
On Parallel Repetition of PCPs

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Ziyi Guan
ziyi.guan@epfl.ch

EPFL

Burcu Yıldız
burcu.yildiz@epfl.ch

EPFL

November 5, 2023

Abstract

Parallel repetition refers to a set of valuable techniques used to reduce soundness error of probabilistic
proofs while saving on certain efficiency measures. Parallel repetition has been studied for interactive
proofs (IPs) and multi-prover interactive proofs (MIPs). In this paper we initiate the study of parallel
repetition for probabilistically checkable proofs (PCPs).

We show that, perhaps surprisingly, parallel repetition of a PCP can increase soundness error, in fact
bringing the soundness error to one as the number of repetitions tends to infinity. This “failure” of parallel
repetition is common: we find that it occurs for a wide class of natural PCPs for NP-complete languages.
We explain this unexpected phenomenon by providing a characterization result: the parallel repetition
of a PCP brings the soundness error to zero if and only if a certain “MIP projection” of the PCP has
soundness error strictly less than one. We show that our characterization is tight via a suitable example.
Moreover, for those cases where parallel repetition of a PCP does bring the soundness error to zero, the
aforementioned connection to MIPs offers preliminary results on the rate of decay of the soundness error.

Finally, we propose a simple variant of parallel repetition, called consistent parallel repetition (CPR),
which has the same randomness complexity and query complexity as the plain variant of parallel repetition.
We show that CPR brings the soundness error to zero for every PCP (with non-trivial soundness error). In
fact, we show that CPR decreases the soundness error at an exponential rate in the repetition parameter.

Keywords: probabilistically checkable proofs; parallel repetition

1

Contents
1 Introduction 4

1.1 Our results . 5
1.2 Related work . 7

2 Techniques 9
2.1 Section 4: parallel repetition for PCPs does not always work 9
2.2 Section 5: when does parallel repetition for PCPs work? 11
2.3 Section 6: rate of decay of parallel repetition for PCPs . 12
2.4 Section 7: parallel repetition for the canonical PCP for CSPs 13
2.5 Section 8: consistent parallel repetition always works . 14

3 Preliminaries 16
3.1 Probabilistically checkable proofs . 16
3.2 Multi-prover interactive proofs . 16
3.3 Parallel repetition for PCPs . 17
3.4 Parallel repetition for MIPs . 18

4 Parallel repetition of PCP can increase soundness error 20
4.1 PCP for graph 3-coloring . 20
4.2 The soundness error of parallel repetition tends to 1 . 21
4.3 Parallel repetition strictly increases soundness error . 21

5 A characterization result 24
5.1 Proof of Theorem 5.2 . 24

6 Rate of decay for parallel repetition of PCPs 29
6.1 Soundness error of PCP evaluations . 29
6.2 MIP projection and PCP evaluation are (almost) inverses 30
6.3 Proof of Theorem 6.2 . 31

7 Parallel repetition for canonical PCPs 34
7.1 Constrain satisfaction problems . 34
7.2 Canonical PCP for CSPSAT . 34
7.3 Parallel repetition for symmetric CSPs . 35
7.4 Parallel repetition for non-symmetric CSPs . 37

8 Consistent parallel repetition 39
8.1 Proof of Theorem 8.4 . 40

A On tightness of the characterization 42

B Constraint satisfaction problems with ordered constraints 46
B.1 CSPs with ordered constraints . 46
B.2 Parallel repetition for symmetric ordered CSPs . 47
B.3 Parallel repetition for non-symmetric ordered CSPs . 49
B.4 More on tightness of the characterization . 50

C Proof of Lemma 8.3 52

Acknowledgments 54

References 54

2

1 Introduction

Probabilistic proofs play a fundamental role in theoretical computer science, and are invaluable tools in
cryptography, facilitating applications such as delegation of computation, zero knowledge proofs, and more.
Probabilistic proofs comprise notions such as interactive proofs (IPs), multi-prover interactive proofs (MIPs),
probabilistically checkable proofs (PCPs), and others. A central goal in this area is constructing probabilistic
proofs with small soundness error (the maximum probability that any prover convinces the verifier to accept
an instance that is not in the language).
Parallel repetition. Parallel repetition is a class of ideas aimed at reducing soundness error without
increasing key efficiency measures such as round complexity or query complexity. Parallel repetition has
been defined and studied for IPs and MIPs, as we review in more detail in Section 1.2.

• Parallel repetition for IPs is straightforward: the t-wise parallel repetition of an IP with soundness error β
is a new IP, with the same round complexity, whose soundness error is βt.

• Parallel repetition for MIPs is less understood. The t-wise parallel repetition of a 1-round MIP with
soundness error β < 1 is a new 1-round MIP, with the same number of provers, whose soundness error βt
tends to 0 as t tends to infinity. In special cases (e.g., 2 provers), we know that βt decays exponentially in t
(with certain dependencies on the MIP). The rate of decay in the general case is a major open problem.

Parallel repetition underlies many results in hardness of approximation, which rely on custom-made PCP
constructions in which one of the steps is to apply Raz’s Theorem on parallel repetition for MIPs [Raz95].1

Parallel repetition for PCPs. In this paper we study parallel repetition for PCPs.
A PCP for a language L is a proof system where a verifier V, given as input an instance x and given

oracle access to a string π : [l]→ Σ, probabilistically queries a few locations of π and then decides whether
to accept or reject. The soundness error β of the PCP verifier V is a function that, given any instance x ̸∈ L,
outputs (an upper bound on) the maximum acceptance probability of V(x) across all strings π : [l]→ Σ.

For t ∈ N, the t-wise parallel repetition of the PCP verifier V is a PCP verifier Vt that receives as input
an instance x and oracle access to a string Π: [l]t → Σt, and works as follows.

VΠ
t (x): For every i ∈ [t], sample fresh randomness ρi for V and deduce the queries (qi,j)j∈[q]

that V(x; ρi) makes. For every j ∈ [q], query Π at location (qi,j)i∈[t] ∈ [l]t to obtain an answer
(ai,j)i∈[t] ∈ Σt. For every i ∈ [t], check that V(x; ρi) accepts given query answers (ai,j)j∈[q].

The above definition is folklore (e.g., see [DM11]). The basic question that we study in this paper is:

If V has soundness error β then what is the soundness error βt of Vt?

Surprisingly, the effect of parallel repetition for PCPs on soundness error has not been studied so far. It may
be natural to guess that parallel repetition for PCPs works similarly as for MIPs: the soundness error tends to
zero as the number of repetitions tends to infinity and, in some cases (say, 2-query PCPs), one can show that
the rate of decay is exponential (with the rate depending in some way on the PCP).

In this paper we initiate a systematic study of parallel repetition for PCPs, and show that the above natural
guess is incorrect: parallel repetition for PCPs fails to work in many cases and, in contrast, a variant of
parallel repetition that we introduce always works. Overall, our work contributes an initial set of results on a
basic question about probabilistic proofs, which we believe merits further study due to its fundamental nature.

1Roughly, a common recipe is to transform the PCP obtained from the PCP Theorem into an MIP, then apply parallel rep-
etition for MIPs, then transform the resulting MIP back into a PCP (with certain special properties), and then perform further
optimizations/customizations to establish the desired hardness of approximation result.

4

1.1 Our results

Our first result shows that, in the general case, parallel repetition of a PCP does not work as expected: there
is a 2-query PCP (with non-trivial soundness error) for which parallel repetition increases soundness error.

Theorem 1 (informal). There exists a 2-query PCP for an NP-complete language L with soundness error
β < 1 such that the soundness error βt of its t-wise parallel repetition tends to 1:

for every x ̸∈ L, lim
t→∞

βt(x) = 1 .

In fact, for infinitely many x ̸∈ L, βt+1(x) > βt(x) for every t ∈ N (where β1(x) := β(x)).

Counter to intuition, Theorem 1 refutes the sensible conjecture that β(x)t ≤ βt(x) ≤ β(x). This is in
sharp contrast to the case of MIPs, where this basic relationship does hold for parallel repetition of MIPs.

Moreover, the PCP underlying Theorem 1 is not contrived: it is the “canonical” PCP for graph 3-coloring
where the PCP string is the 3-color assignment for the given graph and the PCP verifier checks the colors of
the two vertices of a random edge of the graph. Hence Theorem 1 tells us that, for every graph that is not
3-colorable, applying parallel repetition to this canonical PCP leads to soundness error 1 in the limit! This
includes graphs that are far from being 3-colorable and, in particular, also those graphs generated by the PCP
Theorem (for which the soundness error β of the canonical PCP is a constant bounded away from 1).

The failure of parallel repetition for PCPs is rather common. We show that it occurs for a wide class
of PCPs for constraint satisfaction problems (CSPs).2 We associate to any given CSP a corresponding
“canonical” PCP: the PCP string is the assignment to the variables of the CSP, and the PCP verifier samples
a random constraint of the CSP and checks if it is satisfied (by reading from the PCP string the variables
involved in that constraint). We prove that parallel repetition fails for the canonical PCP of any symmetric
CSP (informally, a CSP where every constraint “looks the same”); the class of symmetric CSPs includes
well-known NP-complete problems such as graph 3-coloring (as above), independent set, clique, and others.

Lemma 1 (informal). Let PCP be the canonical PCP for a symmetric CSP. If the CSP is not satisfiable (for
every assignment to the variables there is at least one constraint that is not satisfied by the assignment), then,
letting βt be the soundness error for the t-wise repetition of PCP (and β1 := β), it holds that

∀ t ∈ N , βt+1 ≥ βt and β > 0 =⇒ lim
t→∞

βt > 0 .

(If β = 0 then it is straightforward to see that βt = 0 for every t ∈ N.)

Lemma 1 does not extend to non-symmetric CSPs. In Section 7.4 we give a non-symmetric instance of
3SAT (an example of a CSP) whose canonical PCP satisfies β > 0 and limt→∞ βt = 0.

Since parallel repetition for PCPs does not always work, next we ask: when does it work? We identify a
criterion that characterizes when parallel repetition reduces soundness error of a PCP to zero (in the limit).
Briefly, we associate with each PCP a corresponding MIP, which we call its MIP projection.

Definition 1 (informal). The MIP projection of a PCP verifier V is an MIP verifier V that works as follows:
sample randomness ρ for V and deduce the queries (qj)j∈[q] that V(x; ρ) makes; then, for every j ∈ [q],
send qj to the j-th prover to obtain an answer bj; finally, check that V(x; ρ) accepts given the answers
(bj)j∈[q].

2A constraint satisfaction problem (CSP) is a list of constraints over a list of variables. Each constraint is a predicate over some
of the variables. The CSP is satisfiable if there exists an assignment of the variables that satisfies all constraints simultaneously.

5

The number of provers in the MIP projection of a PCP equals the number of queries of the PCP, and
the MIP projection has no consistency checks. This is unlike the well-known q-query PCP to 2-prover MIP
transformation, where all queries are sent to one prover and one of the queries at random is sent to the other
prover, for consistency. The soundness error of the MIP projection is at least the soundness error of the PCP,
and it can be strictly larger. Our result is that the soundness error of the MIP projection tells us precisely
when parallel repetition of a PCP works: parallel repetition of a PCP drives soundness error to zero if and
only if the MIP projection has non-trivial soundness error.

Theorem 2 (informal). Consider a PCP for a language L, and let βt be the soundness error of the t-wise
parallel repetition of the PCP. Letting βMIP be the soundness error of the MIP projection of the PCP,

for every x ̸∈ L, lim
t→∞

βt(x) = 0⇐⇒ βMIP(x) < 1 .

Theorem 2 helps us interpret Theorem 1: the PCP in Theorem 1 is such that its MIP projection has
soundness error 1, and therefore parallel repetition does not drive the soundness error to 0. In fact, for that
example, the limit achieved in Theorem 1 is 1 (not just some constant greater than 0). Theorem 2 also
explains the aforementioned 3SAT example: the canonical PCP for that 3SAT instance has an MIP projection
with soundness error less than 1, so parallel repetition of that PCP works just fine.

More generally, our characterization is essentially tight in the following sense: if βMIP(x) = 1 then
our analysis shows that limt→∞ βt(x) ∈ [1/2vr, 1], where vr is the randomness complexity of the given
(non-repeated) PCP verifier; and we show that there exists a PCP for which (on infinitely many instances not
in the language) parallel repetition leads, in the limit, to soundness error 1/2vr.
Rate of decay for parallel repetition. The above results (Theorem 1, Lemma 1, Theorem 2) consider the
limiting behavior of the soundness error of the parallel repetition of a PCP. Next we study the rate of decay:
when parallel repetition drives the soundness error of a PCP to zero in the limit, at what rate does soundness
error decrease (as the number of repetitions increases)?

Our proof of Theorem 2 (which we outline in Section 2.2) tells us that the rate of decay of parallel
repetition for a PCP is upper bounded by the rate of decay of parallel repetition for the corresponding MIP
projection. In particular, we can use known results on the rate of decay of parallel repetition for MIPs ([FRS88;
Raz95; Fei98; FV02; Hol07; Rao11; Raz11; BRRRS09; RR12]), if applicable to the MIP projection.

We additionally prove that, in general, we cannot hope for a rate of decay that is better than for the
MIP projection of the PCP: if a PCP is an “evaluation of an MIP”, parallel repetition of the PCP decreases
soundness error at the same rate as parallel repetition of its MIP projection. Understanding the rate of decay
of parallel repetition for PCPs in general (when parallel repetition does work), remains an open problem.

Definition 2 (informal). Let MIP = ((Pi)i∈[k],V) be a (one-round) k-prover MIP. The PCP evaluation of
the MIP verifier V is a PCP verifier V that works as follows: sample randomness ρ for V and deduce the
messages (aj)j∈[k] that V(x; ρ) sends to the MIP provers; then, for every j ∈ [k], query the PCP string at
(j, aj) to obtain answers bj; finally, check that V(x, ρ, (bj)j∈[k]) = 1.

Lemma 2 (informal). Consider the PCP evaluation of an MIP for a language L with soundness error less
than 1. Let βt be the soundness error of the t-wise parallel repetition of the PCP. Let βMIP,t be the soundness
error of the t-wise parallel repetition of the MIP. Then

for every x ̸∈ L and t ∈ N, βt(x) = βMIP,t(x) < 1 .

A variant that always works. Finally, we identify a natural variant of parallel repetition for PCPs that we
can prove always works, in the sense that the soundness error tends to zero for every PCP (with non-trivial

6

soundness error). The definition below adds a natural consistency test across repetitions within the repeated
verifier, which incurs no additional randomness or queries.

Definition 3 (informal). The consistent parallel repetition of a PCP verifier V is a new PCP verifier V̂t

that works the same as a parallel repetition verifier and, in addition, it checks that any duplicate queries
across different repetitions are answered consistently.

Theorem 3 (informal). Consider a PCP for a language L with soundness error β < 1, and let β̂t be the
soundness error for the t-wise consistent parallel repetition of the PCP. Then

for every x ̸∈ L, β̂t(x) ≤ Ox(1) · β(x)t ,

where Ox(1) hides a constant determined by the PCP and x (and independent of t).

In particular, Theorem 3 implies that

for every x ̸∈ L, β(x) < 1 =⇒ lim
t→∞

β̂t(x) = 0 .

Note that, in contrast to the case of parallel repetition of MIPs, the rate of decay in Theorem 3 achieves the
desired exponential decay up to a leading multiplicative constant (not in the exponent).

Theorem 3 enables the application of (consistent) parallel repetition in new regimes. For example
consider the case of a PCP with constant soundness error β and super-constant query complexity q = ω(1).
Converting such a PCP into a 2-prover MIP via a standard transformation leads to a large soundness error
1− 1−β

q = 1−o(1), which makes the use of parallel repetition for MIPs too expensive in this case (Footnote 1).
Instead, our work shows that one can directly use parallel repetition for PCPs to reduce the soundness error β
to an arbitrary constant while preserving the query complexity q.

Open questions. Our work motivates basic questions about parallel repetition for PCPs.
1. When parallel repetition works for a given PCP (equivalently, the PCP’s MIP projection has non-trivial

soundness error), what is the rate of decay? We know that the rate of decay is no worse than that for
parallel repetition of the MIP projection, and sometimes it equals that. But perhaps one could say more
(e.g., via a direct analysis of the rate of decay, without invoking facts about the rate of decay for MIPs).

2. Can the rate of decay for consistent parallel repetition in Theorem 3 be improved? The hidden constant
achieved in our analysis is large, and we suspect that it can be improved. Or perhaps a different analysis
may establish an alternative expression for the rate of decay that is better for smaller values of t.

1.2 Related work

Parallel repetition for PCPs is a folklore definition but it has not been studied.3 Below we summarize
prior work on parallel repetition for IPs and MIPs, and also explain how direct product testing considers a
distinct question. Separately, parallel repetition is also studied in a cryptographic context (e.g. for interactive
arguments); we do not discuss this line of work since our setting is information-theoretic.

Parallel repetition for IPs. An interactive proof (IP) is a protocol where a prover and a verifier exchange
messages and after that the verifier outputs a decision bit denoting whether to accept or reject; both prover
and verifier are probabilistic algorithms. The t-wise repetition of an IP is a new IP where the prover and
verifier run, simultaneously and in lockstep, t independent executions of the given IP. One can show that if no

3Parallel repetition for PCPs is occasionally mentioned in the literature (e.g., see [DM11]) but only informally, and giving the
impression that it behaves the same as parallel repetition for MIPs. Our results show that this is not the case.

7

prover can convince the verifier to accept with probability greater than β then no prover can convince the
repeated verifier to accept with probability greater than βt. The proof for this statement is delicate (e.g., see
[Gol98, Appendix C.1]), but otherwise parallel repetition for IPs is straightforward.

Parallel repetition for MIPs. A multi-prover interactive proof (MIP) is a protocol where multiple provers
exchange messages with a single verifier and after that the verifier outputs a decision bit denoting whether to
accept or reject; the provers are allowed to share randomness but otherwise are not allowed to communicate
during the interaction. The t-wise repetition of an MIP is similarly defined to the case of an IP: it is a new
MIP where the prover and verifier run, simultaneously and in lockstep, t independent executions of the given
MIP (with the same provers). Parallel repetition for MIPs has been studied in a line of work leading to notable
progress, but a comprehensive understanding remains a challenging open problem.

Briefly, parallel repetition of any MIP decreases the soundness error to zero as the number of repetitions
tends to infinity (provided that the initial soundness error is strictly less than 1) [Ver96]; however the analysis
only shows a slow rate of decay. The rate of decay is known to not be βt [FRS88]; in fact, sometimes parallel
repetition yields a soundness error that is exponentially larger than the “ideal” βt [Fei98; FV02; Raz11]. That
said, parallel repetition of 2-prover MIPs (with non-trivial soundness error) does decrease soundness error
exponentially fast, at a rate that depends on certain aspects of the MIP [Raz95]; the rate of decay is studied
and optimized in a line of works [Hol07; Rao11; BRRRS09; RR12].

