
A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies

E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,
A. Filios, Y. Manevich, S. Natarajan, M. Sethi

IBM Research
ABSTRACT
Central Bank Digital Currencies refer to the digitization of life-
cycle’s of central bank money in a way that meets first of a kind
requirements for transparency in transaction processing, interoper-
ability with legacy or new world, and resilience that goes beyond
the traditional crash fault tolerant model. This comes in addition to
legacy system requirements for privacy and regulation compliance,
that may differ from central bank to central bank.

This paper introduces a novel framework for Central Bank Digi-
tal Currency settlement that outputs a system of record—acting a a
trusted source of truth serving interoperation, and dispute resolu-
tion/fraud detection needs—, and brings together resilience in the
event of parts of the system being compromised, with throughput
comparable to crash-fault tolerant systems. Our system further
exhibits agnosticity of the exact cryptographic protocol adopted
for meeting privacy, compliance and transparency objectives, while
ensuring compatibility with the existing protocols in the litera-
ture. For the latter, performance is architecturally guaranteed to
scale horizontally. We evaluated our system’s performance using an
enhanced version of Hyperledger Fabric, showing how a through-
put of >100K TPS can be supported even with computation-heavy
privacy-preserving protocols are in place.

1 INTRODUCTION
Central Bank Digital Currency (CBDC for short) is a central-bank
liability on par with physical cash and bank reserves. It is designed
to serve the functionalities of medium of exchange, store of value
and a unit of account, and intended for both wholesale and retail
payment transactions.

In recent years, CBDChas been positioned as a viable approach to
address the current inefficiencies in financial markets and payment
systems. In particular, wholesale CBDC is anticipated to signifi-
cantly reduce settlement delays and drastically decrease counter-
party risk in financial markets, as well as, speeding up cross-border
payments. Retail CBDC is expected to reduce transaction fees, and
break the existing monopoly of today’s payment service providers,
enhance financial inclusion, and trigger innovation in the digital
payments space.

In light of these advantages, more than 130 central banks are
actively exploring CBDC and publishing periodic reports on the
functional and non-functional requirements of the CBDC infras-
tructure, the evolving architectural considerations [1, 2], and the
outcomes of their various CBDC experimentations. Indicatively, a
handful Central Banks have even launched CBDC pilots [2], while
the European Central Bank has just launched a legislation proposal
for the adoption of a digital euro [3].

Although CBDC systems will be regulated differently depending
on the jurisdiction, they agree on certain aspects.

First of all, the critical impact of CBDC infrastructure on the
money supply establishes that its governance will be in the hands
of the central bank only (i.e., centralized). This is because Central
Banks and only Central Banks are tasked with the “formulation of
a country’s monetary policy to achieve and maintain economic and
price stability”[4].

Despite the centralised nature of a CBDC system’s governance, a
CBDC system is required to operate in a highly robust and resilient
manner, i.e., functioning properly even if parts of the system crash,
or are compromised (e.g., after successful cyber- or insider-attacks).
This is also reasonable given the critical nature of a CBDC system,
and imposes a distributed if not a decentralized deployment of the
system.

In addition, there is the need for interoperation and a prefer-
ence towards programmability. In terms of interoperation, a CBDC
system should interoperate with existing payment and settlement
infrastructure, other CBDC systems, and the emerging digital asset
systems. In terms of programmability, the system should offer flexi-
bility for new capabilities to be developed as per the dynamically
evolving needs for the financial ecosystem. Programmability is a
requirement associated to a common expectation of CBDC systems
to “foster innovation in payments”.

Regulatory compliance bring to the fore requirements for effi-
cient dispute resolution, fraud detection and auditability. For example,
AML1 and CFT2 regulations stipulate that suspicious payment trans-
actions be detected, attributed to their origin and reported to the
relevant authorities, while PSD23 [5] emphasizes the importance
of fraud detection and dispute resolution.

Fraud detection and dispute resolution further require account-
ability. Accountability ensures that the various parties cannot re-
pudiate their actions in the system, and is important for CBDC
consumers (cannot repudiate their payments) as well as CBDC sys-
tem entities (cannot repudiate their decisions). Dispute resolution
and interoperation requirements typically impose design princi-
ples of transparency in decision making process, and transaction
processing. Transparency is optimally served by a ledger of (pro-
cessed) transactions that acts as a single point of reference, and truth
(trusted).

As important is the privacy of payment transactions in both retail
and wholesale settings. Privacy refers to the right of data owners to
control who accesses their transactional information. For example,
PSD2 states that the processing of personal information must com-
ply with the GDPR and its principles of data minimization, which
restricts the collection of personal information to what is necessary

1Anti Money Laundering
2Combating the Financing of Terrorism
3Amendment proposed by the European Union to the Payment Service Providers
Directive

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

for transaction processing. This can be interpreted in various ways:
a conservative approach to data minimization will ensure that pay-
ment transactions are processed without leaking any information
about the transacting parties or the values of the transactions. This,
however, renders transaction monitoring and audit more difficult.
A permissive approach will, on the other hand, reveal the value of
the payments, and potentially, the identities of the payer and payee.
A forward-looking CBDC system should be able to accommodate
different interpretations of privacy, in balance with all the other
requirements, particularly, performance and auditability. As the
technology evolves, so will privacy regulations and requirements,
and agility, should be built in.

Finally, retail CBDC systems should be able to compete with
existing payment solutions, and, as such, must accommodate trans-
actions of millions of users. This translates into being able to process
tens of thousands of transactions per second (TPS) at peak time.

Prominent efforts to address the CBDC requirements [6, 7] fo-
cused on achieving high throughput in an architecture where both
governance and transaction processing are centralized, resulting
in systems that are vulnerable to single points of compromise. In
other words, these solutions assume that the entities processing
transactions will never arbitrarily misbehave, i.e., they are crash
tolerant but not fault tolerant. We emphasize that given the critical
nature of a CBDC system, and the resulting geographic distribution
of its transaction processing components, ensuring correct opera-
tion of the system in the event of compromise becomes relevant.
Notice that very frequently data centres located in different areas
come with different trust domains.

To circumvent single points of control, financial institutions [8]
and the research community (e.g., [9]) have been exploring de-
centralised consensus-based transaction processing systems such
as distributed ledger technology (DLT). The relevance of DLTs is
also in alignment to requirements for a trusted system of record,
and programmability. Unfortunately, current DLT implementations
penalize throughput. While work-arounds leveraging off-chain ex-
changes that are only occasionally anchored on-chain have become
popular in DLT systems (a.k.a layer-2 solutions), have been dis-
missed in the context of CBDC, in the name of fast finality and full
transparency for all payment transactions.

In this paper, we introduce a transaction processing framework
for (fungible) financial asset management, and most prominently
for CBDCs, that addresses the aforementioned challenges. We show
that permissioned DLTs are advantageous with respect to trans-
parency and resilience to compromised nodes—even with a central-
ized governance model—and can meet the CBDC performance and
scalability requirements without significant performance discrep-
ancies from distributed centralised systems that offer a system of
record. In particular, we propose a system architecture and proto-
cols within, exhibiting:

• Strongly accountable and Transparent transaction processing
by employing strong identity management and a shared
ledger that records all transactions that are processed by the
system; we refer to that shared ledger as system ledger.
• Resilience to compromised nodes by employing byzantine fault
tolerance in all phases of transaction processing and the

system ledger evolution, in the eyes of improvedHyperledger
Fabric DLT platform.
• Pluggable transaction format and transaction security checks,
decoupling application-related logic from the actual DLT
layer, where the system ledger is built and maintained. This
derives from the DLT support for smart contracts, that fur-
ther ensures the easy integration of different privacy mecha-
nisms and functionalities into the system or extensions of
its to support more use cases around regulated digital assets
(e.g., bonds and securities and tokenized deposits).
• Throughput and latency in transaction processing that is
equivalent to the throughput and latency observed in today’s
(ledger-enabled) centralized solutions (e.g., [7]); this is accom-
plished by employing (i) the execute-order-validate transac-
tion processing model introduced by Hyperledger Fabric 1.0
[10], (ii) a state of the art byzantine fault tolerant consensus
protocol in terms of performance and scalability for order
(similar to [11]), and (iii) Two-phase commit transaction
processing principles for commit.
• Horizontal scalability of all application-layer logic introduced
in transaction processing. This is particularly important for
applications that employ computationally heavy Zero Knowl-
edge Proofs to offer privacy.

We provide a prototype implementation of our framework as an
evolved version of Hyperledger Fabric [10], coupled with the four
CBDC privacy models: (i) standard UTXO support using standard
PKI with no privacy in place; (ii) standard UTXO support with
accountable pseudonymity/anonymity for transactors, (iii) UTXO
support enhanced with anonymity and exchanged amount confi-
dentiality, and (ii) untraceable UTXO utilizing the cryptographic
means in [12] for full transactor (accountable) privacy. We further
evaluated our system’s performance using three consensus pro-
tocols: i) a crash fault tolerant consensus protocol, i.e., Raft [13],
ii) a byzantine fault tolerant consensus protocol in the wild, i.e.,
BFTSmart [14] and iii) a new byzantine-fault tolerant architecture
inspired by [11], exhibiting state of the art performance and scala-
bility.

Our results show that for the standard UTXO pseudonymity
model, our prototype implementation can process up to 80, 000 TPS
in the case of Raft and BFTSmart and more than 150, 000 TPS in the
case of emerging consensus algorithms. Our results further demon-
strate the horizontal scalability of transaction processing compute.
In fact, we show that the same numbers can be accomplished in
stronger privacy scenarios where the exchanged amounts are con-
cealed, and / or activity of individual users concealed at the cost of
more powerful equipment. The obtained performance numbers cor-
respond to a CBDC system that offers privacy for end-users while
allowing authorized auditors to inspect transactional information,
and settlement components to properly process transactions.

Layout. The paper is organized as follows. Section 2 provides an
overview of the system entities, the system’s trust assumptions, and
requirements. In Section 3, we provide an overview of Hyperledger
Fabric and the proposed enhancements to support the demands of
the CBDC use-case, while Section 4 presents various token archi-
tectures to be considered for privacy in a CBDC system. Section 5

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

describes our framework by combining Hyperledger Fabric and the
token architectures proposed in Section 4. Section 6 benchmarks
our system’s performance. Section ?? we provide an overview of
related work, and, finally, in Section 7 we conclude the paper.

2 SYSTEM OVERVIEW
At a very basic level, a CBDC system involves a central bank,
which decides the monetary policy, manages the overall liquidity
in circulation, and validates transactions via a settlement engine.
There are also users, who hold CBDC and exchange it for goods and
services. In an intermediated CBDC, one also finds intermediaries,
corresponding usually to the commercial banks, which are tasked
with performing KYC4 checks and managing user accounts, both
deposits and CBDC.

A user with a CBDC account, can request CBDCs from the Cen-
tral bank5 via a withdrawal request that would typically result into
issuance of new CBDCs by the Central Bank. A user can make
payments that will be subjected to AML checks and CFT measures
just like digital payments today. Therefore, for accountability and
non-repudiation purposes, each user must be equipped with a long-
term identity that binds the physical identity of the user to a public
key, and which will be used subsequently for authentication and
transaction authorization. This process can be facilitated by a reg-
istration authority that onboards the users by assigning them a
unique enrollment identifier, and keeps track of the mapping be-
tween the physical identity of the user, their unique enrollment
identifier, and their public key, plus any other additional attribute
that might be needed. Given that CBDC users will hold secret keys,
they will be provided a digital wallet that will help them track their
CBDC holdings and authorize transactions.

If privacy against the central bank is required, then it is impor-
tant to restrict its access to payment data. In particular, the central
bank with the settlement engine should validate CBDC payments
without learning their value or the identities of the parties involved.
However, this raises the challenge of transaction monitoring neces-
sary to enforce AML and CFT regulations. This can be addressed
by introducing auditors, which are entities independent of the
central bank, that are authorized to inspect payment information
and determine if a transaction is compliant or not based on historic
data. An example of such auditors are the intermediaries.

In what follows, we describe in detail the system participants,
their interactions and the associated trust assumptions. For sim-
plicity, we consider non-intermediated CBDC, where users directly
submit withdrawal requests or payments to the central bank with-
out going through the commercial banks.

2.1 System Participants
The participants of a typical CBDC system are depicted in Figure 1:
• Users hold CBDCs and initiate withdrawal requests and pay-
ments. A user is assigned a unique enrollment identifier eid
and a credential cred, that certifies the mapping between
the user’s enrollment identifier and their public key. The
pair (eid, cred) corresponds to the long-term identity of the

4Know Your Customer.
5The request is submitted to the intermediary, if available.

Figure 1: The participants of a typical retail CBDC system include
end-users (payers, and payees), a registration authority, granting
users the right to make use of the system, a central bank accommo-
dating liquidity requests for users (typically via intermediaries), and
settles payments, and auditors who are responsible for monitoring
user or CBDC activity.

user. Each user maintains a wallet to manage the secret keys,
track the holdings, and authorize the transactions.
• The Registration Authority assigns a unique enrollment iden-
tifier to each user, and produce the user’s identity credential.
More specifically, during a registration request of a user 𝑢,
the authority assigns to 𝑢 a unique enrollment identifier,
eid, and verifies that 𝑢 knows the secret key underlying the
provided public key, say pk. After a successfully registration,
the registration authority provides cred to 𝑢, and keeps the
mapping between the physical identity of the user and their
long term identity in the CBDC system. The Registration Au-
thority can be operated by the Central Bank and facilitated
by the Commercial Banks.
• The Central Bank issues CBDCs by introducing them into
the system, and is responsible for the settlement of CBDC
payment, issuance and redemption transactions. CBDCs are
owned by users, represented by their unique enrollment
identifier. The central bank is also responsible of redeeming
CBDCs, when those need to be removed from circulation.
• The Settlement Engine is responsible for settling CBDC pay-
ments, as well as issuance and redemption requests under
the purview of the central bank. In our solution the settle-
ment engine comprises a distributed/decentralized network
governed by the central bank. It validates the system transac-
tions against the system’s rules and a global state, maintained
in a ledger. If a transaction is valid, the settlement engine up-
dates the global state (i.e., ledger) accordingly. As we discuss
in Sections 3 and 5, our system’s settlement engine is based
on Hyperledger Fabric[10] permissioned DLT.
• Auditors monitor user transactions for compliance purposes.
Notably, they access the content of the transactions and deter-
mine whether they are legitimate or suspicious. An Auditor

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

is said to be active if their sign-off is required by the settle-
ment engine to process the transaction itself, and passive if
they are only expected to audit transactions asynchronously,
after the settlement engine has processed them.

