
BaseFold: Efficient Field-Agnostic Polynomial Commitment

Schemes from Foldable Codes

Hadas Zeilberger∗1, Binyi Chen†2, and Ben Fisch‡1

1Yale University
2Espresso Systems

November 2, 2023

Abstract

Interactive Oracle Proof of Proximity (IOPPs) are a powerful tool for construct-
ing succinct non-interactive arguments of knowledge (SNARKs) in the random oracle
model, which are fast and plausibly post-quantum secure. The Fast Reed Solomon
IOPP (FRI) is the most widely used in practice, while tensor-code IOPPs (such as
Brakedown) achieve significantly faster prover times at the cost of much larger proofs.
IOPPs are used to construct polynomial commitment schemes (PCS), which are not
only an important building block for SNARKs but also have a wide range of indepen-
dent applications.

This work introduces BaseFold, a generalization of the FRI IOPP to a broad class
of linear codes beyond Reed-Solomon, which we call foldable linear codes. We construct
a new family of foldable linear codes, which are a special type of randomly punctured
Reed-Muller code, and prove tight bounds on their minimum distance. Finally, we
introduce a new construction of a multilinear PCS from any foldable linear code, which
is based on interleaving BaseFold with the classical sumcheck protocol for multilinear
polynomial evaluation. As a special case, this gives a new multilinear PCS from FRI.

In addition to these theoretical contributions, the BaseFold PCS instantiated with
our new foldable linear codes offers a more reasonable tradeoff between prover time,
proof size, and verifier time than prior constructions. For polynomials over a 64-
bit field with 12 variables, the BaseFold prover is faster than both Brakedown and
FRI-PCS (2 times faster than Brakedown and 3 times faster than FRI-PCS), and its
proof is 4 times smaller than Brakedown’s. On the other hand, for polynomials with
25 variables, BaseFold’s prover is 6.5 times faster than FRI-PCS, it’s proof is 2.5
times smaller than Brakedown’s and its verifier is 7.5 times faster. Using BaseFold

∗hadas.zeilberger@yale.edu
†binyi@espressosys.com
‡ben.fisch@yale.edu

1

to compile the Hyperplonk PIOP [35] results in an extremely fast implementation of
Hyperplonk, which in addition to having competitive performance on general circuits, is
particularly fast for circuits with high-degree custom gates (e.g., signature verification
and table lookups). Hyperplonk with Basefold is approximately equivalent to the
speed of Hyperplonk with Brakedown, but with a proof size that is more than 5 times
smaller. Finally, BaseFoldmaintains performance across a wider variety of field choices
than FRI, which requires FFT-friendly fields. Thus, BaseFold can have an extremely
fast prover compared to SNARKs from FRI for special applications. Benchmarking a
circom ECDSA verification circuit with curve secp256k1, Hyperplonk with BaseFold

has a prover time that is more than 200× faster than with FRI and its proof size is 5.8
times smaller than Hyperplonk with Brakedown.

1 Introduction

A Succinct Non-interactive Argument of Knowledge (SNARK) allows an untrusted prover
to convince a resource-constrained verifier that it knows a witness w ∈ {0, 1}∗ satisfying
some constraints. More formally, in a proof system for an NP relation R the verifier has an
input x and the prover convinces the verifier that it knows a witness w such that (x,w) ∈ R.
The succinctness property of SNARKs requires that the proof size and verification time are
sublinear in the length of w, while the prover’s runtime can be polynomial in the length of w.
It is a classical result that such proof systems can be constructed from any Probabilistically
Checkable Proof (PCP) or multi-round PCP, called Interactive Oracle Proofs (IOPs), in the
random oracle (RO) model [52]. This construction simply uses Merkle tree commitments
and the Fiat-Shamir transform. However, more recent research has focussed on making
SNARKs as concretely practical as possible for very large witness lengths, both in terms
of prover time, verifier time, and proof size.

There are a wide variety of methods for constructing SNARKs with varying tradeoffs
in the security model (trusted vs transparent setup) and performance (prover time, verifier
time, and proof size). Some require a trusted setup [46, 55, 22, 43, 60, 23, 45, 47, 57, 42, 37],
while others are transparent [11, 31, 38, 29]. Some constructions like Groth-16 [45] have
tiny proofs (just 200 bytes) while others like Ligero [21], Brakedown [44], and Orion [67]
have very fast provers. Some systems are plausibly post-quantum secure, while others rely
on cryptographic assumptions broken by quantum algorithms. No proof system so far wins
in all categories.

One method that has successfully resulted in fast prover times, while keeping proof size
and verifier time at least asymptotically poly-logarithmic, is based on Interactive Oracle
Proof of Proximity (IOPPs). An IOPP is a special proof system for proving that a com-
mitted vector over a field F is close to a codeword in some linear error-correcting code
C ⊆ Fn. These IOPPs can be used to construct polynomial commitment schemes, which in
turn can be used to compile polynomial interactive oracle proofs (PIOPs) into SNARKs.
A PIOP is an interactive protocol, similar to an IOP, between a prover and verifier in an
ideal model where the verifier has oracle access to polynomials sent by the prover, which

2

it can query at multiple points. A polynomial commitment scheme (PCS) [50] enables a
prover to commit to a polynomial f ∈ F[x] of degree d using a short commitment and later,
given α, β ∈ F, create a proof that it knows the committed polynomial f of degree at most
d satisfying β = f(α). A PIOP is compiled into a SNARK by replacing all the oracles with
polynomial commitments and queries with proof of correct evaluations at points requested
by the verifier. Informally, if a PIOP convinces the verifier that, with overwhelmingly high
probability, the prover knows a witness, then the result of this compilation is an interactive
argument, which can be further compiled into a SNARK via the Fiat-Shamir transform.

The KZG [50] PCS has very short evaluation proofs but can only be used to com-
mit to polynomials over prime fields Fp and requires O(d log p) operations over an elliptic
curve group G of order p. Moreover, p needs to be exponentially large in some secu-
rity parameter λ so that the t-Diffie-Hellman inversion (t-DHI) and related assumptions
holds in G. One reason that polynomial commitments constructed from IOPPs are signif-
icantly faster is that they are (a) compatible with a wider choice of fields F, and (b) only
require arithmetic operations within F and fast hash functions for the evaluation proof
and commitment. Some require F to be FFT-friendly for practical efficiency, but other
field-agnostic constructions remain efficient over any F. However, the fastest IOPP-based
constructions suffer from relatively large proof sizes and slow verifiers. In this paper, we
present new IOPP-based multilinear polynomial commitment schemes that offer a more
reasonable tradeoff between prover time, proof size, and verifier time than prior construc-
tions, enabling SNARKs that achieve a new datapoint on the spectrum of practical SNARK
constructions. Moreover, our construction is field-agnostic, leading to significantly better
performance than prior SNARKs for specific applications (e.g., the ECDSA verification
circuit over curve secp256k1) where the native field is not FFT-friendly.

1.1 Prior Work

There are two known families of IOPP-based polynomial commitment schemes that offer
fast provers and tolerable verifier and communication costs; an IOPP for Reed-Solomon
codes called Fast Reed Solomon Interactive Proof of Proximity (FRI [8]) and an IOPP from
tensor codes [26]. This second family of constructions is based on ideas first presented
in Ligero [21], and was most recently improved upon in Brakedown[44]) and Orion [67].
While both families of IOPP-based PCS are practical, they present a rather limiting set
of tradeoffs. Without relying on proof recursion (which we will discuss below), these proof
systems either achieve a very fast prover with a relatively slow verifier and large proof (e.g.,
in the case of Brakedown) or relatively small proof size and fast verifier times but with a
much slower prover (e.g., in the case of FRI). In practice, this tradeoff can be quite extreme.
For instance, according to our benchmarks (Section 6), for a polynomial with 20 variables,
Brakedown’s prover takes only 53 ms while the FRI-PCS prover takes approximately 5.1
seconds. On the other hand, the Brakedown proof is approximately 7285 KB while the

3

FRI-PCS proof is only 935 KB.1 Asymptotically, FRI has a runtime of O(n log(n)) and a
proof size of O(λ log2(n)), while Brakedown has a strictly linear run time and a proof size
of O(λ

√
n), where λ is the security parameter. Brakedown is additionally field-agnostic,

meaning that it does not rely on specific choices of fields for efficiency, unlike FRI.
There have been efforts to reduce the proof size and verifier time in tensor code IOPPs.

Orion [67] uses a technique often referred to as proof recursion, which encodes the verifier
computation into a SNARK circuit so that the prover can non-interactively prove that
the verifier will accept. This recursive step can be repeated as many times as needed.
Orion presents a SNARK circuit for verifying a Brakedown proof, and ultimately achieves
a polylogarithmic-sized proof. Recursion is an extremely useful technique that can reduce
the verifier costs of any PCS or SNARK, however, the prover overhead of using recursion
can be quite high and is proportional to the proof size and verification costs of the inner and
outer PCS/SNARKs. It is therefore still relevant to construct SNARKs without recursion
that achieve better tradeoffs between prover and verifier efficiency.

There have also been efforts to improve the runtime of the FRI IOPP. In ECFFT2 [12],
the authors present a method for using FRI over any finite field, however the runtime of their
prover is asymptotically O(n log2(n)), which is suboptimal and cancels out the gains of a
more efficient finite field. In a similar vein, the authors of [49] present a method for encoding
a Reed-Solomon code over the super efficient Mersenne prime finite-field GF (231−1), which
is progress towards eventually enabling FRI over this field. However, it has a constant
overhead that cancels out the gains of the more efficient finite field. Additionally, this
solution, if proven, would only enable FRI over one additional field, while our goal is to
enable FRI over all finite fields while maintaining similar prover and verifier costs.

1.2 Our Contributions

We present the BaseFold PCS, a highly efficient, multilinear polynomial commitment
scheme, that can be used over any sufficiently large finite field. BaseFold provides the best
tradeoff between prover and verifier costs out of all existing IOPP-based protocols:

• For polynomials with 12 variables BaseFold’s prover is faster than both Brakedown
and FRI-PCS. It is 2 times faster than Brakedown and 3 times faster than FRI-PCS.
Additionally, its size is 4 times smaller than Brakedown’s. For polynomial with 25
variables, BaseFold’s prover is 6.5 times faster than FRI-PCS, with lower verifier
costs than Brakedown, with a proof that is 2.5 times smaller and a verifier that is
7.5 times faster. Over a 255-bit field, for polynomials with 214 variables, BaseFold
has the exact same prover time as Brakedown but with a verifier that is 3.8 times
faster and a proof size that is 5.8 times smaller. Its prover is 31 times faster than
Multilinear KZG, with a verifier that is almost 20 times faster.

1Our FRI-PCS benchmarks do not include the grinding technique, which can be used to make their
proofs even smaller.

4

• When BaseFold is used to compile the Hyperplonk PIOP [35] into a SNARK, the
proving time is approximately equivalent to Brakedown’s (faster for circuits with up
to 215 gates and at most 1.2 times slower) with a proof size at least 5 times smaller
than Brakedown’s and a verifier that is at least 10 times faster than Brakedown’s.
The reason that the prover speed of BaseFold is closer to Brakedown’s in the case
of SNARKs is largely due to the fact that the prover time of BaseFold benefits from
batch openings of PCS commitments whereas Brakedown does not. We discuss this
in more detail in Appendix D.

• Due to flexibility of field choice, SNARKs using BaseFold (similar to Brakedown)
can have an extremely fast prover compared to SNARKs from FRI for special appli-
cations. Benchmarking the ECDSA verification circuit with curve secp256k1 using
our SNARK from BaseFold and HyperPlonk [35], our prover time is more than 200×
faster than with FRI-PCS and is 5.8 times smaller than with Brakedown.

We provide more detailed performance comparisons of BaseFold, Brakedown, and FRI-
PCS in Section 6.

The BaseFold PCS involves three core components, which are each contributions of
independent interest:

• A generalization of the FRI IOPP to a broad class of linear codes, which we call
foldable linear codes.

• A new foldable linear code family, called Random Foldable Codes, which is a special
type of randomly punctured Reed-Muller code over which messages can be encoded
with approximately n log n field additions and 0.5n log n field multiplications.

• A construction of a multilinear polynomial commitment scheme based on interleaving
BaseFold (using any foldable linear code) with the classical sumcheck protocol for
multilinear polynomial evaluation. The prover time of this PCS is O(n) with a small
leading constant.2

Our abstraction of foldable linear codes reduces the task of finding a PCS with a fast
prover, efficient verifier and small communication to the task of finding a fast foldable
linear code with high minimum distance. Our new Random Foldable Codes can also be
used with other coding-based PCS such as Brakedown and Orion, which would reduce their
communication complexity while remaining field agnostic. Finally, since FRI is a special
case of BaseFold (instantiating the foldable linear code using Reed-Solomon over an FFT-
friendly field) our PCS construction can also be used to create a more efficient FRI-based
multilinear PCS than previously observed. While we do not explicitly benchmark FRI-
based multilinear PCS, existing constructions such as Zeromorph [53] and Hyperplonk [34]

2The committing complexity is O(n logn) as the prover needs to compute the encoding of the message.
After that, the prover can generate PCS evaluation proofs in linear time.

5

require at least one invocation of the FRI-based univariate commitment scheme. As our
benchmarks demonstrate, the BaseFold multilinear PCS is 5-6 times faster than the FRI

univariate PCS, we can expect that the same (or even more significant) speedup holds for
FRI-based multilinear PCS as well. Correspondingly, BaseFold can be used as a direct
replacement for FRI-based PCS in most contexts. For instance, if we instantiate BaseFold
as a univariate polynomial commitment scheme (which can be done by having the verifier
choose a point x ∈ F then constructing a point in Fd from the powers of x) we can use it
instead of FRI in the STARK proof system, and can expect a 5− 6x speedup.

1.3 Overview

Foldable Linear Codes and BaseFold IOPP. Let d ∈ Z and let Cd be a linear code
with rate 1

c that encodes messages of length kd = 2d into codewords of length nd = ckd.
Then we consider Cd to be foldable if its generator matrix, Gd is a kd × nd matrix that is
equal up to row permutation to[

Gd−1 Gd−1
Gd−1 · Td Gd−1 · T ′d

]
(1)

where Gd−1 is a foldable linear code that encodes messages of length kd
2 into codewords of

length nd
2 and Td, T

′
d are both

nd
2 ×

nd
2 diagonal matrices. For instance, Reed-Solomon codes

are foldable when defined over a cyclic group H such that |H| is a power of 2 (we discuss
this further in Appendix E). In Section 4 we will present the BaseFold IOP of Proximity
(IOPP), which can be used with any foldable linear code with adequate minimum distance,
(and is in fact equivalent to FRI when instantiated with Reed-Solomon codes).

Random Foldable Linear Codes. Armed with the general IOPP for foldable linear
codes, our goal is to design a linear code that is foldable and efficiently encodable regardless
of its finite field. We accomplish this by setting Ti to a diagonal matrix whose entries
are each a uniform random sample from F× and setting T ′i = −Ti. We show that with
overwhelming probability over choice of (T1, .., Td), this code has relative minimum distance
equal to

1−

(
ϵdF
c

+
ϵF

log |F|

d∑
i=1

(ϵF)
d−i

(
0.6 +

2 log(ni/2) + λ

ni

))

where c is the inverse of the rate of the code, ϵF = log |F|
log |F|−1.001 , ni is the block-length of the

code, and d is the logarithm of the message length. For instance, if we set |F| to be equal
to 261, c = 16, and d = 15, then the relative mininum distance is 0.572. If we set |F| to be
2256, c = 8, and d = 15, then the minimum distance is .76.