Direct product tests. A direct product test is a proximity test for the set of functions that can be expressed
as tensors of another function: for a given t ∈ N, all functions Π: [l]t → Σt for which there exists π : [l]→ Σ
such that Π = ((π[q1], . . . , π[qt]))(q1,...,qt)∈[l]t . Introduced in [GS97], direct product tests are useful in PCP
constructions, and they have been studied in a line of works [DR04; DS14; DG08; IKW12; DN17].

Parallel repetition and direct product tests are different notions, and in some applications direct product
tests and parallel repetition are used in combination: either the function is far from a tensor, in which case the
direct product test accepts with small probability; or the function is close to a tensor, in which case parallel
repetition needs to “work” only for functions that are close to a tensor (a much weaker goal).

8

2 Techniques

We summarize the main ideas behind our results. Each subsection below outlines the ideas contained in the
corresponding technical section.

2.1 Section 4: parallel repetition for PCPs does not always work

We comment on the proof of Theorem 1.
Consider the NP-complete language graph 3-coloring, which consists of graphs G = (V,E) whose

vertices can be labeled via colors in {0, 1, 2} such that every edge in the graph has vertices labeled with
different colors. Moreover, consider a simple PCP for this language:

• A PCP string π : V → {0, 1, 2} is a coloring of the vertices of the given graph G.

• The PCP verifier, given the graph G, samples a random edge {u, v} of the graph G and checks that
π[u] ̸= π[v] (by querying π at locations u and v). We assume that the edge is sampled so that u < v
according to, e.g., a lexicographic order on the vertices of the graph G.

If G is 3-colorable then setting π to any 3-coloring of G makes the PCP verifier accept with probability
1. If G is not 3-colorable then, for every PCP string π, the probability that the PCP verifier accepts π is at
most |E|−1

|E| (at least one edge is not satisfied in any coloring); in fact, the probability is at most val(G), the

maximum fraction of valid edges across any coloring of G (which can be less than |E|−1
|E|).

The soundness error tends to 1. For every graph G that is not 3-colorable, the soundness error of the
parallel repetition of the above PCP tends to 1.

Consider for example the 2-wise parallel repetition. We argue that there is a PCP string Π̃2 : V
2 →

{0, 1, 2}2 that convinces the 2-wise repeated PCP verifier to accept with probability at least 1−
(
|E|−1
|E|

)2
.

For every query (q1, q2) ∈ V 2, set Π̃2[(q1, q2)] to be (0, 0) if q1 or q2 is the smallest non-isolated vertex
in G (with respect to the lexicographic order of V) and (1, 1) otherwise. (A smallest non-isolated vertex
always exists because G is not 3-colorable.) Let Q1 = (q1,1, q1,2) and Q2 = (q2,1, q2,2) be the two queries
of V2. By construction of V, we know that q1,1 < q2,1 and q1,2 < q2,2. Hence at least one of Π̃2[Q1] and
Π̃2[Q2] is (1, 1). Thus V2 rejects if and only if both Π̃2[Q1] and Π̃2[Q2] are (1, 1), which happens only
when V2 queries an edge that is not adjacent to the smallest non-isolated vertex in both repetitions, which in

turn happens with probability at most
(
|E|−1
|E|

)2
.

In Figure 1 we give an example of Π̃2 for the 4-clique graph K4, which is not 3-colorable. The smallest
non-isolated vertex is v1. Thus, in Π̃2 only query pairs that include v1 have the answer (0, 0), and all other
queries are answered with (1, 1); see Table 1. As long as one of q1,1 and q1,2 is v1, V2 accepts because it
receives the answers (0, 0) and (1, 1).

The above idea extends to the case of t-wise parallel repetition, where there is a PCP string Π̃t : V
t →

{0, 1, 2}t that convinces the t-wise repeated PCP verifier to accept with probability at least 1−
(
|E|−1
|E|

)t
.

We conclude that, for every graph x = G that is not 3-colorable, limt→∞ βt(x) = 1.

The soundness error strictly increases. Next we outline how we show that βt+1(x) > βt(x) for infinitely
many graphs x = G that are not 3-colorable.

First we explain why β2(K4) > β1(K4) = β(K4) for the 4-clique graph K4 = (V,E) (which is not 3-
colorable). Let n := |V | = 4 andm := |E| = 6. Consider the coloring χ := {(v1, 0), (v2, 1), (v3, 2), (v4, 2)}

9

v1 v2

v3 v4

Figure 1: The 4-clique graph K4.

q1

q2 v1 v2 v3 v4

v1 (0, 0) (0, 0) (0, 0) (0, 0)

v2 (0, 0) (1, 1) (1, 1) (1, 1)

v3 (0, 0) (1, 1) (1, 1) (1, 1)

v4 (0, 0) (1, 1) (1, 1) (1, 1)

Table 1: The PCP string Π̃2 for the 4-clique graph.

for K4, shown in Figure 2. The coloring χ is a 3-coloring of K ′
4 := (V,E \ {{v3, v4}}). Define Π̃2

to be ((min{χ(u), χ(v)},min{χ(u), χ(v)}))(u,v)∈V 2 (see Table 2). Let Q1 = (q1,1, q1,2) and Q2 =
(q2,1, q2,2) be the two queries made by V2. By construction of V, q1,1 < q2,1 and q1,2 < q2,2. There-
fore, min{χ(q1,1), χ(q2,1)} ≤ min{χ(q2,1), χ(q2,2)} by definition of χ. Note that V2 rejects only when
q1,1 = q1,2 = v3 and q2,1 = q2,2 = v4 (which implies min{χ(q1,1), χ(q2,1)} = min{χ(q2,1), χ(q2,2)}).
Therefore, we deduce that β2(K4) ≥ 1− 1/m2 = 35/36. Since β1(K4) ≤ 1− 1/m = 5/6, we conclude
that β2(K4) > β1(K4).

v1 v2

v3 v4

Figure 2: The 4-clique graph colored by χ.

q1

q2 v1 v2 v3 v4

v1 (0, 0) (0, 0) (0, 0) (0, 0)

v2 (0, 0) (1, 1) (1, 1) (1, 1)

v3 (0, 0) (1, 1) (2, 2) (2, 2)

v4 (0, 0) (1, 1) (2, 2) (2, 2)

Table 2: The PCP string Π̃2 for the 4-clique graph.

More generally, via similar ideas, for every m ∈ N with m ≥ 6, we construct a graph G such that
βt(G) = 1 − 1/mt for every t ∈ N, concluding the first part of Theorem 1. The graph G consists of a
4-clique and m− 6 connected components of size 2; this amounts to 4 + 2 · (m− 6) = 2m− 8 vertices and
6 + (m− 6) = m edges (a 4-clique has 6 edges).

• We sketch why βt(G) ≥ 1− 1/mt. While the graph G is not 3-colorable (it contains a 4-clique), deleting
one edge from the 4-clique makes the new graph G′ 3-colorable. In particular, possibly after renaming the
vertices, we obtain a 3-coloring χ such that:

1. for every u, v ∈ V such that u < v, χ(u) ≤ χ(v); and
2. the size of the set S := {{u, v} ∈ (E \ {vn−1, vn}) : χ(u) = χ(v)} is minimized.

The rest of the argument is analogous to the case of the 4-clique graph (see Section 4.3 for details).

• We argue that βt(G) < 1 for every t, which implies that βt(G) ≤ 1− 1/mt because the number of random
choices for Vt is mt (as each repetition of the verifier V samples one out of m edges). This follows from
the (general) fact that, for every PCP = (P,V) and instance x, βt(x) = 1 implies that β(x) = 1.

Indeed, suppose by way of contradiction that βt(x) = 1. Let Π̃t be a PCP string for the t-wise repetition
such that VΠ̃t

t (x) always accepts. Define the PCP string π̃ := (Π̃t[i
t])i∈[l] for V. For every randomness ρ

10

for V, VΠ̃t
t (x; ρt) queries (qi)

t for every i ∈ [q] where (q1, . . . , qq) is the query list of Vπ̃(x; ρ). Thus,

for every randomness ρ for V, Vπ̃(x; ρ) = 1 because VΠ̃t
t (x; ρt) = 1, which implies that β(x) = 1.

2.2 Section 5: when does parallel repetition for PCPs work?

We comment on the proof of Theorem 2, which characterizes the limiting behavior of parallel repetition of a
PCP in terms of the soundness error of its MIP projection.

It is straightforward to show that the soundness error of the MIP projection of a PCP is at least the
soundness error of the PCP. Hence, if the PCP has soundness error 1 then its MIP projection has soundness
error 1. On the other hand, if the PCP has soundness error less than 1, then its MIP projection may or may not
have soundness error less than 1. For example, the PCP for graph 3-coloring described above has soundness
error less than 1 but its MIP projection has soundness error 1 (the first MIP prover always answers color 0
and the second MIP prover always answers color 1, regardless of the messages sent by the MIP verifier).

A key property is that performing an MIP projection and performing parallel repetition “commute”: given
a PCP, the MIP projection of the parallel repetition of the PCP is the same as the parallel repetition of the
MIP projection of the PCP.

The MIP projection has soundness error < 1. Suppose that the MIP projection of the PCP has soundness
error less than 1. Recall that parallel repetition of an MIP with soundness error less than 1 drives the
soundness error to 0 [Ver96]. Therefore, for every PCP whose MIP projection has soundness error less than 1,
parallel repetition of the MIP projection drives soundness error to 0. Hence, the MIP projection of the parallel
repetition of the PCP also has soundness error that tends to 0, which is an upper bound on the soundness
error of the parallel repetition of the PCP.

The MIP projection has soundness error = 1. Conversely, for a given instance x ̸∈ L, suppose that the
MIP projection has soundness error 1 (i.e., it has no soundness at all). Let (P̃i)i∈[q] be optimal malicious
provers for the MIP projection. Let vr be the randomness complexity of the (non-repeated) PCP verifier V.
For every t > 1, we construct a PCP string Π̃t that convinces the t-wise parallel repeated PCP verifier Vt to
accept x with probability at least 1/2vr (a lower bound independent of t).

An initial guess would be to construct a PCP string Π̃t for the repeated PCP verifier Vt as follows.

1. Initialize a repeated PCP string Π̃t to be a string with an arbitrary symbol everywhere.
2. For every possible randomness choice ρ = (ρ1, . . . , ρt) of the repeated PCP verifier Vt:

(a) Compute the query list Q, where for every i ∈ [q], Q[i] is a t-tuple such that Q[i][j] is the i-th query
made by the PCP verifier V given instance x and randomness ρj .

(b) For every i ∈ [q] and j ∈ [t], compute the answer ansi,j := P̃i(x,Q[i][j]) to the query Q[i][j].
(c) For every i ∈ [q], set Π̃t[Q[i]] := (ansi,j)j∈t.

It is tempting to conclude that Π̃t convinces the repeated PCP verifier with probability 1 because (P̃i)i∈[q]
convince the MIP projection verifier with probability 1. However, this is not true as we now explain.

We say that two (not necessarily distinct) randomness choices ρ1 and ρ2 are incompatible if there exist
distinct i, j ∈ [q] such that Q1[i] = Q2[j], where Q1,Q2 are the query lists of the repeated PCP verifier Vt

when given instance x and randomness ρ1, ρ2, respectively.
Intuitively, constructing a PCP string Π̃t by considering answers from the MIP provers across incompatible

randomness choices may lead to distinct answers for the same location in Π̃t, which hinders arguing that the
repeated verifier Vt would accept on both randomness choices.

11

Consider the following example. Let ρ1, ρ2, ρ3 be three distinct randomness choices for a 2-query PCP
verifier. Let Q1 := (1, 2), Q2 := (2, 3), Q3 := (4, 1) be the query lists corresponding to ρ1, ρ2, ρ3. For the 2-
wise parallel repeated PCP verifier, the randomness choice ρ1 := (ρ1, ρ2) has query list Q1 := ((1, 2), (2, 3))
and the randomness choice ρ2 := (ρ3, ρ1) has query list Q2 := ((4, 1), (1, 2)). Note that ρ1 and ρ2 are
incompatible because Q1[1] = Q2[2]. In particular, in the construction of Π̃t outlined above, P̃1 separately
gives some answers to query 1 and query 2, and P̃2 may separately give different answers to query 1 and
query 2. Hence we do not have a single value that we can assign to entry (1, 2) in Π̃t, so we cannot conclude
that the 2-wise parallel repeated PCP verifier V2 accepts on ρ1 and ρ2.

One subtlety we neglect in the above discussion is: what happens if Q1[i] = Q2[i] for some i ∈ [q]? For
any query list Q of the repeated PCP verifier, the i-th query Q[i] is answered by the i-th MIP prover P̃i as in
the construction above. Therefore, Q1[i] = Q2[i] does not lead to clashing answers in the PCP string Π̃t.

To avoid incompatibility, we find a “large” set S of randomness for the repeated PCP verifier such that S
does not contain incompatible randomness choices. Let S be the set of repeated verifier randomness where the
randomness for the last repetition is fixed to be some arbitrary string ρ∗ ∈ {0, 1}vr. Consider any ρ1,ρ2 ∈ S
and any distinct i, j ∈ [q]. Let Q1,Q2 be the query lists of Vt corresponding to ρ1,ρ2. Since the PCP
verifier V does not make duplicate queries (within the same query list), we know that Q1[i][t] ̸= Q2[j][t],
and therefore Q1[i] ̸= Q2[j]. Hence the set S does not contain incompatible randomness choices.

We construct a PCP string Π̃t similarly to the above procedure, by going over all randomness choices
in the set S. Since the MIP projection has soundness error 1, Π̃t convinces the repeated PCP verifier with
probability at least |S| /(2vr)t = 1/2vr, as desired. (In Appendix A we show that the choice of S is “tight” in
the sense that there is a PCP such that, for infinitely many instances not in the language, the soundness error
its t-wise parallel repetition is exactly 1/2vr for every t. Hence this lower bound cannot be improved.)

2.3 Section 6: rate of decay of parallel repetition for PCPs

We sketch the proof of Lemma 2: if a PCP is the evaluation of an MIP (Definition 2) then the rate of decay of
parallel repetition for this PCP is the same as the rate of decay of parallel repetition for the MIP. Let MIP be
an MIP for a language L and let PCP be its PCP evaluation. Below:
• βMIP is the soundness error of MIP;
• βMIP,t is the soundness error of the t-wise parallel repetition of MIP;
• β is the soundness error of PCP; and
• βt is the soundness error of the t-wise parallel repetition of PCP.
Throughout, we fix an instance x /∈ L.

β(x) < 1 implies βt(x) < 1. It is not hard to show that β(x) = βMIP(x) (any prover strategy for MIP
can be converted to an equally effective prover strategy for PCP, and vice versa). Therefore, if βMIP(x) < 1
then β(x) < 1. In Section 2.1, we explained that βt(x) = 1 implies β(x) = 1. Hence we conclude that
β(x) < 1 implies βt(x) < 1.

βt(x) ≤ βMIP,t(x). In Section 2.2 we mentioned that performing an MIP projection and performing
parallel repetition “commute”. In other words,

β′MIP,t(x) = β′′MIP,t(x)

where β′MIP,t is the soundness error of the parallel repetition of the MIP projection of PCP and β′′MIP,t is the
soundness error of the MIP projection of the parallel repetition of PCP. Moreover, since the soundness error

12

of the MIP projection of a PCP is at least the soundness error of the PCP,

βt(x) ≤ β′′MIP,t(x) .

On the other hand, performing an MIP projection and a PCP evaluation are “inverses” of each other:
MIP is essentially the same proof system as the MIP projection of PCP, up to a minor syntactic difference in
the verifier alphabet that does not affect the soundness error. By Definition 1 and Definition 2, if MIP is a
k-prover MIP with verifier alphabet ΣV , then the MIP projection of PCP has verifier alphabet [k]× ΣV . This
“almost equivalence” still holds after parallel repetition, which implies that

βMIP,t(x) = β′MIP,t(x) .

Therefore, we conclude that βt(x) ≤ β′′MIP,t(x) = β′MIP,t(x) = βMIP,t(x).

βt(x) ≥ βMIP,t(x). Consider malicious provers (P̃t,i)i∈[k] for the parallel repetition of MIP. We
construct a malicious proof string Π̃ for the parallel repetition of PCP such that, for every verifier randomness
ρ = (ρ1, . . . , ρt),

⟨(P̃t,i)i∈[k],Vt(x,ρ)⟩ = 1 =⇒ VΠ̃
t (x;ρ) = 1 ,

which implies that βt(x) ≥ βMIP,t(x) as desired.
For every i ∈ [k], Qi denotes the i-th query of Vt(x;ρ). Let Qj be the query list of the verifier V(x; ρj)

for PCP for every j ∈ [t]. By the definition of parallel repetition,

Qi = (Q1[i], . . . ,Qt[i]), where Qj [i] = (i,V(x, ρj)[i]) for all j ∈ [t] .

By the definition of MIP projection, Vt(x,ρ) sends the message (V(x, ρj)[i])j∈[t] to the i-th prover and

receives bi := P̃t,i((V(x, ρj)[i])j∈[t]). Therefore, if VΠ̃
t (x;ρ) gets bi as answer for its i-th query Qi,

Vt(x,ρ, (bi)i∈[q]) = 1 implies VΠ̃
t (x;ρ) = 1.

With the above argument, we construct a malicious proof string Π̃ for the parallel repetition of PCP:

1. Initialize a repeated PCP string Π̃ to be a string with an arbitrary symbol everywhere.
2. For every possible query Q of the repeated PCP verifier Vt:

(a) Parse Q as ((ij , aj))j∈t).
(b) Set Π̃[Q] := P̃t,i1((aj)j∈t).

Observe that
Π̃[Qi] = P̃t,i((V(x, ρj)[i])j∈[t]) = bi .

Therefore, we conclude that if the parallel repeated MIP verifier Vt accepts, then the parallel repeated PCP
verifier Vt with oracle access to Π̃ also accepts.

2.4 Section 7: parallel repetition for the canonical PCP for CSPs

We discuss the proof of Lemma 1.
Fix a CSP instance x that is not satisfiable, which means that for every assignment to the variables there

exists (at least) one constraint that is not satisfied by the assignment. This means that the canonical PCP
for this CSP instance x has soundness error β(x) < 1, because, no matter the PCP string, there is some
probability that the PCP verifier checks a constraint that is not satisfied by the PCP string.

