
CompactTag: Minimizing Computation Overheads in Actively-Secure MPC for
Deep Neural Networks

Yongqin Wang
University of Southern California

yongqin@usc.edu

Pratik Sarkar
Supra Research

pratik93@bu.edu

Nishat Koti
Indian Institute of Science Bangalore

kotis@iisc.ac.in

Arpita Patra
Indian Institute of Science Bangalore

arpita@iisc.ac.in

Murali Annavaram
University of Southern California

annavara@usc.edu

Abstract
Secure Multiparty Computation (MPC) protocols enable se-
cure evaluation of a circuit by several parties, even in the
presence of an adversary who maliciously corrupts all but
one of the parties. These MPC protocols are constructed us-
ing the well-known secret-sharing-based paradigm (SPDZ
and SPDZ2k), where the protocols ensure security against a
malicious adversary by computing Message Authentication
Code (MAC) tags on the input shares and then evaluating
the circuit with these input shares and tags. However, this tag
computation adds a significant runtime overhead, particularly
for machine learning (ML) applications with computation-
ally intensive linear layers, such as convolutions and fully
connected layers.

To alleviate the tag computation overhead, we introduce
CompactTag, a lightweight algorithm for generating MAC
tags specifically tailored for linear layers in ML. Linear layer
operations in ML, including convolutions, can be transformed
into Toeplitz matrix multiplications. For the multiplication of
two matrices with dimensions T1×T2 and T2×T3 respec-
tively, SPDZ2k required O(T1 ·T2 ·T3) local multiplications
for the tag computation. In contrast, CompactTag only re-
quires O(T1 ·T2 +T1 ·T3 +T2 ·T3) local multiplications,
resulting in a substantial performance boost for various ML
models.

We empirically compared our protocol to the SPDZ2k pro-
tocol for various ML circuits, including ResNet Training-
Inference, Transformer Training-Inference, and VGG16
Training-Inference. SPDZ2k dedicated around 30% of its on-
line runtime for tag computation. CompactTag speeds up this
tag computation bottleneck by up to 23×, resulting in up to
1.47× total online phase runtime speedups for various ML
workloads.

1 Introduction

Machine learning (ML) has gained significant importance,
particularly in fields like finance, healthcare, and retail adver-
tising, thanks to its ability to handle large amounts of data.

Increasingly, ML providers rely on cloud-based servers to
provide model training and serving results. However, cloud-
based systems are vulnerable to data and model leaks. To
protect this data, privacy-preserving technologies like secure
multiparty computation (MPC) have been developed. MPC-
based secure training allows clients to share their data with
multiple mutually distrustful servers, enabling them to collab-
oratively train a model without revealing specific data details.
The trained model can then be stored in a secret-shared for-
mat to enable secure inference. The client shares its data with
servers using secret sharing, and the servers execute the model
on the confidential input to obtain the final output.

When choosing an MPC protocol for Secure ML, two key
factors are the threat model setting and scalability. The most
robust threat model setting is the dishonest majority, where an
adversary can maliciously corrupt a majority of participating
MPC parties and manipulate their behavior. It is assumed
that in this setting, the adversary can’t access honest parties’
inputs, where such honest parties are only a minority. This
setting is highly robust and doesn’t rely on any other trust as-
sumptions regarding non-collusion between the parties or us-
age of secure hardware. Scalability is another essential factor,
as protocols should easily accommodate a growing number
of participants without hampering the protocol’s efficiency or
necessitating major protocol modifications.

Our setting: In this work, we study the n-party actively se-
cure dishonest majority setting, which ensures security against
an adversary that can maliciously corrupt a subset t < n of
parties. This setting has been examined using authenticated
garbling-based approaches [47, 50] which demands constant
rounds of interaction. This setting has also been studied in
the literature through the SPDZ line of works [14, 12, 28],
which are faster in practice but require linear (in the multi-
plicative depth of the circuit) rounds of interaction. In this
work, we introduce CompactTag, an optimization that stays
within the SPDZ framework and is compatible with all the
existing works that use SPDZ.

1

mailto:yongqin@usc.edu
mailto:pratik93@bu.edu
mailto:kotis@iisc.ac.in
mailto:arpita@iisc.ac.in
mailto:annavara@usc.edu

SPDZ framework: Within the SPDZ framework, parties
parse the desired function as an arithmetic circuit comprising
of addition and multiplication gates. The protocol follows
the offline-online paradigm, where the online phase aims for
rapid execution, benefiting from the bulk of computation tak-
ing place in the offline phase. More precisely, in the offline
phase, parties generate correlated data for each multiplication
gate and input gate. During the online phase, each party secret
shares its inputs among all parties and uses the offline cor-
related data to create Message Authentication Code (MAC)
tags on their input shares. These secret shares and tags possess
additive homomorphic properties. Consequently, computing
an addition gate is straightforward since parties can locally
add their shares and tags. For multiplication gates, parties em-
ploy the correlated data to multiply the shares(of the secret)
and MAC tags. In the final output phase, parties verify the
output against the output tag to detect any malicious behavior.

Motivation: The computation of MAC tags for multiplica-
tion gates introduces significant overhead during the online
phase. Deep neural networks (DNNs) rely extensively on
convolutions and fully connected layers, which are expen-
sive to perform. Empirical observations in the state-of-the-art
SPDZ2k reveal that tag computation can account for 30% of
the online runtime. To illustrate, multiplying two matrices
with dimensions T1×T2 and T2×T3 in SPDZ2k requires
O(T1 ·T2 ·T3) local multiplications for the tag computation.
This study aims to investigate the feasibility of reducing this
cubic computation overhead to quadratic. Further, computa-
tion complexity directly impacts the power usage of a system.
Thus, reducing computation would directly help reduce the
power consumption of secure ML algorithms, where the latter
is a growing concern [2]. Optimizing the power usage allows
attaining substantial savings in monetary cost, promotes scal-
ability, and plays an important role in reducing our carbon
footprint.

1.1 Our contributions
This paper introduces an improved method for tag compu-
tation when performing matrix multiplications for actively
secure dishonest majority MPC.

Optimized tag generation: We introduce CompactTag, an
optimization within the SPDZ2k framework that efficiently
generates tags when performing matrix multiplications. In
contrast to the existing protocol [12] for matrix multiplica-
tion, which involves replicating the computationally expen-
sive local multiplications of secret shared values on the tags,
the CompactTag algorithm utilizes alternative lightweight
techniques for tag generation. Specifically, when multiply-
ing two matrices with dimensions T1×T2 and T2×T3, the
tag computation in CompactTag requires only quadratic com-
putation, i.e. O(T1 ·T2+T1 ·T3+T2 ·T3) local multiplica-

tions, whereas previous protocols required cubic computation,
leading to concrete asymptotic improvements in the online
phase. The offline phase of CompactTag remains the same
as SPDZ2k without any modifications. Thus, CompactTag
allows to improve the computational efficiency of matrix mul-
tiplication without inflating the communication of the online
phase. Moreover, CompactTag is also compatible with prime
order fields and can be effortlessly applied in the original
SPDZ framework [14].

Experimental results: Our improvements in asymptotic
performance directly manifest as demonstrated in our exten-
sive experiments. For this we have implemented CompactTag
using the CrypTen [29] library. Our implementations of
CompactTag exploit GPUs to accelerate the online phase by
leveraging Crypten’s GPU support. To analyze the perfor-
mance of CompactTag, we evaluate CompactTag on different
ML models and compare it against SPDZ2k . We elaborate on
this below:

◦ ML models considered: We consider three popular DNN
models: 1) VGG16, 2) ResNet, and 3) Transformer, and
benchmark the training as well as inference phases.

◦ Tag computation speedup: As opposed to SPDZ2k ,
where the tag computation takes up 30% of the on-
line runtime, it is only 2% when using CompactTag.
This reduction in tag computation time results from
CompactTag’s lightweight tag generation, which reduces
tag computation by up to 23×.

◦ Online computation speedup: The reduction in tag com-
putation time brings in savings of up to 1.47× in the
overall online runtime in comparison to SPDZ2k .

◦ Power usage: CompactTag reduces the power consump-
tion of the SPDZ2k framework up to 36%.

◦ Scalability: We also observe that our overall speedup
over SPDZ2k increases when we increase the inter-
connection bandwidth between parties or increase the
ring size from 32 bits to 64 bits. Furthermore, our
tag-computation speedup over SPDZ2k remains almost
the same for an increasing number of parties and does
not decrease, thus showcasing the clear scalability of
CompactTag.

1.2 Related work
SPDZ [14], MASCOT [27], and Overdrive [28] are actively
secure dishonest majority MPC over finite fields. The work
of [4] also proposed improvements by considering function-
dependent preprocessing phases. CompactTag is compatible
with all these works by replacing ring-based sub-protocols in
CompactTag with finite field-based sub-protocols. The work

2

of [13] proposed optimizations for equality testing, compari-
son, and truncation that work over the ring of integers modulo
2k. The work of [16] proposed MPC optimizations for circuits
that involve both arithmetic and boolean operations.

There is a recent line of works [17, 20] in the weaker
dishonest majority setting where a constant fraction ε (where
1
2 < ε < 1) of the parties are corrupted by the adversary. In
their setting, they obtain efficient protocols based on packed
secret sharing. Our protocol considers the stronger and more
robust setting where the adversary can corrupt up to all but
one party.

A plethora of works focus on optimizations for the online
phase [10, 26, 18, 49, 29, 48], but those works mostly focus
on the passive secure 2PC protocols whereas CompactTag is
designed specifically for actively secure dishonest majority
MPC. The work of [34] proposes a system-level optimization
of Softmax specifically for MPC, but it could be applicable
for actively secure protocols as well.

There are privacy-preserving ML protocols in the two-
party [39, 22, 21, 25] and a small number of parties [36, 31,
40, 30] setting. The recent works of [22, 21, 25] proposed
customized secure training and inference protocols in the two-
party setting using functional secret sharing based on GPUs.
We focus on the generalized n-party setting.

The works of [9, 33] consider the case where a server holds
the training model and a client wants to perform a secure
inference using its secret data. We note that CompactTag (or
even the SPDZ framework) considers a different scenario
where none of the participating parties have access to the
entire model or the data and hence our threat model is funda-
mentally different and likely to be more practical in industrial
deployments.

Some works focus on secure hardware [46, 37, 23] or
memory access patterns [19, 44, 41, 42]. Those works fall
outside the scope of MPC.

1.3 Paper organization
In Section 2, we present our notations and discuss the
SPDZ2k framework. In Section 3, we provide an overview
of CompactTag and the formal protocol details. Finally, we
provide our experimental results in Section 4. Appendix B
provides the security analysis of CompactTag.

2 Preliminaries

We provide the notations and the necessary background in
secret-sharing and SPDZ2k in this section.

2.1 Security model
We design protocols in the n-party dishonest majority setting.
Let P = {P1,P2, . . . ,Pn} denote the set of n parties involved
in the computation. These parties are connected via pairwise

private and authenticated channels. The parties also have
access to a broadcast channel. We assume the presence of a
probabilistic polynomial time malicious adversary A that can
corrupt up to t < n parties in P . Our protocols are secure in
the standard real/ideal-world simulation paradigm [5].