2.2 Trust Assumptions
The central bank is trusted with issuance and redemption of CBDCs.
That is, an issuance (resp. a redemption) is only triggered upon a
user request and in accordance to the central bank’s monetary poli-
cies. 6 Notice that to add resilience in the decision making process,
the central bank can leverage threshold cryptography to distribute
the responsibility of these operations among different divisions
or authorities in the central bank organisation. For example, the
issuer’s secret key can be split in multiple pieces and distributed
to independent entities within the central bank who must collabo-
rate to generate a valid signature. The system continues without
disruptions even if a subset of these entities get compromised.

Additionally, we trust the registration authority to assign to each
user exactly one enrollment identifier and produce one credential
per user. Similar to the central bank, resilience to the registration
authority can be added by distributing the trust, e.g., via threshold
issuance of credentials.

The settlement engine is a distributed component that is trusted
as a whole. That is, the settlement engine will operate correctly,
in the presence of a dishonest minority. We consider two failure
models: Crash and Byzantine. The former implies that settlement
engine participants behave correctly but they may crash and not
respond. The latter entails that a subset of the settlement engine
participants can behave arbitrarily. In this paper, we evaluate both
models and discuss their implications.

Last but not least, we have the users. Users are not trusted. They
may attempt to increase their holdings unlawfully, or spend CBDCs
they do not own.

When user privacy is a concern, the settlement engine only ac-
cesses the information necessary for correct transaction processing.
The central bank is only privy to issuance and redemption informa-
tion, whereas the auditors are trusted not to share the information
they learn with third parties, unless required by the law. However
all entities incl. users are expected to collude to escalate their data
access rights, and compromise the privacy of individuals against
the colluding entities’ access rights.

Finally, auditors are trusted to deliver to regulators the audited
information upon request correctly.

2.3 Requirements
In this section we elaborate on a retail CBDC system’s requirements.
Notice that, excluding performance, all the other requirements are
present in wholesale CBDC systems, as well as to other financial
asset transfer use-cases.

Security A CBDC system should meet the following security re-
quirements:

6If intermediaries are available, then an issuance (resp. a redemption) is only triggered
when a user exchanges commercial bank money for CBDC and vice versa

• Transaction Authorization. A CBDC transaction should only
be accepted by the settlement engine if it has been initi-
ated by the lawful parties: the owner of the funds that are
being transferred in case of payment transactions, and the
authorised issuer(s) in case of CBDC issuance transactions.
• Balance Preservation. A Transfer transaction should preserve
the total amount of CBDC in circulation. Namely, a transfer
increases the holding of the recipient and decreases the hold-
ing of the sender by the same amount. An Issue transaction
should increase the total amount of CBDC in circulation
by the issued value; similarly, a Redeem transaction should
reduce the CBDC circulation by the redeemed value.
• Resilience. In a distributed system, resilience refers to the sys-
tem’s ability to continue functioning and providing services
in the face of various types of failures, errors, and unexpected
events. It often requires redundancy, replication, backup and
recovery strategies, load balancing, and automated failover
mechanisms. It is crucial that critical infrastructures are dis-
tributed to reduce the trust cost and enhance resilience.

Privacy. Privacy requirements of CBDCs may vary from country to
country; important properties appearing on this front encompass:
• Transaction anonymity. A CBDC transaction is anonymous
if the origin of the transaction is hidden from the settlement
engine and anyone accessing its ledger. We note that since
only the central bank is authorized to issue CBDC, Issue
transactions do not need to be anonymized.
• Transaction Confidentiality. This refers to the confidentiality
of the content of the transactions (e.g., identities of involved
parties, exchanged currency/value) against all participants
except the transacting parties.
• Transaction Unlinkability. Transaction unlinkability ensures
that the settlement engine and anyone with access to its
ledger cannot tell if two CBDC transactions involve the same
user, either as an issue beneficiary, a payer or a payee. Note
that a transaction can be anonymous without being confiden-
tial and vice versa. For example, an anonymous transaction
can reveal the value of the transaction, and a confidential
transaction can leak the identity of the transaction origin. An
unlinkable transaction is both anonymous and confidential.

Auditability/RegulationCompliance.Authorized auditors should
be able to access the transactional information of the users falling
under their jurisdiction. This access is governed by AML/CFT reg-
ulations that determine the information auditors should monitor
to successfully flag suspicious transactions. For the same reason
and in the presence of intermediaries, they too might be required
to sign the transaction as a proof of acknowledgment.

In the presence of a single auditor, the latter inspects the content
of all transactions. In multi-auditor settings, audit policies define
which transactions any given auditor can access. An example of
such a policy is to have the user, at time of registration, assigned an
attribute "auditor" that identifies the auditor under which oversight
they fall. Consequently, transactions involving that user should
be accessible to the auditor identified in the "auditor" attribute.
In another scenario, auditor assignment may be associated to an
attribute already incorporated into the user’s identity, e.g., country
of residence.

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

Audit-support may assume that the auditor is highly available,
and can be reached over the course of all transactions that fall under
their responsibility (active auditing). Additionally, audit-support
may assume an offline auditor who is expected to asynchronously
access transactional data by being exposed to the settlement engine
transactions (passive auditing).

Performance. To enable retail payments, CBDC comes with strin-
gent performance requirements. Notably, the transaction through-
put and the transaction latency of any CBDC system should be
on par existing payment solutions. Per the various retail ECB re-
ports [15], a viable CBDC solution is expected to accommodate
around a few tens of thousands transactions per second (TPS) in
the first years of operation, gradually leading to up to 150, 000 TPS
over the years. Latency is expected to vary between 3 and 5 seconds,
to not impact the user experience at a point of sale.

2.4 Interactions Overview
Figure 1 depicts the various components of a CBDC system and
their interactions.

First a user must initiate an on-boarding process with the regis-
tration authority. The authority assigns the user a unique enrollment
identifier, and keeps track of the mapping between the physical
identity of the user, their unique enrollment identifier (henceforth
denoted by eid), and their public key (henceforth denoted by pk),
plus any other additional attribute that might be needed. This would
signify the initialisation of the user’s digital wallet, that helps the
user to track their CBDC holdings and authorise transactions.

A user can receive CBDCs via a withdrawal or a payment opera-
tion. In the first case, the user submits a withdrawal request to the
CBDC Issuer (typically via their intermediary), who evaluates the
request, approves it, and notifies the settlement engine to finalize
the issuance of CBDCs. Once the issuance is completed, the user’s
wallet is updated with the freshly issued currency. In the second
case, the user is the payee in a payment. To perform a payment, the
payer uses their digital wallet to prepare the corresponding transac-
tion by specifying the amount of CBDC to transfer and the intended
payee. Once ready, the wallet submits the transaction to the settle-
ment engine to get it settled. Upon finalisation, the holdings/wallets
of the payer and the payee will get updated accordingly.

A user can redeem CBDCs by sending a deposit request to the
Issuer, triggering a redemption process on the user provided funds.

If active auditing is in place the user’s digital wallet requires an
approval from auditor before submitting the transaction to the set-
tlement engine. If passive auditing is in place, the auditor does not
need to actively participate in the payment process but can analyze
transactions using their secret keys and access to the settlement
engine’s ledger.

3 EXTENDING HYPERLEDGER FABRIC
Hyperledger Fabric (HLF) is a permissioned DLT systemwith strong
identity management for system participants, and built-in mech-
anisms to enforce non-repudiation, and with it, accountability.
HLF [10] came with the premise to overcome the inherent per-
formance and scalability limitations of DLTs, by introducing a DLT
architecture that departs from the traditional order-execute DLT

Update state

● Order rw-sets
● Atomic broadcast

(consensus)
● Stateless ordering

service

● Persist state on all
peers

● Simulate trans.
and endorse

● Create rw-set
● Collect endorse-

ments

OrderExecute Validate
✓

● Validate endorse-
ments & rw-sets

● Eliminate invalid
and conflicting
trans.

Figure 2: Execute-Order-Validate Model leveraged in Hyperledger
Fabric.

Figure 3: Transaction Lifecycle in Hyperledger Fabric.

paradigm. In particular, HLF introduced an execute-order-validate
model for transaction processing.

We recall that in order-execute transactions are first ordered and
batched into blocks, and then executed in the order in which they
appear. To reach a consistent state across all DLT participants, the
transactions must be executed sequentially and the execution logic
must be deterministic. This evidently limits the performance and
the flexibility (in terms of either the code that can be executed or
the languages that can be supported) of the system. In contrast, the
execute-order-validate allows transactions to be first speculatively
executed before being ordered. A transaction that reads stale data
during its speculative execution is rejected and skipped during the
validate phase, which consists of simple and deterministic checks.
An overview of the execute-order-validate model is reflected in
Figure 2.

The separation between the execute and validate has two advan-
tages: (1) developers can write the code of the execute phase in their
language of choice (more flexibility), and (2) the execute phase can
run in parallel (higher throughput). Figure 3 shows the transaction
flow in HLF. We, therein, find chaincodes, which are the smart
contracts invoked during the execute phase, and which are written
in traditional programming languages. For each chaincode, there
are endorsers, which are a subset of network participants tasked
with executing the chaincode and sending the result of the exe-
cution. Moreover, each chaincode is assigned a namespace, which
identifies the partition in the shared ledger that the chaincode is
allowed to update. Each namespace comes with an endorsement
policy that specifies which endorsers should come together and
execute the chaincode for the resulting transaction to be accepted
during the validate phase.

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

A client triggers the execution of a chaincode by sending a trans-
action proposal to the endorsers of the chaincode, and awaits the
response. The endorsers then execute the chaincode speculatively
and output a read-set which describes the dependencies of the ex-
ecution (i.e., the entries in the ledger that have been read during
the execution), and a write-set which are the changes to be applied
to the ledger state should the transaction be committed. Together
the read-set and the write-set form what we call the read-write set.
The endorsers then sign and send the results of the chaincode’s ex-
ecution to the client, within a proposal response. Finally, the client
attaches the signatures of the endorsers to the Fabric transaction
and submits the result to the orderers.

The orderers are authorized network participants responsible
for the order phase, during which they agree on the order in which
transactions will be processed in the validate phase, batch them
into a series of blocks, and deliver the blocks to the committers.

The committers are the subset of network nodes responsible
for the validate phase and applying updates to the ledger. They
therefore check each transaction against the ledger state and the
endorsement policy of its corresponding chaincode. More specifi-
cally, each committer verifies if the entries identified in the read-set
correspond to the current state, and if the signatures in the transac-
tion satisfy the endorsement policy of the namespace being updated.
If so, then the committer updates its local copy of the ledger in
accordance with the transaction’s write-set. In HLF, endorsers are
also committers, and they are both alternatively known as Fabric
peers.

HLF provides a default implementation of the endorsers, that
handles the chaincode lifecycle, its execution, and the generation of
the endorsement signatures. However, when business application
logic demands it, one need not follow this default implementation
to produce a transaction that will be accepted by the committers.
In fact, the committers do not care how a valid transaction has
been produced, whether by the default HLF endorser or a custom
implementation.

For a pictorial summary of the lifecycle of a standard HLF trans-
action, refer to Figure 2.

3.1 HLF Relevance and Limitations for CBDC
HLF architecture offers a relevant foundation for CBDC settlement.

• A chaincode can encode the CBDC issuance/transfer securi-
ty/validity checks (execute phase). Chaincode execution is
horizontally scalable—allowing more nodes to be added in-
dependently to load balance client requests—and can avoid
single control points with the appropriate choice of endorse-
ment policy—e.g., requiring sign-offs from several parties. In
alignment with the continuously evolving nature of CBDC
ecosystems, a chaincode can be upgraded (e.g., if different pri-
vacy rules need to be honored, or additional security checks
need to be performed) in a transparent manner upon a cer-
tain (multi-or single-party) chaincode administration policy
is satisfied.
• Transaction ordering can compile a system-wide ledger, needed
for dispute resolution. Transaction ordering is served by the
ordering service in HLF, that, given its modular architecture
can easily adjust to the system’s threat model and scalability

requirements. For example, one can easily change between
protocols that tolerate node crashes (Crash Fault Tolerant or
CFT) and consensus protocols tolerating a number of com-
promised nodes (Byzantine Fault Tolerant of BFT) without
changing other parts of the system.
• All layers of transaction processing can tolerate byzantine be-
havior by an upper bound of nodes. This is achieved by the
appropriate choice of chaincode administration and endorse-
ment policies, the use of BFT consensus for ordering, and
the validate phase that takes place in a deterministic manner
on any committer independently.
• Transaction validation can be performed by any member of
the network that has access to the output of the ordering phase,
strengthening the transparency and resilience of the overall
system. Indeed, a new party that joins the network can eas-
ily replay the history of transactions and be assured of the
correctness of the reported system state.
• Chaincodes can be used to accommodate additional logic/ap-
plications as per the required system’s extensions.

Unfortunately, the current HLF implementation fails to meet per-
formance, and scalability requirements of CBDC systems, for the
following reasons:

• Tightly coupled endorser and committer. In HLF, each peer
functions as an endorser and a committer on a single node.
However, this close coupling limits the performance for sev-
eral reasons:

(1) Competition for CPU Resources: The endorser concurrently
signs the results of multiple executed transactions, while
the committer verifies the signatures of multiple trans-
actions within a block, all in parallel. Unfortunately, this
performance is capped by the number of CPU cores avail-
able on a single node.

(2) Sequential execution in committer : The committer sequen-
tially checks the read-set of each transaction in a block
against the committed state to ensure serializability. Only
after this validation process can the committer proceed
to commit all valid transactions to the ledger at once and
move to the next block. This sequential and non-pipelined
execution adds a significant overhead to the commit path.

(3) Disk Write Bandwidth Constraint: The committer’s perfor-
mance is further constrained by the available disk write
bandwidth on a single node.

