
Byzantine Agreement Decomposed:
Honest Majority Asynchronous Total-Order Broadcast from

Reliable Broadcast

Simon Holmgaard Kamp and Jesper Buus Nielsen

Aarhus University⋆

{kamp,jbn}@cs.au.dk

Abstract. It is well-known that Asynchronous Total Order Broadcast (ATOB) requires randomisation
and that at most t < n/3 out of n players are corrupted. This is opposed to synchronous total-order
broadcast (STOB) which can tolerate t < n/2 corruptions and can be deterministic. We show that
these requirements can be conceptually separated, by constructing an ATOB protocol which tolerates
t < n/2 corruptions from blackbox use of Common Coin and Reliable Broadcast. We show the power of
this conceptually simple contribution by reproving, using simpler protocols, existing results on STOB
with optimistic responsiveness and asynchronous fallback. We also use the framework to prove the
first ATOB with sub-quadratic communication and optimal corruption threshold t < n/3, new ATOBs
with covert security and mixed adversary structures, and a new STOB with asymmetric synchrony
assumptions.

1 Introduction

MPC in asynchronous networks is complicated by the fact that a protocol can never wait to receive
inputs from all parties in the presence of faults. [BCG93,Can95] introduce a model for Asynchronous
MPC (AMPC) in which the ideal functionality is a trusted party who receives only the inputs from
a core set of the parties and returns a description of the core set and the result of the computation
using only these inputs. The core set is chosen by an adversarial scheduler but is restricted to
contain at least n− t parties chosen independently of any inputs of honest parties. To realise this
functionality they provide an Agreement on a Core Set (ACS) protocol which is resilient against
t < n/3 corruptions and allows the parties to agree on a set of size at least n − t. In more detail
each party at the beginning of the protocol has a set of size n − t which they send to all other
parties. It keeps adding new elements to the set as they arrive and in each round of the protocol
waits until n− t of the sets from the previous round are included in its currently accumulated set,
then sends its current set. After log n rounds it can be shown that all the accumulated sets share
a common core of size n − t. The proof goes by induction in the number of rounds and crucially
relies on the fact that in each round each party takes the union of sets from n− t = 2t + 1 parties
to conclude that each pair of honest parties will receive at least one set from some common honest
party P, and hence their set in round r will include the set sent by P in round r − 1. Finally each
party runs a Byzantine Agreement (BA) protocol for each party with input 1 iff that party is in its
accumulated set.

Several works stop just before running the BAs and instead follow the pattern of rounds of
all-to-all communication while accumulating local sets with a large common core as a building
block to achieve consensus. Following [AJM+21] we will refer to this design pattern as Gather. One
notable recent example using Gather is the DAG-Rider protocol in [KKNS21], in which they build

⋆ Simon Holmgaard Kamp and Jesper Buus Nielsen are partially funded by The Concordium Foundation.

{kamp,jbn}@cs.au.dk

a DAG of blocks pointing to n− t blocks from the previous round, and for each 4 rounds, called a
wave, rely on the fact that causal past of any n− t blocks in the last round include n− t common
blocks from the first round. This allows them to conclude that a block from the first round of the
wave which is randomly chosen after the wave is completed will be in the DAG of an honest party
with probability at least 2/3. The reason they get away with only 4 rounds of blocks in each wave
and still get a large common core, is that all blocks are sent through Reliable Broadcast[Bra87]
(RB). This means that each pair of blocks will have overlap on least n − 2t ≥ t + 1 of the blocks
referenced from the previous round. This gives rise to an ATOB protocol by running multiple waves
in sequence, flipping a common coin for each iteration and applying an appropriate commit rule.

In this paper we present an asynchronous Gather protocol tolerating t < n/2 corruptions
assuming RB. On a high level it uses the structure of the Gather in [KKNS21] and the round
complexity of [BCG93,Can95] to tolerate more corruptions and a termination condition from the
Gather protocol CSS in [MMNT19,DMM+20] to get constant time complexity. Interestingly, even
though the protocol follows [BCG93,Can95] and runs in log(n) rounds of communication it will
terminate in time O(∆Net), where ∆Net is the actual network delivery time during the execution.
It uses the RB blackbox, so one can instantiate RB in a setting where assumption A holds to
get Gather for the setting where t < n/2 and A holds. Using a generic transformation similar
to [KKNS21] this gives a Total Order Broadcast (TOB) protocol for the same setting. We note
that additional work is needed to get ATOB from Gather compared to previous works as all sub-
protocols must tolerate t < n/2 in the asynchronous model. Typically, if A implies RB it also
implies t < n/2, so overall we get that if we can construct RB from assumption A then we can
also get TOB from A. Our compiler is efficient, so this allows to construct efficient TOB in various
models. In summary we get the following results:

1. In the asynchronous setting in which we assume a ground population of size N with T < N/3
corruptions and a committee of n servers with honest majority we construct a protocol for RB
which has communication linear in N . Using this and subset sampling to elect n servers from
the ground population we get the first ATOB protocol with subquadratic communication and
optimal resilience.

2. In the asynchronous setting we construct a RB that is covert secure against t < n corruptions.
This gives an ATOB protocol with covert security against t < n/2 corruptions.