13

Suppose that the CSP instance x is symmetric. In other words, consider two constraints, C1 over variables
X1 and C2 over variables X2 in x; any assignment to X1 that satisfies C1 directly induces an assignment to
X2 that satisfies C2 (the i-th variable in X2 is assigned the value of the i-th variable in X1). We outline why
β(x) > 0 implies that limt→∞ βt(x) > 0, that is, parallel repetition fails to reduce the soundness error to 0
in the limit.4 By our Theorem 2, it suffices to argue that βMIP(x) = 1, namely, that the MIP projection of the
canonical PCP has soundness error 1 for the (unsatisfiable) CSP instance x. Since β(x) > 0, there exist an
assignment a and PCP verifier randomness ρ such that Va(x; ρ) = 1; let Sρ be the locations of a queried
by V with randomness ρ. Now consider the malicious MIP provers (P̃i)i where each P̃i always answers
with a[Sρ[i]] (we assume there is an implicit ordering of elements in Sρ). Let V be the verifier for the MIP
projection of the canonical PCP. Since the x is symmetric, Va(x; ρ) = 1 implies V(x, ρMIP, (a[Sρ[i]])i) = 1
for every MIP verifier randomness ρMIP.

Next we outline why βt+1(x) ≥ βt(x) (the first part of Lemma 1). This is rather counter-intuitive: the
(t+ 1)-wise repetition should be harder to win compared to t-wise repetition. However, because the CSP
instance x is symmetric, we can design a PCP string Π̃t+1 for the (t+ 1)-wise repetition using a PCP string
Π̃t for the t-wise repetition without decreasing the winning probability. For simplicity, we outline the proof
for β2(x) ≥ β1(x) = β(x), which can be directly extended to work for every t ∈ N.

If β(x) = 0 then the claim holds trivially so assume that β(x) > 0, which means that there exist a
PCP string (i.e., an assignment) π̃ and PCP verifier randomness ρ such that Vπ̃(x; ρ) = 1. Since the CSP
instance x is symmetric, we can use the answers used for the first PCP randomness ρ1 also for the second
PCP randomness ρ2: we define Π̃2 by setting Π̃2[(q1, q2)] := (π̃[q1], π̃[q1]) for every (q1, q2).

Let ρ = (ρ1, ρ2) be a randomness for V2 such that Vπ̃(x; ρ1) = 1. We know that V(x; ρ1, π̃[q1], π̃[q2]) =
1 where q1 and q2 are the two queries made by V under randomness ρ1. Since every constraint in x checks
the same function, V(x; ρ, π̃[q1], π̃[q2]) = 1 for every verifier randomness ρ. Hence VΠ̃2

2 (x;ρ) = 1.
There are at most β(x) · 2vr · 2vr choices of randomness ρ = (ρ1, ρ2) for V2 such that Vπ̃(x; ρ1) = 1.

Hence, we conclude that β2(x) ≥ β(x)·2vr·2vr
(2vr)2

= β(x).
We exemplify the above reasoning in the case of the canonical PCP (P,V) for graph 3-coloring.

Fix a graph G that is not 3-colorable. Given any PCP string π̃ for the canonical PCP, define Π̃2 :=
((π̃[q1], π̃[q1]))(q1,q2). Fix a randomness ρ = (ρ1, ρ2). Let (q1,1, q1,2) and (q2,1, q2,2) be the two queries
of V2(G;ρ). Let (ans1,1, ans1,2) := Π̃2[(q1,1, q1,2)] and (ans2,1, ans2,2) := Π̃2[(q2,1, q2,2)]. By construc-
tion of Π̃2, we know that ans1,1 = ans1,2 and ans2,1 = ans2,2. Since the PCP verifier V for graph 3-
coloring always checks whether the two colors it gets are different, we know that V(G; ρ1, ans1,1, ans1,2) =
V(G; ρ2, ans2,1, ans2,2). Therefore, if ρ1 is an accepting randomness with respect to π̃, ρ is an accepting
randomness with respect to Π̃2. The same counting argument as above gives us the desired result.

2.5 Section 8: consistent parallel repetition always works

We discuss the proof of Theorem 3.
In Section 2.1 the malicious PCP string for the parallel repetition of the canonical PCP for graph 3-

coloring exploits inconsistent answers across different repetitions. If the repeated PCP verifier were to check
consistency of the answers to the same queries across repetitions, then that PCP string would fail to convince
the repeated PCP verifier with such high probability.

This inspires the variant of parallel repetition for PCPs in Definition 3, where the repeated PCP verifier
additionally checks that any duplicate queries are answered consistently (which means that the repeated PCP

4If β(x) = 0 (no assignment satisfies any constraint) then one can show that βt(x) = 0 for every t ∈ N.

14

verifier no longer is the conjunction of independent “games” as is usually the case in parallel repetition).
Theorem 3 tells us that consistent parallel repetition works for every PCP. Note that, in stark contrast, parallel
repetition for MIPs always works (brings the soundness error to zero if the MIP has non-trivial soundness
error) without the need for any consistency checks across repetitions [Ver96].

In this overview we only briefly discuss the limiting behavior of consistent parallel repetition: we outline
why if a PCP has soundness error β(x) < 1 then limt→∞ β̂t(x) = 0, where β̂t is the soundness error of the
t-wise consistent parallel repetition of the PCP. (We prove the upper bound on β̂t(x) in Section 8.)

The winning set of a PCP string is the set of randomness strings that lead the PCP verifier to accept. For
the t-wise repeated PCP verifier, a choice of randomness is a list ρ = (ρ1, . . . , ρt), where each ρi is a choice
of randomness for the given PCP verifier.

We argue that, given a PCP string Π̃ for the repeated PCP verifier, for every ρ in the winning set of Π̃, we
can construct a malicious PCP string π̃ from Π̃ such that every ρi is in the winning set of π̃.

The soundness error of the PCP gives an upper bound on the size of the winning set of π̃. On the other
hand, the maximum number of distinct elements for every ρ = (ρ1, . . . , ρt) in the winning set of Π̃ is a lower
bound on the size of winning set of π̃. By a counting argument, we can deduce that if β(x) < 1 then the size
of the winning set of Π̃ grows slower than the size of the set of all repeated PCP verifier randomness choices.
This enables us to conclude that limt→∞ β̂t(x) = 0.

15

3 Preliminaries

3.1 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) is an information-theoretic proof system where a probabilistic
verifier has query access to a proof string produced by a prover.

Definition 3.1 (Completeness). PCP = (P,V) for a language L has completeness error α if for every
instance x ∈ L,

Pr [Vπ(x) = 1 | π ← P(x)] ≥ 1− α(x) .

Definition 3.2 (Soundness). PCP = (P,V) for a language L has soundness error β if for every instance
x ̸∈ L and (unbounded) malicious prover P̃,

Pr
[
Vπ̃(x) = 1

∣∣∣ π̃ ← P̃
]
≤ β(x) .

We consider the following efficiency measures for a PCP.

• Proof alphabet Σ: the alphabet of the PCP string.
• Proof length l: the number of alphabet symbols in the PCP string.
• Query complexity q: the number of queries made by the PCP verifier to the PCP string (a query is an index

in [l], and the answer is the symbol at the corresponding location of the PCP string). We assume without
loss of generality that the verifier V does not make duplicate queries.

• Verifier randomness complexity vr: the number of random bits used by the PCP verifier.
• Prover randomness complexity pr: the number of random bits used by the PCP prover.

Any efficiency measure may be a function of the instance x (e.g., the size of x).

Definition 3.3. A PCP verifier V is non-adaptive if the queries it makes to the PCP string depend only on
the instance and the randomness. In particular, V can be viewed as a query algorithm Vq and a decision
algorithm Vd that work as follows.

• Vq(x, ρ)→ Q: On input an instance x and PCP verifier randomness ρ, Vq outputs a query list Q ⊆ [l]
(the subset notation implicitly casts the query list to be an unordered set).

• Vd(x, ρ, ans) → d: On input an instance x, PCP verifier randomness ρ, and query answers ans ∈ ΣQ,
Vd outputs the decision d ∈ {0, 1} of the PCP verifier.

Remark 3.4. Consistent with prior literature on parallel repetition, we consider only PCPs with non-adaptive
verifiers. This does not trivialize the problem because almost all PCP constructions are non-adaptive. This
restriction can be lifted for some of our results (the results in Section 8 extend to adaptive verifiers).

3.2 Multi-prover interactive proofs

A one-round multi-prover interactive proof (MIP) is an information-theoretic proof system where a proba-
bilistic verifier sends a message to each of multiple non-communicating provers, then receives an answer
from each prover, and finally outputs a decision bit (denoting whether to accept or reject).

16

Definition 3.5 (Completeness). MIP = ((Pi)i∈[k],V) for a language L has completeness error α if for
every instance x ∈ L,

Pr

V(x, ρ, (bi)i∈[k]) = 1

∣∣∣∣∣∣∣∣
ρ← {0, 1}vr
τ ← {0, 1}pr
(ai)i∈[k] ← V(x, ρ)
∀ i ∈ [k] : bi ← Pi(x, τ, ai)

 ≥ 1− α(x) .

Definition 3.6 (Soundness). MIP = ((Pi)i∈[k],V) for a language L has soundness error β if for every
instance x ̸∈ L and (unbounded) malicious provers (P̃i)i∈[k],

Pr

V(x, ρ, (bi)i∈[k]) = 1

∣∣∣∣∣∣∣∣
ρ← {0, 1}vr
τ ← {0, 1}pr
(ai)i∈[k] ← V(x, ρ)
∀ i ∈ [k] : bi ← P̃i(τ, ai)

 ≤ β(x) .
We consider the following efficiency measures for an MIP.

• Verifier alphabet ΣV: the alphabet for the messages from the verifier to the provers.
• Provers alphabet ΣP: the alphabet for the messages from the provers to the verifier.
• Verifier randomness complexity vr: the number of random bits used by the verifier.
• Prover randomness complexity pr: the total number of shared random bits used by the provers.

Any efficiency measure may be a function of the instance x (e.g., the size of x).

Remark 3.7. Consistent with prior literature on parallel repetition of MIPs, we restrict our attention to
one-round MIPs with non-adaptive verifiers. Namely, the MIP verifier sends its messages to all provers
simultaneously. This is analogous to Remark 3.4 for PCPs.

3.3 Parallel repetition for PCPs

The main object of study in this paper is parallel repetition of a PCP, defined below.

Definition 3.8. Let PCP = (P,V = (Vq,Vd)) be a (non-adaptive) PCP system with proof length l, query
complexity q, and verifier randomness complexity vr. The t-wise parallel repetition of PCP, denoted
(Pt,Vt) := ⊗ [PCP, t], is the PCP system defined as follows.

• Pt(x):

1. Compute the PCP string π ← P(x).
2. Output Π := ((π[q1], . . . , π[qt]))(q1,...,qt)∈[l]t .

• VΠ
t (x):

1. For i ∈ [t]:
(a) Sample PCP verifier randomness ρi ← {0, 1}vr.
(b) Compute the query list of the PCP verifier Qi := Vq(x, ρi).

2. For i ∈ [q]:
(a) Set Qi := (Q1[i], . . . ,Qt[i]).

17

(b) Query the proof string ansi := Π[Qi].
3. Check that ∧i∈[t]Vd(x, ρi, ans1[i], . . . , ansq[i]).

The completeness error becomes 1− (1−α)t but, as discussed in this paper, the soundness error does not
behave as expected. The proof alphabet becomes Σt and the proof length becomes lt. The query complexity
remains q, albeit over the larger alphabet. The new prover Pt uses the same amount of randomness as before,
while the new verifier Vt uses t · vr random bits.

3.4 Parallel repetition for MIPs

Below we define parallel repetition for MIPs, which in this paper plays a role in some analyses.

Definition 3.9. Let MIP = ((Pi)i∈[k],V) be an MIP system with verifier randomness complexity vr and
provers randomness complexity pr. The t-wise parallel repetition of MIP, denoted ⊗[MIP, t], is an MIP
system ((Pt,i)i∈[k],Vt) that works as follows. Each MIP prover Pt,i receives the instance x and the shared
prover randomness τ as inputs. The verifier Vt receives the instance x and the verifier randomness ρ as
inputs. Then they interact as follows.

1. Vt(x,ρ):
(a) Parse ρ as (ρ1, . . . , ρt).
(b) For every i ∈ [t], compute the i-th list of verifier messages (ai,1, . . . , ai,k) := V(x, ρi).
(c) For every i ∈ [k], send ai := (a1,i, . . . , at,i) to the i-th prover Pt,i.

2. For i ∈ [k], Pt,i(x, τ ,ai):
(a) Parse τ as (τ1, . . . , τt).
(b) Parse ai as (a1,i, . . . , at,i).
(c) For every j ∈ [t], compute the MIP prover message bj,i := Pi(x, τj , aj,i).
(d) Send the message bi := (b1,i, . . . , bt,i) to the verifier Vt.

3. Vt(x,ρ, (bi)i∈[k]): Check that ∧i∈[t]V(x, ρi, bi,1, . . . , bi,k).

The completeness error becomes 1− (1− α)t. The verifier and prover alphabets become Σt
V and Σt

P ,
respectively, as each message now contains t original messages. The new provers and the new verifier runs
the original ones t times, so the randomness increases by a multiplicative factor of t.

It is straightforward to show that parallel repetition does not increase soundness error, and does not reduce
soundness error faster than exponential (in the number of repetitions).

Lemma 3.10. Let MIP = ((Pi)i∈[k],V) be an MIP for a language L with soundness error β. For t ∈ N, let
βt be the soundness error of ⊗[MIP, t] = ((Pt,i)i∈[k],Vt) (the t-wise parallel repetition of MIP). Then for
every x ̸∈ L

(β(x))t ≤ βt(x) ≤ β(x) .

Proof. A valid strategy against Vt is to run t independent copies of an optimal strategy against V . This shows
that βt(x) ≥ (β(x))t, since this approach succeeds if all copies succeed.

On the other hand, any strategy against Vt yields a strategy against V that is at least as successful,
which shows that βt(x) ≤ β(x). Fix x /∈ L. Let (P̃t,i)i∈[k] be optimal provers against Vt. Let (τ2, . . . , τt)
and (ρ2, . . . , ρt) be such that the verifier Vt’s acceptance probability is maximized against (P̃t,i)i∈[k]. We
construct malicious provers (P̃i)i∈[k] for MIP as follows:

P̃i(τ, ai):

18

1. For j = 2, . . . , t, run aj,i := V(x, ρj).
2. Run (b1,i, . . . , bt,i) := P̃t,i((τ, τ2, . . . , τt), (ai, a2,i, . . . , at,i)).
3. Output b1,i.

Observe that if Vt accepts then V accepts. Hence βt(x) ≤ β(x).

If β(x) = 1 then, clearly, βt(x) = 1 for every t ∈ N. However, if β(x) < 1 then Verbitsky [Ver96]
shows that βt(x) tends to zero as t tends to infinity.5

Lemma 3.11 ([Ver96]). Let MIP be an MIP for a language L with soundness error β. Let βt be the soundness
error of the t-wise parallel repetition of MIP. For every x ̸∈ L,

β(x) < 1 =⇒ lim
t→∞

βt(x) = 0 .

5The discussion in [Ver96] considers the case of two provers but the general case of k provers is a direct extension.

19

4 Parallel repetition of PCP can increase soundness error

We prove that parallel repetition of a PCP can increase soundness error. We give a minimal example of a
2-query PCP for an NP-complete language.

Theorem 4.1. There exists a 2-query PCP system PCP := (P,V) for an NP-complete language L with
soundness error β < 1 (i.e., β(x) < 1 for every x ̸∈ L) such that the following holds. Let βt be the soundness
error of ⊗ [PCP, t] (the t-wise parallel repetition of PCP as in Definition 3.8). For every x ̸∈ L,

lim
t→∞

βt(x) = 1 .

Moreover, for infinitely many instances x /∈ L,

βt+1(x) > βt(x) .

In Section 4.1, we define the NP-complete language and a canonical PCP for this language. In Section 4.2,
we show that the soundness error of the parallel repetition of the canonical PCP tends to 1 for every instance
not in the language. In Section 4.3, we argue that for infinitely many instances not in the language, the
soundness error of parallel repetition strictly increases with the number of repetitions.

4.1 PCP for graph 3-coloring

A 3-coloring of a graph G is a labeling of the vertices with 3 different colors such that no adjacent vertices
have the same color. Graph 3-coloring 3COL is the NP-complete language where

3COL := {G = (V,E) : ∃χ ∈ {0, 1, 2}V where ∀ e = {u, v} ∈ E,χ(u) ̸= χ(v)} .

Construction 4.2 (PCP for 3COL). We define a PCP PCP = (P,V) for 3COL.

• P(G):

1. Parse G as (V,E).
2. Find a 3-coloring χ for G with the maximum number of edges e = {u, v} ∈ E such that χ(u) ̸= χ(v).
3. Output π := (χ(v))v∈V (assume that V is ordered lexicographically).

• Vπ(G):

1. Parse G as (V,E).
2. Sample a random edge e = {u, v} ∈ E (an edge is written in lexicographic order of the vertices).
3. Make two queries to π: cu := π[u] and cv := π[v].
4. Accept if and only if cu ̸= cv.

The proof alphabet is {0, 1, 2}, the proof length is |V |, and the query complexity is 2. The PCP verifier
uses log2 |E| bits of randomness to sample a random edge (which defines the two queries).

If G ∈ 3COL, the PCP prover outputs a 3-coloring π : V → {0, 1, 2}, which convinces the PCP verifier
with probability 1. If G ̸∈ 3COL then, for every PCP string π̃ : V → {0, 1, 2}, the PCP verifier accepts with
probability at most |E|−1

|E| (because for every coloring of G there is at least one edge whose vertices share the
same color). More precisely, the acceptance probability is at most val(G), the maximum fraction of valid
edges across any coloring of G.

20

4.2 The soundness error of parallel repetition tends to 1

Lemma 4.3. Let PCP := (P,V) be the PCP system for 3COL in Construction 4.2. For every t ∈ N, let βt
be the soundness error of ⊗ [PCP, t]. For every graph G = (V,E) /∈ 3COL,

βt(G) ≥ 1−
(
|E| − 1

|E|

)t

.

Proof. Fix a graph G = (V,E) /∈ 3COL. Consider the following malicious prover P̃t for the t-wise parallel
repetition of PCP.

P̃t:
1. Initialize Π̃t := (0t)[|V |]t .
2. Let u ∈ V be the smallest non-isolated vertex in G (in lexicographic order of V).
3. For every (q1, . . . , qt) ∈ [|V |]t:

(a) If min(q1, . . . , qt) = u, set Π̃t[(q1, . . . , qt)] := 0t.
(b) Otherwise, set Π̃t[(q1, . . . , qt)] := 1t.

4. Output Π̃t.

Let Π̃t be the output of P̃t. Let u be the smallest non-isolated vertex in G. We observe that the parallel
repeated verifier Vt rejects Π̃t if and only if u ̸∈ Q ∈ [|V |]t for every query Q of Vt, which happens with

probability at most
(
|E|−1
|E|

)t
because u is adjacent to at least one edge. Hence,

βt(G) ≥ Pr
[
VΠ̃t

t (G) = 1
]
≥ 1−

(
|E| − 1

|E|

)t

.