2.2 Notation
We use the following notations in the paper. Z2k denotes the
ring of integers {0,1, . . . ,2k − 1} with addition and multi-
plication operations performed modulo 2k. Boldfont capital
letters such as M denote a matrix whereas boldfont small
letters denote a vector such as v. M ∈ ZT1×T2

2k denotes a
matrix of dimension T1×T2 where each element Mpq in
M, for p ∈ {1, . . . ,T1},q ∈ {1, . . . ,T2}, belongs to the ring
Z2k . X⊙Y denotes a matrix multiplication operation be-
tween matrices X ∈ ZT1×T2

2k and Y ∈ ZT2×T3

2k . X∗Y denotes
element-wise multiplication operation between elements of
the matrices X ∈ ZT1×T2

2k and Y ∈ ZT1×T2

2k . X+Y denotes
element-wise addition operation between elements of the
matrices X and Y. κ denotes the computation security pa-
rameter. (M)c denotes that the matrix M ∈ ZT1×T2

2k has been
compressed along one dimension, say along the columns (by
linearly combining all the columns under random linear com-
biners), to obtain (M)c ∈ ZT1×1

2k . We use x =k y to denote
x= y mod 2k. We use the notation [v] to denote that a value
v ∈ Z2k is additively shared, i.e., there exist values [v]i ∈ Z2k

for i ∈ {1, . . . ,n} such that v =k ∑i[v]i.

2.3 Commitment scheme
Let COM(x) denote the commitment of a value x in the
Universally-Composable(UC) model [6]. The commitment
scheme COM(x) possesses two properties; hiding and bind-
ing. The former ensures privacy of the value x given just
its commitment COM(x), while the latter prevents a corrupt
party from opening the commitment to a different value x′ ̸= x.
In addition, UC-secure commitments [7, 8] require a simula-
tor (for a corrupt committer) to extract the message committed
by a corrupt committer. Also, it enables a simulator (for an
honest committer) to commit to 0 and later open it to any
valid message by using the trapdoor. This is abstracted via
the ideal functionality FNICOM for non-interactive commit-
ments in [8]. A practical realization of a commitment scheme
can be via a hash function H(·) given below, whose security
can be proven in the programmable random-oracle model
(ROM)—for (c,o) = (H(x||r),x||r) = COM(x;r).

2.4 Authenticated secret-sharing semantics
We design our protocols using the authenticated additive shar-
ing semantics described in [12]. Here, not only each secret is
additively shared among the parties in P , but there also there
exists a message authentication code (MAC) (also referred to

3

as a tag) on each secret, generated under a global MAC key.
The tag and the global MAC key are also additively shared
among the parties in P . We will elaborate on this next.

Let s be the statistical security parameter. Let ∆ ∈ Z2s

denote a global key that is additively shared among the parties,
i.e., Pi ∈ P holds [∆]i ∈Z2s such that ∆ =s ∑i[∆]i. Let v ∈Z2k

denote the secret value that has to be authenticated shared. Let
[v]i ∈ Z2k+s denote the additive shares of v ∈ Z2k in a larger
ring Z2k+s , i.e. ṽ =k+s ∑i[v]i and v =k ṽ. Let tagv =k+s ∆ · ṽ
denote the tag where tagv is also [·]-shared over Z2k+s among
parties in P . We say that v is authenticated secret shared or J·K-
shared if Pi ∈ P holds [v]i ∈ Z2k+s , [tagv]i ∈ Z2k+s , [∆]i ∈ Z2s .
We thus denote JvK as the tuple ([v], [tagv], [∆]). Observe that

n

∑
i=1

[tagv]i =k+s (
n

∑
i=1

[v]i) · (
n

∑
i=1

[∆]i) (1)

Notice that J·K-sharing scheme satisfies the linearity prop-
erty, i.e., given constants c1, . . . ,cm ∈Z2k+s and Jx1K, . . . ,JxmK,
parties can compute Jc1x1 + . . .+ ctxmK non-interactively by
locally multiplying the constant with the additive shares of
xi, tagxi

for i ∈ {1, . . . ,m} that they possess and adding up
these resultant values.

We say that a matrix M ∈ ZT1×T2

2k is J·K-shared if ev-
ery element in M is J·K-shared. We denote this as JMK =
([M], [tagM], [∆]) where tagM is the matrix comprising of tags
on each element in M. Further, for constants c1,c2 ∈ Z2k and
matrices X,Y ∈ ZT1×T2

2k , we use the notation c1JXK+ c2JYK
to denote the operation of multiplying each element in [X]
with c1 and each element in [Y] with c2, followed by element-
wise addition of the [·]-shared matrices (with the same oper-
ation performed on the tags as well), i.e., c1JXK+ c2JYK =
(c1[X] + c2[Y],c1[tagX] + c2[tagY], [∆]).

2.5 Overview of SPDZ2k [12]
We next give a brief overview of some primitives from
SPDZ2k that we rely on for our construction. We refer an
interested reader to [12] for further details.

Authenticated secret sharing: To design an actively secure
protocol, SPDZ2k uses secure tags to detect any cheating that
occurs during the protocol run. All inputs and the intermediate
values that are computed as part of the function evaluation
are authenticated secret shared, as described in section 2.4.

Authenticating an additively shared secret: We rely on
the ideal functionality FMAC (see Appendix A.2) from [12].
During the initialization phase, it samples and distributes addi-
tive shares ([·]-shares) of the global MAC key, ∆. Post this ini-
tialization, FMAC uses the global ∆ to generate additive shares
of a tag (MAC) on a secret that is additively shared among
the parties. For this, it takes [·]-shares of a secret v ∈ Z2k as
input and generates [·]-shares of its tag.

Sampling public constants: We rely on the coin-tossing
functionality FRand (see Appendix A.1 for details) from [12],
which randomly samples an element from the ring and makes
it available to all parties.

Reconstructing J·K-shared values and checking their tags:
At a high level, to reconstruct a J·K-shared value v ∈ Z2k ,
each party broadcasts its share [v]i. Then, everyone computes
ṽ =k+s ∑i[v]i and checks if ∆ · ṽ equals tagv modulo 2k+s

without revealing ∆. Note that to ensure privacy, as discussed
in [12], the higher order s bits of ṽ are masked before recon-
struction. This is because v may be a linear combination of
other J·K-shared values, and the higher order s bits of v may
leak information about overflows that occurred during the
linear combinations. For reconstructing v, parties perform:

1. Generate J·K-shares of a random r ∈ Z2s using FMAC.
2. Compute JwK = JvK+2k · JrK.
3. Each Pi ∈ P broadcasts [w]i, and reconstructs w =k+s

∑
n
i=1[w]i.

4. Each Pi commits to [cs]i =k+s [tagw]i−w · [∆]i using
commitment randomness via FNICOM and broadcast the
commitments.

5. After obtaining all the broadcasted commitments, all
parties open their commitments and check if cs =k+s

∑
n
i=1[cs]i equals 0.

6. If cs=k+s 0, parties take v=k w as the output, otherwise
abort.

As discussed in [12], the above approach has a failure
probability of 2−s.

Batch reconstruction: For ML workloads that may require
reconstructing a huge number of secret values, it is useful
to check for the correctness of a large batch of values at the
end of the protocol in a single shot rather than checking for
each value separately. For this, SPDZ2k proposes a batch re-
construction procedure for reconstructing and checking m
J·K-shared values in a single shot using random linear com-
binations. Batch reconstruction allows parties to reduce the
communication as well as round complexity in comparison
to performing a single check for each of the m shared values.
The detailed procedure, ΠBatchRec, is described in Figure 1.
Since our constructions (discussed in Section 3) will operate
on matrices and we compare our technique with this method,
this procedure is described to take as input a matrix compris-
ing of T1 ·T2 elements (instead of considering m values) and
the goal is to reconstruct all the entries in M.

Note that even when dealing with a matrix of values, the
ΠBatchRec procedure requires parties to commit to just one
value (cs) during the tag check process. This contrasts with
the multiple values that would be needed if one were to use
the single value reconstruction method mentioned earlier. In
this way, ΠBatchRec reduces the communication complexity
when reconstructing multiple values. Finally, as discussed

4

Procedure ΠBatchRec

INPUT: JMK = ([M], [tagM], [∆]) for M ∈ ZT1×T2

2k .

OUTPUT: M.

Preprocessing phase: Generate J·K-shares (over Z2k+s)

of an all-zero matrix, R ∈ ZT1×T2

2k using FMAC (see
Section 2.5) such that each element Rpq ∈ R for p ∈
{1, . . . ,T1},q∈{1, . . . ,T2} satisfies Rpq =k ∑i[Rpq]i =k
0.

Online phase:
// Open
To reconstruct the matrix M, parties do the following:

1. Compute JWK = JMK+ JRK.
2. Parse JWK = ([W], [tagW], [∆]).
3. Broadcast shares of [W], and compute W =k+s

∑
n
i=1[W]i.

// Tag check
To check for the correctness of the reconstructed M, par-
ties do the following.

1. Sample a public random matrix χ ∈ ZT1×T2
2s by

invoking FRand.
2. Compute [CS] =k+s [tagW] ∗χ− [∆]i · (W∗χ).
3. Compute and commit to [cs] =k+s

∑
T1
i=1 ∑

T2
j=1[CSi, j] using the commitment random-

ness via FNICOM and broadcast the commitments.
4. After obtaining all the broadcasted commitments,
all parties open their commitments and compute
cs=k+s ∑

n
i [cs]i.

5. Check if cs =k+s 0. If the check passes, output
M =k W, else abort.

Figure 1: Procedure for reconstructing all elements in M ∈
ZT1×T2

2k+s as a batch and checking their tags in SPDZ2k .

in [12], ΠBatchRec fails with a small probability which is upper
bounded by 2−s+log(s+1).

Matrix multiplication: Given J·K-shares of matrices X ∈
ZT1×T2

2k and Y ∈ ZT2×T3

2k , consider the case of computing J·K-

shares of Z ∈ ZT1×T3

2k where Z = X⊙Y. To achieve this, the
literature [29, 12, 13, 48] has relied on using matrix Beaver
triples that are J·K-shared. Let (A,B,C) be such a triple where
A ∈ ZT1×T2

2k , B ∈ ZT2×T3

2k , C ∈ ZT1×T3

2k and C = A⊙B. The
preprocessing phase of multiplication involves generating
J·K-shares of A,B,C, which are used in the online phase to
generate J·K-shares of Z. This involves reconstructing E =
(X−A) and U = (Y−B) and computing [Z] and [tagZ] as

Procedure ΠMatMul

INPUT: JXK= ([X], [tagX], [∆]), JYK= ([Y], [tagY], [∆])

for X ∈ ZT1×T2

2k , and Y ∈ ZT2×T3

2k .

OUTPUT: JZK where Z = X⊙Y.

Preprocessing phase: Generate J·K-shares of Beaver ma-

trix triple A ∈ ZT1×T2

2k , B ∈ ZT2×T3

2k , and C ∈ ZT1×T3

2k

such that C = A⊙ B using the technique described
in [12, 13].

Online phase:

1. Parties execute open phase of ΠBatchRec (Figure
1) to reconstruct E = X−A and U = Y−B.
2. Parties locally compute
◦ [Z] = [C] +E⊙ [B] + [A]⊙U, and
◦ [tagZ] = [tagC] +E⊙ [tagB] + [tagA]⊙U

3. P1 locally computes [Z]1 = [Z]1 + E⊙U and
[tagZ]1 = [tagZ]1 +[∆]1 · (E⊙U)

// Verification
1. Parties use the tag check phase from ΠBatchRec

(Figure 1) to check the validity of opened matrices
E and U.
2. If the previous step does not abort, output JZK =
([Z], [tagZ], [∆]).

