
Signatures with Memory-Tight Security
in the Quantum Random Oracle Model

Keita Xagawa
1

Technology Innovation Institute, UAE

keita.xagawa@tii.ae

Abstract. Auerbach, Cash, Fersch, and Kiltz (CRYPTO 2017) initiated the study of memory tightness of re-

ductions in cryptography in addition to the standard tightness related to advantage and running time and

showed the importance of memory tightness when the underlying problem can be solved efficiently with

large memory. Diemert, Geller, Jager, and Lyu (ASIACRYPT 2021) and Ghoshal, Ghosal, Jaeger, and Tessaro

(EUROCRYPT 2022) gave memory-tight proofs for the multi-challenge security of digital signatures in the

random oracle model.

This paper studies the memory-tight reductions for post-quantum signature schemes in the quantum random

oraclemodel. Concretely, we show that signature schemes from lossy identification aremulti-challenge secure

in the quantum random oracle model via memory-tight reductions. Moreover, we show that the signature

schemes from lossy identification achieve more enhanced securities considering quantum signing oracles

proposed by Boneh and Zhandry (CRYPTO 2013) and Alagic, Majenz, Russel, and Song (EUROCRYPT 2020).

We additionally show that signature schemes from preimage-sampleable functions achieve those securities

via memory-tight reductions.

Keywords: memory-tight reductions · signature · provable security · post-quantum cryptography · quantum

random oracle model (QROM) · plus-one unforgeability · blinded unforgeability

Table of Contents

1 Introduction . 2

1.1 Contributions . 3

2 Preliminaries . 4

2.1 Lemmas on Quantum Computations 5

2.2 Adversaries with Access to

Random Functions 5

2.3 Lossy Identification 5

3 Digital Signature . 7

3.1 From CMA1 Security to CMA

Security . 9

3.2 Signature from Lossy Identification 10

4 Multi-Challenge Security of Signature

from Lossy Identification 10

4.1 Proof of Theorem 11

5 Plus-One Unforgeability of Signature

from Lossy Identification 16

5.1 Proof of Theorem 16

A Missign Definitions . 25

B Instantiations of Lossy Identification 25

B.1 Lossy Identification Scheme

based on Pseudorandom Group

Action . 25

B.2 Lossy Identification Scheme

based on CSIDH 26

B.3 Lossy Identification Scheme

based on Lattices 27

C Relation Between Blinded

Unforgeability and Plus-One Unforgeability 30

D Blinded Unforgeability of Signature

from Lossy Identification 30

E Memory-Tight Proofs for PSF-(P)FDH 39

E.1 Preimage Sampleable Functions 39

E.2 Signature based on PSF 40

E.3 Multi-Challenge Security for

PSF-(P)FDH . 40

E.4 Plus-One Security for PSF-DFDH . . 42

E.5 Strong Blinded Unforgeability for

PSF-DFDH . 44

1 Introduction

Memory-tight reductions: Provable security in cryptography consists of reductions and assumptions; we

assume the hardness of a computational problem, design a cryptographic scheme, and then make a reduction

algorithm R to solve the underlying problem by using an adversary A breaking the security of the scheme.

The tightness of the reduction is measured by how the resources of R are close to the resources ofA, where

resources are success probability, running time, the number of queries, etc. The tightness of the security

reduction is essential because it impacts the parameters of the cryptographic schemes and, thus, the scheme’s

efficiency. (See e.g., [BR96, Cor00, KM07, CMS12, CKMS16].)

Auerbach, Cash, Fersch, and Kiltz [ACFK17] put forth memory tightness of the reduction from the view

of memory usage. This concept is important when the underlying computational problems are memory-

sensitive; that is, the problem can be solved efficiently with large memory. Examples of such problems are

factoring, lattice problems, the lerning-parity-with-noise (LPN) problem, and the multi-collision problem of

the hash function.

After their proposal, memory-tight reductions have gathered much attention and become an active area of

cryptography: Auerbach et al. [ACFK17] gave several techniques to make security proofs memory-tight.

Using those techniques, they gave a memory-tight reduction for the standard security, the existential un-

forgeability under chosen-message attacks (EUF-CMA security), of RSA-FDH [RSA78, BR96] in the random

oracle model (ROM) [BR93]. Diemert, Geller, Jager, and Lyu [DGJL21] studied memory-tight proofs of the

strongly existential unforgeability under chosen-message attacks in themulti-challenge setting (msEUF-CMA

security), where an adversary can submit multiple attempts of forgery and it wins if one of them is a ‘new’

forgery. They gave memory-tight reductions in the ROM for msEUF-CMA security of RSA-PFDH [BR96],

the BLS signature [BLS01], and RFS-LID [AFLT12, FS87], where RFS denotes the Fiat-Shamir transform with

random nonces and LID denotes a lossy identification. Ghoshal, Ghosal, Jaeger, and Tessaro [GGJT22] also

gave a memory-tight proof of the msEUF-CMA security of RSA-PFDH in the multi-challenge setting in the

ROM. Bhattacharyya [Bha20] and Jaeger and Kumar [JK22] gave memory-tight proofs for the security of key

encapsulation mechanisms based on the variants of the Diffie-Hellman problem in the ROM. There are stud-

ies for symmetric-key cryptography, e.g., [Din20, GJT20, GGJT22], and the lower bound of memory usage of

black-box reductions [ACFK17, WMHT18, GT20, GJT20].

Post-quantum signatures and quantum random oracle model: Post-quantum signature is an emerging

area of cryptography as NIST had run the standardization of PQC and selected three post-quantum signa-

tures (Falcon, Dilithium, and SPHINCS+) [AAC
+
22] and they started the standardization of additional sig-

nature schemes. The security of those post-quantum signatures is proven in the quantum random oracle
model (QROM) [BDF+11], in which an adversary can make a quantum query to a random oracle. As far as we

surveyed, the sEUF-CMA security proof for PSF-DFDH in Boneh et al. [BDF
+
11] is only one memory-tight

proof for signature in the QROM, where PSF is preimage-sampleable functions [GPV08] and DFDH is FDH

derandomized by a pseudo-random function (PRF). The following natural question arises:

Can we construct memory-tight reductions for the msEUF-CMA security of post-quantum PSF-

based signatures in the QROM?

In addition, the memory-tight security proof of the msEUF-CMA security of the signature scheme from LID

in Diemert et al. [DGJL21] assumes that the underlying LID is perfectly correct, commitment-recoverable,

and is considered in the ROM. Thus, it is natural to ask the following question:

Can we construct memory-tight reductions for the msEUF-CMA security of post-quantum LID-

based signatures in the QROM and eliminate the conditions on the underlying LID?

Quantum signing oracles: Furthermore, there are extended security models for signature schemes in the

quantum setting by giving quantum access to the signing oracle. The first one is proposed by Boneh and

Zhandry and dubbed EUF-qCMA security [BZ13b]. But, we call it plus-one unforgeability (PO security in

short) following [AMRS20], because, in the security game, an adversary can access the signing oracle with 𝑞

quantum queries and is required to output 𝑞 + 1 distinct valid message/signature pairs. The other is proposed

by Alagic, Majenz, Russell, and Song [AMRS20] and dubbed (strong) blinded unforgeability (BU/sBU security

in short). In the security game, an adversary can access the signing oracle with quantum queries, while some

signatures are blinded if the corresponding messages are in a filter. The adversary is required to output a valid

signature on a filtered message. Doosti, Delavar, Kashefi, and Arapinis [DDKA21] also gave parametrized

security definitions using quantum signing oracles and showed that some of their definition is equivalent to

the blinded unforgeability. Again, to the best of the authors’ knowledge, there are no memory-tight proofs

for such enhanced securities for post-quantum signatures. Our third question is:

Can we construct memory-tight reductions for those extended securities (PO, BU, and sBU) of post-

quantum signatures based on PSF and LID in the QROM?

2

Table 1. Summary of security proofs for LID-based signatures in the QROM. IND, CUR, and PRF in the column “Assumptions”

denote the key indistinguishability of LID, the computational unique response of LID, and the pseudorandomness of PRF,

respectively. The mark ✓ in the column “Adv.” and “Time” indicates the multiplicative loss of advantage and time is 𝑂 (1),
respectively. Themarks✓ and x in the column “Mem.” indicate the additive loss of memory usage is𝑂 (1) ·poly and𝑂 (𝑞) ·poly,
respectively.

Proof Scheme Security Assumptions Adv. Time Mem.

KLS18+DFPS23 [KLS18, DFPS23] FS-LID sEUF-CMA1 IND, CUR ✓ ✓ x

KLS18+DFPS23 [KLS18, DFPS23] DFS-LID sEUF-CMA IND, CUR, PRF ✓ ✓ x

Section 4 FS-LID msEUF-CMA1 IND, CUR ✓ ✓ ✓
Section 4 RFS-LID msEUF-CMA IND, CUR ✓ ✓ ✓
Section 4 DFS-LID msEUF-CMA IND, CUR, PRF ✓ ✓ x

Section 4 DFS
+
-LID msEUF-CMA IND, CUR ✓ ✓ ✓

Section 5 DFS-LID PO IND, CUR, PRF ✓ ✓ x

Section 5 DFS
+
-LID PO IND, CUR ✓ ✓ ✓

Section D DFS-LID sBU IND, CUR, PRF ✓ ✓ ✓

1.1 Contributions

We affirmatively answer those three questions.

New memory-tight security proofs for LID-based signatures: We give a memory-tight msEUF-CMA

security proof for RFS-LID in the QROM, where we allow LID to have imperfect correctness: Following

Diemert et al. [DGJL21], we first show the msEUF-CMA1 security of FS-LID with memory-tight reduction,

where CMA1 denotes chosen-message attacks in the one-siganture-per-message setting [KLS18] and FS de-

notes the standard Fiat-Shamir transform; we then obtain a memory-tight msEUF-CMA security proof for

RFS-LID by using a lemma in [DGJL21].

Our main contribution is a new memory-tight security proof of the msEUF-CMA1 security of FS-LID. To ob-

tain this proof, we carefully merge the memory-tightmsEUF-CMA1 security proof by Diemert et al. [DGJL21]

and the memory-loose sEUF-CMA1 security proof by Devevey, Fallahpour, Passelègue, and Stehlé [DFPS23],

where the latter is a correction of the history-free proof in Kiltz, Lyubashevsky, and Schaffner [KLS18]. We

note that the sEUF-CMA1 proof of Devevey et al. [DFPS23] has a subtle error
1
and we correct it.

We further extend the security proof into the PO and sBU securities. We give a memory-loose PO security

proof forDFS-LID and give a memory-tight PO security proof forDFS
+
-LID, whereDFS andDFS

+
denote the

Fiat-Shamir transform derandomized by PRF and random oracle, respectively. We also give a memory-tight

sBU security proof for DFS-LID. As far as we know, those are the first PO and sBU security proofs for the

LID-based signature schemes in the QROM.

We note that we can use isogeny-based and lattice-based LID schemes, e.g., Lossy CSI-FiSh [EKP20] and

G+G [DPS23], as the underlying LID schemes.

See the summary and comparison in Table 1.

New memory-tight security proofs for PSF-based signatures: We extend the memory-tight sEUF-CMA

security proof for PSF-DFDH in the QROM in Boneh et al. [BDF
+
11] into a memory-tight msEUF-CMA1

security proof for PSF-FDH in the QROM. We then obtain a memory-tight msEUF-CMA security proof for

PSF-PFDH in the QROM by using the lemma in [DGJL21] as in the case of RFS-LID. Furthermore, we show a

memory-loose PO security proof of PSF-DFDH and a memory-tight PO security proof of PSF-DFDH
+
in the

QROM, where DFDH
+
denotes FDH derandomized by a random function. We also give a memory-tight sBU

security proof of PSF-DFDH by modifying a memory-loose BU security proof of PSF-DFDH in the QROM by

Chatterjee, Chung, Liang, and Malavolta [CCLM22]. See Section E for the details.

See the summary and comparison in Table 2.

A gap between PO and BU security: As a byproduct, we found that BU security does not imply PO security,

which refutes the conjecture that BU security implies PO security of message authentication code (MAC) by

Alagic et al. [AMRS20].
2
We exemplify this by constructing a BU-secure but PO-insecure MAC and signature

1
They did not consider the computational unique response property of LID [KLS18]

2
The conference version [AMRS20] claims that BU-secure MAC is also PO-secure. Unfortunately, the newest version,

‘20230420:091107’ [AMRS18] reported an error in their proof and removed the claim.

3

Table 2. Summary of security proofs for PSF-based signatures in the QROM. CR, INV, OW, and PRF in the column “As-

sumptions” denote the collision resistance, non-invertibility, and one-wayness of PSF and the pseudorandomness of PRF,

respectively. The marks ✓ and x in the columns “Adv.” and “Time” indicate whether the multiplicative loss of advantage

and time is 𝑂 (1) or not. The marks ✓ and x in the column “Mem.” indicate whether the additive loss of memory usage

is 𝑂 (1) · poly and 𝑂 (𝑞) · poly, respectively. In the signing algorithm of PSF-PFDH*, the randomness for PSF is chosen as

1) choose a random pairwise hash function 𝑄 and 2) compute a randomness by 𝑄(𝑚).

Proof Scheme Security Assumptions Adv. Time Mem.

BDFLSZ11 [BDF
+
11] PSF-DFDH

+
sEUF-CMA CR ✓ ✓ ✓

KX22, LJZ22 [KX22, LJZ22] PSF-PFDH EUF-CMA INV x ✓ x

CCLM22 [CCLM22] PSF-DFDH BU CR, PRF ✓ ✓ x

BZ13 [BZ13b] PSF-PFDH* PO OW, CR x x x

BZ13 [BZ13b] PSF-DFDH PO CR, PRF ✓ ✓ x

subsection E.3 PSF-FDH msEUF-CMA1 CR ✓ ✓ ✓
subsection E.3 PSF-PFDH msEUF-CMA CR ✓ ✓ ✓
subsection E.3 PSF-DFDH msEUF-CMA CR, PRF ✓ ✓ x

subsection E.3 PSF-DFDH
+
msEUF-CMA CR ✓ ✓ ✓

subsection E.4 PSF-DFDH PO CR, PRF ✓ ✓ x

subsection E.4 PSF-DFDH
+
PO CR ✓ ✓ ✓

subsection E.5 PSF-DFDH sBU CR, PRF ✓ ✓ ✓

scheme from a BU-secureMAC and signature scheme, respectively.We observe that PO-secure scheme should

be sEUF-CMA-secure, but BU-secure scheme can be sEUF-CMA-insecure. Thus, making BU-secure MAC and

signature scheme sEUF-CMA-insecure, the new scheme is PO-insecure. We think the conjecture should be

that sBU security implies PO security. See Section C for the details.

Open problems: We have managed the imperfect correctness of LID in the memory-tight security proofs of

LID-based signature schemes by following the history-free approach [KLS18, DFPS23] instead of the adap-

tive reprogramming appraoch [GHHM21, DFPS23, BBD
+
23]. The history-free approach requires LID to have

statistical honest-verifier zero-knowledge (HVZK). We leave an open problem to construct memory-tight se-

curity proofs treating divergence HVZK [dPPRS23, DPS23] or computational HVZK, which would require the

adaptive reprogramming approach.

We currently can not give the memory-tight security proofs of the PSF-based signature scheme with im-
perfectly correct PSFs. Kosuge and Xagawa [KX22] gave memory-loose security proofs using the adaptive

reprogramming technique [GHHM21]. We leave an open problem to give memory-tight security proof of

signature schemes based on imperfectly-correct PSFs.

Jaeger and Kumar [JK22] gave memory-tight reductions for multi-challenge, multi-user CCA security of

PKE/KEM. It is interesting to consider the multi-challenge, multi-user security of signature schemes with

memory-tight reductions in the ROM and QROM.

Organization: Section 2 reviews basic notions and notations, quantum computations, and lossy identifica-

tion. Section 3 reviews digital signatures, their security notions, and LID-based signature schemes. Section 4

and Section 5 show msEUF-CMA and PO security of the LID-based signature schemes. Section A contains

missing definitions. Section B reviews the instantiations of lossy identifications. Section C discusses the re-

lationship between PO security and BU security of MAC and signatures. Section D shows the sBU security

of a LID-based signature scheme. Section E includes the review of PSF-based signature schemes and shows

their msEUF-CMA, PO, and sBU securities.

2 Preliminaries

The security parameter is denoted by 𝜅 ∈ Z+. We use the standard 𝑂-notations. For 𝑛 ∈ Z+, we let [𝑛] B
{1, . . . , 𝑛}. For a statement 𝑃, J𝑃K denotes the truth value of 𝑃.

Let X and Y be two finite sets. Func(X,Y) denotes a set of all functions whose domain is X and codomain

is Y. For a set of disributions over Y indexed by 𝑥 ∈ X, 𝐷 = {𝐷𝑥 : 𝑥 ∈ X}, we define FuncX,Y (𝐷) as a
distribution of 𝑓 in Func(X,Y) such that, for each 𝑥 ∈ X, 𝑓 (𝑥) is independently drawn from a ditribution

𝐷𝑥 . When every 𝐷𝑥 is the same as 𝐷′ on every 𝑥, we simply write FuncX,Y (𝐷′). For two distributions

𝐷, 𝐷′ over Y, we say that 𝐷 is 𝜖-close to 𝐷′ if the distance |𝐷 − 𝐷′ | B ∑
𝑦∈Y |𝐷 (𝑦) − 𝐷′ (𝑦) | is at most 𝜖 .

4

For a distribution 𝐷, we often write “𝑥 ← 𝐷,” which indicates that we take a sample 𝑥 according to 𝐷. For a

finite set S,𝑈 (S) denotes the uniform distribution over S. We often write “𝑥 ← S” instead of “𝑥 ← 𝑈 (S).” If
inp is a string, then “out← A𝑂 (inp)” denotes the output of algorithmA running on input inpwith an access to
a set of oracles 𝑂. If A and oracles are deterministic, then out is a fixed value and we write “out B A𝑂 (inp).”
We also use the notation “out B A(inp; 𝑟)” to make the randomness 𝑟 of A explicit. For a probabilistic

algorithm A, RA denotes the radnomness space of A.
For an algorithm or adversary A, Time(A) and Mem(A) denotes the time and memory complexity of the

algorithm A, respectively. For a scheme S, Time(S) and Mem(S) denotes the maximum time and memory

complexity of the algorithms in the scheme S, respectively.
For any function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚, a quantum access to 𝑓 ismodeled as oracle access to unitary𝑂 𝑓 : |𝑥⟩ |𝑦⟩ ↦→
|𝑥⟩ |𝑦 ⊕ 𝑓 (𝑥)⟩. By convention, we will use the notation A | 𝑓 ⟩,𝑔 to stress A’s quantum and classical access to 𝑓

and 𝑔.

2.1 Lemmas on Quantum Computations

Lemma 2.1 ([BZ13b, Lemma 2.5, ePrint]). Let X and Y be two finite sets. Let 𝐷 = {𝐷𝑥} and 𝐷′ = {𝐷′𝑥}
be two sets of efficiently sampleable distributions over Y indexed by 𝑥 ∈ X. let A be a quantum adversary
making 𝑞 (quantum) queries to an oracle 𝑓 : X → Y. If for each 𝑥 ∈ 𝑋 , |𝐷𝑥 − 𝐷′𝑥 | ≤ 𝜖 holds, then |Pr[𝑓 ←
FuncX,Y (𝐷) : A | 𝑓 ⟩ = 1] − Pr[𝑓 ← FuncX,Y (𝐷′) : A | 𝑓 ⟩ = 1] | ≤

√︁
(6𝑞)3𝜖 . 3

Lemma 2.2 ([BZ13b, Lemma 2.6, ePrint]). Fix two finite sets X and Y. Fix a set 𝐷 of distributions 𝐷𝑥 over
Y indexed by 𝑥 ∈ X. Let 𝛼 be the minimum over all 𝑥 ∈ X of the min-entropy of the distribution 𝐷𝑥 . Now, let
𝑓 : X → Y be a function chosen according to FuncX,Y (𝐷). Then, any 𝑞-query quantum algorithm can only
produce (𝑞 + 1) input/output pairs of 𝑓 with probability at most (𝑞 + 1)/⌊2𝛼⌋.

2.2 Adversaries with Access to Random Functions

We adopt an adversary with access to random functions by following [GGJT22, Section 3]. The reductions in

this paper are adversaryA on the left side, consisting of a set of functions F and algorithmA2. We call such

an adversary a F -oracle adversary.

Adversary A𝑂 (in)

1 : 𝑓 ← F

2 : out← A𝑂, | 𝑓 ⟩
2

(in)
3 : return out

Adversary A𝑂
𝐹
(in)

1 : 𝐾 ← K

2 : out← A𝑂, |𝐹𝐾 ⟩
2

(in)
3 : return out

Ghoshal et al. [GGJT22] defined the reduced complexity of A by Time∗ (A) B Time(A2) and Mem∗ (A) B
Mem(A2). We employ F -oracle adversaries as [GGJT22] for simplicity and clean notation. This approach is

justified by pseudorandom adversaryA𝐹 on the right-hand side as long as the gameA plays is efficient. See

[ACFK17] and [GGJT22, Lemma 2].

2.3 Lossy Identification

Abdalla et al. [AFLT12, AFLT16] defined lossy identification as a special case of a (cryptographic) identifica-

tion scheme. A lossy identification scheme involves an additional lossy key-generation algorithm. The syntax

follows:

Definition 2.1 (Lossy identification). A lossy identification scheme LID consists of the following tuple of PPT
algorithms (GenLID, LossyGenLID, P1, P2,V)
– GenLID (1𝜅) → (vk, sk): a normal key-generation algorithm that, on input 1𝜅 , where 𝜅 is the security

parameter, outputs a pair of keys (vk, sk). vk and sk are public verification and secret keys, respectively.
– LossyGenLID (1𝜅) → vk: a lossy key-generation algorithm that on input 1𝜅 outputs a lossy verification key

vk.

3
The value 6

3 = 27 · 8 is taken from 27 in [Zha12, Corollary 7.5, ePrint] (denoted by𝐶0 in [BZ13b]) and 8 in [BZ13b, Lemma

2.5].

5

– P1 (sk) → (𝑤, 𝑠): a first prover algorithm that takes as input signing key sk and outputs commitment 𝑤
and state 𝑠.

– P2 (sk, 𝑤, 𝑐, 𝑠) → 𝑧: a second deterministic prover algorithm that takes as input signing key sk, commitment
𝑤, challenge 𝑐, and state 𝑠, and outputs response 𝑧.

– Vrfy(vk, 𝑤, 𝑐, 𝑧) → true/false: a deterministic verification algorithm that takes as input verification key
vk, commitment 𝑤, challenge 𝑐, and response 𝑧, and outputs its decision true or false.

We assume that a verification key vk defines the challenge space C and the response spaceZ.

Definition 2.2 (Completeness). For non-negligible 𝜌 = 𝜌(𝜅), we call LID 𝜌-complete if

Pr

[
(vk, sk) ← GenLID (1𝜅), (𝑤, 𝑠) ← P1 (sk),

𝑐 ← C, 𝑧 B P2 (sk, 𝑤, 𝑐, 𝑠)
: V(vk, 𝑤, 𝑐, 𝑧) = true

]
≥ 𝜌(𝜅).

We call LID perfecly complete if it is 1-complete.

In order to analyze the completeness carefully, Devevey et al. [DFPS23] introduced another definition as

follows:

Definition 2.3 (Correctness [DFPS23, Def.2], adapted). Let 𝛾, 𝛽 > 0. We call LID (𝛾, 𝛽)-complete if for every
(vk, sk) generated by GenLID (1𝜅), the following holds:
– The verifier accepts with probability at least 𝛾 if the response 𝑧 is not ⊥. That is,

Pr [(𝑤, 𝑠) ← P1 (sk), 𝑐← C, 𝑧 B P2 (sk, 𝑤, 𝑐, 𝑠) : V(vk, 𝑤, 𝑐, 𝑧) = true | 𝑧 ≠ ⊥] ≥ 𝛾.

– The prover aborts with probability at most 𝛽. That is,

Pr [(𝑤, 𝑠) ← P1 (sk), 𝑐← C, 𝑧 B P2 (sk, 𝑤, 𝑐, 𝑠) : 𝑧 = ⊥] ≤ 𝛽.

We note that if LID is (1, 𝛽)-correct, then it is 𝛽-complete.

The security properties of a lossy identification scheme are defined as follows:

Definition 2.4 (Key indistinguishability [AFLT16, Def.16]). We say that LID is key indistinguishable if for
any QPT adversary A, its advantage Advind-keyLID,A (𝜅) is negligible in 𝜅, where

Advind-keyLID,A (𝜅) B
���� Pr[(vk, sk) ← GenLID (1𝜅) : A(vk) = 1]
− Pr[vk ← LossyGenLID (1𝜅) : A(vk) = 1]

���� .
Definition 2.5 (Lossiness [AFLT16, Def.16], adapted). We say that LID is 𝜖ℓ -lossy if for any unbounded
adversary A, its advantage Advimp

LID,A (𝜅) is at most 𝜖ℓ , where

Advimp

LID,A (𝜅) B Pr

[
vk ← LossyGenLID (1𝜅), (𝑤, 𝑠) ← A(vk),

𝑐 ← C, 𝑧 ← A(𝑐, 𝑠) : V(vk, 𝑤, 𝑐, 𝑧) = true
]
.

