
MQ on my Mind: Post-Quantum Signatures from the
Non-Structured Multivariate Quadratic Problem

Ryad Benadjila1, Thibauld Feneuil1,2, and Matthieu Rivain1

1 CryptoExperts, Paris, France
2 Sorbonne Université, CNRS, INRIA, Institut de Mathématiques

de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
{ryad.benadjila,thibauld.feneuil,matthieu.rivain}@cryptoexperts.com

Abstract. This paper presents MQ on my Mind (MQOM), a digital signature scheme based on the
difficulty of solving multivariate systems of quadratic equations (MQ problem). MQOM has been sub-
mitted to the NIST call for additional post-quantum signature schemes. MQOM relies on the MPC-in-
the-Head (MPCitH) paradigm to build a zero-knowledge proof of knowledge (ZK-PoK) for MQ which
is then turned into a signature scheme through the Fiat-Shamir heuristic. The underlying MQ problem
is non-structured in the sense that the system of quadratic equations defining an instance is drawn
uniformly at random. This is one of the hardest and most studied problems from multivariate cryptog-
raphy which hence constitutes a conservative choice to build candidate post-quantum cryptosystems.
For the efficient application of the MPCitH paradigm, we design a specific MPC protocol to verify the
solution of an MQ instance. Compared to other multivariate signature schemes based on non-structured
MQ instances, MQOM achieves the shortest signatures (6.3–7.8 KB) while keeping very short public
keys (few dozen of bytes). Other multivariate signature schemes are based on structured MQ problems
(less conservative) which either have large public keys (e.g. UOV) or use recently proposed variants of
these MQ problems (e.g. MAYO).

Keywords: Post-Quantum Signatures, MPC in the Head, Multivariate Quadratic Problem

1 Introduction

The advent of a quantum computer capable of breaking classical public-key cryptosystems (RSA,
ECC) urges the cryptography research community to find reliable alternatives for public key encryp-
tion and signatures. The so-called post-quantum cryptography has become a hot topic, especially
since 2017 when the NIST launched its post-quantum standardization process. After five years of
intense community efforts, the first post-quantum algorithms have been selected for standardiza-
tion. Recently, the NIST has issued a call for additional post-quantum signature schemes [22] to
get further alternatives to the selected ones, the latter being either based on structured lattices
(Dilithium [21], Falcon [23]) or hash-based with mitigated performances (SPHINCS+ [16]).

There exist two approaches to build signature schemes. On the one hand, the hash-and-sign
paradigm relies on the existence of a trapdoor permutation. This is for instance the case of the
lattice-based signature scheme Falcon [23] or the multivariate signature scheme UOV [20]. The
existence of a trapdoor might make such schemes vulnerable to structural attacks. On the other
hand, signature schemes can be constructed by applying the Fiat-Shamir transform to a (zero-
knowledge) identification scheme, which can then rely on weaker hardness assumptions, such as
e.g. the syndrome decoding problem for random linear codes [25,13].

Multivariate cryptography is an important family of cryptosystems based on allegedly post-
quantum hard problems. Among these problems, the non-structured multivariate quadratic prob-
lem (i.e. solving a multivariate system of random quadratic equations) is probably the hardest and

most studied problem. Multivariate signature schemes in the state of the art are of three kinds:
(1) variants of UOV, which are fairly efficient and enjoy compact signatures but suffer large public
keys, (2) hash-and-sign schemes which circumvent the latter issue by relying on new structured
multivariate assumptions (e.g. MAYO [7]), (3) signature schemes based on the Fiat-Shamir trans-
form, some of which based on the (conservative) non-structured MQ problem (e.g. MQ-DSS [24]).
The present paper introduces MQOM, a signature scheme belonging to this third category.

MQOM relies on theMPC-in-the-Head (MPCitH) paradigm which builds a zero-knowledge proof
of knowledge from a secure multi-party computation (MPC) protocol [17]. While this approach was
mainly considered of theoretical interest when introduced in 2007, it has been increasingly applied to
build practical schemes over the last years. In particular, the Picnic signature scheme [28] submitted
to the NIST standardization process in 2017 relies on this paradigm. Since then, MPCitH signature
schemes have been proposed based on various hardness assumptions, see e.g. [6,2,11,13,14,12], and
generic improvements of the MPCitH techniques have been proposed, see e.g. [19,15,1].

To efficiently apply the MPCitH paradigm to the unstructured MQ problem, we design a specific
“MPCitH-friendly” MPC protocol that verifies the solution of an MQ instance. The MQOM MPC
protocol is obtained by improving previous techniques using batching and polynomial interpola-
tions [12,2,10]. We further use generic techniques to improve the MPCitH transform, namely seed
trees [19] and hypercube party computation [1]. Compared to other multivariate signature schemes
based on the non-structured MQ problem, MQOM achieves the shortest signatures (6.3–7.8 KB)
while keeping very short public keys (a few dozen of bytes).

The paper is organized as follows: In Section 2, we describe the MQOM MPC protocol which
verifies the solution of an MQ instance in an “MPCitH-friendly” way. Then Section 3 depicts the
MQOM signature scheme obtained by applying the MPCitH transform and the Fiat-Shamir trans-
form to the latter MPC protocol. In Section 4, we analyze the security of MQOM: we prove its
unforgeability against chosen message attacks (EUF-CMA) in the random oracle model and we
discuss known attacks against the MQ problem as well as a generic forgery attack against this
type of signature schemes. Section 5 explains the choice of the various MQ and MPC parame-
ters defining the different instances of MQOM. Section 6 addresses implementation aspects and
reports benchmarks. Finally, we compare MQOM to state-of-the-art multivariate signature schemes
in Section 7.

2 The MQOM MPC Protocol

In this section, we describe the MQOM MPC protocol which is at the core of the MQOM signature
scheme. The MQOM MPC protocol runs a multi-party computation that verifies the correctness
of a solution x to a public MQ instance

(
{Ai}, {bi}, y

)
. The secret solution x is shared between N

parties which, after running the protocol, either output Accept if the input sharing is believed to
encode a correct MQ solution or Reject otherwise.

2.1 MQ problem

We first recall the definition of the (non-structured) MQ problem for which our MPC protocol
verifies an instance.

Definition 1 (Multivariate Quadratic Problem). Let q be a prime (or a prime power) and
let m,n be positive integers. The multivariate quadratic problem with parameters (q,m, n) is the
following problem:

2

Let (Ai)i∈[1:m], (bi)i∈[1:m], x and y be such that:

1. x is uniformly sampled from Fnq ,
2. for all i ∈ [1 : m], Ai is uniformly sampled from Fn×nq ,

3. for all i ∈ [1 : m], bi is uniformly sampled from Fnq ,
4. for all i ∈ [1 : m], yi is defined as yi := x⊺Aix+ b⊺i x.

From
(
{Ai}, {bi}, y

)
, find x.

2.2 MPC model

The MQOM protocol relies on a standard model of the MPCitH paradigm as formalized e.g. in [15,
Section 3.1]. In this model, the parties receive as input a sharing

JxK = (JxK1, . . . , JxKN)

of the secret witness x. Then, they perform a sequence of the following actions:

1. Invoke a randomness oracle OR. This oracle sends a random value γ to all the parties. In
MPCitH context, these random values are provided by the verifier as challenges.

2. Invoke a hint oracle OH . For some function ψ, the hint is sampled as β ← ψ(x, γ1, γ2, . . . ; rψ)
where γ1, γ2, . . . are the previous outputs of OR and where rψ is some fresh randomness. The
hint oracle sends a random sharing JβK of the hint to the parties. In the MPCitH context, the
hint is computed by the prover and the obtained shares are committed with the shares of the
witness.

3. Compute and broadcast shares. The parties locally compute JαK := Jφ(v)K from a sharing JvK
for some Fq-linear function φ. Then they broadcast the shares JαK1, . . . , JαKN and publicly
reconstruct α = φ(v). This local computation process is denoted Jφ(v)K = φ(JvK). The function
φ can depend on the previous random values from OR and on the previous broadcasted values
from OH .

After a given number of rounds, the parties broadcast a final sharing JvK and publicly recompute
v. If v = 0, they output Accept, if v ̸= 0, they output Reject.

The protocol is said perfectly complete, if on input a sharing JxK of the right MQ solution, the
parties always output Accept. On the other hand, the protocol has false positive probability p, if
the probability that the parties output Accept on input JxK corresponding to an incorrect MQ
solution is at most p. The MQOM protocol is perfectly complete and has false positive probability
which we exhibit in Section 2.5.

2.3 Principle of the MPC protocol

The parties aim to verify that their input sharing JxK corresponds to a solution x ∈ Fnq of the
following system: 

y1 = x⊺A1x+ b⊺1x
...

ym = x⊺Amx+ b⊺mx

for a given MQ instance
(
{Ai}, {bi}, y

)
.

3

As a first step of the MQOM protocol, we batch the equations of the MQ system as suggested
in [12]. Instead of checking the m equations separately, the parties verify a linear combination of
these equations with coefficients γ1, . . . , γm that are uniformly sampled by the randomness oracle
OR from a field extension Fqη . The MPC protocol shall then check that

m∑
i=1

γi(yi − x⊺Aix− b⊺i x) = 0. (1)

If one of the equations of the MQ system is not satisfied, then Equation 1 is only satisfied with a
probability 1/qη. The above equality rewrites as

m∑
i=1

γi(yi − b⊺i x) =
m∑
i=1

γi(x
⊺Aix)

= x⊺
(m∑
i=1

γiAi

)
x

= ⟨x,w⟩ where w :=
(m∑
i=1

γiAi

)
x

By defining z :=
∑m

i=1 γi(yi − b
⊺
i x) and w := (

∑m
i=1 γiAi)x, checking Equation 1 is equivalent to

checking z = ⟨x,w⟩. On receiving the random coefficients γ1, . . . , γm the parties can locally compute
a sharing JwK of w from the sharing JxK.

As a second step of the MQOM protocol, the parties verify the inner product z = ⟨x,w⟩ from
the sharings JxK, JwK and JzK. For this purpose, we introduce an inner-product verification protocol,
using polynomial interpolation techniques as Banquet [2] or Limbo [10] with a slightly improved
communication.

The principle is to split the vectors x and z into n2 chunks of n1 coordinates for integers n1, n2
such that n1 · n2 ≥ n. The chunks are used to interpolate polynomials X[1](u), . . . , X[n2](u) ∈
Fq[u] and W[1](u), . . . ,W[n2](u) ∈ Fqη [u], which satisfy

X[j](f1) = x(j−1)n1+1
...