(4) Exclusive Access to Ledger State: The endorser and com-
mitter vie for exclusive access to the ledger state. This
competition arises because executing transactions (en-
dorser operation) and accessing/writing to the system’s
state (committer operation) are mutually exclusive oper-
ations, necessitated by the limited concurrency control
implemented in the system’s state database.

• Limited flexibility on the endorser functionality. As explained
in the previous sections, HLF achieves high degrees of re-
silience in chaincode execution by protecting state updates
of the latter with multi-party endorsement policies. As a re-
sult, transactions typically include multiple signatures (cor-
responding to the various endorsers involved) resulting into

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

unnecessarily complex transaction format and storage over-
head. Notice that the transaction size has an immediate im-
pact on the performance of the ordering service, as consensus
protocols are typically communication bandwidth sensitive.
Moreover, the default implementation of HLF endorser en-
forces the execution of the same logic across different en-
dorsers of the chaincode, and prevents the use of chaincode-
and endorser-specific secrets throughout the endorsement
process. Departing from the default implementation of the
HLF endorser will allow endorsers to use application-specific
secrets, to communicate with each other, and even have them
submit the transaction directly to the orderers.
• Limited throughput by existing Byzantine Fault Tolerant Con-
sensus Algorithms. As mentioned before, HLF employs a con-
sensus protocol in the order phase, that outputs the sys-
tem’s transaction ledger. Traditional consensus protocols
that resist arbitrary behavior from a subset of the partici-
pants (aka byzantine fault tolerant consensus) demonstrate
low transaction throughput as the number of participating
nodes increases. In fact, in leader based consensus protocols
[16–19] the primary quickly saturates its egress bandwidth
as it is the one that broadcasts the block to all other partici-
pants. While [20] tackles this problem by running multiple
instances of consensus across several nodes and thus dis-
tributing the leader network bandwidth load across several
participants, further research is required to assess the feasi-
bility of incorporating such a protocol into HLF.

3.2 Optimising HLF for CBDC applications
As current instances of HLF [21] do not meet the performance and
message flow needs of retail CBDC, we enhanced HLF in four ways:
(1) we simplified the transaction format of HLF making it easier
for the committers to unpack the relevant data (read-write sets
and signatures) and for clients and endorsers to create it. (2) we re-
worked the HLF endorser to i) produce more compact transactions
via the use of threshold signature schemes, ii) operate chaincodes
in a more flexible manner, allowing application logic in them to
leverage endorser- and chaincode-specific secrets, and establish
communication channels with other endorsers; (3) we reworked
the HLF committer to allow high degree of parallelism in the val-
idate phase of transaction processing; (3) we reworked the HLF
peer to i) decouple endorser and committer component to reduce
contention for CPU resources; ii) make committer a distributed
transaction processing spanning several nodes; iii) simultaneously
execute read-set validation with high degree of parallelism by using
read-write dependency analysis; iv) employ a sophisticated data-
base that supports high degree of concurrency control so that the
endorsers and committers can simultaneously access the state; (4)
we reworked the HLF ordering service to accommodate a State of
the Art BFT algorithm.

3.2.1 Simplifying Transaction Format. HLF transaction is a nested
data schema of opaque byte blobs of serialized protobuf messages
(cf. Fig 4a). Each layer in the data schema identifies the type of the
message to be opened in the next layer. This design facilitates ex-
tendability as new data fields can be introduced without impacting
the overall data schema. On the downside, this nested hierarchy,

(a) (b)

Figure 4: Transaction format in current and new version of Hy-
perledger Fabric: (a) HLF nested transaction format. Gray indicates
a protobuf message encoded as opaque bytes; (b)New transaction
format. Each transaction contains a read-write set for several names-
paces. Each such namespace can contain reads, writes or read-writes.

incurs significant computational overhead, as processing each layer
involves memory allocation and copying. In contrast, a flat data
schema ensures that the different fields of the transaction can be
directly accessed in constant time, without memory copying or
allocation.

To simplify HLF transaction and decrease the overhead of its
processing, we introduce a new transaction format, which unlike
the old one, is flat, enabling hence, direct and fast access to each
element in the transaction, (i.e., without nested deserialization).

The new transaction is comprised of a unique transaction iden-
tifier, a list of signatures that correspond to the endorsements of
the executed chaincodes, and multiple lists of read-write sets orga-
nized by namespace. Each namespace identified in the transaction
corresponds to a ledger partitions that will be read and/or updated
during the validate phase.

Similarly to the old HLF transaction, the new transaction defines
a read-write set as follows: (1) each entry in a read-set consists
of a key in the corresponding namespace and a version number.
The version number allows the committers to efficiently check if
the chaincode has read the latest value of the key. On the other
hand, (2) each entry in the write-set is a pair ⟨key, value⟩ that will
be persisted in the system state if the transaction is successfully
committed.

We stress here that this transaction format is versatile, albeit
flat: recall that transaction validation consists of checking if the
transaction (1) reads fresh states, and (2) satisfies the endorsement
policies of the namespaces being updated. If both checks succeed,
then the committers (3) write the new state following the write-sets
in the transaction. Including only read-write sets, the identifiers of
the namespaces, and the signatures of the endorsers should suffice
to perform all of these checks.

3.2.2 Reworking the HLF Endorser. Fig. 7 depicts the new endorser
architecture.

The new endorser can host and execute multiple chaincodes,
whereby, each chaincode is associated with a signing key, which is
stored within a key management component. This component
maps the chaincode to its key and ensures that the key is available
to the signer component, which in turn, signs the result of the
chaincode execution. The endorser also comes with a coordinator

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

Figure 5: Each read-write set (referred to as RWSet in Figure 4)
identifies a namespace in the ledger and describes transaction de-
pendencies (read-set) and state updates (write-set).

that receives transaction proposals from clients and dispatches
them to the right chaincode for execution.

In contrast with the standard endorser in HLF, the new endorser
is extended with

• peer-to-peer communication that accommodates inter-
actions between endorsers when the application demands
it.
• an off-chain database that records application-specific data
required for chaincode execution but never stored in the
ledger.
• threshold signing, thanks to which, a transaction will cary
only one signature per chaincode execution, as opposed to a
multi-signature; reducing hence, its size and the number of
signature verifications to be performed at time of its valida-
tion. The new endorser supports three threshold signature
algorithms BLS [22], ECDSA [23], and EdDSA [24].

Finally, the new endorser is not required to be a committer. For
example, an endorser that only executes chaincodes that do not
require frequent access to the latest state of the ledger for correct
execution can do without being a committer. Instead, it can access
the state of the ledger through a lightweight query service on
demand.

3.2.3 Increasing concurrency control in HLF Committer. To address
the limitations of HLF discussed in 3.1, we have proposed a new
committer architecture composed of various services spanning
several nodes. The new committer architecture is depicted in Fig-
ure 7. To have high degree of parallelism in validation of signatures
against the endorsement policy, we introduced a new service called
signature validator, whose sole purpose is to utilize all available
CPU cores to validate signatures. Further, to optimize disk read
and write bandwidth utilization for both committer and endorsers,
we have introduced a new service called shard server. Each shard
server maintains a partition of the ledger state, validates read-set
freshness, applies write-set to the ledger, and also directly provides
query service to the endorser. Finally, we introduced a coordinator
which is responsible for processing transactions by communicating
with signature validators and shard servers. The coordinator and
shard servers execute 2-phase commit protocol[25] between them
to perform distributed validation and commit of transactions.

Furthermore, to increase the degree of parallelism in checking the
freshness of the read-set, we introduced transaction dependency
analysis in the coordinator. In existing committer, each transac-
tions read-set is validated sequentially because the validity of a
prior transaction may affect the validity of a later transaction. Let’s

Table 1: The read-write set of transactions present in block 𝐵1 and
𝐵2.

Block Tx. Read Set
(key, version)

Write Set
(key, value)

valid

𝐵1

𝑇1 (𝑘6, 1) (𝑘1, 𝑣1) ✓

𝑇2 (𝑘1, 2) (𝑘6, 𝑣6) ✗

𝑇3 (𝑘3, 1) (𝑘6, 𝑣7) ✓

𝑇4 - (𝑘5, 𝑣5) ✓

𝐵2
𝑇1 (𝑘5, 𝑛𝑖𝑙) (𝑘7, 𝑣1) ✗

𝑇2 (𝑘4, 3) (𝑘4, 𝑣4) ✓

consider an example to understand the necessity of serial valida-
tion of read-set. Consider two blocks of transactions, as shown
in Table 1. The table shows states read by each transaction under
Read Set column and states written by each transaction underWrite
Set column. Note that the version is a monotonically increasing
number associated with each state and is updated whenever the
state is modified. The transaction 𝑇1 being valid would render 𝑇2
invalid. This is becaues𝑇2 read the state 𝑘1 at version 2, while the𝑇1
updates the state 𝑘1 to new version. Consequently, read-set fresh-
ness check for 𝑇2 would fail. If we were to process both 𝑇1 and 𝑇2
in parallel, it is possible to get𝑇2 as valid and𝑇1 as invalid or to get
both transactions as valid, thereby violating serializability. How-
ever, 𝑇1 and 𝑇4 are independent of each other and can be processed
in parallel. To ensure correctness, the existing committer processes
each transaction sequentially.

In the new committer architecture, we track dependency be-
tween transactions using a dependency graph and process inde-
pendent transactions in parallel. This graph contains a node per
transaction. We use the term node and transaction interchangeably.
Let’s assume we have two transactions,𝑇𝑖 and𝑇𝑗 , with𝑇𝑖 appearing
in a block before 𝑇𝑗 (where 𝑇𝑗 can be in the same block or any sub-
sequent block). An edge from 𝑇𝑗 to 𝑇𝑖 denotes that the transaction
𝑇𝑖 ’s read-set must be validated before validating 𝑇𝑗 ’s read-set. The
following are the three types of dependencies that can create an
edge from 𝑇𝑗 to 𝑇𝑖 , where 𝑖 < 𝑗 :

• read-write dependency (𝑇𝑖
𝑟𝑤(𝑘)
←−−−−− 𝑇𝑗):𝑇𝑖 writes a new value

to state 𝑘 and updates its version. 𝑇𝑗 reads the previous
version of state 𝑘 . If 𝑇𝑖 is valid, 𝑇𝑗 must be invalid because
the read version is not the latest version. This read-write
dependency is also called fate dependency as the fate of 𝑇𝑗
is decided by 𝑇𝑖 .

• write-read dependency (𝑇𝑖
𝑤𝑟 (𝑘)
←−−−−− 𝑇𝑗): 𝑇𝑗 writes a new

value to state 𝑘 and updates its version.𝑇𝑖 reads the previous
version of state 𝑘 . Regardless of the validity of 𝑇𝑖 , 𝑇𝑗 can
be validated. We use this dependency to ensure 𝑇𝑗 is not
committed before 𝑇𝑖 . Otherwise, 𝑇𝑖 can be marked invalid as
it reads the previous version of state 𝑘 .

• write-write dependency (𝑇𝑖
𝑤𝑤(𝑘)
←−−−−−− 𝑇𝑗): Both 𝑇𝑖 and 𝑇𝑗

write to the same state 𝑘 . Regardless of the validity of 𝑇𝑖 , 𝑇𝑗
can be validated. We use this dependency to ensure𝑇𝑗 is not
committed before𝑇𝑖 . Otherwise, the write made by𝑇𝑗 would
be lost forever.

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

Note that an edge can only go from a newer transaction to an older
transaction, i.e., if 𝑇𝑖 ←− 𝑇𝑗 then 𝑖 < 𝑗 , because the commit order
is determined in the ordering phase. Thus, there are no cycles in
the dependency graph. The dependency graph of transactions in
Table 1 is shown in Figure 6. The transactions 𝑇1,𝑇4 in block 𝐵1
and 𝑇2 in block 𝐵2 are dependency-free and can be processed in
parallel. Other transactions have to wait for their dependencies to
be validated and committed or aborted.

T1 T2

T3
T4

T1

T2

wr (k6)
rw (k1)

wr (k
6) ww (k

6) rw (k 5
)

Block B1 Block B2

Figure 6: Dependency graph of transactions in Table 1.

Transaction Flow. Blocks that arrive from the ordering service
first reach the coordinator, which verifies the signature of the order-
ers on each block, and inserts the ordered set of transactions into its
transaction dependency graph. Transactions which do not depend
on any other transactions are processed in parallel, and once the
validation of a transaction concludes (either by having the transac-
tion committed or rejected), the transaction is removed from the
graph and dependents of this transaction are updated. If there are
any transaction that have fate dependency, i.e., rw-dependency, on
the committed transaction, they are marked as invalid and removed
from the graph.

More specifically, the coordinator sends the ordered transac-
tions to one of the signature validators, which verifies in a stateless
manner whether the transaction complies with the endorsement
policies of the namespaces identified in the transaction. The failure
to pass these checks results in the early the rejection of the transac-
tion. Meanwhile, the 2-phase commit protocol is executed between
the coordinator and shard servers. The coordinator dispatches the
transaction to the relevant shard servers to check the freshness of
the read-sets in the transaction against the (committed) ledger state.
That is, for each key in the read-sets, the coordinator calls the asso-
ciated shard server in parallel, whereas upon call, each shard server
checks if their assigned read-set entries are fresh or not. If that is
the case, the shard server sends back OK; else, it returns NOK. If
one of the shard servers responds withNOK, the coordinator marks
the transaction as invalid. Concurrently, the coordinator sends each
entry in the write sets to its respective shard server, while also
verifying if the transaction has passed the signature validation. If
the signature validation succeeds, the coordinator considers the
transaction valid; otherwise, invalid. Finally, if the transaction is
valid, the coordinator notifies the shard servers with entries in the
write-sets to apply the updates, and we say that the transaction is
committed. Else, the shard servers are asked to discard the updates.