6

The Basefold Multilinear Polynomial Commitment Scheme. It is known that by
multilinear extension and the classic sum-check protocol, we can transform the evaluation
check of a multilinear polynomial f ∈ F[X1, . . . , Xd] at a point z ∈ Fd into an evaluation
check of f at a random point r ∈ Fd. Interestingly, BaseFold (and FRI-based) IOPP has
a similar structure. Given an input oracle that is an encoding of a polynomial f , the last
oracle sent by the honest prover in the IOPP protocol is exactly an encoding of a random
evaluation f(r). Thus a natural way to build a PCS is to set the commitment as the
Merkle commitment of the encoding of f . During the evaluation phase, the prover and
the verifier runs an IOPP protocol and a sumcheck protocol in parallel using the same
set of round challanges r = (r1, . . . , rd) ∈ Fd. Finally the verifier checks that the claimed
evaluation y ∈ F in the last round of the sumcheck protocol is consistent with the last
prover message of the IOPP protocol. Proving that this construction satisfies evaluation
binding and knowledge soundness, however, is non-trivial. Recall that the IOPP soundness
only states that to pass the verification with high probability, the committed oracle should
be close to codewords. But it does not rule out the possibility that at some round, the
prover message may shift from the folding of the previous message to the encoding of a
different message, thus it is not straightforward to argue that the last prover message in
the IOPP protocol is always consistent with the committed polynomial f . Moreover, even
if the protocol is evaluation binding, that is, the committed oracle must be close to the
encoding of a polynomial f that is consistent with the evaluation claim, it is still non-trivial
to recover the polynomial f and obtain knowledge soundness if the linear code we use is
not efficiently decodable. We solve the issues by constructing an extractor that obtains
enough many correct evaluations of f from the PCS prover. Via a careful analysis, we
argue that the with high probability, the extractor can recover the polynomial f from the
set of evaluations obtained. We provide more technical details in Sect. 5.1.

1.4 Other Related Work

See Appendix A for a summary of other prior work on Interactive Oracle Proofs and
Polynomial Commitment Schemes.

1.5 Roadmap

The remainder of this paper proceeds as follows. In Section 2, we present definitions and
statements that will be useful for the remainder of the paper. In Section 3, we present
our new error-correcting code and state and prove its minimum distance. In Section 4,
we describe the BaseFold IOPP, and prove its correctness and soundness. In Section 5,
we compile the BaseFold IOPP into a multilinear polynomial commitment scheme using
the sumcheck protocol and prove its knowledge soundness. In Section 6, we analyze the
performance of BaseFold and compare it with other multilinear polynomial commitment
schemes.

7

2 Preliminaries

Notation. A diagonal matrix, T is a square matrix that only has non-zero entries along
the diagonal. For a diagonal matrix, T , denote the vector of diagonal entries as diag(T)
and denote the matrix with diagonal entries −1 ·diag(T) as −T . For a matrix G, G⊤ is the
transpose of G. For a vector v ∈ F2n, we write vl as the first n components of v and vr

as the last n components of v. We will sometimes write v as (vl,vr) or (vl||vr). ◦ denotes
the Hadamard product of two vectors. For a finite field F, we use F× to denote F \ {0}.

Definition 1 (Linear Code). A linear error-correcting code with message length k and
codeword length n is an injective mapping from Fk to a linear subspace C ⊆ Fn. C is
associated with a generator matrix, G ∈ Fk×n such that the rows of G are a basis of C
and the encoding of a vector v ∈ Fk is v · G. The minimum Hamming distance of a code
is the minimum on the number of different entries between any two different codewords
c1, c2 ∈ C. If C has a minimum distance d ∈ [0, n], we say that C is an [n, k, d] code and
use ∆C to denote d/n—the relative minimum distance.

Next, as in [8], we define a slightly altered version of relative minimum distance, called
coset relative minimum distance, denoted as ∆∗. We will use this definition in our proofs
of IOPP and PCS soundness.

Definition 2 (Coset Relative Minimum Distance). Let n be an even integer and let C be
a [n, k, d] error-correcting code. Let v ∈ Fn be a vector and let c ∈ C be a codeword. The
coset relative distance ∆∗(v, c) between v and c is

∆∗(v, c) =
2|{j ∈ [1, n/2] : v[j] ̸= c[j] ∨ v[j + n/2] ̸= c[j + n/2]}|

n
.

The relative minimum distance of v ∈ Fn to the code, C, which we denote as ∆∗(v, C) is
defined as follows:

∆∗(v, C) = min
c∈C

∆∗(v, c) .

Definition 3 (Maximum Distance Seperable Code). Let C be an [n, k, d] code. Then C is
Maximum Distance Seperable (MDS) if d = n− k + 1.

A list-decodable code is one where for a certain radius around a codeword, there is an
upper bound on the number of other neighboring codewords that can be contained inside
that radius. The Johnson bound gives a radius around every code in terms of its minimum
distance, within which it is list-decodable. This will be useful in the soundness analysis of
the BaseFold IOPP.

Definition 4 (Johnson Bound). For every γ ∈ (0, 1], define Jγ : [0, 1] → [0, 1] as the
function Jγ(λ) := 1−

√
1− λ(1− γ).

8

Foldable codes. We define foldable linear codes that generalize Reed-Solomon codes
used in FRI [8].

Definition 5 ((c, k0, d)-foldable linear codes). Let c, k0, d ∈ N and let F be a finite field.

A linear code Cd : Fk0·2d → Fck0·2d with generator matrix Gd is called foldable if there
exists a list of generator matrices (G0, . . . ,Gd−1) and diagonal matrices (T0, . . . , Td−1)
and (T ′0, . . . , T

′
d−1), such that for every i ∈ [1, d], (i) the diagonal matrices Ti−1, T

′
i−1 ∈

Fck0·2i−1×ck0·2i−1
satisfies that diag(Ti−1)[j] ̸= diag(T ′i−1)[j] for every j ∈ [ck0 · 2i−1]; and

(ii) the matrix Gi ∈ Fk0·2i×ck0·2i equals

Gi =

[
Gi−1 Gi−1

Gi−1 · Ti−1 Gi−1 · T ′i−1

]
.

2.1 Interactive Oracle Proofs and Polynomial Commitments

Interactive oracle proofs (IOPs). We briefly recall the definition of interactive oracle
proofs (IOPs) [18, 61, 3]. A k-round public coin IOP, IOP = (P,V), for a relation R runs
as follows: Initially, P sends an oracle string π0. In each round i ∈ [1, k], the verifier
samples and sends a random challenge αi, and the prover replies with an oracle string πi.
After k rounds of communications, the verifier V queries some entries of the oracle strings
π0, π1, . . . , πk and outputs a bit b.

Definition 6 (IOPs). Let IOP = (P,V) be a k-round public coin IOP protocol for a relation
R. We say that IOP is complete if for every (x,w) ∈ R,

Pr
α1,...,αk

 Vπ0,π1,...,πk(x, α1, . . . , αk) = 1

∣∣∣∣∣∣∣∣
π0 ← P(x,w)

π1 ← P(x,w, α1)
. . .

πk ← P(x,w, α1, . . . , αk)

 = 1 .

We say that IOP is sound if for any x /∈ L(R) and any unbounded adversary A,

Pr
α1,...,αk

 Vπ0,π1,...,πk(x, α1, . . . , αk) = 1

∣∣∣∣∣∣∣∣
π0 ← A(x)

π1 ← A(x,w, α1)
. . .

πk ← A(x, α1, . . . , αk)

 ≤ negl(λ) .

IOPs of proximity. IOP of proximity (IOPP) is similar to IOP with the specialty that
the witness w is also sent as an oracle string. The verifier can query w as an oracle but
will only query qw ≪ |w| entries of w. The soundness states that if w is far from any valid
witness, then the verifier rejects with high probability.

9

Definition 7 (IOPPs). A public coin IOP IOP = (P,V) for relation R is an IOP of
proximity if it satisfies IOP completeness and the following ν(·)-IOPP soundness: for
every (x,w) where w is δ-far (in relative Hamming distance) from any w′ such that (x,w′) ∈
R, it holds that for any unbounded adversary A,

Pr
α1,...,αk

 Vw,π0,...,πk(x, α1, . . . , αk) = 1

∣∣∣∣∣∣∣∣
π0 ← A(x,w)

π1 ← A(x,w, α1)
. . .

πk ← A(x,w, α1, . . . , αk)

 ≤ ν(δ) .

Let C be any linear code. In this paper, we consider the relation RC where (x,w) is in
the relation RC if and only if x is the code parameters and w ∈ C is a valid codeword.

Polynomial commitment schemes. We recall the definition from [44, 32].

Definition 8 (Polynomial commitment scheme). A multilinear polynomial commitment
scheme PC consists of a tuple of algorithms (Setup,Commit,Open,Eval):

• Setup(1λ, d)→ pp takes security parameter λ and d ∈ N (i.e. the number of variables
in a polynomial), outpus public parameter pp.

• Commit(pp, f) → C takes a multilinear polynomial f ∈ F[X1, . . . , Xd] and outputs a
commitment C.

• Open(pp, C, f)→ b takes a commitment C and a multilinear polynomial f ∈ F[X1, . . . , Xd],
outputs a bit b.

• Eval(pp, C, z, y; f) is a protocol between the prover P and the verifier V with public
input a commitment C, an evaluation point z ∈ Fd and a value y ∈ F. P additionally
knows a multilinear polynomial f ∈ F[X1, . . . , Xd] and P wants to convince V that
f is an opening to C and f(z) = y. The verifier outputs a bit b at the end of the
protocol.

The scheme PC satisfies completeness if for any multilinear polynomial f ∈ F[X1, . . . , Xd]
and any point z ∈ Fd

Pr

[
Eval(pp, C, z, f(z); f) = 1

∣∣∣∣ pp← Setup(1λ, d)
C ← Commit(pp, f)

]
= 1 .

PC is binding if for any d ∈ N and PPT adversray A,

Pr

 b0 = b1 = 1 ∧ f0 ̸= f1

∣∣∣∣∣∣∣∣
pp← Setup(1λ, d)
(C, f0, f1)← A(pp)
b0 ← Open(pp, C, f0)
b1 ← Open(pp, C, f1)

 ≤ negl(λ) .

10

PC satisfies knowledge soundness if Eval is an argument of knowledge for the relation

REval,pp = {[(C, z, y); f] : f(z) = y ∧ Open(pp, C, f) = 1} ,

that is, there is an extractor Ext such that for any PPT algorithm A and any instance
x := (C, z, y) ∈ L(REval,pp) where Pr[Eval(pp, C, z, y)⟨A,V⟩ = 1] ≥ ϵ(λ) for some non-
negligible function ϵ(·), ExtA(x) with black box access to A can output witness f in expected
polynomial time such that ((C, z, y); f) ∈ REval,pp with overwhelming probability.

3 Fast Linear Code from Foldable Distributions

In this section, we present a novel random linear code, which is foldable, and efficiently
encodable over any finite field (with size more than 210). We present its encoding algorithm
and analyze its relative minimum distance.

We first define a family of random foldable distributions.

Definition 9 ((c, k0)-foldable distributions). Fix finite field F and c, k0 ∈ N. Let G0 ∈
Fk0×ck0 be the generator matrix of a [ck0, k0]-linear code that is maximum distance separable
(MDS) 3, and let D0 be the distribution that outputs G0 with probability 1. For every i > 0,
we define inductively the distribution Di that samples generator matrices (G0,G1, . . . ,Gi)
where Gi ∈ Fki×ni and ki := k0 · 2i, ni := cki:

1. Sample (G0, . . . ,Gi−1)← Di−1.

2. Sample diag(Ti−1)←$ (F×)ni−1 and define Gi as

Gi =

[
Gi−1 Gi−1

Gi−1 · Ti−1 Gi−1 · −Ti−1

]
.

Encoding algorithms for linear foldable codes. Let {Di}i∈N be a family of (c, k0)-
foldable distributions. For a d ∈ N, let (G0, ..,Gd)← Dd be the sampled generator matrices
with associated diagonal matrices (T0, .., Td−1). Denote as Cd the (c, k0, d)-foldable linear
code4 with generator matrix Gd ∈ Fkd×nd where kd = k02

d and nd = ckd. Next, we
describe an encoding algorithm Encd for Cd which takes dnd

2 field multiplications and dnd

field additions.

Lemma 1 (Correctness). Let c, k0, d ∈ N and let (G0, ..,Gd)← Dd be the sampled gener-

ator matrices with associated diagonal matrices (T0, .., Td−1). Then for all m ∈ Fk0·2d, we
have Encd(m) = m ·Gd.

3We require this code to be MDS in order to make the distance analysis more straightforward but it is
not strictly necessary. The analysis works for any linear codes.

4Note that Cd is foldable as we set T ′
i := −Ti for every i ∈ [0, d− 1].

11

Protocol 1 Encd : BaseFold Encoding Algorithm

Input : m ∈ Fkd

Output : w ∈ Fnd such that w = m ·Gd

Parameters: G0 and diagonal matrices (T0, T1, . . . , Td−1)

1. If d = 0 (i.e. m ∈ Fk0):

(a) return Enc0(m)

2. else

(a) parse m := (ml,mr)

(b) set l := Encd−1(ml), r := Encd−1(mr) and t = diag(Td−1)

(c) return (l+ t ◦ r, l− t ◦ r)

Figure 1: The encoding algorithm for BaseFold.

Proof. We proceed by induction on i ≤ d. Fix c, k0 ∈ N. Let i = 0. Then Protocol 1 returns
Enc0(m), which by definition equals to m ·G0. Now suppose, by inductive hypothesis, that
Enci(m) = m ·Gi for all m ∈ Fk0·2i . We now consider the execution of Enci+1: on Line
2.b of the (i+1)-th recursion of Protocol 1, we can replace calls to Enci(ml) and Enci(mr)
with ml ·Gi and mr ·Gi respectively. Therefore,

l+ t ◦ r = ml ·Gi + diag(Ti) ◦ (mr ·Gi) = ml ·Gi +mr ·Gi · Ti

l− t ◦ r = ml ·Gi − diag(Ti) ◦ (mr ·Gi) = ml ·Gi −mr ·Gi · Ti ,

hence for all m := (ml,mr) ∈ Fk0·2i+1
,

Enci+1(m) = (l+ t ◦ r, l− t ◦ r) = (ml,mr) ·
[

Gi Gi

Gi · Ti Gi · (−Ti)

]
= m ·Gi+1

where the last equality holds by definition of Gi+1.

3.1 Proof of Relative Minimum Distance

In this section, we analyze the relative minimum distance of the BaseFold code Cd. We
start with an overview of the proof techniques and then formally state and prove our main
theorem. Finally, we demonstrate concrete bounds for typical instantiations of the code.

Before proving the result, we first recall the famous Rank-Nullity Theorem.

Theorem 1 (Rank-Nullity Theorem). For any matrix M with m columns over a field F,
the rank and the nullity (i.e., the dimension of the kernel) of M sums to m, that is,

rank(M) + nullity(M) = m.

12

Next, we overview the techniques for analyzing the relative minimum distance of the
random foldable code.

Technical overview. It is well known that the minimum distance of a linear code is
identical to the minimum Hamming weight of non-zero codewords. Thus it is sufficient to
prove that for any nonzero message m, the encoding Encd(m) does not have many zeros.

We start with a strawman idea using induction. Suppose by induction hypothesis that
with overwhelming probability (over diagonal matrices T0, . . . , Ti−1), for all m ∈ Fki \{0ki},
the encoding Enci(m) has at most ti zeros (for some ti ∈ N to be clear later). Now fix any
non-zero message m = (ml,mr) ∈ F2ki , it holds that Enci+1(m) = (Ml||Mr) where

Ml = Enci(ml) + Enci(mr) ◦ diag(Ti) , Mr = Enci(ml)− Enci(mr) ◦ diag(Ti) .

By induction hypothesis, there are at most ti indices j ∈ [ni] where Enci(ml)[j] = Enci(mr)[j] =
0. For each index j in the rest of ni− ti entries, the event that one

5 of Ml[j], Mr[j] equals
zero is an independent Bernoulli trial with success probability O(1/|F|) (where the ran-
domness is over diag(Ti)[j]). Thus the probability that Enci+1(m) has at least 2ti+ℓi zeros
is approximately O(ni2

ni/|F|ℓi). Unfortunately, to argue that (with high probability over
diag(Ti)) the encoding Enci+1(m) has no more than 2ti+ℓi zeros for any nonzero m ∈ F2ki ,
we need to take a union bound over all non-zero messages in F2ki , which is meaningful only
when ℓi ≫ 2ki that leads to a really weak bound.

Looking more deeply, the bound is loose because we treat every nonzero message m =
(ml,mr) ∈ F2ki equally and always assume the worst case where for exactly ti indices
j ∈ [ni], it holds that Enci(ml)[j] = Enci(mr)[j] = 0. However, for many messages
m ∈ F2ki , Enci(ml) and Enci(mr) actually have significantly fewer zeros and we can obtain
a much better bound on the number of zeros in Enci+1(m).