X[j](fn1) = x(j−1)n1+n1

(2)

and 
W[j](f1) = w(j−1)n1+1

...
W[j](fn1) = w(j−1)n1+n1

(3)

for every j ∈ [1 : n2] where f1, . . . , fn1 are n1 fixed distinct elements from Fq. Let us stress that the
X[j]’s are polynomials of degree deg(X[j]) ≤ n1−1 from Fq[u] while theW[j]’s are polynomials
of degree deg(W[j]) ≤ n1−1 from Fqη [u]. By definition of those polynomials, we have the following
equivalence

z = ⟨x,w⟩ ⇐⇒ z =

n1∑
i=1

n2∑
j=1

X[j](fi) ·W[j](fi) .

4

Defining the polynomial Q0(u) ∈ Fqη [u] as

Q0(u) :=

n2∑
j=1

X[j](u) ·W[j](u) , (4)

we now have z = ⟨x,w⟩ if and only if z =
∑n1

i=1Q0(fi).

In a nutshell, the MQOM MPC protocol works as follows:

– The parties locally compute sharings JX[j]K and JW[j]K by interpolation from JxK and JwK
(which is possible since such interpolation is Fq-linear);

– The parties invoke the hint oracle to obtain a sharing JQ0K of the polynomial Q0;
– At this stage, the parties aim to check that the two following hold:
(i) the polynomial Q0 from the hint oracle well satisfies Equation 4,
(ii) the polynomial Q0 from the hint oracle well satisfies z =

∑n1
i=1Q0(fi).

– To verify Statement (i), the protocol relies on the Schwartz–Zippel lemma. Namely, Equation 4
is verified on a random evaluation point r ∈ Fqη \ {f1, . . . , fn1}. The parties proceed as follows:
1. they request a random evaluation point r ∈ Fqη \ {f1, . . . , fn1} from the randomness oracle
OR;

2. they locally compute Jα[j]K = JW[j]K(r) for all j ∈ [1 : n2];
3. they broadcast Jα[j]K and publicly recompute α[j] for all j ∈ [1 : n2];
4. they locally compute Jv1K = JQ0K(r)−

∑n2
j=1 α[j] · JX[j]K(r);

5. they broadcast Jv1K and publicly recompute v1 = Q0(r)−
∑n2

j=1 α[j] ·X[j](r);
6. they verify that v1 = 0.

– To verify Statement (ii), the parties proceed as follows:
1. they locally compute Jv2K = JzK−

∑n1
i=1JQ0K(fi);

2. they broadcast Jv2K and publicly recompute v2 = z −
∑n1

i=1Q0(fi);
3. they verify that v2 = 0.

Making the protocol private. The careful reader might have noticed a caveat in the above protocol:
the broadcast shares leak information on the secret witness. Specifically, the publicly recomputed
values α[j] are evaluations of the polynomials W[j](u) in a public point r which provide linear
combinations of the vector w, namely linear combinations of the secret x. In order to ensure the
zero-knowledge property when applying the MPCitH transformation, we should make the protocol
(N − 1)-private. Namely, one should not learn any information about x from any N − 1 parties’
views, including all the broadcast shares.

To deal with this issue we use a standard solution which consists in masking the polynomials
W[j]’s as

W̃[j](u) :=W[j](u) + a[j] · V (u)

where the a[j]’s are random elements of Fqη obtained from the hint oracle OH and where V (u) is
the vanishing polynomial of the interpolation set {f1, . . . , fn1}, which is defined as

V (u) := (u− f1)(u− f2) · · · (u− fn1) .

The polynomial Q0 is then replaced by the polynomial Q defined as

Q(u) :=

n2∑
j=1

X[j](u) · W̃[j](u) (5)

5

which –by definition of the vanishing polynomial– still satisfies the relation

z = ⟨x,w⟩ ⇐⇒ z =

n1∑
i=1

Q(fi) . (6)

The protocol works the same way as before with Q in place of Q0 but now the revealed evaluations
W̃[1](r), . . . , W̃[n1](r) do not leak any information about the secret witness. Indeed, W̃[j](r) =
W[j](r) + a[j] · V (r) with V (r) ̸= 0 since r /∈ {f1, . . . , fn1} and a[j] are uniformly random over
Fqη .

Dealing with incomplete last chunk. In practice, the optimal parameters n1, n2 in terms of commu-
nication of the MPCitH-transformed protocol might be such that n1 · n2 is strictly greater than n.
In that case, the last of the n2 chunks of x and w are of size smaller than n1. Let n

′
1 < n1, the size

of the last chunks, such that n = (n2 − 1)n1 + n′1. The last chunk polynomials X[n2] and W[n2]
are defined as the polynomials of degrees deg(X[n2]) ≤ n1 and deg(W[n2]) ≤ n′1 respectively
satisfying: 

X[n2](f1) = x(n2−1)n1+1
...

X[n2](fn′
1
) = x(n2−1)n1+n′

1

X[n2](fn′
1+1) = 0

...
X[n2](fn1) = 0

(7)

and 
W[n2](f1) = w(n2−1)n1+1
...

W[n2](fn′
1
) = w(n2−1)n1+n′

1

(8)

This way, whatever the values taken by W[n2](fi), we always have X[n2](fi) · W̃[n2](fi) = 0 for
i ∈ [n′1 + 1 : n1] so that Equation 6 still holds true.

Optimizing the communication. The MPC protocol as depicted above consists in checking that the
publicly reconstructed values v1 and v2 satisfy v1 = v2 = 0, which is{

Q(r)−
∑n2

j=1 α[j] ·X[j](r) = 0

z −
∑n1

i=1Q(fi) = 0
(9)

By denoting q0 the constant term of Q(u) and letting Q′(u) the degree-(2n1 − 2) polynomial such
that

Q(u) = u ·Q′(u) + q0 , (10)

the above system is equivalent to (swapping the two equations):{
q0 = (n1)

−1
(
z −

∑n1
i=1 fi ·Q′(fi)

)
v := r ·Q′(r) + q0 −

∑n2
j=1 α[j] ·X[j](r) = 0

(11)

(assuming that n1 is co-prime with q, the base field characteristic, which shall always be the case
in our context). So rather than requesting a hint JQK and broadcasting the shares of v1 and v2, the
parties can instead request a hint JQ′K and check the two equations simultaneously by

6

– locally computing the sharing Jq0K as

Jq0K = (n1)
−1
(
z −

n1∑
i=1

fi · JQ′K(fi)
)

– locally computing the sharing JvK as

JvK = r · JQ′K(r) + Jq0K−
n2∑
j=1

α[j] · JX[j]K(r)

– broadcasting JvK, publicly recomputing v and checking v = 0.

This way, the hint (Q′ vs. Q) is shorter by one Fqη element (which accounts in the ZK protocol’s
communication) and the broadcast is reduced by replacing (Jv1K, Jv2K) by JvK (which also accounts
as one Fqη element in the ZK protocol).

2.4 Description of the MPC protocol

Wrapping up the different tweaks described above, we obtain the MQOM MPC protocol which is
formally depicted in Figure 1.

2.5 False positive probability

Theorem 1. If x is the right solution to the MQ instance
(
{Ai}, {bi}, y

)
and if JQ′K is genuinely

generated as a sharing of Q′ by the hint oracle OH , then the protocol always outputs Accept. If
x does not satisfy the MQ instance, then whatever the hint returned by OH , the protocol outputs
Accept with probability at most p1 + (1− p1) · p2 with

p1 :=
1

qη
and p2 :=

2n1 − 1

qη − n1
.

Proof. The completeness of the protocol holds following the presentation of Section 2.3. Now, let
us assume that x is not a solution of the MQ instance

(
{Ai}, {bi}, y

)
. There are two cases:

1. Either ⟨w, x⟩ = z, this case occurs with probability p1 =
1
qη over the randomness of (γj)j ;

2. Or, ⟨w, x⟩ ̸= z. Let us define the polynomial P of degree deg(P) ≤ 2n1 − 1 defined w.r.t. Q′,
X, W and z as:

P (u) := u ·Q′(u) + q0 −
n2∑
j=1

W[j](u) ·X[j](u).

with q0 := (n1)
−1
(
z −

∑n1
i=1 fi ·Q′(fi)

)
.

7

Input: The parties receive a sharing JxK of a solution x to an MQ instance
(
{Ai}, {bi}, y

)
.

1. The parties invoke the randomness oracle OR to get random γ1, . . . , γm ∈ Fqη .
2. The parties locally compute JzK =

∑m
i=1 γi(yi − b⊺i JxK).

3. The parties locally compute JwK =
(∑m

i=1 γiAi

)
JxK.

⇒ Now, the parties should check that z = ⟨x,w⟩:

4. The parties locally interpolate the chunk polynomials JX[j]K, JW[j]K, for j ∈ [1 : n2], as defined in Equation 2,
Equation 3, Equation 7 and Equation 8.

5. The parties locally compute JW̃[j]K(u) = JW[j]K(u) + Ja[j]K · V (u) where V (u) is the vanishing polynomial
over {f1, . . . , fn1} defined as V (u) :=

∏n1
i=1(u− fi).

6. The parties invoke the hint oracle OH to get sharings Ja[1]K, . . . , Ja[n1]K and JQ′K, for random
a[1], . . . , a[n1] ∈ Fqη and Q′ satisfying

u ·Q′(u) + q0 :=

n2∑
j=1

W̃[j](u) ·X[j](u)

for some q0 ∈ Fqη and with W̃[j](u) = W[j](u) + a[j] · V (u) for every j ∈ [1 : n2].

7. The parties locally compute Jq0K = (n1)
−1

(
z −

∑n1
i=1 fi · JQ

′K(fi)
)
.

⇒ Since they know that z =
∑n1

i=1 q0 + fi ·Q(fi), the parties just need to check that q0 + u ·Q′(u) =∑n2
j=1 X[j](u) · W̃[j](u):

8. The parties invoke the randomness oracle OR to get a random r ∈ Fqη\{0, . . . , n1 − 1}.
9. The parties locally compute Jα[j]K = JW̃[j]K(r) for all j ∈ [1 : n2].

10. The parties broadcast Jα[j]K and publicly recompute α[j] ∈ Fqη for all j ∈ [1 : n2].
11. The parties locally compute JvK = r · JQ′K(r) + Jq0K−

∑n2
j=1 α[j] · JX[j]K(r).

12. The parties broadcast JvK and publicly recompute v.
13. The parties outputs Accept if v = 0 and Reject otherwise.

Fig. 1: The MQOM MPC protocol.

8

We have

n1∑
i=1

P (fi) =

n1∑
i=1

fi ·Q′(fi) + (n1 · q0)

−
n2∑
j=1

n1∑
i=1

W[j](fi) ·X[j](fi)

=

n1∑
i=1

fi ·Q′(fi) +

(
z −

n1∑
i=1

fi ·Q′(fi)

)

−
n2∑
j=1

n1∑
i=1

W[j](fi) ·X[j](fi)

(by definition of q0)

=

n1∑
i=1

fi ·Q′(fi) +

(
z −

n1∑
i=1

fi ·Q′(fi)

)
− ⟨w, x⟩

(by definition of X and W)

= z − ⟨w, x⟩.