3.2.4 Reworking HLF ordering service. To order transactions, we
leverage an improved version of the Narwhal and Tusk BFT con-
sensus [11], called ARMA. ARMA (as Narwhal and Tusk) replicates
transaction batches in parallel and uses a BFT protocol to order

Figure 7: Hyperledger Fabric Architecture, and the new endorser
and committer architecture within it. (1) Client submits a transac-
tion proposal to the endorsers of the chaincode to be invoked; the
endorsers trigger the corresponding chaincode’s execution (1a), by
accessing an off-chain state database (1b) and/or the ledger state
(1c); after the read/write set is compiled, the chaincode results are
signed by the endorser using the endorser’s key manager (1c), while
depending on the endorser’s configuration, this could trigger com-
munications with other endorsers, e.g., for a collaborative threshold
signature generation; notice that the ledger state can be implemented
as a replica of the actual system’s ledger (that would require endorser
to run a committer), or via a mechanism that connects to a commit-
ter, and only retrieves (endorser/chaincode-relevant) parts of the
ledger’s state. (2) Transaction is submitted to the ordering service
for ordering and from there (3) the transaction is delivered within
a block to the committer’s coordinator component; the coordina-
tor exchanges with the signature verifiers and the shards to ensure
validity of the signatures and read-set freshness (3.a/3/b), to finally
commit state updates (3.c) and respond to the client (4).

the headers of the corresponding transaction batches, instead of
the transactions themselves. Since the size of the headers is much
smaller than the size of the batch of the transactions (it is in the
order of a few hundreds of bytes per transaction batch), ARMA
(just like its predecessor [11]), overcomes the network bandwidth
bottleneck described in Section 3.1. Further distinguishing itself
from closely-related work like [11], ARMA is censorship resistant.
That is, it ensures that any transaction originating from an honest
participant will be eventually ordered.

4 TOKEN SYSTEMS FOR CBDC
In this paper, a token is a digital representation of a fungible fi-
nancial asset (e.g., CBDC, tokenized deposits, or securities). It is
defined as a triple (owner, type, value), and in systems with a single
asset type, a token can be reduced to the pair (owner, value). For
simplicity, in the remainder of this paper we focus on token systems
with a single type.

The state of a token is maintained in a ledger, and the updates it
undergoes are governed by three operations: Issue, Transfer and
Redeem. An Issue introduces new tokens into the system, and it is
a privileged operation that only a select few (or one) can initiate.
A Transfer, on the other hand, allows a user to send a token to
another user, whereas a Redeem removes tokens from the system.
Similar to Issue, Redeem is a privileged operation.

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

We note here that the operation that the ledger receives to update
the state of a token is wrapped in a message, commonly known as
a transaction. For transactions we adopt the Unspent Transaction
Output (UTXO) model, because of the advantages on the privacy
and concurrency control front[7].

For ease of exposition, we conflate the transaction with the
operation it carries, for e.g., the transaction that carries an Issue
operation is called an Issue transaction.

4.1 UTXO-based Token Transactions
A UTXO-based transaction is defined by a set of inputs and a set of
outputs. Inputs are references to tokens that have been generated
in the past and are in the possession of the transaction originator
(payer or issuer), while outputs are new tokens that are created
as a result of the transaction. If the transaction is valid, then the
inputs are deleted from the ledger (i.e., marked as spent), whereas
the outputs are added, ready to be used in subsequent transactions.

Assume that user 𝐴 would like to transfer a token of value 𝑣
to another user 𝐵. To that end 𝐴 builds a Transfer transaction as
follows: (1) selects from the tokens they own a subset (𝜏0, ..., 𝜏𝑛−1)
whose sum value ≥ 𝑣 ; (2) defines the inputs of the transaction as
id0, ..., id𝑛−1, whereby id𝑖 is the identifier of 𝜏𝑖 in the ledger; (3)
computes a token 𝜏𝐵 of value 𝑣 whose owner is 𝐵, and a second
token 𝜏𝐴 intended for 𝐴 whose value is (∑𝑛𝑖=1 𝑣𝑖) − 𝑣 , where 𝑣𝑖 is
the value of 𝜏𝑖 ; (4) sets the outputs of the transaction to 𝜏𝐵 and 𝜏𝐴 .

To guarantee that only the owner of a token can spend it, the
Transfer transaction must be signed by the owners of the inputs in
the transaction. Following the previous example, user 𝐴 will sign
the Transfer transaction prior to submitting it for validation.

At settlement time, a Transfer transaction is subjected to the
following checks, and all need to succeed for the transaction to be
accepted:

(1) All the inputs identified in the transaction exist in the ledger.
This corresponds to the double spending check.

(2) The sum value of the inputs equals the sum value of the out-
puts. This is the equality of sum check. Note that successful
checks of double spending and equality of sum reflect that
the total balance of tokens is preserved after the transfer. 7

(3) The rightful owners of the inputs signed the transaction.
This is the authorization check.

Each output of an accepted transaction is assigned a unique
identifier in the ledger. Usually, this is computed as a function of
the unique identifier of the transaction it creates it and its index in
that transaction (e.g., index of 𝜏𝐵 is 0 and index of 𝜏𝐴 is 1).

Prior to any Transfer, tokens must be first created via an Issue
transaction. In the UTXO model, an Issue is a transaction without
inputs, and the sum value of its outputs stands for the value being
injected into the system. The validation of an Issue checks if it was
signed by one of the parties authorized to create the tokens.

Finally, a Redeem in the UTXO model is a Transfer that contains
an output whose owner is empty. We call the output with empty
owner a redeemed output, and it is non-transferable: namely, no one
can sign a Transfer that includes as an input a redeemed output.
This de-facto reduces the value of tokens in circulation.
7Notice that if multiple types of tokens are supported in the system, the equality of
sum should ensure that the types of inputs and outputs are identical.

In the following sections, we describe how varying degrees of
transaction privacy can be achieved in the UTXO model: starting
from systems that only achieve user anonymity, to systems that also
ensure transaction confidentiality, concluding with systems that
guarantee transaction unlinkability. Transaction confidentiality
refers to the property that a transaction does not leak the values of
the inputs and the outputs, whereas transaction unlinkability refers
to the property that no one can link two transactions together (i.e.,
link the input of one transaction to the output of a previous one).

For the sake of simplicity, we only consider token systems with a
single issuer. Furthermore, since the validation of Issue transactions,
in single-issuer settings, does not change from one token system to
another, we omit it from the description. In fact, an Issue is valid if
it was signed by the authorized issuer. Finally, we focus on Transfer
transactions, as details pertaining to Redeem transactions can be
inferred from the description of the former.

4.2 Anonymous Token Systems
In the UTXO model, an anonymous Transfer hides the long-term
identities of the owners of the inputs and the outputs. In permis-
sionless systems like Bitcoin, anonymity is achieved by having
as token owners ephemeral public keys that are not tied to any
real-world identity. In permissioned systems where only registered
users are allowed to transact, ephemeral public keys are not suitable.
Instead, anonymous credentials [26, 27] are recommended. More
specifically, a registration authority grants each enrolled user a
credential that binds their unique enrollment identifier eid ∈ Z𝑝
with their secret key sk ∈ Z𝑝 . Z𝑝 is the set {0, 1, ..., 𝑝 − 1}, where 𝑝
is prime. Roughly speaking, the user credential cred is a signature
of the registration authority on the pair (sk, eid). If pk𝑅 denotes the
public key of the registration authority and Verify the algorithm to
verify its signatures, then Verify(pk𝑅, cred, (sk, eid)) = 1.

A token 𝜏 is consequently defined as a pair (𝑐, 𝑣)8, with 𝑐 =

Commit(𝑒𝑖𝑑, 𝑡) is the hiding commitment of the enrollment identi-
fier of the owner eid using some randomness 𝑡 ∈ Z𝑝 , and 𝑣 ∈ Z is
the value of the token. This assures that the identity of the owner
of 𝜏 is not leaked to those with access to the ledger.

Let ttx = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1) be the Transfer transaction that
spends token 𝜏0 = (𝑐0, 𝑣0) and token 𝜏1 = (𝑐1, 𝑣1), i.e, 𝑖𝑛0 (resp. 𝑖𝑛1)
identifies 𝜏0 (resp. 𝜏1) in the ledger. To sign ttx anonymously, the
owner of 𝜏0 and 𝜏1 produces two signatures of knowledge 𝜎0 and 𝜎1
on ttx such that each 𝜎𝑏 , 𝑏 ∈ {0, 1} proves the following statement:

∃ cred𝑏 , sk𝑏 , eid𝑏 , 𝑡𝑏 s.t.
𝑐𝑏 = Commit(𝑒𝑖𝑑𝑏 , 𝑡𝑏)
1 = Verify(pk𝑅, cred𝑏 , (𝑠𝑘𝑏 , eid𝑏))

We recall that a signature of knowledge is a non-interactive zero-
knowledge proof that can also be used to sign messages.

The user then submits for validation the signed transaction

ttx = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1, 𝜎0, 𝜎1).

Validation of Anonymous Transfer Transactions. ttx is validated
by checking that (1) the tokens 𝜏0 and 𝜏1 identified by 𝑖𝑛0 and 𝑖𝑛1
exist in the ledger, (2) the sum value of 𝜏0 and 𝜏1 equals the sum

8In systems without any privacy, 𝜏 is pair (eid, 𝑣) , i.e., the token reveals the identity
of its owner and its value.

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

value of 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1, and (3) 𝜎0 and 𝜎1 are valid signatures of
knowledge relative to tokens 𝜏0 and 𝜏1 and the public key pk𝑅 of
the registration authority. If ttx passes all the checks, then 𝜏0 and
𝜏1 are deleted, while 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1 are added to the ledger.

Now that we showed how anonymity is achieved when users are
compelled to use their long-term identities to authorize Transfer
transactions, we describe next how to hide the values of the inputs
and the outputs of the transactions.

4.3 Anonymous and Confidential Token
Systems

In [28], Poelstra et al. show how to hide the values and still enable
the balance preservation check. A token 𝜏 in [28] is a hiding com-
mitment to pair (eid, 𝑣), i.e, 𝜏 = Commit(eid, 𝑣, 𝑡)9 for 𝑣 ∈ Z𝑝 and
some randomly-chosen 𝑡 ∈ Z𝑝 .

Let ttx = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1) be the Transfer transaction that
spends token 𝜏0 and token 𝜏1.

Since the values of the inputs and outputs are now hidden, ttx
contains a zero-knowledge ΠSum that proves that the sum of the
inputs equals the sum of the outputs. That is:

∀𝑏 ∈ {0, 1} : ∃ eid𝑖𝑛,𝑏 , 𝑣𝑖𝑛,𝑏 , eid𝑜𝑢𝑡,𝑛, 𝑣𝑜𝑢𝑡,𝑏 , 𝑡𝑖𝑛,𝑏 , 𝑡𝑜𝑢𝑡,𝑏 s.t.
𝜏𝑏 = Commit(eid𝑖𝑛,𝑏 , 𝑣𝑖𝑛,𝑏 , 𝑡𝑖𝑛,𝑏)

𝑜𝑢𝑡𝑏 = Commit(eid𝑜𝑢𝑡,𝑏 , 𝑣𝑜𝑢𝑡,𝑏 , 𝑡𝑜𝑢𝑡,𝑏)
𝑣𝑖𝑛,0 + 𝑣𝑖𝑛,1 = 𝑣𝑜𝑢𝑡,0 + 𝑣𝑜𝑢𝑡,1 mod 𝑝

𝑣𝑜𝑢𝑡,𝑏 < 𝑚𝑎𝑥.

𝑚𝑎𝑥 refers here to the maximum value a token can hold. By restrict-
ing the range of the individual values of the outputs to [0,𝑚𝑎𝑥 (,
where max << 𝑝 , we ensure that there is no field wrap-arounds
when one adds up the values of the outputs.

Finally, to authorize ttx, the owner of 𝜏0 and 𝜏1 produces two
signatures of knowledge 𝜎0 and 𝜎1 on (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum)
such that each 𝜎𝑏 , 𝑏 ∈ {0, 1}, proves the following:

∃ cred𝑏 , sk𝑏 , eid𝑏 , 𝑣𝑏 , 𝑡𝑏 s.t.
𝜏𝑏 = Commit(𝑒𝑖𝑑𝑏 , 𝑣𝑏 , 𝑡𝑏)
1 = Verify(pk𝑅, cred𝑏 , (𝑠𝑘𝑏 , eid𝑏))

The user then submits for validation

ttx = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum, 𝜎0, 𝜎1).

Validation of Anonymous and Confidential Transfer Transactions.
ttx is validated by checking that (1) the tokens 𝜏0 and 𝜏1 identified
by 𝑖𝑛0 and 𝑖𝑛1 exist in the ledger, (2) ΠSum is a valid zero-knowledge
proof that proves that the sum value of 𝜏0 and 𝜏1 equal the sum
value of 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1, and (3) 𝜎0 and 𝜎1 are valid signatures of
knowledge relative to tokens 𝜏0 and 𝜏1, and the public key pk𝑅 of
the registration authority. If ttx passes all the checks, then 𝜏0 and
𝜏1 are deleted, and 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1 are added to the ledger.

Following these steps, one can produce Transfer transactions
that are both anonymous and confidential. Next, we describe how
these transactions can be made unlinkable.

9If anonymity is not required, then the token 𝜏 can be defined as pair (eid, 𝑐) , where
𝑐 = Commit(𝑣, 𝑡) .

4.4 Unlinkable Token Systems
In order to prevent double spending attacks, token transactions
identify the inputs, and when deemed valid, result in the deletion
of said inputs. This however, undermines transaction unlinkability,
and with user privacy. In particular, by revealing the inputs of a
transaction, anyone with access to the ledger can infer that the
owner of an output in one transaction (whether Issue or Transfer)
is the initiator of the Transfer spending that output.

Hence, to guarantee transaction unlinkability, it is crucial not to
reveal the tokens being spent in a Transfer. The challenge in this
case is to show that an input to a Transfer (1) is actually the output
of a valid transaction; and (2) hasn’t been spent before.

In Zerocash [29], Bensasson et al. demonstrated how to effi-
ciently achieve both goals. The first is realized by relying on zero-
knowledge proofs of membership, which are leveraged to prove
that a token is in the ledger without revealing the location of the
token. The second is met by assigning unique serial numbers to
tokens, which are revealed at time of spending.

We now describe how to enhance anonymous and confidential
transactions with unlinkability.