We have the following key observation for obtaining a tighter bound: suppose Enci(m)
has less than ti zeros for all non-zero m ∈ Fki , then for any subset S ⊆ [ni] where |S| ≤ ti,
the kernel of Enci[S] has size at most Fti−|S|. Here the kernel of Enci[S] denotes the set
of messages in Fki whose encoding equals zeros on set S. Intuitively, for a larger set S,
there will be fewer messages whose encodings equal zeros on S. To prove it, observe that
for any set T where S ⊆ T and |T | = ti, the kernel of Enci[T] is 0ki (as 0ki is the only
message whose encoding has at least ti zeros). Note that the partial encoding Enci[T] is
essentially a linear map represented by a matrix G and Enci[S] is a linear map represented
by a submatrix of G. Thus by the rank-nullity theorem, the kernel of Enci[S] has size at
most |F|ti−|S|. We refer to Lemma 2 for more proof details.

Given the above, for any nonzero message m = (ml,mr) in F2ki , let S ⊆ [ni] be the
maximal set where both ml and mr are in the kernel of Enci[S]. Using the same argument
as in the strawman idea, the probability that Enci+1(m) has 2ti+ ℓi zeros is approximately

5Note that it’s impossible for both of Ml[j] and Mr[j] to be zeros as that implies Enci(ml)[j] =
Enci(mr)[j] = 0 or diag(Ti)[j] = 0, contradiction.

13

O(ni2
ni/|F|2ti+ℓi−2|S|)). Note that there are only 2ni choices of set S and for each S there

are at most |F|2(ti−|S|) messages m ∈ F2ki with the maximal set being S. By taking the
union bound, so long as ℓi is large enough (e.g., |F|ℓi ≫ 2ni), with overwhelming probability,
for every nonzero m ∈ F2ki , the number of zeros in Enci+1(m) is at most 2ti + ℓi.

Theorem 2. Fix any field F where |F| ≥ 210 and let λ ∈ N be the security parameter. For
a vector v with elements in F, denote nzero(v) as the number of zeroes in v. For every
d ∈ N, let Dd be a (c, k0)-foldable distribution and let ki = k02

i, ni = cki for every i ≤ d.
Then,

Pr
(G0,...,Gd)←Dd

[
∃m ∈ Fkd \ {0}, nzero(Encd(m)) ≥ td

]
≤ d · 2−λ . (2)

Here t0 = k0 and ti = 2ti−1 + ℓi for every i ∈ [d], where

ℓi :=
2(d− 1) log n0 + λ+ 2.002td−1 + 0.6nd

log |F| − 1.001
.

Proof. We prove the theorem by induction.

Case d = 0: G0 is the generator matrix of a maximum distance seperable linear code
(Definition 3).6 Therefore, the Hamming weight of any non-zero codeword in C0 is at least
ck0−k0+1 and thus the number of zeros in the codeword is at most ck0− (ck0−k0+1) =
k0 − 1 < k0 = t0.

Case d > 0: Assuming that Inequality 2 holds for all i ≤ d − 1, we prove that the
inequality also holds for d. As before, we denote by ki := k02

i and by ni := cki for all
i ∈ N. We say that a sampled matrix Gd−1 is “good” if Gd−1 is a generator matrix where
the encoding of any non-zero message m ∈ Fkd−1 has fewer than td−1 zeros. By induction
hypothesis, the probability that Gd−1 is not “good” (over distribution Dd−1) is at most
(d−1)2−λ. Thus, to prove that Gd is not “good” (over distribution Dd) with probability at
most d2−λ, it is sufficient to prove that conditioned on Gd−1 being “good”, the probability
(over diag(Td−1)) that exists non-zero message m ∈ Fkd where m ·Gd has at least td zeros
is at most 2−λ.

Next, we prove the above statement. Fix any “good” matrix Gd−1, we start by defining
set md(S) ⊆ Fkd for every S ⊆ [1, nd−1]. Namely, md(S) is the set of non-zero vectors
m = (ml,mr) ∈ Fkd such that

{i ∈ [1, nd−1] : Encd−1(ml)[i] = 0 ∧ Encd−1(mr)[i] = 0} = S .

In other words, if m ∈ md(S) then (i) for all i ∈ S, both Encd−1(ml)[i] = 0 and
Encd−1(mr)[i] = 0 and (ii) for any j /∈ S, at least one of Encd−1(ml)[j] and Encd−1(mr)[j]
is non-zero. We first bound the size of md(S).

6The analysis still works if G0 is not maximum distance separable, in which case we change the minimum
Hamming weight according to the minimum distance of C0.

14

Lemma 2. Fix any generator matrix Gd−1 where the encoding of any non-zero message
m ∈ Fkd−1 has fewer than td−1 zeros. For any subset S ⊆ [1, nd−1], if |S| < td−1 then
|md(S)| ≤ |F|2td−1−2|S| and if |S| ≥ td−1 then |md(S)| = 1.

Proof. For brevity we denote G := Gd−1 and let G⊤ denote the transpose of G. Let
G⊤[S] := {G⊤[i][·] : i ∈ S} denote the submatrix of G⊤ with rows being the subset of
rows in G⊤ according to the index set S ⊆ [1, nd−1]. For a matrix M ∈ Fk×n, we define
kernel(M⊤) as the set of vectors m ∈ Fk such that (mM)⊤ = M⊤m⊤ = 0n. Observe that
by definition of linear codes (i.e., Encd−1(m) := mG), md(S) is a subset of

{m ∈ Fkd : ml ∈ kernel(G⊤[S]) ∧mr ∈ kernel(G⊤[S])} (3)

where m = (ml,mr). Therefore,

|md(S)| ≤ |kernel(G⊤[S])|2 . (4)

Next, we will show that if |S| < td−1 then |kernel(G⊤[S])| ≤ |F|td−1−|S| and if |S| ≥ td−1
then |kernel(G⊤[S])| = 1, from which the lemma statement follows.
Case |S| < td−1: Pick an index subset T ⊂ [1, nd−1] such that |T | = td−1−|S| and T ∩S =
∅. Consider the matrix G⊤[T ∪S]. Then rank(G⊤[T ∪S]) ≤ rank(G⊤[S]) + rank(G⊤[T]).7

The rank of a matrix is at most the number of its rows. Therefore, rank(G⊤[T]) ≤ td−1−|S|
and thus

rank(G⊤[T ∪ S]) ≤ rank(G⊤[S]) + (td−1 − |S|) . (5)

Recall that if m ∈ kernel(G⊤[T ∪S]), then Encd(m) has at least |T ∪S| = |T |+ |S| = td−1
zeroes. But by the assumption of the lemma, the number of zeroes in the encoding of any
non-zero v ∈ Fkd−1 is less than td−1 and therefore kernel(G⊤[T ∪ S]) = {0kd−1} and thus
nullity(G⊤[T ∪ S]) = 0. Therefore, because the number of columns in G⊤[T ∪ S] is kd−1,
the rank-nullity theorem implies that kd−1 = rank(G⊤[T ∪ S]) + 0. Therefore, by Eqn 5,

rank(G⊤[S]) ≥ kd−1 − (td−1 − |S|) .

Invoking the rank-nullity theorem on G⊤[S] again (which also has kd−1 columns), we have
that

nullity(G⊤[S]) = kd−1 − rank(G⊤[S]) ≤ kd−1 − (kd−1 − (td−1 − |S|)) = td−1 − |S|

and thus |kernel(G⊤[S])| ≤ |F|td−1−|S|.
Case |S| ≥ td−1: As mentioned in the previous case, the kernel of G⊤[S] must be {0kd−1}
because otherwise there exists a non-zero message m ∈ Fkd−1 such that the encoding of
m has more than td−1 zeroes, which contradicts the premise of the lemma. Therefore
|kernel(G⊤[S])| = 1.

7This follows directly from the fact that the dimension of the sum of two finite dimensional subspaces
is less than or equal to the sum of the dimensions of those subspaces.

15

Next, we prove that for every non-zero m ∈ md(S), the probability that m ·Gd has at
least td zeros is small.

Lemma 3. Let F be a finite field such that |F| ≥ 210. Fix any generator matrix Gd−1 ∈
Fkd−1×nd−1 where the encoding of any non-zero message m ∈ Fkd−1 has fewer than td−1
zeros. Define matrix

Gd :=

[
Gd−1 Gd−1

Gd−1 ·Td−1 Gd−1 · −Td−1

]
where diag(Td−1) ←$ (F×)nd−1. For every S ⊆ [1, nd−1] and any non-zero message m ∈
md(S),

Pr
diag(Td−1)←$(F×)nd−1

[nzero(m ·Gd) ≥ td] < nd−1 · 2nd−1−|S| ·
(
2.002

|F|

)td−2|S|
. (6)

Proof. The lemma follows from a probability analysis for about nd−1 − |S| independent
Bernoulli trials. See Appendix B.1 for the full proof.

Note that ∪S⊆[1,nd−1]md(S) covers the entire set of messages in Fkd . From Lemma 2,
Lemma 3 and by taking union bound over sets S ⊆ [1, nd−1] and messages in md(S), we
obtain the following lemma which completes the proof.

Lemma 4. Fix any generator matrix Gd−1 where the encoding of any non-zero message
m ∈ Fkd−1 has fewer than td−1 zeros. Define matrix Gd as in Lemma 3. The probability
(over diag(Td−1)) that exists non-zero message m ∈ Fkd where m ·Gd has at least td zeros
is at most 2−λ.

Proof. See Appendix B.2 for the proof.

Concrete bounds. We list the relative minimum distances of the BaseFold codes for
typical instantiations of parameters. The calculation of the relative minimum distances is
explained in Appendix C.

Remark 1 (Encoding Messages in Extension Fields). For soundness bootstrapping in PCS
and IOPP, sometimes it is useful to lift a random foldable code over message space (Fp)

kd

to a code over message space (Fpm)
kd where Fpm is the degree-(m − 1) extension field of

a prime field Fp. In this case, we can understand the encoding Encd(m) of m ∈ (Fpm)
kd

as Encd(m) :=
∑r−1

j=0 Encd(mj)X
j where m =

∑r−1
j=0 mjX

j and mj ∈ Fkd
p for every j ∈

[0, r − 1]. Hence for any t ∈ N, Encd(m) has t zeros implies that Encd(mj) has at least
t zeros for every j ∈ [0, r − 1]. Since m is non-zero implies that at least one of mj is
non-zero, the relative minimum distance of the encoding over message space (Fpm)

kd is at
least that of the encoding over Fkd

p . Moreover, for a message m ∈ (Fp)
kd, the encoding of

m over the small field Fp is exactly the encoding of m over the extension field Fpm.

16

Minimum Relative Distance of a random foldable code

k0 kd c |F| ∆Cd

25 220 16 231 .5044

1 220 16 261 .484

1 225 8 2128 .557

1 225 8 2256 .728

Table 1: The relative minimum distances of random foldable codes.

4 BaseFold : IOPPs for Foldable Codes

In this section, we present the BaseFold IOPP, which generalizes the FRI IOPP to any
foldable linear code. Recall Definition 5 that for some d ∈ Z, a foldable linear code Cd is
specified by a list of generator matrices (G0, . . . ,Gd) where for every i ∈ [1, d], Gi ∈ Fki×ni

satisfies that

Gi =

[
Gi−1 Gi−1

Gi−1 · Ti−1 Gi−1 · T ′i−1

]
where Ti−1, T

′
i−1 ∈ Fni−1×ni−1 are some diagonal matrices. We also require that diag(Ti−1)[j] ̸=

diag(T ′i−1)[j]) for every j ∈ [ni−1]. For example, in the random foldable code described in
Sect. 3, we sample the diagonal of Ti−1 as diag(Ti−1)←$ (F×)ni−1 and set T ′i−1 = −Ti−1.

In the BaseFold IOPP, the goal of the verifier is to check that an oracle πd ∈ Fnd sent
by the prover is close to a codeword in Cd. As shown in Fig. 2, the protocol is split into two
phases where in the first phase commit, the prover generates a list of oracles (πd, . . . , π0)
given the verifier’s folding challenges αi ∈ F (0 ≤ i < d); in the second phase query, the
verifier samples a query index µ ∈ [1, nd−1] to check the consistency between oracles. We
use interpolate((x1, y1), (x2, y2)) to denote the unique degree-1 polynomial Q(X) such that
Q(x1) = y1 and Q(x2) = y2. Recall that for each i ∈ [0, d], ki is the message length and ni

is the blocklength of the code with generator matrix Gi.

Lemma 5 (Completeness). If πd is a codeword in Cd, then the verifier always outputs
accept in the query phase given the oracles (πd, . . . , π0) output by the honest prover in the
commit phase.

Proof. Note that the checks p(αi) = πi[µ] at step 3 of query always pass as p is computed in
the same way as the polynomial f is computed by the honest prover in the commit phase.
It remains to argue that π0 is a valid codeword. Let md ∈ Fkd denote the decoded word
underlying πd. It suffices to show that for i from d− 1 downto 0, πi is the encoding (w.r.t.
generator matrix Gi) of message mi := mi+1,l+αimi+1,r (where (mi+1,l||mi+1,r) = mi+1).
This implies that π0 is a codeword and thus the verifier outputs accept.

17

Protocol 2 IOPP.commit

Input oracle: πd ∈ Fnd

Output oracles: (πd−1, . . . , π0) ∈ Fnd−1 × · · · × Fn0

• For i from d− 1 downto 0:

1. The verifier samples and sends αi ←$ F to the prover

2. For each index j ∈ [1, ni], the prover

(a) sets f(X) := interpolate((diag(Ti)[j], πi+1[j]), (diag(T
′
i)[j], πi+1[j + ni]))

(b) sets πi[j] = f(αi)

3. The prover outputs oracle πi ∈ Fni .

Protocol 3 IOPP.query

Oracles: (πd, .., π0)

• The verifier samples an index µ←$ [1, nd−1]

• For i from d− 1 downto 0, the verifier

1. queries oracle entries πi+1[µ], πi+1[µ+ ni]

2. computes p(X) := interpolate((diag(Ti)[µ], πi+1[µ]), (diag(T
′
i)[µ], πi+1[µ+ ni]))

3. checks that p(αi) = πi[µ]

4. if i > 0 and µ > ni−1, update µ← µ− ni−1.

• If π0 is a valid codeword w.r.t. generator matrix G0, output accept, otherwise output
reject

Figure 2: The IOPP protocol for foldable codes.

To show πi is the encoding of mi := mi+1,l + αimi+1,r, we first note that

πi+1 = mi+1 ·Gi+1

= mi+1 ·
[

Gi Gi

Gi · Ti Gi · T ′i

]
(definition of Gi+1)

=
[
Enci(mi+1,l) + Enci(mi+1,r) ◦ diag(Ti−1) ||Enci(mi+1,l) + Enci(mi+1,r) ◦ diag(T ′i−1)

]
where the last equality holds given that Ti and T ′i are diagonal and Gi is the generator

18

matrix of encoding Enci. Hence for every index j ∈ [1, ni],

πi+1[j] = Enci(mi+1,l)[j] + Enci(mi+1,r)[j] · diag(Ti−1)[j] ,

πi+1[j + ni] = Enci(mi+1,l)[j] + Enci(mi+1,r)[j] · diag(T ′i−1)[j] .

Thus πi+1[j], πi+1[j+ni] are the evaluation of fj(X) = Enci(mi+1,l)[j]+Enci(mi+1,r)[j] ·X
at points diag(Ti−1)[j], diag(T

′
i−1)[j]. By step 2.(b) of the commit phase, for every index

j ∈ [1, ni],

πi[j] = Enci(mi+1,l)[j] + αi · Enci(mi+1,r)[j] = Enci(mi+1,l + αi ·mi+1,r)[j]

where the last equality holds by linearity of the code. Thus πi is the encoding of mi :=
mi+1,l + αi ·mi+1,r which completes the proof.

Next, we analyze the proximity error of the IOPP protocol. We adapt the statement
and the proof of improved soundness of FRI stated in [20] to the case of general foldable
linear codes.

Theorem 3 (IOPP Soundness For Foldable Linear Codes). Let Cd be a (c, k0, d)-foldable
linear code with generator matrices (G0, . . . ,Gd). We use Ci (0 ≤ i < d) to denote the code
with generator matrix Gi and assume the relative minimum distance ∆Ci ≥ ∆Ci+1 for all
i ∈ [0, d−1]. Let γ > 0 and set δ := min(∆∗(πd, Cd), Jγ(Jγ(∆Cd

))) where ∆∗(πd, Cd) is the
relative coset minimum distance between v and Cd, (Definition 2). Then with probability
at least 1− 2d

γ3|F| (over the challenges (α0, . . . , αd−1) in IOPP.commit), for any (adaptively

chosen) prover oracles πd−1, .., π0, the verifier outputs accept in all of the ℓ repetitions of
IOPP.query with probability at most (1− δ + γd)ℓ.