Since ⟨w, x⟩ ≠ z, we have that
∑n1

i=1 P (fi) ̸= 0 which implies that P is not the null polynomial.
Then, according to the Schwartz-Zippel Lemma, the probability that v := P (r) is zero is at
most p2 =

2n1−1
qη−n1

.

To sum up, we get

Pr[Accept] ≤ Pr[⟨w, x⟩ = z]

+ Pr[⟨w, x⟩ ≠ z] · Pr[Accept | ⟨w, x⟩ ≠ z]

= p1 + (1− p1) · p2

3 The MQOM Signature Scheme

3.1 From MPC to signature

To obtain the MQOM signature scheme, we first apply the MPCitH transform to the MQOM MPC
protocol. This gives us a zero-knowledge (ZK) proof of knowledge (PoK) protocol with a soundness
error of about 1/N for N being the number of parties (which is slightly degraded by the false
positive probability p of the MPC protocol). To make the soundness error negligible, we rely on
parallel repetitions of this protocol. We use seed trees to optimize the communication [19] and
the hypercube technique to optimize the computation [1]. Finally, to turn the obtained sound ZK-
PoK protocol into a signature scheme, we use the Fiat-Shamir transform. Those different steps are
summarized hereafter.

The MPCitH transform. The MPC-in-the-Head paradigm turns the MQOM MPC protocol into a
ZK-PoK with the following blueprint:

9

1. Sharing and commitments: the prover generates a sharing of the witness JxK and separately
commits to each share;

2. First challenge: the verifier challenges the prover with the random coefficients γ1, . . . , γm of the
MPC protocol (in place of the randomness oracle OR);

3. Hint and commitments: the prover computes the hint (a[1], . . . , a[n2], Q
′) as described in

Section 2, generates a sharing of the hint (Ja[1]K, . . . , Ja[n2]K, JQ′K) and commits to each share
separately (i.e. the i-th shares J·Ki of the different elements are committed all together while
the shares of different indices are committed separately);

4. Second challenge: the verifier challenges the prover with the random verification point r of the
MPC protocol (in place of the randomness oracle OR);

5. MPC simulation: the prover runs the MPC protocol in their head to compute the shares broad-
casted by the parties, Jα[1]K, . . . , Jα[n2]K, JvK, and sends them to the verifier;

6. Third challenge: the verifier challenges the prover to open the views of the parties of indices
[1 : N] \ {i∗};

7. Views opening: the prover returns the shares JxKi, Ja[1]Ki, . . . , Ja[n2]Ki, JQ′Ki for every i ∈ [1 :
N] \ {i∗};
NB: The above shares are called the input shares (witness share and hint shares) of the party
i. From the input shares of the party i, and given the previously received broadcast shares, the
verifier can now fully recompute the view of party i, for every i ∈ [1 : N] \ {i∗}.

8. Verification: the verifier checks the consistency of the commitments and the MPC computation
for the revealed parties. Namely they:
– verify the commitments of the opened witness shares,
– verify the commitments of the opened hint shares,
– recompute the broadcast shares for each party i ∈ [1 : N] \ {i∗} and verify that they match
the received broadcast shares from the prover,

– verify that the plain broadcast value v equals 0.

MPCitH optimization: Seed tree. As suggested in [19], we use a seed tree (a.k.a. a puncturable PRF)
to generate and commit the shares. The principle is to derive the input shares (witness and hint
shares) of each party i pseudorandomly from a random seed seedi, with the following pattern:

seed1 −→ JxK1, JaK1, JQ′K1
...

...
...

...
seedN−1 −→ JxKN−1, JaKN−1, JQ′KN−1

seedN −→ JaKN

where JaKi = (Ja[1]Ki, . . . , Ja[n2]Ki).
For the last party, only the share JaKN can be derived from the seed seedN . This is because

a =
∑N

i=1JaKi is uniformly distributed. The shares JxKN and JQ′KN are then computed as

JxKN = x−
N−1∑
i=1

JxKi and JQ′KN = Q′ −
N−1∑
i=1

JQ′Ki .

These shares are called the auxiliary values of the input sharings. In this paradigm, opening
the input shares of the parties in the set [1 : N] \ {i∗} simply consists in revealing the seeds
{seedi}i∈[1:N]\{i∗} and the auxiliary values (JxKN , JQ′KN) if i∗ ̸= N .

10

To further enable a compact opening of N − 1 seeds out of N , we rely on a tree PRG (a.k.a.
seed tree). The N seeds are generated from a common root seed rseed by

{seedi}i∈[1:N] ← TreePRG(rseed) .

The principle is to label the root of a binary tree of depth ⌈log2N⌉ with rseed = seed
(0)
1 . Then, one

inductively labels the children of each level-ℓ node with the output of a PRG applied to the node’s
label. For MQOM, this PRG is simply a hash function (denoted Hash4) which takes a 2λ-bit salt
salt and the node index i as auxiliary input:(

seed
(ℓ+1)
2i−1 ∥ seed

(ℓ+1)
2i

)
← Hash4

(
salt ∥ i ∥ seed(ℓ)i

)
where the level ℓ = 0 corresponds to the root and the level ℓ = log2N corresponds to the leaves,
the N seeds seed1, . . . , seedN that are used for the shares. To reveal all the seeds but seedi∗ , one
can reveal the sibling labels of the path from the root rseed to the leaf seedi∗ , which we denote:

pathi∗ ← GetSiblingPath(rseed, i∗) .

For λ-bit seeds, pathi∗ is composed of log2N labels of λ bits (assuming N is a power of 2). This
means that the seeds {seedi}i∈[1:N]\{i∗} can be opened by sending λ · log2N bits instead of λ(N −1)
bits.

Let Commit denote a commitment function (which definition is specified later on). Using the
seed tree optimization the commitments of the shares are done as follows:

– In Step 1 (Sharing and commitments), the tree PRG is used the generate the seeds seed1, . . . ,
seedN . The shares are committed by sending comi = Commit(seedi) for every i ∈ [1 : N − 1]
and comN = Commit(seedN ∥ JxKN) to the verifier.

– In Step 3 (Hint and commitments), the prover has received the coefficients γ1, . . . , γm and is
now able to compute Q′. All the shares JQ′K1, . . . , JQ′KN−1 (which are derived from the seeds)
are already committed and the prover only has to compute JQ′KN and commit it by sending
com′

N = Commit(JQ′KN) to the verifier.

MPCitH optimization: Hypercube party computation. We use the hypercube optimization from [1]
to reduce the number of party computations performed in Step 5 (MPC simulation) of the above
MPCitH transform, from N down to log2N + 1.

The principle is to exploit the linearity of the MPC computation to batch it into groups of
parties. Denoting JinKi the input share (witness and hint share) of party i, it computes a broadcast
share JbroadKi = φ(JinKi) = Jφ(in)Ki. We then have that for any set of parties I ⊆ [1 : N], we can
perform one party computation on

∑
i∈IJinKi to get the sum of broadcast shares

∑
i∈IJbroadKi. Now

let us consider a partition I(0) ∪ I(1) = [1 : N] of the parties. With two batched computations we
get two sums of broadcast shares, which sum up to the plain broadcast value∑

i∈I(0)

JbroadKi +
∑
i∈I(1)

JbroadKi = broad . (12)

Assume the prover solely sends those two sums of broadcast shares, for some sets |I(0)| = |I(1)| =
N/2, instead of the N broadcast shares. In case of cheating (i.e. at least one party broadcast is

11

inconsistent), the malicious prover is discovered whenever the cheating party is not in the same
set as i∗ (the non-opened party), which happens with probability 1/2. Repeating this with another
partition I ′(0)∪I ′(1) = [1 : N], one can obtain a soundness error of 1

2×
1
2 provided that I(b)∩I ′(b′) =

N/4 for every b, b′ ∈ {0, 1}. Repeating this log2N times, we obtain the hypercube optimization.
To get a working sequence of D = log2N partitions, one can see each party as a vertex i ≡

(i1, . . . , iD) in a hypercube of dimension D (where (i1, . . . , iD) is the binary representation of i).
Let us define, for every d ∈ [1 : D] and b ∈ {0, 1},

I(d, b) =
{
i ≡ (i1, . . . , id−1, b, id+1, . . . , iD) | i1, . . . , iD ∈ {0, 1}

}
. (13)

Each pair (I(d, 0), I(d, 1)) is a partition of the vertices belonging to two opposite faces of the
hypercube. During Step 5 (MPC simulation) of the above MPCitH transform, the prover shall only
compute and send:

– the sum of broadcast shares
∑

i∈I(d,0)JbroadKi for every d ∈ [1 : D],
– the plain broadcast value broad.

This way the prover only performs D + 1 = log2N + 1 party computations (one of them being
computed on the plain values).

Then in Step 8 (Verification) of the MPCitH transform, the verifier checks the consistency of
the broadcast shares for every d ∈ [1 : D] as follows:

– If i∗ ∈ I(d, 1), the verifier knows all the input shares JinKi for i ∈ I(d, 0). They recompute
the sum

∑
i∈I(d,0)JbroadKi by applying the party computation to

∑
i∈I(d,0)JinKi, and check its

consistency to the sum previously sent by the prover.
– If i∗ ∈ I(d, 0), the verifier knows all the input shares JinKi for i ∈ I(d, 1). They first recompute

the sum
∑

i∈I(d,1)JbroadKi by applying the party computation to
∑

i∈I(d,1)JinKi and then recover∑
i∈I(d,0)JbroadKi using Equation 12 (since they further received the plain broadcast broad from

the prover).

This way the verifier only performs D = log2N party computations.

Parallel repetition. After applying the MPCitH transform to the MQOM MPC protocol we obtain
a ZK-PoK for the MQ problem with soundness error

ε =
1

N
+ p
(
1− 1

N

)
where p = p1 + (1− p1) · p2 is the false positive probability given by Theorem 1.

In order to scale this to 2−λ for a target security level λ, we use parallel repetition. This means
that the ZK-PoK is repeated τ times in parallel to reach a global soundness error of ετ . We stress
that a soundness error of ετ does not imply an unforgeability of ετ once the scheme is made non-
interactive using the Fiat-Shamir transform. While fixing the number of repetitions τ to achieve
some level of security in the non-interactive setting, one needs to take into account possible forgery
attacks such as the one described in Section 4.2.

The Fiat-Shamir transform. The Fiat-Shamir heuristic turns the latter ZK-PoK into the MQOM
signature scheme. The principle is to replace the verifier challenge of the ZK-PoK with the outputs
of hash functions taking the previous prover’s communication as input.

Specifically:

12

1. A first hash h1 is derived by hashing the share commitments of Step 1 (over all the τ repetitions).
This hash is then pseudorandomly expanded into the challenge of Step 2 (different coefficients
γ1, . . . , γm for the τ repetitions).