Figure 2: Procedure of matrix multiplication in SPDZ2k .

follows.

[Z] = [C] +E⊙ [B] + [A]⊙U+E⊙U (2)
[tagZ] = [tagC] +E⊙ [tagB] + [tagA]⊙U+[∆](E⊙U)

(3)

The procedure ΠMatMul for matrix multiplication is described
in Figure 2.

2.6 Secure ML operations
We next discuss the primitives that are relied on to realize
secure ML operations. Note that in ML, convolution and
fully connected layers (matrix multiplications) are considered
Linear layers.

Convolution: Convolution operations are also widely used
in ML applications. Like fully connected layers, convolution
layer is also a linear layer, and it can even be written in the
form of matrix multiplication as discussed in [1, 31]. For
example, consider convolution with a kernel f × f over a
w× h input with p× p padding using s× s stride, and the
convolution has i input channels and o output channels. This

5

convolution can be reduced to a matrix multiplication between
T1×T2 and T2×T3 matrices, where

T1 =
(w− f +2p)(h− f +2p)

s2 , T2 = i · f · f , T3 = o (4)

Fixed-point arithmetic: Operands for ML workloads are
real numbers. Fixed point arithmetic provides an efficient and
accurate method for representing real numbers over the ring
algebraic structure, thereby performing FPA operations on
the encoded values over rings [29, 45, 49, 48, 34, 36, 13].
Here, a fractional value is represented as a k-bit number in
signed 2’s complement notation, where the most significant
bit is the sign bit, f least significant bits denote the fractional
part (also known as precision bits). Operations are performed
on the k-bit integer, treated as an element of Z2k , modulo 2k.
We refer an interested reader to [29] for further details.

Truncation: For ML workloads, fixed-point encoding is
commonly used to represent real numbers. When using fixed-
point representation (f bits are used for precision) to perform
multiplication, the trailing f bits of the result of multiplication
must be discarded for correctness. The most direct approach
to drop the last f bits given [v], is to have each party Pi ∈ P
to locally divide [v]i by l = 2f . However, this method would
produce errors if the sum of the shares [v]i wraps around
the ring Z2k+s , as described in [29]. Elaborately, let θv de-
note the number of times the sum of [v]i wraps around Z2k+s ,
i.e., v= ∑i[v]i−θv2k+s. It becomes evident that this approach
would fail when θv ̸= 0, because each party Pi ∈P will locally
truncate its share [v]i which results in them having a sharing
of v′ =k ∑i

[v]i
l . However, parties should instead hold a shar-

ing of v
l = ∑i

[v]i
l −

θv
l 2k+s, and observe that v′ ̸= v

l . Hence,
a different approach is required. We rely on the approach
described in [13], which is detailed in Figure 3 (described
with respect to truncating each element in a given matrix). At
a high level, to truncate v ∈ Z2k+s which is additively shared,
this approach relies on reconstructing r−v for a random value
r ∈ Z2k+s . This is followed by truncating r−v in clear to ob-
tain its truncated version, denoted as (r−v)f . This value is
then subtracted from the truncated version of r, denoted as rf ,
to obtain the truncated v, denoted as vf .

Non-linear Functions: Besides linear functions, ML work-
loads also include many non-linear functions like ReLU, Soft-
max, and MaxPooling. For these, we rely on the procedures
described in the work of [13]. We refer an interested reader
to [13] for further details.

3 CompactTag

In this section, we will describe our improved solution,
CompactTag, that facilitates efficient matrix multiplication

Procedure ΠTruncation

INPUT: JMK = ([M], [tagM], [∆]) for M ∈ ZT1×T2

2k .

OUTPUT: JMfK where elements in matrix Mf are the
truncated versions of the elements in M, i.e. (Mpq)

f =
Mpq
2f for p ∈ {1, . . . ,T1},q ∈ {1, . . . ,T2}.

Preprocessing phase: Generate J·K-shares of a random

matrix R ∈ ZT1×T2

2k as well as Rf = R
2f as per [13].

Online phase: Parties do the following.

1. Compute [D] = [R]− [M] and execute the open
phase of ΠBatchRec (Figure 1) to reconstruct D.
2. Set [Mf] = [Rf]− D

2f and [tagMf] = [tagRf]− [∆] ·
D
2f .

// Verification
1. Parties use the tag check phase from ΠBatchRec

(Figure 1) to check the validity of opened value D.
2. If the previous step does not abort, output JMfK=
([Mf], [tagMf], [∆]).

Figure 3: Procedure for truncating the last f bits each element
in a J·K-shared matrix M [13].

protocol. Recall from Section 2.5 that when performing ma-
trix multiplication to compute J·K-shares of Z = X⊙Y, where
X∈ZT1×T2

2k and Y∈ZT2×T3

2k , one needs to compute [·]-shares
of Z as well as [·]-shares of tagZ, as described in Eq. 2, 3. Note
that the tags are computed solely for the purpose of detecting
malicious entities perturbing the actual computations and thus
entail performing O(T1 ·T2 ·T3) local multiplications. For
ML workloads that deal with huge matrices with dimensions
in the order of thousands, this tag computation adds a sig-
nificant amount of computational overhead to achieve active
security. We design a solution that reduces the tag overhead
without affecting the round or communication complexity of
the other components in the evaluation.

We first present a high-level insight of our work followed by
details. Instead of computing [tagZ] as described in Eq. 3, we
compute it optimistically by invoking the procedure ΠOptMAC

which only requires performing T1 ·T3 local multiplications.
However, the optimistic computation relies on publicly re-
constructing a matrix, which can be potentially altered by
an adversary, resulting in an incorrect [tagZ]. To verify the
correctness of this optimistically computed tag, we compute
another compact tag on Z, denoted as (tagZ)

c. The optimisti-
cally computed tag is then verified for correctness using the
compact tag. Note that computing the compact tag coupled
with its verification requires O(T1 ·T2 +T1 ·T3 +T2 ·T3)
local multiplications. In this way, the total number of local

6

multiplications required to generate [·]-shares of tag on Z
is reduced to O(T1 ·T2 +T1 ·T3 +T2 ·T3) as opposed to
O(T1 ·T2 ·T3) in the standard approach. This reduction in the
computation cost of tag generation is the key to improving
performance in ML algorithms (Section 4).

The rest of this section is structured as follows: we first
discuss the protocol ΠCompress that compresses a given matrix
along one dimension in Section 3.1. This protocol will aid in
generating the compact tag. This is followed by describing
the optimistic tag generation protocol ΠOptMAC in Section 3.2.
Finally, we discuss the improved matrix multiplication proto-
col, CompactTag, in Section 3.3 and 3.4, which has a reduced
computation overhead for tag generation.

3.1 Compressing a matrix
We use procedure ΠCompress to compress a large 2-
dimensional matrix into a compact form by reducing it along
one dimension. Specifically, ΠCompress takes a 2-dimensional
matrix, say M ∈ ZT1×T2

2k+s as input and outputs a compressed

1-dimensional matrix, denoted as (M)c ∈ ZT1×1
2k+s . It also takes

a matrix of public constants χ ∈ ZT2×1
2s as an input, which is

known to all the parties in P . χ can be obtained by invoking
FRand (see Section 2.5). All parties then compute M⊙χ to
obtain a linear combination of the columns of M, which has
the effect of compressing M and reducing it along one di-
mension. The formal protocol appears in Figure 4. Note that
the input matrix M may be a publicly known matrix (matrix
values known to all parties) or a secret-sharing of a matrix.
For an input matrix of dimension T1×T2, ΠCompress requires
performing T1 ·T2 local multiplications and reduces the ma-
trix dimension by a factor of T2. This compression is the first
step in reducing the tag computation complexity.

Procedure ΠCompress

INPUT: M ∈ ZT1×T2

2k+s , and a public matrix χ ∈ ZT2×1
2s .

OUTPUT: (M)c ∈ ZT1×1
2k+s .

Online phase:
// Compress

1. Compute (M)c = M⊙χ.

Figure 4: Procedure of compressing a matrix.

3.2 Optimistic tag generation

Given a [·]-shared matrix M ∈ ZT1×T2

2k , ΠOptMAC (Figure 5)
optimistically generates [·]-shares of a tag on M. For this, J·K-
shares of a random matrix R ∈ ZT1×T2

2k are generated in the
preprocessing phase, which is used to optimistically generate

Procedure ΠOptMAC

INPUT: [M] ∈ ZT1×T2

2k+s for M ∈ ZT1×T2

2k .

OUTPUT: [tagM], [tagR]i, D̃.

Preprocessing phase: Generate J·K-shares of a random

matrix R ∈ ZT1×T2

2k using FMAC (see Section 2.5), i.e.,
JRK = ([R], [tagR], [∆]).

Online phase: Parties do the following.

1. Compute [D] = [R]− [M].
2. Pi broadcasts its [·]-share of D, followed by
all parties computing D =k ∑

n
i=1[D]i and D̃ =k+s

∑
n
i=1[D]i.

3. Compute [tagM] =k+s [tagR]− [∆] ·D.
4. Output [tagM], [tagR], and D̃.

Figure 5: Procedure for optimistically generating [·]-shares
of tag on matrix M.

[·]-shares of tag on M in the online phase. The approach is
for parties to reconstruct D = R−M. Parties then use [tagR]
and [tagD] = [∆] ·D to generate [tagM] = [tagR]− [tagD] us-
ing the linearity of [·]-sharing. Note that ΠOptMAC does not
provide security against malicious adversaries because the
reconstruction of D will not be verified at this point. Hence,
we call this step optimistic tag generation. An active adversary
can introduce errors when reconstructing D. The correctness
of tagM depends on the correctness of D. Thus it is essential
that the correctness of the tag generated via ΠOptMAC must be
verified by checking the correctness of the reconstructed D.
This verification process is described next.

Observe that ΠOptMAC requires generating a J·K-shared ma-
trix R in the preprocessing phase via FMAC. In the online
phase, it requires broadcasting [·]-shares of D and incurs a
communication cost of T1 ·T2 elements. One should not be
misled to think this is an additional overhead incurred by
CompactTag when using ΠOptMAC. In ML workloads (which
is the focus of this work) that operate on fixed-point arithmetic
(FPA), every multiplication is followed by a truncation opera-
tion, which involves. Section 3.4 demonstrates how ΠOptMAC

can be merged with the Πtruncation, thereby nullifying those
overhead.