Proof. The proof is similar to the proof of Theorem 7.2 in [20]. For completeness, we
present the proof in Appendix B.3.

5 Multilinear Polynomial Commitments From BaseFold

In this section, we present a commitment scheme for multilinear polynomials with fast
provers and polylogarithmic proof size and verification time. Moreover, the scheme works
for polynomials over any (sufficiently large) fields. The scheme combines the Basefold
IOPP with the sum-check protocol [56].

Notation. Let d ∈ N, for every v ∈ [0, 2d), we use bit(v) ∈ {0, 1}d to denote the d-bit-
decomposition of v, that is, v =

∑d
j=1 bit(v)[j] · 2j−1. For a multilinear polynomial f ∈

F[X1, . . . , Xd], we use vector f ∈ F2d to denote the coefficients of f , that is, f(X1, . . . , Xd) =∑
v∈[0,2d) f [v+ 1]

∏d
j=1X

bit(v)[j]
j . For a vector z ∈ Fd, we use f(z) to denote the evaluation

of f at point z = (z1, . . . , zd). Let d′ ∈ N and let Cd′ be a (c, k0, d
′)-foldable linear code.

19

We use Encd′ to denote the encoding algorithm for Cd′ with message length kd′ = k02
d′

and blocklength nd′ = ckd′ .

Remark 2 (Field Choices). In the following context, we assume that F is a large field
such that d/|F| = negl(λ). This is without loss of generality: given some polynomial f ∈
Fp[X1, . . . , Xd] over a small field Fp, as explained in Remark 1, we can lift the encoding of

the coefficient vector f ∈ F2d
p to an encoding over the message space F2d

pm where F := Fpm

is the extension field of Fp. Looking ahead, for any evaluation claim f(z) = y where
f ∈ Fp[X1, . . . , Xd], z ∈ Fd

p and y ∈ Fp, we can understand it as a claim over the extension
field Fpm, and run IOPP and sum-check protocols over the extension field and reduces the
claim to a random evaluation claim over the extension field.

Commitment phase. Given multilinear polynomial f ∈ F[X1, . . . , Xd] with coefficients

f ∈ F2d , let πf := Encd(f) be the encoding of f . In the IOP setting, the commitment to f
is simply the oracle πf that the verifier can make point queries. The derived commitment
in the random oracle model is the root of the Merkle tree with leaves being the vector
πf ∈ Fc2d .

Opening phase. The prover opens a polynomial commitment C by sending a multilinear
polynomial f ∈ F[X1, . . . , Xd] and a word πf to the verifier. The verifier checks that (i) the
Merkle commitment of πf equals C, and (ii) the relative distance between πf and Encd(f)
is less than ∆Cd

/2, where ∆Cd
is the relative minimum distance of Cd.

The sum-check protocol. Before presenting the PCS evaluation protocol, we briefly
review the famous sum-check protocol [56]. Given a multivariate polynomial oracle f ∈
F≤c[X1, . . . , Xd] where the individual degree of each variable is c ∈ N, the verifier wants
to check that

∑
b∈{0,1}d f(b) = y for some value y. A naive approach is for the verifier to

query f at every point in the Boolean hypercube {0, 1}d and sum the evaluation values,
which involves 2d polynomial queries. Lund et. al. [56] introduced an elegant sum-check
protocol that reduces the verifier’s work to a single polynomial query at a random point.

The protocol runs in d rounds where in each round, the prover sends a univariate
polynomial of degree c and the verifier replies with a random field element as a challenge.
At the end of the protocol, the verifier makes a single query to f at a random point to
decide whether the sumcheck claim holds. Specifically,

• The prover sends a univariate polynomial gd(X) :=
∑

b∈{0,1}d−1 f(b, X), the verifier
checks that gd(0) + gd(1) = y, and samples rd−1 ←$ F. Then the sumcheck claim is
reduced to

∑
b∈{0,1}d−1 f(b, rd−1) = gd(rd−1).

• For round i from d− 1 to 1, the prover sends a univariate polynomial

gi(X) :=
∑

b∈{0,1}i−1

f(b, X, ri, . . . , rd−1) ,

20

the verifier checks that gi(0) + gi(1) = gi+1(ri), and samples ri−1 ←$ F. Then the
sumcheck claim is reduced to

∑
b∈{0,1}i−1 f(b, ri−1, . . . , rd−1) = gi(ri−1).

• The verifier queries f(r0, . . . , rd−1) and accept if f(r0, . . . , rd−1) = g1(r0).

It is easy to see that the protocol is perfectly complete. Lund et. al. also showed that if∑
b∈{0,1}d f(b) ̸= y, for any unbounded malicious prover, the verifier outputs accept with

probability at most cd/|F|.

Protocol 4 PC.Eval

Public input: oracle πf := Encd(f) ∈ Fnd , point z ∈ Fd, claimed evaluation y ∈ F
Prover witness: the polynomial f with coefficients f ∈ F2d

Code parameters: G0 and diagonal matrices (T0, . . . , Td−1) and (T ′0, . . . , T
′
d−1)

Parallel repetition parameter: ℓ ∈ N

1. The prover sends hd(X) :=
∑

b∈{0,1}d−1 f(b, X) · ẽqz(b, X) to the verifier

2. For i from d− 1 to 0

(a) Verifier samples and sends ri ←$ F to the prover

(b) For each j ∈ [1, ni], the prover

i. sets gj(X) := interpolate(diag(Ti[j], πi+1[j])), (diag(T
′
i)[j], πi+1[j + ni]))

ii. sets πi[j] := gj(ri)

(c) The prover outputs oracle πi ∈ Fni

(d) If i > 0, the prover sends verifier

hi(X) =
∑

b∈{0,1}i−1

f(b, X, ri, . . . , rd−1) · ẽqz(b, X, ri, . . . , rd−1)

3. The verifier checks that

• IOPP.query(πd,...,π0) outputs accept for all ℓ independent calls to query

• hd(0) + hd(1) = y and for every i ∈ [1, d− 1], hi(0) + hi(1) = hi+1(ri)

• Enc0(h1(r0)/ẽqz(r0, . . . , rd−1)) = π0

Figure 3: The evaluation protocol for the BaseFold PCS.

Evaluation protocol. Next, we describe the evaluation protocol in Fig. 3. Given a com-
mitment C, a point z ∈ Fd and value y ∈ F, the prover wants to convince the verifier that

21

it knows an opening f ∈ F[X1, . . . , Xd] of C such that f(z) = y. Our scheme interleaves
sumcheck with BaseFold IOPP. Before describing the protocol, recall that by the multi-
linear extension, a multilinear polynomial f ∈ F[X1, . . . , Xd] can be uniquely expressed as
the following sum

f(X1, . . . , Xd) =
∑

b∈{0,1}d
f(b) · ẽqb(X1, . . . , Xd)

where the polynomial ẽqb(X1, . . . , Xd) :=
∏d

i=1[b[i]Xi + (1− b[i])(1−Xi)], thus checking
f(z) = y is equivalent to checking the sum-check claim y =

∑
b∈{0,1}d f(b) · ẽqb(z). In

Fig. 3, we describe a protocol for this claim in the language of IOPs. (Note that Ben-Sasson
et. al. [18] showed how to generically transform an IOP that satisfies round-by-round
soundness into a non-interactive argument of knowledge in the random oracle model). For
simplicity, we assume that the scheme is instantiated with a (c, k0, d)-foldable code where
k0 = 1. In remark 3 we will explain how to adapt the protocol to the case where k0 > 1.
Again, for every i ∈ [0, d], we set ki = k0 · 2i and ni = cki.

Remark 3 (The case of k0 > 1). The BaseFold IOPP can also be instantiated with a
(c, k0, d

′)-foldable code where k0 = 2κ for some integer κ ≥ 1 and d′ := d−κ. In Protocol 4,
we replace d with d′, and after d′ rounds, the sum-check claim is reduced to

h1(r0) =
∑

b∈{0,1}κ
f(b, r0, . . . , rd′−1) · ẽqz(b, r0, . . . , rd′−1) . (7)

To check this, the prover additionally sends a vector m ∈ F2κ which is the coefficient vector
for polynomial f(X1, . . . , Xκ, r0, . . . , rd′−1), then the verifier checks that Enc0(m) = π0 and
Equation 7 holds. Note that the evaluations of f(X1, . . . , Xκ, r0, . . . , rd′−1) on set {0, 1}κ
can be computed in time O(κ2κ) given the coefficients m.

Next, we analyze the running time of the prover and verifier when executing Protocol 4.

Prover time. The prover runs the prover algorithms of IOPP.commit and the sum-check
protocol. The sumcheck prover cost is dominated by 5kd finite field multiplications and
the cost of running IOPP.commit is O(nd) field operations and hashes. In sum, the prover
complexity is O(nd) field operations and hashes.

Verifier time. Note that the evaluation ẽqz(r0, . . . , rd−1) can be computed in O(d) field
operations, thus the verifier time is dominated by ℓ runs of IOPP.query, with total cost of
O(ℓd) field operations and Merkle path checkings (where each Merkle path checking takes
at most O(d) hash computations).

Remark 4 (Efficiency comparison to the FRI-based univariate PCS.). Recall that in the
evaluation proof of the FRI-based univariate PCS [51], two polynomials are committed,

22

f(x) ∈ F[X] and f(x)−f(v)
x−v . FRI IOPP is only executed over the latter one, but deriving the

second polynomial takes 4ckd finite field multlications using Montgomery’s trick for batch
inversion. For example, when c = 8, the FRI PCS additionally performs 32kd finite field
multiplications, while in the BaseFold PCS the extra overhead is 5kd field multiplications
for running the sumcheck protocol.

5.1 Security Proofs

Completeness and binding. Completeness holds as an honest prover can always pass
the evaluation check. To argue binding, suppose for contradiction that the adversary can
output valid openings for two different polynomials f1, f2 ∈ F[X1, . . . , Xd], that is, there
exists π1, π2 where Merkle.commit(π1) = Merkle.commit(π2) and ∆∗(Encd(fi), πi) < ∆Cd

/2
for every i ∈ {1, 2}. Then either π1 = π2 or the adversary finds a hash collision. The first
case (i.e., π1 = π2) never happens as otherwise by definition of minimum distance ,triangle
inequality, and Lemma 6,

∆Cd
≤ ∆(Encd(f1),Encd(f2))

≤ ∆(Encd(f1), π1) + ∆(Encd(f2), π2)

< ∆∗(Encd(f1), π1) + ∆∗(Encd(f2), π2)

< 2(∆Cd
/2) ,

which is a contradiction. The second case happens with negligible probability by the
collision resistance of the hash function.

Soundness. Before showing knowledge soundness, we prove a useful lemma arguing the
soundness of the PCS, that is, if a prover can pass the check in Protocol 4 with non-
negligible probability, then the oracle πf is close to a unique codeword Encd(f) in Cd

and the corresponding polynomial f satisfies f(z) = y. Note that in order to securely
instantiate the Fiat-Shamir transform from [16] to BaseFold, we need to prove BaseFold

satisfies round-by-round soundness. In this section, we prove that BaseFold satisfies the
traditional notion of soundness (Definition 6) but we believe it will be straightforward to
prove using techniques from [24]. Before proving the PCS soundness, we state a useful fact
about the coset relative distance (Definition 2).

Lemma 6. Let C be an [n, k, d] code and let v ∈ Fn. Then

∆(v, C) ≤ ∆∗(v, C)

Proof. Let c, c′ ∈ C satisfy ∆(v, C) = ∆(v, c′) and ∆∗(v, C) = ∆∗(v, c). It suffices to show
that ∆(v, c′) ≤ ∆∗(v, c). By definition of relative minimum distance, ∆(v, c′) ≤ ∆(v, c).
Moreover, the absolute distance between c and v is at most twice the number of pairs
included in the coset distance between c and v. Thus, ∆(v, c′) ≤ ∆(v, c) ≤ (2 ·∆∗(v, c) ·
n/2)/n = ∆∗(v, c), which completes the proof.

23

Lemma 7 (Soundness). Let γ, δ ∈ (0, 1) satisfy δ < Jγ(Jγ(∆Cd
)) and ∆Ci+1 ≤ ∆Ci for

every i ∈ [0, d − 1]. Assume that 3δ − dγ < ∆Cd
and 2d

γ3|F| + (1 − δ + γd)ℓ ≤ negl(λ).

In the evaluation protocol 4 with instance (πf , z, y) (πf is the input oracle), if the prover
P∗ passes the verification with non-negligible probability, then exists unique polynomial
f ∈ F[X1, . . . , Xd] (with coefficients f ∈ F2d) such that ∆∗(πf ,Encd(f)) ≤ δ (Definition 2)
and f(z) = y. Moreover, the probability that P∗ passes the verification but f(r0, . . . , rd−1) ̸=
h1(r0)/ẽqz(r0, . . . , rd−1) is negligible (where h1(r0)/ẽqz(r0, . . . , rd−1) is the claimed evalua-
tion in sumcheck).

Proof. By soundness of IOPP (Theorem 3) and by Lemma 6, it holds that ∆(πf , Cd) ≤
∆∗(πf , Cd) ≤ δ < ∆Cd

/2. Thus there exists a unique multilinear polynomial f ∈ F[X1, . . . , Xd]
such that ∆(πf ,Encd(f)) ≤ δ. It remains to argue that f(z) = y. Assume for contradiction
that f(z) ̸= y, that is,

f(z) =
∑

b∈{0,1}d
f(b) · ẽqb(z) =

∑
b∈{0,1}d

f(b) · ẽqz(b) ̸= y .

By soundness of the sum-check protocol, f(r) · ẽqz(r) = h1(r0) with probability at most
2d/|F | over the random choice of r ∈ Fd (as f ′(X) := f(X) · ẽqz(X) is a polynomial with
total degree 2d). Here h1(X) is the last univariate polynomial sent by the prover in the
sumcheck protocol. Next, we argue that with probability more than 2d/|F | over r, we
actually have f(r) · ẽqz(r) = h1(r0), which leads to a contradiction and completes the
proof. WLOG we assume that P∗ is deterministic. We start by defining two bad events.

• Event B1: IOPP.query
(πd,...,π0) outputs accept with probability less than (1− δ + γd)

(over the choice of sampled index µ ∈ [nd−1]).

• Event B2: There exists i ∈ [0, d], such that the success probability of the IOPP partial
execution on transcript prefix (πd, rd−1, . . . , πi+1, ri, πi) (instead of πd) is negligible,
where the randomness is over freshly sampled challenges (r′i−1, . . . , r

′
0) in the commit

phase and the sampled indices in the query phase. For brevity, we use IOPPπi⟨P∗,V⟩
to denote the execution where P∗ is the malicious prover.

Claim 1. The probability that P∗ succeeds while at least one of the events B1, B2 happens
is negligible.

Proof. Note that if event B1 happens, P∗ succeeds with probability at most (1−δ+dγ)ℓ =
negl(λ) (over the sampled index in IOPP.query). On the other hand, by definition of event
B2, only a negligible portion of P∗’s success probability will fall into the case where B2

happens. By union bound, the probability that P∗ succeeds and B1 or B2 happens is
negligible, and the claim holds.

Next, we show that f(r) · ẽqz(r) = h1(r0) for “good” r (i.e., bad events do not happen).

24

Lemma 8. Let γ, δ ∈ (0, 1) satisfy the conditions as in Lemma 7. Let f ∈ F[X1, . . . , Xd]
be the unique multilinear polynomial such that ∆∗(πf ,Encd(f)) ≤ δ. For any challenge set
r = (r0, . . . , rd−1) and corresponding oracles (πd, . . . , π0) output by P∗ such that events B1,
B2 do not happen and Enc0(h1(r0)/ẽqz(r)) = π0, it holds that f(r) · ẽqz(r) = h1(r0) where
h1(X) is the last univariate polynomial sent by the prover in the sumcheck protocol.

Proof. For every i ∈ [0, d], we use fi ∈ F2i to denote the coefficient vector for the i-
variate multilinear polynomial f(X1, . . . , Xi, ri, . . . , rd−1). For every i ∈ [0, d−1], denote by
fi+1 = (fi+1,l, fi+1,r), we have fi = fi+1,l+ ri · fi+1,r by definition of multilinear polynomials.