2. A second hash h2 is derived by hashing h1 together with the hint auxiliary share commitments
of Step 3 (over all the τ repetitions). This hash is then pseudorandomly expanded into the
challenge of Step 4 (different evaluation points r for the τ repetitions).

3. A third hash h3 is derived by hashing h2 together with the broadcast values sent by the prover
(over all the τ repetitions). This hash is then pseudorandomly expanded into the challenge of
Step 6 (different non-opened party indices i∗ for the τ repetitions).

The above hash computations take further inputs:

– Message: We introduce the message in the hash computation to obtain a message-binding
signature. We choose to introduce the message in the third hash h3 only. This enables message-
independent pre-computation of Steps 1-to-5, which are the computationally-expansive steps of
the signing algorithm.

– Salt: For security reasons (i.e. to avoid possible collisions), we introduce a salt of 2λ bits. This
salt is further passed as an argument of the tree PRG (in each node) and the commitments of
the shares. The salt is added to the signature to allow the verification.

– Public key: We also introduce the public key in the first hash h1. This makes any forgery
attempt specific to a given user, hence preventing adversarial strategies that would invest in
heavy precomputation to ease forgery for all (or many of) the users.

Key generation. The key generation of MQOM consists in pseudorandomly generating an MQ
instance, with triangular matrices Ai. It takes as input a root seed seedroot from which it derives
two further seeds seedx and seedeq. The secret witness x is derived from seedx while the MQ equations
{Ai, bi} are derived from seedeq. The MQ output y is then computed from {Ai, bi} and x. Finally,
the key pair is defined and returned as pk := (seedeq, y) and sk := (seedeq, y, x) with x and y in
serialized form.

3.2 Description of the signature scheme

The high-level description of the MQOM signature scheme is wrapped up in Figure 2. All the
pseudorandomness in the MQOM signature scheme is derived from an extendable output hash
function (XOF). The commitment function Commit is defined as a hash function Hash0 with input
prefix the salt salt, the execution index e and the party index i.

4 Security

4.1 Proof of unforgeability

The MQOM signature scheme aims at providing unforgeability against chosen message attacks
(EUF-CMA). In this setting, the adversary is given a public key pk and they can ask an oracle
(called the signature oracle) to sign messages (msg1, . . . ,msgr) that they can select at will. The
goal of the adversary is to generate a pair (msg, σ) such that msg is not one of the requests to the
signature oracle and such that σ is a valid signature of msg with respect to pk.

Our security statement is based on the following assumptions:

13

Input: A secret key sk := (seedeq, y, x) and a message msg ∈ {0, 1}∗.

Phase 0: Initialization.

1. Expand MQ equations {Ai, bi}i∈[1:m] ← XOF(seedeq).
2. Sample a random salt salt← {0, 1}2λ.
3. Sample a master seed mseed← {0, 1}λ.
4. Expand mseed as τ root seeds {rseed[e]}e∈[1:τ] ← XOF(salt,mseed).

Phase 1: Sharing and commitments. For each repetition e ∈ [1 : τ],

1. Generate the leaf seeds {seed[e]i }i∈[1:N] ← TreePRG(salt, rseed[e]).

2. Randomly generate the shares (Jx[e]Ki, Ja[e]Ki, JQ′[e]Ki)← XOF(salt, seed
[e]
i) for i ∈ [1 : N − 1].

3. Randomly generate the share Ja[e]KN ← XOF(salt, seed
[e]
N).

4. Compute the last share of the witness Jx[e]KN = x−
∑N−1

i=1 Jx[e]Ki.
5. Compute the commitments

– com
[e]
i = Hash0(salt, e, i, seed

[e]
i) for i ∈ [1 : N − 1],

– com
[e]
N = Hash0(salt, e,N, seed

[e]
N , Jx[e]KN).

Phase 2: First challenge.

1. Compute h1 = Hash1(pk := (seedeq, y), salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N).

2. Expand h1 as the coefficients {γ[e]
1 , . . . , γ

[e]
m }e∈[1:τ] ← XOF(h1).

Phase 3: Hint and commitments. For each repetition e ∈ [1 : τ],

1. Compute the hint Q′[e] from x, {Ai, bi}i∈[1:m], (γ
[e]
1 , . . . , γ

[e]
m) and a[e] =

∑N
i=1Ja

[e]Ki.
2. Compute the last share of the hint JQ′[e]KN = Q′[e] −

∑N−1
i=1 JQ′[e]Ki.

3. Compute the commitment com
′[e]
N = Hash0(salt, e, 0, JQ′[e]KN).

Phase 4: Second challenge.

1. Compute h2 = Hash2(salt, h1, com
′[1]
N , com

′[2]
N , . . . , com

′[τ]
N).

2. Expand h2 as the evaluation points {r[e]}e∈[1:τ] ← XOF(h2).

Phase 5: MPC simulation. For each repetition e ∈ [1 : τ],

1. Apply the MPC computation in[e] := (x, a[e], Q′[e]) 7→ broad[e] := (α[e], v[e]).
2. For d ∈ [1 : D], apply the MPC computation Jin[e]KI(d,0) 7→ Jbroad[e]KI(d,0)

(where J·KI(d,0) =
∑

i∈I(d,0)J·Ki).

Phase 6: Third challenge.

1. Compute h3 = Hash3

(
msg, salt, h2, {broad[e]}e∈[1:τ],

{
Jbroad[e]KI(d,0)

}
d∈[1:D],e∈[1:τ]

)
.

2. Expand h3 as the non-opened view indices {i∗[e]}e∈[1:τ] ← XOF(h3).

Phase 7: Views opening. For each repetition e ∈ [1 : τ],

1. Compute the sibling path of the non-opened seed path[e] ← GetSiblingPath(salt, rseed[e], i∗[e]).
2. Derive the opened views as

– view[e] = (path[e], Jx[e]KN , JQ′[e]KN) if i∗[e] ∈ [1 : N − 1],
– view[e] = path[e] if i∗[e] = N .

Phase 8: Signature.

1. Return the signature σ :=
(
salt ∥ h1 ∥ h2 ∥ h3 ∥ {view[e], broad[e], com

[e]

i∗[e]}e∈[1:τ]

)
.

Fig. 2: MQOM – Signing algorithm.

14

Input: A public key pk := (seedeq, y), a message msg ∈ {0, 1}∗ and a signature σ.

Phase 0: Parsing and expansion.

1.
(
salt ∥ h1 ∥ h2 ∥ h3 ∥ {view[e], broad[e], com

[e]

i∗[e]}e∈[1:τ]

)
← σ.

2. Expand MQ equations {Ai, bi}i∈[1:m] ← XOF(seedeq).

3. Expand h1 as the coefficients {γ[e]
1 , . . . , γ

[e]
m }e∈[1:τ] ← XOF(h1).

4. Expand h2 as the evaluation points {r[e]}e∈[1:τ] ← XOF(h2).

5. Expand h3 as the non-opened view indices {i∗[e]}e∈[1:τ] ← XOF(h3).
6. For each repetition e ∈ [1 : τ], parse the opened views as

– (path[e], Jx[e]KN , JQ′[e]KN) = view[e] if i∗[e] ∈ [1 : N − 1],
– path[e] = view[e] if i∗[e] = N .

Phase 1: Recomputing shares and commitments. For each repetition e ∈ [1 : τ],

1. Recover the open seeds from the sibling path {seed[e]i }i∈[1:N] ← TreePRG(salt, path[e]).

2. For i ∈ [1 : N − 1] \ {i∗[e]},
– Regenerate the shares (Jx[e]Ki, Ja[e]Ki, JQ′[e]Ki)← XOF(salt, seed

[e]
i) for i ∈ [1 : N − 1].

– Recompute the commitments com
[e]
i = Hash0(salt, e, i, seed

[e]
i).

3. If i∗[e] ̸= N ,
– Regenerate the shares Ja[e]KN ← XOF(salt, seed

[e]
N).

– Recompute the commitment com
[e]
N = Hash0(salt, e,N, seed

[e]
N).

– Recompute the commitment com
′[e]
N = Hash0(salt, e, 0, JQ′[e]KN).

NB: If one of these commitments is incorrect, the recomputed hashes (h′
1, h

′
2) won’t match

(h1, h2) in Phase 3 below.

Phase 2: MPC simulation. For each repetition e ∈ [1 : τ],

1. For d ∈ [1 : D], s.t. i∗[e] ∈ I(d, 1),
– Apply the MPC computation Jin[e]KI(d,0) 7→ Jbroad[e]KI(d,0).

2. For d ∈ [1 : D], s.t. i∗[e] ∈ I(d, 0),
– Apply the MPC computation Jin[e]KI(d,1) 7→ Jbroad[e]KI(d,1).
– Recover Jbroad[e]KI(d,0) = broad[e] − Jbroad[e]KI(d,1).

with J·KI(d,b) =
∑

i∈I(d,b)J·Ki, Jin[e]Ki := (JxKi, Ja[e]Ki, JQ′[e]Ki), Jbroad[e]Ki := (Jα[e]Ki, Jv[e]Ki).
NB: If one of these sums of broadcast shares is incorrect, the recomputed hash h′

3 won’t match
h3 in Phase 3 below.

Phase 3: Recomputing hashes.

1. Compute h′
1 = Hash1(pk := (seedeq, y), salt, com

[1]
1 , com

[1]
2 , . . . , com

[τ]
N).

2. Compute h′
2 = Hash2(salt, h1, com

′[1]
N , com

′[2]
N , . . . , com

′[τ]
N).

3. Compute h′
3 = Hash3

(
msg, salt, h2, {broad[e]}e∈[1:τ],

{
Jbroad[e]KI(d,0)

}
d∈[1:D],e∈[1:τ]

)
.

Phase 4: Verification.

1. For e ∈ [1 : τ]: If broad[e] = (α[e], v[e]) with v[e] ̸= 0, then return Reject.
2. If (h1, h2, h3) ̸= (h′

1, h
′
2, h

′
3), then return Reject.

3. Else return Accept.

Fig. 3: MQOM – Verification algorithm.

15

– MQ hardness. Solving the considered MQ instance is (ϵmq, t)-hard for some (ϵmq, t) which are
implicit functions of the security parameter λ. Formally, any adversary A on input a random
MQ instance

(
{Ai}, {bi}, y

)
and running in time at most t has probability at most ϵmq to output

the solution x of the input instance.
– Secure pseudorandomness. The pseudorandomness generated by the extendable output hash

function (XOF) is indistinguishable from true randomness (provided that the input seed has
sufficient entropy). Formally, an adversary A running in time at most t has advantage at most
ϵprg in distinguishing the two following distributions:

D0 = {x← {0, 1}ℓmax} and D1 = {x ∈ {0, 1}ℓmax ← XOF(seed) | seed← S}

for any distribution S with at least λ bits of min-entropy and where ℓmax denotes the maxi-
mum number of bits sampled from XOF with overwhelming probability (i.e. ignoring negligible
occurrence of long sequences due to rejection sampling).