3.3 Matrix multiplication with ΠOptMAC

We next discuss how to reduce the computational overhead
due to tag generation using ΠCompress and ΠOptMAC when
performing matrix multiplication. Consider the online com-
putation of Z = X⊙Y where X ∈ ZT1×T2

2k and Y ∈ ZT2×T3

2k .
As in the standard approach discussed in Section 2.5 (Figure
2), parties begin by reconstructing E = X−A and U = Y−B,

7

followed by computing [Z]. Next, instead of computing [tagZ]
as per Eq. 3, they invoke ΠOptMAC to optimistically generate
[tagZ], which internally involves an optimistic reconstruction
of D = R−Z where R ∈ ZT1×T3

2k . To verify the correctness
of [tagZ], one must ensure the correct reconstruction of D.
Moreover, it is also required to ensure that we do not inflate
the computation cost in the process. To reduce the computa-
tion while facilitating the verification of D, parties generate
a compact tag on Z via a modified version of Eq. 3 where
the compressed versions of tagC, tagB and U are used. Elabo-
rately, parties invoke ΠCompress (Figure 4) on tagC, tagB and
U to generate their compressed versions (tagC)

c,(tagB)
c and

(U)c, respectively, under the common set of linear combin-
ers, say χ ∈ ZT3×1

2s . Parties use those compact operands to
compute (tagZ)

c as

[tag(Z)c] = [tag(C)c] +E⊙ [tag(B)c]+

[tagA]⊙ (U)c+E⊙ (U)c (5)

Observe that this computation of [(tagZ)
c] only requires

O(T1 ·T2) multiplications which is much less than O(T1 ·
T2 ·T3). Having generated [(tagZ)

c], the next step is to verify
the correctness of the reconstructed D. Parties first generate
[(tagD)

c] as [(tagD)
c] = [(tagR)

c]− [(tagZ)
c] where [(tagR)

c]
is also generated using ΠCompress under the same linear com-
biners. This is followed by steps similar to the ones described
in tag check phase of ΠBatchRec (Figure 1) to verify the correct-
ness of (D)c = D⊙χ under the tag (tagD)

c. This verification
step is also computationally lightweight, involving O(T1 ·T3)
local multiplications. As shown in Appendix B, this verifi-
cation has the same failure probability as tag check phase
ΠBatchRec. Further, note that this verification can be performed
in a single shot toward the end of the computation to verify
the correctness of several matrix multiplications. This allows
us to amortize the cost due to the verification.

To summarise the working of matrix multiplication, parties
begin by computing [Z] using Beaver matrix triples. They
then invoke ΠOptMAC to obtain an optimistic tag on [Z]. Next,
parties compress (via ΠCompress) the necessary matrices using
the same public linear combiners and use the compressed
operands to compute a compact tag for [D] via lightweight
computations. This compact tag is then used to verify the cor-
rectness of the optimistically generated tag via a lightweight
verification step.

The need for generating tagZ despite availability of
(tagZ)

c: Observe that when computing Z = X⊙Y, the
availability of the compact tag on Z (tag(Z)c) suffices to verify
the correctness of Z while achieving the goal of reducing the
online computation cost. A natural question that may arise
then is about the need to generate tagZ as well. We would
like to note that this is because while the compact tag on Z
(tag(Z)c) suffices to verify the correctness of Z, it limits the
computation to only one layer of matrix multiplication. We ex-

plain this with the help of an example. Consider the scenario
where two sequential matrix multiplications are required to be
performed, where the output of the first matrix multiplication,
say X, is fed as input to the next matrix multiplication, say
Z = X⊙Y. Consider the case where only the compact tag on
X ((tagX)

c) is generated as part of the first matrix multiplica-
tion. Recall that during the computation of [Z], one needs to
robustly open the value E = X−A, where A is part of the ma-
trix Beaver triple (A,B,C =A⊙B). Verifying the correctness
of each element in E requires the knowledge of a tag on each
element in X, i.e., tagX, and the compact tag on X would not
suffice. Moreover, since the random linear combiners used to
generate the compact tag on X are publicly available at this
point, using the compact tag on X to verify the correctness of
the linear combination of elements in E (using the same linear
combiners that were used when computing the compact tag
on X) will allow an adversary to introduce errors in E. Thus,
to enable performing matrix multiplications consecutively,
where the output of one matrix multiplication is fed as input
to another (which is a key requirement for DNN models), one
needs to maintain the invariant that the inputs to the matrix
multiplication are J·K-shared, i.e. the [·]-shares of the tag on
each element of the input (matrix) are available. Hence, to
maintain the invariant, we need to also generate tags on each
element of Z. We generate this via an optimistic approach in
ΠOptMAC. The correctness of this optimistically generated tag
on Z is then verified using the compact tag on Z.

3.4 Optimized matrix multiplication with
CompactTag for DNN

In the above section, we presented our matrix multiplication
protocol that uses the ΠOptMAC. However, this procedure re-
quires generating J·K-shares of a random matrix R ∈ ZT1×T2

2k

in the preprocessing phase and broadcasting shares of D in the
online phase. These steps require additional communication
costs compared to SPDZ2k . However, in ML algorithms, every
multiplication (including matrix multiplication) is followed
by a truncation operation when operating on fixed-point arith-
metic. Since performing truncation incurs a communication
cost equivalent to the cost of ΠOptMAC, we instead design an
optimized protocol ΠOptMAC&Trunc which can achieve trunca-
tion and optimistic tag generation in a single unified approach,
while nullifying the communication cost due to ΠOptMAC.

ΠOptMAC requires generating J·K-shares of a random ma-
trix R ∈ ZT1×T2

2k in the preprocessing phase, which is also
the case in ΠTruncation (see Section 2.6). Further, the online
phase of ΠOptMAC involves broadcasting and reconstruct-
ing a matrix D, similar to as done in ΠTruncation. Finally,
both ΠOptMAC and ΠTruncation involve computing a tag on
M and Mf , respectively, as [tagM] = [tagR] − [∆] ·D and
[tagMf] = [tagRf]− [∆] · D

2f . Given this similarity, we design
ΠOptMAC&Trunc, which generates an optimistic tag and per-
forms the steps required for truncation in a single shot. In do-

8

Procedure ΠOptMAC&Trunc

INPUT: [M] ∈ ZT1×T2

2k+s for M ∈ ZT1×T2

2k .

OUTPUT: [Mf], [tagMf], [tagR], and D̃.

Preprocessing phase: Generate J·K-shares of a random

matrix R ∈ ZT1×T2

2k as well as Rf = R
2f [13].

ExpandTrunc:

1. Pi computes [D] = [R]− [M].
2. Pi broadcasts its [·]-share of D, followed by
all parties computing D =k ∑

n
i=1[D]i and D̃ =k+s

∑
n
i=1[D]i

3. Pi computes [Mf] = [Rf]− D
2f .

4. Pi computes [tagMf] = [tagRf]− [∆] · D
2f .

Figure 6: Procedure of optimistic tag generation coupled with
truncation.

ing so, we are able to retain the computational improvements
brought in by optimistic tag computation without inflating the
communication cost.

3.4.1 ΠOptMAC&Trunc

ΠOptMAC&Trunc takes a shared matrix [M] as input, and out-
puts [Mf] (where Mf denotes the truncated version of ma-
trix M, i.e., each element in M is truncated), as well as [·]-
shares of an optimistic tag on Mf . For this, in the prepro-
cessing phase, it proceeds similarly to ΠTruncation where J·K-
shares of a random matrix R ∈ ZT1×T2

2k as well as Rf = R
2f

are generated. In the online phase, it proceeds similarly to
ΠOptMAC except that it computes [·]-shares of the truncated
version of M as [Mf] = [Rf]− D

2f , and the optimistic tag as
[tagMf] = [tagRf]− [∆] · D

2f (similar to the steps of ΠTruncation).
Note as in the case of ΠOptMAC, the correctness of the recon-
structed D is not verified. Thus, ΠOptMAC&Trunc is also only
passively secure, and it is the obligation of the matrix multi-
plication protocol to check the validity of the reconstructed
D. The formal protocol for ΠOptMAC&Trunc appears in Fig-
ure 6. Note that ΠOptMAC&Trunc has the same communication
complexity as ΠTruncation while nullifying the added commu-
nication cost of ΠOptMAC.

3.4.2 Complete matrix multiplication protocol

This section will present the complete matrix multiplication
procedure using CompactTag. Similar to the protocol out-
lined in Section 3.3, the initial steps of ΠCompactMatMul involve
computing [Z] using the revealed matrices of E and U. Sub-
sequently, the parties invoke ΠOptMAC&Trunc to truncate [Z],
producing [Zf] and generate an optimistic [tagZf]. Following

this, parties compress the pertinent operands to compute a
compact tag, denoted as [tag(D)c], for the optimistically re-
constructing D within ΠOptMAC&Trunc. During the verification
phase, the MPC parties use [tag(D)c] to verify the correctness
of D. We provide the formal protocol details in Figure 7, and
our security proof can be found in Appendix B.

3.4.3 Complexity analysis

Computation cost Without CompactTag, the resulting tag
[tagZ] is computed using Equation 3 whose computational
complexity (number of local multiplications) is at most 3(T1 ·
T2 ·T3)+T1 ·T3.

When using CompactTag, the resulting [tagZ] is gener-
ated using a computational lightweight ΠOptMAC&Trunc. The
computational complexity of ΠOptMAC&Trunc is T1 ·T3 be-
cause the size of matrix [Z] is T1×T3. However, because
ΠOptMAC&Trunc is only passive secure, parties need to com-
pute and verify [(tagD)

c] (computed in ΠCompactMatMul, Fig-
ure 7) against D̃ (computed in ΠOptMAC&Trunc, Figure 6). This
requires computing a compact tag on Z using Equation 5
and entails generating compressed versions of the matrices
[tagB], [tagC], U, [tagR] and D̃. Compressing each of the ma-
trices [tagB] and U entails performing T2 ·T3 local multi-
plications since these matrices are of dimension T2 ×T3.
Similarly, compressing [tagC], [tagR] and D̃, each requires
T1 ·T3 local multiplication since these matrices are of dimen-
sion T1×T3. Finally, computing [(tagZ)

c] via Equation 5
requires 3(T1 ·T2)+T1 local multiplications. In this way,
the total number of local multiplications to be computed via
CompactTag is 4(T1 ·T3)+2(T2 ·T3)+3(T1 ·T2)+T1.

Note that a natural question that may arise is why compres-
sion of the matrices was not considered along both dimensions
to further improve the computation complexity. While at first
glance, this may appear to be true, this is not the case. This is
because compressing along both the dimensions would addi-
tionally require compressing the T1×T2 dimension matrices
[(tagC)

c], E, [tagA] incurring additional 3(T1 ·T2) local multi-
plications. While the computation of Equation 5 now requires
only 4T2 local multiplications as opposed to the previous
3(T1 ·T2)+T1 multiplications, observe that overall we still
require 4T2−T1 additional multiplications. Thus, the com-
putation cost of compressing along both dimensions turns out
to be higher than when compressed along a single dimension.
Hence, we compress only along a single dimension.

Communication cost When using SPDZ2k protocols, par-
ties only need to evaluate Equation 3, and no tag-related
communication is induced. On the other hand, when using
CompactTag, ΠOptMAC induces one round of communication
involving T1 ·T3 elements. However, we make the observa-
tion that we can merge ΠOptMAC and ΠTruncation. Both these
protocols require one round of communicating T1 ·T3 ele-
ments. By merging both these protocols, the resulting pro-

9

Procedure ΠCompactMatMul

INPUT: JXK= ([X], [tagX], [∆]), JYK= ([Y], [tagY], [∆])

for X ∈ ZT1×T2

2k , and Y ∈ ZT2×T3

2k .

OUTPUT: JZfK where Z = X⊙Y and Zf denotes that
each element in Z is truncated by f bits.

Preprocessing phase:

1. Generate J·K-shares of Beaver matrix triple A ∈
ZT1×T2

2k , B ∈ ZT2×T3

2k , and C ∈ ZT1×T3

2k such that
C=A⊙B using the technique described in [12, 13].
2. Execute the preprocessing phase of
ΠOptMAC&Trunc to generate J·K-shares of a
random matrix R ∈ ZT1×T2

2k as well as Rf = R
2f .