Assume for contradiction that h1(r0)/ẽqz(r) ̸= f(r). By the premise of the lemma that
event B2 does not happen, for every i ∈ [0, d], the probability that IOPPπi⟨P∗,V⟩ = 1 is
non-negligible (i.e., larger than 2i

γ3|F|+(1−δ+γi)ℓ = negl(λ)). Thus by the IOPP soundness

(Theorem 3), it holds that ∆∗(πi, Ci) ≤ δ for every i ∈ [0, d]. Since ∆∗(πd,Encd(f) ≤ δ
but π0 = Enc0(h1(r0)/ẽqz(r)) ̸= Enc0(f0), there exists a round k ∈ [0, d − 1], such that
∆∗(πk,Enck(gk)) ≤ δ for some coefficient vector gk ̸= fk; while in the previous round, it
holds that ∆∗(πk+1,Enck+1(fk+1)) ≤ δ. Denote δ′ := δ − γd. Next, we argue that

∆(πk,Enck(fk)) ≤ δ′ +∆∗(πk+1,Enck+1(fk+1)) . (8)

Recall that by assumption, both ∆∗(πk+1,Enck+1(fk+1)) and ∆∗(πk,Enck(gk)) are no more
than δ. If Eqn. 8 holds, by triangle inequality and by definition of minimum relative
distance, it implies

∆Ck
≤ ∆(Enck(gk),Enck(fk))

≤ ∆(Enck(gk), πk) + ∆(πk,Enck(fk))

≤ ∆∗(Enck(gk), πk) + ∆(πk,Enck(fk)) (Lemma 6)

≤ δ + δ′ +∆∗(πk+1,Enck+1(fk+1)) (Eqn 8)

≤ δ + δ′ + δ = 3δ − γd ,

Note that we have 3δ − γd < ∆Ck
by the premise of the statement, which leads to a

contradiction and completes the proof.
Next, we prove Eqn. 8. Let δ′ := δ − γd and denote πd := πf . Recall that IOPP.query

outputs accept for more than (1− δ′)nd−1 (out of nd−1) sampled indices µ ∈ [1, nd−1]. Our
goal is to show that for every round i ∈ [0, d−1], there are at least (1−δ′)ni indices µ ∈ [ni]
such that πi[µ] is consistent with πi+1[µ] and πi+1[µ+ni] in terms of the folding operation
(defined in Eqn. 27). Actually, we prove an even stronger statement: For every i ∈ [0, d−1],
we show that there are at least (1 − δ′)ni entries µ ∈ [ni] such that in IOPP.query, if the
verifier’s query position for πi is µ, then the verifier’s checks for oracles π0, . . . , πi are all
passing. We prove by induction. It holds when i = d − 1 as event B1 does not happen
by the claim statement. Suppose by induction hypothesis that the number of bad query
positions for πi is at most δ′ni. For i − 1, we note that for every µ ∈ [ni−1], πi−1[µ] is a

25

good query position so long as one of the query entries πi[µ] and πi[µ+ni−1] for πi is good
(i.e. the verifier’s checks to π0, . . . , πi are all passing). Therefore, πi−1[µ] is a bad query
entry only if both µ and µ+ ni−1 are bad query positions for πi. Hence the number of bad
query positions µ ∈ [ni−1] for πi−1 is at most δ′ni/2 = δ′ni−1.

Given above, it follows that ∆(foldrk(πk+1), πk) < δ′ as we’ve proved that πk[µ] is
consistent with πk+1[µ] and πk+1[µ+ nk] for more than (1− δ′)nk entries of µ. Moreover,
recall fk = fk+1,l + rk · fk+1,r and we’ve shown in Lemma 5 that

Enck(fk) = Enck(fk+1,l + rk · fk+1,r) = foldrk(Enck+1(fk+1)) , (9)

where the fold operation is defined in Eqn. 27. Thus we have

∆(πk,Enck(fk))

=∆(πk, foldrk(Enck+1(fk+1))) (Eqn. 9)

≤∆(πk, foldrk(πk+1)) + ∆(foldrk(πk+1), foldrk(Enck+1(fk+1))) (triangle inequality)

≤δ′ +∆(foldrk(πk+1), foldrk(Enck+1(fk+1))) (∆(πk, foldrk(πk+1)) < δ′)

≤δ′ +∆∗(πk+1,Enck+1(fk+1))

where the last inequality holds because each element in foldrk(πk+1) that is inconsistent
with foldrk(Enck+1(fk+1) maps to at least one element in πk+1 that is inconsistent with
Enck+1(fk+1). Thus Eqn 8 holds and we complete the proof.

In sum, since P∗ succeeds with non-negligible probability, from Lemma 8 and Claim 1,
with non-negligible probability (that is more than 2d/|F |) over r, we have f ′(r) := f(r) ·
ẽqz(r) = h1(r0), thus f(z) = y by the soundness of the sumcheck protocol.

Knowledge soundness. Next, we prove knowledge soundness of the PCS evaluation
protocol. By the IOP-to-NARK transformation of [18], given any PCS evaluation prover
that convinces the verifier with non-negligible probability, there is an efficient extractor
that outputs the IOP oracle string that opens the Merkle commitment sent by the prover
(intuitively by querying Merkle paths from the prover). Thus it is sufficient to prove the
following theorem in the language of IOP.

Theorem 4 (Knowledge soundness.). Let γ, δ ∈ (0, 1) satisfy the conditions as in Lemma 7.
Fix finite field F and set ℓ ∈ N such that (2d/γ3|F|) + (1 − δ + dγ)ℓ ≤ negl(λ). For
any PCS evaluation instance (πf , z, y) (where πf is the input oracle), and any malicious
prover P∗ that suceeds in Protocol 4 with non-negligible probability, there is a polynomial-
time extractor ExtP∗ such that with overwhelming probability, ExtP∗ outputs a polynomial
f ∈ F[X1, . . . , Xd] where ∆

∗(Encd(f), πf) ≤ δ and f(z) = y, where ∆∗ is the coset minimum
relative distance (Definition 2).

26

Before proving the theorem, we state a useful “predicate forking lemma”, which is a
special case of Lemma 3 from [30]. Loosely speaking, the lemma says that if A is an
algorithm that on uniform random input m ←$ M returns A(m) = 1 with probability
ϵ, and Φ(m1, ...mk) is any predicate that holds with overwhelmingly high probability for
independent random mi ←$ M, then it is possible to efficiently “extract” k inputs to A
that satisfy the predicate Φ and for which A(mi) = 1 for all i ∈ [k]. The runtime of this
“extractor” algorithm is proportional to 1/ϵ and the success is overwhelmingly high. A
bit more precisely, it isn’t enough for Φ to hold true with high probability over random
vectors inMk, but a sufficient condition is that for any i ≤ k the conditional probability
Pr[Φ(m1, ...mi) ̸= 1|Φ(m1, ..,mi−1) = 1] over mi ←$M is negligible.

Lemma 9 (Variant of Lemma 3 in [30]). Let Φ :M∗ → {0, 1} be any predicate such that
for any (m1, . . . ,mi) ∈Mi where Φ(m1, . . . ,mi) = 1,

Pr
mi+1←$M

[Φ(m1, . . . ,mi+1) = 1] ≥ 1− negl(λ) .

Let N = poly(λ). For any ϵ > 0 there exists an extractor Ext which runs in time T ∈ O(λ/ϵ)
and, given oracle access to any algorithm A where Prm←$M[A(m) = 1] ≥ ϵ, the following
holds:

Pr

[
Φ(m1, . . . ,mN) = 1∧
A(mi) = 1∀i ∈ [N]

∣∣∣∣ (m1, . . . ,mN)← ExtA
]
≥ 1− T · negl(λ)

Proof. For completeness, we present the proof in Appendix B.4.

Equipped with Lemma 9, we are ready to prove knowledge soundness of the PCS
evaluation protocol.

Proof of Theorem 4. By Lemma 7 (for soundness), we know that there exists a unique mul-
tilinear polynomial f ∈ F[X1, . . . , Xd] such that the coset relative distance ∆∗(πf ,Encd(f)) ≤
δ and f(z) = y. The remaining task is to construct an algorithm that recovers the
polynomial f . Note that this is trivial if πf is efficiently decodable. However, we do
not have any guarantee that the code Cd is efficiently decodable. Fortunately, we can
recover f by building an extractor Ext that outputs a list of 2d points S := {vi ∈
Fd}i∈[2d] and their corresponding evaluations {f(vi)}i∈[2d], such that the expansion vec-

tors {expd(v1), . . . , expd(v2d)} are linearly independent. Here for a vector v ∈ Fd, the

expansion vector expd(v) ∈ F2d is defined so that for every i ∈ [0, 2d),

expd(v)[i+ 1] :=
d∏

j=1

v[j]bit(i)[j] . (10)

E.g., for a vector (x, y) ∈ F2, the expansion vector is expd([x, y]) := (1, x, y, xy). Im-

portantly, we note that the evaluation f(v) satisfies that f(v) =
∑2d

i=1 f [i] · expd(v)[i]

27

where f ∈ F2d is the coefficient vector of the polynomial f . Hence given the set of 2d lin-
early independent expansion vectors {expd(v1), . . . , expd(v2d)}) and the set of evaluations
f(S) := {f(vi)}i∈[2d], we can solve the system of equations using Gaussian elimination to

recover vector f ∈ F2d and thus recover the polynomial f .
Next we show how to build the extractor Ext using the predicate forking lemma

(Lemma 9). There are two major steps: the first step is to define the predicate to be
used in Lemma 9; the second step is defining the algorithm A in Lemma 9 that outputs 1
with non-negligible probability.

The predicate. We define the predicate Φ as follows. Let M := Fd be the message space
that consists of a length-d vector. For input (v1, . . . ,vi) ∈ Mi which consists of i length-
d vectors8, we say Φ(v1, . . . ,vi) = 1 expd(V) := {expd(v1), . . . , expd(vi)} are linearly
independent.

Lemma 10. For any i ∈ [0, 2d) and any (v1, . . . ,vi) ∈ (Fd)i where Φ(v1, . . . ,vi) = 1, it
holds that

Pr
vi+1←$Fd

[Φ(v1, . . . ,vi+1) = 1] ≥ 1− (d/|F|) ≥ 1− negl(λ) .

Proof. Let M ∈ Fi×2d be the matrix such that the jth (1 ≤ j ≤ i) row of M is expd(vj).
Note that Φ(v1, . . . ,vi) = 1 implies that the rank of M is i. Let M ′ be the matrix obtained
by adding the row vector expd(vi+1) to M . Again Φ(v1, . . . ,vi+1) = 1 if and only if
rank(M ′) = i+1 = rank(M)+1. Meanwhile we have rank(M ′) ≥ rank(M) and kernel(M ′) ⊆
kernel(M) (as any vector f with M ′ · f = 0i+1 also satisfies M · f = 0i). Therefore,
rank(M ′) = i+1 > rank(M) if and only if kernel(M ′) ⊊ kernel(M) and it suffices to analyze
the probability that exist a non-zero element in kernel(M) that’s not in kernel(M ′). Note

that |kernel(M)| = |F|2d−i > 1, thus we can pick a non-zero vector f ∈ F2d from kernel(M).
Now we check the probability that f is also in kernel(M ′) (i.e. M ′ · f = 0i+1). This is
the probability that ⟨expd(vi+1), f⟩ = f(vi+1) = 0 for a uniformly random vi+1, where f
is the d-variate multilinear polynomial with coefficients being f . By the Schwartz-Zippel
Lemma, this happens with probability at most d/|F|. Thus kernel(M ′) ⊊ kernel(M) with
probability at least 1− d/|F| and the lemma holds.

The algorithm A: Next, we construct a PPT algorithm A to be used in Lemma 9. To help
with extraction of the polynomial f , we first define an algorithm A′ that will additionally
output some evaluation values. Given input challenges v ∈ Fd, the algorithm A′ runs
Protocol 4 with the prover P∗ where the folding challenge vector is set as v. After P∗
outputs all of the oracles (from the sumcheck and the IOPP commit phase), A′ simulates
the verifier of Protocol 4 by sampling the query positions in IOPP.query. The algorithm
A′ outputs 1 plus the claimed evaluations y ∈ F (from the sumcheck) if the PCS verifier

8Intuitively, vi will be the vector of folding challenges used in the execution of Protocol 4.

28

accepts; otherwise A′ outputs 0. After describing algorithm A′, the algorithm A(v) on
input v simply runs A′(v) and outputs 1 if and only if A′(v) also outputs 1.

A′ (and thus A) runs in polynomial time as the interaction with P∗ in Protocol 4 runs
in polynomial time. Moreover, the probability that A outputs 1 is exactly the probability
that P∗ pass the verification, which is non-negligible.

The polynomial extractor. By setting N := 2d and applying Lemma 9 given the
above predicate Φ and algorithm A, we can obtain an extractor E that runs in time
T ∈ O(λ/ϵ), and with probability at least 1−T ·negl(λ), E outputs 2d vectors [v1, . . . ,v2d]
such that (i) A(vi) = 1∀i ∈ [2d], and (ii) Φ(v1, . . . ,v2d) = 1, that is, the expansion vectors
{expd(vi)}i∈[2d] are linearly independent.

Recall that A(vi) = 1∀i ∈ [2d] implies A′(vi) = (1; yi)∀i ∈ [2d] where yi ∈ Fm is the
additional output (i.e. the claimed evaluation) of A′(vi). Given (v1, . . . ,v2d) output by
E, the polynomial extractor simply runs A′ on inputs {vi}i∈[2d] to obtain the evaluations9

(y1, . . . , y2d), and attempts to solve the system of equations using Gaussian elimination to
recover the coefficients of the polynomial f .

However, at this point, we do not have a guarantee that (y1, . . . , y2d) are the correct
evaluations of f , thus it’s possible that the polynomial extractor cannot recover f (as the
system of equations might have no solution) even if the extractor E succeeds. Fortunately,
by Lemma 7, the probability that P∗ succeeds but outputs an incorrect evaluation is
negligible (over a random input). Thus the probability that A′ outputs 1 plus an incorrect
evaluation is negligible. Recall that the extractor E only invokes A (and thus A′) (on
uniformly random v ∈ Fd) for polynomial number of times. Let TA denote the number
of invocations. From the above claim and by taking union bounds, we have that with
probability at least 1 − T · negl(λ) − TA · negl(λ), E outputs 2d vectors [v1, . . . ,v2d] such
that Φ(v1, . . . ,v2d) = 1; and for all i ∈ [2d], A′(vi) outputs correct evaluation f(vi) for
the point vi ∈ Fd. This implies that the polynomial extractor will successfully extract the
coefficients of f using Gaussian elimination and the theorem holds.

6 Experiments

In this section, we compare BaseFold PCS with state-of-the-art polynomial commitment
schemes, including Brakedown [44] and the multilinear version of KZG [59]. To highlight
the performance, we also compare it with an industry-level implementation of the univari-
ate FRI-based PCS from [51], which we will refer to as FRI-PCS. We note that the mul-
tilinear versions of FRI-based PCS [35, 27, 53, 70] incur even (slightly) further overhead.
Additionally, we measure the performance of Hyperplonk [35] when using each of these
multilinear polynomial commitment schemes, as well as the performance of Plonky2 [68]

9Note that the claimed evaluations (y1, . . . , y2d) (from sumcheck) are fully deterministic given the input
challenges {vi}i∈[2d], as they are independent of the challenges from the IOPP query phase.

29

which is a production-level implementation of Plonk [42] that uses the univariate FRI PCS
from [51] as a backend. Since we benchmark Hyperplonk without using recursion, we also
benchmark Plonky2 in non-recursive mode, which may be faster than Plonky2 when using
recursion. Recall from the introduction that BaseFold can also be used in other FRI-based
proof systems, such as STARK [10]. We leave it to future work to compare STARK over
BaseFold against STARK over FRI but expect it to be at least half an order of magnitude
faster. Finally, we compare the costs for proving the statement of an ECDSA verification
circuit using the above SNARK schemes.

Methodology and setup. Our testbed is an AWS r6i.8xlarge EC2 instance, which has
16 cores and 256 GiB of RAM using Ubuntu 22. We use the hash function Blake2s256 across
all schemes. We test polynomial commitment schemes on both 256-bit fields and 64-bit
fields. For the 64-bit field Fp, as mentioned in Remark 2, we use an extension field of Fp in
the IOPP and sum-check for soundness bootstrapping. The metrics we consider are prover
time, verifier time, and proof size. The choices of parameters for Brakedown and BaseFold

both achieve at least 100 bits of security. The parameters of FRI-PCS are chosen according
to the 100-bits of conjectured security from [63].10 FRI-PCS and Plonky2 achieve smaller
than 100-bits of conjectured security, and then boost soundness using a technique called
grinding. In order to maintain a fair comparison, we run Plonky2 without grinding, and
increase the verifier repetitions accordingly (to 35 repetitions). In practice, both BaseFold

and Plonky2 can use grinding to minimize verifier repetitions while maintaining 100-bits
of security.