– ROM. The hash functions Hash0, Hash1, Hash2, Hash3, Hash4 behave as random oracles.
Formally, our security statement only holds in the random oracle model where the Hashi’s are
modeled as random oracles.

Under the above security assumptions, we get the following result:

Theorem 2. Let Hash0, Hash1, Hash2, Hash3, Hash4 be modelled as random oracles, and let p1,
p2 be the probabilities from Theorem 1. Let A be an adversary against the EUF-CMA security of
the scheme running in time t and making a total of Qi queries to Hashi for i ∈ {0, 1, 2, 3, 4} and
Qsign queries to the signing oracle. Let further denote Q the total number of random oracle queries,
which is

Q = Q0 +Q1 +Q2 +Q3 +Q4 +NHash ·QSig

where NHash = τ(2N + 1) + 3 is the total number of hash calls (or random oracle queries) in a
signature computation. Under the above assumptions, A’s advantage in the EUF-CMA game is
upper-bounded as

ϵeuf-cma ≤
(τN + 2)Q2

22λ
+ ϵmq + ϵprg + Pr[X + Y + Z = τ] ,

with

– X = maxi∈[1:Q1]{Xi} with Xi ∼ B (τ, p1) ,

– Y = maxi∈[1:Q2]{Yi} with Yi ∼ B (τ −X, p2) ,

– Z = maxi∈[1:Q3]{Zi} with Zi ∼ B
(
τ −X − Y, 1

N

)
,

where B (n0, p0) denotes the binomial distribution with n0 the number of trials and p0 the success
probability of each trial.

The following proof of Theorem 2 is adapted from the security proof of the Banquet signature
scheme [2] (for the main part, while the end of the proof is adapted from [15]).

Proof. We first prove the security of MQOM against unforgeability with key only (EUF-KO) and
then show how this translates to standard EUF-CMA security. For the sake of simplicity, we first

16

assume that an MQOM public key is an instance
(
{Ai}, {bi}, y

)
(namely we ignore the pseudoran-

dom generation from seedeq) and that the outputs from XOF are truly random values. We relax
these assumptions at the end of the proof.

EUF-KO security. Assume an EUF-KO adversary A exists which runs in time t and outputs a
valid forgery with probability ϵeuf-ko. We construct an algorithm R (the reduction) solving MQ in
time t and probability ϵmq from A.

The reduction R receives an MQ challenge
(
{Ai}, {bi}, y

)
and aims to find the solution x. It

interacts with A by simulating the EUF-KO game in which the public key is defined as the MQ
challenge pk :=

(
{Ai}, {bi}, y

)
. The reduction answers the hash queries of A with random values

and maintains four lists Q1, Q0, Q2, Q3, Q4 such that (q, h) ∈ Qi iff q has been queried to Hashi
and the random value h was picked and answered to this query. R also maintains a list Bad of “bad
answers” to hash queries. Whenever a random oracle is queried on a new input q, a random answer
h is sampled. If h ∈ Bad, then R aborts, otherwise R adds h to Bad. Additionally:

– for any query

q1 = (pk, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N) ,

to Hash1, R adds all the digests com
[e]
i to Bad;

– for any query

q2 = (salt, h1, com
′[1]
N , com

′[2]
N , . . . , com

′[τ]
N) ,

to Hash2, R adds h1 and all the digests com
′[e]
N to Bad;

– for any query
q3 = (msg, salt, h2, . . .) ,

R adds h2 to Bad.

Then we get

Pr[R aborts] = (# times a digest is sampled) · Pr[R aborts at that digest]

≤ QRO ·
max |Bad|

22λ

= QRO ·
Q0 + (τN + 1)Q1 + (N + 2)Q2 + 2Q3

22λ

≤
(τN + 1)Q2

RO

22λ
(14)

where QRO = Q0 +Q1 +Q2 +Q3 +Q4.
In addition, R maintains associative arrays Tsh and Tx to keep track of the shares (and seeds)

and candidate witnesses it gets from A’s queries. Specifically, for each query

q1 = (pk, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N) ,

and for each e ∈ [1 : τ], R checks whether

– ∀i ∈ [1 : N − 1]: ∃(q(e,i)0 , h
(e,i)
0) ∈ Q0 s.t.

q
(e,i)
0 = (salt, e, i, seed

[e]
i)

and h
(e,i)
0 = com

[e]
i ,

17

– ∃(q(e,N)
0 , h

(e,N)
0) ∈ Q0 s.t.

q
(e,N)
0 = (salt, e,N, seed

[e]
N , Jx

[e]KN)

and h
(e,N)
0 = com

[e]
N .

If so, R defines

Tsh[q1, e, i] := (Jx[e]Ki, Ja[e]Ki, JQ′[e]Ki)

= XOF(salt, seed
[e]
i)

for every i ∈ [1 : N − 1],
Tsh[q1, e,N] := (Jx[e]KN , Ja[e]KN)

with Ja[e]KN = XOF(salt, seed
[e]
N) and with Jx[e]KN from q

(e,N)
0 , and

Tx[q1, e] :=
N∑
i=1

Jx[e]Ki .

Upon reception of a valid message-signature pair from A, R checks Tx for possible candidate
solutions to the MQ challenge. If one of the Tx[q1, e] stores a correct solution x to the MQ challenge(
{Ai}, {bi}, y

)
, then R returns x, otherwise R returns ⊥. We have

Pr[A wins] = Pr[A wins ∧R aborts] + Pr[A wins ∧R ouputs ⊥] + Pr[A wins ∧R ouputs x]

≤ Pr[R aborts] + Pr[A wins | R ouputs ⊥] + Pr[R ouputs x]

which is
ϵeuf-ko ≤ Pr[R aborts] + Pr[A wins | R ouputs ⊥] + ϵmq . (15)

Pr[R aborts] is upper bounded by Equation 14. It remains to upper bound Pr[A wins | R ouputs ⊥].
We now analyze the probability of A winning the EUF-KO game conditioned on the event that

R outputs ⊥, i.e., that no suitable solution x was found from the hash queries.

Cheating in the first round. For any query (q1, h1) ∈ Q1, and its corresponding expanded answer

{γ[e]1 , . . . , γ
[e]
m }e∈[1:τ] = XOF(h1), let G1(q1, h1) be the set of indices e ∈ [1 : τ] of “good executions”

where both Tx[q1, e] = x[e] is non-empty and the batched relation (Equation 1) holds for x[e] and the

{γ[e]i }i. SinceR outputs ⊥, x[e] is not the right solution to the MQ challenge. Then by the uniformity

of the {γ[e]i }i (for now, XOF is assumed to be a truly random function), each e ∈ [1 : τ] has the same
independent probability of being in G1(q1, h1). According to Theorem 1, this probability is p1 =

1
qη .

We therefore have that #G1(q1, h1) ∼ Xq1 where Xq1 = B (τ, p1), the binomial distribution with τ
trials, each with success probability p1. Letting (q1best, h1best) denote the query-response pair which
maximizes #G1(q1, h1), we then have that

#G1(q1best, h1best) ∼ X = max
(q1,h1)∈Q1

{Xq1}.

Cheating in the second round. For any query (q2, h2) ∈ Q2, and its corresponding expanded answer
{r[e]}e∈[1:τ] = XOF(h2), we define G2(q2, h2) the set of indices e ∈ [1 : τ] of “good executions” as
follows. Let

q2 = (salt, h1, com
′[1]
N , com

′[2]
N , . . . , com

′[τ]
N) .

Then e ∈ G2(q2, h2) if the following conditions hold:

18

1. ∃ q1 = (pk, salt, com
[1]
1 , com

[1]
2 , . . . , com

[τ]
N) such that (q1, h1) ∈ Q1 with same salt as in q2;

2. Tx[q1, e] = x[e] is non-empty;

At this stage (from the above condition), we have that Tsh[q1, e, i] = (Jx[e]Ki, Ja[e]Ki, JQ′[e]Ki) is
non-empty for every i ∈ [1 : N − 1].

3. ∀i ∈ [1 : N], ∃ q[e]0 = (salt, e, 0, JQ′[e]KN) such that (q
[e]
0 , com

′[e]
N) ∈ Q0;

Let Q′[e] =
∑N

i=1JQ
′[e]Ki. Let w[e] and z[e] be defined from x[e] and the {γ[e]i }i (according to the

description of Section 2.3). And let P [e] the polynomial defined from Q′[e], x[e], w[e] and z[e] as
in the proof of Theorem 1.

4. The random point r[e] is such that P [e](r[e]) = 0.

If e ∈ G1(q1, h1) then all the above conditions are fulfilled (in particular, we have z[e] = ⟨x[e], w[e]⟩
implying P [e] = 0) and hence e ∈ G2(q2, h2) as well. Whenever e /∈ G1(q1, h1), we have P [e] ̸= 0
and P [e](r[e]) = 0 with probability p2 = 2n1−1

qη−n1
over the randomness of r[e] (which holds from the

Schwartz-Zippel Lemma – see the proof of Theorem 2). Namely, every “bad execution vs. round
1”, e ∈ [1 : τ] \ G1(q1, h1), has the same independent probability p2 of being in G2(q2, h2) (i.e. of
being a “good execution vs. round 2”). We therefore have that

#
(
G2(q2, h2) \G1(q1, h1)

)
∼ B (τ − τ1, p2)

where τ1 = #G1(q1, h1). By taking τ1 = X, the random variable maximized by (q1best, h1best) and
defining (q2best, h2best) the query-response pair which maximizes #G2(q2, h2), we then have that

#G2(q2best, h2best) ∼ X + Y

where
Y = max

(q2,h2)∈Q2

{Yq2} with Yq2 ∼ B (τ −X, p2) .

Cheating in the third round. Each hash query

q3 = (msg, salt, h2, . . .)

that A makes to Hash3 can only be used in a winning signature if there exists a corresponding
query (q2, h2) ∈ Q2. Then for each “bad” second-round execution e ∈ [1 : τ] \G2(q2, h2), either the
verification protocol failed, in which case A could not have won, or the verification protocol passed,
despite P [e](r[e]) ̸= 0. This implies that exactly one of the parties must have cheated during the
MPC execution of the verification protocol. (Less than one and the verification protocol would have
failed; more than one and the verification of the signature would have failed.) Since the third-round
challenge {i∗[e]}e∈[1:τ] = XOF(h3) is distributed uniformly at random (assuming XOF is a random
function), the probability that this happens for all such “bad” second-round executions e is(

1

N

)τ−#G2(q2,h2)

≤
(

1

N

)τ−(X+Y)

.

The probability that this happens for at least one of the Q3 queries made to Hash3 then satisfies

Pr[A wins | R outputs ⊥] ≤ Pr[X + Y + Z = τ] (16)

19

with Z the random variable defined as Z = maxi∈[1:Q3]{Zi} for Zi ∼ B
(
τ −X − Y, 1

N

)
.