We start from the credential cred given to a user in the system.
cred is now defined as a signature by the registration authority
on triple (sk, 𝐾, eid), where 𝐾 is a secret key for a pseudo-random
function PRF. Moreover, a token 𝜏 becomes a hiding commitment
Commit(eid, 𝑣, 𝑟, 𝑡), with 𝑟 and 𝑡 being two random numbers in
Z𝑝 . A Transfer that spends 𝜏 , includes as input a pair 𝑖𝑛 = (𝜏 ′, 𝑠𝑛).
𝜏 ′ = Commit(eid, 𝑣, 𝑟, 𝑡 ′) is a randomization of 𝜏 and 𝑠𝑛 is 𝜏 ’s serial
number, computed as 𝑠𝑛 = PRF(𝐾, 𝑟).

Let ttx be the transfer transaction that spends two tokens (𝜏0, 𝜏1)
and creates two outputs 𝑜𝑢𝑡0, 𝑜𝑢𝑡1. ttx, correspondingly, carries tu-
ple (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1) such that 𝑖𝑛0 = (𝜏 ′0, 𝑠𝑛0) and 𝑖𝑛1 = (𝜏

′
1, 𝑠𝑛1).

ttx also carries the zero-knowledge proof ΠSum that proves that
𝑜𝑢𝑡0 and 𝑜𝑢𝑡1 sum up to the same value as 𝑖𝑛0 and 𝑖𝑛1, i.e, ΠSum
shows that:

∀𝑏 ∈ {0, 1} : ∃ eid𝑖𝑛,𝑏 , 𝑣𝑖𝑛,𝑏 , eid𝑜𝑢𝑡,𝑛, 𝑣𝑜𝑢𝑡,𝑏 , 𝑟𝑖𝑛,𝑏 , 𝑟𝑜𝑢𝑡,𝑏 , 𝑡𝑖𝑛,𝑏 , 𝑡𝑜𝑢𝑡,𝑏 s.t.
𝜏𝑏 = Commit(eid𝑖𝑛,𝑏 , 𝑣𝑖𝑛,𝑏 , 𝑟𝑖𝑛,𝑏 , 𝑡𝑖𝑛,𝑏)

𝑜𝑢𝑡𝑏 = Commit(eid𝑜𝑢𝑡,𝑏 , 𝑣𝑜𝑢𝑡,𝑏 , 𝑟𝑖𝑛,𝑏 , 𝑡𝑜𝑢𝑡,𝑏)
𝑣𝑖𝑛,0 + 𝑣𝑖𝑛,1 = 𝑣𝑜𝑢𝑡,0 + 𝑣𝑜𝑢𝑡,1 mod 𝑝

𝑣𝑜𝑢𝑡,𝑏 < 𝑚𝑎𝑥.

ttx also includes a zero-knowledge proof Π𝑠𝑛 that shows that 𝑠𝑛0
and 𝑠𝑛1 were computed correctly as a function of 𝜏 ′0 and 𝜏

′
1. Namely,

Π𝑠𝑛 ascertains that:

∀𝑏 ∈{0, 1} : ∃ cred𝑏 , sk𝑏 , 𝐾𝑏 , eid𝑏 , 𝑣𝑏 , 𝑟𝑏 , 𝑡 ′𝑏 s.t.
𝜏 ′
𝑏
= Commit(eid𝑏 , 𝑣𝑏 , 𝑟𝑏 , 𝑡 ′𝑏)

𝑠𝑛𝑏 = PRF(𝐾𝑏 , 𝑟𝑏)
1 = Verify(pk𝑅, cred𝑏 , (𝑠𝑘𝑏 , 𝐾𝑏 , eid𝑏))

So far ttx only shows that the sum of inputs matches the sum of
outputs and that 𝑠𝑛0 and 𝑠𝑛1 are computed correctly with respect
to the information encoded in 𝜏 ′0 and 𝜏

′
1. ttx does not guarantee,

however, that 𝜏 ′0 and 𝜏
′
1 are the randomization of two tokens that

already exist in the ledger. To tackle this issue, we leverage zero-
knowledge membership proofs. These are proofs that allow one

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

to prove that an element is in a set without revealing any infor-
mation about the said element. These proofs can be implemented
using various techniques including Merkle trees, accumulators, or
signatures. For efficiency purposes and similar to [12], we rely on
signature-based membership proofs. More specifically:
• We introduce certifiers whose majority is assumed to be hon-
est. The certifiers crawl the ledger, and upon users’ requests
jointly sign the outputs of valid transactions, using thresh-
old signatures. We call such an operation a certification of
an output. The certifiers store the resulting signatures and
return them upon query.
We denote hereafter pk𝐶 the public key associated with the
threshold signature and 𝛾 the output of an execution of the
threshold signature.
• A user then fetches the signatures of the tokens they own,
and stores them for later use. We call tokens that are signed
by the certifiers, certified tokens.
• ttx is enhanced with a third zero-knowledge proof ΠExist
that proves the following:

∀𝑏 ∈{0, 1} : ∃ 𝛾𝑏 , eid𝑏 , 𝑣𝑏 , 𝑟𝑏 , 𝑡𝑏 , 𝑡 ′𝑏 s.t.
𝜏 ′
𝑏
= Commit(eid𝑏 , 𝑣𝑏 , 𝑟𝑏 , 𝑡 ′𝑏)

𝜏𝑏 = Commit(eid𝑏 , 𝑣𝑏 , 𝑟𝑏 , 𝑡𝑏)
1 = Verify(pk𝐶 , 𝛾𝑏 , 𝜏𝑏)

At this point, ttx = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum,Π𝑠𝑛,ΠExist), and
the owner(s) of 𝜏0 and 𝜏1 generate two signatures of knowledge
(𝜎0, 𝜎1) on ttx for the following statement:

∀𝑏 ∈ {0, 1} : ∃ cred𝑏 , sk𝑏 , 𝐾𝑏 , eid𝑏 , 𝑟𝑏 , 𝑡𝑏 s.t.
𝜏 ′
𝑏
= Commit(eid𝑏 , 𝑣𝑏 , 𝑟𝑏 , 𝑡 ′𝑏)

1 = Verify(pk𝑅, cred𝑏 , (𝑠𝑘𝑏 , 𝐾𝑏 , eid𝑏))
The resulting transaction

ttx = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum,Π𝑠𝑛,ΠExist, 𝜎0, 𝜎1), where
𝑖𝑛0 = (𝜏0, 𝑠𝑛0) ; 𝑖𝑛1 = (𝜏1, 𝑠𝑛1)

is then submitted for validation.

Validation of Unlinkable Transfer Transactions. ttx is validated
by checking that (1) 𝑠𝑛0 and 𝑠𝑛1 do not appear in ledger, (2) ΠExist is
a valid zero-knowledge proof that 𝜏 ′0 and 𝜏

′
1 are the randomization

of certified tokens, (3) Π𝑠𝑛 is a valid zero-knowledge that shows
that 𝑠𝑛0 and 𝑠𝑛1 were correctly computed, (4) ΠSum is a valid zero-
knowledge proof that shows that 𝜏 ′0 and 𝜏 ′1 sum up to the same
value as 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1, and (5) 𝜎0 and 𝜎1 are valid signatures of
knowledge by the owner(s) encoded in 𝜏 ′0 and 𝜏

′
1. If ttx passes all

the checks, then (𝑠𝑛0, 𝑠𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1) are added to the ledger.

4.5 Audit in Token Systems
Financial applications often require audit capabilities. Token sys-
tems, as a result, must accommodate such capabilities by design. In
a token system that does not offer any privacy protections, audit
is supported automatically: anyone with access to the ledger can
check the identities of the transacting parties and the values of
the transactions. In contrast, token systems that preserve user pri-
vacy make it impossible for auditors to inspect transactions just by
crawling the ledger, which now depending on the implementation,

only contain partially or fully obfuscated transactional information.
Audit in such a setting is facilitated by one of two approaches:

(1) Active Audit: The initiator of a transaction, be it Issue or
Transfer, provides the transaction together with some meta-
data to the authorized auditors. The metadata contains the
information of the transaction in the clear. The auditors
check if the transaction information matches the transaction
and if it complies with the audit rules. If both checks succeed,
then the auditors sign off the transaction and return the sig-
nature to the transaction initiator. When the transaction is
submitted for validation, it undergoes an additional signa-
ture verification that ascertains if the auditors inspected and
accepted the transaction.

(2) Passive Audit: A transaction in this approach is augmented
with ciphertexts that can only be decrypted by the authorized
auditors. To guarantee that the auditors can retrieve the
transactional information successfully without any external
help, the ciphertexts carry proofs that confirm that they
encrypt the correct information and can be decrypted by the
auditors.

5 SCALABLE ARCHITECTURE FOR CBDC
The main components of our CBDC architecture are the user wallets
and the settlement engine. Each user wallet is held by either an issuer,
a payer or a payee, and its task is to translate the instructions of
its holder into token transactions. These transactions are settled by
the settlement engine, which builds on HLF in the following way:
• A chaincode, we call the token chaincode, implements the
validity checks of the token transactions described in Section
4. Notably, the token chaincode verifies the signature(s) of the
issuers and/or the token owners, and the zero-knowledge
proofs whenever transaction privacy is supported. These
checks are performed with minimal access to the ledger
state; the chaincode only accesses the chaincode’s version or
the system configuration (e.g., identity rules), which seldom
change.
• Upon receiving a token transaction, the endorsers of the
token chaincode, referred to as token endorsers, output
the results of the transaction execution in the form of read-
write sets, such that: (1) the read-sets describe the read-
dependencies of the token transaction, including the most
recent versions of the system configuration; and (2) the write-
sets reflect the state updates that the token transaction will
apply to the ledger if committed (e.g., creating new tokens or
marking old tokens as spent). The token endorsers then sign
the transaction’s execution results using their (threshold)
signing key. The token endorsers can be additionally con-
figured to deliver the endorsed transaction to the ordering
service on behalf of the user wallets that constitute the HLF
client in this case.
• The ordering service establishes the total order of the en-
dorsed token transactions by batching them into a sequence
of signed blocks.
• The committers validate the transactions against the endorse-
ment policy of the token chaincode and the content of the
ledger, and update the state of the ledger accordingly. It is

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

Figure 8: Scalable CBDC Architecture. (1) Client transaction requesting issuance of new CBDCs or transfer of CBDCs is submitted to the
system; (2) Token Endorsers (front end component, called Coordinator) receive the Client transaction and execute the token chaincode (1.a)
by occasionally accessing the ledger state (1.b); upon completion of the chaincode’s execution, the endorser produces a signed version of
the settlement transaction (1.c), and stores the associated client transaction to its Transaction Metadata database (1.d); it finally returns the
settlement transaction to the Coordinator (1.e) that forwards the former to the HLF ordering service, that delivers the transaction in a block to
the committers of the system (including the ones endorsers rely on), where the transaction proposed state updates are stored on the ledger
triggering further notification to the transaction client originator (4). In privacy-preservation scenarios, users may request that their tokens
are certified via a query submitted to the system’s endorsers (5), triggering the execution of the query chaincode or / certification chaincode
(5.b), that after consulting with the system’s ledger (5.c) leverage the endorser’s key manager (5.d) to certify the requested token and return it
to the client (5.e and 6).

at this stage that double-spending attempts are caught, and
system upgrades are enforced.

The settlement engine also includes a query service that responds
to user queries on the results of the processed transactions. The
query service can be built either on top of the token chaincode, or
in a dedicated chaincode with its own endorsement policy.

5.1 Transaction Model and Lifecycle
A CBDC system is governed by three types of business transactions:
Issue, Transfer, and Redeem. In our architecture, these transactions
come in two forms: client transactions and settlement transactions.
A client transaction is the message submitted to the settlement
engine by a user wallet, and whose content varies depending on the
business transaction it serves and the token exchange mechanism
employed. In HLF parlance, this is the proposal submitted to the
token endorsers by an HLF client, which is the user wallet in this
instance. A settlement transaction, on the other hand, is a compact
version of the client transaction, submitted by the token endorsers
directly to the ordering service of the settlement engine. Using
HLF terminology, this is the HLF transaction, which includes the
read-write sets and the signatures of the endorsers. After ordering,
the settlement transaction is handed over to the committers, which
following the logic described in Section 3.2.3, validate the settlement
transaction and commit its write-set if deemed valid, concluding
hence, the lifecycle of the token transaction.

For ease of exposition, we distinguish between token systems
with transaction unlinkability (i.e., full privacy) and those without.
Notably, Section 5.2 demonstrates that systems without unlinkabil-
ity share the same client transaction format and endorsement logic,
despite offering different privacy guarantees, whereas Section 4.4
describes the token systems with unlinkability and highlights the
differences.

5.2 Token Systems without Transaction
Unlinkability

Following the description in Section 4, transactions in such systems
identify the tokens to be spent, revealing what we call the transac-
tion graph (i.e. the relation between the inputs and the outputs in
the ledger). However, depending on the desired privacy level, the
outputs of the transactions can

(1) reveal all the transaction information (zero privacy);
(2) hide the identities of the transacting parties (anonymity);
(3) hide the values of the transactions (confidentiality);
(4) hide both (anonymity and confidentiality).

Figure 9: Client transaction format.

5.2.1 Transaction Model. In settings where transaction unlinka-
bility is not required, the client transaction is a standard UTXO
transaction, with inputs and outputs, and the signatures of the
issuer or/and the token owners.

When transaction confidentiality is desired, the client transaction
will additionally carry a zero-knowledge proof that shows that the
transaction preserves the value (i.e., the sum of the inputs equals
the sum of the outputs), cf. Figure 9.

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

A client transaction is then translated into a settlement trans-
action as follows. The settlement transaction of an Issue consists
of a write-set in which, there are entries ⟨out_key, ser_out⟩ corre-
sponding to the tokens to be created (i.e., the transaction outputs).
The key out_key is the unique identifier of the output in the ledger,
which is set to the concatenation of the transaction identifier, the
hash of the token, and the index of the output in the transaction10,
and ser_out is the serialization of the output.