PCS. Beyond being field agnostic, BaseFold PCS also provides a better tradeoff between
the costs of verifiers and provers. As shown in Figure 4 that uses the (extension of) 64-
bit fields, compared to the FRI-based schemes, BaseFold has a faster prover and faster
verifier at the cost of a larger proof size. E.g., for polynomials with 25 variables, the FRI-
PCS prover is about 6.5 times slower than Basefold’s prover, with the former taking 182
seconds and the latter taking only 28.26 seconds; while the FRI-PCS proof is about 5.5
times smaller than that of BaseFold PCS, having a size of 1.39MB while BaseFold has a
size of 5.52MB. Compared to Brakedown, the BaseFold prover is slower for larger instances
in the case of single evaluation proof, taking 1−11 times longer than the Brakedown prover
for polynomials with 15−26 variables and is 1−4 times faster for polynomials with 10−14
variables. On the other hand, BaseFold is approximately equivalent to Brakedown for all
instance sizes when doing batch evaluation proofs (demonstrated in the context of SNARKs
and explained in Appendix D). Importantly, BaseFold has a much faster verifier and
smaller proof size than Brakedown when the instance size is large (as Brakedown’s verifier
time and proof size is O(λ

√
n)). As shown in Figure 5, for polynomials with 26 variables

10The performance of FRI-PCS (and Plonky2) can be worse if we choose parameters according to the
best proved bound (e.g. from [20]).

30

over a 255-bit field, Basefold’s proof size is approximately 5.98MB while Brakedown’s
is near 69.26MB that is 11 times larger. The Basefold verifier time is 16ms while the
Brakedown verifier is 1.35 seconds—approximately 84 times slower. However, for a single
PCS, Brakedown’s prover is 11 times faster. On the other hand, for batch evaluation proofs,
Basefold has approximately the same prover speed as Brakedown. Finally, compared with
multilinear KZG that requires a stronger cryptographic assumption and a trusted setup,
BaseFold has much faster prover and verifier, with the tradeoff of a much larger proof. E.g.,
for polynomials with 20 variables over 255-bit fields, BaseFold’s prover time is 1.3s and
verifier time is 9ms, while KZG’s prover and verifier time are 37.36s and 101ms respectively.
BaseFold’s proof size is 3.47MB though, larger than KZG’s proof size 13.76KB.

Remark 5. Recent work ([40]) halves the prover time and verifier time of Brakedown and
slightly reduces the proof size (by a factor of 1.4). As this implementation is not open
source, we do not include it in our benchmarks. Similarly, [48] reduces the encoding time
of Brakedown by 25 percent. The impact of this on overall runtime is unclear, as a major
bottleneck of the prover is hashing so we leave rigorous benchmarking to future work.

Figure 4: Performance of different PCS over (the extensions of) 64-bit fields

SNARKs. Out of the four protocols measured, Hyperplonk[BaseFold] has the fastest
prover for smaller instances, and is approximately tied with Hyperplonk[Brakedown] for
larger instances (never more than a 1.2 factor larger than Brakedown), followed by Plonky2
and HyperPlonk[MKZG]. E.g., for circuits with 212 gates, the SNARK proving time for for

31

Figure 5: Performance of different PCS over 256-bit fields

Hyperplonk[BaseFold], HyperPlonk[Brakedown], Plonky2, and HyperPlonk[MKZG] are
78ms, 99ms, 199ms, and 465ms, respectively. For 220 gates, the SNARK proving times are
18s, 13.67s, 58.43s and 71.03s respectively. And among the two fastest HyperPlonk SNARK
schemes measured for circuits with 220 gates, Hyperplonk[BaseFold] has a much faster ver-
ifier (i.e. 37ms) and smaller proof size (i.e. 8.77MB) compared to Hyperplonk[Brakedown]
that has verifier time 1.55s and proof size 110MB.

Remark 6. The reason that the difference in proof sizes between Brakedown and Basefold
is much larger for SNARKs than it is for PCS is that we implemented Basefold with
the batching technique from Hyperplonk ([35]), which is not included in the Brakedown
implementation. As we explain in Appendix D, batching does not benefit the prover speed
of Brakedown, but it may improve its verifier time and proof size as the prover would only
need to send one linear combination of the rows of the (aggregated) matrix, rather than one
linear combination per commitment. On the other hand, the prover would still need to send
l columns per commitment, where l is the repetition parameter and is approximately 6500
in the Brakedown implementation. We leave it to future work to determine how BaseFold

compares to Brakedown in a batched setting.

SNARKs for ECDSA Circuit. Both Brakedown and BaseFold are field-agnostic, so
we can encode the ECDSA verification circuit using the finite field associated with the curve
secp256k1. FRI-PCS, and Multilinear-KZG, on the other hand, are not field agnostic, so we

32

Figure 6: Performance of different SNARKs

ECDSA Circuit

Protocol Prover Time (ms) Proof Size (KB) Verifier Time (ms)

Hyperplonk[Basefold] 273 5506 21

Hyperplonk[Brakedown] 278 32271 302

Plonky2 58436 1355 23

HyperPlonk[MKZG] 71027 7.74 107

encode the circuit for Plonky2 using the fast small, FFT-friendly field GF (264−232+1) and
the circuit for Multilinear KZG [58] using an FFT-Friendly 256-bit field associated with
the BN256 elliptic curve. According to [64], a circom circuit encoding ECDSA verification
uses 220 gates when it is encoded over a field that is not native to the underlying SNARK.
Thus, we benchmark Plonky2 and Hyperplonk[MKZG] using (mock) circuits of this size.
Using techniques from [54], non-native field operations incur an overhead of 26 arithmetic
operations. Thus, since Hyperplonk[Brakedown] and Hyperplonk[BaseFold] can use any
finite field, we benchmark them using circuits with only 214 constraints. Proving time and
proof sizes are shown below.

We defer more discussion and analysis of the experiments to Appendix D.

33

Acknowledgements

We want to thank Justin Thaler for providing helpful feedback to an earlier draft. We
would also like to thank Han Jian for answering many questions about his plonkish repo11,
which we used for our benchmarks.

References

[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. “Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In:
ACM CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu. ACM Press, 2017, pp. 2087–2104. doi: 10.1145/3133956.3134104.

[2] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. Cryptology
ePrint Archive, Report 2022/1608. https://eprint.iacr.org/2022/1608. 2022.

[3] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “IOPs with Inverse Polynomial
Soundness Error”. In: Cryptology ePrint Archive 2023 (2023), p. 1062.

[4] Thomas Attema, Serge Fehr, and Nicolas Resch. Generalized Special-Sound Inter-
active Proofs and their Knowledge Soundness. Cryptology ePrint Archive, Paper
2023/818. https://eprint.iacr.org/2023/818. 2023. url: https://eprint.
iacr.org/2023/818.

[5] Daniel Augot, Sarah Bordage, and Jade Nardi. “Efficient multivariate low-degree
tests via interactive oracle proofs of proximity for polynomial codes”. In: Designs,
Codes and Cryptography (2022). doi: 10.1007/s10623-022-01134-z. url: https:
//inria.hal.science/hal-03454113.

[6] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking Com-
putations in Polylogarithmic Time”. In: 23rd ACM STOC. ACM Press, May 1991,
pp. 21–31. doi: 10.1145/103418.103428.

[7] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. “A security anal-
ysis of Probabilistically Checkable Proofs”. In: Electron. Colloquium Comput. Com-
plex. TR16 (2016). url: https://api.semanticscholar.org/CorpusID:41937281.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed-
Solomon Interactive Oracle Proofs of Proximity”. In: Electron. Colloquium Comput.
Complex. 2017.

11https://github.com/han0110/plonkish

34

https://doi.org/10.1145/3133956.3134104
https://eprint.iacr.org/2022/1608
https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2023/818
https://doi.org/10.1007/s10623-022-01134-z
https://inria.hal.science/hal-03454113
https://inria.hal.science/hal-03454113
https://doi.org/10.1145/103418.103428
https://api.semanticscholar.org/CorpusID:41937281

[9] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed-
Solomon Interactive Oracle Proofs of Proximity”. In: ICALP 2018. Ed. by Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella. Vol. 107.
LIPIcs. Schloss Dagstuhl, July 2018, 14:1–14:17. doi: 10.4230/LIPIcs.ICALP.2018.
14.

[10] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
Report 2018/046. https://eprint.iacr.org/2018/046. 2018.

[11] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero
Knowledge with No Trusted Setup”. In: CRYPTO 2019, Part III. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer, Heidelberg, Aug.
2019, pp. 701–732. doi: 10.1007/978-3-030-26954-8_23.

[12] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. “Scalable and
Transparent Proofs over All Large Fields, via Elliptic Curves - (ECFFT Part II)”.
In: TCC 2022, Part I. Ed. by Eike Kiltz and Vinod Vaikuntanathan. Vol. 13747.
LNCS. Springer, Heidelberg, Nov. 2022, pp. 467–496. doi: 10.1007/978-3-031-
22318-1_17.

[13] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Short Interactive Oracle Proofs with Constant Query Complexity, via Com-
position and Sumcheck. Cryptology ePrint Archive, Report 2016/324. https : / /
eprint.iacr.org/2016/324. 2016.

[14] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS. Cryptol-
ogy ePrint Archive, Report 2018/828. https://eprint.iacr.org/2018/828. 2018.

[15] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: EU-
ROCRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS.
Springer, Heidelberg, May 2019, pp. 103–128. doi: 10.1007/978-3-030-17653-2_4.

[16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”.
In: Theory of Cryptography Conference. 2016. url: https://api.semanticscholar.
org/CorpusID:8363041.

[17] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.
Cryptology ePrint Archive, Report 2016/116. https://eprint.iacr.org/2016/
116. 2016.

[18] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”.
In: TCC 2016-B, Part II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986. LNCS.
Springer, Heidelberg, 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-5_2.

35

https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-031-22318-1_17
https://doi.org/10.1007/978-3-031-22318-1_17
https://eprint.iacr.org/2016/324
https://eprint.iacr.org/2016/324
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-030-17653-2_4
https://api.semanticscholar.org/CorpusID:8363041
https://api.semanticscholar.org/CorpusID:8363041
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://doi.org/10.1007/978-3-662-53644-5_2

[19] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
“Robust PCPs of proximity, shorter PCPs and applications to coding”. In: Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing. 2004, pp. 1–
10.

[20] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. “Worst-Case to Average
Case Reductions for the Distance to a Code”. In: Proceedings of the 33rd Compu-
tational Complexity Conference. CCC ’18. San Diego, California: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2018. isbn: 9783959770699.

[21] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasub-
ramaniam, Tiancheng Xie, and Yupeng Zhang. “Ligero++: A New Optimized Sub-
linear IOP”. In: ACM CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna. ACM Press, Nov. 2020, pp. 2025–2038. doi: 10.1145/3372297.
3417893.

[22] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive com-
position and bootstrapping for SNARKS and proof-carrying data”. In: 45th ACM
STOC. Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press,
June 2013, pp. 111–120. doi: 10.1145/2488608.2488623.

[23] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
“Succinct Non-interactive Arguments via Linear Interactive Proofs”. In: TCC 2013.
Ed. by Amit Sahai. Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013, pp. 315–333.
doi: 10.1007/978-3-642-36594-2_18.

[24] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ran-
jan Tiwari, and Michal Zajac. Fiat-Shamir Security of FRI and Related SNARKs.
Cryptology ePrint Archive, Paper 2023/1071. 2023. url: https://eprint.iacr.
org/2023/1071.

[25] Alexander R Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan
Tiwari, and Micha Zajc. “Fiat-Shamir Security of FRI and Related SNARKs”. In:
Cryptology ePrint Archive (2023).

[26] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with
Sublinear Verification from Tensor Codes”. In: TCC 2020, Part II. Ed. by Rafael
Pass and Krzysztof Pietrzak. Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020,
pp. 19–46. doi: 10.1007/978-3-030-64378-2_2.

[27] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. “Gemini: Elas-
tic SNARKs for Diverse Environments”. In: EUROCRYPT 2022, Part II. Ed. by Orr
Dunkelman and Stefan Dziembowski. Vol. 13276. LNCS. Springer, Heidelberg, 2022,
pp. 427–457. doi: 10.1007/978-3-031-07085-3_15.

36

https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-36594-2_18
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2023/1071
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-031-07085-3_15

[28] Sarah Bordage, Mathieu Lhotel, Jade Nardi, and Hugues Randriam. “Interactive
Oracle Proofs of Proximity to Algebraic Geometry Codes”. In: 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA. Ed.
by Shachar Lovett. Vol. 234. LIPIcs. 2022, 30:1–30:45. doi: 10.4230/LIPIcs.CCC.
2022.30. url: https://doi.org/10.4230/LIPIcs.CCC.2022.30.

[29] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composition
without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021. https://
eprint.iacr.org/2019/1021. 2019.

[30] Benedikt Bünz and Ben Fisch. Schwartz-Zippel for multilinear polynomials mod N.
Cryptology ePrint Archive, Report 2022/458. https://eprint.iacr.org/2022/
458. 2022.

[31] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
Compilers. Cryptology ePrint Archive, Report 2019/1229. https://eprint.iacr.
org/2019/1229. 2019.

[32] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK
Compilers”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 677–706. doi: 10.1007/978-
3-030-45721-1_24.

[33] Matteo Campanelli, Nicolas Gailly, Rosario Gennaro, Philipp Jovanovic, Mara Mi-
hali, and Justin Thaler. Testudo: Linear Time Prover SNARKs with Constant Size
Proofs and Square Root Size Universal Setup. Cryptology ePrint Archive, Paper
2023/961. https://eprint.iacr.org/2023/961. 2023. url: https://eprint.
iacr.org/2023/961.

[34] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk
with Linear-Time Prover and High-Degree Custom Gates. Cryptology ePrint Archive,
Report 2022/1355. https://eprint.iacr.org/2022/1355. 2022.

[35] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “HyperPlonk: Plonk
with Linear-Time Prover and High-Degree Custom Gates”. In: EUROCRYPT 2023,
Part II. Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Hei-
delberg, Apr. 2023, pp. 499–530. doi: 10.1007/978-3-031-30617-4_17.

[36] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS.
Cryptology ePrint Archive, Report 2019/1047. https://eprint.iacr.org/2019/
1047. 2019.

[37] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updat-
able SRS”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.

37

https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2022/458
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1229
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2023/961
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-031-30617-4_17
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047

Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 738–768. doi: 10.1007/978-
3-030-45721-1_26.

[38] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-Quantum and
Transparent Recursive Proofs from Holography. Cryptology ePrint Archive, Report
2019/1076. https://eprint.iacr.org/2019/1076. 2019.

[39] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Aurora Naska. “Clone Detection
in Secure Messaging: Improving Post-Compromise Security in Practice”. In: ACM
CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna.
ACM Press, Nov. 2020, pp. 1481–1495. doi: 10.1145/3372297.3423354.

[40] Benjamin E. Diamond and Jim Posen. Proximity Testing with Logarithmic Random-
ness. Cryptology ePrint Archive, Paper 2023/630. https://eprint.iacr.org/
2023/630. 2023. url: https://eprint.iacr.org/2023/630.

[41] Irit Dinur and Omer Reingold. “Assignment testers: Towards a combinatorial proof
of the PCP theorem”. In: SIAM Journal on Computing 36.4 (2006), pp. 975–1024.

[42] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. https://eprint.iacr.org/2019/953.
2019.

[43] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic
Span Programs and Succinct NIZKs without PCPs”. In: EUROCRYPT 2013. Ed.
by Thomas Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg,
May 2013, pp. 626–645. doi: 10.1007/978-3-642-38348-9_37.

[44] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby.
Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint
Archive, Report 2021/1043. https://eprint.iacr.org/2021/1043. 2021.

[45] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EURO-
CRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666.
LNCS. Springer, Heidelberg, May 2016, pp. 305–326. doi: 10.1007/978-3-662-
49896-5_11.

[46] Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In:
ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. LNCS. Springer, Heidelberg,
Dec. 2010, pp. 321–340. doi: 10.1007/978-3-642-17373-8_19.