Remark 2.1 (On Lossiness). In the original definition, adversaryA can access to the simulated transcript oracle

to produce (𝑤, 𝑠). However, since the simulated transcript oracle has no access to sk, we do need to consider
this oracle.

Definition 2.6 (Statistical honest-verifier zero knowledge [DFPS23], adapted). Let (vk, sk) be a key pair
generated by GenLID (1𝜅). We call LID 𝜖

zk
-HVZK if there exists a PPT algorithm Sim that takes a public ver-

ification key vk and 𝑐 as input and outputs (𝑤, 𝑧) such that the distribution of (𝑤, 𝑐, 𝑧) where 𝑐 ← C and
(𝑤, 𝑧) ← Sim(vk, 𝑐) is 𝜖

zk
-close to the distribution of the real transcript between honest prover and verifier.

Remark 2.2. In [AFLT16, KLS18], “the distribution of the real transcript” is defined as follows: compute

(𝑤, 𝑐, 𝑧) by using the real prover and verifier; if 𝑧 = ⊥, then return (⊥,⊥,⊥); otherwise return (𝑤, 𝑐, 𝑧).
Devevey et al. [DFPS23] pointed out that this definition is one of the causes of the error in the simulation.

They defined “the distribution of the real transcript” as follows: compute (𝑤, 𝑐, 𝑧) by using the real prover

and verifier and output (𝑤, 𝑐, 𝑧) as it is.

Definition 2.7 (Commitment recoverability [KLS18, Defnition 2.4]).We say that LID is commitment-recoverable

if for any (vk, sk) generated byGenLID (1𝜅), 𝑐 ∈ C, and 𝑧 ∈ Z, there exists a unique 𝑤 such that V(vk, 𝑤, 𝑐, 𝑧) =
true. In addition, we require that this unique 𝑤 can be computed by a deterministic commitment-recovery algo-
rithm Rec, that is, 𝑤 = Rec(vk, 𝑐, 𝑧).

6

Definition 2.8 (Computational unique response [KLS18, Defnition 2.7]).We also say that LID has the com-

putational unique response (CUR) property if for any QPT adversaryA, its advantage defined below is negligible
in 𝜅:

AdvcurLID,A (𝜅) B Pr

[
(vk, sk) ← GenLID (1𝜅), (𝑤, 𝑐, 𝑧, 𝑧′) ← A(vk) :

𝑧 ≠ 𝑧′ ∧ V(vk, 𝑤, 𝑐, 𝑧) ∧ V(vk, 𝑤, 𝑐, 𝑧′)

]
.

Definition 2.9 (Min-entropy of commitment [KLS18, Defnition 2.6],modified).We say that LID has (𝛼, 𝜖𝑚)-
min-entropy if

Pr[(vk, sk) ← GenLID (1𝜅) : 𝐻∞ (𝑤 | (𝑤, 𝑠) ← P1 (sk)) ≥ 𝛼] ≥ 1 − 𝜖𝑚.

In the original definition ([KLS18, Defnition 2.6]), 𝜖𝑚 is 2
−𝛼

. Devevey et al. [DFPS23, Definition 5] defined

the min-entropy of commitment as (𝛼, 0)-min entropy in the above definition.

3 Digital Signature

The model for digital signature schemes is summarized as follows:

Definition 3.1. A digital signature scheme DS consists of the following triple of PPT algorithms (Gen, Sign,
Vrfy):
– Gen(1𝜅) → (vk, sk): a key-generation algorithm that, on input 1𝜅 , where 𝜅 is the security parameter,

outputs a pair of keys (vk, sk). vk and sk are called verification and signing keys, respectively.
– Sign(sk, 𝜇) → 𝜎: a signing algorithm that takes as input signing key sk and message 𝜇 ∈ M and outputs

signature 𝜎 ∈ S.
– Vrfy(vk, 𝜇, 𝜎) → true/false: a verification algorithm that takes as input verification key vk, message 𝜇 ∈
M, and signature 𝜎 and outputs its decision true or false.

We require statistical correctness; that is, for any message 𝜇 ∈ M, we have

Pr[(vk, sk) ← Gen(1𝜅), 𝜎 ← Sign(sk, 𝜇) : Vrfy(vk, 𝜇, 𝜎) = true] ≥ 1 − 𝛿(𝜅)

for some negligible function 𝛿.

Security notions: We review the standard security notions of digital signature schemes. The standard se-

curity notion, existential unforgeability against chosen-message attack (EUF-CMA), is captured by the game

Expteuf-cma

DS,A (1
𝜅) in Figure 1. The multi-challenge version allows an adversary to call Forge freely [ACFK17].

We also consider a strong version, in which the adversary wins if its forgery (𝑚∗, 𝜎∗) is not equal to the pairs
returned by Sign. For signing oracles, we have two variants, one-signature-per-message / many-signature-

per-message versions, which are denoted by CMA1 and CMA, respectively. We note that for deterministic

signature schemes, CMA1 security implies CMA security. The formal definition follows:

Definition 3.2 (Security notions for digital signature schemes). Let DS = (Gen, Sign,Vrfy) be a digital
signature scheme. For any A, goal ∈ {euf , seuf ,meuf ,mseuf}, and atk ∈ {cma, cma1}, we define its goal-atk
advantage against DS as follows:

Advgoal-atkDS,A (𝜅) B Pr[Exptgoal-atkDS,A (1𝜅) = 1],

where Exptgoal-atkDS,A (1𝜅) is an experiment described in Figure 1. For GOAL ∈ {EUF, sEUF,mEUF,msEUF} and
ATK ∈ {CMA,CMA1}, we say that DS is GOAL-ATK-secure if Advgoal-atkDS,A (𝜅) is negligible for any QPT adver-
sary A.

Security with respect to quantum signing oracles: Boneh and Zhandry [BZ13b] defined a new security

notion of digital signature schemes with respect to a quantum signing oracle and dubbed it as EUF-qCMA

security. We refer to this security notion as plus-one security (PO security) [AMRS20] because an adversary

in the security game is asked to output 𝑞 + 1 distinct valid message/signature pairs after making 𝑞 quantum

queries to the signing oracle. They defined it in the same spirit as the strong EUF security. In the original

definition, the adversary outputs 𝑞 + 1 pairs at once and stops. We introduce the oracle Forge to the security

game of the PO security since we want to consider memory tightness. The formal definition follows:

Definition 3.3 (Plus-One Security [BZ13b], adapted). Let DS = (Gen, Sign,Vrfy) be a digital signature
scheme. For any A, we define its po advantage against DS as follows:

AdvpoDS,A (𝜅) B Pr[ExptpoDS,A (1
𝜅) = 1],

where ExptpoDS,A (1
𝜅) is an experiment described in Figure 2. We say that DS is PO-secure if AdvpoDS,A (𝜅) is

negligible for any QPT adversary A.

7

Exptgoal-atkDS,A (1
𝜅) for goal = euf and seuf

1 : (vk, sk) ← Gen(1𝜅)
2 : win B false;Q B ∅
3 : (𝑚∗, 𝜎∗) ← ASign (vk)
4 : Forge(𝑚∗, 𝜎∗)
5 : return win

Sign(𝑚) for atk = cma

1 : 𝜎 ← Sign(sk, 𝑚)
2 : Q B Q ∪ {(𝑚, 𝜎)}
3 : return 𝜎

Forge(𝑚∗, 𝜎∗) for goal = euf and meuf

1 : if Vrfy(vk, 𝑚∗, 𝜎∗) = true then

2 : if ∀𝜎 : (𝑚∗, 𝜎) ∉ Q then

3 : win B true

Exptgoal-atkDS,A (1
𝜅) for goal = meuf and mseuf

1 : (vk, sk) ← Gen(1𝜅)
2 : win B false;Q B ∅
3 : run ASign,Forge (vk)
4 : return win

Sign(𝑚) for atk = cma1

1 : if ∃(𝑚, 𝜎) ∈ Q for some 𝜎 then

2 : return 𝜎

3 : else 𝜎 ← Sign(sk, 𝑚)
4 : Q B Q ∪ {(𝑚, 𝜎)}
5 : return 𝜎

Forge(𝑚∗, 𝜎∗) for goal = seuf and mseuf

1 : if Vrfy(vk, 𝑚∗, 𝜎∗) = true then

2 : if (𝑚∗, 𝜎∗) ∉ Q then

3 : win B true

Fig. 1. Exptgoal-atkDS,A (1𝜅) for goal ∈ {euf , seuf ,meuf ,mseuf} and atk ∈ {cma, cma1}.

ExptpoDS,A (1
𝜅)

1 : (vk, sk) ← Gen(1𝜅)
2 : Q B ∅

3 : run A |Sign⟩,Forge (vk)
4 : return J#Q > 𝑞𝑆K

Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
1 : // generate randomness 𝑟 on each query

2 : // share 𝑟 on every messages

3 : 𝜎 ← Sign(sk, 𝑚; 𝑟)
4 : return 𝜎

Forge(𝑚∗, 𝜎∗)
1 : if Vrfy(vk, 𝑚∗, 𝜎∗) = true then

2 : if (𝑚∗, 𝜎∗) ∉ Q then

3 : Q B Q ∪ {(𝑚∗, 𝜎∗)}

Fig. 2. ExptpoDS,A (1
𝜅). 𝑞𝑆 denotes the number of the signing queries.

8

ExptsecDS,A, 𝜖 (1
𝜅) for sec ∈ {bu, sbu}

1 : (vk, sk) ← Gen(1𝜅)
2 : 𝐵𝜖 ← FuncM,{0,1} (Ber𝜖) // bu

3 : 𝐵𝜖 ← FuncM×S,{0,1} (Ber𝜖) // sbu

4 : win B false

5 : run A |𝐵𝜖 Sign⟩,Forge (vk)
6 : return win

𝐵𝜖 Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
1 : // generate randomness 𝑟 on each query

2 : // share 𝑟 on every messages

3 : 𝜎 ← Sign(sk, 𝑚; 𝑟)
4 : if 𝑚 ∈ 𝐵𝜖 then 𝜎 B ⊥ // bu

5 : if (𝑚, 𝜎) ∈ 𝐵𝜖 then 𝜎 B ⊥ // sbu

6 : return 𝜎

Forge(𝑚∗, 𝜎∗)
1 : if Vrfy(vk, 𝑚∗, 𝜎∗) = true then

2 : if 𝑚∗ ∉ 𝐵𝜖 then win B true // bu

3 : if (𝑚∗, 𝜎∗) ∉ 𝐵𝜖 then win B true // sbu

Fig. 3. ExptbuDS,A, 𝜖 (1
𝜅) and ExptsbuDS,A, 𝜖 (1

𝜅).

Alagic et al. [AMRS20] introduced another new security notion concerning a quantum signing oracle and

called it blinded unforgeability (BU security). Let 𝜖 ∈ {0/2𝑝 , 1/2𝑝 , . . . , (2𝑝 − 1)/2𝑝} for some 𝑝 = 𝑝(𝜅) be a
parameter. Let 𝐵𝜖 be a random subset of the message spaceM where each 𝑚 ∈ M is independently selected

with probability 𝜖 . Roughly speaking, an adversary is asked to output a valid signature on a message in 𝐵𝜖
while it can access a quantum signing oracle that returns a signature on a message not in 𝐵𝜖 . The strong

version is defined by a subset of the product of the message spaceM and the signature space S ⊆ {0, 1}𝜆 for
some 𝜆 = 𝜆(𝜅). For 𝑓 : M → S, 𝐵 ⊆ M, and 𝐵′ ⊆ M × S, we define

𝐵 𝑓 (𝑥) B
{
⊥ 𝑥 ∈ 𝐵
𝑓 (𝑥) otherwise

and 𝐵′ 𝑓 (𝑥) B
{
⊥ (𝑥, 𝑓 (𝑥)) ∈ 𝐵′

𝑓 (𝑥) otherwise

Remark 3.1. We consider the oracle |𝐵 𝑓 ⟩ as a mapping |𝑥⟩ |𝑦⟩ ↦→ |𝑥⟩ |𝑦 ⊕ 𝐵 𝑓 (𝑥)⟩, where 𝑦 ∈ {0, 1}𝜆+1, 𝑓 (𝑥)
is considered as 𝑓 (𝑥)∥0 ∈ {0, 1}𝜆+1, and ⊥ is considered as 0

𝜆∥1 ∈ {0, 1}𝜆+1.
In the security proofs, instead of choosing a random subset 𝐵𝜖 , we will consider RF𝐵 : M → P, where
P = {0, 1, . . . , 2𝑝 − 1}, and we will interpret the condition 𝑚 ∈ 𝐵𝜖 as RF𝐵 (𝑚) < 𝜖2𝑝 . The cost of this

procedure is denoted by Time(𝐵𝜖) andMem(𝐵𝜖).

We again introduce the oracle Forge to the security game and consider the multi-challenge situation. The

formal definition follows:

Definition 3.4 (Blinded Unforgeability [AMRS20], adapted). Let DS = (Gen, Sign,Vrfy) be a digital signa-
ture scheme. For any A, any efficiently computable function 𝜖 : Z+ → [0, 1), and sec ∈ {bu, sbu}, we define its
goal-atk advantage against DS as follows:

AdvsecDS,A (𝜅) B Pr[ExptsecDS,A, 𝜖 (1
𝜅) = 1],

where ExptsecDS,A (1
𝜅) is an experiment described in Figure 3. We say that DS is BU-secure (sBU-secure, resp.)

if AdvbuDS,A, 𝜖 (𝜅) (Adv
sbu

DS,A, 𝜖 (𝜅), resp.) is negligible for any QPT adversary A and any efficiently computable
function 𝜖 : Z+ → [0, 1).

3.1 From CMA1 Security to CMA Security

Diemert et al. [DGJL21] shows that the following lemma, which is the multi-challenge version of [BPS16,

Theorem 5].

Lemma 3.1 ([DGJL21, Thm.14]). Let DS′ be a signature scheme whose message space isM′ = M × {0, 1}𝜆
and let DS′ be RDS[DS′, 𝜆] in Figure 4. Let A be an adversary against the msEUF-CMA security of DS which
queries to Sign 𝑞𝑆 times. Then, there exists an adversary B against the msEUF-CMA1 security of DS′ such that

Advmseuf-cma

DS,A (𝜅) ≤ Advmseuf-cma1

DS′ ,B (𝜅) + 𝑞2
𝑆
· 2−𝜆, Time(B) ≈ Time(A), andMem(B) = Mem(A).

9

Gen(1𝜅)
1 : (vk, sk) ← Gen′ (1𝜅)
2 : return (vk, sk)

Sign(sk, 𝑚)
1 : 𝑛← {0, 1}𝜆

2 : 𝜎′ ← Sign′ (sk, (𝑚, 𝑛))
3 : return 𝜎 B (𝜎′, 𝑛)

Vrfy(vk, 𝑚, 𝜎) with 𝜎 = (𝜎′, 𝑛)
1 : return Vrfy′ (vk, (𝑚, 𝑛), 𝜎′)

Fig. 4. Scheme DS B RDS[DS′, 𝜆]. We requireM′ =M × {0, 1}𝜆.

If the signature scheme is deterministic, then theCMA1 security implies theCMA security [KLS18]. Thus, if we

derandomize a CMA1-secure signature scheme, the obtained one archives CMA security. See, e.g., [MNPV99,

KM15] for the derandomization by PRF. We note that the derandomization proposed by Bellare et al. [BPS16]

compute randomness as RF(sk∥𝑚) instead of PRF(𝐾, 𝑚) where sk is the signing key and 𝐾 is a key for

PRF and their proof does not work for the case of H(𝐾, 𝑚) while Kiltz et al. [KLS18] credited the proof for

PRF(𝐾, 𝑚) to Bellare et al. [BPS16]. Unfortunately, the derandomization by PRF is sometimes annoying when

we consider memory-tight reductions. In such cases, we can employ derandomization by random oracle.

3.2 Signature from Lossy Identification

We review a signature scheme constructed from a lossy identification scheme with abort [AFLT16, KLS18].

Let LID = (GenLID, LossyGenLID, P1, P2,V) be a lossy idenfitication scheme. The signature scheme obtained

by applying a variant of the Fiat-Shamir transform FS𝐵,𝑤𝑧 is depicted in Figure 5. One might think if the

underlying LID scheme is 𝜌-complete, then the obtained scheme is (1− 𝜌)𝐵-correct. Devevey et al. [DFPS23]
gave a careful analysis of the correctness of the obtained signature scheme:

Lemma 3.2 ([DFPS23, Thm.8], adapted). Let 𝛾 > 0 and 𝛽 ∈ (0, 1). Let 𝐵 > 0. Let H : M×W → C be a hash
function modeled as a random oracle. Let LID be a LID scheme that is (𝛾, 𝛽)-correct and has (𝛼, 𝜖𝑚)-commitment
min-entropy. Let DS = FS𝐵,𝑤𝑧 [LID,H]. Then, for any message 𝜇 ∈ M, we have

Pr

(vk,sk)←Gen(1𝜅)

[
Pr[V(vk, 𝑚, Sign(sk, 𝑚)) = true] ≥ 𝛾 ·

(
1 − 𝛽𝐵 − 2

−𝛼

(1 − 𝛽)3

)]
≥ 1 − 𝜖𝑚,

where the inner probalitiy is taken over the choice of H and the coins of Sign.

For simplicity, in what follows, we just say that the signature scheme is 𝜌′-correct with probability at least

1 − 𝜖𝑚 over the choice of key, where 𝜌′ = 𝜌′ (𝛾, 𝛽, 𝛼) B 𝛾 ·
(
1 − 𝛽𝐵 − 2

−𝛼

(1−𝛽)3
)
. We note that if LID is

(𝛾, 1)-correct, then the obtained signature scheme is 𝛾-correct.

When the underlying LID is commitment-recoverable, we can apply another variant FS𝐵,𝑐𝑧 depicted in Fig-

ure 5 whose signature is of the form (𝑐, 𝑧), which is often shorter than (𝑤, 𝑧). If P1 is derandomized by PRF,
say, P1 (sk;PRF(𝐾, (𝑚, 𝑘))), then we call this conversion as DFS instead of FS and denote DFS[LID,H, PRF].
If we use RF instead of PRF, then we denote it as DFS+ [LID,H,RF]. If we apply RDS in subsection 3.1 to the

obtained scheme, then we call the conversion as RFS and denote RFS[LID,H, 𝜆].
In this paper, we employ FS𝐵,𝑤𝑧 to capture generic case, while [DGJL21] only consider FS𝐵,𝑐𝑧 . We can show

the security of FS𝐵,𝑐𝑧 by modifying our proofs for msEUF-CMA, sBU, and PO securities.

4 Multi-Challenge Security of Signature from Lossy Identification

Theorem 4.1 (msEUF-CMA1 security of FS𝐵,𝑤𝑧 [LID,H]). Let 𝐵 ≥ 0. LetH : M×W → C be a hash function
modeled as a random oracle. Let LID be a lossy identification scheme that is 𝜌-complete, 𝜖

zk
-HVZK, and 𝜖ℓ -lossy,

and has (𝛼, 𝜖𝑚)-commitment min-entropy. Let DS B FS𝐵,𝑤𝑧 [LID,H].
Then, for a quantum adversary A breaking the msEUF-CMA1 security of DS that issues at most 𝑞𝐻 quantum
queries to the random oracle H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery
oracle, there exist quantum F -oracle adversariesAcur against computationally unique response of LID andA

ind

10

Gen(1𝜅)
1 : (vk, sk) ← GenLID (1𝜅)
2 : return (vk, sk)

Sign𝑤𝑧 (sk, 𝑚)/Sign𝑐𝑧 (sk, 𝑚)
1 : 𝑘 B 1; 𝑧 B ⊥
2 : while 𝑧 = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤, 𝑠) ← P1 (sk)
4 : 𝑐 B H(𝑚, 𝑤)
5 : 𝑧 B P2 (sk, 𝑤, 𝑐, 𝑠)
6 : 𝑘 B 𝑘 + 1
7 : if 𝑧 = ⊥ then return ⊥
8 : return 𝜎 B (𝑤, 𝑧) // Sign𝑤𝑧

9 : return 𝜎 B (𝑐, 𝑧) // Sign𝑐𝑧

Vrfy𝑤𝑧 (vk, 𝑚, 𝜎)
1 : Parse 𝜎 = (𝑤, 𝑧)
2 : 𝑐 B H(𝑚, 𝑤)
3 : return V(vk, 𝑤, 𝑐, 𝑧)

Vrfy𝑐𝑧 (vk, 𝑚, 𝜎)
1 : Parse 𝜎 = (𝑐, 𝑧)
2 : 𝑤′ B Rec(vk, 𝑐, 𝑧)
3 : 𝑐′ B H(𝑚, 𝑤′)
4 : return J𝑐 = 𝑐′K

Fig. 5. Scheme FS𝐵,𝑤𝑧 [LID,H] = (Gen, Sign𝑤𝑧 ,Vrfy𝑤𝑧) and FS𝐵,𝑐𝑧 [LID,H] = (Gen, Sign𝑐𝑧 ,Vrfy𝑐𝑧). H : M ×W → C is

a random oracle.

against key indistinguishability of LID such that

Advmseuf-cma1

DS,A (𝜅) ≤ AdvcurLID,Acur

(𝜅) + Advind-keyLID,A
ind

(𝜅) + (𝑞𝑆 + 𝑞𝐹) (1 − 𝜌′)

+ 8𝑞𝐵2−
−𝛼−1

2 + 7𝜖𝑚 + 4
√︃
(6𝑞)3𝐵𝜖

zk
+ 2𝑞𝐹2−𝛼 + 8(𝑞 + 1)2𝜖ℓ ,

Time∗ (Acur) = Time(A) + 𝑞 · 𝑂 (𝐵Time(LID) + 𝐵2),
Mem∗ (Acur) = Mem(A) +𝑂 (𝐵Mem(LID)),
Time∗ (A

ind
) = Time(A) + 𝑞 · 𝑂 (𝐵Time(LID) + 𝐵2),

Mem∗ (A
ind
) = Mem(A) +𝑂 (𝐵Mem(LID)),

where 𝑞 = 𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 , 𝜌′ is defined as in subsection 3.2, and F = Func(M ×W, C) × Func(M × [𝐵], C) ×
Func(M × [𝐵],R).

Applying Lemma 3.1, we obtain the following corollary.

Corollary 4.1 (msEUF-CMA security ofRFS𝐵,𝑤𝑧 [LID,H, 𝜆]). For sufficiently large𝜆 = 𝜔(𝜅),RFS𝐵,𝑤𝑧 [LID,H, 𝜆]
has a memory-tight msEUF-CMA security proof.

4.1 Proof of Theorem

Roadmap: We define thirteen games G𝑖 for 𝑖 ∈ {0, 1, . . . , 12} to show our theorem. Let 𝑊𝑖 denote the

event that G𝑖 outputs true. Before describing games, we briefly give intuitions for games. In what follows,

GetTrans(𝑚) denotes the oracle generating at most 𝐵 transcripts invoked from the signing oracle.

First, we mainly follow the proof by Devevey et al. [DFPS23]. We consider the original game (G0), in which

the signing oracle queried on 𝑚 calls GetTrans(𝑚) internally and use this real transcript as a signature.

We then modify the random oracle to patch the hash value on H(𝑚, 𝑤 (𝑖)) by 𝑐 (𝑖) instead of RFH (𝑚, 𝑤 (𝑖)),
where (𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)) is the 𝑖-th transcript of GetTrans(𝑚) (G4). We further implement GetTrans(𝑚) by
the simulator (G7), which removes the use of sk in the following games. (We note that, because of a technical

reason related to the CUR property, we modify the forge oracle to abort if the signing oracle fails to make a

valid signature on input 𝑚∗ (G2). This event is ignored in Kitlz et al. [KLS18] and Devevey et al. [DFPS23].)

As Diemert et al. [DGJL21], we then modify the winning condition that (𝑚∗, (𝑤∗, 𝑧∗)) is not queried before

with the condition that (𝑤∗, 𝑧∗) is not equals to (�̃� (𝑘) , 𝑧 (𝑘)), a signature on 𝑚∗ produced by the signing

oracle (G8). This modification allows the game to forget Q. We then continue minor but essential modifica-

tions involving the CUR property, which is ignored in Devevey et al. [DFPS23] or assumed to hold perfectly

in Diemert et al. [DGJL21]. After those modifications, we arrive G11, in which the winning condition is that

(𝑤∗, 𝑧∗) is not equal to (�̃� (𝑘) , 𝑧 (𝑘)), 𝑤∗ ≠ �̃� (𝑘) , and 𝑐∗ = RFH (𝑚∗, 𝑤∗). Finally, we replace a normal verifica-

tion key with a lossy verification key (G11) as in [AFLT12, KLS18], and this replacement is justified key indis-

tinguishability of LID. Finally, in G12, the adversary wins with negligible probability as in Kiltz et al. [KLS18]

due to 𝜖ℓ -lossiness.

