B −
∑N

i=1 Ri
B

24: Let δ⃗x = x⃗−
∑N

i=1 R⃗x
i

25: Let δ⃗y = y⃗ −
∑N

i=1 R⃗y
i

26: for i from 1 to N do
27: Let hi

t0 = Ht

(
i ∥ R⃗x

JiK
, R⃗y

JiK
, X1

JiK, X2
JiK, Y1

JiK, Y2
JiK, R

JiK
A , R

JiK
B ∥ δ⃗x, δ⃗y, δA, δB

)
28: Let ti

0 = γField(ToInteger(hi
t0 ) mod |F|)

29: Set t0 = t0 + ti
0

30: for i from 1 to N do
31: Let (X1 + t0 (u⃗ · x⃗))i = Xi

1 + t0(u⃗ · R⃗x
i
)

32: Let (X2 + t0 (v⃗ · x⃗))i = Xi
2 + t0(v⃗ · R⃗x

i
)

33: Let (Y1 + t0 (v⃗ · y⃗))i = Y i
1 + t0(v⃗ · R⃗y

i
)

34: Let (Y2 + t0 (u⃗ · y⃗))i = Y i
2 + t0(u⃗ · R⃗y

i
)

35: Let (A + Bt0)i = Ri
A + Ri

Bt0
36: Let Viewi = (t0

i, (X1 + t0 (u⃗ · x⃗))i , (X2 + t0 (v⃗ · x⃗))i , (Y1 + t0 (v⃗ · y⃗))i ,
(Y2 + t0 (u⃗ · y⃗))i , (A + Bt0)i)

37: Append encoding of Viewi to CommitString
38: Let X1 + t0 (u⃗ · x⃗) =

∑N

i=1 (X1 + t0 (u⃗ · x⃗))i + t0un−1 + t0(u⃗ · δ⃗x)
39: Let X2 + t0 (v⃗ · x⃗) =

∑N

i=1 (X2 + t0 (v⃗ · x⃗))i + t0vn−1 + t0(v⃗ · δ⃗x)
40: Let Y1 + t0 (v⃗ · y⃗) =

∑N

i=1 (Y1 + t0 (v⃗ · y⃗))i + t0vn + t0(v⃗ · δ⃗y)
41: Let Y2 + t0 (u⃗ · y⃗) =

∑N

i=1 (Y2 + t0 (u⃗ · y⃗))i + t0un + t0(u⃗ · δ⃗y)
42: Let Commitment = (Hv(CommitString), (X1 + t0 (u⃗ · x⃗) , X2 + t0 (v⃗ · x⃗) , Y1 +

t0 (v⃗ · y⃗) , Y2 + t0 (u⃗ · y⃗) , t0), δ⃗x, δ⃗y, δA, δB)
43: return Commitment
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Algorithm 12 Step 2: Challenge
1: Let Query be a uniformly random integer in [N ]
2: return Query

Algorithm 13 Step 3: Response
Input

An integer Query in [N ]
Output

A punctured key
A salt

1: Import RootKey and Salt from Step 1
2: Convert Query to a binary QueryPath
3: return Salt∥PuncturedKey(Salt, RootKey, QueryPath)
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Algorithm 14 Step 4: Verification
Input

A bitstring Salt of size λ and a PuncturedKey from Step 3
A Commitment from Step 1 of the form
(h, X1 + t0 (u⃗ · x⃗) , X2 + t0 (v⃗ · x⃗) , Y1 + t0 (v⃗ · y⃗) , Y2 + t0 (u⃗ · y⃗) , t0), δ⃗x, δ⃗y, δA, δB))

Output
A boolean corresponding to accept or reject

1: Let Query = ToInteger(PuncturedKey[0])
2: Let CommitVerifyString be the empty string
3: for i in [N ] \ {Query} do
4: Let Path be the m-bit binary encoding of i− 1
5: Let ri = LeafFromPuncKey(Salt, PuncturedKey, Path)
6: Let X1

i = FieldEltFromPuncKey(“X1 derivation”, Salt, PuncturedKey, Path)
7: Let X2

i = FieldEltFromPuncKey(“X2 derivation”, Salt, PuncturedKey, Path)
8: Let Y1

i = FieldEltFromPuncKey(“Y1 derivation”, Salt, PuncturedKey, Path)
9: Let Y2

i = FieldEltFromPuncKey(“Y2 derivation”, Salt, PuncturedKey, Path)
10: Let Ri

A = FieldEltFromPuncKey(“A derivation”, Salt, PuncturedKey, Path)
11: Let Ri

B = FieldEltFromPuncKey(“B derivation”, Salt, PuncturedKey, Path)
12: Let R⃗x

i
= VecFromPuncKey(“x derivation”, Salt, PuncturedKey, Path)