4.3 Parallel repetition strictly increases soundness error

In Lemma 4.4, we prove that t-wise parallel repetition of the PCP for 3COL increases soundness error. Note
that below we only consider graphs with |E| ≥ 6 because all graphs with fewer than 6 edges are 3-colorable.

Lemma 4.4. Let PCP := (P,V) be the PCP system for 3COL in Construction 4.2. Let βt be the soundness
error for t-wise parallel repetition ⊗ [PCP, t] := (Pt,Vt) of PCP. For every m ∈ N with m ≥ 6 there exists
an instance G = (V,E) ̸∈ 3COL with |E| = m such that

βt(G) = 1− 1

mt
.

Proof. Fix m ∈ N such that m ≥ 6 (all graphs with less than 6 edges are 3-colorable).

Almost 3-colorable graphs. We say a graph G = (V = {v1, . . . , vn}, E) (where n := |V |) is almost
3-colorable if the followings hold:

• |E| = m;
• G ̸∈ 3COL;
• G′ := (V,E \ {vn−1, vn}) ∈ 3COL.

21

We note that for every graph G that satisfies the three conditions above, there exists an “ordered” 3-coloring
χ for G′ (possibly after renaming the vertices of G′) such that for every pair of vertices u, v ∈ V with u < v,
χ(u) ≤ χ(v).

We construct an almost 3-colorable graph G = (V = {vi}i∈[n], E) with |E| = m. Moreover, we exhibit
an “ordered” 3-coloring χ for G′. For simplicity, we say that vi < vj if i < j.

Let n = 2m− 8. We define the edge set as follows:

E :=
{
{vi, vi+n/2} : i ∈

[n
2
− 2
]}
∪
{
{vi, vj} : i, j ∈

{n
2
− 1,

n

2
, n− 1, n

}}
.

Note thatG hasm−5 connected components: {vn
2
−1, vn

2
, vn−1, vn} forms a 4-clique, and all other connected

components are formed by 2 vertices. Therefore, G is not 3-colorable because the 4-clique is not 3-colorable.
Note that |E| = 6+(m−6) = m, where 6 is the number of edges in the 4-clique and m−6 is the number of
components with a single edge. Next we show that G′ = (V,m \ {{vn−1, vn}}) ∈ 3COL and a 3-coloring
χ as required above exists. We define χ ∈ {0, 1, 2}V for every vi ∈ V :

χ(vi) :=


0 if 1 ≤ i ≤ n/2− 1,

1 if n/2 ≤ i ≤ n− 2,

2 otherwise.

We observe that χ is indeed a 3-coloring for G′, and for every u, v ∈ V such that u < v, χ(u) ≤ χ(v).
Lower bound: βt ≥ 1 − 1/mt. Fix an almost 3-colorable graph G /∈ 3COL. We consider the following
malicious prover P̃t for the t-wise parallel repetition.

P̃t:
1. Parse the instance G as (V,E).
2. Let n := |V | and m := |E|.
3. Parse V as {v1, . . . , vn} in which the indices of the vertices are determined by the lexicographic order

of V .
4. Let χ ∈ {0, 1, 2}V be an labeling that satisfies the following:

(a) For every u, v ∈ V such that u < v, χ(u) ≤ χ(v).
(b) The size of the set S is minimized, where S := {{u, v} ∈ (E \ {vn−1, vn}) : χ(u) = χ(v)}.

5. Output Π̃t :=
(
(min{χ(q1), . . . , χ(qt)})t

)
(q1,...,qt)∈V t .

Let Q1 and Q2 be the two queries made by Vt. By definition of V (see Construction 4.2), Q1[i] < Q2[i]
and {Q1[i],Q2[i]} ∈ E for every i ∈ [t]. Let χ be defined as in P̃t. Let m1 := min{χ(Q1[i])}i∈[t] and
m2 := min{χ(Q2[i])}i∈[t]. Recall that for every edge {u, v} ̸= {vn−1, vn} such that u < v, χ(u) < χ(v).
Therefore, m1 ≤ m2. We consider the following two cases:

• Case 1: m1 < m2. By definition of Π̃t, we know that ans1 = (m1)
t and ans2 = (m2)

t. Since m1 ̸= m2,
Vt accept.

• Case 2: m1 = m2. In this case Vt rejects. However, this case can only happen when Q1 = (vn−1)
t and

Q2 = (vn)
t (χ(u) < χ(v) for every edge {u, v} ≠ {vn−1, vn} if u < v), which happens with probability

1/mt.

We conclude that β2(G) ≥ 1− 1
m2 .

22

Upper bound: βt ≤ 1 − 1/mt. Fix an arbitrary graph G ̸∈ 3COL. It suffices to show that βt(G) < 1:
the number of random choices of Vt is mt, hence βt(G) < 1 implies βt(G) ≤ 1− 1/mt.

We show that if βt(G) = 1, then β(G) = 1, which contradicts to our assumption that PCP has non-trivial
soundness.

Assume that βt(G) = 1. Let Π̃t be the PCP string for the t-wise repetition of PCP such that VΠ̃t
t (G)

always accepts. We construct a malicious prover P̃ for PCP as follows:

P̃:
1. Parse G as (V,E).
2. Output π̃ :=

(
Π̃t[
(
vt
)
][1]
)
v∈V

.

Let π̃ be the output of P̃. For every ρ ∈ {0, 1}vr, we know that VΠ̃t
t (G; ρt) = 1, which implies that

Vπ̃(G; ρ) = 1 as desired. Therefore, β(G) = 1.

23

5 A characterization result

We prove a result that characterizes when parallel repetition of a PCP “works”, that is, causes the soundness
error to tend to zero as the number of repetitions tends to infinity. The characterization relies on whether
a corresponding MIP, which we refer to as the MIP projection of the PCP, has non-trivial soundness error.
Informally, the MIP has one prover per PCP query, and each MIP prover answers a single query without any
consistency checks performed by the MIP verifier.

Definition 5.1. Let PCP = (PPCP,VPCP = (Vq,Vd)) be a (non-adaptive) PCP system with proof alphabet
Σ, proof length l, query complexity q, and verifier randomness vr. The MIP projection of PCP is an MIP
with q provers, denoted MIP = ((Pi)i∈[q],V), that works as follows. Each MIP prover Pi receives the
instance x and the shared randomness τ as inputs. The MIP verifier V receives the instance x and the verifier
randomness ρ as inputs. Then MIP verifier and MIP provers interact as follows.

1. V(x, ρ):
(a) Compute the query list of the PCP verifier Q := Vq(x, ρ).
(b) Parse the query list Q as a tuple (qi)i∈[q].
(c) For every i ∈ [q], send qi to the i-th prover Pi.

2. For i ∈ [q], Pi(x, τ, qi):
(a) Compute the PCP string π := PPCP(x; τ).
(b) Send the message bi := π[qi] to the MIP verifier V .

3. V(x, ρ, (bi)i∈[q]): Check that Vd(x, ρ, (bi)i∈[q]) = 1.

The completeness error of the MIP projection is the same as that of the PCP. The MIP prover alphabet is
Σ and MIP verifier alphabet is [l]. The MIP verifier uses vr random bits.

We show that parallel repetition of a given PCP yields arbitrarily small soundness error if and only if the
corresponding MIP projection has non-trivial soundness error.

Theorem 5.2. Let PCP be a (non-adaptive) PCP system for a language L; denote by βt the soundness error
of ⊗ [PCP, t]. Let MIP be the MIP projection of PCP, and let βMIP be its soundness error. For every x ̸∈ L,

lim
t→∞

βt(x) = 0⇐⇒ βMIP(x) < 1 .

In fact, if βMIP(x) = 1 then limt→∞ βt(x) ∈ [1
2vr , 1].

In Appendix A we show via examples that the above characterization is essentially tight.

5.1 Proof of Theorem 5.2

We show the two directions separately in Lemmas 5.3 and 5.5 below.

Lemma 5.3. If βMIP(x) = 1 then limt→∞ βt(x) ≥ 1
2vr > 0.

Proof. Throughout the proof, we fix an instance x /∈ L.
For every t ∈ N and ρ∗ ∈ {0, 1}vr, define the set

Wt,ρ∗ := {ρ = (ρ1, . . . , ρt) ∈ ({0, 1}vr)t : ρt = ρ∗} .

24

We construct a malicious prover P̃t that outputs a PCP string Π̃ such that, for every ρ ∈Wt,ρ∗ , VΠ̃
t (x;ρ) = 1.

This suffices because we can then conclude that

lim
t→∞

βt(x) ≥ lim
t→∞

|Wt,ρ∗ |
|({0, 1}vr)t|

= lim
t→∞

(2vr)t−1

(2vr)t
=

1

2vr
> 0 .

We are left to construct and analyze P̃t. Let (P̃i)i∈[q] be (deterministic) malicious provers that make the
MIP verifier always accept the instance x (they exist since βMIP(x) = 1).

P̃t:
1. Initialize Π̃ :=

(
σt
)lt for some arbitrary σ ∈ Σ.

2. For every ρ ∈Wt,ρ∗ and i ∈ [q]:
(a) Parse ρ as (ρ1, . . . , ρt).
(b) Initialize ansi := σt.
(c) For every j ∈ [t]:

i. Compute the query list of the j-th PCP verifier Qj := Vq(x, ρj).
ii. Compute the i-th MIP prover answer ansi[j] := P̃i(Qj [i]).

(d) Set Π̃ [(Q1[i], . . . ,Qt[i])] := ansi.
3. Output the PCP string Π̃.

Intuitively, the PCP prover P̃t fills in the locations corresponding to the queried locations for every randomness
ρ = (ρ1, . . . , ρt) inWt,ρ∗ , based on the answers provided by the MIP malicious provers (P̃i)i∈[q]. No position
in Π̃ is updated more than once with different values, due to the following claim.

Claim 5.4. For every (not necessarily distinct) ρ = (ρ1, . . . , ρt),ρ
′ = (ρ′1, . . . , ρ

′
t) ∈ Wt,ρ∗ and distinct

i, j ∈ [q], (Vq(x, ρ1)[i], . . . ,Vq(x, ρt)[i]) ̸= (Vq(x, ρ
′
1)[j], . . . ,Vq(x, ρ

′
t)[j]).

Proof. The PCP verifier always makes q distinct queries. After fixing the randomness to ρ∗ for the last
repetition, we deduce that, for every distinct i, j ∈ [q], Vq(x, ρ

∗)[i] ̸= Vq(x, ρ
∗)[j], which in turn implies

that (Vq(x, ρ1)[i], . . . ,Vq(x, ρt)[i]) ̸= (Vq(x, ρ
′
1)[j], . . . ,Vq(x, ρ

′
t)[j]).

Next we argue that the malicious PCP string Π̃ output by P̃t convinces the repeated PCP verifier for
every verifier randomness choice in Wt,ρ∗ : fixing ρ = (ρ1, . . . , ρt) ∈ Wt,ρ∗ , we argue that VΠ̃

t (x;ρ) = 1.
Given ρi, we know that the MIP projection verifier queries Qi := Vq(x, ρi) by definition. Moreover, since
by assumption the malicious MIP projection provers always make the MIP verifier accept,

Vd

(
x, ρi,

(
P̃c (Qi[c])

)
c∈[q]

)
= 1 .

Therefore, by Definition 3.8, the t-wise parallel repetition verifier VΠ̃
t (x;ρ) accepts for every ρ ∈Wt,ρ∗ as

desired.

Lemma 5.5. If βMIP(x) < 1 then limt→∞ βt(x) = 0.

Proof. First we prove that the soundness error of a PCP is upper bounded by that of its MIP projection.

Claim 5.6. Let PCP be a PCP for a language L with soundness error βPCP. Let MIP be the MIP projection
of PCP, and let βMIP be the soundness error of MIP. For every x ̸∈ L,

βPCP(x) ≤ βMIP(x) .

25

Proof. Let P̃ be a malicious prover against the PCP verifier V of PCP. Consider the malicious MIP provers
(P̃i)i∈[q] against the MIP verifier V of MIP that work as follows: for every i ∈ [q], P̃i(τ, ai) computes
π̃ ← P̃(τ) and answers with π̃[ai].

For every verifier randomness ρ, if Vπ̃(x; ρ) = 1 then

V(x, ρ, (bi)i∈[q]) = Vd(x, ρ, (bi)i∈[q]) = Vd(x, ρ, (π̃[ai])i∈[q]) = 1 .

We conclude that βPCP(x) ≤ βMIP(x).

Next we show that performing an MIP projection and performing parallel repetition “commute”.

Claim 5.7. Let PCP = (P,V = (Vq,Vd)) be a (non-adaptive) PCP. For every t ∈ N, consider:
• MIPt,1, the MIP projection of the t-wise parallel repetition of PCP; and
• MIPt,2, the t-wise parallel repetition of the MIP projection of PCP.
Then MIPt,1 = MIPt,2.

Proof. Let MIPt,1 = ((P1,i)i∈[q],V1) and MIPt,2 = ((P2,i)i∈[q],V2). We show that the provers and verifier
in MIPt,1 are the same as in MIPt,2 (have the same input-output behavior).

Fix an instance x, a prover randomness τ := (τ1, . . . , τt) ∈ ({0, 1}pr)t, and a verifier randomness
ρ := (ρ1, . . . , ρt) ∈ ({0, 1}vr)t. Let (Pt,Vt = (Vq,t,Vd,t)) be t-wise parallel repetition of PCP and
((Pi)i∈[q],V) be the MIP projection of PCP.

• Verifier messages. For every i ∈ [q], by Definition 5.1, V1(x,ρ) sends Vq,t(x,ρ)[i] to the i-th prover where
Vq,t(x,ρ)[i] = (Vq(x, ρ1)[i], . . . ,Vq(x, ρt)[i]) by Definition 3.8. For every i ∈ [q], by Definition 3.9,
V2(x,ρ) sends (V(x, ρ1)[i], . . . ,V(x, ρt)[i]) to the i-th prover where V(x, ρj)[i] = Vq(x, ρj)[i] for every
j ∈ [t] by Definition 5.1. Therefore, we observe that V1(x,ρ) = V2(x,ρ) = (a1, . . . ,aq) ∈ ([l]t)q in
which for every i ∈ [q] and j ∈ [t],

ai[j] = Vq(x, ρj)[i] .

• Prover answers. Let π ← P(x). For every i ∈ [q], by Definition 5.1, P1,i(x, τ ,ai) sends Π[ai] to the
verifier where Π = ((π[q1], . . . , π[qt]))(q1,...,qt)∈[l]t by Definition 3.8. For every i ∈ [q], by Definition 3.9,
P2,i(x, τ ,ai) sends (Pi(x, τ1,ai[1]), . . . ,Pi(x, τt,ai[t])) ∈ [l]t to the verifier where Pi(x, τj ,ai[j]) =
π[ai[j]] for every j ∈ [t] by Definition 5.1. We conclude that, for every i ∈ [q], P1,i(x, τ ,ai) =
P2,i(x, τ ,ai) = bi ∈ Σt where bi = (π[ai[1]], . . . , π[ai[t]]).

• Verifier decision. For every i ∈ [q], by Definition 5.1, V1(x,ρ, (bi)i∈[q]) checks Vd,t(x,ρ, (bi)i∈[q]) where
Vd,t(x,ρ, (bi)i∈[q]) =

∧
j∈[t]Vd(x, ρj , (bi[j])i∈[q]) by Definition 3.8. For every i ∈ [q], by Definition 3.9,

V2(x,ρ, (bi)i∈[q]) checks
∧

j∈[t] V(x, ρj , (bi[j])i∈[q]) where V(x, ρj , (bi[j])i∈[q]) = Vd(x, ρj , (bi[j])i∈[q])
by Definition 5.1. Therefore, V1(x,ρ, b1, . . . , bq) = V2(x,ρ, b1, . . . , bq) because

V1(x,ρ, b1, . . . , bq) = V2(x,ρ, b1, . . . , bq) =
∧
i∈[t]

Vd(x, ρi, b1[i], . . . , bq[i]) = 1 .

We conclude the proof of the lemma by combining Claim 5.6 and Claim 5.7. Specifically, define MIPt,1

and MIPt,2 as in Claim 5.7. Let βMIPt,1 and βMIPt,2 be their soundness errors, respectively. Then, for every
instance x ̸∈ L,

lim
t→∞

βt(x) ≤ lim
t→∞

βMIPt,1(x) = lim
t→∞

βMIPt,2(x) = 0 .

26

The last equality follows from Verbitsky’s result (Lemma 3.11) which shows that the soundness error of the
parallel repetition of an MIP tends to 0 as the number of repetitions tends to infinity, provided that the MIP
has non-trivial soundness error (which is the case here since βMIP(x) < 1 for every x ̸∈ L). We summarize
the proof in Figure 3 for clarity.

𝖯𝖢𝖯 𝖬𝖨𝖯

𝖯𝖢𝖯t

𝖬𝖨𝖯t,1 𝖬𝖨𝖯t,2

MIP projection
Claim 5.6: β𝖯𝖢𝖯 ≤ β𝖬𝖨𝖯 < 1

Claim 5.6: β𝖯𝖢𝖯t
≤ β𝖬𝖨𝖯t,1

MIP projection

t-wise parallel
repetition

Claim 5.7: β𝖬𝖨𝖯t,1
= β𝖬𝖨𝖯t,2

=

t-wise parallel
repetition

Verbitsky’s: lim
t→∞

β𝖬𝖨𝖯t,2
= 0

⟹ lim
t→∞

β𝖯𝖢𝖯t
= 0

Figure 3: Using Claim 5.6 and Claim 5.7 to conclude Lemma 5.5.

Remark 5.8. In Section 4 we describe a 2-query PCP for 3COL whose parallel repetition has a soundness
error that tends to 1 (on every instance not in 3COL). Theorem 5.2 gives an additional perspective: the
soundness error does not tend to 0 because the MIP projection of the PCP has soundness error 1.

The MIP projection of the PCP for 3COL has an MIP verifier that works as follows: sample a random
edge {u, v} of the given graph G (assume without loss of generality u < v lexicographically) and then
send u to the first prover and v to the second prover; then receive answers ans1 and ans2, and check that
ans1 ̸= ans2. Evidently, βMIP(G) = 1 because the first MIP prover can always answer ans1 = 0 and the
second MIP prover can always answer ans2 = 1 (as these answers always convince the MIP verifier).

Remark 5.9. Claim 5.6 implies that if a PCP has soundness error 1 then its MIP projection has soundness
error 1. Below we show that if a PCP has soundness error 0 then its MIP projection has soundness error
0. There are natural examples of such PCPs: any NP verifier can be viewed as a PCP verifier that reads the
entire PCP string, and has soundness error 0; hence its MIP projection has (unsurprisingly) soundness error 0.