The formal definitions of games follow.

Game G0: This is the original game. See Figure 6 for a concrete definition of G0, where we expand the Sign
algorithm and H is defined as RFH. By the definition, we have Pr[𝑊0] = Advmseuf-cma1

DS,A (𝜅).

11

G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}
1 : (vk, sk) ← Gen(1𝜅)
2 : RFH ← Func(M ×W, C)
3 : RFP ← Func(M × [𝐵],RP1) // G2–

4 : Q B ∅
5 : win B false

6 : run ASign,Forge, |H⟩ (vk)
7 : return win

Sign(𝑚) for G0

1 : if ∃(𝑚, 𝜎) ∈ Q for some 𝜎 then return 𝜎

2 : (𝑤, 𝑐, 𝑧) ← GetTrans(𝑚)
3 : if 𝑧 = ⊥ then 𝜎 B ⊥ else 𝜎 B (𝑤, 𝑧)
4 : Q B Q ∪ {(𝑚, 𝜎)}
5 : return 𝜎

Sign(𝑚) for G1–G4

1 : if ∃(𝑚, 𝜎) ∈ Q for some 𝜎 then return 𝜎 // G1

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if 𝑧 (𝑘) = ⊥ then 𝜎 B ⊥ else 𝜎 B
(
𝑤 (𝑘) , 𝑧 (𝑘)

)
4 : Q B Q ∪ {(𝑚, 𝜎)}
5 : return 𝜎

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚) // G4

2 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖) // G4

3 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥
2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) ← P1 (sk) // G1

4 : (𝑤 (𝑘) , 𝑠) B P1 (sk;RFP (𝑚, 𝑘)) // G2–

5 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘))
6 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠)
7 : 𝑘 B 𝑘 + 1
8 : 𝑘 B 𝑘 − 1 // cancel the last increment

9 : return (𝑤 (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) // G0

10 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] // G1–

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗) // G3–

2 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ // G3–

3 : 𝑐∗ B H(𝑚∗, 𝑤∗)
4 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true then // Vrfy passed

5 : if (𝑚∗, 𝜎∗) ∉ Q then

6 : win B true

Fig. 6. G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}

12

G𝑖 for 𝑖 ∈ {4, 5, 6, 7}
1 : (vk, sk) ← Gen(1𝜅)
2 : RFH ← Func(M ×W, C)
3 : RF′H ← Func(M × [𝐵], C) // G6–

4 : RFP ← Func(M × [𝐵],RP1) // G4–G6

5 : RFS ← Func(M × [𝐵],RSim) // G7

6 : Q B ∅
7 : win B false

8 : run ASign,Forge, |H⟩ (vk)
9 : return win

Sign(𝑚)
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if 𝑧 (𝑘) = ⊥ then 𝜎 B ⊥ else 𝜎 B
(
𝑤 (𝑘) , 𝑧 (𝑘)

)
4 : Q B Q ∪ {(𝑚, 𝜎)}
5 : return 𝜎

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖)

4 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥
2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) ← P1 (sk;RFP (𝑚, 𝑘)) // G4–G6

4 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘)) // G4–G5

5 : 𝑐 (𝑘) B RF′H (𝑚, 𝑘) // G6–

6 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠) // G4–G6

7 : (𝑤 (𝑘) , 𝑧 (𝑘)) B Sim(vk, 𝑐 (𝑘) ;RFS (𝑚, 𝑘)) // G7

8 : 𝑘 B 𝑘 + 1
9 : 𝑘 B 𝑘 − 1 // cancel the last increment

10 : L𝑚 B {𝑤 (𝑖) }𝑖∈[𝑘] // G5–

11 : if Coll(L𝑚) then return Ⅎ // G5–

12 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘]

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

3 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

4 : 𝑐∗ B H(𝑚∗, 𝑤∗)
5 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true then // Vrfy passed

6 : if (𝑚∗, 𝜎∗) ∉ Q then

7 : win B true

Fig. 7. G𝑖 for 𝑖 ∈ {4, 5, 6, 7}

Game G1: In this game, GetTrans outputs all transcripts instead of the last one. The signing oracle also

takes the last one as a candidate for a signature. See G1 in Figure 6 for the detail. Since this is a conceptual

change, we have G0 = G1.

Game G2: We next derandomize the prover in GetTrans as in L.4 of GetTrans in Figure 6. Since we

consider one-signature-per-one-message situation, this derandomization by the random function RFP changes

nothing. We have G1 = G2.

Game G3: We next modify the forge oracle as follows: On a query (𝑚∗, 𝜎∗), the oracle first comptues the

transcripts

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] . If (�̃�

(𝑘) , 𝑧 (𝑘)) is an invalid signature, then the oracle returns a special

symbol Ⅎ (see L.2 of Figure 6.) See G3 in Figure 6 (and Figure 7) for the details.

We note that except 𝜖𝑚 probability of keys, this happens with probability at most 1 − 𝜌′ as discussed in sub-

section 3.2. Notice that the adversary can obtain this information via the oracle Sign, which returns classical

information. Thus, the difference between two games are upper-bounded by (𝑞𝑆 + 𝑞𝐹)𝜌′ and we have

|Pr[𝑊2] − Pr[𝑊3] | ≤ (𝑞𝑆 + 𝑞𝐹) (1 − 𝜌′) + 𝜖𝑚.

Game G4: We next modify the random oracle as follows: On a query (𝑚, 𝑤), the oracle first comptues the

transcripts

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] . If the input 𝑤 is equivalent to one of 𝑤 (𝑖) , then it returns 𝑐′ B 𝑐 (𝑖) ;

otherwise, it returns 𝑐′ B RFH (𝑚, 𝑤). See G4 in Figure 6 (and Figure 7) for the details.

Since 𝑐 (𝑖) is defined as RFH (𝑚, 𝑤 (𝑖)) in GetTrans, this change nothing and we have G3 = G4.

Game G5: We next introduce a collision check for 𝑤 (𝑖) ’s in GetTrans. If GetTrans finds a collision among

𝑤 (1) , . . . , 𝑤 (𝑘) , it outputs a special synbol Ⅎ. See G5 in Figure 7.

For each message, the collision probability is at most 𝐵2 · 2−𝛼−1 if 𝐻∞ (𝑤) is 𝛼 [DFPS23, Lem.11]. Using

the one-sided O2H lemma [AHU19], Devevey et al. showed the following lemma, where we additionally

introduce 𝜖𝑚.

13

G𝑖 for 𝑖 ∈ {8, 9, 10, 11, 12}
1 : (vk, sk) ← GenLID (1𝜅) // G8–G11

2 : vk ← LossyGenLID (1𝜅) // G12

3 : RFH ← Func(M ×W, C)
4 : RF′H ← Func(M × [𝐵], C)
5 : RFS ← Func(M × [𝐵],RSim)
6 : win B false

7 : run ASign,Forge, |H⟩ (vk)
8 : return win

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑐∗, 𝑧∗)
1 : if GetTrans(𝑚∗) = Ⅎ then return Ⅎ

2 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

3 : if ∃𝑖 : 𝑤∗ = �̃� (𝑖) then 𝑐∗ B 𝑐 (𝑖) else 𝑐∗ B RFH (𝑚∗, 𝑤∗)
4 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

5 : L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] ;L′𝑚∗ B {𝑤
(𝑖) }𝑖∈[𝑘−1]

6 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true ∧ (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) then
7 : win B true // G8

8 : if (𝑤∗ ∉ L′𝑚∗) ∨ (𝑤
∗ ∈ L′𝑚∗ ∧ 𝑐

∗ = RFH (𝑚∗, 𝑤∗)) then // G9

9 : win B true // G9

10 : if (𝑤∗ ∉ L𝑚∗) ∨ (𝑤∗ ∈ L′𝑚∗ ∧ 𝑐
∗ = RFH (𝑚∗, 𝑤∗)) then // G10

11 : win B true // G10

12 : if 𝑤∗ ≠ �̃� (𝑘) ∧ 𝑐∗ = RFH (𝑚∗, 𝑤∗) then // G11–G12

13 : win B true // G11–G12

Fig. 8. G𝑖 for 𝑖 ∈ {8, 9, 10, 11, 12}, where expand H in Forge. Sign, H, and GetTrans are those in G7 in Figure 7.

Lemma 4.1. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊4] − Pr[𝑊5] | ≤ 𝛿4,5 B 2(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹) · 𝐵 · 2
−𝛼−1

2 + 𝜖𝑚.

GameG6: We next modify how to compute 𝑐 (𝑘) inGetTrans, in which it is computed as RF′H (𝑚, 𝑘) instead
of RFH (𝑚, 𝑤 (𝑘)). We note that this does not change the adversary’s view because RF′H is a random function,

and if 𝑤 = 𝑤 (𝑖) for the query (𝑚, 𝑤), then consistent 𝑐′ = 𝑐 (𝑖) = RF′H (𝑚, 𝑖) is output by H since we already

exclude the collision. Thus, we have G5 = G6.

Game G7: We next modify GetTrans to use the simulation algorithm. On a query 𝑚, the oracle comptues

𝑐 (𝑖) B RF′H (𝑚, 𝑖) and (𝑤
(𝑖) , 𝑧 (𝑖)) B Sim(vk;RFS (𝑚)). See G7 in Figure 7 for the details. Since the real tran-

script and the simulated one is 𝜖
zk
-close, each invocation ofGetTrans is 𝐵𝜖

zk
-close. AsDevevey et al. [DFPS23],

we have the following lemma by using Lemma 2.1.

Lemma 4.2. Suppose that LID is 𝜖
zk
-HVZK. Then, we have

|Pr[𝑊6] − Pr[𝑊7] | ≤ 𝛿6,7 B
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝐵𝜖zk.

Game G8: We now separate from the approach by Devevey et al. [DFPS23] and remove the list Q as

Diemert et al. [DGJL21]. In this game, we replace the condition (𝑚∗, 𝜎∗) ∉ Q with the condition (𝑤∗, 𝑧∗) ≠
(�̃� (𝑘) , 𝑧 (𝑘)). See G8 in Figure 8.

Lemma 4.3. Suppose that that LID is 𝜖
zk
-HVZK and has (𝛼, 𝜖𝑚)-commit min-entropy. Then, we have

|Pr[𝑊7] − Pr[𝑊8] | ≤ 𝛿7,8 B 𝑞𝐹 · 2−𝛼 + 𝜖𝑚 + 𝛿4,5 + 𝛿6,7.

Proof. Suppose that the adversary queries 𝑚∗ and 𝜎∗ = (𝑤∗, 𝑧∗) to the oracle Forge.

If 𝑚∗ is queried to the signing oracle before, then there is no difference between the two games: The signing

oracle returns (�̃� (𝑘) , 𝑧 (𝑘)) as a signature on 𝑚∗ and, thus, the condition (𝑚∗, 𝜎∗) ∉ Q and the condition

(𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) are equivalent.
If 𝑚∗ is not queried to the signing oracle, then the two games might differ if the adversary queries 𝑚∗ and
(𝑤∗, 𝑧∗) = (�̃� (𝑘) , 𝑧 (𝑘)), which implies 𝑤∗ = �̃� (𝑘) . This means that the adversary succeeds to guess �̃� (𝑘)

on 𝑚∗ without knowing it. Let Bad𝑖 denote the event that 𝑚∗ is not queried before but 𝑤∗ equals to �̃� (𝑘)

happens in G𝑖 . We have

|Pr[𝑊7] − Pr[𝑊8] | ≤ Pr[Bad7] ≤ |Pr[Bad7] − Pr[Bad3] | + Pr[Bad3] .

We have Pr[Bad3] ≤ 𝑞𝐹 · 2−𝛼 + 𝜖𝑚. This is because H does not reveal any information on �̃� (𝑘) and �̃� (𝑘) has
min-entropy 𝛼 with probability 1− 𝜖𝑚 over choice of (vk, sk). Since |Pr[Bad7] −Pr[Bad3] | is upper-bounded
by 𝛿4,5 + 𝛿6,7 as Lemma 4.1 and Lemma 4.2, we obtain the bound. ⊓⊔

14

Game G9: To ease the notation, let L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] which is the 𝑤 parts of the transcripts generated by

GetTrans(𝑚∗). We additionally define L′
𝑚∗ B {𝑤

(𝑖) }𝑖∈[𝑘−1] .
InG8, Forge additionally checks if 𝑤

∗ ∈ L′
𝑚∗ or not; if so, we additionally checks whether 𝑐

∗ = RFH (𝑚∗, 𝑤∗)
or not. See G9 in Figure 8 for the details.

We have the following lemma.

Lemma 4.4. We have |Pr[𝑊8] − Pr[𝑊9] | ≤ 𝛿4,5 + 𝛿6,7 + 𝛿7,8.

Proof. The two games differ if the adversary queries 𝑤∗ = 𝑤 (𝑖) for 𝑖 < 𝑘 but 𝑐∗ ≠ RFH (𝑚∗, 𝑤∗). We call this

event in G𝑖 Bad𝑖 . We have

|Pr[𝑊8] − Pr[𝑊9] | ≤ Pr[Bad8] ≤ |Pr[Bad8] − Pr[Bad3] | + Pr[Bad3] .

We have Pr[Bad3] = 0 because 𝑐∗ = RFH (𝑚∗, 𝑤∗) always holds in G3. Since |Pr[Bad8] − Pr[Bad3] | is upper-
bounded by 𝛿4,5 + 𝛿6,7 + 𝛿7,8, we obtain the bound. ⊓⊔

Game G10: We next treat the case 𝑤∗ = �̃� (𝑘) as a special case. To do so, we replace the condition 𝑤∗ ∉ L′
𝑚∗

with 𝑤∗ ∉ L𝑚∗ . See G10 in Figure 8 for the details.

Because of this modification, if the adversary queries (𝑚∗, (𝑤∗, 𝑧∗)) satisfying (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)), 𝑤∗ =
�̃� (𝑘) , and Vrfy(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true, then two games may differ. Fortunately, this event is easily treated by

the CUR property.

Lemma 4.5. There exists a quantum F -oracle adversary Acur such that

|Pr[𝑊9] − Pr[𝑊10] | ≤ AdvcurLID,Acur

(𝜅),

Time∗ (Acur) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + 𝐵2),
Mem∗ (Acur) = Mem(A) +𝑂 (𝐵Mem(LID)),

where F = Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Proof. Suppose that the queried forgery is (𝑚∗, 𝜎∗) with 𝜎∗ = (𝑤∗, 𝑧∗). Consider the computation in Forge

and assume that (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) and V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true for 𝑐∗ = H(𝑚∗, 𝑤∗) and the flag win is

set true in G9. We have the following two cases to analyze G10:

– If 𝑤∗ ≠ �̃� (𝑘) , then there are no differences because of the collision checks and the flag win is set true in
G10 also.

– If 𝑤∗ = �̃� (𝑘) , then 𝑐∗ B 𝑐 (𝑘) as H(𝑚∗, 𝑤∗) in L.3 of Forge. Since 𝑤∗ = �̃� (𝑘) , the flag win is unchanged

in G10. However, the check (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) forces 𝑧∗ ≠ 𝑧 (𝑘) , and this 𝑧∗ leads to break the CUR

property by outputting (𝑤∗, 𝑐∗, 𝑧∗, 𝑧 (𝑘)).
Upon the above observation, we can construct a quantum F -oracle adversary Acur straightforwardly. The

analysis of advantage, running time, and memory usage in the lemma are straightforwardly obtained. ⊓⊔

Remark 4.1. We note that 𝑧 (𝑘) ≠ ⊥ holds by the check we introduced in G3 into Forge. This check is

fatal for the above proof because, if 𝑧 (𝑘) = ⊥, then the reduction algorithm fails to output the collision

(𝑤∗, 𝑐∗, 𝑧∗, 𝑧 (𝑘)) breaking the CUR property. Kiltz et al. [KLS18] ignored the case that 𝑚∗ is queried to the

signing oracle, but the signing oracle fails on 𝑚∗.

Game G11: We again modify the conditions in Forge in G10: Forge checks if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true for
𝑐∗ = H(𝑚∗, 𝑤∗), (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)), 𝑤∗ ≠ �̃� (𝑘) , and 𝑐∗ = RFH (𝑚∗, 𝑤∗) or not. If so, the flag is set as

true. See G11 in Figure 8 for the details.

Lemma 4.6. We have G10 = G11.

Proof. Let us consider a forgery (𝑚∗, (𝑤∗, 𝑧∗)) satisfying V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true for 𝑐∗ = H(𝑚∗, 𝑤∗) and
(𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)). Let us consider three cases: 1) If 𝑤∗ ∈ L′

𝑚∗ , then there is no diference on the

condition 𝑐∗ = RFH (𝑚∗, 𝑤∗) in both games. 2) If 𝑤∗ = �̃� (𝑘) , then win is kept in both games. 3) If 𝑤∗ ∉ L𝑚∗ ,
then Forge setswin as true immediately in G10 but setswin as true if 𝑐∗ = RFH (𝑚∗, 𝑤∗) in G11. We note that

𝑐∗ B RFH (𝑚∗, 𝑤∗) by L.4 of Forge. Thus, Forge in G11 also sets win B true and there are no differences.

Thus, both games are the same. ⊓⊔

15

Game G12: We finally replace a normal verification key with a lossy verification key. See G12 in Figure 8 for

the details.

Lemma 4.7. There exists a quantum F -oracle adversary A
ind

such that

|Pr[𝑊11] − Pr[𝑊12] | ≤ AdvindkeyLID,A
ind

(𝜅),

Time∗ (A
ind
) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + 𝐵2),

Mem∗ (A
ind
) = Mem(A) +𝑂 (𝐵Mem(LID)),

where F = Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Proof. We constructA
ind

straightforwardly. The analysis of advantage, running time, and memory usage in

the lemma are straightforwardly obtained. ⊓⊔

Lemma 4.8. Suppose that LID is 𝜖ℓ -lossy. Then, we have Pr[𝑊12] ≤ 8(𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 + 1)2𝜖ℓ .

Since the proof is the same as that in Kiltz et al. [KLS18], we omit it. See the proof of the case for sBU security

(Lemma D.10).

5 Plus-One Unforgeability of Signature from Lossy Identification

Theorem 5.1 (PO security of DFS𝐵,wz [LID,H, PRF]). Let 𝐵 ≥ 0. Let H : M ×W → C be a hash function
modeled as a random oracle. Let LID be a lossy identification scheme that is (𝛾, 𝛽)-complete, 𝜖

zk
-HVZK, and

𝜖ℓ -lossy, and has (𝛼, 𝜖𝑚)-commitment min-entropy. Let DS B DFS𝐵,wz [LID,H, PRF].
Then, for a quantum adversary A breaking the PO security of DS that issues at most 𝑞𝐻 quantum queries to
the random oracle H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery oracle,
there exists a quantum F

prf
-oracle adversary A

prf
against pseudorandomness of PRF and quantum F -oracle

adversaries A
ind

against key indistinguishability of LID and Acur against computationally unique response of
LID such that

AdvpoDS,A (𝜅) ≤ AdvprPRF,A
prf

(𝜅) + AdvcurLID,Acur

(𝜅) + Advind-keyLID,A
ind

(𝜅) + 8(𝑞 + 1)2 (1 − 𝜌′)

+ 8𝑞𝐵2−
−𝛼−1

2 + 7𝜖𝑚 + 4
√︃
(6𝑞)3𝐵𝜖

zk
+ 2(𝑞𝑆 + 1)/⌊2𝛼⌋ + 8(𝑞 + 1)2𝜖ℓ ,

Time∗ (A
prf
) = Time(A) + 𝑞𝑆 · 𝑂 (𝐵Time(LID)) + 𝑞𝐹 · 𝑂 (Time(LID)),

Mem∗ (A
prf
) = Mem(A) +𝑂 (𝐵Mem(LID)) + 𝑞𝐹 · 𝑂 (Mem(LID)) +𝑂 (lg(𝑞𝑆)),

Time∗ (A
ind
) = Time(A) + 𝑞 · 𝑂 (𝐵Time(LID) + 𝐵2),

Mem∗ (A
ind
) = Mem(A) +𝑂 (𝐵Mem(LID)),

Time∗ (Acur) = Time(A) + 𝑞 · 𝑂 (𝐵Time(LID) + 𝐵2),
Mem∗ (Acur) = Mem(A) +𝑂 (𝐵Mem(LID)),

where 𝑞 = 𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 , 𝜌′ is defined as in subsection 3.2, F
prf

= Func(M ×W, C), and F = Func(M ×
W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

As a corollary, when we employ a random function RFP directly, the above proof can be modified into a

memory-tight one.

Corollary 5.1 (PO security of DFS+𝐵,wz [LID,H,RFP]). DFS+𝐵,𝑤𝑧 [LID,H,RFP] has a memory-tight proof
for the PO security.

5.1 Proof of Theorem

We define fourteen games G𝑖 for 𝑖 ∈ {0, 1, . . . , 13} to show our theorem. Let 𝑊𝑖 denote the event that the

experiment outputs true in G𝑖 .

16

G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}
1 : (vk, sk) ← Gen(1𝜅)
2 : 𝐾 ← {0, 1}𝜅 // G0

3 : RFP ← Func(M × [𝐵],RP1) // G1–

4 : RFH ← Func(M ×W, C)
5 : Q B ∅
6 : run A |Sign⟩,Forge, |H⟩ (vk)
7 : return J#Q > 𝑞𝑆K

Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
1 : (𝑤, 𝑐, 𝑧) ← GetTrans(𝑚) // G0–G1

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚) // G2–

3 : (𝑤, 𝑧) B (𝑤 (𝑖) , 𝑧 (𝑖)) // G2–

4 : if 𝑧 = ⊥ then 𝜎 B ⊥ else 𝜎 B (𝑤, 𝑧)
5 : return 𝜎

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚) // G4

2 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖) // G4

3 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥
2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) B P1 (sk;PRF(𝐾, (𝑚, 𝑘)) // G0–

4 : (𝑤 (𝑘) , 𝑠) B P1 (sk;RFP (𝑚, 𝑘)) // G1–

5 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘))
6 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠)
7 : 𝑘 B 𝑘 + 1
8 : 𝑘 B 𝑘 − 1 // cancel the last increment

9 : return (𝑤, 𝑐, 𝑧) = (𝑤 (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) // G0–G1

10 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] // G2–

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗) // G3–

2 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ // G3–

3 : 𝑐∗ B H(𝑚∗, 𝑤∗)
4 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true then // Vrfy passed

5 : if (𝑚∗, (𝑤∗, 𝑧∗)) ∉ Q then

6 : Q B Q ∪ {(𝑚∗, (𝑤∗, 𝑧∗))}

Fig. 9. G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}

Roadmap: Before describing games, we briefly give intuitions for games. First, we follow the proof by De-

vevey et al. [DFPS23]. We consider the original game (G0), in which the signing oracle queried on 𝑚 calls

GetTrans(𝑚) internally and use this real transcript as a signature. The oracle Forge manages the valid

forgery set Q, and the adversary wins if the cardinality of Q is larger than the number of queries to the quan-

tum signing oracle, 𝑞𝑆 . (SeeG0 in Figure 9.) We then replace PRFwith RF. This is the only non-memory-tight

part that can be omitted if we derandomize the signature scheme by RF. After that, we modify the games rou-

tinely as in the msEUF-CMA1 security proof and arrive at G7, in which GetTrans(𝑚) is implemented by the

simulator.

We want to modify the winning condition with that (𝑚∗, (𝑤∗, 𝑧∗)) is not queried before with the condition

that (𝑤∗, 𝑧∗) is not equal to (�̃� (𝑘) , 𝑧 (𝑘)), a signature on 𝑚∗ produced by the signing oracle since this allows

us to forget Q.
To do so, we introduce the flag win (G8) as in the proofs of msEUF-CMA1 security and sBU security, which is

set true when the adversary queries a valid signature the Sign does not compute, and the challenger outputs

true if the adversary outputs at least 𝑞𝑆+1 distinct valid pairs of message/signature and the flagwin is true. If a
difference occurs between two games, then the adversary correctly guesses at least 𝑞𝑆+1 signatures produced
by GetTrans on distinct 𝑞𝑆 + 1messages. This means that the adversary correctly 𝑞𝑆 + 1 commitments 𝑤 on

distinct 𝑞𝑆 + 1 messages. This chance should be negligible by the commitment min-entropy and Lemma 2.2.

Before forgetting Q, we introduce the check 𝑐∗ = RFH (𝑚∗, 𝑤∗) for the case 𝑤∗ = �̃� (𝑖) for some 𝑖 < 𝑘 (G9)

because of a thechnical reason. We then remove the condition #Q > 𝑞𝑆 in G10, and we have Pr[𝑊9] ≤
Pr[𝑊10] since this is just relaxation of the winning condition and cannot be detected by the adversary. Those

technical games are the core of our PO-security proof.

We then continue the modification and arrive at G12, in which the winning condition is that (𝑤∗, 𝑧∗) is not
equal to (�̃� (𝑘) , 𝑧 (𝑘)), 𝑤∗ ≠ �̃� (𝑘) , and 𝑐∗ = RFH (𝑚∗, 𝑤∗). Finally, we replace a normal verification key with a

lossy verification key (G13) as in [AFLT12, KLS18], and this replacement is justified key indistinguishability

of LID. Finally, in G13, the adversary wins with negligible probability as in Kiltz et al. [KLS18].