13: Let R⃗y
i

= VecFromPuncKey(“y derivation”, Salt, PuncturedKey, Path)
14: Let hi

t0 = Ht

(
i ∥ R⃗x

JiK
, R⃗y

JiK
, X1

JiK, X2
JiK, Y1

JiK, Y2
JiK, R

JiK
A , R

JiK
B ∥ δ⃗x, δ⃗y, δA, δB

)
15: Let ti

0 = γField(ToInteger(ht0 ) mod |F|)
16: Let (X1 + t0 (u⃗ · x⃗))i = Xi

1 + t0(u⃗ · R⃗x
i
)

17: Let (X2 + t0 (v⃗ · x⃗))i = Xi
2 + t0(v⃗ · R⃗x

i
)

18: Let (Y1 + t0 (v⃗ · y⃗))i = Y i
1 + t0(v⃗ · R⃗y

i
)

19: Let (Y2 + t0 (u⃗ · y⃗))i = Y i
2 + t0(u⃗ · R⃗y

i
)

20: Let (A + Bt0)i = Ri
A + Ri

Bt0

21: Let A + Bt0 = (X1 + t0 (u⃗ · x⃗)) (Y1 + t0 (v⃗ · y⃗))− (X2 + t0 (v⃗ · x⃗)) (Y2 + t0 (u⃗ · y⃗))
22: Let t

Query
0 = t0 −

∑
i̸=Query ti

0

23: Let (X1 + t0 (u⃗ · x⃗))Query = (X1 + t0 (u⃗ · x⃗))− t0un−1 − t0(u⃗ · δ⃗x)
−
∑

i ̸=Query (X1 + t0 (u⃗ · x⃗))i

24: Let (X2 + t0 (v⃗ · x⃗))Query = (X2 + t0 (v⃗ · x⃗))− t0vn−1 − t0(v⃗ · δ⃗x)
−
∑

i ̸=Query (X2 + t0 (v⃗ · x⃗))i

25: Let (Y1 + t0 (v⃗ · y⃗))Query = (Y1 + t0 (v⃗ · y⃗))− t0vn − t0(v⃗ · δ⃗y)
−
∑

i ̸=Query (Y1 + t0 (v⃗ · y⃗))i

26: Let (Y2 + t0 (u⃗ · y⃗))Query = (Y2 + t0 (u⃗ · y⃗))− t0un − t0(u⃗ · δ⃗y)
−
∑

i ̸=Query (Y2 + t0 (u⃗ · y⃗))i

27: Let (A + Bt0)Query = (A + Bt0)− δA − δBt0 −
∑

i̸=Query (A + Bt0)i

28: for i from 1 to N do
29: Let Viewi = (t0

i, (X1 + t0 (u⃗ · x⃗))i , (X2 + t0 (v⃗ · x⃗))i , (Y1 + t0 (v⃗ · y⃗))i ,
(Y2 + t0 (u⃗ · y⃗))i , (A + Bt0)i)

30: Append encoding of Viewi to CommitVerifyString
31: if Hv(CommitVerifyString) is equal to h then
32: return true
33: else
34: return false
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Theorem 2. Consider an instance NSBC[u⃗, v⃗] of the NSBC problem for u⃗, v⃗ ∈(
Fqk

)n. The identification protocol described above is a statistical honest verifier
Zero-Knowledge proof of knowledge of (x⃗, y⃗) ∈ NSBC[u⃗, v⃗] with soundness 1/N +
2/qk.

Proof. Completeness. By the discussion of the polynomial F x⃗,y⃗
X1,X2,Y1,Y2

(t) in
Section 3, we see that an execution of the protocol by an honest prover and an
honest verifier is always accepted.
Statistical honest Verifier Zero-Knowledge. We construct a simulator S
in the following way:

– Uniformly at random pick a RootKey, a Salt, a Query and auxiliary values
δ⃗x, δ⃗y, δA, δB .