Online phase:

1. Execute open phase of ΠBatchRec (Figure 1) to
reconstruct E = X−A and U = Y−B.
2. Locally compute [Z] = [C] +E⊙ [B] + [A]⊙U.
3. Invoke ΠOptMAC&Trunc (Figure 6) on [Z] to trun-
cate Z to obtain [Zf] as well as optimistically gen-
erate the MAC [tagZf]. ΠOptMAC&Trunc also outputs
[tagR], D̃ generated in the process.
4. P1 locally computes [Zf]1 = [Zf]1 +

E⊙U
2f and

[tagZf]1 = [tagZf]1 +[∆]1 · E⊙U
2f .

5. Generate a public constant matrix χ ∈ ZT3×1
2s by

invoking FRand.
6. Invoke ΠCompress (Figure 4) to compress [tagB],
[tagC], U, [tagR] and D̃ under the combiners χ to
generate [(tagB)

c], [(tagC)
c], (U)c, [(tagR)

c] and
(D̃)c, respectively.
7. Parties locally compute [(tagZ)

c] = [(tagC)
c] +

E ⊙ [(tagB)
c] + [tagA] ⊙ (U)c and [(tagD)

c] =
[(tagR)

c]− [(tagZ)
c].

// Verification
1. Use the tag check phase from ΠBatchRec to verify
the correctness of the reconstructed E,U.
2. All parties sample a public random matrix χ̂ ∈
ZT1×1

2s via FRand.
3. Compute [CS] =k+s [∆] · (D̃)c.
4. Compute [CS] =k+2s [CS] ∗ χ̂− [tag(D)c] ∗ χ̂.
5. Commit to [cs] =k+2s ∑

T1
i=1[CSi,1] via FNICOM.

Broadcast commitments. Receive other commit-
ments and decommit to [cs].
6. If reconstructed cs ̸= 0 modulo 2k+2s, or the de-
commitments fail then abort.
7. If the previous steps do not abort, output JZfK =
([Zf], [tagZf], [∆]).

Figure 7: Matrix multiplication with CompactTag.

tocol ΠOptMAC&Trunc allows the computation of optimistic
tag generation as well as truncation to be performed with a
single round of communication involving T1 ·T3 elements,
thereby avoiding the additional communication due to the
optimistic generation. Thus, the communication complex-
ity when executing the state-of-art matrix multiplication and
truncation protocols vs. when executing ΠCompactMatMul with
CompactTag is the same.

3.5 Offline phase

When performing matrix multiplication with truncation, the
preprocessing phase entails generating the following:

1. J·K-shares of Beaver matrix triple A, B and C such
that C = A⊙B where A ∈ ZT1×T2

2k ,B ∈ ZT2×T3

2k ,C ∈
ZT1×T3

2k .

2. J·K-shares of matrix R ∈ ZT1×T3

2k and Rf ∈ ZT1×T3

2k

where Rf = R
2f .

When using the SPDZ2k [12] for performing matrix mul-
tiplication with truncation, one needs to execute ΠMatMul

(Figure 2) followed by ΠTruncation (Figure 3). On the other
hand, when using CompactTag, we realize this operation
via ΠCompactMatMul to perform both matrix multiplications
and truncation in a single shot. The preprocessing materials
needed are identical for CompactTag and SPDZ2k .

Thus, our preprocessing phase has the same complexity as
that of SPDZ2k , and does not require any other material to be
generated in the preprocessing phase to aid our computation-
ally more efficient online phase.

4 Experimental evaluation

In this section, we report our experiments and demonstrate
the benefits empirically.

4.1 Experimental setup

We have evaluated our design on servers with an AMD EPYC
7502 CPU and an Nvidia Quadro RTX 5000. Each server’s
network bandwidth is 14Gbps. We gather runtime from the
average of 30 iterations of inference or training.

Models evaluated: We use ResNet50 [24], a Transformer
encoder [15], and VGG16 [43] to evaluate the performance of
CompactTag against SPDZ2k . VGG16 and ResNet are popu-
lar vision models, and Transformer encoders are commonly
used in Natural Language Processing models [15, 35, 32, 11].
Those models commonly consist of multiple Transformer
encoders of the same configurations. The Transformer config-
uration used is the same as BERT [15] and XLM [32], which
is H=1024 (hidden vector size), A=16 (attention head count).

10

MPC setup: We evaluated CompactTag using 2 sets of
MPC parameters: 1) (k = 32,σ = 26) and 2) (k = 64,σ = 57).
When using (k = 32,σ = 26), the message space for a matrix
M will be ZT1×T2

232 , where σ = s− log(s+1). We also choose
s = 32 in such a case. Thus, σ is 26 = 32− log(32+1), ac-
cording to Theorem 1. Consequently, with (k = 32,σ = 26),
([M], [tagM], [∆]) ∈ (ZT1×T2

264 × ZT1×T2

264 × Z232). Similarly,
when using (k = 64,σ = 57), ([M], [tagM], [∆]) ∈ (ZT1×T2

2128 ×
ZT1×T2

2128 ×Z264). The choice of parameters is dictated by the
native 32-bit and 64-bit operations on a native CPU architec-
ture, and previous works [13, 12] also consider the same set
of security parameters. We let κ = 128 be the computational
security parameter.

4.2 Implementation details
We implement the online phase of SPDZ2k and CompactTag
for DNNs on the basis of CrypTen [29], a PyTorch-based [38]
MPC framework. CrypTen provides an easy-to-use API to
build DNN models and supports fixed-point operations using
the CUDA kernels. However, CrypTen was originally de-
signed for a semi-honest majority MPC protocol and did not
separate the online phase and the offline phase. We separated
the offline phase and online phase and modified the CrypTen
framework such that the MPC operations comply with those
specified in [12, 13]. We implemented the entire protocol
to execute on GPU parties, which exploit the parallelism in
the hardware to accelerate MPC execution. We used the dis-
tributed communication backend from PyTorch to establish
communication channels for our GPU-based implementation.

CUDA matrix operation implementation: For CUDA ma-
trix multiplication and convolutions, we follow the same block
multiplication technique as CrypTen [29] and CryptGPU [45]
such that 64-bit or 128-bit integer multiplications are carried
out using multiple floating point operations. For example,
when using double-precision floating points (52 bits for the
fraction) to carry out computations, we divide a 64-bit operand
into four 16-bit sub-operands, and each sub-operation requires
32 bits to store the resulting multiplications. Given all oper-
ations for matrix multiplication and convolutions are multi-
ply and accumulate operations when using double-precision
floating points, 20 bits (52− 32) are left for accumulation,
allowing 1048576 = 220 accumulations, which is sufficient
for ML workloads.

4.3 Performance analysis
The key enhancement brought forth by CompactTag is its opti-
mized tag computation during the online phase. By incorporat-
ing optimistic tag expansion with truncation, CompactTag’s
offline phase remains identical to our baseline detailed
in [12, 13]. Hence, to analyze the performance, we focus

on the online phase runtime. The runtime decomposition is
presented in Table 1. Furthermore, to provide a clearer under-
standing of the sources of CompactTag’s speedups, we offer
a visual representation of the runtime decomposition for the
Transformer model decomposition in Figure 8 and 9, demon-
strating a 22× speedup for tag computation. Figure 10 shows
the online speedup of CompactTag on three different large ML
models for both inference and training. Additionally, we also
demonstrate CompactTag’s scalability and CompactTag’s im-
pact on power consumption. We discuss as follows.

Inference: The first row in Figure 10 shows the infer-
ence performance improvements of CompactTag. For the
(k = 32,σ= 26) setting, CompactTag speed up the tag-related
computation by 3.05×, 24.77× and 4.16×, for ResNet, Trans-
former, and VGG16, respectively. This accelerated tag com-
putation translates to online speedups of 1.11×, 1.22×, and
1.21× for ResNet, Transformer, and VGG16, respectively.
CompactTag’s speedup for tag computation is determined
by the model architectures, namely T1, T2, and T3 in dif-
ferent models. T1, T2, and T3 in Transformers allow us to
have the best tag computation speedups among all models.
For example, a layer in the Transformer, whose T1 = 2048,
T2 = 1024, and T3 = 1024, allows us to reduce the number of
computations by 384×. In this case, the Transformer model’s
tag generation for final results is almost free. This drastic
reduction in tag generation is directly caused by the usage
of smaller tags because smaller tags significantly reduce the
computational complexity of tag generation.

For the (k = 64,σ = 57) setting, all models see a higher
performance improvement over the (k = 32,σ = 26) set-
ting. Table 1 presents the detailed results for this setting.
Most noticeably, CompactTag reduces the tag-related com-
putation by 23×, achieving an overall 1.31× speedup for
Transformer. When using the (k = 64,σ = 57) setting, the
operand bit becomes k + s = 64+ 64 = 128, instead of 64
bits for the (k = 32,σ = 26) setting. With double operand
bit width, MPC’s computation costs for convolution and ma-
trix multiplication quadrupled, whereas the communication
cost only doubled (opening E and U). For example, Figure 8
shows the runtime decomposition of Transformer inference
with (k = 64,σ = 57). In Figure 8, tag computation makes
up 24% of the total runtime for SPDZ2k . Compared to the
(k = 32,σ = 26)’s 21%, this tag computation takes a larger
proportion of the total runtime. Since CompactTag drastically
reduces tag computation costs, CompactTag will have better
speedups when tag computation accounts for a larger propor-
tion of the total runtime.

Training: The second row in Figure 10 shows the train-
ing performance improvements. CompactTag speeds up tag-
related computation by 4.4×, 22×, and 17.5× for Resnet,
Transformer and VGG16 models, respectively. For all models
and all MPC settings, CompactTag has higher performance

11

Table 1: Online run time (seconds/input) analysis for inference and training corresponding to (k = 64,σ = 57). The “Tag” and
“Output” columns represent the time spent on computing the tag ([tagZ]) and output share ([Z]) for Linear layers (Convolution
and Matrix Multiplication).

Model Protocol
Inference Training

Computation Comm. Total Computation Comm. TotalTag Output Others Tag Output Others

ResNet
SPDZ2k 4.34 6.57 2.17 5.69 18.76 11.64 18.88 6.31 9.15 45.99

CompactTag 1.26 6.54 2.13 5.67 15.59 2.61 18.72 6.47 9.12 36.92
Speedup 3.4× - - - 1.2× 4.45× - - - 1.25×

Transformer SPDZ2k 4.16 6.31 1.69 4.88 17.04 12.56 20.35 0.87 6.96 40.74
CompactTag 0.18 6.30 1.68 5.00 13.15 0.57 20.27 1.21 6.87 28.92

Speedup 23× - - - 1.3× 22× - - - 1.4×

VGG16 SPDZ2k 5.94 8.96 1.35 4.95 21.20 44.27 73.57 3.67 12.22 133.73
CompactTag 1.36 8.92 1.63 4.54 16.46 2.52 75.23 4.53 11.51 93.80

Speedup 4.4× - - - 1.3× 17× - - - 1.47×

CompactTag SPDZ2k
0

2

4

6

8

10

12

14

16

Ru
nt

im
e

(s
)

Runtime Decomposition
Tag Comp for Linear Layers
Output Share Comp for Linear Layers
Other Computations
Communication

Figure 8: Transformer’s Inference Online Phase Runtime
Analysis (k = 64,σ = 57).

benefits for training than for inference. This result is due to the
fact that training has increased computations without a signif-
icant increased in communication. For non-linear layers such
as ReLU and MaxPooling, the backward function involves
an element-wise multiplication between the output gradient
and a secret shared input mask. This element-wise multiplica-
tion in the backward pass induces much less communication
cost than those in the forward pass. Moreover, linear layers
will need to perform additional large matrix multiplications.
For fully connected layers, during the backward pass, MPC
parties need to multiply the output gradients with both the
input and the weight matrices. Those operations incur more
computations than communications and will also incur more
tag computations. Thus, the tag computation will take a larger
proportion of the total training runtime than inference. Com-
pared with tag computation in Figure 8, tag computation takes
a larger proportion in Figure 9. Consequently, CompactTag
showcases more speedups in training than inference.