Let PCP = (P,V = (Vq,Vd)) be a PCP for a language L and let x ̸∈ L be such that the soundness
error β on x is 0. Suppose by way of contradiction that the MIP projection MIP = ((Pi)i∈[q],V) of this PCP
has soundness error βMIP(x) > 0.

Let (P̃i)i∈[q] be optimal (deterministic) malicious provers for the MIP projection for the instance x. We
construct a malicious PCP prover P̃ as follows.

27

P̃:
1. Set π̃ := σl for an arbitrary σ ∈ Σ.
2. For every ρ ∈ {0, 1}vr, if ⟨(P̃i)i∈[q],V(x, ρ)⟩ = 1 then set ρ∗ := ρ and exit the loop.
3. Deduce the query list Q := Vq(x, ρ

∗).
4. For every i ∈ [q]:

(a) Deduce the i-th prover’s answer: ansi := P̃i(Q[i])
(b) Set π̃[Q[i]] := ansi.

5. Output (ρ∗, π̃).

Let (ρ∗, π̃) be the output of P̃. By construction and the fact that Vq outputs distinct queries, we know that
Vπ̃(x; ρ∗) = 1, which is contradictory to our assumption that the PCP has soundness error 0. Therefore, we
conclude that if a PCP has soundness error 0, then its MIP projection has soundness error 0.

Remark 5.10. Theorem 5.2 shows that for some PCPs, the soundness error after parallel repetition approaches
1. However, we want to emphasize that the limit approaching 1 does not mean that the soundness error of the
parallel repetition is 1 for some t ∈ N. In fact, consider PCP = (P,V) for a language L with soundness error
β. Let ⊗ [PCP, t] be its parallel repetition with soundness error βt. For every instance x /∈ L, if β(x) < 1
then βt(x) < 1.

Similar to the argument in the proof of Lemma 4.4, we show that βt(x) = 1 implies β(x) = 1. Let Π̃t

be the PCP string for ⊗ [PCP, t] such that VΠ̃t
t (x) always accepts. We construct a malicious prover P̃ for

PCP as follows:

P̃: Output π̃ :=
(
Π̃t[
(
qt
)
][1]
)
q∈l

.

Let π̃ be the output of P̃. For every ρ ∈ {0, 1}vr, we know that VΠ̃t
t (x; ρt) = 1, which implies that

Vπ̃(x; ρ) = 1 as desired. Therefore, β(G) = 1.

28

6 Rate of decay for parallel repetition of PCPs

We provide some results on the rate of decay of the soundness error for the parallel repetition of a PCP (if
soundness error does decrease). Let PCP be a PCP for a language L. Let βPCPt be the soundness error of the
t-wise parallel repetition of PCP, and let βMIPt be the soundness error of the t-wise parallel repetition of the
MIP projection of PCP. Claim 5.6 and Claim 5.7 together imply that

∀x ̸∈ L , ∀ t ∈ N , βPCPt(x) ≤ βMIPt(x) .

In other words, the rate of decay of parallel repetition of a PCP cannot be worse than that for the corresponding
MIP projection. If βPCPt(x) = 1 then the inequality implies that βPCPt(x) = βMIPt(x) = 1 (a degenerate
case). Here we ask whether equality can hold even if βPCPt(x) < 1.

In those cases where βPCPt(x) = βMIPt(x), we parallel repetition for the PCP exactly follows the rate of
decay for the corresponding MIP projection, for which there may be known results that apply (since parallel
repetition for MIPs has been studied in a rich line of work).

Below we prove that for a particular class of PCPs, which we call PCP evaluations of MIPs, the soundness
error in parallel repetition behaves as the soundness error of the parallel repetition of the an underlying MIP.

Definition 6.1. Let MIP = ((Pi)i∈[k],V) be a one-round MIP system for a language L with verifier alphabet
ΣV , prover alphabet ΣP , verifier randomness complexity vr, and prover randomness complexity pr. The PCP
evaluation of MIP PCP = (P,V) is a PCP for L defined as follows.

• P(x; τ):
1. Set π := (σ)k·|ΣV |, where σ is an arbitrary symbol in ΣP .
2. For every i ∈ [k] and a ∈ ΣV:

(a) Compute the MIP prover message bi := Pi(x, τ, a).
(b) Set π[(i, a)] := bi (we implicitly cast (i, a) to be an integer in [k · |ΣV |] to index into π).

3. Output π.
• Vπ(x; ρ):

1. Compute the list of MIP verifier messages (a1, . . . , ak) := V(x, ρ).
2. Make k queries to π: for every i ∈ [k], bi := π[(i, ai)].
3. Check that V(x, ρ, (bi)i∈[k]).

For PCP, the proof alphabet is ΣP , the proof length is k · |ΣV |, and the query complexity is k. The PCP
verifier and prover randomness are the same as those of the MIP. The completeness error and the soundness
error of PCP are the same as those of MIP. (We prove this for the soundness error in Lemma 6.3.)

Theorem 6.2. Let MIP be a (non-adaptive) MIP system for a language L with soundness error less than 1;
denote by βMIPt the soundness error of ⊗[MIP, t]. Let PCP be the PCP evaluation of MIP, and let βPCPt be
the soundness error of ⊗ [PCP, t]. For every instance x ̸∈ L and every t ∈ N,

βPCPt(x) = βMIPt(x) < 1 .

6.1 Soundness error of PCP evaluations

Lemma 6.3. Let MIP = ((Pi)i∈[k],V) be a k-prover one-round MIP system for a language L with soundness
error βMIP. Let PCP = (P,V) be the PCP evaluation of MIP with soundness error βPCP. For every instance
x ̸∈ L,

βMIP(x) = βPCP(x) .

29

Proof. Fix an instance x /∈ L. We show that βMIP(x) ≤ βPCP(x) and βPCP(x) ≤ βMIP(x).
βMIP(x) ≤ βPCP(x). Let (P̃i)i∈[k] be (deterministic) malicious provers for MIP such that when interacting
with (P̃i)i∈[k], V(x) accepts with probability βMIP(x). We consider the malicious prover P̃ for PCP that is
defined in the same way as the honest PCP evaluation prover in Definition 6.1 with respect to (P̃i)i∈[k].

Let π̃ be the output of P̃. Let ρ ∈ {0, 1}vr be an MIP verifier randomness such that ⟨(P̃i)i∈[k],V(x, ρ)⟩ =
1, which is equivalent to

V(x, ρ, (bi)i∈[k]) = 1 ,

where bi := P̃i(V(x, ρ)[i]) = π̃[(i,V(x, ρ)[i])]. Hence, by the construction of the PCP evaluation verifier
(Definition 6.1), Vπ̃(x; ρ) = 1. We conclude that βMIP(x) ≤ βPCP(x).
βPCP(x) ≤ βMIP(x). Let P̃ be a (deterministic) malicious prover for PCP such that Vπ̃(x) accepts with
probability βPCP(x), where π̃ := P̃. For every i ∈ [k], we consider the (deterministic) malicious prover P̃i
for MIP defined as follows:

P̃i(ai):
1. Compute the PCP string π̃ := P̃.
2. Output π̃[(i, ai)].

Let ρ ∈ {0, 1}vr be a PCP verifier randomness such that Vπ̃(x; ρ) accepts, which, by Definition 6.1, is
equivalent to

V
(
x, ρ, (π̃[(i,V (x; ρ)[i])])i∈[k]

)
= 1 .

Since for every i ∈ [k], P̃i sends the message π̃[(i,V(x, ρ)[i]) to V , it is the case that ⟨(P̃i)i∈[k],V(x, ρ)⟩ = 1.
Therefore, we conclude that βMIP(x) ≥ βPCP(x).

6.2 MIP projection and PCP evaluation are (almost) inverses

Let MIP = ((Pi)i∈[k],V) be a k-prover one-round MIP system for a language L with verifier alphabet ΣV .
Let PCP = (P,V) be the PCP evaluation of MIP. Let MIP′ = ((P ′

i)i∈[k],V ′) be the MIP projection of PCP.
Intuitively, it should be the case that MIP and MIP′ are the same proof systems. However, this is not

true because messages sent by V are of the form (ai)i∈[k] ∈ Σk
V , while messages sent by V ′ are of the form

((i, ai))i∈[k] ∈ ([k]× ΣV)
k.

The following lemma states that MIP and MIP′ are almost the same except for the above-mentioned
syntactic mismatch.

Lemma 6.4. There exists a deterministic transformation Fix such that

MIP = Fix(MIP′) .

Moreover, Fix(MIP′) is a k-prover one-round MIP system for L that has the same completeness error,
soundness error, prover message alphabet, and prover and verifier randomness complexity as MIP′.

Proof. We describe MIP′ using MIP as follows:

1. V ′(x, ρ):
(a) Compute the messages of V: (ai)i∈[k] := V(x, ρ).
(b) For every i ∈ [k], send (i, ai) to the i-th prover P ′

i.

30

2. For i ∈ [k], P ′
i(x, τ, (i, ai)):

(a) Compute the answer by Pi: bi := Pi(x, τ, ai).
(b) Send bi to V2.

3. V ′(x, ρ, (bi)i∈[k]): Check that V(x, ρ, (bi)i∈[k]) = 1.

Fortunately, we observe that the syntactic mismatch of the messages sent by V and those sent by V ′ is the
only issue preventing us from concluding that MIP projection and PCP evaluation are inverses of each other.
Hence, we can define a transformation, denoted as Fix, that changes MIP′ back to MIP.

Fix(MIP′ = ((P ′
i)i∈[k],V ′)): Output MIP∗ = ((P∗

i)i∈[k],V∗) that works as follows:
1. V∗(x, ρ):

(a) Compute the messages by V ′: ((i, ai))i∈[k] := V ′(x, ρ).
(b) For every i ∈ [k], send ai to the i-th prover P∗

i .
2. For every i ∈ [k], P∗

i (x, τ, ai): Send bi := P ′
i(x, τ, (i, ai)) to V∗.

3. V∗(x, ρ, (bi)i∈[k]): Check that V ′(x, ρ, (bi)i∈[k]) = 1.

It follows straightforwardly that MIP = Fix(MIP′). Moreover, Fix only removes the extra index i from
each verifier message. Hence, all error parameters and efficiency measure are preserved after Fix except for
the verifier alphabet.

We summarize the relationship between MIP,PCP and MIP′ in Figure 4.

𝖯𝖢𝖯

PCP evaluation

MIP projection

𝖬𝖨𝖯 𝖬𝖨𝖯′￼𝖥𝗂𝗑

Figure 4: Relationship between MIP,PCP,MIP′.

Corollary 6.5. For every t ∈ N, let βMIPt be the soundness error of ⊗[MIP, t] and βMIP′
t

be the soundness
error of ⊗[MIP′, t],

βMIPt = βMIP′
t
.

Proof. Let Fix be the transformation in Lemma 6.4. Let βMIP∗
t

be the soundness error of ⊗[Fix(MIP′), t]. By
the construction of Fix in Lemma 6.4,

βMIP′
t
= βMIP∗

t
.

In fact, any prover strategy for ⊗[Fix(MIP′), t] can be converted to an equally effective prover strategy for
⊗[MIP′, t], and vice versa. Since ⊗[MIP, t] = ⊗[Fix(MIP′), t] by Lemma 6.4, we conclude the proof.

6.3 Proof of Theorem 6.2

Let βMIP be the soundness error of MIP and βPCP be the soundness error of PCP. Fix x /∈ L and t ∈ N.
Since βMIP(x) < 1, Lemma 6.3 implies that βPCP(x) < 1. Hence, by Remark 5.10, βPCPt(x) < 1.

31

Next we argue that βPCPt(x) = βMIPt(x).
Upper bound for βPCPt(x): βPCPt(x) ≤ βMIPt(x). Let MIP′

t be the t-wise parallel repetition of the
MIP projection of PCP; denote by βMIP′

t
its soundness error. Corollary 6.5 implies that

βMIPt(x) = βMIP′
t
(x) .

Let MIP′′
t be the MIP projection of PCPt with soundness error βMIP′′

t
. By Claim 5.6,

βPCPt(x) ≤ βMIP′′
t
(x) .

Moreover, by Claim 5.7,
βMIP′

t
(x) = βMIP′′

t
(x) .

We conclude that βPCPt(x) ≤ βMIP′′
t
(x) = βMIP′

t
(x) = βMIPt(x) as desired. See Figure 5 for a diagram.

𝖯𝖢𝖯

𝖬𝖨𝖯 𝖯𝖢𝖯t

𝖬𝖨𝖯t

PCP evaluation

t-wise parallel
repetition

t-wise parallel repetition

𝖬𝖨𝖯′￼′￼t

MIP projection

𝖬𝖨𝖯′￼t

MIP projection

Claim 5.7: β𝖬𝖨𝖯′￼t
= β𝖬𝖨𝖯′￼′￼t

Corollary 6.5: β𝖬𝖨𝖯t
= β𝖬𝖨𝖯′￼t

Claim 5.6: β𝖯𝖢𝖯t
≤ β𝖬𝖨𝖯′￼′￼t

⟹ β𝖯𝖢𝖯t
≤ β𝖬𝖨𝖯t

t-wise parallel repetition

Figure 5: Proof logic for arguing that βPCPt(x) ≤ βMIPt(x).

Lower bound for βPCPt(x): βPCPt(x) ≥ βMIPt(x). Let (P̃t,i)i∈[k] be malicious provers for MIPt. We
construct the following malicious prover P̃t for PCPt:

P̃t(τ):
1. Initialize Π̃ := (σt)(k·|ΣV |)t where σ is an arbitrary symbol in ΣP .
2. For every Q ∈ ([k]× ΣV)

t:
(a) Parse Q as (i1, a1), . . . , (it, at).
(b) Set Π̃[Q] := P̃t,i1(τ, (aj)j∈[t]) (we implicitly cast Q to be an integer in [(k · |ΣV |)t] to index into

π).
3. Output Π̃.

32

Let Π̃ be the output of P̃t. Let verifier randomness ρ = (ρ1, . . . , ρt) ∈ ({0, 1}vt)t be such that
⟨(P̃t,i)i∈[k],Vt(x,ρ)⟩ = 1. We want to show that VΠ̃

t (x;ρ) accepts, which implies that βMIPt ≤ βPCPt as
desired.

For every i ∈ [k], we use Qi to denote the i-th query of Vt(x; ρ). By Definition 3.8,

Qi = (Q1[i], . . . ,Qt[i]) .

where for every j ∈ [t], Qj is the query list of the verifier V(x; ρj) for PCP. Moreover, for every j ∈ [t],

Qj [i] = (i,V(x, ρj)[i]) ,

where V is the verifier for MIP. We have

Π̃[Qi] = P̃t,i((V(x, ρj)[i])j∈[t]) .

From Definition 5.1, Vt(x,ρ) sends the message (V(x, ρj)[i])j∈[t] to the i-th prover and receives bi :=

P̃t,i((V(x, ρj)[i])j∈[t]). Therefore, Vt(x,ρ, (bi)i∈[q]) accepts implies VΠ̃
t (x;ρ) accepts as desired.

33

7 Parallel repetition for canonical PCPs

We discuss how parallel repetition behaves for a specific class of problems, constraint satisfaction problems
(CSPs). In Section 7.1 we define CSPs. In Section 7.2 we construct a canonical PCP for CSPs. In Section 7.3
we prove results about the parallel repetition for the canonical PCP for CSPs. In Section 7.4 we give an
example CSP to show the results in Section 7.3 cannot be generalized further.

In Appendix B we provide additional (and stronger) limitations of parallel repetition for PCPs for a
non-standard generalization of CSPs, where each constraint is defined as a list of variables instead of a set of
variables. These results shed more light onto how parallel repetition for PCPs fails.

7.1 Constrain satisfaction problems

We define constraint satisfaction problems (CSPs) and the corresponding language CSPSAT. We also define
the class of symmetric CSPs, on which we focus.

Definition 7.1 (Constraint). For a finite set Σ, l ∈ N, and q ∈ N, a (Σ, l, q)-constraint is a pair C = (S, f)
where S ∈

(
[l]
q

)
and f : ΣS → {0, 1}. An assignment a ∈ Σl satisfies C if f(a(S)) = 1. Throughout, we

assume that, for every S, S has an implicit ordering: S[i] for every i ∈ [|S|] is well-defined.

Definition 7.2. Let Σ be a finite set, l ∈ N, q ∈ N, andm ∈ N. A (Σ, l, q,m)-CSP is a list ϕ = (C1, . . . , Cm)
where, for every i ∈ [m], Ci = (Si, fi) is a (Σ, l, q)-constraint. The value of ϕ on assignment a ∈ Σl is

val(ϕ, a) :=
1

m

m∑
i=1

fi(a(S)) .

The value of ϕ is
val(ϕ) := max

a∈Σl
val(ϕ, a) .

We say that ϕ is satisfiable if val(ϕ) = 1.

Definition 7.3 (CSPSAT). For a finite set Σ, l ∈ N, q ∈ N, and m ∈ N,

CSPSAT[Σ, l, q,m] := {ϕ : ϕ is a satisfiable (Σ, l, q,m)-CSP} .

Definition 7.4 (Symmetric CSP). For a finite set Σ, l ∈ N, q ∈ N, m ∈ N, and function f∗ : Σq → {0, 1},
a (Σ, l, q,m, f∗)-CSP is a (Σ, l, q,m)-CSP ϕ where, for every C = (S, f) ∈ ϕ, f ≡ f∗ with respect
to the implicit ordering of S.6 Moreover, the language CSPSAT[Σ, l, q,m, f∗] is the set of all satisfiable
(Σ, l, q,m, f∗)-CSP.

7.2 Canonical PCP for CSPSAT

We define a PCP for CSPSAT whose soundness error is the value of the instance ϕ.

Construction 7.5. The PCP PCP = (P,V) for CSPSAT[Σ, l, q,m] is defined as follows.

• P(ϕ):

6Recall that the domain of f is ΣS and the domain of f∗ is Σq . f ≡ f∗ with respect to the implicit ordering of S means that for
every assignment a ∈ Σl, f(a(S)) = f∗((a(S[i]))i∈q).

34

1. If ϕ is satisfiable, output a satisfying assignment π := a ∈ Σl.
2. Otherwise, output an arbitrary assignment π := a ∈ Σl.

• Vπ(ϕ):

1. Parse ϕ as (Ci)i∈[m].
2. Sample i← [m].
3. Parse Ci as (Si, fi).
4. Query π at Si[1], . . . , Si[q].
5. Set ai := (π[Si[1]], . . . , π[Si[q]]).
6. Accept if and only if fi(ai) = 1.

Lemma 7.6. For every finite set Σ, l ∈ N, q ∈ N, and m ∈ N, let PCP = (P,V) be the PCP for
CSPSAT[Σ, l, q,m] in Construction 7.5. Let α and β be the completeness error and soundness error of PCP.
The following holds for every instance ϕ.
• Completeness: If ϕ ∈ CSPSAT[Σ, l, q,m], α(ϕ) = 0.
• Soundness: If ϕ /∈ CSPSAT[Σ, l, q,m], β(ϕ) = val(ϕ).
PCP has proof alphabet Σ, query complexity q, proof length l, and verifier randomness complexity log2m.