The formal definitions of games follow.

Game G0: This is the original game. See Figure 9 for a concrete definition of G0, where we expand the Sign
algorithm. We have Pr[𝑊0] = AdvpoDS,A (𝜅).

17

Game G1: We then replace PRF in L.3 of GetTrans with RFP. The straightforward argument shows the

following lemma. Unfortunately, this part is memory-loose because the reduction algorithm should maintain

the forgery list Q.
Lemma 5.1. There exists a quantum F -oracle adversary A

prf
such that

|Pr[𝑊0] − Pr[𝑊1] | ≤ AdvprPRF,A
prf

(𝜅),

Time∗ (APRF) = Time(A) + 𝑞𝑆 · 𝑂 (𝐵Time(LID)) + 𝑞𝐹 · 𝑂 (Time(LID))
Mem∗ (APRF) = Mem(A) +𝑂 (𝐵Mem(LID)) + 𝑞𝐹 · 𝑂 (Mem(LID)) +𝑂 (lg(𝑞𝑆)),

where F = Func(M ×W, C).

Game G2: We next make GetTrans output all transcripts instead of the last one. This modification does

not change anything, and we have G1 = G2.

Game G3: We next modify the forge oracle as follows: Before checking the validity of submitted query

(𝑚∗, 𝜎∗), it generates its own signature (�̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) by usingGetTrans(𝑚∗). If it fails, that is,V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) =
false, then the forge oracle returns the special symbol Ⅎ.
The adversary differentiates between the two gamesG2 andG3 if it submits such (𝑚∗, 𝜎∗) onwhichGetTrans(𝑚∗)
fails to output a valid transcript in its 𝐵 tries. We can connect this event to the generic search problem with

𝜆 = 1 − 𝜌′ except for the probability at most 𝜖𝑚 over keys. We here skip the proof and see the proof of sBU

security (Lemma D.2) for the detail.

Lemma 5.2. Suppose that LID is (𝛾, 𝛽)-correct and has (𝛼, 𝜖𝑚)-commitment min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3] | ≤ Pr[Bad𝑚∗] ≤ 8(𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 + 1)2 (1 − 𝜌′) + 𝜖𝑚.

Game G4: We next modify the random oracle as follows: On a query (𝑚, 𝑤), the oracle first computes

the transcripts {(𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖))} via GetTrans. If the input 𝑤 is equivalent to one of 𝑤 (𝑖) , then it returns

𝑐′ B 𝑐 (𝑖) ; otherwise, it returns 𝑐′ B RFH (𝑚, 𝑤). See G4 in Figure 9 and Figure 10 for the details. Since 𝑐 (𝑖)

is computed as RFH (𝑚, 𝑤 (𝑖)), this modification changes nothing and we have G3 = G4.

Game G5: The next game introduces a collision check for 𝑤 (𝑖) ’s in GetTrans. As Lemma 4.1, we have the

following lemma.

Lemma 5.3. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊4] − Pr[𝑊5] | ≤ 𝛿4,5 B 2(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹) · 𝐵 · 2
−𝛼−1

2 + 𝜖𝑚.

GameG6: We next modify how to compute 𝑐 (𝑘) inGetTrans, in which it is computed as RF′H (𝑚, 𝑘) instead
of RFH (𝑚, 𝑤 (𝑘)). We note that this does not change the adversary’s view because RF′H is a random function,

and if 𝑤 = 𝑤 (𝑖) for the query (𝑚, 𝑤), then consistent 𝑐′ = 𝑐 (𝑖) = RF′H (𝑚, 𝑖) is output by H. (Note that

excluding the collision is crucial [DFPS23].) We have G5 = G6.

Game G7: We next modify the signing oracle Sign to use Sim instead of P1 and P2. See G7 in Figure 10 for

the details. As Lemma 4.2, we have the following lemma:

Lemma 5.4. Assume that LID is 𝜖
zk
-HVZK. Then, we have

|Pr[𝑊6] − Pr[𝑊7] | ≤ 𝛿6,7 B
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝐵𝜖zk.

Game G8: We replace the winning condition of A as follows: We introduce a flag win which is set true by
Forge when the adversary queries (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)). The challenger outputs J#Q > cnt𝑠K ∧ win. See
G8 in Figure 11.

Lemma 5.5. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy and is 𝜖
zk
-HVZK. Then, we have

|Pr[𝑊7] − Pr[𝑊8] | ≤ 𝛿7,8 B (𝑞𝑆 + 1)/⌊2𝛼⌋ + 𝜖𝑚 + 𝛿4,5 + 𝛿6,7.
Proof. The two games differ if the adversary queries at least (𝑞𝑆 + 1) valid signatures on distinct messages to

Forge such that (𝑤∗, 𝑧∗) = (�̃� (𝑘) , 𝑧 (𝑘)) on each 𝑚∗. This is because if two valid signatures share the same

message, then two signatures should be equivalent.

Let Bad𝑖 be the event that the adversary inG𝑖 queries (𝑞𝑆 +1) valid signatures on distinct messages to Forge

such that 𝑤∗ = �̃� (𝑘) on each 𝑚∗. By routine calculation, we have

|Pr[𝑊7] − Pr[𝑊8] | ≤ Pr[Bad7] ≤ |Pr[Bad7] − Pr[Bad3] | + Pr[Bad3] .

Since there is no leak of �̃� (𝑘) on𝑚∗ from the random oracleH inG3, we have Pr[Bad3] ≤ (𝑞𝑆 +1)/⌊2𝛼⌋ +𝜖𝑚
by invoking Lemma 2.2 and the min-entropy of the commitment. Since |Pr[Bad7] − Pr[Bad3] | is upper-

bounded by 𝛿4,5 + 𝛿6,7 via Lemma 5.3 and Lemma 5.4, we obtain the bound. ⊓⊔

18

G𝑖 for 𝑖 ∈ {4, 5, 6, 7}
1 : (vk, sk) ← Gen(1𝜅)
2 : RFH ← Func(M ×W, C)
3 : RF′H ← Func(M × [𝐵], C) // G6–

4 : RFP ← Func(M × [𝐵],RP1) // G4–G6

5 : RFS ← Func(M × [𝐵],RSim) // G7

6 : Q B ∅
7 : run A |Sign⟩,Forge, |H⟩ (vk)
8 : return J#Q > 𝑞𝑆K

Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if 𝑧 (𝑘) = ⊥ then 𝜎 B ⊥ else 𝜎 B (𝑤 (𝑘) , 𝑧 (𝑘))
4 : return 𝜎

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖)

4 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥
2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) ← P1 (sk;RFP (𝑚, 𝑘)) // G4–G6

4 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘)) // G4–G5

5 : 𝑐 (𝑘) B RF′H (𝑚, 𝑘) // G6–

6 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠) // G4–G6

7 : (𝑤 (𝑘) , 𝑧 (𝑘)) B Sim(vk, 𝑐 (𝑘) ;RFS (𝑚, 𝑘)) // G7

8 : 𝑘 B 𝑘 + 1
9 : 𝑘 B 𝑘 − 1 // cancel the last increment

10 : L𝑚 B {𝑤 (𝑖) }𝑖∈[𝑘] // G5–

11 : if Coll(L𝑚) then return Ⅎ // G5–

12 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘]

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

2 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

3 : 𝑐∗ B H(𝑚∗, 𝑤∗)
4 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true then // Vrfy passed

5 : if (𝑚∗, (𝑤∗, 𝑧∗)) ∉ Q then

6 : Q B Q ∪ {(𝑚∗, (𝑤∗, 𝑧∗))}

Fig. 10. G𝑖 for 𝑖 ∈ {4, 5, 6, 7}

G𝑖 for 𝑖 ∈ {7, 8, 9, 10}
1 : (vk, sk) ← Gen(1𝜅)
2 : RFH ← Func(M ×W, C)
3 : RF′H ← Func(M × [𝐵], C)
4 : RFS ← Func(M × [𝐵],RSim)
5 : Q B ∅ // G7–G9

6 : win B false // G8–

7 : run A |Sign⟩,Forge, |H⟩ (vk)
8 : return J#Q > 𝑞𝑆K // G7

9 : return J#Q > 𝑞𝑆K ∧ win // G8–G9

10 : return win // G10

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 : if GetTrans(𝑚∗) = Ⅎ then return Ⅎ

2 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

3 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

4 : L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] ;L′𝑚∗ B {𝑤
(𝑖) }𝑖∈[𝑘−1] // G9–

5 : if ∃𝑖 : 𝑤∗ = �̃� (𝑖) then 𝑐∗ B 𝑐 (𝑖) else 𝑐∗ B RFH (𝑚∗, 𝑤∗)
6 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true then // Vrfy passed

7 : if (𝑚∗, (𝑤∗, 𝑧∗)) ∉ Q then // G7–G9

8 : Q B Q ∪ {(𝑚∗, (𝑤∗, 𝑧∗))} // G7–G9

9 : if (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) then // G8–G10

10 : win B true // G8

11 : if (𝑤∗ ∉ L′𝑚∗) // G9–G10

12 : or (𝑤∗ ∈ L′𝑚∗ ∧ 𝑐
∗ = RFH (𝑚∗, 𝑤∗)) then // G9–G10

13 : win B true // G9–G10

Fig. 11. G𝑖 for 𝑖 ∈ {7, 8, 9, 10}, where we expand H in Forge. Sign, H, and GetTrans are those in G7 in Figure 10

19

G𝑖 for 𝑖 ∈ {10, 11, 12, 13}
1 : (vk, sk) ← GenLID (1𝜅) // G10–G12

2 : vk ← LossyGenLID (1𝜅) // G13

3 : RFH ← Func(M ×W, C)
4 : RF′H ← Func(M × [𝐵], C)
5 : RFS ← Func(M × [𝐵],R)
6 : win B false

7 : run A |Sign⟩,Forge, |H⟩ (vk)
8 : return win

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑐∗, 𝑧∗)
1 : 𝑤∗ B Rec(vk, 𝑐∗, 𝑧∗)
2 : if GetTrans(𝑚∗) = Ⅎ then return Ⅎ

3 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

4 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

5 : L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] ;L′𝑚∗ B {𝑤
(𝑖) }𝑖∈[𝑘−1]

6 : if ∃𝑖 : 𝑤∗ = �̃� (𝑖) then 𝑐∗ B 𝑐 (𝑖) else 𝑐∗ B RFH (𝑚∗, 𝑤∗)
7 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true ∧ (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) then
8 : if (𝑤∗ ∉ L′𝑚∗) ∨ (𝑤

∗ ∈ L′𝑚∗ ∧ 𝑐
∗ = RFH (𝑚∗, 𝑤∗)) then // G10

9 : win B true // G10

10 : if (𝑤∗ ∉ L𝑚∗) ∨ (𝑤∗ ∈ L′𝑚∗ ∧ 𝑐
∗ = RFH (𝑚∗, 𝑤∗)) then // G11

11 : win B true // G11

12 : if 𝑤∗ ≠ �̃� (𝑘) ∧ 𝑐∗ = RFH (𝑚∗, 𝑤∗) then // G12–G13

13 : win B true // G12–G13

Fig. 12. G𝑖 for 𝑖 ∈ {10, 11, 12, 13}. Sign, H, and GetTrans are those in G7 in Figure 10.

Game G9: Due to technical reasons, we modify the condition in Forge before changing the final condition

of the game with returning flag win.
To ease the notation, letL𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] which are the𝑤 parts of the transcripts generated byGetTrans(𝑚∗).
We additionally define L′

𝑚∗ B {𝑤
(𝑖) }𝑖∈[𝑘−1] .

In G9, Forge additionally checks if 𝑤∗ ∈ L′
𝑚∗ or not; if so, we modify the condition 𝑐∗ = RFH (𝑚∗, 𝑤∗). As

Lemma 4.4, we have the following lemma.

Lemma 5.6. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy and is 𝜖
zk
-HVZK. We have

|Pr[𝑊8] − Pr[𝑊9] | ≤ 𝛿4,5 + 𝛿6,7 + 𝛿7,8.

Proof. The two games differ if the adversary queries 𝑤∗ = 𝑤 (𝑖) for 𝑖 < 𝑘 but 𝑐∗ ≠ RFH (𝑚∗, 𝑤∗). We call this

event in G𝑖 Bad𝑖 . We have

|Pr[𝑊8] − Pr[𝑊9] | ≤ Pr[Bad8] ≤ |Pr[Bad8] − Pr[Bad3] | + Pr[Bad3] .

We have Pr[Bad3] = 0 because 𝑐∗ = RFH (𝑚∗, 𝑤∗) always holds in G3. Since |Pr[Bad8] − Pr[Bad3] | is upper-
bounded by 𝛿4,5 + 𝛿6,7 + 𝛿7,8, we obtain the bound. ⊓⊔

Game G10: We then replace the output of the game. In G10, the challenger just outputs the flag win instead

of J#Q > cnt𝑠K ∧win. See G10 in Figure 11 (and in Figure 12). We can forget Q. Since we relax the condition
and the adversary cannot detect this modification, we have

Pr[𝑊9] ≤ Pr[𝑊10] .

Game G11: We then treat the case 𝑤∗ = �̃� (𝑘) as a special case. To do so, we replace the condition 𝑤∗ ∉ L′
𝑚∗

with 𝑤∗ ∉ L𝑚∗ . See G11 in Figure 12 for the details. This is easily reduced to the CUR property.

Lemma 5.7. There exists a quantum F -oracle adversary Acur such that

|Pr[𝑊10] − Pr[𝑊11] | ≤ AdvcurLID,Acur

(𝜅),

Time∗ (Acur) = 𝑂 (Time(A)) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + 𝐵2),
Mem∗ (Acur) = 𝑂 (Mem(A)) +𝑂 (𝐵Mem(LID)),

where F = Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Since the proof is the same as that of Lemma 4.5, we omit it.

20

Game G12: We again modify the conditions in Forge in G11: Forge checks if (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)),
𝑤∗ ≠ �̃� (𝑘) , and 𝑐∗ = RFH (𝑚∗, 𝑤∗) or not. If so, the flag is set as true. See G12 in Figure 12 for the details. As

Lemma 4.6, this modification does not change anything and we have G11 = G12.

Game G13: We finally replace a normal verification key with a lossy verification key. See G13 in Figure 12

for the details.

As Lemma 4.7, we have the following lemma:

Lemma 5.8. There exists a quantum F -oracle adversary A
ind

such that

|Pr[𝑊12] − Pr[𝑊13] | ≤ AdvindkeyLID,A
ind

(𝜅),

Time∗ (A
ind
) = 𝑂 (Time(A)) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + 𝐵2),

Mem∗ (A
ind
) = 𝑂 (Mem(A)) +𝑂 (𝐵Mem(LID)),

where F = Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Wealso have the following lemma as Kiltz et al. [KLS18]. See the proof of the case for sBU security (LemmaD.10).

Lemma 5.9. If LID is 𝜖ℓ -lossy, then we have Pr[𝑊13] ≤ 8(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 + 1)2𝜖ℓ .

References

AAC
+
22. Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob

Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, Daniel Smith-

Tone, and Yi-Kai Liu. Status report on the third round of the NIST post-quantum cryptography

standardization process. Technical report, NIST, 2022. 2

ACFK17. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight reductions. In

Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
101–132. Springer, Heidelberg, August 2017. 2, 5, 7

ADMP20. Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group

actions and applications. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II,
volume 12492 of LNCS, pages 411–439. Springer, Heidelberg, December 2020. 25, 26

AFLT12. Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly-secure

signatures from lossy identification schemes. In Pointcheval and Johansson [PJ12], pages 572–

590. 2, 5, 11, 17

AFLT16. Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly secure

signatures from lossy identification schemes. Journal of Cryptology, 29(3):597–631, July 2016. 5,

6, 10

AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-

classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II,
volume 11693 of LNCS, pages 269–295. Springer, Heidelberg, August 2019. 13

AMRS18. Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. Quantum-secure mes-

sage authentication via blind-unforgeability. Cryptology ePrint Archive, Report 2018/1150, 2018.

https://eprint.iacr.org/2018/1150. 3, 30
AMRS20. Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. Quantum-access-secure

message authentication via blind-unforgeability. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part III, volume 12107 of LNCS, pages 788–817. Springer, Heidelberg, May 2020.

2, 3, 7, 9, 30

BBD
+
23. Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don, Serge Fehr, Benjamin Grégoire, Yu-

Hsuan Huang, Andreas Hülsing, Yi Lee, and Xiaodi Wu. Fixing and mechanizing the security

proof of fiat-shamir with aborts and dilithium. In Handschuh and Lysyanskaya [HL23], pages

358–389. 4

BCD
+
22. Markus Bläser, Zhili Chen, Dung Hoang Duong, Antoine Joux, Ngoc Tuong Nguyen, Thomas

Plantard, Youming Qiao, Willy Susilo, and Gang Tang. On digital signatures based on isomor-

phism problems: QROM security, ring signatures, and applications. Cryptology ePrint Archive,

Report 2022/1184, 2022. https://eprint.iacr.org/2022/1184. 25, 26
BDF

+
11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark

Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, edi-

tors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.

2, 3, 4, 40

21

https://eprint.iacr.org/2018/1150
https://eprint.iacr.org/2022/1184

Bel93. Eric David Belsley. Rates of convergence of Markov chains related to association schemes. PhD

thesis, Harvard University, May 1993. 29

Bha20. Rishiraj Bhattacharyya. Memory-tight reductions for practical key encapsulationmechanisms. In

Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I,
volume 12110 of LNCS, pages 249–278. Springer, Heidelberg, May 2020. 2

BKV19. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient isogeny based

signatures through class group computations. In Steven D. Galbraith and Shiho Moriai, editors,

ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages 227–247. Springer, Heidelberg, December

2019. 27

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin

Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, De-
cember 2001. 2

BPS16. Mihir Bellare, Bertram Poettering, and Douglas Stebila. From identification to signatures, tightly:

A framework and generic transforms. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 435–464. Springer, Heidelberg, December

2016. 9, 10

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and

Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. 2

BR96. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with

RSA and Rabin. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416.
Springer, Heidelberg, May 1996. 2, 40

BZ13a. Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In Thomas Jo-

hansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 592–608.
Springer, Heidelberg, May 2013. 30

BZ13b. Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quantum

computing world. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043

of LNCS, pages 361–379. Springer, Heidelberg, August 2013. 2, 4, 5, 7, 42, 43
CCLM22. Rohit Chatterjee, Kai-Min Chung, Xiao Liang, and Giulio Malavolta. A note on the post-quantum

security of (ring) signatures. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors,

PKC 2022, Part II, volume 13178 of LNCS, pages 407–436. Springer, Heidelberg, March 2022. 3, 4,

40, 44

CKMS16. Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look at tightness II:

Practical issues in cryptography. In Raphael C.-W. Phan and Moti Yung, editors, Mycrypt 2016,
volume 10311 of LNCS, pages 21–55. Springer, 2016. 2

CLM
+
18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An ef-

ficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, editors,

ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, December

2018. 27

CMS12. Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness. In Ali Miri and

Serge Vaudenay, editors, SAC 2011, volume 7118 of LNCS, pages 293–319. Springer, Heidelberg,
August 2012. 2

Cor00. Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor,

CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer, Heidelberg, August 2000. 2
DDKA21. Mina Doosti, Mahshid Delavar, Elham Kashefi, and Myrto Arapinis. A unified framework for

quantum unforgeability. CoRR, abs/2103.13994, 2021. 2
DFPS22. Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On rejection sampling in

lyubashevsky’s signature scheme. In Shweta Agrawal and Dongdai Lin, editors,ASIACRYPT 2022,
Part IV, volume 13794 of LNCS, pages 34–64. Springer, Heidelberg, December 2022. 27

DFPS23. Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé. A detailed analysis of

fiat-shamir with aborts. In Handschuh and Lysyanskaya [HL23], pages 327–357. 3, 4, 6, 7, 10, 11,

13, 14, 17, 18, 36

DGJL21. Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. Digital signatures with memory-tight

security in the multi-challenge setting. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages 403–433. Springer, Heidelberg, December

2021. 2, 3, 9, 10, 11, 14, 40

Din20. Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs and their applica-

tions. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 405–434. Springer, Heidelberg, May 2020. 2

dPPRS23. Rafaël del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O. Saarinen. High-order mask-

ing of lattice signatures in quasilinear time. In 44th IEEE Symposium on Security and Privacy, SP
2023, San Francisco, CA, USA, May 21-25, 2023, pages 1168–1185. IEEE, 2023. 4

22

DPS23. Julien Devevey, Alain Passelègue, and Damien Stehlé. G+G: A Fiat-Shamir lattice signature based

on convolved Gaussians. In ASIACRYPT 2023, 2023. To appear. See https://eprint.iacr.org/
2023/1477. 3, 4, 27, 28

EKP20. Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. Lossy CSI-FiSh: Efficient signature

scheme with tight reduction to decisional CSIDH-512. In Aggelos Kiayias, Markulf Kohlweiss,

Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 157–
186. Springer, Heidelberg, May 2020. 3, 25, 26, 27

FG15. Jason Fulman and Larry Goldstein. Stein’s method and the rank distribution of random matrices

over finite fields. The Annals of Probability, 43(3):1274–1314, May 2015. 29

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signa-

ture problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987. 2

GGJT22. Ashrujit Ghoshal, Riddhi Ghosal, Joseph Jaeger, and Stefano Tessaro. Hiding in plain sight:

Memory-tight proofs via randomness programming. In Orr Dunkelman and Stefan Dziembowski,

editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 706–735. Springer, Heidelberg,
May / June 2022. 2, 5, 40

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Tight adaptive re-

programming in the QROM. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part I, volume 13090 of LNCS, pages 637–667. Springer, Heidelberg, December 2021. 4

GJT20. Ashrujit Ghoshal, Joseph Jaeger, and Stefano Tessaro. The memory-tightness of authenticated

encryption. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume

12170 of LNCS, pages 127–156. Springer, Heidelberg, August 2020. 2
GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new

cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 197–206. ACM Press, May 2008. 2, 39, 40

GT20. Ashrujit Ghoshal and Stefano Tessaro. On the memory-tightness of hashed ElGamal. In Anne

Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 33–62.
Springer, Heidelberg, May 2020. 2

HL23. Helena Handschuh and Anna Lysyanskaya, editors. CRYPTO 2023, Part V, volume 14085 of LNCS.
Springer, Heidelberg, August 2023. 21, 22

HRS16. Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-based

signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,

PKC 2016, Part I, volume 9614 of LNCS, pages 387–416. Springer, Heidelberg, March 2016. 25

JK22. Joseph Jaeger and Akshaya Kumar. Memory-tight multi-challenge security of public-key en-

cryption. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part III, volume 13793

of LNCS, pages 454–484. Springer, Heidelberg, December 2022. 2, 4

KLS18. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir

signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen,

editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, Heidelberg,
April / May 2018. 3, 4, 6, 7, 10, 11, 15, 16, 17, 21, 25, 39

KM07. Neal Koblitz and Alfred J. Menezes. Another look at “provable security”. Journal of Cryptology,
20(1):3–37, January 2007. 2

KM15. Neal Koblitz and Alfred J. Menezes. The random oracle model: a twenty-year retrospective. Des.
Codes Cryptogr., 77:587–610, 2015. 10

KX22. Haruhisa Kosuge and Keita Xagawa. Probabilistic hash-and-sign with retry in the quantum ran-

dom oracle model. Cryptology ePrint Archive, Report 2022/1359, 2022. https://eprint.iacr.
org/2022/1359. 4

LJZ22. Yu Liu, Haodong Jiang, and Yunlei Zhao. Tighter post-quantum proof for plain FDH, PFDH

and GPV-IBE. Cryptology ePrint Archive, Report 2022/1441, 2022. https://eprint.iacr.org/
2022/1441. 4

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signa-

tures. In Mitsuru Matsui, editor,ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer,
Heidelberg, December 2009. 27

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and Johansson [PJ12],

pages 738–755. 27

MMO04. Theresa Migler, Kent E. Morrison, and Mitchell Ogle. Weight and rank of matrices over finite

fields, 2004. 29

MNPV99. David M’Raïhi, David Naccache, David Pointcheval, and Serge Vaudenay. Computational alter-

natives to random number generators. In Stafford E. Tavares and Henk Meijer, editors, SAC 1998,
volume 1556 of LNCS, pages 72–80. Springer, Heidelberg, August 1999. 10

PJ12. David Pointcheval and Thomas Johansson, editors. EUROCRYPT 2012, volume 7237 of LNCS.
Springer, Heidelberg, April 2012. 21, 23

23

https://eprint.iacr.org/2023/1477
https://eprint.iacr.org/2023/1477
https://eprint.iacr.org/2022/1359
https://eprint.iacr.org/2022/1359
https://eprint.iacr.org/2022/1441
https://eprint.iacr.org/2022/1441

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the Association for ComputingMachinery,
21(2):120–126, February 1978. 2

WMHT18. Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory lower bounds

of reductions revisited. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 61–90. Springer, Heidelberg, April / May 2018. 2

Zha12. Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687. IEEE
Computer Society Press, October 2012. 5, 25

24

Supplementary Materials

A Missign Definitions

Pseudorandom functions:

Definition A.1 (Pseudorandom functions). Let 𝜅 be the security parameter. Let 𝛿 = 𝛿(𝜅) and 𝜌 = 𝜌(𝜅) be two
polynomial functions. Let PRF : {0, 1}𝜅 × {0, 1}𝛿 → {0, 1}𝜌 be a deterministic polynomial-time algorithm. We
say that PRF is pseudorandom if for any QPT adversary A, its advantage

AdvprPRF,A (𝜅) B
���� Pr[𝐾 ← {0, 1}𝜅 : A |PRF(𝐾, ·) ⟩ (1𝜅) → 1]
− Pr[RF← Func({0, 1}𝛿 , {0, 1}𝜌) : A |RF(·) ⟩ (1𝜅) → 1]

����
is negligible in 𝜅.