Wrapping up. From Equation 14, Equation 15 and Equation 16, we finally get

ϵeuf-ko ≤
(τN + 1)Q2

RO

22λ
+ ϵmq + Pr[X + Y + Z = τ] . (17)

EUF-CMA security. We consider the above reduction algorithm R which we extend to answer
the signing queries of the adversary A. We consider two games:

– Game 1: R uses a signature oracle OSig(sk, pk, ·) which perfectly answers signing queries from
A;

– Game 2: the signature oracle is replaced by a simulator SSig(pk, ·) answering signing queries
from A without being given the secret key as input.

In Game 1, R behaves exactly as above while additionally answering the signing queries from A
using OSig(sk, pk, ·). The signing oracle OSig(sk, pk, ·) makes queries to the random oracles Hash0,
Hash1, Hash2, Hash3 and Hash4 which are answered by R as above, and it computes the signature
from the input message and the key pair (sk, pk) as described in Figure 2. The total number of
random oracle queries is hence of

Q = QRO +NHash ·QSig

where QRO = Q0 + Q1 + Q2 + Q3 + Q4 is the total number of random oracle queries made by A
(i.e. outside the signature queries) and NHash = τ(2N +1)+3 is the total number of hash calls (or
random oracle queries) in a signature computation (τ(N + 1) calls to Hash0, τN calls to Hash4,
and one call to each Hash1, Hash2 and Hash3).

The signing queries being perfectly answered, A produces a valid signature with probabil-
ity ϵeuf-cma. Then, following the same lines as the EUF-KO proof, R interacting with A and
OSig(sk, pk, ·) recovers the MQ solution x (part of sk) with probability ϵGame1 such that

ϵeuf-cma ≤ ϵGame1 +
(τN + 1)Q2

22λ
+ Pr[X + Y + Z = τ] .

We note that this is insufficient to prove our security statement since the reduction R should not
have access to the oracle OSig(sk, pk, ·), which is why we need to transit to Game 2.

Game 2 is similar to Game 1 but the signing oracle is replaced by a simulator SSig(pk, ·) which
does not take the secret key sk as input. Additionally, R keeps a list Sl of all the salts appearing
in random oracle queries. The signing simulator SSig(pk, ·) starts by picking a random salt value
(as in a genuine signature generation) and aborts if the generated value is already in Sl. This way,
all the seeds generated by the tree PRG can be considered as fresh random values independent
of any previous oracle responses. The signing simulator follows the same principle as the honest-
verifier zero-knowledge simulator of theMQOM ZK-PoK (i.e. the proof-of-knowledge obtained when
applying the MPCitH transformation to the MQOM MPC protocol). By knowing the challenges
beforehand, it can generate a signature with perfect distribution without knowing the secret key.
In the random oracle model, this simply means that SSig(pk, ·) randomly generates the answers h1,
h2 and h3 of the oracles Hash1, Hash2 and Hash3 before they are actually queried in the signature
generation. From these hashes, SSig(pk, ·) deduces the challenges by application of the XOF. Then
it generates the shares as in a genuine signature generation, with the following differences:

20

1. x is randomly drawn (and is hence an incorrect solution to the MQ instance with overwhelming
probability);

2. for every execution e ∈ [1 : τ], Q′[e] is generated as a random degree-(2n1 − 2) polynomial for
which the MPC computation (x, a[e], Q′[e]) 7→ (α[e], v[e]) is such that v[e] = 0.

The shares revealed in the signature are uniformly distributed under the constraint v[e] = 0, namely
they are identically distributed to those of a genuine signature. In the absence of abortion, we thus
get that an answer of SSig on input (pk,msg) is identically distributed to an answer of OSig on
input (sk, pk,msg) for any message msg.

The probability of abortion due to collisions in Bad is the same for OSig and SSig. Indeed, they
both do the same amounts of queries to the random oracles, the simulator just does them in a
different order and handles the queries for h1, h2 and h3 directly. SSig may further abort in case
of salt collision, which happens with probability at most (QRO + QSig)/2

2λ. We deduce that the
success probability ϵGame2 of R to recover x while interacting with A and simulating signing queries
with SSig(pk, ·) satisfies

|ϵGame1 − ϵGame2| ≤
QSig(QRO +QSig)

22λ
≤ Q2

22λ
.

which implies

ϵeuf-cma ≤ ϵGame2 +
(τN + 2)Q2

22λ
+ Pr[X + Y + Z = τ] .

Accounting pseudorandomness. The final step of the proof consists in replacing the idealized
XOF, which is assumed to output true randomness, by the real XOF, which is assumed to be
(t, ϵprg)-indistinguishable from true randomness. We further consider realMQOM key pairs in which
the MQ equations

(
{Ai}, {bi}

)
are pseudorandomly generated (with XOF) from a random seedeq.

Let Game 3 be similar to Game 2 with the real pseudorandomness setting such that ϵGame3 = ϵmq
is the probability that R recovers x while interacting with the adversary A against the real MQOM
scheme. Clearly, we have |ϵGame2 − ϵGame3| ≤ ϵprg, which finally gives:

ϵeuf-cma ≤
(τN + 2)Q2

22λ
+ ϵmq + ϵprg + Pr[X + Y + Z = τ] .

4.2 Signature forgery attacks

While applying the Fiat-Shamir transform to a zero-knowledge proof of knowledge (ZK-PoK) with
several rounds and parallel repetitions, one gets a security drop between the soundness of the ZK-
PoK and the unforgeability of the signature scheme. Namely, the forgery cost is lower than 1

ε , where
ε is the soundness error of the original ZK-PoK. The best forgery attack against Fiat-Shamir-based
schemes with several parallel executions (τ > 1) is the attack from [18]. The latter is described for
a 5-round scheme, but it can be easily generalized for any scheme with more rounds. The attack
works as follows:

1. The adversary chooses an attack strategy. It consists in choosing three non-negative integers
τ1, τ2, τ3 such that τ = τ1 + τ2 + τ3.

2. For each forgery attempt, they generate cheating commitments (i.e. which do not correspond to
a correct witness) which for each repetition fool the MPC protocol with probability p1 in round

21

1 (commitment – challenge 1) and probability p2 in round 2 (response – challenge 2), where
p1, p2 are as defined in Theorem 1. They repeat this step until the MPC protocol is fooled in
round 1 for τ1 repetitions among τ . Since the probability that a cheating commitment fools the
MPC protocol w.r.t. a random first challenge (expanded from h1) is p1 for one repetition, the
probability to get τ1 fooled repetitions is

PMF(τ, τ1, p1) := Pr


fool at least τ1

of the τ repetitions
in round 1 with unitary

probability of p1


=

τ∑
k=τ1

(
τ

k

)
pk1(1− p1)τ−k .

Thus this step is repeated 1
PMF(τ,τ1,p1)

times on average. We denote I1 ⊆ [1 : τ] the set of indices
of the fooled repetitions for a forgery attempt successfully passing this step.

3. For a forgery attempt successfully passing the previous step, the adversary tries different round-2
responses to the first challenge generated from h1. Each response attempt gives rise to a different
hash h2 and corresponding random round-2 challenge which can be fooled with probability p2
for each repetition. This step is repeated until the generated challenge is fooled for τ2 repetitions
among [1 : τ] \ I1. The probability of succeeding for one round-2 response attempt is

PMF(τ − τ1, τ2, p2) =
τ−τ1∑
k=τ2

(
τ − τ1
k

)
pk2(1− p2)τ−τ1−k .

Thus this step is repeated 1
PMF(τ−τ1,τ2,p2) times on average. We denote I2 ⊆ [1 : τ] \ I1 the set

of indices of the fooled repetitions for a forgery attempt successfully passing this step.
4. Finally, the adversary guesses the unopened parties’ indexes in round 3 for the remaining rep-

etitions e ∈ [1 : τ]\(I1 ∪ I2) (the repetitions which have not been fooled yet). They generate
the round-3 responses accordingly, i.e. cheating on the guessed non-opened party only and such
that the broadcast shares pass the verification (i.e. correspond to v = 0). They repeat this step
until the guess is correct, which happens with probability(

1

N

)τ−τ1−τ2
.

Thus this last step is repeated N τ−τ1−τ2 times on average.

The forgery cost of this attack corresponds to the cost of the optimal strategy, namely

costforge = max
τ1,τ2,τ3 : τ=τ1+τ2+τ3

{
1

PMF(τ, τ1, p1)
+

1

PMF(τ − τ1, τ2, p2)
+N τ3

}
, (18)

where p1 and p2 are defined in Theorem 1.
The parameters of MQOM (see Table 3 hereafter) have been chosen such that the associated

forgery cost is at least of 2128 for Category I, of 2192 for Category III and of 2256 for Category
V defined by NIST [22]. We stress that here a forgery cost of 2λ means computing more than 2λ

hashes, which is relevant with respect to the definition of Categories I, II and V (assuming that a
hash computation is comparable or superior to an AES computation in gate count).

22

4.3 MQ Security

The security of the MQOM signature scheme relies on the hardness to solve an instance of the
multivariate quadratic problem, since the secret key is a solution of the MQ instance represented
by the public key. There exist many algorithms to solve the MQ problem. Their complexity depends
on several parameters: the number n of unknowns, the number m of quadratic equations, the size
q of the field, the characteristic of the field, and the number of solutions. The optimal algorithm
might vary depending on the values of these parameters.

We used the MQ estimator [3] to evaluate the computational costs of all the existing algorithms.
This tool takes the parameters (q,m, n) of an MQ problem and estimates the running times (and the
memory usage) of the most important classical algorithms. The MQ estimator takes two parameters
as inputs:

– a real number w ∈ [2, 3] such that the complexity to multiply two n× n matrices is O(nw).
– a real number θ ∈ [0, 2] such that (log2 q)

θ is the ratio between the field operation complexity
and the bit complexity.

Regarding the complexity of the matrix multiplication, we set w as log2(7). The same choice was
made in MQ-DSS [9] and in the numerical results of the MQ estimator [3]. While there exist some
algorithms with asymptotically smaller w, those algorithms have a huge constant factor. In practice,
the best an adversary can hope is w = log2(7) obtained using Strassen algorithm [26]. Moreover,
we take θ = 2 as suggested in [3].

We only consider the MQ instances for which the number n of unknowns and the number m
of equations are the same (i.e. m = n), since they correspond to the harder instances. Indeed,
adding more equations would provide information about the system, while having more variables
would enable us to reduce the instances by fixing some of them. Table 1 summarizes the selected
MQ parameters for MQOM for the three security categories together with the corresponding MQ
estimator output. The choice of these parameters is explained in the next section.

Table 1: Complexities of different attacks on our MQ instances.