Remark 7.7 (3COL as CSPSAT). 3COL (used in Section 4) is a special case of CSPSAT. Specifically, every
graph G = (V,E) can be mapped to a ({0, 1, 2}, |V | , 2, |E|)-CSP ϕ such that G ∈ 3COL if and only if
ϕ ∈ CSPSAT[{0, 1, 2}, |V | , 2, |E|]. The mapping is as follows:

G→ ϕ:
1. Initialize ϕ as an empty list.
2. Let f : {0, 1, 2}2 → {0, 1} be such that f(a, b) = 1 if and only if a ̸= b.
3. For every edge e = {u, v} ∈ E:

(a) Let Se := {u, v}.
(b) Let Ce := (S, f).
(c) Append Ce to ϕ.

4. Output ϕ.

Moreover, the PCP in Construction 4.2 for 3COL is a special case of the PCP for CSPSAT in Construction 7.5.
Therefore, all results we show in this section apply to the PCP in Construction 4.2.

7.3 Parallel repetition for symmetric CSPs

In Section 5, we show that parallel repetition of a PCP brings the soundness error to 0 precisely when the
soundness error of the MIP projection is less than 1. In this section, we characterize further the behavior of
parallel repetition for the canonical PCP in Construction 7.5.

For the rest of this section, we fix a finite set Σ, l ∈ N, q ∈ N, m ∈ N, and function f∗ : Σq → {0, 1}. Let
PCP be the PCP for CSPSAT[Σ, l, q,m, f∗] in Construction 7.5. For every t ∈ N, let β(ϕ) be the soundness
error of PCP, and let βt(ϕ) be the soundness error of ⊗ [PCP, t]. In particular, β1(ϕ) = β(ϕ).

We show two results.

• In Lemma 7.8, we use the characterization in Theorem 5.2 to argue that parallel repetition fails for every
unsatisfiable (symmetric) CSP instance ϕ such that β(ϕ) > 0.

• In Lemma 7.9, we show that for every (symmetric) CSP soundness error of parallel repetition is nonde-
creasing as a function of t.

35

Note that we are not interested in the case where β(ϕ) = 0 because it implies that βt(ϕ) = 0 for every
t ∈ N. We briefly argue for the contrapositive of this claim: βt(ϕ) > 0 implies β(ϕ) > 0. If βt(ϕ) > 0 then
there exists some PCP string Π̃t for ⊗ [PCP, t] that makes Vt accepts for some randomness ρ. For every
i ∈ [t], since the PCP verifier V does not make duplicate queries, we can construct a PCP string that makes
V accepts under ρ[i] using the answers, given by Π̃t, to ρ[i] in the i-th repetition. Hence β(ϕ) > 0.

Lemma 7.8. For every instance ϕ /∈ CSPSAT[Σ, l, q,m, f∗],

β(ϕ) > 0 =⇒ lim
t→∞

βt(ϕ) > 0 .

Proof. Fix ϕ /∈ CSPSAT[Σ, l, q,m, f∗]. Since β(ϕ) > 0, there exist a PCP string π̃ ∈ Σl and verifier
randomness ρ ∈ {0, 1}vr such that Vπ̃(ϕ; ρ) = 1. We construct malicious provers (P̃i)i∈[q] for the MIP
projection of PCP, where the provers use their shared randomness to compute π̃ ∈ Σl and ρ ∈ {0, 1}vr. For
every i ∈ [q],

P̃i(ai):
1. Compute the query list Q := Vq(ϕ, ρ).
2. Output bi := π̃[Q[i]].

Let i ∈ [m] be the index of the constraint Ci = (Si, fi) the PCP verifier V selects according to the
randomness ρ. Since Vπ̃(ϕ; ρ) = 1, we know that fi(b1, . . . , bq) = 1. Moreover, since fi = f∗ for every
i ∈ [m], the verifier V for the MIP projection accepts because f∗(b1, . . . , bq) = 1. Hence, the MIP projection
has soundness error 1. By Theorem 5.2, limt→∞ βt(ϕ) > 0.

Lemma 7.9. For every instance ϕ /∈ CSPSAT[Σ, l, q,m, f∗] and t ∈ N,

βt+1(ϕ) ≥ βt(ϕ) .

Proof. Fix ϕ /∈ CSPSAT[Σ, l, q,m, f∗]. Let P̃t be a malicious prover for ⊗ [PCP, t]. We construct a
malicious prover P̃t+1 for ⊗ [PCP, t+ 1].

P̃t+1:
1. Compute Π̃t ← P̃t.
2. Set Π̃t+1 := (σt+1)l

t+1
, where σ is an arbitrary symbol in Σ.

3. For every (q1, . . . , qt+1) ∈ [l]t+1:
(a) Let (ans1, . . . , anst) := Π̃t[(q1, . . . , qt)].
(b) Set Π̃t+1[(q1, . . . , qt+1)] := (ans1, . . . , anst, anst).

4. Output Π̃t+1.

Consider ρ ∈ ({0, 1}vr)t such that VΠ̃t
t (ϕ;ρ) = 1. Since ϕ is symmetric, we know that for every

(ρ1, . . . , ρt, ρt+1) ∈ ({0, 1}vr)t+1 such that (ρ1, . . . , ρt) = ρ, VΠ̃t+1

t+1 (ϕ; (ρ1, . . . , ρt+1)) = 1. Therefore, we
conclude that

βt+1(ϕ) ≥
βt(ϕ) · (2vr)t · 2vr

(2vr)t+1
= βt(ϕ) .

36

7.4 Parallel repetition for non-symmetric CSPs

In previous sections, we investigate the behavior of parallel repetition for symmetric CSPs. In particular, we
know that for every unsatisfiable symmetric CSP ϕ, β(ϕ) > 0 implies limt→∞ βt(ϕ) > 0. A natural question
to ask is what happens for non-symmetric CSPs.

Lemma 7.10. Let β be the soundness error of PCP = (P,V) for CSPSAT as defined in Construction 7.5 and
βt be the soundness error of ⊗ [PCP, t] for every t ∈ N. There exists a non-symmetric CSP ϕ1 ̸∈ CSPSAT

such that
0 < β(ϕ1) < 1 ∧ lim

t→∞
βt(ϕ1) = 0 ;

in addition, there exists another non-symmetric CSP ϕ2 ̸∈ CSPSAT such that

0 < β(ϕ2) < 1 ∧ lim
t→∞

βt(ϕ2) > 0 .

To construct non-symmetric CSPs, we consider a well-known NP-complete language 3SAT:

3SAT := {3CNF formula ψ : there exists a satisfying assignment for ψ} .

We show that every 3CNF formulaψ with l variables andm clauses can be mapped to a ({0, 1},max{3, l}, 3,m)-
CSP ϕ such that ψ ∈ 3SAT if and only if ϕ ∈ CSPSAT[{0, 1},max{3, l}, 3,m]. The mapping is as follows:

ψ → ϕ:
1. Set l′ := max{3, l}.
2. Initialize ϕ as an empty list.
3. Parse ψ as ψ1 ∧ · · · ∧ ψm where ψi is a clause for every i ∈ [m].
4. For every i ∈ [m]:

(a) Parse ψi to obtain the variables xj1 , xj2 , xj3 it contains where j1, j2, j3 ∈ [l] such that j1 ≤ j2 ≤ j3.
(b) Pick arbitrary j′1, j

′
2, j

′
3 ∈ [l′] such that j′1 < j′2 < j′3 and {j1, j2, j3} ⊆ {j′1, j′2, j′3}.

(c) Set Si := {j′1, j′2, j′3} (where the implicit ordering is j′1 < j′2 < j′3).
(d) Let fi : {0, 1}3 → {0, 1} be such that fi(a1, a2, a3) = 1 if and only if ψi(a1, a2, a3) = 1.
(e) Set Ci := (Si, fi).
(f) Append Ci to ϕ.

5. Output ϕ.

Note that the resulting ϕ is in general not symmetric: for two different clauses 3CNFi and 3CNFj , the
corresponding constraint functions Ci and Cj are not necessarily the same.

Proof. We first construct ψ1 ̸∈ 3SAT such that the CSP ϕ1 obtained by the mapping above satisfies β(ϕ1) > 0
but limt→∞ βt(ϕ1) = 0.

ψ1 :=
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)
∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

.

Observe that ψ1 is a 3CNF formula that consists of all possible clauses using three variables. ψ1 has l = 3
variables and m = 8 clauses. Moreover, ψ1 ̸∈ 3SAT because each clause rules out exactly one assignment in
{0, 1}3 and there are only 23 possible assignments.

Let ϕ1 be the CSP obtained from ψ1. Observe that ϕ1 is non-symmetric.

37

We first argue that 0 < β(ϕ1) < 1. We consider an assignment a = (a1, a2, a3) ∈ {0, 1}3 of (x1, x2, x3)
such that Pr [Va(ϕ1)] = β(ϕ1). Note that a satisfies all except one clause: ψ := l1 ∨ l2 ∨ l3 where for every
i ∈ [3], li = xi if ai = 0 and li = ¬xi otherwise. In particular, this implies that β(ϕ1) = 7/8.

Now we show that limt→∞ βt(ϕ1) = 0. It suffices to show βMIP(ϕ1) < 1 where βMIP is the soundness
error for the MIP projection MIP = ((Pi)i∈[3],V) of PCP according to Theorem 5.2. Assume for the sake of
contradiction that βMIP(ϕ1) = 1. Let (P̃i)i∈[3] be the (deterministic) malicious provers for the MIP projection
that makes the verifier V always accept. We define a satisfying assignment a ∈ {0, 1}3 for ϕ1 as follows:

a := (P̃1(x1), P̃2(x2), P̃3(x3)) .

For every i ∈ [3], V always sends the message xi to the i-th prover since the variables have the implicit
ordering x1 < x2 < x3. Thus, the MIP verifier V always accepts implies that Va(ϕ1) always accepts,
contradicting to β(ϕ1) < 1. Therefore, we conclude that βMIP(ϕ1) < 1, which implies limt→∞ βt(ϕ1) = 0.

Now we constructψ2 ̸∈ 3SAT such that the CSP ϕ2 obtained by the mapping above satisfies limt→∞ βt(ϕ2) >
0:

ψ2 :=
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)∧
(¬x3 ∨ x4 ∨ x5) ∧ (¬x3 ∨ x4 ∨ ¬x5) ∧ (¬x3 ∨ ¬x4 ∨ x5) ∧ (¬x3 ∨ ¬x4 ∨ ¬x5)

.

Observe that ψ2 is a 3CNF formula that consists of all possible clauses with literals {x1, x2, x3} and all
possible clauses with literal {x4, x5,¬x3}. ψ2 has l = 5 variables and m = 8 clauses. ψ2 ̸∈ 3SAT since if
x3 is assigned to 0, one of the first four clauses cannot be satisfied; and if x3 is assigned to 1, one the the last
four clauses cannot be satisfied.

Since ψ2 ̸∈ 3SAT, val(ϕ2) < 1. By Lemma 7.6, β(ϕ2) = val(ϕ2) < 1.
Now we show that limt→∞ βt(ϕ2) > 0. It suffices to show βMIP(ϕ2) = 1 where βMIP is the soundness

error for the MIP projection MIP = ((Pi)i∈[3],V) of PCP according to Theorem 5.2. Consider the malicious
provers for MIP defined as follows:

• P̃1(a1) : Output 0.
• P̃2(a2) : Output 1.
• P̃3(a3) : Output 1.

Observe that ⟨(P̃i)i∈[3],V(ϕ2)⟩ = 1 for all verifier randomness since every clause of ψ2 evaluates to 1 given
the provers’ responses.

38

8 Consistent parallel repetition

We describe a variant of parallel repetition for PCPs, which we call consistent parallel repetition. Briefly, the
verifier additionally performs a consistency check across all repetitions.

Definition 8.1 (Consistent parallel repetition). Let PCP = (P,V = (Vq,Vd)) be a (non-adaptive) PCP
system with proof alphabet Σ, proof length l, query complexity q, and verifier randomness vr. The t-wise
consistent parallel repetition of PCP, denoted ⊗̂ (PCP, t), is a PCP system defined as follows.

• Pt(x):

1. Compute the PCP string π ← P(x).
2. Set Π := ((π[q1], . . . , π[qt]))(q1,...,qt)∈[l]t .
3. Output Π.

• VΠ
t (x):

1. Initialize π := (⊥)l where ⊥̸∈ Σ.
2. For i ∈ [t]:

(a) Sample PCP verifier randomness ρi ← {0, 1}vr.
(b) Compute the query list of the PCP verifier Qi := Vq(x, ρi).

3. For i ∈ [q]:
(a) Set Qi := (Q1[i], . . . ,Qt[i]).
(b) Query the proof string ansi := Π[Qi].
(c) For j ∈ [t]:

i. If π[Qi[j]] =⊥, set π[Qi[j]] := ansi[j].
ii. Else if π[Qi[j]] ̸= ansi[j], reject.

4. Check that
∧

i∈[t]Vd(x, ρi, ans1[i], . . . , ansq[i]).

(The lines in blue are the differences with standard parallel repetition, in Definition 3.8.)

As in (standard) parallel repetition, the proof alphabet becomes Σt, the proof length becomes lt, and the
verifier randomness becomes t · vr; the query complexity remains q.

The completeness error becomes 1 − (1 − α)t, as in (standard) parallel repetition. In contrast, in this
case, we show that the soundness error tends to 0 as t tends to infinity (the desired behavior).

Before the theorem, we state a counting problem and a preliminary solution, which we use in our theorem.
The analysis of the counting problem is postponed to Appendix C.

Definition 8.2. For every alphabet Σ, length n ∈ N, and number of distinct entries m ∈ N. We define

K(Σ, n,m) := |{s = (s1, . . . , sn) ∈ Σn : |{s1, . . . , sn}| ≤ m}| .

Lemma 8.3. For every alphabet Σ and integers n ∈ N and m ≤ |Σ|,

K(Σ, n,m) =

m∑
i=1

(
|Σ|
i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn ≤

(
|Σ|
m

)
·mn ,

in which the upper bound is attained if and only if m = 1.

39

Theorem 8.4. Let PCP = (P,V = (Vq,Vd)) be a (non-adaptive) PCP system for a language L with
soundness error β and verifier randomness complexity vr. Let β̂t be the soundness error for ⊗̂ (PCP, t) =
(Pt,Vt) (the t-wise consistent parallel repetition of PCP). For every t ∈ N and x ̸∈ L,

β(x) = 0 =⇒ β̂t(x) = 0

and

0 < β(x) < 1 =⇒ β̂t(x) <
K({0, 1}2vr , t, β(x) · 2vr)

(2vr)t
= Ox(1) · β(x)t ,

where Ox(1) hides a constant that is at most
(

2vr

β(x)·2vr
)
.

Corollary 8.5. Let PCP = (P,V = (Vq,Vd)) be a (non-adaptive) PCP system for a language L with
soundness error β and verifier randomness complexity vr. Let β̂t be the soundness error for ⊗̂ (PCP, t) =
(Pt,Vt) (the t-wise consistent parallel repetition of PCP). For every x ̸∈ L,

β(x) < 1 =⇒ lim
t→∞

β̂t(x) = 0 .

Corollary 8.5 directly follows from Theorem 8.4 because Ox(1) is a constant and limt→∞ β(x)t = 0.

8.1 Proof of Theorem 8.4

Fix t ∈ N and x ̸∈ L. Let P̃t be an optimal malicious prover for ⊗̂ (PCP, t) given instance x. Let Π̃ be
the output of P̃t. We say that ρ = (ρ1, . . . , ρt) ∈ ({0, 1}vr)t has set cardinality k, denoted |{ρ}| = k, if
|{ρ1, . . . , ρt}| = k. We construct a malicious prover P̃ for PCP as follows.

P̃:
1. Run Π̃← P̃t.
2. Initialize π̃ := (σ)l, where σ is an arbitrary symbol in Σ.
3. Set ρ∗ := (0vr)t.
4. For every ρ ∈ ({0, 1}vr)t:

(a) Run d ← VΠ̃
t (x;ρ), and let ((Qi, ansi))i∈[t] be the list of queries made by Vt to Π̃ along with

their corresponding answers.
(b) If d = 1 and |{ρ}| ≥ |{ρ∗}|:

i. Set ρ∗ := ρ.
ii. For every i ∈ [t] and j ∈ [q], set π̃[Qi[j]] := ansi[j].

5. Output (ρ∗, π̃).

Let (ρ∗, π̃) be the output of P̃. By Definition 3.2,

Pr

[
Vπ̃(x; ρ) = 1

∣∣∣∣ (ρ∗, π̃)← P̃
ρ← {0, 1}vr

]
≤ β(x) .

The winning set Wπ̃ for π̃ is defined as:

Wπ̃ := {ρ ∈ {0, 1}vr : Vπ̃(x; ρ) = 1} .

By the definition of soundness error of PCPs (Definition 3.2), |Wπ̃| ≤ β(x) · 2vr. Moreover, by construction
of π̃, parsing ρ∗ as (ρ1, . . . , ρt), we know from Definition 8.1 (in particular the consistency check) that, for

40

every i ∈ [t], Vπ̃(x; ρi) = 1. Therefore,

|{ρ∗}| ≤ |Wπ̃| ≤ β(x) · 2vr .

We similarly define the winning set W
t,Π̃

for Π̃:

W
t,Π̃

:= {ρ ∈ ({0, 1}vr)t : VΠ̃
t (x;ρ) = 1} .

Note that ρ∗ is a randomness inW
t,Π̃

with maximum set cardinality, in other words, ρ∗ has maximum number
of distinct elements. Hence, every randomness in W

t,Π̃
has at most β(x) · 2vr number of distinct elements.

By Lemma 8.3, ∣∣∣Wt,Π̃

∣∣∣ ≤ K({0, 1}2vr , t, β(x) · 2vr) ≤ (2vr

β(x) · 2vr

)
· (β(x) · 2vr)t .

By the definition of winning set and optimality of P̃t,

β̂t(x) =

∣∣∣Wt,Π̃

∣∣∣
(2vr)t

,

which implies that

β̂t(x) ≤
K({0, 1}2vr , t, β(x) · 2vr)

(2vr)t
≤
(

2vr

β(x) · 2vr

)
· β(x)t .