Generic quantum search [Zha12, HRS16, KLS18]: Let X be a finite set. The generic search problem (GSP,

in short) is finding 𝑥 ∈ X satisfying 𝑔(𝑥) = 1 given access to an oracle 𝑔 : X → {0, 1}, where for each

𝑥 ∈ X, 𝑔(𝑥) is drawn independently according to Ber𝜆, that is, 𝑔 ← FuncX,{0,1} (Ber𝜆). Kiltz et al. [KLS18]
generalized this problem by modifying the global distribution Ber𝜆 into Ber𝜆(𝑥) on each 𝑥, that is, the case

that 𝑔 ← FuncX,{0,1} ({Ber𝜆(𝑥) : 𝑥 ∈ X}).

Lemma A.1 (Generic search problemwith bounded probabilities [KLS18]). Let 𝜆 ∈ [0, 1]. For any quantum
algorithm A = (A1,A2) making at most 𝑞 queries to |𝑔⟩, we have

Pr[GSPB𝜆,A = 1] ≤ 8(𝑞 + 1)2𝜆,

where game GSPB𝜆,A is defined in Figure 13.

GSPB𝜆,A

1 : {𝜆(𝑥)}𝑥∈X ← A1

2 : if ∃𝑥 ∈ X s.t. 𝜆(𝑥) > 𝜆 then return ⊥
3 : foreach 𝑥 ∈ X : 𝑔(𝑥) ← Ber𝜆(𝑥)

4 : 𝑥 ← A |𝑔⟩
2

5 : return 𝑔(𝑥)

Fig. 13. The generic search game GSPB𝜆,A .

B Instantiations of Lossy Identification

We review three instantiations of lossy identification schemes from post-quantum assumptions.

B.1 Lossy Identification Scheme based on Pseudorandom Group Action

Bläser et al. [BCD
+
22] gave a lossy identification scheme, which is an abstraction of IDenCh

ls in [EKP20], based

on pseudorandom group action. We briefly review cryptographic group action [ADMP20].

Definition B.1 (Group action). Let𝐺 be a group with identity element 1𝐺 . Let 𝑋 be a set. Amap★ : 𝐺×𝑋 → 𝑋

is a group action if, for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 , 1𝐺 ★ 𝑥 = 𝑥 and (𝑔ℎ) ★ 𝑥 = 𝑔 ★ (ℎ ★ 𝑥).

In this section, we assume that𝐺 and 𝑋 are finite. For the security of the LID scheme, we require the hardness

of the following problem, which is an adapted version of [BCD
+
22, Definition 6].

Definition B.2 (𝑆-pseudorandom problem, adapted). Let 𝑆 be a positive integer. Let (𝐺, 𝑋,★) be a group ac-
tion. The 𝑆-pseudorandom problemwith parameter 𝑆 asks to distinguish between the following two distributions:
– (𝐸, 𝑔1 ★ 𝐸, 𝑔2 ★ 𝐸, . . . , 𝑔𝑆 ★ 𝐸), where 𝐸 ← 𝑋 and 𝑔1, . . . , 𝑔𝑆 ← 𝐺 .
– (𝐸, 𝐸1, 𝐸2, . . . , 𝐸𝑆) where 𝐸, 𝐸1, . . . , 𝐸𝑆 ← 𝑋 .

25

For CUR property, we will use the following problem [BCD
+
22, Definition 7]:

Definition B.3 (Stabilizer problem). Let (𝐺, 𝑋,★) be a regular group action. The stabilizer problem is, given a
random element 𝐸 ← 𝑋 , finding a non-trivial stabilizer 𝑔 ∈ 𝐺 \ {1𝐺} satisfying 𝑔 ★ 𝐸 = 𝐸 . The Stab(𝐺,𝑋,★)
assumption states that for any QPT adversary A, its advantage

AdvStab,A (𝜅) B Pr[𝐸 ← 𝑋, 𝑔 ← A(𝐺, 𝑋,★, 𝐸) : 𝑔 ★ 𝐸 = 𝐸 ∧ 𝑔 ∈ 𝐺 \ {1𝐺}]

is negligible in 𝜅.

The description of the scheme follows:

Public parameter: The public parameter is a cryptographic group action (𝐺, 𝑋,★). We haveW B 𝑋 𝑡 and

Z B 𝐺𝑡 .

Key generation: GenLID uniformly samples 𝐸0 ← 𝑋 and 𝑔1, . . . , 𝑔𝑆 ← 𝐺, lets 𝑔0 B 1𝐺 , and outputs

vk = {𝐸0, 𝐸1, . . . , 𝐸𝑆} and sk = (vk, 𝑔0, 𝑔1, . . . , 𝑔𝑆),

where 𝐸𝑖 B 𝑔𝑖 ★ 𝐸0 for 𝑖 = 1, . . . , 𝑆.

Lossy key generation: LossyGenLID uniformly samples 𝐸0, . . . , 𝐸𝑆 ← 𝑋 and outputs

vk = {𝐸0, 𝐸1, . . . , 𝐸𝑆}.

Challenge space: The challenge space is C B {0, 1, . . . , 𝑆}𝑡 .
Prover: The prover’s algorithms are defined as follows:

– P1 (sk) uniformly samples 𝑟1, . . . , 𝑟𝑡 ← 𝐺 and returns a commitment 𝑤 = (𝑊1, . . . ,𝑊𝑡), where
𝑊𝑖 B 𝑟𝑖 ★ 𝐸0 for 𝑖 = 1, . . . , 𝑡, and outputs a state information 𝑠 B (𝑟1, . . . , 𝑟𝑡).

– P2 (sk, 𝑤, 𝑐, 𝑠), where 𝑐 = (𝑐1, . . . , 𝑐𝑡) and 𝑠 = (𝑟1, . . . , 𝑟𝑡), computes 𝑧𝑖 B 𝑟𝑖 · 𝑔−1𝑐𝑖 ∈ 𝐺 for 𝑖 =

1, . . . , 𝑡 and returns 𝑧 = (𝑧1, . . . , 𝑧𝑡).
Reconstruction: Rec(vk, 𝑐, 𝑧) computes𝑊𝑖 = 𝑧𝑖 ★ 𝐸𝑐𝑖 for 𝑖 = 1, . . . , 𝑡 and returns 𝑤 = (𝑊1, . . . ,𝑊𝑡).
Verifier: V(vk, 𝑤, 𝑐, 𝑧) checks if 𝑤 = Rec(vk, 𝑐, 𝑧) or not.
Simulator: Sim(vk, 𝑐) uniformly samples 𝑧 = (𝑧1, . . . , 𝑧𝑡) ← 𝐺𝑡 and outputs 𝑤 = Rec(vk, 𝑐, 𝑧).
The signature scheme is obtained by applying DFS1,𝑐𝑧 to the above lossy identification scheme.

The protocol is 𝜖ℓ -lossy with 𝜖ℓ = 1

(𝑆+1) 𝑡 ·
∏
𝑖∈[𝑆]

|𝑋 |−𝑖 |𝐺 |
|𝑋 | + (1 −∏

𝑖∈[𝑆]
|𝑋 |−𝑖 |𝐺 |
|𝑋 |) [BCD

+
22, Lemma 4].

This 𝜖ℓ is negligible in 𝜅 when 𝑆 is constant, 𝑡 = 𝜔(lg(𝜅)), and |𝑋 | ≫ |𝐺 |. Key indistinguishability follows

from the hardness of the 𝑆-pseudorandom problem of the underlying group action. In addition, parameters

of the commitment min-entropy are 𝛼 = 𝑡 · lg(𝑁) and 𝜖𝑚 = 0. The protocol achieves perfect completeness

and perfect HVZK.

We give the proof of CUR to check the memory usage of the reduction algorithm. The underlying problem is

the stabilizer problem,

Lemma B.1. The protocol has the CUR property under the Stab(𝐺,𝑋,★) assumption: Precisely speaking, for a
quantum adversaryA breaking the CUR property of the identification protocol, there exists a quantum adversary
A

stab
against the Stab(𝐺,𝑋,★) assumption such that

AdvcurLID,A (𝜅) ≤ AdvStab,A
stab
(𝜅),

Time∗ (A
stab
) = Time(A) + 𝑆 · 𝑂 (|𝐺 |, |𝑋 |),

Mem∗ (A
stab
) = Mem(A) + 𝑆 · 𝑂 (|𝐺 |, |𝑋 |).

Proof. We construct A
stab

as follows: Given 𝐸 chosen from 𝑋 , it samples 𝑔1, . . . , 𝑔𝑆 ← 𝐺 , computes 𝐸𝑖 B
𝑔𝑖 ★ 𝐸 , and runs A on input (𝐸0 B 𝐸, 𝐸1, 𝐸2, . . . , 𝐸𝑆). The adversary A outputs 𝑤, 𝑐, 𝑧 and 𝜁 . Since 𝑧 ≠ 𝜁 ,

there exists 𝑖 ∈ [𝑡] satisfying 𝑧𝑖 ≠ 𝜁𝑖 . Astab
outputs 𝑓 B 𝑔−1𝑐𝑖 𝜁

−1
𝑖
𝑧𝑖𝑔𝑐𝑖 if it is not 1𝐺 .

Let us check that 𝑓 is a stabilizer. If (𝑤, 𝑐, 𝑧) and (𝑤, 𝑐, 𝜁) are valid, then we have𝑊𝑖 = 𝑧𝑖 ★ 𝐸𝑐𝑖 = 𝜁𝑖 ★ 𝐸𝑐𝑖 .

Putting 𝐸𝑐𝑖 = 𝑔𝑐𝑖 ★ 𝐸 , we have (𝑧𝑖𝑔𝑐𝑖) ★ 𝐸 = (𝜁𝑖𝑔𝑐𝑖) ★ 𝐸 . Thus, 𝑓 ★ 𝐸 =
(
(𝜁𝑖𝑔𝑐𝑖)−1 · (𝑧𝑖𝑔𝑐𝑖)

)
★ 𝐸 = 𝐸 and

𝑓 is a stabilizer for 𝐸 . It is easy to check that this 𝑓 is non-trivial: Since 𝑧𝑖 ≠ 𝜁𝑖 , we have 𝑧𝑖𝑔𝑐𝑖 ≠ 𝜁𝑖𝑔𝑐𝑖 and

𝑓 = (𝜁𝑖𝑔𝑐𝑖)−1 · 𝑧𝑖𝑔𝑐𝑖 ≠ 1𝐺 as we wanted. Hence, the advantage of A
stab

is equivalent to that of A. ⊓⊔

B.2 Lossy Identification Scheme based on CSIDH

We recall a lossy identification scheme IDdenCh
ls in Lossy CSI-FiSh proposed by El Kaafarani, Katsumata, and

Pintore [EKP20], which is based on the hardness of the decisional Diffie-Hellman problems in the CSIDH

setting.

We briefly review cryptographic group action [ADMP20] and quadratic twist.

26

Definition B.4 (Regulality of group action). We say that a group action (𝐺, 𝑋,★) is regular if the following
two conditions hold: (transitive:) for every 𝑥, 𝑥′ ∈ 𝑋 , there exists 𝑔 ∈ 𝐺 satisfying 𝑥′ = 𝑔 ★ 𝑥. (free:) for each
group element 𝑔 ∈ 𝐺 , 𝑔 = 1𝐺 if and only if there exists some element 𝑥 ∈ 𝑋 such that 𝑥 = 𝑔 ★ 𝑥.

In what follows, we assume that 𝐺 = ⟨𝑔⟩ of cardinality 𝑁 . In the CSIDH setting, given 𝐸 = 𝑔𝑎 ★ 𝐸0, we can

compute its quadratic twist twist(𝐸), which is 𝑔−𝑎 ★ 𝐸0 [CLM+18, BKV19, EKP20].
For the security of the LID scheme, we require the hardness of the following problem, which is an adapted

version of [EKP20, Definition 4.1].

Definition B.5 (Fixed-Curve Multi-Decisional GADH problem). Let 𝑆 be a positive integer. Suppose that
𝐺 = ⟨𝑔⟩ of cardinarity 𝑁 and 𝑋 be a finite set. Let (𝐺, 𝑋,★) be a regular group action. The fixed-curve multi-

decisional group-action Diffie-Hellman (FCMD-GADH) problem with parameter 𝑆 asks to distinguish between
the following two distributions:
– (𝐸, 𝐻, 𝑔𝑎1 ★ 𝐸, 𝑔𝑎1 ★𝐻, . . . , 𝑔𝑎𝑆 ★ 𝐸, 𝑔𝑎𝑆 ★𝐻), where 𝐸, 𝐻 ← 𝑋 and 𝑎1, . . . , 𝑎𝑆 ← Z𝑁 .
– (𝐸, 𝐻, 𝐸 ′

1
, 𝐻′

1
, . . . , 𝐸 ′

𝑆
, 𝐻′
𝑆
) where 𝐸, 𝐻, 𝐸 ′

1
, 𝐻′

1
, . . . , 𝐸 ′

𝑆
, 𝐻′
𝑆
← 𝑋 .

If 𝑆 = 1, the problem is said to be the decisional group-action Diffie-Hellman (D-GADH) problem.

The description of the scheme follows:

Public parameter: The public parameter is a cryptographic group action (𝐺, 𝑋,★). Let 𝐸0 ∈ 𝑋 be a fixed

element in 𝑋 . We haveW B (𝑋2)𝑡 andZ B Z𝑡
𝑁
.

Key generation: GenLID uniformly samples 𝑎1, . . . , 𝑎𝑆 , 𝑏1, 𝑏2 ← Z𝑁 , lets 𝑎0 B 0, and outputs

vk = {(𝐸 (𝑖)
1
, 𝐸
(𝑖)
2
)}𝑖∈{0,...,𝑆} and sk = (vk, 𝑎0, 𝑎1, . . . , 𝑎𝑆 , 𝑏1, 𝑏2),

where 𝐸
(0)
1
B 𝑔𝑏1 ★𝐸0, 𝐸

(0)
2
B 𝑔𝑏2 ★𝐸0, 𝐸

(𝑖)
0

= 𝑔𝑎𝑖 ★𝐸
(0)
0

, and 𝐸
(𝑖)
1

= 𝑔𝑎𝑖 ★𝐸
(0)
1

for 𝑖 = 1, . . . , 𝑆. For

ease of notation, for 𝛽 ∈ {1, 2} and 𝑖 ∈ [𝑆], we define 𝐸 (−𝑖)
𝛽

B twist(𝐸 (𝑖)
𝛽
).

Lossy key generation: LossyGenLID uniformly samples 𝑎1, . . . , 𝑎𝑆 , 𝑎
′
1
, . . . , 𝑎′

𝑆
, 𝑏1, 𝑏2 ← Z𝑁 and outputs

vk = {(𝐸 (𝑖)
1
, 𝐸
(𝑖)
2
)}𝑖∈{0,...,𝑆} ,

where 𝐸
(0)
1
B 𝑔𝑏1 ★ 𝐸0, 𝐸

(0)
2
B 𝑔𝑏2 ★ 𝐸0, 𝐸

(𝑖)
0

= 𝑔𝑎𝑖 ★ 𝐸
(0)
0

, and 𝐸
(𝑖)
1

= 𝑔𝑎
′
𝑖 ★ 𝐸

(0)
1

for 𝑖 = 1, . . . , 𝑆.

Challenge space: The challenge space is C B {−𝑆,−𝑆 + 1, . . . , 𝑆 − 1, 𝑆}𝑡 .
Prover: The prover’s algorithms are defined as follows:

– P1 (sk) unformly samples 𝑟1, . . . , 𝑟𝑡 ← Z𝑁 and returns a commitment𝑤 = (𝑤1, . . . , 𝑤𝑡) = {(𝐹 (𝑘)
1

, 𝐹
(𝑘)
2
)}𝑖∈[𝑡] ,

where (𝐹 (𝑘)
1

, 𝐹
(𝑘)
2
) B (𝑔𝑟𝑘 ★ 𝐸 (0)

1
, 𝑔𝑟𝑘 ★ 𝐸

(0)
2
) and outputs a state information 𝑠 B (𝑟1, . . . , 𝑟𝑡).

– P2 (sk, 𝑤, 𝑐, 𝑠), where 𝑐 = (𝑐1, . . . , 𝑐𝑡) and 𝑠 = (𝑟1, . . . , 𝑟𝑡), computes, for 𝑘 ∈ [𝑡], 𝑧𝑘 = 𝑟𝑘 − 𝑎𝑐𝑘 ∈
Z𝑁 if 𝑐𝑘 ≥ 0 and 𝑧𝑘 = 𝑟𝑘 + 𝑏1 + 𝑏2 + 𝑎 |𝑐𝑘 | otherwise and returns 𝑧 = (𝑧1, . . . , 𝑧𝑡).

Reconstruction: Rec(vk, 𝑐, 𝑧) computes, for 𝑘 ∈ [𝑡], 𝑤𝑘 = (𝑔𝑧𝑘 ★ 𝐸 (𝑐𝑘)
1

, 𝑔𝑧𝑘 ★ 𝐸
(𝑐𝑘)
2
) if 𝑐 ≥ 0 and (𝑔𝑧𝑘 ★

𝐸
(𝑐𝑘)
2

, 𝑔𝑧𝑘 ★ 𝐸
(𝑐𝑘)
1
) otherwise and returns 𝑤 = (𝑤1, . . . , 𝑤𝑡).

Verifier: V(vk, 𝑤, 𝑐, 𝑧) checks if 𝑤 = Rec(vk, 𝑐, 𝑧) or not.
Simulator: Sim(vk, 𝑐) uniformly samples 𝑧 = (𝑧1, . . . , 𝑧𝑡) ← Z𝑡𝑁 and outputs 𝑤 = Rec(vk, 𝑐, 𝑧).
The signature scheme Lossy CSI-FiSh is obtained by applying DFS1,𝑐𝑧 to the above lossy identification

scheme. El Kaafarani et al. showed that the protocol is 𝜖ℓ -lossy with 𝜖ℓ = 1

(2𝑆+1) 𝑡 ·
∏
𝑖∈[𝑆]

𝑁−𝑖
𝑁
+ (1 −∏

𝑖∈[𝑆]
𝑁−𝑖
𝑁
) [EKP20, Lemma 4.7]. This 𝜖ℓ is negligible in 𝜅 when 𝑆 is constant and 𝑡 = 𝜔(lg(𝜅)). Key in-

distinguishability follows from the hardness of the FCMD-GADH problem. The protocol achieves perfect

completeness, perfect HVZK, and perfect unique response. In addition, parameters of the commitment min-

entropy are 𝛼 = 𝑡 · lg(𝑁) and 𝜖𝑚 = 0.

B.3 Lossy Identification Scheme based on Lattices

As an example of lossy identification based on lattices, we take a new scheme G+G proposed by Devevey,

Passelègue, and Stehlé [DPS23] instead of [Lyu09, Lyu12, DFPS22]. We first define the Gaussian function with

covariance parameter 𝛴 ∈ R𝑘×𝑘 , which is a positive-definite symmetric matrix, and center parameter 𝑐 ∈ R𝑘
as

𝜌𝛴 ,𝑐 (𝑥) = exp

(
−𝜋(𝑥 − 𝑐)⊤𝛴−1 (𝑥 − 𝑐)

)
.

For a lattice 𝛬 ⊆ Span(𝛴), the Gaussian distribution over 𝛬 with covariance parameter 𝛴 and center param-

eter 𝑐 is defined by a probability mass function

𝐷𝛬,𝛴 ,𝑐 (𝑥) =
𝜌𝛴 ,𝑐 (𝑥)∑
𝑦∈𝛬 𝜌𝛴 ,𝑐 (𝑦)

for 𝑥 ∈ 𝛬.

27

Definition B.6 (Learning With Errors (LWE), Hermite Normal Form). Let 𝑚, 𝑘, 𝑞 ∈ Z+ with 𝑞 ≥ 2. Let 𝜒
be a distribution over Z. The LWE𝑚,𝑘,ℓ,𝑞,𝜒 assumption states that for any QPT adversaryA, the following two
distributions are computationally indistinguishable:

𝐷1 : 𝐴← Z𝑚×𝑘𝑞 ; 𝑆 ← 𝜒𝑘×ℓ ; 𝐸 ← 𝜒𝑚×ℓ ; return (𝐴, 𝐴𝑆 + 𝐸),

𝐷2 : 𝐴← Z𝑚×𝑘𝑞 ;𝑈 ← Z𝑚×ℓ𝑞 ; return (𝐴,𝑈).

Definition B.7 (Short Integer Solution). Let 𝑚, 𝑘, 𝑞 ∈ Z+ with 𝑞 ≥ 2. Let 𝛾 > 0. The SIS𝑚,𝑘,𝑞,𝛾 assumption
states that for any QPT adversary A, its advantage

AdvSIS,A (𝜅) B Pr[𝐴← Z𝑚×𝑘𝑞 , 𝑥 ← A(𝐴) : 𝐴𝑥 ≡ 0 (mod 𝑞) ∧ 𝑥 ≠ 0 ∧ ∥𝑥∥ ≤ 𝛾]

is negligible in 𝜅.

The description of the LID scheme follows:

Public parameter: The public parameters are 𝑚 ≥ ℓ > 0, 𝑘 > 𝑚 + ℓ, and C ⊆ Zℓ
2
, odd modulus 𝑞, a

bound 𝛾 ∈ R+, a distribution 𝜒 over Z, Gaussian parameters 𝑠 and 𝜎. Define 𝛴 : Z𝑘×ℓ → R𝑘×𝑘 as

𝑆 ↦→ 𝜎2𝐼𝑘 − 𝑠2𝑆𝑆⊤. Let 𝐽 B [𝐼𝑚 | 0𝑚×(𝑘−𝑚)]𝑇 ∈ Z𝑘×𝑚. LetW B Z𝑚
2𝑞

andZ B {𝑧 ∈ Z𝑘 | ∥𝑧∥ ≤ 𝛾}.

Key generation: GenLID computes vk and sk as follows: 𝐴1 ← Z𝑚×(𝑘−𝑚−ℓ)𝑞 ; (𝑆1, 𝑆2) ← 𝜒 (𝑘−𝑚−ℓ)×ℓ ×
𝜒𝑚×ℓ ; 𝐵 B 𝐴1𝑆1 + 𝑆2 mod 𝑞; 𝐴 B [𝑞𝐽 − 2𝐵 | 2𝐴1 | 2𝐼𝑚] ∈ Z𝑚×𝑘

2𝑞
; 𝑆 B [𝐼ℓ | 𝑆⊤1 | 𝑆

⊤
2
]⊤ ∈ Z𝑘×ℓ ;

vk B 𝐴; sk B 𝑆; outputs vk and sk.
Lossy key generation: LossyGenLID compute vk as follows: 𝐴1 ← Z𝑚×(𝑘−𝑚−ℓ)𝑞 ; 𝐵 ← Z𝑚×ℓ𝑞 ; 𝐴 B [𝑞𝐽 −

2𝐵 | 2𝐴1 | 2𝐼𝑚] ∈ Z𝑚×𝑘
2𝑞

; outputs vk B 𝐴.

Challenge space: The challenge space is C ⊆ Zℓ
2
. See [DPS23] for the parameter choices.

Prover: The prover’s algorithms are defined as follows:

– P1 (sk) samples 𝑦 ← 𝐷Z𝑘 ,𝛴 (𝑆) ,0 and computes 𝑤 B 𝐴𝑦 mod 2𝑞. It also samples seed for a seed of

P2. It outputs 𝑤 and st B (𝑦, seed).
– P2 (sk, 𝑤, 𝑐, st) samples 𝑘 ← 𝐷Zℓ ,𝑠2𝐼ℓ ,−𝑐/2 (with seed seed) and computes 𝑧 B 𝑦 + 2𝑆𝑘 + 𝑆𝑐. It

outputs 𝑧.

Reconstruction: Rec(vk, 𝑐, 𝑧) returns 𝑤 = 𝐴𝑧 − 𝑞𝐽𝑐 mod 2𝑞. (Note: Rec implicitly checks whether 𝑧 ∈ Z or

not.)