[47] Jens Groth and Mary Maller. “Snarky Signatures: Minimal Signatures of Knowl-
edge from Simulation-Extractable SNARKs”. In: CRYPTO 2017, Part II. Ed. by
Jonathan Katz and Hovav Shacham. Vol. 10402. LNCS. Springer, Heidelberg, Aug.
2017, pp. 581–612. doi: 10.1007/978-3-319-63715-0_20.

38

https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2019/1076
https://doi.org/10.1145/3372297.3423354
https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2023/630
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-319-63715-0_20

[48] Ulrich Haböck. Brakedown’s expander code. Cryptology ePrint Archive, Paper 2023/769.
https://eprint.iacr.org/2023/769. 2023. url: https://eprint.iacr.org/
2023/769.

[49] Ulrich Haböck, Daniel Lubarov, and Jacqueline Nabaglo. “Reed-Solomon Codes over
the Circle Group”. In: https://eprint.iacr.org/2023/824. 2023. url: https:
//eprint.iacr.org/2023/824.

[50] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commit-
ments to Polynomials and Their Applications”. In:ASIACRYPT 2010. Ed. by Masayuki
Abe. Vol. 6477. LNCS. Springer, Heidelberg, Dec. 2010, pp. 177–194. doi: 10.1007/
978-3-642-17373-8_11.

[51] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transpar-
ent SNARKs from List Polynomial Commitment IOPs. Cryptology ePrint Archive,
Report 2019/1400. https://eprint.iacr.org/2019/1400. 2019.

[52] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract)”. In: 24th ACM STOC. ACM Press, May 1992, pp. 723–732. doi: 10.
1145/129712.129782.

[53] Tohru Kohrita and Patrick Towa. “Zeromorph: Zero-Knowledge Multilinear-Evaluation
Proofs from Homomorphic Univariate Commitments”. In: Cryptology ePrint Archive
2023 (2023), p. 917.

[54] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. “xJsnark: A Frame-
work for Efficient Verifiable Computation”. In: 2018 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2018, pp. 944–961. doi: 10.1109/
SP.2018.00018.

[55] Helger Lipmaa. “Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments”. In: TCC 2012. Ed. by Ronald Cramer. Vol. 7194.
LNCS. Springer, Heidelberg, Mar. 2012, pp. 169–189. doi: 10.1007/978-3-642-
28914-9_10.

[56] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic methods
for interactive proof systems”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 859–
868.

[57] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. “Sonic: Zero-
Knowledge SNARKs from Linear-Size Universal and Updatable Structured Reference
Strings”. In: ACM CCS 2019. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz. ACM Press, Nov. 2019, pp. 2111–2128. doi: 10.1145/
3319535.3339817.

[58] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of Correct
Computation. Cryptology ePrint Archive, Report 2011/587. https://eprint.iacr.
org/2011/587. 2011.

39

https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/769
https://eprint.iacr.org/2023/824
https://eprint.iacr.org/2023/824
https://eprint.iacr.org/2023/824
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2019/1400
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
https://eprint.iacr.org/2011/587
https://eprint.iacr.org/2011/587

[59] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures of Cor-
rect Computation”. In: TCC 2013. Ed. by Amit Sahai. Vol. 7785. LNCS. Springer,
Heidelberg, Mar. 2013, pp. 222–242. doi: 10.1007/978-3-642-36594-2_13.

[60] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio: Nearly
Practical Verifiable Computation”. In: 2013 IEEE Symposium on Security and Pri-
vacy. IEEE Computer Society Press, May 2013, pp. 238–252. doi: 10.1109/SP.
2013.47.

[61] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-round interac-
tive proofs for delegating computation”. In: 48th ACM STOC. Ed. by Daniel Wichs
and Yishay Mansour. ACM Press, June 2016, pp. 49–62. doi: 10.1145/2897518.
2897652.

[62] Daniel A Spielman. “Linear-time encodable and decodable error-correcting codes”.
In: Proceedings of the twenty-seventh annual ACM symposium on Theory of comput-
ing. 1995, pp. 388–397.

[63] StarkWare. ethSTARK Documentation. Cryptology ePrint Archive, Report 2021/582.
https://eprint.iacr.org/2021/582. 2021.

[64] Yi Sun, Tony L, Wen-Ding L, and gubsheep. zk-ECDSA: zkSNARKs for ECDSA
(Part 1). url: https://0xparc.org/blog/zk-ecdsa-1.

[65] Alexander Vlasov and Konstantin Panarin. Transparent Polynomial Commitment
Scheme with Polylogarithmic Communication Complexity. Cryptology ePrint Archive,
Report 2019/1020. https://eprint.iacr.org/2019/1020. 2019.

[66] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
“Doubly-Efficient zkSNARKs Without Trusted Setup”. In: 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2018, pp. 926–943. doi:
10.1109/SP.2018.00060.

[67] Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Orion: Zero Knowledge Proof with
Linear Prover Time”. In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis and
Thomas Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022, pp. 299–
328. doi: 10.1007/978-3-031-15985-5_11.

[68] Polygon Zero. Plonky2. Version 0.1. 2023. url: https://github.com/0xPolygonZero/
plonky2.

[69] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and
Yupeng Zhang. “Doubly Efficient Interactive Proofs for General Arithmetic Circuits
with Linear Prover Time”. In: ACM CCS 2021. Ed. by Giovanni Vigna and Elaine
Shi. ACM Press, Nov. 2021, pp. 159–177. doi: 10.1145/3460120.3484767.

40

https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://eprint.iacr.org/2021/582
https://0xparc.org/blog/zk-ecdsa-1
https://eprint.iacr.org/2019/1020
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-031-15985-5_11
https://github.com/0xPolygonZero/plonky2
https://github.com/0xPolygonZero/plonky2
https://doi.org/10.1145/3460120.3484767

[70] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent Poly-
nomial Delegation and Its Applications to Zero Knowledge Proof”. In: 2020 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2020,
pp. 859–876. doi: 10.1109/SP40000.2020.00052.

[71] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. “vRAM: Faster Verifiable RAM with Program-Independent
Preprocessing”. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2018, pp. 908–925. doi: 10.1109/SP.2018.00013.

A Other Related Work

Polynomial Commitment Schemes. The notion of polynomial commitment schemes
was first introduced in 2010 by Kate, Zaverucha, and Goldberg [50], who construct a uni-
variate polynomial commitment scheme using bilinear groups. Polynomial commitment
schemes with knowledge soundness (that are suitable to be used in SNARKs) were in-
troduced in Marlin [36]. Several works extended the notion of polynomial commitment
schemes to the multivariate setting (e.g. [58, 71, 33]). Since then, many practical multi-
linear polynomial commitment schemes with fast provers have been introduced, including
Hyrax [66], Brakedown [44], Orion [67], and Orion+ [35].

Interactive Oracle Proofs of Proximity (IOPP). The notion of IOPP was intro-
duced by [13] and [61] independently. IOPPs are analogous to PCPPs [19, 41] but with
multiple rounds: in each round, the verifier sends random challenges and the prover replies
with oracle messages; in the last round, the verifier makes oracles queries to prover mes-
sages. Both IOPPs and PCPPs can be used to test the proximity of a vector to an error-
correcting code, but interaction has the benefit of reducing the proof length and prover
complexity without compromising soundness. Two works [7, 13] present IOPPs that are
linear in the proof length but are still O(npoly(log(n))) in prover complexity. FRI [9]
improved this result and presented a linear-time IOPP for Reed-Solomon codes. The in-
troduction of FRI [9] leads to extensive study of IOPPs in the context of SNARKs. For
example, FRI was used to construct proof systems in [10, 14, 70, 69] and was used to build
polynomial commitment schemes in [15, 65, 34]. Several works study the security of the
Fiat-Shamir heuristic when applied to FRI, including [25, 4]. Additionally, there have been
works generalizing the FRI IOPP to other codes [12, 28, 5]. E.g., Ligero [2] presented an
IOPP that can be used with tensor codes, and Brakedown [44] extends this to codes that
are additionally linear-time encodable. The work from Bordate et. al. [28], in particular,
inspired our generalization of FRI, with a key difference that we use much simpler and
more general linear codes.

41

https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP.2018.00013

Interactive Oracle Proofs. Interactive Oracle Proofs are analogous to PCPs [6] but
with multiple rounds. They were introduced and formalized by Ben-Sasson, Chiesa, and
Spooner in [17], which also presented a generic compilation from IOP to Non-interactive
Argument of Knowledge in the random oracle model. The transformation can be use-
ful in compiling IOPs for polynomial evaluation relations into polynomial commitment
schemes [39, 1, 38]. Polynomial IOP [37, 32] is a variant of IOP where the prover messages
are oracles to evaluations of polynomials. PIOPs can also be compiled into SNARKs [35,
42, 36] from polynomial commitments or through the transformation from [17].

B Deferred Proofs

B.1 Proof of Lemma 3

Proof. In this proof, we will show that the probability that Encd(m) has more than t zeroes
is ≤ (12)

λ for non-zero m. To accomplish this, we consider the subset S ⊆ [1, nd−1] such
that m ∈ md−1(S) and then consider positions outside of S on which Encd(m) is zero. We
will show if j ̸∈ S, then the event that Encd(m)[j] = 0 is either an independent Bernulli trial
with a very small probability of success or it is an event that happens with a probability
of 0.

Let S+ = S ∪ {j + nd−1 : j ∈ S} and let ¬S+ = [1, nd] \ S+. For all j ∈ S+,
Encd(m)[j] = 0 with a probability of 1 (by definition of md−1(S)). Therefore, we know
that Encd(m) is zero everywhere on S+. To complete this proof, we need to show that the
probability that Encd(m) has more than td − |S+| zeroes at positions outside of S+ is as
stated in Equation 6. Since S+ is a set of pairs (j, j + nd−1) for j ∈ S, it follows that ¬S+

is also a set of pairs. Therefore, without loss of generality, we can reason over the set of
representatives, ¬S = [1, nd−1] \ S, and for any position j ∈ ¬S, we can refer to position
j + nd−1 when needed.

We consider the subset ¬S∗ ⊆ ¬S such that,

¬S∗ = {j ∈ [1, nd−1] \ S : Encd−1(mr)[j] ̸= 0} .

Let t = diag(T). For each j ∈ ¬S∗, set Aj = Encd−1(ml)[j] and Bj = Encd−1(mr)[j]
and define fj(x) = Aj + xBj . Note that by only considering j ∈ ¬S∗, we guarantee
that fj(x) is a non-zero polynomial since Bj is non-zero. We now consider the event that
fj(x) evaluates to 0 at either t[j] or −t[j]. Without loss of generality, we are able to
confine our analysis to ¬S∗ because for every j in ¬S but not in ¬S∗, with full certainty
that Encd(m)[j] ̸= 0, because then Aj is not zero and so fj(x) is a non-zero constant
polynomial.

For each j ∈ ¬S∗, define the random variable

Xj = 1{fj(t[j]) = 0}+ 1{fj(−t[j]) = 0}

42

First, we observe that Xj is an independent Bernulli Trial since t[j] is an independent
sample from F×. We now evaluate the probability mass function of the random variable
Xj . Let zj ∈ F× be the unique non-zero root of fj such that fj(zj) = 0. 1{fj(t[j]) = 0}
is equal to 1 when t[j] = zj and 1{fj(−t[j]) = 0} when t[j] = −zj . Therefore, Xj = 2
corresponds with the event that t[j] = zj = −zj , which is impossible for non-zero zj .
Xj = 1 corresponds with the event that tj is equal to either zj or −zj , which happens with
probability 2

|F|−1 and Xj = 0 corresponds with the event that tj is not equal to zj or −zj .
Therefore, we can write the probability mass function as follows.

PMF (Xj) =


Pr[Xj = 2] = 0
Pr[Xj = 1] = 2

|F|−1
Pr[Xj = 0] = 1− 2

|F|−1


Define the random variable X =

∑
j∈¬S∗ Xj . X has a binomial distribution with ¬S∗ trials

and success probability of 2
|F|−1 . We need to compute the probability that X ≥ td − 2|S|,

ie that there are more than td − 2|S| successess out of |¬S∗| trials, where each trial is
an independent Bernulli trial with probability 2

|F|−1 . This can be computed using the
cumulative distribution function as follows.

Pr
T←Fnd−1

[X ≥ td − 2|S|] (11)

≤
|¬S∗|∑

i=td−2|S|

(
|¬S∗|
i

)
· (2

|F| − 1
)i · (1− 2

|F| − 1
)|¬S

∗|−i (12)

≤ |¬S∗| · 2|¬S∗| · (2

|F| − 1
)td−2|S| (13)

≤ |¬S| · 2|¬S| · (2

|F| − 1
)td−2|S| (¬S∗ ⊆ ¬S) (14)

= |[1, nd−1] \ S| · 2|[1,nd−1]\S| · (2

|F| − 1
)td−2|S| (15)

= (nd−1 − |S|) · 2nd−1−|S| · (2

|F| − 1
)td−2|S| (16)

≤ nd−1 · 2nd−1−|S| · (2

|F| − 1
)td−2|S| (17)

By definition ofmd−1(S), Encd(m) is 0 at every position in S+. Therefore nzero(Encd(m)) =
X + |S+| = X + 2|S| and so Pr[nzero(Encd(m)) ≥ td] = Pr[X ≥ td − 2|S|] which is less
than or equal to nd−1 · 2nd−1−|S| · (2

|F|−1)
td−2|S| by Equation 17.

Finally, we show that for |F| ≥ 210, 2
|F|−1 ≤

2.002
|F| . We solve the following for x, where

τ = log(|F|)
2

|F| − 1
=

x

|F|
=⇒ x =

2|F|
|F| − 1

=
2τ+1

2τ − 1

43

The function f(τ) = 2τ+1

2τ−1 is decreasing. Therefore for τ ≥ 10, f(τ) ≤ f(10) = 211

210−1 =
2.002, which completes the proof.

B.2 Proof of Lemma 4

Proof. Recall that

Gd :=

[
Gd−1 Gd−1

Gd−1 · T Gd−1 · −T

]
.

The statement of the lemma assumes that Gd−1 is the generator matrix of a code such
that the encoding of any non-zero messages m ∈ Fkd−1 has fewer than td−1 zeroes. By
Lemma 2 and Lemma 3 and by definition of td := 2td−1 + ℓd, we obtain that,

Pr
diag(Td)←$(F×)nd−1

[
∃m ∈ Fkd \ {0} : nzero(Encd(m)) ≥ td

]
≤

∑
m∈Fkd\{0}

Pr
diag(Td)←$(F×)nd−1

[nzero(Enc(m)) ≥ td] (Union Bound)

≤
∑

S⊆[1,nd−1]

∑
m∈md−1(S)

Pr
diag(Td)←$(F×)nd−1

[nzero(Encd(m)) ≥ td] (
⋃

md−1(S) covers Fkd)

≤
∑

S⊆[1,nd−1]

|F|2td−1−2|S| · nd−1 · 2nd−1−|S| ·
(
2.002

|F|

)2td−1+ℓd−2|S|
(Lemma 2 and 3)

=
∑

S⊆[1,nd−1]

(
|F|
|F|

)2td−1−2|S| · nd−1 · 2nd−1−|S| · 2.0022td−1−2|S|
(
2.002

|F|

)ℓd

(Rearranging terms)

(18)

Simplifying and moving all terms that are independent of S outside the sum, Equation 18
is equal to

nd−1 · 2nd−1 · (2.002)2td−1

(
2.002

|F|

)ℓd

 ∑
S⊆[1,nd−1]

2−|S| · (2.002)−2|S|


= nd−1 · 2nd−1 · (2.002)2td−1

(
2.002

|F|

)ℓd

 ∑
x∈[0,nd−1]

(
nd−1
x

)
· 2−x · (2.002)−2x

 (19)

44

Next, we evaluate the sum in Equation 19.∑
x∈[0,nd−1]

(
nd−1
x

)
· 2−x · (2.002)−2x (20)

≤
∑

x∈[0,nd−1]

(
nd−1 exp(1)

x

)x

· (2−3x) (21)

=
∑

x∈[0,nd−1]

(
2log(nd−1)+log(exp(1))

2log(x)

)x

· (2−3x) (22)

=
∑

x∈[0,nd−1]

2x(log(
nd−1

x
)+log(exp(1))−3) (23)

=
∑

x∈[0,nd−1]

2x(log(
nd−1

x
)−1.55) (24)

The function f(x) = x(log(
nd−1

x) − 1.55) has a maximum at x = 0.126 · nd−1. Therefore
Equation 24 is less than or equal to

nd−1 · 2
0.126·nd−1(log(

nd−1
0.126nd−1

)−1.55)
= nd−1 · 21.43·0.126·nd−1 ≤ nd−12

nd−1
5.55 (25)

Therefore,

Pr
diag(Td)←$(F∗)nd−1

[∃m ∈ Fkd \ {0} : nzero(Encd(m)) ≥ td]

≤ n2
d−1 · 2nd−1 · (2.002)2td−1

(
2.002

|F|

)ℓd

· 2
nd−1
5.55

≤ n2
d−1 · 2nd(

1
2
+ 1

2·5) · (2.002)nd(1−∆Cd
) ·
(
2.002

|F|

)ℓd

(26)

Finally, by plugging in the value of ℓd in the statement of Theorem 2, the Formula 26
is no more than 2−λ, which completes the proof.