Therefore, if β(x) = 0 then β̂t(x) = 0 as desired.
We are left show that if 0 < β(x) < 1 then∣∣∣Wt,Π̃

∣∣∣ < K({0, 1}2vr , t, β(x) · 2vr) .
Suppose for the sake of contradiction that 0 < β(x) < 1 and∣∣∣Wt,Π̃

∣∣∣ = K({0, 1}2vr , t, β(x) · 2vr) .
This implies that there exists a malicious proof Π̃ for ⊗̂ (PCP, t) such that for every ρ ∈ ({0, 1}vr)t with
|{ρ}| ≤ β(x) · 2vr, VΠ̃

t (x;ρ) = 1. In particular, for every ρ ∈ {0, 1}vr, VΠ̃
t (x; ρ

t) = 1. Consider
π̃ :=

(
Π̃[qt]

)
q∈[l]

. Since every query of VΠ̃
t (x; ρ

t) is in the form qt for some q ∈ [l] (the same randomness is

repeated t times),
Pr[Vπ̃(x) = 1] = 1 ,

which contradicts our assumption that β(x) < 1.

Remark 8.6 (duplicate queries). The proof of Theorem 8.4 does not use the fact that the query list of a PCP
verifier does not have duplicate queries. In particular, the soundness error of consistent parallel repetition
tends to 0 also for PCP verifiers that output query lists where the same query appears multiple times.

41

A On tightness of the characterization

We provide an example showing that the characterization in Theorem 5.2 is essentially tight, in the sense
that there is a PCP such that on certain instances not in the language parallel repetition leads, in the limit,
to soundness error 1/2vr. After that, by building on this example, we provide several remarks shedding
additional light onto properties of the characterization.

Lemma A.1. There exists a PCP for a language L with verifier randomness complexity vr such that there
exist infinitely many instances x ̸∈ L such that, for every t ∈ N, βt(x) = 1/2vr. In particular,

lim
t→∞

βt(x) =
1

2vr
.

Proof. Consider the following language L that involves systems of linear equations:

L :=

{(
n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]

)
∈ N× (Z× [n])n

2 × Zn :
∃x ∈ Zn,∀j ∈ [n],
aj,1 · x[ij,1] + · · ·+ aj,n · x[ij,n] = bj

}
.

More specifically, an instance x ∈ L is a system of linear equations:
a1,1 · x[i1,1] + a1,2 · x[i1,2] + · · ·+ a1,n · x[i1,n] = b1
a2,1 · x[i2,1] + a2,2 · x[i2,2] + · · ·+ a2,n · x[i2,n] = b2

...
an,1 · x[in,1] + an,2 · x[in,2] + · · ·+ an,n · x[in,n] = bn

.

Below we define a PCP PCP = (P, (Vq,Vd)) for L, which simply selects at random one of the linear
equations and checks it.

• P(x):

1. Parse x as
(
n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]

)
.

2. Output x ∈ Zn that satisfies the equations. If no such x exists, output an arbitrary element in Zn.

• Vq(x, ρ):

1. Parse x as
(
n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]

)
.

2. Use ρ to sample j ∈ [n].
3. Output (ij,1, . . . , ij,n).

• Vd(x, ρ, ans1, . . . , ansn):

1. Parse x as
(
n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]

)
.

2. Use ρ to sample j ∈ [n].
3. Check that aj,1 · ans1 + · · ·+ aj,n · ansn = bj .

The proof alphabet is Σ = Z, proof length is l = n, query complexity is q = n, and verifier randomness
complexity is vr = log n, where n is the first element of x.

For n ≥ 2, consider the instance x :=
(
n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]

)
where for every j, k ∈ [n]:

• aj,k := 1;
• ij,k := ((j + k − 2) mod n) + 1;

42

• bj := j.

Explicitly, x is the following system of linear equations:

x[1] + x[2] + x[3] + · · ·+ x[n− 2] + x[n− 1] + x[n] = 1
x[2] + x[3] + x[4] + · · ·+ x[n− 1] + x[n] + x[1] = 2
x[3] + x[4] + x[5] + · · ·+ x[n] + x[1] + x[2] = 3

...
x[n] + x[1] + x[2] + · · ·+ x[n− 3] + x[n− 2] + x[n− 1] = n

.

For every j ∈ [n], the j-th equation for x is equivalent to
∑

i∈[n] x[i] = bj . Therefore, x ̸∈ L because we
can satisfy at most 1 < n equations simultaneously.

First we argue that βt(x) ≥ 1/n. We construct a malicious prover for the repeated PCP.

P̃t:
1. Initialize Π̃ := (0t)n

t
.

2. For every (q1, . . . , qt) ∈ [n]t: if q1 = 1 then set Π̃[(q1, . . . , qt)] := (q1, . . . , qt).
3. Output Π̃.

For every verifier randomness ρ = (ρ1, . . . , ρt) ∈ ({0, 1}logn)t, we view ρi as an element in [n] for simplicity.
Consider a verifier randomness ρ := (ρ1, ρ2, . . . , ρt) for some arbitrary (ρℓ)2≤ℓ≤t ∈ ([n])t−1 and ρ1 = 1.
By construction of P̃t and the instance x, we know that for every ℓ ∈ [n],

Vd(x, ρℓ, ansℓ,1, . . . , ansℓ,n) = Vd(x, ρℓ, ρℓ, 0, . . . , 0) = 1 .

Therefore, there are at least (2logn)t−1 accepting verifier randomness as desired.
Next we argue that βt(x) ≤ 1/n. Let Q := (Q1, . . . ,Qn) ∈ ([n]t)n be a possible query list of Vt. We

observe that any rotation of Q, namely (Q((1+ℓ−1) mod n)+1, . . . ,Q((n+ℓ−1) mod n)+1) for any ℓ ∈ [n], is also
a possible query list. Recall that we assume Qi ̸= Qj for every i ̸= j. We can see the rotations of Q are
distinct, which means that they’re checking different equations. Note that for our instance x, we know that at
most 1 equation out of n are satisfiable. Therefore, among rotations of a given query list Q, at most 1 of them
can be accepted. We can use the rotation operation to create equivalence classes for verifier randomness, each
class of size n. Hence, βt(x) ≤ 1/n as desired.

Remark A.2. As a sanity check, we show that for the same instance x in the proof, the MIP projection of the
PCP has soundness error 1. We construct malicious provers for the MIP projection.

• P̃1(a1): Output a1.
• For 2 ≤ i ≤ n, P̃i(ai): Output 0.

We fix a verifier randomness ρ ∈ {0, 1}logn and let j be the sampled index from [n] using ρ. We know that
the queries made by the verifier is Q := (ij,1, . . . , ij,n) from construction of Vq. By construction, P̃1 always
sends ij,1. Moreover, all other provers send 0 always. Therefore, the decision algorithm Vd always accepts
because ij,1 = bj for every j.

Remark A.3. There are examples where the MIP projection has soundness error 1 (Section 4 and Re-
mark A.2), and we mention a class of problems that has MIP projection with soundness error 0 (Remark 5.9).
But what about in between? Here we argue that there are infinitely many instance for the language L defined
in the proof of Lemma A.1 such that the MIP projection of the PCP has soundness error between 0 and 1.

43

Consider the following set S of instances:

S :=
{
(n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]) ∈ N× (Z× [n])n

2 × Zn : ∀ j, k ∈ [n], aj,k = 1, ij,k = k, bj = j
}

,

where an instance x ∈ S is the following system of linear equations for some n ∈ N:
x[1] + x[2] + · · ·+ x[n] = 1
x[1] + x[2] + · · ·+ x[n] = 2

...
x[1] + x[2] + · · ·+ x[n] = n

.

Note that any x in S is not in L because at most one of the equations can be satisfied. Fix an arbitrary
instance x := (n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]) ∈ S.

Observe that, for every verifier randomness, the query list is always (1, . . . , n). Hence, both the PCP and
its MIP projection have soundness error at most 1/n.

On the other hand, we construct a malicious prover P̃ for PCP and malicious provers (P̃i)i∈[n] for the
MIP projection as follows:

• P̃: Output (b1, 0, . . . , 0).
• P̃1(a1): Output b1.
• For 2 ≤ i ≤ n, P̃i(ai): Output 0.

Hence, both the MIP projection verifier and the PCP verifier accept if they check the first equation, which
means that the soundness error for x (for both the MIP projection and the PCP) is at least 1/n.

Remark A.4. If the soundness error of the MIP projection is less than 1 then does it equal that of the PCP?
Remarks 5.9 and A.3 exemplifies some cases where these two soundness errors are equal. Nevertheless, here
we show examples where the soundness error of MIP projection can be different from the soundness error of
the PCP (with both being non-trivial). We revisit the PCP and the language L in the proof of Lemma A.1.

Consider the following set S of instances:

S :=


(n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]) ∈ Z× (Z× [n])n

2 × Zn :

∀ j, k ∈ [n], aj,k = 1, bj = j,
∀ j ∈ {1, n}, k ∈ [n], ij,k = k,
∀ j ∈ [2, n− 1], k ∈ [n], ij,k = ((j + k − 2) mod n) + 1

 .

We can write an instance x ∈ S as follows for some n ∈ N:

x[1] + x[2] + x[3] + · · ·+ x[n− 2] + x[n− 1] + x[n] = 1
x[2] + x[3] + x[4] + · · ·+ x[n− 1] + x[n] + x[1] = 2
x[3] + x[4] + x[5] + · · ·+ x[n] + x[1] + x[2] = 3

...
x[n− 1] + x[n] + x[1] + · · ·+ x[n− 4] + x[n− 3] + x[n− 2] = n− 1
x[1] + x[2] + x[3] + · · ·+ x[n− 2] + x[n− 1] + x[n] = n

.

None of the instances in S belongs to L since at most one of the equations can be satisfied. Let
x := (n, (aj,k, ij,k)j,k∈[n], (bj)j∈[n]) ∈ S be an arbitrary instance.

44

Since at most one of the equations can be satisfied for a fixed x ∈ Zn, the probability that the PCP verifier
accepts x is at most 1/n. On the other hand, the soundness error of x for the MIP projection is (n− 1)/n.
Consider following malicious provers for the MIP projection.

• P̃1(a1): Output a1.
• For 2 ≤ i ≤ n, P̃i(ai): Output 0.

It is easy to see that (P̃i)i∈[q] provides a satisfying assignment for the first n − 1 equations. Thus, the
soundness error of x for the MIP projection is at least (n− 1)/n. Moreover, it is at most (n− 1)/n since
verifier checks the first and last equations with the same answers of the provers and they are not simultaneously
satisfiable.

45

B Constraint satisfaction problems with ordered constraints

We prove stronger results compared to Section 7 for a non-standard generalization of CSPs.

• In Appendix B.1, we define ordered CSPs, which are a type of CSP where each constraint is defined as
a list of variables instead of a set of variables. We consider the canonical PCP for ordered CSPs. This
PCP equals Construction 7.5 (for standard CSPs) except that instead of sampling a random constraint and
checking its satisfiability, the verifier samples a random ordered constraint and checks its satisfiability.

• In Appendix B.2, we show that for ordered CSPs that are symmetric the soundness error of parallel
repetition is non-decreasing with respect to the number of repetitions. Moreover, we conclude that if the
soundness error for the symmetric ordered CSP is greater than 0 then the soundness error of the parallel
repetition of the canonical PCP tends to 1. (In Section 7, we only show that the soundness error of the
parallel repetition of the canonical PCP for a symmetric standard CSP tends to a constant greater than 0.)

• In Appendix B.3 we show that, for a class of non-symmetric ordered CSPs, the soundness error of the
parallel repetition of the canonical PCP is upper bounded by the soundness error of the canonical PCP.

• In Appendix B.4 we complement Appendix A by exhibiting a PCP such that, for every rational number
c ∈ (0, 1], parallel repetition drives the soundness error of certain instances to c (in the limit). This
construction builds on the results above.

B.1 CSPs with ordered constraints

We discuss a variant of constraint satisfaction problems.

Definition B.1 (Ordered constraint). For every finite set Σ, l ∈ N, and q ∈ N, an ordered (Σ, l, q)-constraint
is a pair C = (M,f) whereM is a list of length q with elements in [l], and f : Σq → {0, 1}. The satisfiability
of an ordered constraint is defined as in Definition 7.1.

Remark B.2. We discuss the difference between constraints (Definition 7.1) and ordered constraints (Defini-
tion B.1). Consider a set S ∈

(
[l]
q

)
with an implicit ordering and a function f : ΣS → {0, 1}. There is a unique

(Σ, l, q)-constraint corresponding to the set S and the function f , namely, C = (S, f). However, there are q!
possible ordered (Σ, l, q)-constraints corresponding to the set S and the function f . For every permutation
function p : [q] → [q], there is an ordered constraint Cp := (Mp, fp) where Mp := (S[p(1)], . . . , S[p(q)])
and fp(a1, . . . , aq) := f(S[p(1)] = a1, . . . , S[p(q)] = aq) for every (a1, . . . , aq) ∈ Σq.

Definition B.3 (Constraint satisfaction problem with ordered constraints). For every finite set Σ, l ∈ N,
q ∈ N, and m ∈ N, an ordered (Σ, l, q,m)-CSP ϕ is a list of m ordered (Σ, l, q)-constraints. The value and
satisfiability of ϕ are defined as in Definition 7.2.

We define the language OCSPSAT[Σ, l, q,m] as in Definition 7.3. We similarly define symmetric ordered
(Σ, l, q,m, f∗)-CSP and the language OCSPSAT[Σ, l, q,m, f∗].

Remark B.4. We give an example of an ordered CSP. Consider the NP-complete language independent set:

INDSET := {(G = (V,E), k) : ∃S ⊆ V s.t. |S| ≥ k and S is an independent set of G} .

Recall that, in a graph, an independent set is a set of vertices for which no pair of vertices share an edge. We
consider PCP = (P,V) for INDSET as follows.

• P((G, k)):

46

1. Parse G as a graph (V,E).
2. Find an independent set S := {v1, . . . , vk} in G. If no independent set of size k exists, set S to be k

arbitrary vertices.
3. Output the PCP string π that contains a list of the k vertices in S (in arbitrary order).

• Vπ((G, k)):

1. Parse G as a graph (V,E).
2. Sample q1, q2 ∈ [k]2 at random such that q1 ̸= q2.
3. Make two queries to π: vq1 := π[q1] and vq2 := π[q2].
4. Accept if and only if vq1 ̸= vq2 and {vq1 , vq2} ̸∈ E.

While an instance for INDSET can be expressed as a CSP, the above PCP is not the canonical PCP for
CSPs in Construction 7.5: for each constraint C with S = {q1, q2}, the verifier of the canonical PCP for
CSPs always queries {q1, q2} in the same order; however, the above PCP verifier queries q1 before q2 for
some randomness and q2 before q1 for some other randomness.

In contrast, ordered CSPs allow different query orders for the same query set. Hence we can map (G, k)
to an ordered (Σ, l, q,m, f∗)-CSP ϕ such that ϕ ∈ OCSPSAT[Σ, l, q,m, f∗] if and only if (G, k) ∈ INDSET.

(G, k)→ ϕ:
1. For every (i, j) ∈ [k]2 such that i ̸= j:

(a) Set M := (i, j).
(b) Let f : V 2 → {0, 1} be such that f(v1, v2) = 1 if and only if v1 ̸= v2 and {v1, v2} ̸∈ E.
(c) Set C := (S, f).
(d) Append C to ϕ.

2. Output ϕ.

The canonical PCP for this ordered CSP matches with the PCP constructed above for INDSET.

B.2 Parallel repetition for symmetric ordered CSPs

Fix a finite set Σ, l ∈ N, q ∈ N, m ∈ N, and function f∗ : Σq → {0, 1}. Let PCP be the canonical PCP for
OCSPSAT[Σ, l, q,m, f∗] (as in Construction 7.5). Let βMIP(ϕ) be the soundness error for the MIP projection
of PCP, and for every t ∈ N let βt(ϕ) be the soundness error for ⊗ [PCP, t].

Lemma B.5 (Analogue of Lemma 7.9). For every instance ϕ /∈ OCSPSAT[Σ, l, q,m, f∗] and t ∈ N,

βt+1(ϕ) ≥ βt(ϕ) .

Proof. The same argument in the proof of Lemma 7.9 works. We include the proof for completeness. Fix
ϕ /∈ OCSPSAT[Σ, l, q,m, f∗]. Let P̃t be a malicious prover for ⊗ [PCP, t]. We construct a malicious prover
P̃t+1 for ⊗ [PCP, t+ 1].

P̃t+1:
1. Compute Π̃t ← P̃t.
2. Set Π̃t+1 := (σt+1)l

t+1
, where σ is an arbitrary symbol in Σ.

3. For every (q1, . . . , qt+1) ∈ [l]t+1:
(a) Let (ans1, . . . , anst) := Π̃t[(q1, . . . , qt)].
(b) Set Π̃t+1[(q1, . . . , qt+1)] := (ans1, . . . , anst, anst).

47

4. Output Π̃t+1.

Consider ρ ∈ ({0, 1}vr)t such that VΠ̃t
t (ϕ;ρ) = 1. Since ϕ is symmetric, we know that for every

(ρ1, . . . , ρt, ρt+1) ∈ ({0, 1}vr)t+1 such that (ρ1, . . . , ρt) = ρ, VΠ̃t+1

t+1 (ϕ; (ρ1, . . . , ρt+1)) = 1. Therefore, we
conclude that

βt+1(ϕ) ≥
βt(ϕ) · (2vr)t · 2vr

(2vr)t+1
= βt(ϕ) .

Lemma B.6. For every instance ϕ = ((Mi, f
∗))i∈[m] /∈ OCSPSAT[Σ, l, q,m, f∗] where every Mi is in

ascending order (with respect to the lexicographic order of [l]),

βMIP(ϕ) = 1 =⇒ lim
t→∞

βt(ϕ) = 1 .

Proof. Fix ϕ = ((Mi, f
∗))i∈[m] /∈ OCSPSAT[Σ, l, q,m, f∗] where every Mi is in ascending order. Let

(P̃i)i∈[q] be the malicious provers for the MIP projection that make the MIP projection verifier always accept.
Let ρ∗ ∈ {0, 1}vr be such that (q∗1, . . . , q

∗
q) := Vq(ϕ, ρ

∗) is the smallest query list among all possible query
lists of V (with respect to the global ordering of [l]), which is possible because queries of V is ordered. In
other words, for every ρ ∈ {0, 1}vr and every i ∈ [q], q∗i ≤ Vq(ϕ, ρ)[i]. We construct a malicious prover P̃t

for ⊗ [PCP, t] as follows.

P̃t :
1. For every i ∈ [q], compute ansq∗i := P̃i(q∗i).
2. For every (q1, . . . , qt) ∈ [l]t, set Π̃[(q1, . . . , qt)] := (ansq)

t where

q := min
((
{q1, . . . , qt} ∩ {q∗1, . . . , q∗q}

)
∪ {q∗q}

)
.

3. Output Π̃.

For every randomness ρ ∈ ({0, 1}vr)t for Vt, we know that if ρ∗ ∈ ρ, then VΠ̃
t (ϕ;ρ) accepts since the MIP

projection provers make the MIP projection verifier accepts. Thus,

lim
t→∞

βt(x) ≥ lim
t→∞

(
1−

(
2vr − 1

2vr

)t
)

= 1 .