Parameter
Set

MQ Parameters Algorithms

q m = n HybridF5 FXL Crossbred

MQOM-L1-gf31 31 49 164.2 142.8 143.9
MQOM-L1-gf251 251 43 168.9 144.4 151.6

MQOM-L3-gf31 31 77 244.6 207.6 232.6
MQOM-L3-gf251 251 68 251.4 209.8 262.1

MQOM-L5-gf31 31 106 326.9 276.2 325.8
MQOM-L5-gf251 251 93 334.9 274.1 369.3

5 Choice of the Parameters

The motivation for choosing multiple parameters aiming at different signature sizes and speeds is
to cover various use cases. While speed can be the main objective in situations where saving CPU

23

cycles is crucial, shorter signatures are useful when size is a bottleneck. Such use cases involve for
instance network communication or very constrained embedded contexts:

– Saving network bandwidth: an example is TLS sessions making use of signatures. When scaling
to many servers and clients, any decrease in the signature size will provide a significant decrease
in bandwidth (and limited performance impact in networks where many routers only transfer
the raw packets in-between the two parties without performing cryptographic computations).
The overhead on signature and verification computation is acceptable regarding the economic
gain on network pressure.

– Constrained embedded devices: in very small micro-controllers, the flash size is usually limited (a
few dozens of kilobytes). When storing e.g. X.509 certificates with embedded signatures, saving
bytes in flash at the expense of computation can be necessary. In such cases, computation time
is usually less an issue as the stored signature is often used for occasional operations that can
be “slow”, e.g. firmware verification or local user data authenticity at boot time.

We first fix the base field characteristic, testing values ranging from q = 17 to q = 251. For
each tested q, we took the number of equations m to be equal to the number of unknowns n and
selected this parameter to achieve the target level of security (categories I, III and V) according to
the MQ estimator [3] as explained in Section 4.3.

Regarding the MPC parameters, we first fix the number of parties to N = 256 (or equivalently
the hypercube dimension D = 8) to achieve running times of a few milliseconds while keeping short
signatures. Then for each tested q, and given the selected MQ parameters n = m, we exhaust the
relevant MPC parameters (n1, n2, η).

Given (q, n,m,N, n1, n2, η), we deduce the number of repetitions τ necessary to achieve a forgery
cost larger than λ bits, when λ is 128, 192 and 256 respectively for Categories I, III and V.
Currently, the best forgery attack is obtained by applying the approach of [18] and its cost is given
by Equation 18 (see description Section 4.2). Then from (q, n,m,N, n1, n2, η) and τ , we deduce the
size of a signature. For each q (and associated n = m), we keep the MPC parameters (n1, n2, η)
leading to the shortest signature for λ = 128. Table 2 summarizes the obtained parameters and
sizes for the different tested values of q.

Table 2: Tested fields Fq, corresponding MQ parameters n = m, and optimal parameters for MQOM
in terms of signature size for λ = 128 (with N = 256).

q n = m n1 n2 η τ Size

17 54 5 11 10 20 6 528

19 53 5 11 10 20 6 528

23 51 4 13 10 20 6 489

29 50 5 10 10 20 6 368

31 49 5 10 10 20 6 348

37 → 53 48 4 12 6 23 6 615

59 → 61 47 4 12 6 23 6 615

67 → 73 47 4 12 7 20 6 508

79 → 83 46 4 12 7 20 6 488

89 → 127 45 5 9 6 22 6 640

131 → 137 45 5 9 5 22 6 618

139 → 173 44 4 11 5 22 6 596

179 → 251 43 4 11 5 22 6 575

24

We chose to propose the instances obtained for q = 31 and q = 251. The former achieves the
shorter signature size for the tested fields. Moreover, an MQ instance with q = 31 was previously
considered in the MQ-DSS [9] which might already have motivated some cryptanalysis attempts
on those parameters. On the other hand, q = 251 gives the larger prime field whose elements hold
in single bytes. Moreover, it requires a smaller extension degree η than q = 31 which makes the
underlying arithmetic faster. Such an instance might also be more amenable to future improvements
of MPCitH based on threshold secret sharing [15].

Finally, we chose to add a “fast” variant relying on N = 32 parties. Compared to the “short”
variant with N = 256, the “fast” variant is 2 to 3 times faster for the considered instances, for an
overhead of ∼20% in the signature size.

The different MQOM instances and their parameters are summarized in Table 3 (together with
benchmarks described in the next section).

6 Implementations and Benchmarks

6.1 Signature and keys sizes

The formula for the maximum signature size in bytes depending on the MQ parameters is bounded
by (where |e ∈ Fq| is the size in bytes of the elements in the field Fq):

|σ| ≤ λ+ |e ∈ Fq| · τ ·
(
n+ η · (2n1 + n2 − 1)

)︸ ︷︷ ︸
Field elements of MPC communication

+
τ · λ · (log2N + 4)

8︸ ︷︷ ︸
(de)commitments

(19)

For q = 31, elements in the field are packed on 5 bits, and |e ∈ Fq| = 5
8 . For q = 251, elements

are on 8 bits and |e ∈ Fq| = 1.

The signature size in Equation 19 splits into two main components: the field elements commu-
nicated in the MPC protocol, and the commitments and decommitments (mainly the sibling paths
of seed trees). The remaining λ bytes include the salt and three hashes (each of size 2λ bits). To
reach a security of λ bits, the number of iterations τ is at least λ/ log2N and can approach this
lower bound whenever the false positive probabilities p1 and p2 are small enough (i.e. when q and
η are high enough). This implies that the (de)commitment part is at least of λ2/8 bytes (which is
2 KB for λ = 128) whatever the value of N . With our chosen parameters for λ = 128, this part
represents ≈ 4 KB for the short instances and ≈ 5 KB for the fast instances. For the MPC commu-
nication part, increasing N might result in a logarithmic decrease of τ (as τ ≥ λ/ log2N) but only
if it is accompanied by an increase of η which mitigates the gain. With our chosen parameters for
λ = 128, the MPC communication part represents ≈ 2.5 KB for the short instances and ≈ 2.7 KB
for the fast instances.

From Section 3, the sizes in bytes of the secret key sk and the public key pk are:

|sk| = λ

8
+ |e ∈ Fq| ·m

|pk| = |sk|+ n

This results in 125 bytes for sk (218 bytes for pk) for MQOM-L5-gf251, the largest of our MQOM
variants.

25

Table 3: Different MQOM instances, underlying MQ and MPC parameters and benchmarks, for
NIST Security Categories I, III, and V. Benchmarks are provided for signing and verification in
milliseconds (ms) and millions of cycles (Mc), on an AVX2 Intel Core i7-10700K at 3.8 GHz platform.
For each category, the shortest and fastest instances are highlighted.

MQOM
Variants

NIST Security MQ Parameters MPC Parameters Sig. size Sig. perf. Verif. perf.
(Bytes)

Category Bits q m = n N = 2D n1 n2 η τ Avg. Max. Time Cycles Time Cycles
(ms) (Mc) (ms) (Mc)

MQOM-L1-gf31-short I 143 31 49 256 5 10 10 20 6348 6352 11.7 44.3 11.0 41.7
MQOM-L1-gf31-fast I 143 31 49 32 5 10 6 35 7621 7657 4.6 17.6 4.1 15.5
MQOM-L1-gf251-short I 143 251 43 256 4 11 5 22 6575 6578 7.5 28.5 7.2 27.3
MQOM-L1-gf251-fast I 143 251 43 32 4 11 4 34 7809 7850 3.0 11.5 2.7 10.2

MQOM-L3-gf31-short III 207 31 77 256 6 13 11 30 13837 13846 28.5 108.1 27 102.2
MQOM-L3-gf31-fast III 207 31 77 32 6 13 7 51 16590 16669 14.8 56.3 13.5 51.2
MQOM-L3-gf251-short III 207 251 68 256 5 14 7 30 14257 14266 18.3 69.5 17.3 65.5
MQOM-L3-gf251-fast III 207 251 68 32 5 14 4 52 17161 17252 8.6 32.8 7.8 29.6

MQOM-L5-gf31-short V 272 31 106 256 6 18 10 42 24147 24158 59.2 224.4 56.3 213.6
MQOM-L5-gf31-fast V 272 31 106 32 6 18 8 66 28917 29036 41.2 156.2 38.5 146.2
MQOM-L5-gf251-short V 272 251 93 256 6 16 7 41 24926 24942 39.0 148.0 37.5 142.2
MQOM-L5-gf251-fast V 272 251 93 32 6 16 5 66 29919 30092 21.5 81.5 19.9 75.6

6.2 Computation overview

On the performance side, signature and verification computations are very similar as one can
observe from Figure 2 and Figure 3: both compute almost identical sharings and commitments, both
perform the same MPC simulation, and both make almost the same number of XOF expansions
and hash calls (the verification being slightly more efficient as it avoids some prover’s plain and
hint computations). One major element to notice is that the core MPC computation mainly scales
with the MQ problem parameters, the base field q, and the number of variables/equations n = m,
as well as the MPC parameters (n1, n2, η), and only logarithmically scales with the number of
parties N . On the other hand, the sharing and commitments phase linearly scales with the number
of parties N . For the “fast” variants from Table 3, decreasing N drastically reduces the timings of
the MPC computation, explaining the 2 to 3 improvement factor. The signature size, on the other
hand, remains contained while switching from N = 256 to N = 32. When N grows, the bottleneck
of the whole signature and verification algorithms becomes the sharing and commitments phase (as
confirmed by the benchmarks in Section 6.3) which is mainly composed of XOF and hash primitives.

The key pair generation time is very fast and negligible when compared to signing and ver-
ification, as the computation merely consists of a small set of calls to XOF (scaling with n and
m).

6.3 Implementation and optimizations

The implementation of the variants of MQOM makes use of optimized implementations over finite
fields with precomputations where possible. Field elements on 5 bits (q = 31) or 8 bits (q = 251)
allow operations over native uint8 t (for the elements in ”uncompressed” form), with modular
operations and overflows handling on larger words: the number of reductions modulo q can be

26

optimized to absorb (unreduced) additions and multiplications in chains. All the mathematical
objects are represented as multi-dimensional arrays of field elements: this is obvious for vectors
and matrices, and extension fields η are vectors of base field elements. Computations over these
extension fields are also simplified whenever possible: the Lagrange interpolation of the X and W
polynomials can be reduced to simple matrix multiplications over the base field. The MQ equations
computation cost is halved by sampling triangular matrices for the {Ai}i∈[1:m] during key generation
without affecting the distribution of the MQ instance. For the MPC protocol, some elements that
appear multiple times throughout various phases can be mutualized: this is among other things the
case for

∑m
i=1 γiAi used during hint, broadcast and party computations.

XOF is used for pseudorandomness generation during the expansion of MQ equations, MPC
view-opening, seeds and shares. Rejection sampling is performed for field elements generation with a
1
32 (resp. 5

256) rejection rate when q = 31 (resp. q = 251), which keeps the sampling loop reasonable.
Hash is used for commitments, the Fiat-Shamir transform, and the node derivation of the seed trees.