CompactTag SPDZ2k
0

5

10

15

20

25

30

35

40

Ru
nt

im
e

(s
)

Runtime Decomposition
Tag Comp for Linear Layers
Output Share Comp for Linear Layers
Other Computations
Communication

Figure 9: Transformer’s Training Online Phase Runtime Anal-
ysis (k = 64,σ = 57).

CPU Execution: While we focused all our results using
GPUs, given their popularity in ML, it is useful to note that
our protocol runs equally well on CPUs. In particular, we have
implemented our protocol on CPUs and ran the Transformer
training. CompactTag reduces the tag computation by 20×,
resulting in 1.54× online speedup, which is similar to the
GPU results shown above.

Scaling with more parties & faster networks: Speedups
showcased in Figure 10 are in the 2PC setting. Table 2 shows
the CompactTag’s speedup w.r.t. SPDZ2k with more numbers
of participating parties. When scaling to more parties, we
assume a point-to-point connection between every pair of
parties. The speedups in Table 2 are averaged over all three
models. See Appendix C for details about specific models.

With more participating parties, computation costs for tag
computation stay the same. And the tag computation reduc-
tion factors are also unchanged. But with more parties the
communication costs will start to grow, reducing the tag com-

12

SPDZ
2
k

CompactT
agSA

CompactT
ag

SPDZ
2
k

CompactT
agSA

CompactT
ag

0.80x

1.00x

1.20x

1.40x
S

p
ee

du
p

k = 32, σ = 26 k = 64, σ = 57

1.00x

1.09x
1.11x

1.00x

1.17x
1.20x

(a) ResNet Inference

SPDZ
2
k

CompactT
agSA

CompactT
ag

SPDZ
2
k

CompactT
agSA

CompactT
ag

0.80x

1.00x

1.20x

1.40x

S
p

ee
du

p

k = 32, σ = 26 k = 64, σ = 57

1.00x

1.22x 1.23x

1.00x

1.30x 1.31x

(b) Transformer Inference

SPDZ
2
k

CompactT
agSA

CompactT
ag

SPDZ
2
k

CompactT
agSA

CompactT
ag

0.80x

1.00x

1.20x

1.40x

S
p

ee
du

p

k = 32, σ = 26 k = 64, σ = 57

1.00x

1.20x 1.21x

1.00x

1.24x
1.29x

(c) VGG16 Inference

SPDZ
2
k

CompactT
agSA

CompactT
ag

SPDZ
2
k

CompactT
agSA

CompactT
ag

0.80x

1.00x

1.20x

1.40x

S
p

ee
du

p

k = 32, σ = 26 k = 64, σ = 57

1.00x

1.16x
1.19x

1.00x

1.21x
1.25x

(d) ResNet Training

SPDZ
2
k

CompactT
agSA

CompactT
ag

SPDZ
2
k

CompactT
agSA

CompactT
ag

0.80x

1.00x

1.20x

1.40x

S
p

ee
du

p

k = 32, σ = 26 k = 64, σ = 57

1.00x

1.36x 1.38x

1.00x

1.38x 1.40x

(e) Transformer Training

SPDZ
2
k

CompactT
agSA

CompactT
ag

SPDZ
2
k

CompactT
agSA

CompactT
ag

0.80x

1.00x

1.20x

1.40x

S
p

ee
du

p

k = 32, σ = 26 k = 64, σ = 57

1.00x

1.35x
1.37x

1.00x

1.43x
1.47x

(f) VGG16 Training

Note: CompactTagSA is CompactTag where ΠOptMAC generates optimistic tags. CompactTagSA introduces additional
communication costs resulting in a performance gap.

Figure 10: Average Online-Phase Speedup of CompactTag over SPDZ2k for 2PC.

2PC 3PC 4PC 5PC

Inference Total 1.26× 1.20× 1.17× 1.14×
Tag 10.31× 10.31× 10.31× 10.31×

Training Total 1.38× 1.32× 1.28× 1.25×
Tag 14.69× 14.69× 14.69× 14.69×

Table 2: CompactTag’s average speedup over SPDZ2k

with varying number of parties.“Tag” denote CompactTag’s
speedup on tag computation for linear layers.

putation portion in the overall performance. As such, the
end-to-end speedups are reduced slightly as we move from
2-5 parties.

Faster network: On the other hand, CompactTag ben-
efits from faster network connections. Figure 11 shows
CompactTag’s speedups with faster interconnections. The
speedup is averaged across 3 models. From Figure 11, we
can see that as the interconnection speed increases, the perfor-
mance improvements of CompactTag protocols increase. A
faster interconnection speed does not reduce computation run-
time but reduces the time spent on data transmission. Reduced
communication runtime and constant computation runtime
amplify the proportion of tag-related computation in the total
runtime. As a result CompactTag achieves better performance
improvement with faster interconnections.

14Gbps 21Gbps 28Gbps 35Gbps
1.10x

1.15x

1.20x

1.25x

1.30x

1.35x

1.40x

1.45x

Sp
ee

du
p

2PC
3PC
4PC
5PC

Inference
Training

Figure 11: CompactTag’s Average Online Performance Im-
provements over SPDZ2k on Different Interconnect Speed.

13

Power usage: Tables 3 and 4 show the reduction in GPU
power usage by CompactTag in comparison to SPDZ2k . Data
presented in this section are collected using PyJoules [3].

Configuration ResNet Transformer VGG16
k = 32,σ = 26 21.87% 31.51% 30.55%
k = 64,σ = 57 23.78% 35.34% 34.54%

Table 3: CompactTag’s power usage reduction over GPUs
during inference; the reduction is measure over SPDZ2k .

Configuration ResNet Transformer VGG16
k = 32,σ = 26 24.31% 30.74% 32.98%
k = 64,σ = 57 28.24% 34.55% 36.42%

Table 4: CompactTag’s power usage reduction over GPUs
during training; the reduction is measure over SPDZ2k .

Generally, CompactTag achieves 21% to 36% power us-
age reduction. This power usage reduction is primarily due
to the decreased computational complexity associated with
tag-related calculations. For the SPDZ2k protocol, large un-
compressed tags are used to compute sizeable tags. However,
when using CompactTag, smaller compressed tags are used to
compute small tags. Consequently, a significant reduction in
power usage is realized due to this decrease in computational
complexity.

5 Conclusion

We present CompactTag, an optimization in the SPDZ2k

framework that efficiently generates tags for linear layers in
DNN. CompactTag drastically reduces the tag-related compu-
tation in the SPDZ2k and SPDZ framework for large matrices.
Specifically, when multiplying two matrices with dimensions
T1×T2 and T2×T3, the tag computation in CompactTag
only requires quadratic computation, i.e., O(T1×T2+T1×
T3+T2×T3) local multiplications, as opposed to previous
protocols that demand cubic computation. This leads to con-
crete asymptotic enhancements in the online phase. The of-
fline phase of CompactTag remains unchanged from SPDZ2k

without any additional adjustments. Our experiments show
that the asymptotic improvements enable CompactTag to re-
duce the online tag computation in the SPDZ2k framework
by a 4.4×−22×, resulting in 1.11×−1.47× inference and
training online phase speedups.

Acknowledgment

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Con-
tract Nos. HR001120C0088, NSF award number 2224319,

REAL@USC-Meta center, and VMware gift. The views, opin-
ions, and/or findings expressed are those of the author(s) and
should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Gov-
ernment. Arpita Patra would like to acknowledge financial
support from the Sony Faculty Innovation Award 2021, the
J.P Morgan Chase Faculty Award 2022 and the National Se-
curity Council, India. Nishat Koti would like to acknowledge
financial support from the National Security Council, India.

References

[1] Cs231n: Convolutional neural networks for vi-
sual recognition. https://cs231n.github.io/
convolutional-networks/. Accessed: 2023-10-12.

[2] Brian Bailey. AI Power Consumption Exploding —
semiengineering.com. https://semiengineering.
com/ai-power-consumption-exploding. [Ac-
cessed 17-10-2023].

[3] Mohammed chakib Belgaid, Romain Rouvoy, and Li-
onel Seinturier. Pyjoules: Python library that measures
python code snippets, November 2019.

[4] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Tur-
bospeedz: Double your online SPDZ! Improving SPDZ
using function dependent preprocessing. In Robert H.
Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung, editors, ACNS 19, volume 11464 of LNCS, pages
530–549. Springer, Heidelberg, June 2019.

[5] Ran Canetti. Security and composition of multi-
party cryptographic protocols. Journal of Cryptology,
13(1):143–202, January 2000.

[6] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS,
pages 136–145. IEEE Computer Society Press, October
2001.

[7] Ran Canetti, Pratik Sarkar, and Xiao Wang. Efficient and
round-optimal oblivious transfer and commitment with
adaptive security. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part III, volume 12493 of
LNCS, pages 277–308. Springer, Heidelberg, December
2020.

[8] Ran Canetti, Pratik Sarkar, and Xiao Wang. Triply adap-
tive UC NIZK. In Shweta Agrawal and Dongdai Lin,
editors, ASIACRYPT 2022, Part II, volume 13792 of
LNCS, pages 466–495. Springer, Heidelberg, December
2022.

[9] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana
Obbattu, and Akash Shah. SIMC: ML inference secure
against malicious clients at semi-honest cost. In Kevin

14

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://semiengineering.com/ai-power-consumption-exploding
https://semiengineering.com/ai-power-consumption-exploding

R. B. Butler and Kurt Thomas, editors, USENIX Security
2022, pages 1361–1378. USENIX Association, August
2022.

[10] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth
Garg, and Chinmay Hegde. Sphynx: A deep neural
network design for private inference. volume 20, pages
22–34, 2022.

[11] Alexis Conneau and Kartikay Khandelwal. Unsuper-
vised cross-lingual representation learning at scale. Pro-
ceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 2020.

[12] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. SpdZ2k : Efficient MPC mod
2k for dishonest majority. In Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part II, volume 10992 of Lecture
Notes in Computer Science, pages 769–798. Springer,
2018.

[13] Ivan Damgård, Daniel Escudero, Tore Kasper Frederik-
sen, Marcel Keller, Peter Scholl, and Nikolaj Volgushev.
New primitives for actively-secure MPC over rings with
applications to private machine learning. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Fran-
cisco, CA, USA, May 19-23, 2019, pages 1102–1120.
IEEE, 2019.

[14] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 643–662. Springer, Heidelberg, August
2012.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. Pro-
ceedings of NAACL-HLT 2019, 2018.

[16] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for MPC
over mixed arithmetic-binary circuits. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 823–852.
Springer, Heidelberg, August 2020.