– Compute a PuncturedKey from RootKey, Salt and Query.
– Use the Verify algorithm to get the expected Commitment of the input

(without using the Commitment hash in the algorithm).
– Output a simulated transcript of the protocol using PuncturedKey, Salt,

Query, Commitment and the auxiliary values.

We claim that this distribution of this output is statistically indistinguishable
from a valid transcript of the protocol. To see that, first note that if a valid prover
runs the protocol with the same values for RootKey, Salt and Query, all the val-
ues for Xi

1, Xi
2, Y i

1 , Y i
2 , R⃗i

x, R⃗i
Y , R⃗i

A, R⃗i
B , ti

0, (X1 + t0 (u⃗ · x⃗))i, (X2 + t0 (v⃗ · x⃗))i,
(Y1 + t0 (v⃗ · y⃗))i, (Y2 + t0 (u⃗ · y⃗))i

, (A + Bt0)i for i ̸= Query are the same as
in the run of the simulator S. Only the values for the index Query are missing.
There exists a configuration for these values for which the simulated and honest
transcripts would be equal. By programming the random oracle at the respec-
tive points, the transcript produced by S could also come from a legitimate
prover. These two transcripts only differ because the auxiliary values were cho-
sen uniformly at random in the simulator but are obtained using a summation of
outputs of the functions FieldEltFromLeaf and VecFromLeaf on random values
for the prover. The outputs of the functions FieldEltFromLeaf and VecFromLeaf
are statistically close to a random map. Therefore, the distribution obtained by
the simulated transcript is statistically close to the honest one.
Proof of Knowledge. Let P∗ be a prover that convinces a verifier with prob-
ability ≥ 1/N + 2/qk + ε for a non-negligible ε. Then we can build an extractor
which, with read access to the random oracle memory, can learn the secret key
(x⃗, y⃗).
First, note that all random oracle queries made in many executions of the verify
function are pairwise distinct with extremely high probability. Since we use a salt
and domain separators, identical queries can only occur if identical salt values
are selected. After P∗ runs the commitment step of the protocol, the extractor
can obtain the input to the random oracle that produced the commitment hash
h. If this commitment hash was not produced by an honest protocol execution,
the verification algorithm can only succeed with exponentially small probability.
With the input string, the extractor can construct a candidate tree for the punc-
turable PRF used by the prover to derive the values for ri. For each of these
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values, the extractor knows the corresponding value of ti
0 from the input string.

He searches through the oracle queries whose input could have come from a
call of the Descendant function at the corresponding position by considering
all queries to the random oracle that use the domain separator “t commit”. He
then uses the map γField on this value modulo qk to find the matching hi

t0
. By

searching though the oracle queries again, he can find the value of ri that was
used to obtain hi

t0
.

There are three cases that can occur after using this strategy to reconstruct the
tree. The extractor obtains the full GGM tree, one leaf is missing or more than
one leaf is missing. We consider each of these cases separately:

– If more than one leaf is missing, the extractor can use the response from P∗

from the third step to obtain a PuncturedKey. Using this key, the extractor
can find at least one missing leaf in the tree. If this PuncturedKey did not
come from an honest protocol execution, the probability that the partial tree
obtained from this key matches the tree of the extractor is negligible.

– If no leaf is missing, the extractor can compute every share of every party
in the MPC protocol. Using the auxiliary values, the extractor can compute
the values of x⃗ and y⃗ used by P∗. If (x⃗, y⃗) ̸∈ NSBC[u⃗, v⃗], the verification
algorithm in step 4 outputs accept with probability 2/qk, which occurs if t0
happens to be a root of the polynomial F x⃗,y⃗

X1,X2,Y1,Y2
(t).

– If one leaf is missing, then P∗ might still be able to provide a punctured key
which is consistent with the tree obtained by the extractor. However, this
only accounts for a 1/N success probability. In this case, the extractor queries
at another position to obtain the missing path from the root to the leaf if he
gets a consistent response from P∗ in step 3. This occurs with probability at
least ε. If the extractor learns the full tree, he can again compute the secret
key (x⃗, y⃗).

Therefore, the combination of the extractor and P∗ can break the SBC problem
in time 1/ε.
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