For XOF and hashing, we provide the different primitives that are used on Table 4: SHA3
and SHAKE are both based on Keccak and allow for a simplified code as the same basis is used
for both. This allows for optimization factoring as any improvement on the underlying Keccak
implementation would benefit the two primitives. For MQOM, we use two implementations from
the XKCP library [4]: a portable pure C code (for the portable reference implementations), and
an assembly-optimized implementation using Intel’s AVX2 256-bit SIMD instructions (allowing to
parallelize 4 instances of the primitive in one call for a speedup of a factor 3 over the basic x86 64

assembly code).

Table 4: Symmetric cryptography primitives for NIST Security Categories I, III, and V.

Category I Category III Category V

Hash SHA3-256 SHA3-384 SHA3-512
XOF SHAKE-128 SHAKE-256 SHAKE-256

Finally, the message is only introduced in the third hash meaning that Phases 0 to 5 of the
signing algorithm (see Figure 2) and Phases 0 to 2 of the verification algorithm (see Figure 3) are
message-independent. This means that for a given MQOM key pair, message-independent phases
can be precomputed, leaving a very marginal computation whenever the message is available (one
hash and derivation of sibling paths for the signature).

6.4 Benchmarks

Table 3 provides benchmarks of our implementation of MQOM compiled for an AVX2 platform (an
Intel Core i7-10700K at 3.8 GHz). All the code is in C except for the assembly-optimized SIMD
SHA3 and SHAKE. As expected, reducing N from 256 to 32 for our “fast” variants provides a
significant speedup over the “short” variants while keeping reasonable signature sizes: MQOM-L1-
gf251-fast achieves around 3 ms for signing and verifying for ≈ 7.8 kilobytes signatures.

A detailed analysis of the signing execution trace shows that 70% of the time is spent in
Phase 1 (see Figure 2) for MQOM-L1-gf251-fast, and 85% for MQOM-L1-gf251-short: this exhibits
XOF/hashing bottleneck (for pseudorandomness and commitments) and the strong dependency

27

with the number of parties N . The MPC emulation part is quite marginal as it takes only 15%
(resp. 6%) of the MQOM-L1-gf251-fast computation (resp. MQOM-L1-gf251-short). As expected,
the phases that only depend on the message take less than 0.05% of the time, meaning that signing
(or verification) with message-independent precomputation shall only take microseconds.

Finally, key pair generation takes 0.1 (resp. 1.6) millisecond for MQOM-L1-gf251-fast (resp.
MQOM-L5-gf31-short), showcasing a marginal cost in all the instances as expected.

6.5 Possible improvements

For now, our implementation only makes use of assembly AVX2 SIMD for the mere hash and XOF
primitives. Although further optimizations on the Keccak core will probably be marginal, achieving
any speedup in the C code using these primitives should provide clear impacts on performance.
A drastic improvement for MQOM would obviously also come from dedicated hardware acceler-
ated instructions for XOF and hash (e.g. the ARMv8.2 specification has dedicated Keccak SIMD
extensions, implemented in CPUs such as Apple’s A13 SoC).

The MPC repetition factor τ makes MQOM highly parallelizable, either using a multi-threading
paradigm or vectorization of the instances through SIMD: this should improve all the instances’
speed. Inside the repetitions, further parallelism can be additionally applied to the parties, seed
trees and commitments computations.

Finally, field computations are in pure C and performed over uint8 t in native machine words:
these could benefit from optimized assembly improvements (possibly making use of parallelization
with SIMD), mostly speeding up the “fast” variants where the XOF and hash bottlenecks are less
present.

7 Comparison

In this section, we compare MQOM to other multivariate signature schemes from the literature. An
important property of MQOM is to rely on the non-structured MQ problem which is conservative
in terms of (post-quantum) security. Table 5 lists all the signature schemes based on the non-
structured MQ problem in the current state of the art. All these schemes are obtained through the
Fiat-Shamir transform applied to a ZK-PoK for the MQ problem. We can observe that MQOM
achieves the shortest signature sizes among them. In particular, MQOM signatures are about 10%
shorter than the previous shortest due to [12] while based on more conservative MQ parameters.
MQOM signatures are more than 30% shorter than the other non-structured MQ signatures in the
state of the art.

Let us further compare MQOM with the other multivariate signature schemes submitted to the
NIST call for additional post-quantum signatures [22]. Most of them rely on the hash-and-sign
paradigm and have small signature sizes (less than 500 bytes for the first security level):

– either they are close variants of the UOV signature scheme [20] and thus have a large public
key (tens of kilobytes),

– or they have competitive public key size but rely on new structured MQ assumptions that have
not yet passed the test of time (and are hence less conservative in terms of security).

Excluding MQOM, the only multivariate scheme built from a Fiat-Shamir transform in the new
NIST call is Biscuit [5]. It achieves smaller sizes (4.8–6.7 KB) but relies on a structured variant of
the MQ problem which is arguably less conservative than the original problem.

28

Table 5: MQOM – Comparison with the other signature schemes built as the Fiat-Shamir transfor-
mation of a zero-knowledge proof for the MQ problem.

Schemes
MQ Parameters MQ Security Communcation Cost Running Times
q m = n (in bits) Public key Signature Size Signing Verification

MQ-DSS [8] 31 48 141 46 B 28400 B 5.5 Mc 3.6 Mc
MudFish [6] 4 88 149 38 B 14400 B 14.8 Mc 15.3 Mc
Mesquite [27] – Fast 4 88 149 38 B 9492 B 15.4 Mc 12.1 Mc
Mesquite [27] – Compact 4 88 149 38 B 8844 B 30.7 Mc 24.4 Mc
Fen22-gf251 [12] – Fast 251 40 135 56 B 8488 B 8.3 Mc -
Fen22-gf251 [12] – Short 251 40 135 56 B 7114 B 22.8 Mc -

MQOM-L1-gf251 – Fast 251 43 144 59 B 7809 B 11.5 Mc 10.16 Mc
MQOM-L1-gf251 – Short 251 43 144 59 B 6575 B 28.5 Mc 27.3 Mc
MQOM-L1-gf31 – Fast 31 49 143 47 B 7621 B 17.7 Mc 15.5 Mc
MQOM-L1-gf31 – Short 31 49 143 47 B 6348 B 44.4 Mc 41.7 Mc

References

1. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze Yue. The
return of the SDitH. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of
LNCS, pages 564–596. Springer, Heidelberg, April 2023. 2, 9, 11

2. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg
Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor, PKC 2021, Part I, volume
12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021. 2, 4, 16

3. Emanuele Bellini, Rusydi H. Makarim, Carlo Sanna, and Javier A. Verbel. An estimator for the hardness of
the MQ problem. In Lejla Batina and Joan Daemen, editors, AFRICACRYPT 22, volume 2022 of LNCS, pages
323–347. Springer Nature, July 2022. 23, 24

4. Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. eXtended
Keccak Code Package , 2023. https://github.com/XKCP/XKCP. 27

5. Luk Bettale, Delaram Kahrobaei, Ludovic Perret, and Javier Verbel. Biscuit: Shorter MPC-based Signature from
PoSSo, 2023. https://www.biscuit-pqc.org/. 28

6. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 183–211. Springer, Heidelberg,
May 2020. 2, 29

7. Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar maps. In Riham AlTawy and
Andreas Hülsing, editors, SAC 2021, volume 13203 of LNCS, pages 355–376. Springer, Heidelberg, Septem-
ber / October 2022. 2

8. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. From 5-pass
MQ-based identification to MQ-based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 135–165. Springer, Heidelberg, December 2016. 29

9. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. MQDSS specifi-
cations. Version 2.1, 4 2020. https://mqdss.org/files/mqdssVer2point1.pdf. 23, 25

10. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-knowledge
MPCitH-based arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 3022–3036. ACM
Press, November 2021. 2, 4

11. Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Zaverucha. Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 843–857. ACM Press, November 2022. 2

12. Thibauld Feneuil. Building MPCitH-based signatures from MQ, MinRank, rank SD and PKP. Cryptology ePrint
Archive, Report 2022/1512, 2022. https://eprint.iacr.org/2022/1512. 2, 4, 28, 29

13. Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter signatures from
zero-knowledge proofs. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 541–572. Springer, Heidelberg, August 2022. 1, 2

29

https://github.com/XKCP/XKCP
https://www.biscuit-pqc.org/
https://mqdss.org/files/mqdssVer2point1.pdf
https://eprint.iacr.org/2022/1512

14. Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien Vergnaud. Zero-knowledge protocols for the sub-
set sum problem from MPC-in-the-head with rejection. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part II, volume 13792 of LNCS, pages 371–402. Springer, Heidelberg, December 2022. 2

15. Thibauld Feneuil and Matthieu Rivain. Threshold linear secret sharing to the rescue of MPC-in-the-head.
Cryptology ePrint Archive, Report 2022/1407, 2022. https://eprint.iacr.org/2022/1407. 2, 3, 16, 25

16. Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas
Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Nieder-
hagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and
Ward Beullens. SPHINCS+. Technical report, National Institute of Standards and Technology, 2022. available
at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. 1

17. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty com-
putation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.
2

18. Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification
schemes. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS,
pages 3–22. Springer, Heidelberg, December 2020. 21, 24

19. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with applications
to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 525–537. ACM Press, October 2018. 2, 9, 10

20. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signature schemes. In Jacques
Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 206–222. Springer, Heidelberg, May 1999. 1, 28

21. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien Stehlé,
and Shi Bai. CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. 1

22. National Institute of Standards and Technology (NIST). Call for Additional Digital Signature Schemes for the
Post-Quantum Cryptography Standardization Process, 2022. https://csrc.nist.gov/csrc/media/Projects/

pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf. 1, 22, 28
23. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,

Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical report,
National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022. 1
24. Simona Samardjiska, Ming-Shing Chen, Andreas Hulsing, Joost Rijneveld, and Peter Schwabe. MQDSS. Technical

report, National Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions. 2

25. Jacques Stern. A new identification scheme based on syndrome decoding. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 13–21. Springer, Heidelberg, August 1994. 1

26. Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 354-356(13), 8 1969. https:

//doi.org/10.1007/BF02165411. 23
27. William Wang. Shorter signatures from MQ. Cryptology ePrint Archive, Report 2022/344, 2022. https:

//eprint.iacr.org/2022/344. 29
28. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian

Rechberger, Daniel Slamanig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov, and Daniel Kales. Picnic. Techni-
cal report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions. 2

30

https://eprint.iacr.org/2022/1407
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://eprint.iacr.org/2022/344
https://eprint.iacr.org/2022/344
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	MQ on my Mind: Post-Quantum Signatures from the Non-Structured Multivariate Quadratic Problem