[17] Daniel Escudero, Vipul Goyal, Antigoni Polychroni-
adou, Yifan Song, and Chenkai Weng. Superpack: Dis-
honest majority MPC with constant online communica-
tion. In Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part II, volume

14005 of Lecture Notes in Computer Science, pages 220–
250. Springer, 2023.

[18] Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and
Siddharth Garg. Circa: Stochastic relus for private deep
learning. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pages 2241–2252, 2021.

[19] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious rams. J. ACM,
43(3):431–473, May 1996.

[20] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song.
Sharing transformation and dishonest majority MPC
with packed secret sharing. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part IV, vol-
ume 13510 of LNCS, pages 3–32. Springer, Heidelberg,
August 2022.

[21] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis-
hanth Chandran, Divya Gupta, Ashish Panwar, and
Rahul Sharma. SIGMA: secure GPT inference with
function secret sharing. IACR Cryptol. ePrint Arch.,
page 1269, 2023.

[22] Kanav Gupta, Deepak Kumaraswamy, Nishanth Chan-
dran, and Divya Gupta. LLAMA: A low latency math
library for secure inference. Proc. Priv. Enhancing Tech-
nol., 2022(4):274–294, 2022.

[23] Hanieh Hashemi, Yongqin Wang, and Murali An-
navaram. Darknight: A data privacy scheme for training
and inference of deep neural networks. Proceedings on
the 54th International Symposium on Microarchitecture,
2021.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[25] Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth
Chandran, Divya Gupta, and Rahul Sharma. Orca: Fss-
based secure training with gpus. IACR Cryptol. ePrint
Arch., page 206, 2023.

[26] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and
Brandon Reagen. Deepreduce: Relu reduction for fast
private inference. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceed-
ings of Machine Learning Research, pages 4839–4849.
PMLR, 2021.

[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl.
MASCOT: faster malicious arithmetic secure computa-
tion with oblivious transfer. In Proceedings of the 2016

15

ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, October 24-28, 2016,
pages 830–842. ACM, 2016.

[28] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Over-
drive: Making SPDZ great again. In Advances in Cryp-
tology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 158–189. Springer,
2018.

[29] Brian Knott, Shobha Venkataraman, Awni Y. Hannun,
Shubho Sengupta, Mark Ibrahim, and Laurens van der
Maaten. Crypten: Secure multi-party computation meets
machine learning. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 4961–4973, 2021.

[30] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith
Suresh. SWIFT: Super-fast and robust privacy-
preserving machine learning. In Michael Bailey and
Rachel Greenstadt, editors, USENIX Security 2021,
pages 2651–2668. USENIX Association, August 2021.

[31] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith
Suresh. Tetrad: Actively secure 4pc for secure train-
ing and inference. In 29th Annual Network and Dis-
tributed System Security Symposium, NDSS 2022, San
Diego, California, USA, April 24-28, 2022. The Internet
Society, 2022.

[32] Guillaume Lample and Alexis Conneau. Cross-lingual
language model pretraining. 33rd Conference on Neu-
ral Information Processing Systems (NeurIPS 2019),
Vancouver, Canada., 2019.

[33] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srini-
vasan, and Raluca Ada Popa. Muse: Secure infer-
ence resilient to malicious clients. In Michael Bailey
and Rachel Greenstadt, editors, USENIX Security 2021,
pages 2201–2218. USENIX Association, August 2021.

[34] Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P.
Xing, and Hao Zhang. Mpcformer: fast, performant and
private transformer inference with mpc. arXiv, 2022.
(Accepted in ICLR’23).

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[36] Payman Mohassel and Peter Rindal. Aby3: A mixed
protocol framework for machine learning. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 35–52, 2018.

[37] Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav
Balasubramaniam, and Murali Annavaram. Privacy-
preserving inference in machine learning services using
trusted execution environments. IEEE International
Conference on Cloud Computing, 2021.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[39] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. ABY2.0: improved mixed-protocol secure
two-party computation. In 30th USENIX Security Sym-
posium, USENIX Security 2021, August 11-13, 2021,
pages 2165–2182. USENIX Association, 2021.

[40] Arpita Patra and Ajith Suresh. BLAZE: blazing fast
privacy-preserving machine learning. In 27th Annual
Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-
26, 2020. The Internet Society, 2020.

[41] Rachit Rajat, Yongqin Wang, and Murali Annavaram.
Pageoram: An efficient dram page aware oram strategy.
In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2022.

[42] Rachit Rajat, Yongqin Wang, and Murali Annavaram.
Laoram: A look ahead oram architecture for training
large embedding tables. In Proceedings of the 50th
Annual International Symposium on Computer Architec-
ture, ISCA ’23, New York, NY, USA, 2023. Association
for Computing Machinery.

[43] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

[44] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hu-
bert Chan, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: An extremely
simple oblivious ram protocol. J. ACM, 65(4), April
2018.

[45] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu.
Cryptgpu: Fast privacy-preserving machine learning on
the GPU. 2021.

16

[46] Florian Tramèr and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2019.

[47] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.
Global-scale secure multiparty computation. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 39–56.
ACM Press, October / November 2017.

[48] Yongqin Wang, Rachit Rajat, and Murali Annavaram.
Mpc-pipe: an efficient pipeline scheme for secure multi-
party machine learning inference, 2022.

[49] Yongqin Wang, G. Edward Suh, Wenjie Xiong, Ben-
jamin Lefaudeux, Brian Knott, Murali Annavaram, and
Hsein-Hsin S. Lee. Characterization of mpc-based pri-
vate inference for transformer-based models. In 2022
IEEE International Symposium on Performance Analy-
sis of Systems and Software, pages 187–197, Los Alami-
tos, CA, USA, may 2022. IEEE Computer Society.

[50] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient
MPC from improved triple generation and authenticated
garbling. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages
1627–1646. ACM Press, November 2020.

A Additional Functionalities

We present the additional functionalities for randomness and
MAC generation in this section.

A.1 FRand

This section shows the functionality FRand (Fig. 12) each
party relies on to generate random numbers.

Functionality FRand

INPUT: Each party Pi invoke this functionality.

ALGORITHM: Sample a random number r from R .

OUTPUT: r to each Pi.

Figure 12: Functionality for generating a random number.

A.2 FMAC

This section will show the authentication procedure
CompactTag relies on. This functionality FMAC (Fig. 13) is
taken from [12].

Functionality FMAC

INITIALIZE: After each party Pi invoke Initialize, sam-
ple random values [∆]i ← Z2s for i /∈ A and receive
[∆]i ← Z2s for i ∈ A . Store the ∆ = ∑

n
i=1[∆]i and out-

put [∆]i to Pi.

AUTH: After all Pi invoke Auth with [v]i ∈ Z2k+s .

• Compute v =k+s ∑
n
i=1[v]i and tagv =k+s ∆ ·v.

• Wait for [tagv]i for i ∈ A and sample [tagv]i ran-
domly for i /∈ A such that tagv =k+s ∑

n
i=1[tagv]i.

AUTHENTICATION: After all Pi invoke MAC with
[v]i ∈ Z2k+s .

• Wait for the adversary to send messages (guess, i, Si)
for all i ∈ A , where Si efficiently describes a subset
of {0,1}s. If [∆]i ∈ Si for all i then send (success) to
A . Otherwise, send (abort) to all parties and abort.

• Pi executes Auth with [v]i, then wait for the ad-
versary to send either success or Abort. If the ad-
versary sends success then send the [tagv]i to Pi,
otherwise abort.

Figure 13: Functionality for generating shares of global key
and distributing shares of inputs and tags.

B Security Analysis

In this section, we will analyze the privacy and provide a
simulation-based proof for the in Figure 7.

Privacy argument: For procedure ΠCompactMatMul, the in-
puts are X and Y. All those matrices are authenticated and
shared among a set of MPC parties P . Due to the use of
secret sharing, the secrecy of input X and Y are provided.
During computation of [Z] and [tagZ] matrices E = X−A,
U = Y−B, and D = R−Z are revealed to all MPC parties.
Given matrix A, B, and R are all random matrices that are
unknown to MPC parties, revealed matrices E, U, and D will
not compromise the privacy of X, Y, and Z.

Proof sketch: We provide a simulation proof sketch of our
protocol from Figure 7 by showing that our protocol imple-
ments the ideal functionality FMatMul (Figure 14) for authenti-
cated matrix multiplication. The preprocessing phase simula-
tion is performed by running the simulator from the SPDZ2k

protocol [12] since our protocol is the same as theirs. The sim-
ulator Sim knows the values A, B, C and R from the simulator
of the preprocessing phase. In the online phase, we assume
that the inputs are shared in an authenticated way where Sim
knows the global MAC key ∆. We describe the simulator for

17

Functionality FMatMul

NOTATIONS: List of honest parties is H , and list of
corrupt parties is C .

INPUT: Each party Pi (among n parties) invokes the func-
tionality with inputs JXKi = ([X]i, [tagX]i, [∆]i) for X ∈
ZT1×T2

2k , and JYKi = ([Y]i, [tagY]i, [∆]i) for Y ∈ ZT2×T3

2k .

CORRUPTION: Each corrupt party P j ∈ C provides its
input shares for ([Z] j, [tagZ] j).

ALGORITHM:
1. Reconstruct ∆ = ∑

n
i=1[∆]i.

2. Reconstruct X = Σn
i=1[X]i, and tagX ∑

n
i=1[tagX]i.

Abort if tagX ̸= X ·∆.
3. Reconstruct Y = Σn

i=1[Y]i, and tagY ∑
n
i=1[tagY]i.

Abort if tagY ̸= Y ·∆.
4. Compute Z = X⊙Y and tagZ = Z ·∆.
5. Compute Z̃ = Z−∑ j∈C [Z] j and t̃agZ = tagZ−
∑ j∈C [tagZ] j.
6. For each i ∈ H , sample random [Z]i and
[tagZ]i values s.t. Z̃ == ∑i∈H [Z]i and t̃agZ ==

∑i∈H [tagZ]i.

OUTPUT: JZKi = ([Z]i, [tagZ]i, [∆]) for Z ∈ ZT1×T3

2k to
each party Pi.

Figure 14: Ideal Functionality FMatMul for computing matrix
multiplication over authenticated shares of matrices.

the online phase step-by-step as follows:

1. Sim executes the open phase of ΠBatchRec (Figure 1) to
reconstruct E = −A and U = −B by setting its share
values as 0.

2. Same as the protocol steps. Sim locally computes [Z] =
[C] +E⊙ [B] + [A]⊙U.

3. Same as the protocol steps. Sim invokes ΠOptMAC&Trunc

(Figure 6) on [Z] to truncate Z to obtain [Zf] as well as
optimistically generate the MAC [tagZf]. ΠOptMAC&Trunc

also outputs [tagR], D̃ generated in the process.
4. Same as the protocol steps. If P1 is corrupt, then do

nothing else. Else, Sim simulates party P1 by locally
computing [Zf]1 = [Zf]1+

E⊙U
2f and [tagZf]1 = [tagZf]1+

[∆]1 · E⊙U
2f .

5. Same as the protocol steps. Sim generates a public con-
stant matrix χ ∈ ZT3×1

2s by invoking FRand.
6. Same as the protocol steps. Sim invokes ΠCompress (Fig-

ure 4) to compress [tagB], [tagC], U, [tagR] and D̃ under
the combiners χ to generate [(tagB)

c], [(tagC)
c], (U)c,

[(tagR)
c] and (D̃)c, respectively.