Verifier: V(vk, 𝑤, 𝑐, 𝑧) checks if 𝑤 = Rec(vk, 𝑐, 𝑧).
Simulator: Sim(vk, 𝑐) samples 𝑧 ← 𝐷Z𝑘 ,

√
2𝜎

and outputs 𝑤 = Rec(vk, 𝑐, 𝑧).
The protocol achieves statistical completeness ((1 − negl(𝜅), 1)-correctness) [DPS23, Theorem 2], statistical

HVZK and the high commitment min-entropy [DPS23, Theorem 3] with careful choice of parameters. It also

𝜖ℓ -lossy with appropriate parameter settings, and its key indistinguishability follows from the decisional

LWE assumption [DPS23, Theorem 4]. The computational unique response follows from the SIS assumption

and the LWE assumption as follows:

Lemma B.2. Let 𝑚 ≥ ℓ > 0 and 𝑘 > 𝑚 + ℓ. Let 𝑎 be a positive integer. Let 𝑞 be the odd modulus and let 𝛾 ∈ R+
be bound. Let 𝜒 be a distribution over Z. The protocol has the CUR property under the SIS𝑚,𝑘+𝑎,𝑞,2𝛾 assumption
and the LWE𝑘−𝑚−ℓ,𝑚,ℓ,𝜒,𝑞 assumption.
Precisely speaking, for a quantum adversary A breaking the CUR property of the identification protocol, there
exist a quantum adversary A

lwe
against the LWE𝑘−𝑚−ℓ,𝑚,ℓ,𝜒,𝑞 assumption and a quantum adversary Asis

against the SIS𝑚,𝑘+𝑎,𝑞,2𝛾 assumption such that

AdvcurLID,A (𝜅) ≤ AdvLWE,A
lwe
(𝜅) + AdvSIS,Asis

(𝜅) + 2𝑚𝑞−(𝑎+1) ,

Time∗ (A
lwe
) = Time(A) +𝑂 (Time(LID)),

Mem∗ (A
lwe
) = Mem(A) +𝑂 (Mem(LID)),

Time∗ (Asis) = Time(A) +𝑂 ((𝑘 + 𝑎)3 log3 𝑞),
Mem∗ (Asis) = Mem(A) +𝑂 (𝑚(𝑘 + 𝑎) log 𝑞).

Proof. Let us consider two games: The first one isG0 inwhich the challenger generates (vk, sk) ← GenLID (1𝜅),
runs the adversary on input vk and receives (𝑤, 𝑐, 𝑧, 𝑧′) from the adversary, and returns J𝑧 ≠ 𝑧′∧V(vk, 𝑤, 𝑐, 𝑧)∧
V(vk, 𝑤, 𝑐, 𝑧′)K. The second one G1 is the same game G0 except that vk ← LossyGenLID (1𝜅).
By definition, we have

Pr[G0 ⇒ true] = AdvcurLID,A (𝜅).

28

It is easy to construct an adversary A
lwe

such that

|Pr[G0 ⇒ true] − Pr[G1 ⇒ true] | ≤ AdvLWE,A
lwe
(𝜅),

Time∗ (A
lwe
) = Time(A) +𝑂 (Time(LID)),

Mem∗ (A
lwe
) = Mem(A) +𝑂 (Mem(LID)).

By using an adversaryA inG1, we construct an adversaryAsis as follows: Given
˜𝐴 = [˜𝐴1 | ˜𝐴2] ← Z𝑚×(𝑘+𝑎)𝑞

with
˜𝐴1 ∈ Z𝑚×(𝑘−𝑚)𝑞 and

˜𝐴2 ∈ Z𝑚×(𝑚+𝑎)𝑞 , Asis tries to find a set of 𝑚 linearly independent vectors

�̃�𝑖1 , . . . , �̃�𝑖𝑚 from
˜𝐴2. This set exists with probability at least 1 − 2𝑚𝑞−(𝑎+1) (see Lemma B.3 below). Let

ˆ𝐴 = [ˆ𝐴1 | ˆ𝐴2] B [˜𝐴1 | �̃�𝑖1 . . . �̃�𝑖𝑚] = ˜𝐴 · 𝑃, where ˆ𝐴1 ∈ Z(𝑘−𝑚)×𝑚𝑞 ,
ˆ𝐴2 = [�̃�𝑖1 . . . �̃�𝑖𝑚] ∈ Z𝑚×𝑚𝑞 , and 𝑃 is

a corresponding matrix in {0, 1} (𝑘+𝑎)×𝑘 . Notice that the Hamming weight of the columns of 𝑃 is 1, and the

Hammingweight of the rows of 𝑃 is at most 1. It then computes 𝐴 B 2((2 ˆ𝐴2)−1 · ˆ𝐴 mod 𝑞)+[𝑞𝐽 | 𝑂] mod 2𝑞

and feeds it to A. The distribution of this lossy verification key is perfect. A outputs (𝑤, 𝑐, 𝑧, 𝑧′). If 𝑧 ≠ 𝑧′

and V(vk, 𝑤, 𝑐, 𝑧) = V(vk, 𝑤, 𝑐, 𝑧′) = true, then Asis output 𝑃(𝑧 − 𝑧′) as the solution of the SIS problem.

If we have (𝑤, 𝑐, 𝑧, 𝑧′) such that 𝑧 ≠ 𝑧′ and V(vk, 𝑤, 𝑐, 𝑧) = V(vk, 𝑤, 𝑐, 𝑧′) = true, then we have the relations

∥𝑧∥ ≤ 𝛾 ∧ ∥𝑧′∥ ≤ 𝛾 ∧ 𝑤 ≡ 𝐴𝑧 − 𝑞𝐽𝑐 ≡ 𝐴𝑧′ − 𝑞𝐽𝑐 (mod 2𝑞).

The bounds on the norms imply ∥𝑧 − 𝑧′∥ ≤ 2𝛾 and the condition 𝑧 ≠ 𝑧′ implies 𝑧 − 𝑧′ ≠ 0. The last equation

with the fact that 𝑞 is odd implies 𝐴(𝑧 − 𝑧′) ≡ 0 (mod 𝑞) (instead of 2𝑞). Therefore, we have

𝐴(𝑧 − 𝑧′) ≡ 2(2 ˆ𝐴2)−1 ˆ𝐴 · (𝑧 − 𝑧′) ≡ ˆ𝐴−1
2
· ˜𝐴 · 𝑃(𝑧 − 𝑧′) ≡ 0 (mod 𝑞)

Multiplying
ˆ𝐴2 to the both sides, we have

˜𝐴 · 𝑃(𝑧 − 𝑧′) ≡ 0 (mod 𝑞).

Due to the property of 𝑃, we have 𝑃(𝑧 − 𝑧′) ≠ 0 and ∥𝑃(𝑧 − 𝑧′)∥ = ∥𝑧 − 𝑧′∥ ≤ 2𝛾. Thus, 𝑃(𝑧 − 𝑧′) is the
solution of an instance

˜𝐴 of the SIS problem.

Thus, we have

Pr[G1 ⇒ true] ≤ AdvSIS,Asis
(𝜅) +𝑂 (𝑞−𝑚),

Time∗ (Asis) = Time(A) +𝑂 (𝑘3 log3 𝑞),
Mem∗ (Asis) = Mem(A) +𝑂 (𝑚𝑘 log 𝑞).

Lemma B.3. Let 𝑚, 𝑎 be a positive inteters. We have

Pr

𝐷←Z𝑚×(𝑚+𝑎)𝑞

[rank(𝐷) < 𝑚] ≥ 2𝑚𝑞−(𝑎+1) .

While the above bound is well-known, we include the proof for completeness.

Proof. By the formula in [Bel93, MMO04, FG15], we have

Pr

𝐷←Z𝑚×(𝑚+𝑎)𝑞

[rank(𝐷) = 𝑚 − 𝑟] = 1

𝑞𝑟 (𝑎+𝑟)
·
∏𝑚+𝑎
𝑖=1
(1 − 𝑞−𝑖)∏𝑚

𝑖=𝑟+1 (1 − 𝑞
−𝑖)∏𝑚−𝑟

𝑖=1
(1 − 𝑞−𝑖)∏𝑎+𝑟

𝑖=1
(1 − 𝑞−𝑖)

.

Since we consider the case 𝑟 = 0, the probability is

Pr

𝐷←Z𝑚×(𝑚+𝑎)𝑞

[rank(𝐷) = 𝑚] =
∏𝑚+𝑎
𝑖=1
(1 − 𝑞−𝑖)∏𝑚

𝑖=1
(1 − 𝑞−𝑖)∏𝑚

𝑖=1
(1 − 𝑞−𝑖)∏𝑎

𝑖=1
(1 − 𝑞−𝑖)

=

∏𝑚+𝑎
𝑖=1
(1 − 𝑞−𝑖)∏𝑎

𝑖=1
(1 − 𝑞−𝑖)

=

𝑚+𝑎∏
𝑖=𝑎+1

(1 − 𝑞−𝑖) ≥ (1 − 𝑞−(𝑎+1))𝑚 ≥ 1 − 2𝑚𝑞−(𝑎+1) .

Thus, the lemma follows. ⊓⊔

29

C Relation Between Blinded Unforgeability and Plus-One Unforgeability

Alagic et al. showed that there exists a PO-secure but BU-insecure MAC scheme by assuming a random

function or qPRF [AMRS20, Section 8.1]. In the original version of [AMRS20], Alagic et al. insisted that BU

security implies PO security (for MAC), but this claim was retracted in Apr. 2023. They weakened their claim

as that their BU security implies quadratic PO security, where an adversary is required to output 𝑐𝑘2 forgeries

with probability 1 by making 𝑘 quantum queries for a fixed constant 𝑐 [AMRS18, Section 5.2.3].

Here, we give a simple example of BU-secure but PO-insecure signature assuming the existence of BU-secure

signature. Our example exploits the fact that PO security is a quantum version of strong existential unforge-
ability, but BU security does not.

Lemma C.1 (BU ⇏ PO). Suppose that there exists a BU-secure MAC/signature scheme. We then have a BU-
secure but PO-insecure MAC/signature scheme.

In the proof, we only consider the signature schemes. The lemma for MAC is obtained similarly.

Proof. Suppose that we have a BU-secure SIG = (Gen, Sign,Vrfy) whose signature space is S ⊆ {0, 1}𝜆 for

some 𝜆 = 𝜆(𝜅). We construct a new BU-secure signature scheme SIG′ = (Gen, Sign′,Vrfy′) as follows:
– Sign′ (sk, 𝑚): Generate 𝜎 ← Sign(sk, 𝑚), and output 𝜎′ B (𝜎, 0).
– Vrfy′ (vk, 𝑚, 𝜎′): Parse 𝜎′ = (𝜎, 𝑏) with 𝑏 ∈ {0, 1} and output dec B Vrfy(vk, 𝑚, 𝜎).

Note that the new signature space is S′ ⊆ {0, 1}𝜆+1.
(BU security:) This new signature scheme is stillBU-secure becausewe can construct an adversaryA breaking

theBU security of SIG if there exists an adversaryA′ breaking theBU security of SIG′.A is defined as follows:

On input vk, it runsA′ on input vk. For a hash query to the random oracle, it passes the query to its random

oracle and returns the result. It also implements the blinded signing oracle |𝐵𝜖 Sign′⟩ for A′ as follows: For
a signing query |𝑚⟩ |𝑦⟩ |𝑦′

0
⟩ |𝑦′

1
⟩ to 𝐵𝜖 Sign′, where 𝑦 ∈ {0, 1}𝜆, 𝑦′

0
, 𝑦′

1
∈ {0, 1},

1. query |𝑚⟩ |𝑦⟩ |𝑦′
1
⟩ to its signing oracle |𝐵𝜖 Sign⟩

2. receive |𝑚⟩ |𝑦 ⊕ 𝜎⟩ |𝑦′
1
⊕ 𝑏𝜎⟩, where 𝜎∥𝑏𝜎 is 𝜎∥0 or ⊥ = 0

𝜆∥1
3. return |𝑚⟩ |𝑦 ⊕ 𝜎⟩ |𝑦′

0
⟩ |𝑦′

1
⊕ 𝑏𝜎⟩.

This perfectly simulates 𝐵𝜖 Sign
′
. IfA′ outputs𝑚 and (𝜎, 𝑏) with 𝑏 ∈ {0, 1},A outputs𝑚 and𝜎 as a forgery.

(PO insecurity:) On the other hand, this new signature scheme is PO-insecure: If we obtain a signature 𝜎′ =
(𝜎, 0) on a message 𝑚 by querying to |Sign⟩, we can output two valid distinct pairs of message and siganture,

(𝑚, (𝜎, 0)) and (𝑚, (𝜎, 1)). ⊓⊔

Remark C.1. On their security definition of MAC, Boneh and Zhandry [BZ13a] wrote that “After issuing 𝑞

quantum chosen message queries the adversary wins the game if it can generate 𝑞+1 valid classical message-

tag pairs.” just before Def.1 (EUF-qCMA).While there is an ambiguity of distinctness, we treat it as 𝑞+1 distinct
pairs, since they reviewed sEUF-CMA security of MAC as the classical security definition.

Refuting that BU implies quadratic PO: The above example can be used to show that there exists BU-seucre

but quadratic PO-insecure MAC, while Alagic et al. showed that BU implies quadratic PO [AMRS18].

Let 𝑎 = 𝜔(lg(𝜅)). Suppose we have a BU-secure MAC scheme MAC = (Gen, Sign,Vrfy). We then construct

a new BU-secure MAC schemeMAC′ = (Gen, Sign′,Vrfy′) as follows:
– Sign′ (sk, 𝑚): Generate 𝜎 ← Sign(sk, 𝑚), and output 𝜎′ B (𝜎, 0).
– Vrfy′ (sk, 𝑚, 𝜎′): Parse 𝜎′ = (𝜎, 𝑏) with 𝑏 ∈ {0, 1}𝑎 and output dec B Vrfy(sk, 𝑚, 𝜎).

This new signature scheme is still BU-secure because we can construct an adversary breaking the BU security

of MAC if there exists an adversary breaking the BU security of MAC′. On the other hand, given 𝑘 pairs of

distinct messages and corresponding tags, it is easy to construct 𝑐𝑘2 (≤ 𝑘2𝑎) distinct valid pairs of messages

and tags when 𝑐𝑘 ≤ 2
𝑎 = 2

𝜔 (lg(𝜅))
.

Summary: As we exemplified, BU security does not imply PO security. What we should ask is the relation

between sBU security and PO security and the relation between BU security and weakened PO security,

where the adversary is required to output 𝑞 + 1 distinct messages and their corresponding signatures/tags.

D Blinded Unforgeability of Signature from Lossy Identification

The security proof for msEUF-CMA1 security can be used to show sBU security of DFS𝐵,wz [LID,H, PRF].

30

Theorem D.1 (sBU security of DFS𝐵,wz [LID,H, PRF]). Let 𝐵 ≥ 0. Let H : M ×W → C be a hash function
modeled as a random oracle. Let LID be a lossy identification scheme that is 𝜌-complete, 𝜖

zk
-HVZK, and 𝜖ℓ -lossy,

and has (𝛼, 𝜖𝑚)-commitment min-entropy. Let DS B DFS𝐵,wz [LID,H, PRF].
Then, for a quantum adversary A breaking the sBU security of DS that issues at most 𝑞𝐻 quantum queries to
the random oracle H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery oracle,
there exist a quantum F

prf
-oracle adversary A

prf
against pseudorandomness of PRF and quantum F -oracle

adversaries A
ind

against key indistinguishability of LID and Acur against computationally unique response of
LID such that

AdvsbuDS,A (𝜅) ≤ AdvprPRF,A
prf

(𝜅) + AdvcurLID,Acur

(𝜅) + Advind-keyLID,A
ind

(𝜅) + 8(𝑞 + 1)2 (1 − 𝜌′)

+ 8𝑞𝐵2−
−𝛼−1

2 + 7𝜖𝑚 + 4
√︃
(6𝑞)3𝐵𝜖

zk
+ 2𝑞𝐹2−𝛼 + 8(𝑞 + 1)2𝜖ℓ ,

Time∗ (A
prf
) = Time(A) + (𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + Time(𝐵𝜖))

Mem∗ (A
prf
) = Mem(A) +𝑂 (Mem(LID)) +𝑂 (Mem(𝐵𝜖))

Time∗ (A
ind
) = Time(A) + 𝑞 · 𝑂 (𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖))

Mem∗ (A
ind
) = Mem(A) +𝑂 (𝐵Mem(LID)) +𝑂 (Mem(𝐵𝜖))

Time∗ (Acur) = Time(A) + 𝑞 · 𝑂 (𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖))
Mem∗ (Acur) = Mem(A) +𝑂 (𝐵Mem(LID)) +𝑂 (Mem(𝐵𝜖)),

where 𝑞 = 𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹 , 𝜌′ is defined as in subsection 3.2, Fprf = Func(M ×W×Z,P) × Func(M ×W, C),
and F = Func(M ×W ×Z,P) × Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Roadmap: We define thirteen games G𝑖 for 𝑖 ∈ {0, 1, . . . , 12} to show our theorem. Let𝑊𝑖 denote the event

that the experiment outputs true in G𝑖 .
The proof of sBU security involves quantum singing oracle and the filter 𝐵𝜖 . Fortunately, we can take the

same approach as the proof of msEUF-CMA1 security (Theorem 4.1).

The original security game is denoted by G0, in which the prover in GetTrans is derandomized by PRF.
Hence, we replace this PRF with RF in G1. We modify the games as in the previous proof. In G7, GetTrans

is simulated by the simulator Sim and the winning condition is V(vk, 𝑤∗, 𝑐∗, 𝑧∗), where 𝑐∗ = H(𝑚∗, 𝑤∗),
and (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 . In G8, we modify the winning condition as whether V(vk, 𝑤∗, 𝑐∗, 𝑧∗), where 𝑐∗ =
H(𝑚∗, 𝑤∗), and (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 , and (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) or not. We can argue that this modification

introduces only a negligible change, as in the previous proof. After that, we continue to modify the games

until G11. We finally replace a normal verification key vk with a lossy one in G12.

Game G0: This is the original game. See Figure 14 for a concrete definition of G0, where we expand the Sign
algorithm and H is implemented by a random function RFH. We have

Pr[𝑊0] = AdvsbuDS,A (𝜅).

Game G1: We replace PRF with RFP in the prover in GetTrans.

By straightforward argument, we have the following lemma:

Lemma D.1. There exists a quantum F -oracle adversary A
prf

such that

|Pr[𝑊0] − Pr[𝑊1] | ≤ AdvprPRF,A
prf

(𝜅),

Time∗ (Acur) = Time(A) + (𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + Time(𝐵𝜖))
Mem∗ (Acur) = Mem(A) +𝑂 (Mem(LID)) +𝑂 (Mem(𝐵𝜖)),

where F = Func(M × C ×Z,P) × Func(M ×W, C).

Game G2: We next let GetTrans output all transcripts instead of the last one. The signing oracle also takes
the last one as a candidate for a signature. We have

G1 = G2.

31

G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}
1 : (vk, sk) ← Gen(1𝜅)
2 : RF𝐵 ← Func(M ×W ×Z,P)
3 : RFH ← Func(M ×W, C)
4 : 𝐾 ← {0, 1}𝜅 // G0

5 : RFP ← Func(M × [𝐵],RP1) // G1–

6 : win B false

7 : run A |𝐵𝜖 Sign⟩,Forge, |H⟩ (vk)
8 : return win

𝐵𝜖 Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
1 : (𝑤, 𝑐, 𝑧) ← GetTrans(𝑚) // G0–G1

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚) // G2–

3 : (𝑤, 𝑧) B (𝑤 (𝑘) , 𝑧 (𝑘)) // G2–

4 : if 𝑧 = ⊥ ∨ (𝑚, (𝑤, 𝑧)) ∈ 𝐵𝜖 then

5 : return 𝜎 B ⊥
6 : else return 𝜎 B (𝑤, 𝑧)

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚) // G4

2 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖) // G4

3 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥
2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) ← P1 (sk;PRF(𝐾, (𝑚, 𝑘)) // G0

4 : (𝑤 (𝑘) , 𝑠) B P1 (sk;RFP (𝑚, 𝑘)) // G1–

5 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘))
6 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠)
7 : 𝑘 B 𝑘 + 1
8 : 𝑘 B 𝑘 − 1 // cancel the last increment

9 : return (𝑤, 𝑐, 𝑧) B (𝑤 (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) // G0–G1

10 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] // G2–

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗) // G3–

2 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ // G3–

3 : 𝑐′ B H(𝑚∗, 𝑤∗)
4 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) then // Vrfy passed

5 : if (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 then

6 : win B true

Fig. 14. G𝑖 for 𝑖 ∈ {0, 1, 2, 3, 4}

32

A1

1 : (vk, sk) ← GenLID (1𝜅)
2 : compute Bsk,𝐵 ⊆ Csk,𝐵 ⊆ (RP1 × C)

𝐵

3 : ∀𝑚 ∈ M, 𝜆sk (𝑚) B 𝜆sk = #B𝐵sk/#Csk,𝐵
4 : return {𝜆sk (𝑚)}𝑚∈M , vk, sk

A |𝑔⟩
2
(vk, sk,RFH)

1 : RF𝐵 ← Func(M ×W ×Z,P)
2 : RF′H ← Func(M ×W, C)
3 : RFU ← Func(M,RU)
4 : win B false; �̂� B ⊥
5 : simulate 𝐵𝜖 Sign, Forge, and H

6 : run A |𝐵𝜖 Sign⟩,Forge, |H⟩ (vk)
7 : return �̂�

Samp : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ 𝛾⟩
1 : if 𝑔(𝑚) = 1 then

2 : ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) B U(Bsk,𝐵;RFU (𝑚))
3 : else ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) B U(Csk,𝐵 \ Bsk,𝐵;RFU (𝑚))
4 : return 𝛾 B ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵))

RFP : |𝑚, 𝑘⟩ |𝑦⟩ ↦→ |𝑚, 𝑘⟩ |𝑦 ⊕ 𝑟⟩
1 : ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) B Samp(𝑚)
2 : return 𝑟𝑘

RFH : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐⟩
1 : ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) B Samp(𝑚)
2 : comptue 𝑤𝑖 B P1 (sk, 𝑟𝑖) for 𝑖 = 1, . . . , 𝐵

3 : if ∃𝑖 : 𝑤𝑖 = 𝑤 then return 𝑐𝑖
4 : else return 𝑐 B RF′H (𝑚, 𝑤)

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐⟩
1 : return 𝑐 B RFH (𝑚, 𝑤)

𝐵𝜖 Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
1 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

2 : if 𝑧 (𝑘) = ⊥ ∨ (𝑚, (𝑤 (𝑘) , 𝑧 (𝑘))) ∈ 𝐵𝜖 then

3 : return 𝜎 B ⊥

4 : else return 𝜎 B (𝑤 (𝑘) , 𝑧 (𝑘))

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥

2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) ← P1 (sk;RFP (𝑚, 𝑘))

4 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘))

5 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠)
6 : 𝑘 B 𝑘 + 1
7 : 𝑘 B 𝑘 − 1

8 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘]

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

2 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then

3 : �̂� B 𝑚∗; return Ⅎ // detect Bad

4 : 𝑐∗ B H(𝑚∗, 𝑤∗)
5 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true then

6 : if (𝑚∗, (𝑐∗, 𝑧∗)) ∈ 𝐵𝜖 then

7 : win B true

Fig. 15. Adversary A
gspb

= (A1,A2) against GSPB. The set of consistent sequences Csk,𝐵, the set of bad sequences Bsk,𝐵,
and an algorithm U are defined in the proof text.

33

Game G3: We next modify the forge oracle as follows: Before checking the validity of submitted query

(𝑚∗, 𝜎∗), it generates its own signature (�̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) by using GetTrans(𝑚∗). If GetTrans(𝑚∗) fails
to output a valid signature, then the forge oracle returns the special symbol Ⅎ.

Lemma D.2. Let Bad be the event that the oracle Forge returns the symbol Ⅎ. Suppose that LID is (𝛾, 𝛽)-correct
and has (𝛼, 𝜖𝑚)-commitment min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3] | ≤ Pr[Bad] ≤ 8(𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 + 1)2 (1 − 𝜌′) + 𝜖𝑚

We give the proof since we omitted the corresponding proof in PO security (Lemma 5.2).

Proof. To make a proof simple, we first eliminate the bad event that the key generation algorithm outputs

a bad key pair (vk, sk) making the min-entropy of commitment less than 𝛼. This elimination introduces an

additional difference 𝜖𝑚.

We define some terminology. In order to simulate RFP and RFH, we consider an algorithm Samp that takes

𝐵 samples of a pair of randomness of P1 and challenge in (RP1 × C)𝐵. For a signing key sk, we say that a

sequence of 𝐵-samples ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) ∈ (RP1 × C)𝐵 is consistent if

∀𝑖, 𝑗 ∈ [𝐵] : 𝑤𝑖 = 𝑤 𝑗 =⇒ 𝑐𝑖 = 𝑐 𝑗 , where (𝑤𝑖 , 𝑠𝑖) B P1 (sk, 𝑟𝑖).