Similarly, the settlement transaction of Transfer carries a write-
set containing two types of entries: the first contains the outputs
of the transaction ⟨out_key, ser_out⟩, and the second the delete
instructions of the inputs represented by ⟨in_key, isDelete = true⟩,
where in_key is the key in the ledger of the input to be deleted.
Furthermore, the settlement transaction contains a read-set with
entries ⟨in_key, 0⟩. This guarantees that at time of transaction val-
idation, double spending attempts are thwarted. Actually, if two
transactions try to spend the same input, this will generate a ver-
sion conflict in the read sets. If one of these two transactions gets
committed, then it will delete the input, incrementing hence the
version of the corresponding key, leading the other transaction to
fail due to an outdated read-set entry.

Next, we explain in more details the functionalities of the com-
ponents of our architecture focusing on the flow of Transfer trans-
actions. Issue transactions adopt a similar processing flow.

5.2.2 User Wallets. The wallet securely stores the user’s credential
(i.e., long-term identity), defined as tuple (eid, sk, cred), whereby
eid is the unique identifier of the user, sk her secret key, and cred
is the signature from the registration authority on pair (eid, sk).
The user wallet also stores for each token 𝜏𝑖 , the information that
enables its spending. For example, in a token system without any
privacy protections, 𝜏𝑖 = (eid, 𝑣𝑖) and the wallet stores ⟨𝜏𝑖 , in_key𝑖 ⟩,
where in_key𝑖 is the identifier of 𝜏𝑖 in the ledger. In a token system
with anonymity, 𝜏𝑖 = (𝑐𝑖 , 𝑣𝑖), where 𝑐𝑖 = Commit(eid, 𝑡𝑖) and the
wallet stores ⟨𝜏, 𝑡𝑖 , in_key𝑖 ⟩. Finally, in a system that also ensures
transaction confidentiality 𝜏𝑖 = Commit(eid, 𝑣𝑖 , 𝑡𝑖) and the wallet
stores ⟨𝜏𝑖 , 𝑣𝑖 , 𝑡𝑖 , in_key𝑖 ⟩.

Assuming that the user instructs the wallet to transfer a token
of value 𝑣 ′ to a payee identified by eid′, the user wallet assembles
the corresponding transaction as follows:

• Select tokens 𝜏𝑖 such that the sum value of these tokens
exceed 𝑣 ′. Without loss of generality, we assume that the
wallet picked two tokens 𝜏0 and 𝜏1.
• Create two outputs 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1, such that 𝑜𝑢𝑡0 is intended
for the payee and has value 𝑣 ′, and 𝑜𝑢𝑡1 is the change to be
returned to the payer, and accordingly, is of value 𝑣0 +𝑣1−𝑣 ′.
• Produce tuple (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1), where 𝑖𝑛0 = (𝜏0, in_key0)
and 𝑖𝑛1 = (𝜏1, in_key1).
• When transaction confidentiality is required, compute ΠSum
to prove that 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1 sum up to the same value as 𝜏0
and 𝜏1. Let 𝜇 = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum)

10This identifier is unique, given that HLF enforces uniqueness of transaction
identifiers.

1: Input
(TxID, (𝜏0, in_key0), (𝜏1, in_key1), 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum, 𝜎0, 𝜎1);

2: Output
A client transaction ctx

3: ctx← NewClientTx()
4: ctx.TxID← TxID
5: for 𝑏 ∈ {0, 1} do
6: ctx.InputIdentifiers[𝑏] ← in_key𝑏
7: ctx.Inputs[𝑏] ← 𝜏 ′

𝑏
.Serialize()

8: ctx.Outputs[𝑏] ← 𝑜𝑢𝑡𝑏 .Serialize()
9: ctx.Signatures[𝑏] ← 𝜎𝑏 .Serialize()
10: end for
11: ctx.ZKProof ← ΠSum .Serialize()
12: return ctx

Figure 10: Building a client transaction.

• Compute TxID as the concatenation of the hash of 𝜇 and
some randomness11. TxID is the unique identifier of the
client transaction.
• Subsequently, compute two signatures𝜎0 and𝜎1 on (TxID, 𝜇),
as depicted in Section 4, and assemble a client transaction,
as shown in Figure 10.
• Then communicate to the payee the identifier TxID of the
transaction. This identifier allows the payee to track the sta-
tus to the transaction in the ledger. In anonymous token
systems the payer also communicates to the payee the ran-
domness 𝑡 ′ used to compute 𝑜𝑢𝑡0 = (Commit(eid′, 𝑡 ′), 𝑣 ′).
When transaction confidentiality is supported, the payer
additionally communicates 𝑣 ′.
• Finally, submit the client transaction to the settlement engine,
more specifically, to the token endorsers for processing.

5.2.3 Settlement Engine. In this section, we expand on the com-
ponents and functionalities of the settlement engine, illustrated in
Figure 8.

Token Endorsers & Token Chaincode. In our architecture, the token
endorsers support a threshold signing algorithm ThresholdSign to
sign the results of the token chaincode execution (i.e, the settlement
transactions). Correspondingly, each endorser is equipped with a
secret share denoted tsk. Without loss of generality, we assume that
there are 𝑛 token endorsers and that the threshold of the signature
is 𝑡 . Consequently, a settlement transaction is successfully signed
only if 𝑡 + 1 honest token endorsers come together.

Upon receiving a client transaction (Step 1 Fig 8), the token
endorsers run the token chaincode, which validates the transac-
tion following the description in Section 4. More specifically, the
chaincode checks if
• TxID contains the hash of (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum);
• identifiers in_key0 and in_key1 include the hash of 𝜏0 and
𝜏1 respectively;
• ΠSum is a valid zero-knowledge proof;

11The randomness is only necessary when the token system does not provide any
privacy protections.

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

1: Input
ctx ⊲ a client transaction
tsk ⊲ a threshold signature secret share

2: Output
stx ⊲ a settlement transaction

3: stx← NewSettlementTX()
4: stx.TxID← ctx.TxID
5: stx.NameSpace← "token"
6: for 𝑏 ∈ {0, 1} do
7: RSEntry← ⟨ctx.InputIdentifiers[𝑏], 0⟩
8: stx.ReadSet← stx.ReadSet ∪ RSEntry

⊲ Delete the inputs
9: WSEntry← ⟨ctx.InputIdentifiers[𝑏], isDelete⟩
10: stx.WriteSet← stx.WriteSet ∪WSEntry
11: end for

⊲ Add the created outputs to the write-set
12: for 𝑏 ∈ {0, 1} do
13: WSEntry← ⟨stx.TxID| |ℎ𝑎𝑠ℎ(𝑜𝑢𝑡𝑏) | |𝑏, 𝑜𝑢𝑡𝑏 .Serialize()⟩
14: stx.WriteSet← stx.WriteSet ∪WSEntry
15: end for

⊲ The token endorsers jointly generate a threshold signature
on stx

16: 𝜙 ←ThresholdSign(tsk, stx)
17: stx.Signature← 𝜙.Serialize()
18: return stx

Figure 11: Building a settlement transaction.

• 𝜎0 and 𝜎1 are valid signatures by the owners of 𝜏0 and 𝜏1
respectively over tuple (TxID, 𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum).

If any of these checks fail, then the chaincode rejects. Otherwise,
it produces a read-write set as described in Section 5.2.1, and as-
sembles a settlement transaction with identifier TxID using the
produced read-write sets.

After the token chaincode produces the content of the settlement
transaction, the token endorsers jointly sign it using the threshold
signing algorithmThresholdSign and their shares tsk.

We stress here that the token chaincode execution does not
require reading any state, that is, the token endorsers do not access
any information from their local storage, for example, to check
whether the inputs are stored in the ledger.

The token endorsers then submit the signed settlement transac-
tion to the ordering service (Step 2, Figure 8) and listen for the trans-
action confirmation, which indicates its final status, i.e., whether it
is valid and has been committed or not. If the endorsers do not re-
ceive the confirmation after a timeout, they resubmit the settlement
transaction.

Committers. Committers validate the ordered transactions as de-
scribed in Section 3.2.3. Notice that thanks to the way we encode
the read-write sets, attempts to double spend a token will result
in a read conflict (i.e., the state of the spent inputs is outdated),
invalidating the double-spending transaction.

5.3 Token Systems with Transaction
Unlinkability

We recall that token transactions that assure unlinkability hide
the transaction graph (i.e. the relation between the inputs and the
outputs in the ledger).

5.3.1 Transaction Model. Following the privacy-preserving proto-
col detailed in Section 4.4, we describe the content of client trans-
actions and the corresponding settlement transactions. In the case
of an Issue transaction, the client transaction comprises the out-
puts and the signature of the issuer. The corresponding settlement
transaction contains a write-set that includes the issued outputs as
⟨out_key, ser_out⟩.

In the case of a Transfer transaction, each output is a token as
usual, and each input is defined as the randomization of a token in
the ledger, and the serial number of that token. The transaction also
contains the zero-knowledge proofs that show that the transaction
is well-formed, and the signatures of the token owners (cf. Figure12).

The associated settlement transaction carries a read-set where
for each serial number 𝑠𝑛 in the client transaction, there is an entry
⟨𝑠𝑛, nil⟩ signaling that, at the time of transaction commitment, entry
with key 𝑠𝑛 should be empty. The transaction also contains a write-
set with entries ⟨out_key, ser_out⟩ writing the outputs, and entries
⟨𝑠𝑛, spent⟩ indicating that the serial numbers should be marked as
spent, when the transaction is committed. In this way, the validation
phase enforces that a token can only be spent once. In fact, two
transactions that spend the same token will result in a conflict.
Either the first gets committed and the second gets rejected on the
ground that one of the entries ⟨𝑠𝑛, nil⟩ in the read-set is no longer
empty, or vice-versa.

Figure 12: Client transaction format for a token system with trans-
action unlinkability.

We now describe the user wallets and the settlement engine for
a token system that guarantees transaction unlinkabiliy.

5.3.2 User Wallets. We first recall that a token 𝜏 in such a system
is defined as a commitment Commit(eid, 𝑣, 𝑟, 𝑡), where eid is the
unique identifier of the owner, 𝑣 is the value, 𝑟 is the randomness
used to compute the serial number of the token, and 𝑡 is the ran-
domness of the commitment. Furthermore, to be able to spend 𝜏 ,
its owner must have access to the signature 𝛾 of the certifiers on 𝜏 .
The certifiers sign a token only if that token is committed in the
ledger.

Accordingly, the wallet securely stores the user’s credential
(eid, sk, 𝐾, cred), whereby eid is the unique identifier of the user, sk

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

1: Input
(TxID, (𝑠𝑛0, 𝜏 ′0), (𝑠𝑛1, 𝜏

′
1), 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum,ΠSN,ΠExist, 𝜎0, 𝜎1);

2: Output
A client transaction ctx

3: ctx← NewClientTx()
4: ctx.TxID← TxID
5: for 𝑏 ∈ {0, 1} do
6: ctx.SerialNumbers[𝑏] ← 𝑠𝑛𝑏 .String()
7: ctx.RandInputs[𝑏] ← 𝜏 ′

𝑏
.Serialize()

8: ctx.Outputs[𝑏] ← 𝑜𝑢𝑡𝑏 .Serialize()
9: ctx.Signatures[𝑏] ← 𝜎𝑏 .Serialize()
10: end for
11: ctx.ZKProofs[0] ← ΠSum .Serialize()
12: ctx.ZKProofs[1] ← ΠSN .Serialize()
13: ctx.ZKProofs[2] ← ΠExist .Serialize()
14: return ctx

Figure 13: Building a client transaction for token systems with
transaction unlinkability.

her secret key, 𝐾 is her secret key dedicated to computing the serial
numbers12, and cred is the signature from the registration authority
on vector (eid, sk, 𝐾). The user wallet also stores for each token 𝜏 ,
the information that enables its spending. Namely,the wallet stores
entries ⟨𝜏, (𝑣, 𝑟, 𝑡, 𝛾)⟩.

As in Section 5.2.2, we assume that the user instructs the wallet
to transfer value 𝑣 ′ to payee with identifier eid′. The user wallet
assembles the corresponding client transaction as follows:
• Select the first entries ⟨𝜏𝑖 , (𝑣𝑖 , 𝑟𝑖 , 𝑡𝑖), 𝛾𝑖 ⟩ such that

∑
𝑣𝑖 ≥ 𝑣 ′.

Without loss of generality, we assume that the wallet picked
entries ⟨𝜏0, (𝑣0, 𝑟0, 𝑡0), 𝛾0⟩ and ⟨𝜏1, (𝑣1, 𝑟1, 𝑡1), 𝛾1⟩.
• Create two outputs𝑜𝑢𝑡0 = Commit(eid′, 𝑣 ′, 𝑟 ′0, 𝑡

′
0) and𝑜𝑢𝑡1 =

Commit(eid, 𝑣0 + 𝑣1 − 𝑣 ′, 𝑟 ′1, 𝑡
′
1).

• Next, following the steps described in Section 4.4, produce
the tuple: 𝜇 = (𝑖𝑛0, 𝑖𝑛1, 𝑜𝑢𝑡0, 𝑜𝑢𝑡1,ΠSum,ΠSN,ΠExist), where
𝑖𝑛0 = (𝑠𝑛0, 𝜏 ′1) and 𝑖𝑛1 = (𝑠𝑛1, 𝜏

′
1).

• Compute TxID as the hash of 𝜇.
• Compute two signatures 𝜎0 and 𝜎1 on (TxID, 𝜇) as described
in Section 4.4.
• Construct the client transaction, as illustrated in Figure 10.
• Communicate to the payee the opening of output 𝑜𝑢𝑡0 (i.e.,
(eid′, 𝑣 ′, 𝑟 ′0, 𝑡

′
0)), togetherwith the transaction identifierTxID.

• Finally, submit the client transaction to the token endorsers
for chaincode execution.

5.3.3 Settlement Engine. When the client transaction first reaches
the settlement engine through the token endorsers, it is processed
following the validation logic detailed in Section 4.4. If all the vali-
dation checks are successful, the token endorsers create (1) read-set
entries that indicate that entries with keys 𝑠𝑛0 and 𝑠𝑛1 in the ledger
must be empty, (2) write-set entries that write 𝑜𝑢𝑡0 and 𝑜𝑢𝑡1, and
(3) write-set entries that mark 𝑠𝑛0 and 𝑠𝑛1 as spent, cf. Section 5.3.1.
Next, the token endorsers populate the content of the settlement
12In some implementations, 𝐾 is not required to compute the serial number. Instead
the randomness 𝑟 of the token is only known to the recipient and 𝑟 becomes the serial
number.

transaction using the produced read-write-sets (cf. Figure 14) and
submit the result for ordering. At the committers, the settlement
transaction is validated according to the description in Section 3.2.3.
Thanks to the way we encode the serial numbers in the read-write
sets, attempts to double spend a token will result in a read con-
flict (i.e., the serial number state is outdated), thwarting hence the
double-spending attempt.