Remark B.7. Let β be the soundness error of the PCP in Construction 7.5, βMIP be the soundness error of
the MIP projection of the PCP, and βt be the soundness error of the parallel repetition of the PCP.

In Lemma 7.8, we show that, for every instance ϕ ̸∈ CSPSAT[Σ, l, q,m, f∗], β(ϕ) > 0 implies
limt→∞ βt(ϕ) > 0. By Theorem 5.2, βMIP(ϕ) = 1. Hence, for every ϕ /∈ OCSPSAT[Σ, l, q,m, f∗]
and t ∈ N,

β(ϕ) > 0 =⇒ lim
t→∞

βt(ϕ) = 1 .

48

B.3 Parallel repetition for non-symmetric ordered CSPs

Fix a finite set Σ, l ∈ N, q ∈ N, m ∈ N, and function f∗ : Σq → {0, 1}. Let PCP be the canonical PCP for
OCSPSAT[Σ, l, q,m] (as in Construction 7.5). Let βMIP(ϕ) be the soundness error for the MIP projection of
PCP, and for every t ∈ N let βt(ϕ) be the soundness error for ⊗ [PCP, t].

Lemma B.8. Let m :=
(
l
q

)
· q!. Let ϕ /∈ OCSPSAT[Σ, l, q,m] be such that for every M ∈

(
[l]
q

)
it holds that

(M,f) ∈ ϕ for some f . Then
βt(ϕ) ≤ β(ϕ) .

The ordered CSP constructed from INDSET in Remark B.4 is an example of the ordered CSP specified in
Lemma B.8. Hence, for every (G, k) ̸∈ INDSET and t ∈ N,

βt((G, k)) = β((G, k)) .

Proof of Lemma B.8. Let ⊗ [PCP, t] = (Pt,Vt) be the t-wise parallel repetition of PCP. We consider a
directed hypergraph G = (V,E) with multi-edges (E is a multiset) that captures the acceptance probability
of Vt. The vertices in G is the set of all t-wise queries:

V := {(q1, . . . , qt) ∈ [l]t} .

To define the edge set E, we first consider the following set C:

C := {S = {v1, . . . , vl} ∈ V l : ∀ i ̸= j ∈ [l],∀ k ∈ [t], vi[k] ̸= vj [k]} .

For every set S = {v1, . . . , vl} ∈ C, we define the following set of edges

ES := {(vi1 , . . . , viq) ∈ Sq : i1, . . . , iq are pairwise distinct elements in [l]} .

Our edge set E for the graph G is thus defined as follows:

E :=
⋃
S∈C

ES ,

where
⋃

here is the multiset union operator.
Now we argue that the graph G indeed captures the acceptance probability of Vt. In particular, we show

that for every S ∈ C, at most β(ϕ) ·m many edges in ES correspond to an accepting randomness (note that
every vertex v ∈ V correspond to some randomness because of our assumption on ϕ). We first see how this
claim leads to an upper bound on the soundness error for ⊗ [PCP, t] and then prove this claim.

Observe that the set C defined above is equivalent to the following set{
S ∈ V l : S = set

(
(r1, . . . , rt)

T
)

such that (r1 = [l])
∧
(
∀ i ∈ [2, t], (ri ∈ [l]l) ∧ (∃ a permutation pi : [l]→ [l], ∀j ∈ [l], ri[j] = pi[j])

) } .

Hence,
|C| = (l!)t−1 ,

which implies

|E| = (l!)t−1 ·
(
l

q

)
.

49

Let Π̃ be an arbitrary PCP proof for ⊗ [PCP, t]. We define the winning set W
Π̃,S

of Π̃ on S as follows:

W
Π̃,S

:= {ρ ∈ ({0, 1}vr)t : Q ⊆ S where Q := Vt(ϕ;ρ) ∧ VΠ̃
t (ϕ;ρ) = 1)} .

We show that Pr
[
VΠ̃

t (ϕ) = 1
]
=

∑
S∈C

∣∣∣WΠ̃,S

∣∣∣
|E| . First note that for every S ∈ C, and for every e ∈ ES ,

e ∈ Sq ⊆ V q is a valid query list for Vt by definition. On the other hand, consider an arbitrary randomness
ρ ∈ ({0, 1}vr)t and let Q ∈ ([l]t)q be the corresponding query list of Vt(ϕ;ρ). We know that for every
i ̸= j ∈ [q] and k ∈ [t], Q[i][k] ̸= Q[j][k]. Therefore, there is some S ∈ C such that {Q[1], . . . ,Q[q]} ⊆ S,
which implies that Q ∈ ES . For every e ∈ E, let me be the multiplicity of e in E. We observe that
me = ((l − q)!)t−1 for every e ∈ E, which implies that∑

S∈C

∣∣∣WΠ̃,S

∣∣∣
|E|

=
me ·

∑
ρ∈({0,1}vr)t 1VΠ̃

t (ϕ;ρ)=1

me · (2vr)t
= Pr

[
VΠ̃

t (ϕ) = 1
]
.

By the claim above, we conclude

βt(ϕ) = max
Π̃

Pr
[
VΠ̃

t (ϕ) = 1
]
= max

Π̃

∑
S∈C

∣∣∣WΠ̃,S

∣∣∣
|E|

≤
∑

S∈C β(ϕ) ·m
|E|

=
(l!)t−1 · β(ϕ) · l!

(l−q)!

(l!)t−1 · l!
(l−q)!

= β(ϕ)

as desired.
We are left to argue that for every S = (v1, . . . , vl) ∈ C, at most β(ϕ) ·m many edges in ES correspond

to an accepting randomness. In other words,
∣∣∣WΠ̃,S

∣∣∣ ≤ β(ϕ) ·m. We define a malicious prover for PCP as
follows.

P̃ :
1. For every i ∈ [l], compute the answer ansi := Π̃[vi].
2. For every i ∈ [l], set π̃[i] := ansi[1].
3. Output π̃.

Let π̃ := P̃. Note that for every (ρ1, . . . , ρt) ∈ ({0, 1}vr)t such that VΠ̃
t (ϕ; (ρ1, . . . , ρt)) = 1, we get

Vπ̃(ϕ; ρ1) = 1. Thus, ∣∣∣WΠ̃,S

∣∣∣ ≤ β(ϕ) · 2vr = β(x) ·m .

B.4 More on tightness of the characterization

Corollary B.9. Let m :=
(
l
q

)
· q!. Let ϕ /∈ OCSPSAT[Σ, l, q,m, f∗] be such that for every M ∈

(
[l]
q

)
it holds

that (M,f∗) ∈ ϕ. For every t ∈ N,
βt(ϕ) = β(ϕ) .

Proof. Combining Lemma B.5 and Lemma B.8 gives the desired result.

50

Remark B.10. We can generalize Lemma A.1 using Corollary B.9. We show that there exists a PCP for a
language L such that for every c ∈ N there exist infinitely many instances x ̸∈ L such that for every t ∈ N

βt(x) =
c

2vr
.

Consider the language

OCSPSAT :=
⋃

alphabet Σ,l∈N,q∈N,m∈N
OCSPSAT[Σ, l, q,m] .

Let PCP be the PCP in Construction 7.5. Fix c ∈ N and consider an arbitrary l ∈ N such that m := l! ≥ c.
LetM be the set of all lists of size l with alphabet [l]; note that |M| = l!. Let f : Σq → {0, 1} be such

that for every (a1, . . . , aq) ∈ [l]q, f(a1, . . . , aq) outputs 1 if (a1, . . . , aq) is one of first c elements inM and
0 otherwise (assumeM has an implicit ordering). We define

ϕc,l := (M,f)M∈M .

Hence, ϕc,l is an ordered ([l], l, l,m, f)-CSP with val(ϕc,l) = c/m, which implies β(ϕc,l) = c/m by
Lemma 7.6. We conclude that βt(ϕc,l) = c/m for every t ∈ N from Corollary B.9.

Remark B.11. There exists a PCP for a language L such that for every rational number a
b ∈ [0, 1] there exist

infinitely many instances x ̸∈ L such that for every t ∈ N

βt(x) =
a

b
.

Let c ∈ N be such that b · c = l! for some l ∈ N. We can construct infinitely many ϕ ̸∈ OCSPSAT such that
βt(ϕ) = c′/l! = a/b where c′ := a · c according to the argument in Remark B.10.

Theorem 5.2 shows, for every PCP for a language L and x /∈ L, if the MIP projection has soundness error
less than 1, then limt→∞ βt(x) ∈ [1

2vr , 1]. The above observation complements Theorem 5.2 by showing
that there exists a PCP for a language L such that, for every rational number a

b , there exists infinitely many
instances x /∈ L whose corresponding PCP verifier has randomness complexity vr such that

a

b
∈
[
1

vr
, 1

]
and lim

t→∞
βt(x) =

a

b
.

51

C Proof of Lemma 8.3

We restate Lemma 8.3 for convenience.

Lemma 8.3. For every alphabet Σ and integers n ∈ N and m ≤ |Σ|,

K(Σ, n,m) =
m∑
i=1

(
|Σ|
i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn ≤

(
|Σ|
m

)
·mn ,

in which the upper bound is attained if and only if m = 1.

Proof. We fix n ∈ N throughout the proof.
We prove the statement for the exact value of K(Σ, n,m) by strong induction on the alphabet size.

Base case: |Σ| = 1. For every alphabet Σ with a single letter and m = 1,

K(Σ, n,m) = 1 =
m∑
i=1

(
|Σ|
i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn .

Inductive step: |Σ| > 1. Let Σ be an arbitrary finite set such that |Σ| > 1. Assume that for every Σ′ ⊊ Σ and
m ≤ |Σ′|,

K(Σ′, n,m) =

m∑
i=1

(
|Σ′|
i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn .

By Definition 8.2, for every Σ and m ≤ |Σ|, K(Σ, n,m) = |S(Σ, n,m)| where S(Σ, n,m) := {s =
(s1, . . . , sn) ∈ Σn : |{s1, . . . , sn}| ≤ m}. For every m ≤ |Σ|, we can reformulate S(Σ, n,m) as follows:

S(Σ, n,m) = {s = (s1, . . . , sn) ∈ Σn : |{s1, . . . , sn}| ≤ m}

=
m⋃

m′=1

{s = (s1, . . . , sn) ∈ Σn : |{s1, . . . , sn}| = m′}

=

m⋃
m′=1

{s = (s1, . . . , sn) ∈ Σn : ∃Σ′ ⊆ Σ s.t. |{s1, . . . , sn}| =
∣∣Σ′∣∣ = m′ ∧ s ∈ (Σ′)n}

=
m⋃

m′=1

⋃
Σ′⊆Σ:|Σ′|=m′

{s = (s1, . . . , sn) ∈ Σn : |{s1, . . . , sn}| = m′ ∧ s ∈ (Σ′)n}

=
m⋃

m′=1

⋃
Σ′⊆Σ:|Σ′|=m′

{s = (s1, . . . , sn) ∈ (Σ′)n : |{s1, . . . , sn}| = m′}

=

m⋃
m′=1

⋃
Σ′⊆Σ:|Σ′|=m′

(
S(Σ′, n,m′) \ S(Σ′, n,m′ − 1)

)
.

Above, unions are over pairwise disjoint sets because for every s ∈ Σn there is only one Σ′ ⊆ Σ such that
|Σ′| = m′ and s ∈ (Σ′)n where m′ = |{s1, . . . , sn}|. By the induction hypothesis, we deduce the desired

52

formula:

K(Σ, n,m) =
m∑

m′=1

∑
Σ′⊆Σ:|Σ′|=m′

(
K(Σ′, n,m′)−K(Σ′, n,m′ − 1)

)

=
m∑

m′=1

∑
Σ′⊆Σ:|Σ′|=m′

 m′∑
i=1

(
m′

i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn −

m′−1∑
i=1

(
m′

i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn


=

m∑
m′=1

∑
Σ′⊆Σ:|Σ′|=m′

(
m′

m′

) m′∑
j=1

(
m′

j

)
· (−1)m′−j · jn

=
m∑

m′=1

(
|Σ|
m′

)(
m′

m′

) m′∑
j=1

(
m′

j

)
· (−1)m′−j · jn

=
m∑
i=1

(
|Σ|
i

) i∑
j=1

(
i

j

)
· (−1)i−j · jn .

Next, we prove the upper bound. Similar to before, we can reformulate S(Σ, n,m) as follows:

S(Σ, n,m) = {s ∈ Σn : ∃Σ′ ⊆ Σ s.t.
∣∣Σ′∣∣ = m, s ∈ (Σ′)n}

=
⋃

Σ′⊆Σ s.t. |Σ′|=m

{s ∈ Σn : s ∈ (Σ′)n}

=
⋃

Σ′⊆Σ s.t. |Σ′|=m

(Σ′)n .

Therefore,

K(Σ, n,m) ≤
∑

Σ′⊆Σ s.t. |Σ′|=m

∣∣(Σ′)n
∣∣ = (|Σ|

m

)
·mn .

Note that {Σ′ ⊆ Σ s.t. |Σ′| = m} is a set of pairwise disjoint sets if and only if m = 1. Hence,

K(Σ, n, 1) =
∑

Σ′⊆Σ s.t. |Σ′|=m

∣∣(Σ′)n
∣∣ = |Σ|

and, for every m > 1,

K(Σ, n,m) <
∑

{Σ′⊆Σ s.t. |Σ′|=m}

∣∣(Σ′)n
∣∣ = (|Σ|

m

)
·mn .

53

Acknowledgments

The authors are partially supported by the Ethereum Foundation. The authors thank Ngoc Khanh Nguyen,
Guy Weissenberg, Eylon Yogev, and Mingnan Zhao for valuable feedback and comments on earlier drafts of
this paper.

References
[BRRRS09] Boaz Barak, Anup Rao, Ran Raz, Ricky Rosen, and Ronen Shaltiel. “Strong Parallel Repetition Theorem

for Free Projection Games”. In: Proceedings of the 12th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, and of the 13th International Workshop on
Randomization and Computation. APPROX-RANDOM ’09. 2009, pp. 352–365.

[DG08] Irit Dinur and Elazar Goldenberg. “Locally Testing Direct Product in the Low Error Range”. In: Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. FOCS ’08. 2008,
pp. 613–622.

[DM11] Irit Dinur and Or Meir. “Derandomized Parallel Repetition via Structured PCPs”. In: Computational
Complexity 20.2 (2011), pp. 207–327.

[DN17] Irit Dinur and Inbal Livni Navon. “Exponentially Small Soundness for the Direct Product Z-Test”.
In: Proceedings of the 32nd Annual IEEE Conference on Computational Complexity. CCC ’17. 2017,
29:1–29:50.

[DR04] Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combinatorial Proof of the PCP
Theorem”. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’04. 2004, pp. 155–164.

[DS14] Irit Dinur and David Steurer. “Direct Product Testing”. In: Proceedings of the 29th Annual IEEE
Conference on Computational Complexity. CCC ’14. 2014, pp. 188–196.

[FRS88] Lance Fortnow, John Rompel, and Michael Sipser. “On the Power of Multi-Prover Interactive Protocols”.
In: Theoretical Computer Science. 1988, pp. 156–161.

[FV02] Uriel Feige and Oleg Verbitsky. “Error Reduction by Parallel Repetition – A Negative Result”. In:
Combinatorica 22 (2002), pp. 461–478.

[Fei98] Uriel Feige. “A Threshold of Ln n for Approximating Set Cover”. In: Journal of the ACM 45 (1998),
pp. 634–652.

[GS97] Oded Goldreich and Shmuel Safra. “A combinatorial consistency lemma with application to proving
the PCP theorem”. In: International Workshop on Randomization and Approximation Techniques in
Computer Science. APPROX-RANDOM ’97. 1997, pp. 67–84.

[Gol98] Oded Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Vol. 17. Algo-
rithms and Combinatorics. Springer, 1998.

[Hol07] Thomas Holenstein. “Parallel repetition: simplifications and the no-signaling case”. In: Proceedings of
the 39th Annual ACM Symposium on Theory of Computing. STOC ’07. 2007, pp. 411–419.

[IKW12] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. “New Direct-Product Testers and 2-Query
PCPs”. In: SIAM Journal on Computing 41 (2012), pp. 1722–1768.

[RR12] Ran Raz and Ricky Rosen. “A Strong Parallel Repetition Theorem for Projection Games on Expanders”.
In: Proceedings of the 27th Annual IEEE Conference on Computational Complexity. CCC ’12. 2012,
pp. 247–257.

[Rao11] Anup Rao. “Parallel Repetition in Projection Games and a Concentration Bound”. In: SIAM Journal on
Computing 40 (2011), pp. 1871–1891.

54

[Raz11] Ran Raz. “A Counterexample to Strong Parallel Repetition”. In: SIAM Journal on Computing 40 (2011),
pp. 771–777.

[Raz95] Ran Raz. “A parallel repetition theorem”. In: Proceedings of the 27th Annual ACM Symposium on
Theory of Computing. STOC ’95. 1995, pp. 447–456.

[Ver96] Oleg Verbitsky. “Towards the parallel repetition conjecture”. In: Theoretical Computer Science 157
(1996), pp. 277–282.

55

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 Section 4: parallel repetition for PCPs does not always work
	2.2 Section 5: when does parallel repetition for PCPs work?
	2.3 Section 6: rate of decay of parallel repetition for PCPs
	2.4 Section 7: parallel repetition for the canonical PCP for CSPs
	2.5 Section 8: consistent parallel repetition always works

	3 Preliminaries
	3.1 Probabilistically checkable proofs
	3.2 Multi-prover interactive proofs
	3.3 Parallel repetition for PCPs
	3.4 Parallel repetition for MIPs

	4 Parallel repetition of PCP can increase soundness error
	4.1 PCP for graph 3-coloring
	4.2 The soundness error of parallel repetition tends to 1
	4.3 Parallel repetition strictly increases soundness error

	5 A characterization result
	5.1 Proof of Theorem 5.2

	6 Rate of decay for parallel repetition of PCPs
	6.1 Soundness error of PCP evaluations
	6.2 MIP projection and PCP evaluation are (almost) inverses
	6.3 Proof of Theorem 6.2

	7 Parallel repetition for canonical PCPs
	7.1 Constrain satisfaction problems
	7.2 Canonical PCP for CspSat
	7.3 Parallel repetition for symmetric CSPs
	7.4 Parallel repetition for non-symmetric CSPs

	8 Consistent parallel repetition
	8.1 Proof of Theorem 8.4

	A On tightness of the characterization
	B Constraint satisfaction problems with ordered constraints
	B.1 CSPs with ordered constraints
	B.2 Parallel repetition for symmetric ordered CSPs
	B.3 Parallel repetition for non-symmetric ordered CSPs
	B.4 More on tightness of the characterization

	C Proof of Lemma 8.3
	Acknowledgments
	References