Let Csk,𝐵 be the set of all consistent sequences. We say that a consistent sequence is bad if 1) the signing

algorithm using it fails to generate a signature with 𝑧 ≠ ⊥ or 2) the signing algorithm using it succeeds to

output a signature which is invalid. Let Bsk,𝐵 be the set of all bad sequences. Formally, it is defined as

Bsk,𝐵 B
{
((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) ∈ Csk,𝐵 |

(𝑤𝑖 , 𝑠𝑖) B P1 (sk, 𝑟𝑖), 𝑧𝑖 B P2 (sk, 𝑤𝑖 , 𝑐𝑖 , 𝑠𝑖) :
(∀𝑖 ∈ [𝐵] : 𝑧𝑖 = ⊥) ∨ (∃𝑖 ∈ [𝐵] : 𝑧𝑖 ≠ ⊥ ∧ V(vk, 𝑤𝑖 , 𝑐𝑖 , 𝑧𝑖) = false)

}
.

By the definition of (𝛾, 𝛽)-correctness of LID and the discussion in subsection 3.2, we have

Exp

(vk,sk)

[
#Bsk,𝐵/#Csk,𝐵

]
≤ 1 − 𝜌′ .

For a finite set S, U is a probabilistic sampling algorithm that returns 𝑠← S. For convenience, we define the
output of U(∅) as ⊥.4
Let us construct an unbounded adversary A

gspb
= (A1,A2) against GSPB defined in Figure 15. The first

adversary A1 outputs a set of bounds {𝜆sk (𝑚)}, vk, sk, where 𝜆sk (𝑚) = 𝜆sk = #Bsk,𝐵/#Csk,𝐵. The value

of function 𝑔 on 𝑚 is selected according to Ber𝜆sk . The second adversary A2 tries to output 𝑚∗ on which

GetTrans fails to output a valid signature.

We first consider the success probability of A
gspb

by fixing (vk, sk) and H. Let us verify the distributions

of 𝑟1, . . . , 𝑟𝐵 in RFP and 𝑐1, . . . , 𝑐𝐵 ∈ RFH. In Samp, if we took a random sample of a sequence from the

set Csk,𝐵, then the distributions were perfectly simulated. Instead of this, we check the value of 𝑔(𝑚), and
if it is 1, then we take a bad sequence uniformly at random; otherwise, we take a good sequence uniformly

at random. Since the probablity that 𝑔(𝑚) takes 1 with probability 𝜆sk = #Bsk,𝐵/#Csk,𝐵, the distribution of

Samp is perfect and the distribution of RFP and RFH are the same as those in G2 and G3.

We then check A’s forgery. If �̂� is set as 𝑚∗, then the adversary submits 𝑚∗ such that 𝑚∗ induces a bad

sequence. Hence, 𝑔(𝑚∗) = 1 and A
gspb

wins the game. Thus, we have

Pr[Bad | vk, sk] = Pr[GSPB𝜆sk ,Agspb
= 1 | vk, sk] ≤ 8(𝑞 + 1)2𝜆sk ,

where 𝑞 is the number of queries to 𝑔 ofA2, which is 𝑞 ≤ (𝑞𝑆+𝑞𝐹) ·(# of queries by GetTrans)+𝑞𝐻 ≤ (𝑞𝑆+
𝑞𝐹) ·2𝐵+𝑞𝐻 . We note that we can reduce the number of queries to 𝑔 by preparing ((𝑟1, 𝑐1), . . . , (𝑟𝐵, 𝑐𝐵)) B
Samp(𝑚) at the first steps of GetTrans and Forge and the best bound is 𝑞 ≤ 𝑞𝑆 + 𝑞𝐹 + 𝑞𝐻 .
Averaging this inequality over keys, we obtain

Pr[Bad] ≤ 8(𝑞 + 1)2 · Exp

(vk,sk)
[𝜆sk] ≤ 8(𝑞 + 1)2 · (1 − 𝜌′)

Since |Pr[𝑊2] − Pr[𝑊3] | ≤ Pr[Bad], we obtain the bound in the lemma as we wanted. ⊓⊔

Game G4: We next modify the random oracle as follows: On a query (𝑚, 𝑤), the oracle first computes

the transcripts. If the input 𝑤 is equivalent to one of 𝑤 (𝑖) , then it returns 𝑐′ B 𝑐 (𝑖) ; otherwise, it returns
𝑐′ B RFH (𝑚, 𝑤). See G4 in Figure 14 (and Figure 16) for the details. Since 𝑐 (𝑖) = RFH (𝑚, 𝑤 (𝑖)) in GetTrans,

this modification changes nothing and we have

G3 = G4.

4
But, this never occurs.

34

G𝑖 for 𝑖 ∈ {4, 5, 6, 7}
1 : (vk, sk) ← Gen(1𝜅)
2 : RF𝐵 ← Func(M ×W ×Z,P)
3 : RFH ← Func(M ×W, C)
4 : RF′H ← Func(M × [𝐵], C) // G6–

5 : RFP ← Func(M × [𝐵],RP1) // G4–G6

6 : RFS ← Func(M × [𝐵],RSim) // G7

7 : win B false

8 : run A |𝐵𝜖 Sign⟩,Forge, |H⟩ (vk)
9 : return win

𝐵𝜖 Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if 𝑧 (𝑘) = ⊥ ∨ (𝑚, (𝑤 (𝑘) , 𝑧 (𝑘))) ∈ 𝐵𝜖 then

4 : return 𝜎 B ⊥
5 : else return 𝜎 B (𝑤 (𝑘) , 𝑧 (𝑘))

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ // G5–

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖)

4 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥
2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : (𝑤 (𝑘) , 𝑠) ← P1 (sk;RFP (𝑚, 𝑘)) // G4–G6

4 : 𝑐 (𝑘) B RFH (𝑚, 𝑤 (𝑘)) // G4–G5

5 : 𝑐 (𝑘) B RF′H (𝑚, 𝑘) // G6–

6 : 𝑧 (𝑘) B P2 (sk, 𝑤 (𝑘) , 𝑐 (𝑘) , 𝑠) // G4–G6

7 : (𝑤 (𝑘) , 𝑧 (𝑘)) B Sim(vk, 𝑐 (𝑘) ;RFS (𝑚, 𝑘)) // G7

8 : 𝑘 B 𝑘 + 1
9 : 𝑘 B 𝑘 − 1
10 : L𝑚 B {𝑤 (𝑖) }𝑖∈[𝑘] // G5–

11 : if Coll(L𝑚) then return Ⅎ // G5–

12 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘]

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

2 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

3 : 𝑐∗ B H(𝑚∗, 𝑤∗)
4 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) then // Vrfy passed

5 : if (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 then

6 : win B true

Fig. 16. G𝑖 for 𝑖 ∈ {4, 5, 6, 7}

35

G𝑖 for 𝑖 ∈ {8, 9, 10, 11, 12}
1 : (vk, sk) ← GenLID (1𝜅) // G8–G11

2 : vk ← LossyGenLID (1𝜅) // G12

3 : RF𝐵 ← Func(M ×W ×Z,P)
4 : RFH ← Func(M ×W, C)
5 : RF′H ← Func(M × [𝐵], C)
6 : RFS ← Func(M × [𝐵],RSim)
7 : win B false

8 : run A |𝐵𝜖 Sign⟩,Forge, |H⟩ (vk)
9 : return win

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 : if GetTrans(𝑚∗) = Ⅎ then return Ⅎ

2 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

3 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

4 : L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] ;L′𝑚∗ B {𝑤
(𝑖) }𝑖∈[𝑘−1]

5 : if ∃𝑖 : 𝑤∗ = �̃� (𝑖) then 𝑐∗ B 𝑐 (𝑖) else 𝑐∗ B RFH (𝑚∗, 𝑤∗)
6 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true ∧ (𝑚∗, (𝑐∗, 𝑧∗)) ∈ 𝐵𝜖
7 : ∧ (𝑐∗, 𝑧∗) ≠ (𝑐 (𝑘) , 𝑧 (𝑘)) then
8 : win B true // G8

9 : if (𝑤∗ ∉ L′𝑚∗) ∨ (𝑤
∗ ∈ L′𝑚∗ ∧ 𝑐

∗ = RFH (𝑚∗, 𝑤∗)) then // G9

10 : win B true // G9

11 : if (𝑤∗ ∉ L𝑚∗) ∨ (𝑤∗ ∈ L′𝑚∗ ∧ 𝑐
∗ = RFH (𝑚∗, 𝑤∗)) then // G10

12 : win B true // G10

13 : if 𝑤∗ ≠ �̃� (𝑘) ∧ 𝑐∗ = RFH (𝑚∗, 𝑤∗) then // G11–G12

14 : win B true // G11–G12

Fig. 17. G𝑖 for 𝑖 ∈ {8, 9, 10, 11, 12}. We expand the computation of H in Forge. The definitions of 𝐵𝜖 Sign, H, GetTrans are
those in G7 in Figure 16.

Game G5: The next game introduces a collision check for 𝑤 (𝑖) ’s in GetTrans. Since the min-entropy of

𝑤 (𝑖) is 𝛼-bit with probability 1 − 𝜖𝑚, on each invocation of GetTrans, the collision occurs with probability

at most 𝐵2 · 2−𝛼−1. As Lemma 4.1, we have the following lemma using the one-sided O2H lemma.

Lemma D.3. Suppose that LID has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have that

|Pr[𝑊4] − Pr[𝑊5] | ≤ 𝛿4,5 B 2(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹) · 𝐵 · 2
−𝛼−1

2 + 𝜖𝑚.

GameG6: We next modify how to compute 𝑐 (𝑘) inGetTrans, in which it is computed as RF′H (𝑚, 𝑘) instead
of RFH (𝑤 (𝑘) , 𝑚). We note that this does not change the adversary’s view because RF′H is a random function,

and if 𝑤 = 𝑤 (𝑖) for the query (𝑚, 𝑤), then consistent 𝑐′ = 𝑐 (𝑖) = RF′H (𝑚, 𝑖) is output by H. (Note that

excluding the collision is crucial [DFPS23].)

Game G7: We next modify GetTrans to use the simulation algorithm. See G7 in Figure 7 for the details. As

Lemma 4.2, we have the following lemma.

Lemma D.4. Suppose that LID is 𝜖
zk
-HVZK. Then, we have

|Pr[𝑊6] − Pr[𝑊7] | ≤ 𝛿6,7 B
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝐵𝜖zk.

Game G8: We next modify the winning condition in Forge: After checking V(vk, 𝑤∗, 𝑐∗, 𝑧∗), where 𝑐∗ =
H(𝑚∗, 𝑤∗), it sets flag win as true if (𝑚∗, (𝑤∗, 𝑧∗)) ∉ 𝐵𝜖 and (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)). See G8 in Figure 17.

We note that this modified condition equals that introduced in G8 for the msEUF-CMA1 security (Theo-

rem 4.1). Thus, similarly, we obtain the following lemma.

Lemma D.5. Suppose that LID is 𝜖
zk
-HVZK and has (𝛼, 𝜖𝑚)-commitment min-entropy. Then, we have

|Pr[𝑊7] − Pr[𝑊8] | ≤ 𝛿7,8 B 𝑞𝐹 · 2−𝛼 + 𝜖𝑚 + 𝛿4,5 + 𝛿6,7.

Proof. The difference occurs if the adversary queries a valid pair of message and signature (𝑚∗, (𝑤∗, 𝑧∗)) ∈
𝐵𝜖 such that (𝑤∗, 𝑧∗) = (�̃� (𝑘) , 𝑧 (𝑘)). If (𝑚∗, (�̃� (𝑘) , 𝑧 (𝑘))) is not in 𝐵𝜖 , then this contradicts with the require-
ment (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 . Thus, (𝑚∗, (�̃� (𝑘) , 𝑧 (𝑘))) should be blinded by 𝐵𝜖 . This means that the adversary

cannot obtain the signature (�̃� (𝑘) , 𝑧 (𝑘)) on 𝑚∗ from the blinded signing oracle 𝐵𝜖 Sign. Thus, the adversary

succeeds to guess 𝑤∗ = �̃� (𝑘) without knowing �̃� (𝑘) .
Let Bad𝑖 be the event that in G𝑖 the adversary submit (𝑚∗, (𝑤∗, 𝑧∗)) such that V(vk, 𝑤∗𝑐,∗ , 𝑧∗) = true,
(𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 , and (𝑤∗, 𝑧∗) = (�̃� (𝑘) , 𝑧 (𝑘)) which implies 𝑤∗ = �̃� (𝑘) . We then have Pr[Bad3] =

36

𝑞𝐹 · 2−𝛼 + 𝜖𝑚 since in G2 there is no leakage of �̃�
(𝑘)

from H and LID has (𝛼, 𝜖𝑚)-commitment min-entropy.

As in the proof of Lemma 4.3, we have

|Pr[𝑊7] − Pr[𝑊8] | ≤ Pr[Bad7] ≤ |Pr[Bad7] − Pr[Bad3] | + Pr[Bad3]
≤ 𝛿4,5 + 𝛿6,7 + 𝑞𝐹 · 2−𝛼 + 𝜖𝑚

as we wanted. ⊓⊔

Game G9: To ease the notation, let L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] which are the 𝑤 parts of the transcripts generated

by GetTrans(𝑚∗). We additionally define L′
𝑚∗ B {𝑤

(𝑖) }𝑖∈[𝑘−1] .

Lemma D.6. We have that
|Pr[𝑊8] − Pr[𝑊9] | ≤ 𝛿4,5 + 𝛿6,7 + 𝛿7,8.

Proof. In G9, Forge additionally check if 𝑤∗ ∈ L′
𝑚∗ or not; if so, we additionally checks whether 𝑐∗ =

RFH (𝑚∗, 𝑤∗) or not. The two games may differ if the adversary queries 𝑤∗ = 𝑤 (𝑖) for 𝑖 < 𝑘 but 𝑐∗ ≠

RFH (𝑚∗, 𝑤∗) in G8. We call this event Bad𝑖 in G𝑖 . As in the proof of Lemma 4.4, we have

|Pr[𝑊8] − Pr[𝑊9] | ≤ Pr[Bad8] ≤ |Pr[Bad8] − Pr[Bad3] | + Pr[Bad3]
≤ 𝛿4,5 + 𝛿6,7 + 𝛿7,8 + Pr[Bad3] .

Notice that, in G3, 𝑐
∗ = RFH (𝑚∗, 𝑤∗) always holds and Bad3 never occurs. Thus, we obtain the bound as we

wanted. ⊓⊔

Game G10: We then treat the case 𝑤∗ = �̃� (𝑘) as a special case to exclude CUR. To do so, we replace the

condition 𝑤∗ ∉ L′
𝑚∗ with 𝑤

∗ ∉ L𝑚∗ . See G10 in Figure 17 for the details.

Because of this modification, if the adversary queries (𝑚∗, (𝑤∗, 𝑧∗)) satisfying (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)), 𝑤∗ =
�̃� (𝑘) , then two games differ. This is easily treated by the CUR property.

Lemma D.7. There exists a quantum F -oracle adversary Acur such that

|Pr[𝑊9] − Pr[𝑊10] | ≤ AdvcurLID,Acur

(𝜅),

Time∗ (Acur) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖)),
Mem∗ (Acur) = Mem(A) +𝑂 (𝐵Mem(LID)) +𝑂 (Mem(𝐵𝜖)),

where F = Func(M × C ×Z,P) × Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Since the proof is straightforwardly obtained, we omit it.

GameG11: We again modify the conditions in Forge inG10: Forge checks if (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 , (𝑤∗, 𝑧∗) ≠
(�̃� (𝑘) , 𝑧 (𝑘)), 𝑤∗ ≠ �̃� (𝑘) , and 𝑐∗ = RFH (𝑚∗, 𝑤∗) or not. If so, the flag is set as true. See G11 in Figure 17 for

the details.

Lemma D.8. We have G10 = G11.

Proof. Let us consider a valid forgery (𝑚∗, (𝑤∗, 𝑧∗)) ∈ 𝐵𝜖 satisfying (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)).
If 𝑤∗ ∈ L′

𝑚∗ , then there is no diference on the condition 𝑐∗ = RFH (𝑚∗, 𝑤∗) in both games. If 𝑤∗ = �̃� (𝑘) , then
win is kept the same in both games. If 𝑤∗ ∉ L𝑚∗ , then we have 𝑐∗ = RFH (𝑚∗, 𝑤∗); both flags in G10 and G11

are set true because 𝑐∗ = RFH (𝑚∗, 𝑤∗). Summarizing those three cases, both games are the same. ⊓⊔

Game G12: We finally replace a normal verification key with a lossy verification key. See G12 in Figure 17

for the details.

Lemma D.9. There exists a quantum F -oracle adversary A
ind

such that

|Pr[𝑊11] − Pr[𝑊12] | ≤ AdvindkeyLID,A
ind

(𝜅),

Time∗ (A
ind
) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (𝐵Time(LID) + 𝐵2 + Time(𝐵𝜖)),

Mem∗ (A
ind
) = Mem(A) +𝑂 (𝐵Mem(LID)) +𝑂 (Mem(𝐵𝜖)),

where F = Func(M × C ×Z,P) × Func(M ×W, C) × Func(M × [𝐵], C) × Func(M × [𝐵],RSim).

Since the proof is obtained by a straightforward reduction, we omit it.

37

A1

1 : vk ← LossyGenLID (1𝜅)
2 : foreach 𝑤 ∈ W :

3 : compute set Gvk (𝑤) ⊆ C
4 : 𝜆′vk (𝑤) B #Gvk (𝑤)/#C
5 : foreach 𝑚 ∈ M : 𝜆𝑣𝑘 (𝑚, 𝑤) B 𝜆′vk (𝑤)
6 : return {𝜆vk (𝑚, 𝑤)}𝑚∈M,𝑤∈W , vk

A |𝑔⟩
2
(vk)

1 : RF𝐵 ← Func(M ×W ×Z,P)
2 : RFU ← Func(M ×W,RU)
3 : RF′H ← Func(M × [𝐵], C)
4 : RFS ← Func(M × [𝐵],RSim)
5 : win B false; �̂� B ⊥; �̂� B ⊥
6 : simulate 𝐵𝜖 Sign, Forge, H, and RFH

7 : run A |𝐵𝜖 Sign⟩,Forge, |H⟩ (vk)
8 : if win = true then

9 : return (�̂�, �̂�)
10 : else return ⊥

RFH : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐⟩
1 : if 𝑔(𝑚, 𝑤) = 1 then

2 : 𝑐 B U(Gvk (𝑤);RFU (𝑚, 𝑤))
3 : else 𝑐 B U(C \ Gvk (𝑤);RFU (𝑚, 𝑤))
4 : return 𝑐

𝐵𝜖 Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑚 ⊕ 𝜎⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if 𝑧 (𝑘) = ⊥ ∨ (𝑚, (𝑤 (𝑘) , 𝑧 (𝑘))) ∈ 𝐵𝜖 then

4 : return 𝜎 B ⊥

5 : else return 𝜎 B (𝑤 (𝑘) , 𝑧 (𝑘))

H : |𝑚, 𝑤⟩ |𝑦⟩ ↦→ |𝑚, 𝑤⟩ |𝑦 ⊕ 𝑐′⟩
1 : if GetTrans(𝑚) = Ⅎ then return Ⅎ

2 :

{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚)

3 : if ∃𝑖 : 𝑤 = 𝑤 (𝑖) then return 𝑐′ B 𝑐 (𝑖)

4 : return 𝑐′ B RFH (𝑚, 𝑤)

GetTrans(𝑚)
1 : 𝑘 B 1; 𝑧 (0) B ⊥

2 : while 𝑧 (𝑘−1) = ⊥ ∧ 𝑘 ≤ 𝐵 :

3 : 𝑐 (𝑘) B RF′H (𝑚, 𝑘)

4 : (𝑤 (𝑘) , 𝑧 (𝑘)) B Sim(vk, 𝑐 (𝑘) ;RFS (𝑚, 𝑘))
5 : 𝑘 B 𝑘 + 1
6 : 𝑘 B 𝑘 − 1

7 : L𝑚 B {𝑤 (𝑖) }𝑖∈[𝑘]
8 : if Coll(L𝑚) then return Ⅎ

9 : return
{(
𝑤 (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘]

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑤∗, 𝑧∗)
1 : if GetTrans(𝑚∗) = Ⅎ then return Ⅎ

2 :

{(
�̃� (𝑖) , 𝑐 (𝑖) , 𝑧 (𝑖)

)}
𝑖∈[𝑘] ← GetTrans(𝑚∗)

3 : if V(vk, �̃� (𝑘) , 𝑐 (𝑘) , 𝑧 (𝑘)) = false then return Ⅎ

4 : L𝑚∗ B {𝑤 (𝑖) }𝑖∈[𝑘] ;L′𝑚∗ B {𝑤
(𝑖) }𝑖∈[𝑘−1]

5 : if ∃𝑖 : 𝑤∗ = �̃� (𝑖) then

6 : return 𝑐∗ B 𝑐 (𝑖) else 𝑐∗ B RFH (𝑚∗, 𝑤∗)
7 : if V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true ∧ (𝑚∗, (𝑐∗, 𝑧∗)) ∈ 𝐵𝜖
8 : ∧ (𝑤∗, 𝑧∗) ≠ (�̃� (𝑘) , 𝑧 (𝑘)) then

9 : if 𝑤∗ ≠ �̃� (𝑘) ∧ 𝑐∗ = RFH (𝑚∗, 𝑤∗) then
10 : win B true; �̂� B 𝑚∗; �̂� B 𝑤∗

Fig. 18. Adversary A
gspb

= (A1,A2) against GSPB. The set of good challenges Gvk (𝑤) and an algorithm U are defined in

the proof text.

38

Lemma D.10. Suppose that LID is 𝜖ℓ -lossy. Then, we have

Pr[𝑊12] ≤ 8(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹 + 1)2𝜖ℓ .

While we omit the proofs for the cases of msEUF-CMA1 and PO securities because the proofs are the same

as in [KLS18], we here include the proof for sBU security for completeness.

Before giving the proof, we review some terminology.

For a verification key vk and commitment 𝑤 ∈ W, we define the set of good challenges as

Gvk (𝑤) B {𝑐 ∈ C | ∃𝑧 ∈ Z : V(vk, 𝑤, 𝑐, 𝑧) = true}. (1)

In [KLS18, Section 2.3], Kiltz et al. discussed that

Advimp

LID,A (𝜅) ≤ Exp

vk←LossyGenLID (1𝜅)

[
max

𝑤∈W

(
Pr

𝑐←C
[∃𝑧 ∈ Z : V(vk, 𝑤, 𝑐, 𝑧) = true]

)]
= Exp

vk←LossyGenLID (1𝜅)

[
max

𝑤∈W
(#Gvk (𝑤)/#C)

]
and the equality holds when the adversary is optimal by choosing the best 𝑤 ∈ W. Thus, if LID is 𝜖ℓ -losy,

we have

Exp

vk←LossyGenLID (1𝜅)

[
max

𝑤∈W
(#Gvk (𝑤)/#C)

]
≤ 𝜖ℓ . (2)

Proof. We follow the proof by Kiltz et al. [KLS18, Theorem 3.4]. For a finite setS,U is a probabilistic sampling

algorithm that returns 𝑠← S. For convenience, we define the output of U(∅) as ⊥.5
Let us construct an unbounded adversary A

gspb
= (A1,A2) against GSPB. The first adversary A1 outputs

a set of bounds {𝜆vk (𝑚, 𝑤)} and vk. The value of function 𝑔 on (𝑚, 𝑤) is selected according to Ber𝜆vk (𝑚,𝑤) .
The second adversary A2 tries to output (𝑚∗, 𝑤∗) as in Figure 18. We first consider the success probability

of A
gspb

by fixing vk. Let us verify the distribution of 𝑐 in L.1–3 in RFH. We note that 𝑔(𝑚, 𝑤) = 1 with

probability 𝜆vk (𝑚, 𝑤) = #Gvk (𝑤)/#C. We have

Pr[𝑐 = 𝑐] =
{
𝜆vk (𝑚, 𝑤) · 1

#Gvk (𝑤) (𝑐 ∈ #Gvk (𝑤))
(1 − 𝜆vk (𝑚, 𝑤)) · 1

#C−#Gvk (𝑤) o.w.,

which is 1/#C in both cases. Hence, the distribution of 𝑐 in L.1–3 in RFH is uniform over C (as inG11). We then

checkA’s forgery. Since V(vk, 𝑤∗, 𝑐∗, 𝑧∗) = true, where 𝑐∗ = RFH (𝑚∗, 𝑤∗), 𝑐∗ should be a good challenge in
Gvk (𝑤∗). This means that 𝑔(𝑚∗, 𝑤∗) = 1 and A

gspb
wins the game. Thus, we have

Pr[𝑊11 | vk] = Pr[GSPB𝜆vk ,Agspb
= 1 | vk] ≤ 8(𝑞 + 1)2𝜆vk ,

where 𝜆vk B max(𝑚,𝑤) ∈M×W 𝜆vk (𝑚, 𝑤). Averaging this inequality over vk generated by LossyGenLID (1𝜅),
we obtain

Pr[𝑊12] ≤ 8(𝑞 + 1)2 · Exp

vk←LossyGenLID (1𝜅)
[𝜆vk] ≤ 8(𝑞 + 1)2 · 𝜖ℓ

as we wanted, where we used 𝜆vk = max(𝑚,𝑤) 𝜆vk (𝑚, 𝑤) = max𝑤 (#Gvk (𝑤)/#C) and Equation 2. ⊓⊔

E Memory-Tight Proofs for PSF-(P)FDH

E.1 Preimage Sampleable Functions

Definition E.1 (Preimage sampleable function [GPV08]). A family of preimage sampleable functions consists
PSF of the following quadruple of PPT algorithms (GenPSF, F, Inv, Sample):
– GenPSF (1𝜅) → (vk, sk): a key-generation algorithm that on input 1𝜅 outputs a pair of keys (vk, sk).
– F(vk, 𝑥) → 𝑦: a deterministic evaluation algorithm that takes as input vk and 𝑥 ∈ X and outputs 𝑦 ∈ Y.
– Sample(vk) → 𝑥: a sampling algorithm that takes as input vk and outputs 𝑥 ∈ X.
– Inv(sk, 𝑦) → 𝑥: a preimage-sampling algorithm that takes as input sk and 𝑦 ∈ Y and outputs 𝑥 ∈ X.