7. Same as the protocol steps. Sim locally computes
[(tagZ)

c] = [(tagC)
c] + E⊙ [(tagB)

c] + [tagA] ⊙ (U)c

and [(tagD)
c] = [(tagR)

c]− [(tagZ)
c].

// Verification
1. Sim simulates the tag check phase from ΠBatchRec (Fig-

ure 1) to extract the X and Y shares of the corrupt parties.
In step 1, the parties invoke FRand to generate a random
value. In step 3, Sim commits to random values on be-
half of honest parties and broadcasts it. Upon receiving
the commitments from the corrupt parties, the simulator
uses the knowledge of A, B and ∆ to extract the [X],
[Y], [tagX] and [tagY] shares of the corrupt parties. Sim
proceeds with the simulation where it passes the checks
in steps 4 and 5 of the verification phase in Figure 1
by programming the commitments to open to simulated
values (computed using the knowledge of ∆) which pass
the checks.

2. All parties sample a public random matrix χ̂ ∈ ZT1×1
2s

via FRand.
3. Sim performs nothing.
4. Sim performs nothing.
5. Sim commits to random values on behalf of the hon-

est parties. Sim extracts the corrupt parties’ shares of
[Z] using the knowledge of [X] and [Y] of the cor-
rupt parties. Upon receiving the corrupt parties’ com-
mitments, Sim extracts the committed corrupt [cs] val-
ues. Sim computes random [cs]i values for i ∈ H s.t.
∑i∈H [cs]i +∑ j∈C [cs] j == 0 mod 2k+2s. Sim programs
the commitments s.t. the simulated honest party Pi de-
commits to [cs]i.

6. Sim extracts [tagZ] j of the corrupt parties using the
knowledge of [Z] j and [∆] j. Sim invokes FMatMul with
corrupt parties’ inputs ([Z] j, [tagZ] j). If FMatMul aborts,
then Sim also aborts, else it continues.

7. Sim ends the simulation.
The adversary distinguishes between the real and ideal

world if it breaks the consistency checks in Step 1 and Step 5
of the verification phase, where the tags of X (via verification
of tag of E), Y (via verification of tag of U), and Z (via
verification of tag of D) are verified. However, this occurs
with negligible probability, as we discuss next.

Correctness of consistency checks: In this section, we will
discuss the correctness of [tagZf] obtained from procedure
ΠOptMAC&Trunc. In ΠCompactMatMul, an optimistic tag is gener-
ated by invoking ΠOptMAC&Trunc. In ΠOptMAC&Trunc, [tagZf]
is computed using revealed matrix D and local share of [tagR]
and [∆]. Both [tagR] and [∆] are obtained and verified during
the offline phase, so active adversaries can only introduce
errors to the honest parties’ D. Thus, to verify the correctness
of [tagZf], MPC parties only need to check the correctness
of D. In ΠCompactMatMul, during the verification stage, MPC
parties will compute and broadcast the checksum [cs]. This
checksum is computed using committed operands ([∆], χ̂, and
[tag(D)c]) and a broadcasted matrix D. MPC parties will abort

18

if the broadcasted checksum is not zero modulo 2k+2s. The
broadcasted checksum can be parsed as:

cs=
T1

∑
i=1

∆ · χ̂i · (D̃)ci − χ̂i · tag(D)ci
(6)

=
T1

∑
i=1

χ̂i · (∆ · (D̃)ci − tag(D)ci
) (7)

=
T1

∑
i=1

χ̂i · (∆ ·
T3

∑
j=1

χ j · D̃i, j−
T3

∑
j=1

χ j · tagDi, j
) (8)

=
T1

∑
i=1

χ̂i ·
T3

∑
j=1

(∆ ·χ j · D̃i, j−χ j · tagDi, j
) (9)

After adversaries add errors to the matrix D, the checksum is
rewritten as

T1

∑
i=1

χ̂i ·
T3

∑
j=1

(∆ ·χ j · (D̃i, j + ei, j)−χ j · tagDi, j
) (10)

=
T1

∑
i=1

χ̂i ·
T3

∑
j=1

∆ ·χ j · ei, j +(∆ ·χ j · D̃i, j−χ j · tagDi, j
) (11)

=
T1

∑
i=1

χ̂i ·
T3

∑
j=1

∆ · ei, j ·χ j (12)

where ei, j is the error added to the Di, j. With the simplified
checksum, we will show the probability of adversaries intro-
ducing errors to D while the checksum equals 0 mod 2k+2s.

Theorem 1. Suppose that χ1,χ2, ...,χT1 and χ̂1, χ̂2, ..., χ̂T3

are sampled randomly from Z2s . Adversaries can choose any
combination of ei, j where not all ei, j are zero modulo 2k, and
∑

T3
j=1 ∆ · ei, j ·χ j is in modulo of 2k+s , such that

Pr[
T1

∑
i=1

χ̂i ·
T3

∑
j=1

∆ · ei, j ·χ j =k+2s 0]≤ 2−s+log(s+1) (13)

Two lemmas are used to prove this theorem.

Lemma 1. Suppose that χ̂1, χ̂2, ..., χ̂T1 are sampled ran-
domly from Z2s . Adversaries can choose any combination
of y1,y2, ...,yT1 from Z2k+s , where not all yis are zero modulo
2k+s. Then,

Pr[
T1

∑
i=1

χ̂i · yi =k+2s 0]≤ 2−s (14)

Proof. Let’s assume 2v is the largest power of two dividing
yi. We know that yi < 2k+s by assumption. Thus, we have

v < k+ s. Therefore,

Pr[
T1

∑
i=1

χ̂i · yi =k+2s 0] (15)

=Pr[χ̂1 · y1 =k+2s

T1

∑
i=2

χ̂i · yi] (16)

=Pr[χ̂1 ·
y1

2v =s
∑

T1
i=2 χ̂i · yi

2v] (17)

=Pr[χ̂1 =s
∑

T1
i=2 χ̂i · yi

2v · (y1

2v)
−1] (18)

≤2−s (19)

Lemma 2. Suppose that χ1,χ2, ...,χT3 are sampled randomly
from Z2s , and ∆ are uniformly sampled from Z2s . Adversaries
can choose any combination of e1,e2, ...,eT3 from Z2k , where
not all eis are zero modulo 2k. Then,

Pr[
T3

∑
i=1

∆ · ei ·χi =k+s y]≤ 2−s+log(s+1) (20)

where y can be any value in Zk+s.

Lemma 2 are proven in [12]. With Lemma 1 and Lemma 2,
we will prove Theorem 1. Let’s denote ∑

T3
j=1 ∆ · ei, j ·χ j as Gi.

Then, the probability in Theorem 1 can be re-written as:

Pr[
T1

∑
i=1

χ̂i ·Gi =k+2s 0] (21)

= ∑
∀{yi}

T1
i=1

Pr[
T1

∑
i=1

χ̂i ·Gi =k+2s 0|∩T1
i=1 Gi =k+s yi]

·Pr[∩T1
i=1Gi =k+s yi] (22)

= ∑
∀{yi}

T1
i=1

Pr[
T1

∑
i=1

χ̂i · yi =k+2s 0] ·Pr[∩T1
i=1Gi =k+s yi] (23)

Equation 22 holds due to total probability. Equation 23
holds because of the definition of the conditional probability.
Now, adversaries can choose from two attack schemes: 1)
make all yis zeros, and 2) not all yis are zero.

In the first scenario, Equation 23 can be written as:

Pr[
T1

∑
i=1

χ̂i ·0 =k+2s 0] ·Pr[∩T1
i=1Gi =k+s 0] (24)

=1 ·Pr[∩T1
i=1Gi =k+s 0] (25)

≤min{Pr[Gi =k+s 0]}T1
i=1 (26)

≤min{Pr[
T3

∑
j=1

∆ · ei, j ·χ j =k+s 0]}T1
i=1 (27)

≤2−s+log(s+1) (28)

19

Inequality 26 holds because the probability of the intersection
of all events is less or equal to the minimum probability of all
intersected events. Inequality 27 holds due to the definition
of Gi. Inequality 28 holds due to Lemma 2.

In the second scenario, Equation 23 can be written as:

∑
∀{yi}

T1
i=1 ̸={0}

T1
i=1

Pr[
T1

∑
i=1

χ̂i · yi =k+2s 0] ·Pr[∩T1
i=1Gi =k+s yi]

(29)

≤ ∑
∀{yi}

T1
i=1 ̸={0}

T1
i=1

2−s ·Pr[∩T1
i=1Gi =k+s yi] (30)

≤2−s · ∑
∀{yi}

T1
i=1 ̸={0}

T1
i=1

Pr[∩T1
i=1Gi =k+s yi] (31)

≤2−s (32)

Inequality 30 holds due to Lemma 1. Inequality 32 holds be-
cause the summation of the probability of mutually exclusive
events will be less or equal to one. Comparing scenario 1 and
scenario 2, adversaries will have a better probability in the
first scenario. Consequently,

Pr[
T1

∑
i=1

χ̂i ·
T3

∑
j=1

∆ · ei, j ·χ j =k+2s 0]≤ 2−s+log(s+1) (33)

C CompactTag scales with parties

This section shows the CompactTag’s speedup over SPDZ2k

with more number of parties for VGG16, ResNet, and Trans-
former. The speedup for tag computation for all models stays
the same as we scale to more parties.

2PC 3PC 4PC 5PC

Inference Total 1.29× 1.25× 1.22× 1.20×
Tag 4.37× 4.37× 4.37× 4.37×

Training Total 1.47× 1.42× 1.38× 1.35×
Tag 17.57× 17.57× 17.57× 17.57×

Table 5: CompactTag’s speedup for VGG16 over SPDZ2k

with varying number of parties.“Tag” denote CompactTag’s
speedup on tag computation for linear layers.

2PC 3PC 4PC 5PC

Inference Total 1.30× 1.21× 1.16× 1.13×
Tag 23.11× 23.11× 23.11× 23.11×

Training Total 1.43× 1.35× 1.29× 1.25×
Tag 22.04× 22.04× 22.04× 22.04×

Table 6: CompactTag’s speedup for Transformer over SPDZ2k

with varying number of parties.“Tag” denote CompactTag’s
speedup on tag computation for linear layers.

2PC 3PC 4PC 5PC

Inference Total 1.20× 1.15× 1.12× 1.10×
Tag 3.44× 3.44× 3.44× 3.44×

Training Total 1.25× 1.20× 1.16× 1.14×
Tag 4.50× 4.50× 4.50× 4.50×

Table 7: CompactTag’s speedup for ResNet over SPDZ2k

with varying number of parties.“Tag” denote CompactTag’s
speedup on tag computation for linear layers.

20

	Introduction
	Our contributions
	Related work
	Paper organization

	Preliminaries
	Security model
	Notation
	Commitment scheme
	Authenticated secret-sharing semantics
	Overview of SPDZ2kspdz2k
	Secure ML operations

	CompactTag
	Compressing a matrix
	Optimistic tag generation
	Matrix multiplication with OptMAC
	Optimized matrix multiplication with CompactTag for DNN
	OptMAC&Trunc
	Complete matrix multiplication protocol
	Complexity analysis

	Offline phase

	Experimental evaluation
	Experimental setup
	Implementation details
	Performance analysis

	Conclusion
	Additional Functionalities
	FRand
	FMAC

	Security Analysis
	CompactTag scales with parties