We reiterate that to achieve transaction unlinkability, one lever-
ages zero-knowledge proofs of membership and serial numbers.
The former allows a payer to show that a token she is spending is in
the ledger, whereas the latter ensures that the payer cannot spend
the same token more than once. We implement the zero-knowledge
proofs of membership using signatures and we introduce the cer-
tifiers, which are tasked with signing the tokens in the ledger.
In more details, each certifier has a secret share tsk′ for (𝑡 ′, 𝑛′)-
threshold signature scheme ThresholdSign, where 𝑡 ′ indicates that
at most 𝑡 ′ certifiers can be malicious among the existing 𝑛′ certi-
fiers. Each certifier runs a dedicated application that is built on top
of the committer logic. The application continuously tracks ledger
updates, and executes ThresholdSign to produce a threshold signa-
ture for the new created outputs (when invoked). The signatures
are then stored by the certifiers, to be retrieved later by the user
wallets upon request.

Alternatively, the certification functionality can be provided by
a dedicated chaincode. Notably, the endorsers of this chaincode
correspond to the certifiers, which each leverages the chaincode to
(1) confirm the existence of the outputs in the ledger, and (2) jointly
compute a threshold signature for the confirmed outputs with other
certification endorsers. Notice that in contrast with token endorsers
whose response is used to update the ledger state, the certification
endorsers treat execution requests as queries (Steps 5 and 6, Fig 8).

5.4 Dispute Resolution – Reconciling Client
Transactions

To improve the performance of the overall system, the settlement
transaction only includes the information necessary for validation:
read-write sets and the signature of the endorsers. This makes the
settlement transactions compact and yields bandwidth gains, and
therewith, better performances at the orderers. On the downside,
this hinders dispute resolution mechanisms, an example of which
is holding the token endorsers’ accountable for the transactions
they endorse.

It is important thus to make client transactions available to the
settlement engine (even if asynchronously). To that end, we (1) ex-
tend the token endorser application to store the client transaction
in a transaction metadata database, right after they complete the
chaincode execution (Step 1.d, Fig 8); and (2) implement a reconcili-
ation service on top of the committers, which will monitor freshly-
committed settlement transactions and query the endorsers for the
corresponding client transactions. Since the settlement transaction
identifier includes the hash of the client transaction, the reconcilia-
tion service can easily verify if the client transaction it is given is
the right one.

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

1: Input
ctx ⊲ a client transaction
tsk ⊲ a threshold signature secret share

2: Output
stx ⊲ a settlement transaction

3: stx← NewSettlementTX()
4: stx.TxID← ctx.TxID
5: stx.NameSpace← "token"

⊲ Add the serial numbers as read dependencies, and mark
them as “Spent"

6: for 𝑏 ∈ {0, 1} do
7: RSEntry← ⟨ctx.SerialNumbers[𝑏], nil⟩
8: stx.ReadSet← stx.ReadSet ∪ RSEntry
9: WSEntry← ⟨ctx.SerialNumbers[𝑏], “𝑆𝑝𝑒𝑛𝑡”⟩
10: stx.WriteSet← stx.WriteSet ∪WSEntry
11: end for

⊲ Add the created outputs to the write-set
12: for 𝑏 ∈ {0, 1} do
13: WSEntry← ⟨stx.TxID| |𝑏, 𝑜𝑢𝑡𝑏 .Serialize()⟩
14: stx.WriteSet← stx.WriteSet ∪WSEntry
15: end for

⊲ The token endorsers jointly generate a threshold signature
on stx

16: 𝜙 ←ThresholdSign(tsk, stx)
17: stx.Signature← 𝜙.Serialize()
18: return stx

Figure 14: Building a settlement transaction for token systems with
transaction unlinkability.

6 EXPERIMENTAL EVALUATION
In this section we evaluate from a performance perspective our
system’s architecture as described in Section 5. For our evalua-
tion we benchmark and analyze the various phases of transaction
settlement in terms of transaction throughput and latency, with
respect to the retail CBDC requirements presented in Section 2.3.
Our evaluation is extended to the system’s performance in cases of
malformed settlement transactions or double-spending attacks.

More specifically, in Section 6.1 we evaluate the transaction exe-
cute phase capturing stateless checks of client transaction validity
for different privacy configurations—including any expensive zero-
knowledge proof verification—and the generation of the threshold
token endorsement (Section 5) signature. As the execute phase
scales horizontally, we restrict its performance evaluation to mea-
suring the introduced latency. We proceed in Section 6.2 with the
full performance evaluation of the order phase with three differ-
ent consensus algorithms integrated into the HLF ordering service,
RAFT [13], SmartBFT [18] and the mentioned (Section 3.2.4) vari-
ant of Narwhal and Tusk BFT algorithm [11], ARMA. Finally, in
Section 6.3 we evaluate the throughput and latency observed in the
optimized HLF committers delivering on the validate phase, as well
as the certification (Section 4.4) phase that applies solely in the case
where privacy-preserving protocols presented in [12] are adopted.

Experimental Setup. For our performance evaluation, we imple-
mented the user wallets, the endorsers, and the certifiers using the
Fabric Smart Client13 and Token SDK14 libraries. We used the HLF
ordering service15 which we extended to support SmartBFT and
ARMA. We implemented the committers as a distributed service in
Go16 using GRPC17 bidirectional streams for network communi-
cation, and yugabyteDB18 as shard database to persist committed
transactions.

Performancemetrics (i.e., throughput and 99th percentile latency)
are collected via Prometheus19 with a sample rate of 1 second.
During our experiments each reported data point is the average
of at least 2 minutes (120 samples) running time after a warm-up
phase. Error bars report the standard deviation.

To evaluate various aspects of the settlement engine, we imple-
ment a workload generator that can produce synthetic workloads
to simulate millions of users. This includes workloads to stress
individual components of the settlement engine, such as the HLF
ordering service or the enhanced HLF committer.

Finally, we deployed the various components of the settlement
engine on IBM Cloud20, using bare-metal servers in three different
regions, namely, London, Paris, andMilan. The servers are equipped
with dual 48 core CPUs (Intel(R) Xeon(R) 8260 CPU @ 2.40 GHz),
64 GB RAM, 1 TB SSD (Raid 0), and 10 Gbps network running
Ubuntu Linux 20.04 LTS Server.

6.1 Transaction Execution
In this section we analyze the transaction latency observed on the
token endorser end when a variety of privacy-preserving token
exchange techniques are utilized. Notice that as the operations
performed in this phase are horizontally scaleable, throughput can
be amortized as per the utilized compute resources.

Recall, that a token endorser routes the transaction received by a
client to the token chaincode that i) performs the ZKP verification
checks, ii) compiles a read/write-set that corresponds to the consid-
ered inputs and outputs, and iii) produces a (threshold) signature
by reaching out to and receiving signature shares from the other
token endorsers and combines the signature shares into a threshold
signature. Table 2 summarizes our results for the latency of the
execution of the token chaincode for different privacy configura-
tions, including the ZKP verification checks where applicable and
the threshold signature generation by a single endorser employing
the techniques described in Section 4. For our experiments we con-
sidered the combination of (𝑡 = 3, 5, 10) endorser shares into one
transaction using threshold BLS [22] signing.

Our results show that, evenwhen ZKPs are utilised for anonymity
and unlinkability in payment transactions, the execute phase does
not go above 20milliseconds, while latency is brought down to a few
milliseconds where accountable (Section 1) anonymity techniques
are being leveraged. Notice that the impact of threshold signing

13https://github.com/hyperledger-labs/fabric-smart-client
14https://github.com/hyperledger-labs/fabric-token-sdk
15https://github.com/hyperledger/fabric
16https://go.dev/doc/devel/release#go1.20
17https://grpc.io
18https://github.com/yugabyte/yugabyte-db
19https://prometheus.io
20https://www.ibm.com/cloud

https://github.com/hyperledger-labs/fabric-smart-client
https://github.com/hyperledger-labs/fabric-token-sdk
https://github.com/hyperledger/fabric
https://go.dev/doc/devel/release#go1.20
https://grpc.io
https://github.com/yugabyte/yugabyte-db
https://prometheus.io
https://www.ibm.com/cloud

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

Number of Endorsers No Privacy Anonymous Anonymous & Confidential Exchange Unlinkable Signing Aggregation
𝑡 = 3 0.3 ±2% 4.2 ±1% 13.6 ±0% 19.7 ±0% 0.147 ±4% 0.124 ±0%
𝑡 = 5 0.3 ±2% 4.2 ±1% 13.6 ±0% 19.7 ±0% 0.147 ±4% 0.241 ±1%
𝑡 = 10 0.3 ±2% 4.2 ±1% 13.6 ±0% 19.7 ±0% 0.147 ±4% 0.624 ±1%

Table 2: Transaction execution latency breakdown of various ZKP verifications: No Privacy, Anonymous (Section 4.2), Confidential Exchange
(Section 4.3), Unlinkable (Section 4.4), the endorser’s threshold signing (Signing) and threshold signature share aggregation (Aggregation).

0 25K 50K 75K 100K 125K 150K 175K
Throughput (tx/s)

0

2

4

6

8

10

La
te

nc
y

(s
)

SmartBFT, n=4, f=1
SmartBFT, n=10, f=3
SmartBFT, n=16, f=5

Raft, n=3, f=1
Raft, n=7, f=3
Raft, n=11, f=5
Raft, n=21, f=10

Arma, n=4, f=1
Arma, n=10, f=3
Arma, n=16, f=5
Arma, n=31, f=10

Figure 15: Ordering service throughput-latency for different con-
sensus protocol instantiations, namely, SmartBFT, Raft, and Arma
with varying degree of byzantine fault tolerance.

mechanisms is negligible to the overall execute phase latency, even
for thresholds that go above a few tens of nodes.

6.2 Transaction Ordering
As mentioned before, we evaluate the settlement engine’s ordering
efficiency assuming three different consensus algorithms, RAFT [13],
SmartBFT [18] and ARMA (variant of [11]).

SmartBFT as well as Raft are integrated in the official open source
Hyperledger Fabric release, and slight modifications were made to it
to accommodate our customized transaction format. The SmartBFT
protocol can be thought of as a non-pipelined version of the seminal
PBFT [16] protocol, where each consensus round carries a single
batch of transactions. ARMA is similar in its architecture to the
Narwhal-HotStuff version of [11], but substitutes HotStuff with
SmartBFT [18].

Figure 15 illustrates the throughput and latency of different con-
sensus protocols instantiated with varying number of orderer nodes
(supporting up to 𝑓 node failures), which are deployed across the re-
gions of our testbed. For our experiments, we colocated a workload
generator in the same region as the leader node, and used blocks
of 3500 settlement transactions, where each transaction contains
two serial numbers (SNs) and two outputs. In contrast to classical
Fabric transactions, which require a size of approximately 3.5 KB,
the compact form of the settlement transaction only requires less
than 300 B to perform the same operation, thereby reducing the
network load by a factor of 10.

SmartBFT. The maximum throughput we observe is 27, 000 tx/s
with four orderer nodes (𝑓 = 1), and up to 9, 000 tx/s with 16 nodes
(𝑓 = 5). The latency is round 0.7 seconds with four orderer nodes
before saturation, whereas with 10 and 16 nodes the latency goes
up to two seconds before saturation. Other works [18] reported
comparable numbers of around 2, 000 tx/s with four nodes (𝑓 = 1)
and a block size of 1 MB comprising 250 transactions each size
of 4 KB. This shows that the transaction size directly impacts the
overall throughput of the ordering service as the network load is
reduced.

RAFT. In contrast to SmartBFT, we observe much more stable la-
tency with varying number of orderer nodes around 200 ms before
saturation. In fact, the latency decreases slightly until saturation.
The maximum throughout we observe is 80, 000 tx/s with three
orderer nodes (𝑓 = 1) and up to 65, 000 tx/s with 21 orderer nodes
(𝑓 = 10). Even though Raft performs better than SmartBFT, recall
Raft only supports crash faults. For this reason, we were able to
modify the implementation of the Hyperledger Fabric ordering
service to authenticate the submitting client already during the
TLS handshake and disabled signature validation on the transac-
tions submitted by the client. This modification and the compact
settlement transaction size help to improve the overall performance
compared to the upstream implementation as reported in [18].

ARMA. We observe the best throughput up to 165, 000 tx/s with
a latency below 2 seconds with four orderer nodes (𝑓 = 1). With
21 orderer nodes (𝑓 = 10) still achieves up to 80, 000 tx/s. Inter-
estingly, we observe that the latency increases linear with higher
load whereas we had expected a stable latency before saturation.
Additionally, it is unclear why Arma with 16 orderer nodes (𝑓 = 5)
saturates before the deployment with 10 orderer nodes (𝑓 = 3). We
did not further investigate this unusual behavior since the current
code is considered to be prototype and under active development.
Updates to this report will present the new results we obtain.

6.3 Transaction Validation
We evaluated the validation phase of our settlement engine using
the prototype implementation of a committer, as outlined in Sec-
tion 3.2. Our evaluation delved into three parameters impacting the
throughput and latency of scalable committer. These parameters
are transaction size, invalid signatures, and double spend.

We conducted comprehensive performance benchmarking by
deploying the various components of the committer and the work-
load generator on multiple machines within the same region of
our testbed. Unless otherwise specified, we deployed the committer

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

0K

50K

100K

150K

200K

250K

300K

350K

400K

In=1
Out=1

In=2
Out=1

In=2
Out=2

In=3
Out=2

In=4
Out=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y
 (
s
)

#Inputs and #Outputs in Each Transaction

Throughput
99th %ile Latency

Figure 16: Impact of the number of inputs and outputs in transac-
tions on the throughput and latency of committer.

with a total four signature validators, six shards, and one coor-
dinator. We also deployed the workload generator on a separate
machine to generate the load. Throughout all our experiments, we
consistently kept the latency below 1 second as our benchmark.
However, it’s crucial to note that when we overload the committer
beyond its capacity, a queue begins to form, leading to an increase
in latency. Therefore, we carefully generated load in a manner that
ensured the latency remained below the 1-second threshold.