We define properties of PSF.

5
But, this never occurs.

39

Gen(1𝜅)
1 : (vk, sk) ← GenPSF (1𝜅)
2 : return (vk, sk)

Sign(sk, 𝑚)
1 : ℎ B H(𝑚)
2 : 𝜎 ← Inv(sk, ℎ)
3 : return 𝜎

Vrfy(vk, 𝑚, 𝜎)
1 : ℎ B H(𝑚)
2 : ℎ′ B F(vk, 𝜎)
3 : return Jℎ = ℎ′K

Gen(1𝜅)
1 : (vk, sk) ← GenPSF (1𝜅)
2 : 𝐾 ← {0, 1}𝜅

3 : return (vk, (sk, 𝐾))

Sign((sk, 𝐾), 𝑚)
1 : ℎ B H(𝑚)
2 : 𝑟 B PRF(𝐾, 𝑚)
3 : 𝜎 B Inv(sk, ℎ; 𝑟)
4 : return 𝜎

Vrfy(vk, 𝑚, 𝜎)
1 : ℎ B H(𝑚)
2 : ℎ′ B F(vk, 𝜎)
3 : return Jℎ = ℎ′K

Fig. 19. FDH[PSF,H] (upper) and DFDH[PSF,H, PRF] (lower).

Definition E.2 (Simulatability [CCLM22]).We say that PSF is 𝜖-simulatable if the following two distributions
are 𝜖-close:

𝐷1 : 𝑦 ← Y; 𝑥 ← Inv(sk, 𝑦); return (𝑥, 𝑦)
𝐷2 : 𝑥 ← Sample(vk); 𝑦 B F(vk, 𝑥); return (𝑥, 𝑦).

Definition E.3 (Preimage min-entropy).We say that PSF has 𝛼-preimage min-entropy if for each 𝑦 ∈ Y, the
conditional min-entropy of 𝑥 ← Sample(vk) given F(vk, 𝑥) = 𝑦 is at least 𝛼.

Definition E.4 (Collision resistance). We say that PSF is collision-resistant if for any QPT adversary A, the
following advantage is negligible in 𝜅:

AdvcrPSF,A (𝜅) B Pr[(vk, sk) ← GenPSF (1𝜅); (𝑥, 𝑥′) ← A(vk) : 𝑥 ≠ 𝑥′ ∧ F(vk, 𝑥) = F(vk, 𝑥′)] .

E.2 Signature based on PSF

We review a signature scheme constructed from preimage-sampleable functions (PSF) [BR96, GPV08]. Let

PSF = (GenPSF, F, Inv, Sample) be a family of preimage sampleable functions. The signature scheme obtained

by applying the Full-Domain Hash FDH is depicted in Figure 19. If Inv is derandomized by PRF, then we call

this conversion as DFDH and denote DFDH[PSF,H, PRF]. If we use RF instead of PRF, then we denote it as

DFDH+ [PSF,H,RF]. If we apply RDS in subsection 3.1 to the obtained scheme, then we call the conversion

as PFDH and denote PFDH[PSF,H, 𝜆].

E.3 Multi-Challenge Security for PSF-(P)FDH

While we can use both approaches of Diemert et al. [DGJL21] and Ghoshal et al. [GGJT22], we here use the ap-

proach of Diemert et al. [DGJL21]:We show themsEUF-CMA1 security of FDH[PSF,H] by slightly modifying

the sEUF-CMA proof ofDFDH[PSF,H, PRF] in Boneh et al. [BDF+11] or the BU proof ofDFDH[PSF,H, PRF]
in Chatterjee et al. [CCLM22] and apply Lemma 3.1 to show the msEUF-CMA security of PFDH[PSF,H] =
RDS[FDH[PSF,H], 𝜆] via memory-tight reductions.

Theorem E.1 (msEUF-CMA1 security of FDH[PSF,H]). Let H : M → Y be a random oracle. Let PSF be
a family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let DS B
FDH[PSF,H]. Then, for a quantum adversaryA breaking the msEUF-CMA1 security of DS taht issues at most
𝑞𝐻 quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery
oracle, there exists a quantum F -oracle adversary Acr such that

Advmseuf-cma1

DS,A (𝜅) ≤ AdvcrPSF,Acr

(𝜅) +
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 + 𝑞𝐹 · 2−𝛼,

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF)),

where F = Func(M,RSample).

40

G𝑖 for 𝑖 ∈ {0, 1, 2, 3}
1 : (vk, sk) ← Gen(1𝜅)
2 : RFH ← Func(M,Y) // G0–G1

3 : RFI ← Func(M,RInv) // G1

4 : RFS ← Func(M,RSample) // G2–

5 : Q B ∅ // G0–G2

6 : win B false

7 : run ASign,Forge, |H⟩ (vk)
8 : return win

Sign(𝑚)
1 : if ∃(𝑚, 𝜎) ∈ Q for some 𝜎 then // G0

2 : return 𝜎 // G0

3 : 𝜎 ← Inv(sk,H(𝑚)) // G0

4 : 𝜎 ← Inv(sk,H(𝑚);RFI (𝑚)) // G1

5 : 𝜎 ← Sample(vk;RFS (𝑚)) // G2–

6 : Q B Q ∪ {(𝑚, 𝜎)} // G0–G2

7 : return 𝜎

H : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ ℎ⟩
1 : return ℎ B RFH (𝑚) // G0–G1

2 : return ℎ B F(vk, Sample(vk;RFS (𝑚))) // G2–

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑐∗, 𝑧∗)
1 : ℎ′ B H(𝑚∗) // G0–G2

2 : 𝜎′ B Sample(vk;RFS (𝑚∗)) // G3

3 : ℎ′ B F(vk, 𝜎′) // G3

4 : ℎ∗ B F(vk, 𝜎∗)
5 : if ℎ∗ = ℎ′ then // Vrfy passed

6 : if (𝑚∗, 𝜎∗) ∉ Q then // G0–G2

7 : win B true // G0–G2

8 : if 𝜎∗ ≠ 𝜎′ then // G3

9 : win B true // G3

Fig. 20. G𝑖 for 𝑖 ∈ {0, 1, 2, 3}

Applying Lemma 3.1, we obtain the following corollary.

Corollary E.1 (msEUF-CMA security of PFDH[PSF,H, 𝜆]). Let H : M × {0, 1}𝜆 → Y be a random oracle.
Let PSF be a family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy.
Let DS B PFDH[PSF,H, 𝜆]. Then, for a quantum adversary A breaking the msEUF-CMA security of DS that
issues at most 𝑞𝐻 quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to
the forgery oracle, there exists a quantum F -oracle adversary Acr such that

Advmseuf-cma

DS,A (𝜅) ≤ AdvcrPSF,Acr

(𝜅) +
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 + 𝑞𝐹 · 2−𝛼 + 𝑞2𝑆 · 2

−𝜆,

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF)),

where F = Func(M,RSample).

Game G0: This is the original game of the msEUF-CMA1 security. See G0 in Figure 20. By definition, we

have

Pr[𝑊0] = Advmseuf-cma1

DS,A (𝜅).

Game G1: Next, we derandomize the signing oracle using a random function RFI. By this modification, we

do not need to maintain the list in the signing oracle. We have

G0 = G1.

Game G2: We next modify the signing oracle and the random oracle. In this game, the signing oracle given

𝑚 returns Sample(vk,RFS (𝑚)) and the random oracle given 𝑚 returns F(vk, Sample(vk,RFS (𝑚))). Since
𝑥 ← Sample(vk) conditioned on F(vk, 𝑥) = 𝑦 is By applying Lemma 2.1 with 𝜖-simulatability, we have

|Pr[𝑊1] − Pr[𝑊2] | ≤
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 .

41

Game G3: We finally modify how to update the flag win. In G3, the flag is set true if the submitted forgery

𝜎∗ differs from the expected one 𝜎′.

Lemma E.1. Suppose that PSF has 𝛼-preimage min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3] | ≤ 𝑞𝐹 · 2−𝛼 .

Proof. Suppose that an adversary A submits a valid pair (𝑚∗, 𝜎∗). let 𝜎′ B Sample(vk;RFS (𝑚∗)). Let us
consider two cases:

1. If𝑚∗ is already queried to Sign, then (𝑚∗, 𝜎′) should be contained inQ. Thus the condition (𝑚∗, 𝜎∗) ∉ Q
is equivalent to 𝜎∗ ≠ 𝜎′ and the flags win are the same in the both games.

2. If 𝑚∗ is not queried to Sign, then the two games differ if the adversary submits (𝑚∗, 𝜎′) in G2. Since

the min-entropy of 𝜎′ = Sample(vk;RFS (𝑚∗)) given ℎ∗ = F(vk, Sample(vk;RFS (𝑚∗))) is at least 𝛼, this
event happens with probability at most 𝑞𝐹 · 2−𝛼 .

Thus, we obtain the bound. ⊓⊔

Now, making a memory-tight reduction for collision-resistance of PSF is easy.

Lemma E.2. There exists a quantum F -oracle adversary Acr such that

Pr[𝑊3] ≤ AdvcrPSF,Acr

(𝜅),

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF)),

where F = Func(M,RSample).

Since the reduction is straightforward, we omit it.

E.4 Plus-One Security for PSF-DFDH

The following theorem is obtained by modifying the proof of Boneh and Zhandry [BZ13b, Theorem 3.19].

Theorem E.2 (PO security of DFDH[PSF,H, PRF]). Let H : M → Y be a random oracle. Let PSF be a
family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let DS B
DFDH[PSF,H, PRF]. Then, for a quantum adversary A breaking the PO security of DS that issues at most 𝑞𝐻
quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery oracle,
there exist a quantum F

prf
-oracle adversary A

prf
and a quantum Fcr-oracle adversary Acr and such that

AdvpoDS,A (𝜅) ≤ AdvprPSF,A
prf

(𝜅) + AdvcrPSF,Acr

(𝜅)

+
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 + (𝑞𝑆 + 1)/⌊2𝛼⌋,

Time∗ (A
prf
) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),

Mem∗ (A
prf
) = Mem(A) +𝑂 (𝑞𝐹Mem(PSF)),

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF)),

where F
prf

= Func(M,Y) and Fcr = Func(M,RSample).

The proof becomes memory-tight if we derandomize with the random function RF.

Corollary E.2 (PO security of DFDH+ [PSF,H,RF]). Let H : M → Y be a random oracle. Let PSF be a
family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let DS B
DFDH+ [PSF,H,RF]. Then, for a quantum adversary A breaking the PO security of DS that issues at most 𝑞𝐻
quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery oracle,
there exists a quantum Fcr-oracle adversary Acr and such that

AdvpoDS,A (𝜅) ≤ AdvcrPSF,Acr

(𝜅) +
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 + (𝑞𝑆 + 1)/⌊2𝛼⌋,

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF)),

where Fcr = Func(M,RSample).

42

G𝑖 for 𝑖 ∈ {0, 1, 2}
1 : (vk, sk) ← Gen(1𝜅)
2 : 𝐾 ← {0, 1}𝜅 // G0

3 : RFH ← Func(M,Y) // G0–G1

4 : RFI ← Func(M,RInv) // G1

5 : RFS ← Func(M,RSample) // G2

6 : Q B ∅
7 : run A |Sign⟩,Forge, |H⟩ (vk)
8 : return J#Q > 𝑞𝑆K

Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
1 : 𝜎 B Inv(sk,H(𝑚);PRF(𝐾, 𝑚)) // G0

2 : 𝜎 B Inv(sk,H(𝑚);RFI (𝑚)) // G1

3 : 𝜎 B Sample(vk;RFS (𝑚)) // G2

4 : return 𝜎

H : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ ℎ⟩
1 : return ℎ B RFH (𝑚) // G0–G1

2 : return ℎ B F(vk, Sample(vk;RFS (𝑚))) // G2

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑐∗, 𝑧∗)
1 : ℎ′ B H(𝑚∗)
2 : ℎ∗ B F(vk, 𝜎∗)
3 : if ℎ∗ = ℎ′ then // Vrfy passed

4 : if (𝑚∗, 𝜎∗) ∉ Q then

5 : Q B Q ∪ {(𝑚∗, 𝜎∗)}

Fig. 21. G𝑖 for 𝑖 ∈ {0, 1, 2}

Game G0: This is the original game of the PO security. See G0 in Figure 21. By definition, we have

Pr[𝑊0] = AdvpoDS,A (𝜅).

Game G1: We next replace PRFwith RFI in G1. The straightforward reduction shows the following lemma,

which is memory-loose since we need to maintain Q.

Lemma E.3. There exists a quantum F -oracle adversary A
prf

such that

|Pr[𝑊0] − Pr[𝑊1] | ≤ AdvprPRF,A
prf

(𝜅),

Time∗ (A
prf
) = 𝑂 (Time(A)) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),

Mem∗ (A
prf
) = 𝑂 (Mem(A)) + 𝑞𝐹 · 𝑂 (Mem(PSF)),

where F = Func(M,Y).

Game G2: We next modify the signing oracle and the random oracle. In this game, the signing oracle given

𝑚 returns 𝜎 = Sample(vk,RFS (𝑚)) and the random oracle given 𝑚 returns F(vk, Sample(vk,RFS (𝑚))). By
applying Lemma 2.1 with 𝜖-simulatability, we have

|Pr[𝑊1] − Pr[𝑊2] | ≤
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 .

Game G3: We next modify the winning condition as follows: We introduce a flag win which is set true
if (𝑚∗, 𝜎∗) is valid and 𝜎∗ ≠ Sample(vk;RFS (𝑚∗)) in the oracle Forge. The challenger outputs J#Q >

cnt𝑠K ∧ win instead of J#Q > cnt𝑠K. We have the following lemma as Lemma 5.4 by following the argument

in the proof of [BZ13b, Theorem 3.19].

Lemma E.4. Suppose that PSF has 𝛼-preimage min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3] | ≤ (𝑞𝑆 + 1)/⌊2𝛼⌋ .

Proof. The two games differ if the adversary submits at least (𝑞𝑆 + 1) distinct pairs of message/signature

{(𝑚∗
𝑖
, Sample(vk;RFS (𝑚∗𝑖)))}𝑖 . Since PSF has 𝛼-preimage min-entropy, even if the adversary knows ℎ∗ =

H(𝑚∗) = F(vk, Sample(vk;RFS (𝑚∗))), the min-entropy of Sample(vk;RFS (𝑚∗)) is at least 𝛼. Thus, applying
Lemma 2.2, this event happens with probability at most (𝑞𝑆 + 1)/⌊2𝛼⌋. ⊓⊔

43

G𝑖 for 𝑖 ∈ {2, 3, 4}
1 : (vk, sk) ← Gen(1𝜅)
2 : RFS ← Func(M,RSample)
3 : Q B ∅ // G2–G3

4 : win B false // G3–G4

5 : run A |Sign⟩,Forge, |H⟩ (vk)
6 : return J#Q > 𝑞𝑆K // G2

7 : return J#Q > 𝑞𝑆K ∧ win // G3

8 : return win // G4

Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
1 : return 𝜎 B Sample(vk;RFS (𝑚))

H : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ ℎ⟩
1 : return ℎ B F(vk, Sample(vk;RFS (𝑚)))

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑐∗, 𝑧∗)
1 : ℎ′ B H(𝑚∗)
2 : ℎ∗ B F(vk, 𝜎∗)
3 : if ℎ∗ = ℎ′ then // Vrfy passed

4 : if (𝑚∗, 𝜎∗) ∉ Q then // G2–G3

5 : Q B Q ∪ {(𝑚∗, 𝜎∗)} // G2–G3

6 : if 𝜎∗ ≠ Sample(vk;RFS (𝑚∗)) then // G3–G4

7 : win B true // G3–G4

Fig. 22. G𝑖 for 𝑖 ∈ {2, 3, 4}

Game G4: The challenger outputs the flag win in this game. We can remove the list Q. Since we relax the

condition and this relaxation cannot be detected by the adversary, we have

Pr[𝑊3] ≤ Pr[𝑊4] .

Constructing an adversary finding a collision for F(vk, ·) is easy.

Lemma E.5. There exists a quantum F -oracle adversary Acr such that

Pr[𝑊4] ≤ AdvcrPSF,Acr

(𝜅),

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF)),

where F = Func(M,RSample).

Since the reduction is straightforward, we omit it.

E.5 Strong Blinded Unforgeability for PSF-DFDH

While Chatterjee et al. [CCLM22] showed the BU security of PSF-DFDH via memory-loose reductions, we

here show stronger security (sBU security) with memory-tight reduction. The proof is obtained by slightly

modifying their proof for the BU security.

Theorem E.3 (sBU security of DFDH[PSF,H, PRF]). Let H : M → Y be a random oracle. Let PSF be a
family of preimage-sampleable functions that is 𝜖-simulatable and has 𝛼-preimage min-entropy. Let DS B
DFDH[PSF,H, PRF]. Then, for a quantum adversaryA breaking the sBU security of DS that issues at most 𝑞𝐻
quantum queried to H, 𝑞𝑆 classical queries to the signing oracle, and 𝑞𝐹 classical queries to the forgery oracle,
there exist a quantum F

prf
-oracle adversary A

prf
and a quantum Fcr-oracle adversary Acr such that

AdvsbuDS,A (𝜅) ≤ AdvprPRF,A
prf

(𝜅) + AdvcrPSF,Acr

(𝜅)

+
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 + 𝑞𝐹 · 2−𝛼,

Time∗ (A
prf
) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF) + Time(𝐵𝜖)),

Mem∗ (A
prf
) = Mem(A) +𝑂 (Mem(PSF)) +Mem(𝐵𝜖)),

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF) + Time(𝐵𝜖)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF) +Mem(𝐵𝜖)),

where F
prf

= Func(M × X,P) × Func(M,Y) where Fcr = Func(M × X,P) × Func(M,RSample).

44

G𝑖 for 𝑖 ∈ {0, 1, 2, 3}
1 : (vk, sk) ← Gen(1𝜅)
2 : 𝐾 ← {0, 1}𝜅 // G0

3 : RF𝐵 ← Func(M × X,P)
4 : RFH ← Func(M,Y) // G0–G1

5 : RFI ← Func(M,RInv) // G1

6 : RFS ← Func(M,RSample) // G2–

7 : win B false

8 : run A |𝐵𝜖 Sign⟩,Forge, |H⟩ (vk)
9 : return win

𝐵𝜖 Sign : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ 𝜎⟩
1 : 𝜎 B Inv(sk,H(𝑚);PRF(𝐾, 𝑚)) // G0

2 : 𝜎 B Inv(sk,H(𝑚);RFI (𝑚)) // G1

3 : 𝜎 B Sample(vk;RFS (𝑚)) // G2–

4 : if (𝑚, 𝜎) ∈ 𝐵𝜖 then

5 : return 𝜎 B ⊥
6 : else return 𝜎

H : |𝑚⟩ |𝑦⟩ ↦→ |𝑚⟩ |𝑦 ⊕ ℎ⟩
1 : return ℎ B RFH (𝑚) // G0–G1

2 : return ℎ B F(vk, Sample(vk;RFS (𝑚))) // G2–

Forge(𝑚∗, 𝜎∗) where 𝜎∗ = (𝑐∗, 𝑧∗)
1 : ℎ′ B H(𝑚∗) // G0–G2

2 : 𝜎′ B Sample(vk;RFS (𝑚∗)) // G3

3 : ℎ′ B F(vk, 𝜎′) // G3

4 : ℎ∗ B F(vk, 𝜎∗)
5 : if ℎ∗ = ℎ′ then // Vrfy passed

6 : if (𝑚∗, 𝜎∗) ∉ 𝐵𝜖 then // G0–G2

7 : win B true // G0–G2

8 : if (𝑚∗, 𝜎∗) ∉ 𝐵𝜖 ∧ 𝜎∗ ≠ 𝜎′ then // G3

9 : win B true // G3

Fig. 23. G𝑖 for 𝑖 ∈ {0, 1, 2, 3}

Game G0: This is the original game of the sBU security. See G0 in Figure 23. By definition, we have

Pr[𝑊0] = AdvsbuDS,A (𝜅).

Game G1: We next replace PRF with RFI in G1. The straightforward reduction shows the following lemma.

Lemma E.6. There exists a quantum F -oracle adversary A
prf

such that

|Pr[𝑊0] − Pr[𝑊1] | ≤ AdvprPRF,A
prf

(𝜅),

Time∗ (A
prf
) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF) + Time(𝐵𝜖)),

Mem∗ (A
prf
) = Mem(A) +𝑂 (Mem(PSF) +Mem(𝐵𝜖)),

where F = Func(M × X,P) × Func(M,Y).

GameG2: We next modify the signing oracle and the random oracle. In this game, the signing oracle given𝑚

returns𝜎 = Sample(vk,RFS (𝑚)) (on unfiltered𝑚) and the randomoracle given𝑚 returns F(vk, Sample(vk,RFS (𝑚))).
By applying Lemma 2.1 with 𝜖-simulatability, we have

|Pr[𝑊1] − Pr[𝑊2] | ≤ 𝛿1,2 B
√︃
(6(𝑞𝑆 + 𝑞𝐻 + 𝑞𝐹))3𝜖 .

Game G3: We finally modify how to update the flag win. In G3, the flag is set true if the submitted forgery

𝜎∗ is different from the expected one 𝜎′ and (𝑚∗, 𝜎∗) ∉ 𝐵𝜖 .

Lemma E.7. Suppose that PSF has 𝛼-preimage min-entropy. We have

|Pr[𝑊2] − Pr[𝑊3] | ≤ 𝑞𝐹 · 2−𝛼 .

Proof. Let (𝑚∗, 𝜎∗) be a query to Forge the adversary made. Let 𝜎′ B Sample(vk;RFS (𝑚∗)). The two games

differ if the adversary submits a valid pair (𝑚∗, 𝜎∗) ∈ 𝐵𝜖 but 𝜎∗ = 𝜎′. Let us consider two cases:

1. If (𝑚∗, 𝜎′) ∉ 𝐵𝜖 , then this contradicts with (𝑚∗, 𝜎′) = (𝑚∗, 𝜎∗) ∈ 𝐵𝜖 . Thus, we do not need to consider
this case.

2. If (𝑚∗, 𝜎′) ∈ 𝐵𝜖 , then the adversary cannot know 𝜎′ from 𝐵𝜖 Sign. Due to 𝛼-preimage min-entropy of

PSF, the probability that 𝜎∗ = 𝜎′ is at most 𝑞𝐹 · 2−𝛼 .
Thus, we obtain the bound. ⊓⊔

45

Now, making a memory-tight reduction for collision-resistance of PSF is easy.

Lemma E.8. There exists a quantum F -oracle adversary Acr such that

Pr[𝑊3] ≤ AdvcrPSF,Acr

(𝜅),

Time∗ (Acr) = Time(A) + (𝑞𝐻 + 𝑞𝑆 + 𝑞𝐹) · 𝑂 (Time(PSF) + Time(𝐵𝜖)),
Mem∗ (Acr) = Mem(A) +𝑂 (Mem(PSF) +Mem(𝐵𝜖)),

where F = Func(M × X,P) × Func(M,RSample).

Since the reduction is straightforward, we omit it.

46

	Introduction
	Contributions

	Preliminaries
	Lemmas on Quantum Computations
	Adversaries with Access to Random Functions
	Lossy Identification

	Digital Signature
	From CMA1 Security to CMA Security
	Signature from Lossy Identification

	Multi-Challenge Security of Signature from Lossy Identification
	Proof of Theorem

	Plus-One Unforgeability of Signature from Lossy Identification
	Proof of Theorem

	Missign Definitions
	Instantiations of Lossy Identification
	Lossy Identification Scheme based on Pseudorandom Group Action
	Lossy Identification Scheme based on CSIDH
	Lossy Identification Scheme based on Lattices

	Relation Between Blinded Unforgeability and Plus-One Unforgeability
	Blinded Unforgeability of Signature from Lossy Identification
	Memory-Tight Proofs for PSF-(P)FDH
	Preimage Sampleable Functions
	Signature based on PSF
	Multi-Challenge Security for PSF-(P)FDH
	Plus-One Security for PSF-DFDH
	Strong Blinded Unforgeability for PSF-DFDH