B.3 Proof of Lemma 3 (IOPP Soundness)

Proof. We first define a bad event B in the commit phase: Let (αd−1, . . . , α0) be the folding
challenges output by the verifier and let (πd, . . . , π0) be the prover oracles. Intuitively, the
bad event happens if for some i ∈ [0, d−1], the “folding” of the oracle πi+1 with challenge αi

has significantly smaller relative Hamming distance to Ci compared to the distance between
πi+1 and Ci+1. More formally, the bad event B happens if there exists i ∈ [0, d − 1] such
that

∆(foldαi(πi+1), Ci) ≤ min(∆∗(πi+1, Ci+1), Jγ(Jγ(∆Cd
)))− γ ,

45

where ∆∗ is defined in Definition 2 and foldαi(πi+1) is defined as follows: let u,u′ ∈ Fni be
the unque interpolated vectors such that

πi+1 = (u+ diag(Ti) ◦ u′,u+ diag(T ′i) ◦ u′) ,

then foldαi(πi+1) is set to
foldαi(πi+1) := u+ αi · u′ . (27)

Next, we prove that the bad event B happens with probability at most 2d
γ3|F| , which is

implied by the following corollary that adapts Corollory 7.3 from [20] to general foldable
linear codes.

Corollary 1 (Adapted from Corollory 7.3 from [20]). Fix any i ∈ [0, d−1] and any γ, δ > 0
such that δ ≤ Jγ(Jγ(∆Cd

))). Then if ∆∗(v, Ci+1) > δ then

Pr
αi←$F

[∆(foldαi(v), Ci) ≤ δ − γ] ≤ 2

γ3|F|
(28)

where foldαi(v) is defined as in Eqn. 27.

Proof. Let u,u′ ∈ Fni be the two unique vectors such that foldαi(v) = u + αiu
′. Let

U = {u+ xu′ : x ∈ F} and let Û be the set of elements in U that have distance less than
δ−γ from Ci. Assume for contradiction that |Û | > 2

γ3 . Then Theorem 4.4 from [20] implies

the existence of w′,w ∈ Ci and a subset T ⊆ [1, ni], |T | ≥ (1− δ)ni, such that w′[t] = u′[t]
and w[t] = u[t] for all t ∈ T . Since w,w′ are codewords in Ci, by definition of Ci+1, the
following is a codeword in Ci+1

cw =
(
w + diag(Ti−1) ◦w′,w + diag(T ′i−1) ◦w′

)
. (29)

Therefore, for each t ∈ T , cw agrees with v at positions t and t+ni. Therefore ∆
∗(v, Ci+1) ≤

δ, which contradicts with our assumption that ∆∗(v, Ci+1) > δ.

From Corollary 1 and by taking union bound over d folding rounds, the bad event B
happens with probability at most 2d

γ3|F| .

Next, conditioned on the bad event B doesn’t happen in the commit phase, we argue
that IOPP.query outputs reject with probability at least δ − dγ, which implies that the
verifier outputs accept in all of the ℓ independent query executions with probability at
most (1− δ + dγ)ℓ.

Fix any folding challenges (αd−1, . . . , α0) such that the bad event B doesn’t happen.
Let (πd, . . . , π0) be the prover oracles. Without loss of generality we can slightly modify the
oracle strings (πd−1, . . . , π1) (but not πd or π0) without increasing its rejecting probability
in IOPP.query. We can understand the oracle entries of (πd, . . . , π0) as the nodes of binary
trees. For every i ∈ [0, d − 1] and every µ ∈ [ni], node (i, µ) has two children (i + 1, µ),
(i + 1, µ + ni), and we say (i, µ) is a bad node if πi[µ] is inconsistent with πi+1[µ] and

46

πi+1[µ + ni] in terms of the folding operation (Eqn. 27). Note that in IOPP.query, given
a challenge query index µ ∈ [nd−1], the verifier outputs reject if and only if there is at
least one bad node in the path Qµ queried by the verifier. We modify the oracle strings
as follows: scan the tree top-down with i = 0, . . . , d − 2 and left-right with µ = 1, . . . , ni.
Whenever there is a bad node (i, µ), we reset the node values in the subtree of (i, µ) as
follows: we go from layer j = d − 1 to i + 1 and for each node in the subtree, we set the
node’s oracle string value to be consistent with their children. Note that the modification
doesn’t change oracles π0, πd and we never turn a good node into a bad node. Thus the
rejecting probability of IOPP.query never increase. Hence without loss of generality we can
assume that the oracles (πd, . . . , π0) has the form abvove. It remains to argue that the
rejecting probability of IOPP.query is at least δ − γd.

It is easy to see that after the modification, the rejecting probability of IOPP.query is
precisely

∑d−1
i=0 βi, where βi := ∆(πi, foldαi(πi+1)) is the ratio of bad nodes in layer i.

Claim 2. For every i ∈ [0, d], define δ(i) := min(Jγ(Jγ(∆Cd
)),∆∗(πi, Ci)). For all i ∈

[0, d− 1], we have
βi ≥ δ(i+1) − δ(i) − γ .

Proof. By the condition that the bad event B doesn’t happen, we have that for every
i ∈ [0, d− 1],

∆(foldαi(πi+1), Ci) > δ(i+1) − γ

On the other hand, by triangle inequality,

∆(foldαi(πi+1), Ci) ≤ ∆(fold(πi+1), πi) + ∆(πi, Ci) ≤ βi +∆∗(πi, Ci)

where the last inequality follows by Lemma 6. Rearranging the terms we have

βi > δ(i+1) −∆∗(πi, Ci)− γ . (30)

WLOG we can assume that δ(i) < δ(i+1) − γ as otherwise the claim trivially holds. This
implies that δ(i) < δ(i+1) ≤ Jγ(Jγ(∆Cd

)) and thus δ(i) = ∆∗(πi, Ci). From Eqn. 30, the
claim holds.

Recall that δ = δ(d), and ∆∗(π0, C0) = ∆(π0, C0) = 0 as otherwise the IOPP verifier
will never accept, thus δ(0) = 0. By the claim above, we have

δ = δ(d) − δ(0) =
d−1∑
i=0

δ(i+1) − δ(i) ≤
d−1∑
i=0

βi + γd ,

which implies that
∑d−1

i=0 βi ≥ δ − γd as desired and the theorem holds.

47

B.4 Proof of Lemma 9 (Path Predicate Forking Lemma)

Proof. We will first construct an expected time extractor E that repeatedly samples m←$

M and checks that A(m) = 1. It repeats this process, sampling with replacement, until
its gets N inputs m1, ...mN ∈ M such that A(mi) = 1 for all i ∈ [N]. If the probability
that A(m) = 1 over random m is exactly ϵ then E runs in expected time N/ϵ. Next, we
use E to build a new algorithm E′ that runs for time T ∈ O(λ · N/ϵ) and succeeds with
probability (1− negl(λ)). This algorithm E′ will start by running λ copies of E each for
2N/ϵ steps. Technically, E′ will not run them in parallel, but will iterate over the copies
running each for one step at a time. By Markov’s inequality, each copy terminates with
probability at least 1/2. The probability no copy terminates is less than 2−λ. So at least
one copy terminates with probability 1− 2−λ. In other words, in each step E′ is sampling
a new message mj , interpreted as the ⌊j/N⌋th message in the (j mod N)th copy of E.
Suppose towards contradictions that Φ(m1, ...,mN) ̸= 1. Let j be the smallest index for
which Φ(m1, ...mj) ̸= 1. This means there occurred an event where Φ(m1, ...,mj−1) = 1
and mj was sampled randomly resulting in Φ(m1, ...,mj) ̸= 1, an event which happens
with probability at most negl(λ). The probability it occurred in any of the T steps is at
most T · negl(λ) by a union bound.

C Minimum Relative Distance Calculation for BaseFold

Let d, k0, c ∈ N and let Cd be a (c, k0, d) random foldable linear code. Let F be a finite
field such that |F| ≥ 210. The maximum number of 0s of Cd is given by

td = 2td−1 + ℓd

Therefore, the maximum relative number of 0s in Cd, ZCd
is equal to the following rec-

curence relation

ZC0 =
1

c
,

ZCd
=

td
nd

=
2td−1
nd

+
ℓd
nd

= ZCd−1
+

1

log(|F|)− 1.001

(
2 log(nd−1) + λ

nd
+ 1.001ZCd−1

+ 0.6

)
= ZCd−1

·
(
log(|F|)− 1.001

log |F| − 1.001

)
+

1.001ZCd−1

log (|F|)− 1.001
+ (

1

log(|F|)− 1.001
) ·
(
2 log(nd−1) + λ

nd
+ 0.6

)
= ZCd−1

·
(

log(F)
log(|F|)− 1.001

)
+

(
1

log(|F|)− 1.001

)
·
(
2 log(nd−1) + λ

nd
+ 0.6

)

48

Finally, ZCd
resolves to

=

(
1

c

)(
log(|F|)

log(|F|)− 1.001

)d

+

d∑
i=1

(
log(|F|)

log(|F|)− 1.001

)d−i(
0.6

log(|F|)− 1.001
+

2 log(ni−1) + λ

ni(log(|F|)− 1.001)

)
(31)

The sum in Equation 31 only has d terms and therefore can be computed very efficiently.
To obtain the relative minimum distance, ∆Cd

, we simply subtract ZCd
from 1. The Table 1

refers to (c, k0, d)-random foldable linear codes that achieve the relative minimum distance
with probability at least (1− 2−128).

D Discussion of the Experiments

As our results demonstrate, BaseFold is faster than the FRI-based univariate PCS. The
performance reflects the differences in overhead between BaseFold and FRI-PCS ([51])
with respect to the BaseFold IOPP, which is a fundamental component of both protocols
12. However, we can expect even larger performance gains when comparing BaseFold

to a multilinear version FRI, which is a more direct comparison. All known multilinear
FRI transformations (eg [35], [53]), require several univariate polynomial commitments and
therefore have some overhead. Another benefit of BaseFold that we do not showcase in the
PCS setting, is its ability to be used with any sufficiently large finite field. For instance,
BaseFold can commit to 15-variate multilinear polynomials over the super efficient finite
field GF (231 − 1) using prover repetition. We leave it to future work to benchmark this
field against others but we believe it has the potential to lead to some speedup. On the
other hand, if the prover cost of BaseFold over a highly 2-adic field is acceptable, then we
can instead run BaseFold over the Reed-Solomon code, which will result in a proof size
and verifier time similar to that of FRI-PCS. In this setting, in comparison to FRI-PCS,
we expect BaseFold to have faster prover costs and similar verifier costs.

In contrast to FRI-PCS, we find that BaseFold is smaller yet slower than the Brake-
down PCS when committing to a single polynomial. Brakedown is a strictly linear-time
polynomial commitment scheme as it uses a linear-time encodable code that optimizes the
expander-based construction from Spielman [62]. The drawback of this code is that it
does not have a structure that can be exploited to reduce proof size. Thus, its proof size
and verifier time are asymptotically O(

√
n) with a large constant, where n is the instance

size. We remark that there are size optimizations available for Brakedown at the cost of
a slower verifier. Similarly, BaseFold has size optimizations at the cost of a potentially
slower prover, which can be achieved by starting with a base code with a larger message
size. In this case, if i is the message length of the base code, then the proof size be-
comes proportional to log2(n/i) + i, which for smaller instance sizes can be considerable
smaller than log2(n) (e.g. if n = 210 and i = 25, then log2(n/i) + i, which is equal to

12Recall that FRI is a special case of BaseFold when applied to Reed-Solomon codes

49

52 + 32 = 25 + 32 = 57, which is half the size of 10× 10 = 100. We don’t showcase either
optimizations in these benchmarks, but expect the comparative analysis to remain roughly
the same when applied to both.

The reason that Brakedown is faster than BaseFold as a PCS but slower than BaseFold

when used in HyperPlonk is because HyperPlonk requires batch commitments of many
polynomials (the exact amount depends on the circuit). We implement the batching op-
timization presented in HyperPlonk, which uses the sumcheck protocol to open a linear
combination of commitments. Because of the structure of Brakedown’s polynomial com-
mitment scheme, taking a linear combination of n commitments has the same cost as simply
opening n commitments. More specifically, recall that a Brakedown commitment (in the
interactive setting) is an encoding of rows of a

√
n×
√
n matrix of polynomial coefficients.

The costs of the Brakdown IOPP prover is dominated by taking a linear combination of
the
√
n rows, which uses exactly n multiplications and additions each. The HyperPlonk

batching technique, on the other hand, requires the prover to compute a linear combination
of b commitments where b ∈ N is the batch size, which in Brakedown’s case is equivalent
to taking a linear combination of the columns in the commitment matrix, resulting in

√
n

linear combinations of b vectors, each of length
√
n. Alternatively, if Brakedown does not

use batching, it will open each of the b commitments individually, which will require b lin-
ear combinations of

√
n vectors, each of length

√
n. Each of these two alternatives requires

b× n multiplications and additions. Thus Brakedown does not benefit from this batching
optimization. The BaseFold PCS, on the other hand, benefits from a considerable speed-
up, as it only needs to construct a Merkle tree over log(n) oracles as opposed to b · log(n)
oracles, where b is the batch size. The majority of the BaseFold opening costs result from
transforming oracles into Merkle trees, and so this leads to an efficient amortization over
number of committed polynomials.

E FRI as a foldable linear code

Let D be a multiplicative cyclic group of order n with generator g, where n is a power of
2. Let M be a Vandermonde matrix over D for degree-d polynomials. By definition of
Vandermonde matrix, for each j ≤ n, i ≤ d, M [i, j] = (gj)i = gj·i. We consider i ≤ d such
that i = 2i′ for i′ ≤ ⌊d/2⌋. Then M [i, j] = M [i, j + n/2] because

M [i, j] = gij = g2i
′j

M [i, j + n/2] = g2i
′(j+n/2) = g2i

′j · g2i′·n/2 = g2i
′j · gni′ = g2i

′j

Furthermore, looking at each individual column j ≤ n, consider odd i such that i =
2i′ + 1 for i′ ≤ ⌊d/2⌋. Then

M [i, j] = g(2i
′+1)j = g2i

′j+j = g2i
′j · gj

50

Thus, each column vector M[·, j] is equal to (g0, gjg0, g2, gjg2...g⌊d/2⌋gj).
We create a matrix, M ′ as follows:

M ′ =

[
Meven

Modd

]
where Meven are the even rows of M and Modd are the odd rows of M . Then each column
vector of M[·, j] is equal to (Meven[·, j], gj ·Meven[·, j]). Since for all j ≤ n/2, Meven[j] =
Meven[j + n/2], we set Md−1 to be the first n/2 columns of Meven and so

M ′ =

[
Md−1 Md−1

Md−1 · T1 Md−1 · T2

]
where T1, T2 are two diagonal matrices such that diag(T1) = (g0, .., gn/2) and diag(T2) =
(gn/2+1, .., gn−1).

51

	Introduction
	Prior Work
	Our Contributions
	Overview
	Other Related Work
	Roadmap

	Preliminaries
	Interactive Oracle Proofs and Polynomial Commitments

	Fast Linear Code from Foldable Distributions
	Proof of Relative Minimum Distance

	BaseFold : IOPPs for Foldable Codes
	Multilinear Polynomial Commitments From BaseFold
	Security Proofs

	Experiments
	Other Related Work
	Deferred Proofs
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 3 (IOPP Soundness)
	Proof of Lemma 9 (Path Predicate Forking Lemma)

	Minimum Relative Distance Calculation for BaseFold
	Discussion of the Experiments
	FRI as a foldable linear code