6.3.1 Impact of transaction size. To evaluate the impact of trans-
action size on the scalability of the committer, we conducted ex-
periments involving the submission of transactions with varying
numbers of inputs and outputs to the coordinator. The results, as
depicted in Figure 16, provided valuable insights. As the number
of inputs and outputs in transactions increased, we observed a
decrease in transaction throughput, declining from 345,000 tps to
160,000 tps.

The decrease in throughput can be attributed to the growing
complexity of the dependency graph maintained by the coordinator.
With more inputs and outputs, the number of nodes in the graph
increases, leading to longer times for constructing and updating
the dependency graph. Additionally, the data structure employed to
store the dependency graph is protected by a synchronization prim-
itive, preventing concurrent access. This safeguard, while crucial
for data integrity, contributes to the reduction in overall through-
put. Thus, we can conclude that the throughput of the committer
is limited by the performance of the coordinator service.

To validate this claim, we conducted experiments to understand
the performance characteristics of shard servers (Section 3.2.3)
with no other services running and signature validators, also in
isolation. We found that increasing the number of shard servers or
signature validators resulted in a scalable increase in the throughput
of the respective components, surpassing 450k tps. Consequently,
we can conclude that the bottleneck is not with the shard servers
or signature validators but with the coordinator.

6.3.2 Impact of faulty transactions. To analyze the performance of
the committer when handling faulty transactions, we conducted
two experiments, focusing on the submission of a mix of valid and
invalid transactions. Our objective was to investigate how this mix
influenced transaction throughput and latency. All transactions
included in these experiments had two inputs and two outputs. We
varied the percentage of invalid transactions from 0% to 30%. These

0K

50K

100K

150K

200K

250K

300K

350K

400K

0 10 20 30 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y
 (
s
)

Percentage of Transactions With Invalid Signature

Total Throughput
Valid Tx. Throughput

Invalid Tx. Throughput

99th %ile Valid Tx. Latency
99th %ile Invalid Tx. Latency

Figure 17: Impact of the percentage of transactions with invalid
signature on the throughput and latency of the committer. Each
transaction had two inputs and two outputs.

experiments were conducted with the committer configured with
six shards and four signature validators.

Invalid signatures. In the first scenario, we examined the im-
pact of invalid threshold signatures, which occur when a settlement
transaction lacks the necessary endorsements or has malformed
content. Figure 17 illustrates the changes in throughput and latency
as we introduced a varying mix of invalid transactions. Notably, we
observed an intriguing trend: the overall throughput increased from
213,000 tps to 296,000 tps as the percentage of invalid transactions
rose from 0% to 30%. This increase can be attributed to the sooner
rejection of transactions with invalid signatures by the signature
validators as opposed to valid transaction. Consequently, the co-
ordinator did not consider these transactions for inclusion in the
dependency graph. As a result, other transactions were processed
in their place, leading to the overall throughput boost. However, it’s
worth noting that the throughput of valid transactions experienced
a slight decrease, dropping from 213,000 tps to 207,000 tps over the
same range.

Double spendings. In the second scenario involving faulty trans-
actions, we delved into the consequences of double spend incidents.
These occurrences take place when a transaction is submitted with
inputs that have already been recorded in the ledger, meaning that
the input has already been spent. In Figure 18, we can observe
the impact of double spending on the throughput and latency of
the committer. It became evident that the overall throughput was
reduced in comparison to the previous experiment, where we sub-
mitted transactions with invalid signatures to the committer.

The decline in the overall throughput can be attributed to the
heightened workload imposed on the committer. When a transac-
tion doesn’t involve double spending, the read-set freshness check
doesn’t entail reading any data from the disk since the relevant in-
put doesn’t exist in the ledger. Conversely, in cases where a double
spend occurs, the input is indeed present in the ledger, necessitating
the verifier to read specific bytes from the disk. Consequently, this
additional workload causes a reduction in the overall throughput,
amounting to an 27% decrease.

Decentralised Trust, IBM Research, 2023
E. Androulaki, M. Brandenburger, A. De Caro, K. Elkhiyaoui, L. Funaro,

A. Filios, Y. Manevich, S. Natarajan, M. Sethi and IBM Research

0K

50K

100K

150K

200K

250K

300K

350K

400K

0 10 20 30 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
T
h
ro
u
g
h
p
u
t
(t
x
/s
)

L
a
te
n
c
y
 (
s
)

Percentage of Transactions Doing Double Spend

Total Throughput
Valid Tx. Throughput

Invalid Tx. Throughput

99th %ile Valid Tx. Latency
99th %ile Invalid Tx. Latency

Figure 18: Impact of the percentage of transactions doing double
spend on the throughput and latency of the committer. Each trans-
action had two inputs and two outputs.

6.4 Transaction Certification
As mentioned earlier, transaction certifiers confirm the existence of
a token in the ledger by collaboratively generating a threshold sig-
nature on the token. In our prototype, a user sends to the certifiers
a certification request, which identifies a token in the ledger and
carries some auxiliary information that allows the certifier to sign
the token data (i.e., owner’s enrollment id, value, type and serial
number) without accessing them. This process is referred to in the
literature as blind signature. Each certifier then checks if the token
exists in the ledger and blindly threshold signs it. The user receives
the blind signature shares, un-blinds and combines them to get the
certifiers’ signatures.

We evaluate the transaction certification as described in Sec-
tion 4.4. We focus on the execution throughput and latency of the
blind signature, which in the prototype corresponds to Pointcheval-
Sanders’ [30, 31]. We follow its threshold variation described in
[12, 32]. The implementation we use is the open source Pointcheval-
Sanders (PS) implementation of [33].

Using a single certifier node, we observed a maximum through-
put up to 13, 300 certifications per seconds with stable latency
around 7.69 milliseconds. The overall throughput of the certifier
scales horizontally with the number of available compute resources.

7 CONCLUSION
In this paper, we described a distributed and privacy-preserving
transaction processing framework tailored for tokenized assets, and
suited, in particular, for retail CBDC. We evaluated the framework
using various consensus mechanisms, and a variety of literature
asset exchange protocols exhibiting different degrees of privacy.
Our results show that for the standard UTXO pseudonymity model,
our prototype implementation can process up to 80, 000 TPS in the
case of Raft and SmartBFT and more than 150, 000 TPS in the case
of emerging consensus algorithms. Our results further demonstrate
the horizontal scalability of transaction processing compute. In fact,
we show that the same numbers can be accomplished in stronger
privacy scenarios where the exchanged amounts are concealed,
and / or activity of individual users concealed at the cost of more
powerful equipment. These results demonstrate that BFT protocols
and zero-knowledge proofs can be leveraged to implement strong

resilience and flexible privacy guarantees in CBDC systems without
sacrificing performance.

REFERENCES
[1] Gaining momentum – results of the 2021 bis survey on central bank digital

currencies. https://www.bis.org/publ/bppdf/bispap125.pdf.
[2] https://cbdctracker.org/.
[3] European Central Bank EuroSystem. Ecb welcomes european commission legisla-

tive proposals on digital euro and cash, 2023. https://www.ecb.europa.eu/press/pr/
date/2023/html/ecb.pr230628~e76738d851.en.html#:~:text=The%20European%
20Commission%20has%20published,as%20a%20means%20of%20payment.

[4] European central bank mission. https://www.ecb.europa.eu/ecb/orga/escb/
ecb-mission/html/index.en.html.

[5] Second payment services directive. https://edpb.europa.eu/sites/default/files/
files/file1/edpb_guidelines_202006_psd2_afterpublicconsultation_en.pdf.

[6] The people’s republic of china’s digital yuan: Its environment, design, and impli-
cations. https://www.adb.org/sites/default/files/publication/772316/adb-wp1306.
pdf.

[7] James Lovejoy, Madars Virza, Cory Fields, Kevin Karwaski, Anders Brownworth,
and Neha Narula. Hamilton: A High-Performance transaction processor for
central bank digital currencies. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 901–915, Boston, MA, April 2023.
USENIX Association.

[8] Wholesale central bank digital currency experiments with the banque de
france. https://www.banque-france.fr/sites/default/files/media/2021/11/09/
821338_rapport_mnbc-04.pdf.

[9] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. Utt: Decentralized ecash with accountable
privacy. Cryptology ePrint Archive, Paper 2022/452, 2022. https://eprint.iacr.org/
2022/452.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: A distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[11] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, andAlexander Spiegel-
man. Narwhal and tusk: A dag-based mempool and efficient bft consensus. In
Proceedings of the Seventeenth European Conference on Computer Systems, Eu-
roSys ’22, pages 34–50, New York, NY, USA, 2022. Association for Computing
Machinery.

[12] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar
Elkhiyaoui, and Björn Tackmann. Privacy-preserving auditable token payments
in a permissioned blockchain system. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, AFT ’20, pages 255–267, New York, NY,
USA, 2020. Association for Computing Machinery.

[13] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Association.

[14] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State machine replica-
tion for the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 355–362, 2014.

[15] Publications on central bank digital currencies (cbdc). https://www.ecb.europa.
eu/home/search/html/central_bank_digital_currencies_cbdc.en.html.

[16] Miguel Castro. Practical byzantine fault tolerance. 04 2001.
[17] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State machine replica-

tion for the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 355–362, 2014.

[18] Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. A byzantine fault-
tolerant consensus library for hyperledger fabric. In IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6, 2021,
pages 1–9, 05 2021.

[19] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Association.

[20] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. Mir-bft: High-
throughput bft for blockchains, 06 2019.

[21] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance bench-
marking and optimizing hyperledger fabric blockchain platform. In 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 264–276, 2018.

[22] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil
pairing. J. Cryptol., 17(4):297–319, sep 2004.

https://www.bis.org/publ/bppdf/bispap125.pdf
https://cbdctracker.org/
 https://www.ecb.europa.eu/press/pr/date/2023/html/ecb.pr230628~e76738d851.en.html#:~:text=The%20European%20Commission%20has%20published,as%20a%20means%20of%20payment.
 https://www.ecb.europa.eu/press/pr/date/2023/html/ecb.pr230628~e76738d851.en.html#:~:text=The%20European%20Commission%20has%20published,as%20a%20means%20of%20payment.
 https://www.ecb.europa.eu/press/pr/date/2023/html/ecb.pr230628~e76738d851.en.html#:~:text=The%20European%20Commission%20has%20published,as%20a%20means%20of%20payment.
https://www.ecb.europa.eu/ecb/orga/escb/ecb-mission/html/index.en.html
https://www.ecb.europa.eu/ecb/orga/escb/ecb-mission/html/index.en.html
https://edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_202006_psd2_afterpublicconsultation_en.pdf
https://edpb.europa.eu/sites/default/files/files/file1/edpb_guidelines_202006_psd2_afterpublicconsultation_en.pdf
https://www.adb.org/sites/default/files/publication/772316/adb-wp1306.pdf
https://www.adb.org/sites/default/files/publication/772316/adb-wp1306.pdf
https://www.banque-france.fr/sites/default/files/media/2021/11/09/821338_rapport_mnbc-04.pdf
https://www.banque-france.fr/sites/default/files/media/2021/11/09/821338_rapport_mnbc-04.pdf
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://www.ecb.europa.eu/home/search/html/central_bank_digital_currencies_cbdc.en.html
https://www.ecb.europa.eu/home/search/html/central_bank_digital_currencies_cbdc.en.html

A Framework for Resilient, Transparent, High-throughput,
Privacy-Enabled Central Bank Digital Currencies Decentralised Trust, IBM Research, 2023

[23] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International Journal of Information Security, 1(1):36–
63, Aug 2001.

[24] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering,
2(2):77–89, Sep 2012.

[25] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Comput. Surv., 13(2):185–221, jun 1981.

[26] Jan Camenisch and Els Van Herreweghen. Design and implementation of the
idemix anonymous credential system. In ACM CCS, pages 21–30. ACM, 2002.

[27] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions and
practical constructions. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology – ASIACRYPT, volume 9453 of LNCS, pages 262–288. Springer, 2015.

[28] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter
Wuille. Confidential assets. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy
Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors, Fi-
nancial Cryptography and Data Security, pages 43–63, Berlin, Heidelberg, 2019.
Springer Berlin Heidelberg.

[29] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 459–474. IEEE Computer Society, 2014.

[30] David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue
Sako, editor, Topics in Cryptology - CT-RSA 2016, pages 111–126, Cham, 2016.
Springer International Publishing.

[31] David Pointcheval and Olivier Sanders. Reassessing security of randomizable
signatures. In Nigel P. Smart, editor, Topics in Cryptology – CT-RSA 2018, pages
319–338, Cham, 2018. Springer International Publishing.

[32] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, and George Danezis. Co-
conut: Threshold issuance selective disclosure credentials with applications to
distributed ledgers. ArXiv, abs/1802.07344, 2018.

[33] Threshold signature scheme library. https://github.com/IBM/TSS/.

https://github.com/IBM/TSS/

	Abstract
	1 Introduction
	2 System Overview
	2.1 System Participants
	2.2 Trust Assumptions
	2.3 Requirements
	2.4 Interactions Overview

	3 Extending Hyperledger Fabric
	3.1 HLF Relevance and Limitations for CBDC
	3.2 Optimising HLF for CBDC applications

	4 Token Systems for CBDC
	4.1 UTXO-based Token Transactions
	4.2 Anonymous Token Systems
	4.3 Anonymous and Confidential Token Systems
	4.4 Unlinkable Token Systems
	4.5 Audit in Token Systems

	5 Scalable Architecture for CBDC
	5.1 Transaction Model and Lifecycle
	5.2 Token Systems without Transaction Unlinkability
	5.3 Token Systems with Transaction Unlinkability
	5.4 Dispute Resolution – Reconciling Client Transactions

	6 Experimental Evaluation
	6.1 Transaction Execution
	6.2 Transaction Ordering
	6.3 Transaction Validation
	6.4 Transaction Certification

	7 Conclusion
	References