3. We introduce a new weakly synchronous model, called the asymmetric synchrony assumption
(ASA) model, where each party Pi has its own guess ∆i

Guess at the network delay. The guess is
unknown to the other parties. The only guarantee is that the actual network delay for messages
sent specifically to Pi is smaller than ∆i

Guess. A motivation for the model is ad hoc groups of
parties which want to do TOB and might not share the same assumptions on the network, or
know each other’s assumptions prior to running the protocol. We give an RB for the ASA model
tolerating t < n/2 corruptions. We also consider the weakly ASA (WASA) model, where all
honest guesses at the network delay are sound for all messages sent between all honest parties.

4. We introduce the timeout model, which uses time weakly. Parties do not have clocks, their only
access to time is that they can set a timeout and get a callback at least some ∆Wait seconds later.
They are also not guaranteed to start the protocol at the same time, which makes it easier to
compose the protocol with other protocols. This notion of synchrony is seemingly much easier
to implement in practice as it does not need synchronised clocks nor very precise clocks, merely
a bound on how fast the clock drift. We give an RB for the timeout model tolerating t < n/2
corruptions.

2

5. In the synchronous setting we instantiate an RB which is optimistically responsive, i.e., when
the actual corruption is lower than the maximal tolerated corruption then the latency of the
protocol only depends on the current network delay. Our protocol tolerates t ≤ ts corruptions
and and is optimistic for t ≤ ta(≤ ts) corruptions. It tolerates ts + 2ta < n which is optimal.
This gives an optimistic responsive TOB in which the optimistic condition does not include
having an honest leader. The protocol is secure in the WASA model and the timeout model.
To the best of our knowledge the resulting TOB is the first optimally resilient fallback TOB for
the WASA model and for the timeout model.

6. We give a RB for the ASA model with asynchronous fallback which is secure for 2ts + ta < n
and ta ≤ ts and when either there are at most t ≤ ts corruptions and the network is ASA
synchronous or there are at most t ≤ ta corruptions and the network is fully asynchronous. To
the best of our knowledge the resulting TOB is the first optimally resilient fallback TOB for
the ASA model and for the timeout model. Setting ta = 0 gives the contributions claimed in
Item 3 and Item 4.

7. We finally note that it is an easy corollary of our framework that you can get asynchronous TOB
for a model with mixed adversaries, where there are at most tByz fully Byzantine corruptions,
at most tCrash additional crash-silent errors, and 2tCrash + 3tByz < n.

The above results show the power of a framework where ATOB is implemented with honest majority
given RB, which can then be implemented in different ways.

1.1 Related work

We discuss related work in the context of the specific contributions.

Subquadratic ATOB with Optimal Resilience A noteworthy property of asynchronous protocols tol-
erating significantly more than a third corruption, is that one can securely sample a committee to
perform the task while retaining the optimal resilience against t < n/3 corruptions. This was previ-
ously used in [ACKN23]. Previous solutions to subquadratic BA in the asynchronous [BKLL20,CKS20]
or partially synchronous [GHM+17] setting rely on sampling committees with an honest superma-
jority from a ground population with t < (1− ϵ)n/3 corruptions. As ϵ can be arbitrarily small, the
separation between optimally and “near-optimally” resilient protocols might seem purely theoret-
ical. But the practical implications of picking a small ϵ is that any secure protocol must have a
concretely very large committee. If for instance ϵ = 1/10 (i.e. the corruption in the ground popula-
tion is bounded by 30%) committees need 16037 parties to retain an honest supermajority except
with probability 2−60 (cf. table 1 of [DMM+22]). A recent work [BBK+23] on the concrete security
of Algorand show that a committee of 6000 parties is needed to get 56 bits of security assuming
the parties are sampled from a ground population with less than 1/5 corruption. When assuming
the same corruption in the ground population our protocol would need a committee of 173 parties
to get 60 bits of security, while it would need 653 parties to tolerate up to a third being corrupted
(cf. Table 1).

To instantiate our protocol we need to use a RB, which usually would have all-to-all communi-
cation in a committee with an honest supermajority. However, we construct a RB protocol which
only depends linearly on the size of the ground population that needs honest supermajority while
the remaining communication is done in a committee with honest majority. As a rough sketch: a
sender sends a message to the ground population who threshold signs it and sends their shares

3

back to the sender who then combines the shares and sends it to the committee that will gossip it
among themselves. Our actual implementation is a bit more involved in order to get not only sub-
quadratic but concretely very efficient communication which can be amortized optimal when either
the messages or the ground population is large. This approach is not secure against an adaptive
adversary and it is an open problem if one can get an adaptively secure subquadratic asynchronous
agreement with optimal resilience.

The DAG rider protocol [KKNS21] can achieve amortized communication overhead of O(n)
when blocks include O(n log n) values, i.e., O(n log nκ) bits. This is done by instantiating it with
the RB protocol by Cachin and Tessaro [CT05] which communicates O(n|m| + n2 log nκ) bits to
broadcast a message of length |m|. An important caveat of the amortized complexity of [KKNS21]
is that it only goes through in their model because there is no distinction between clients and
servers. This means that each value sent from a server counts as throughput. If the protocol would
be deployed in a setting in which clients send their messages to servers who broadcast them, then
communication complexity increases by a factor n, as all servers could in the worst case include
the same messages in each round. Our RB protocols uses similar techniques as in [CT05] to get
the communication cost of broadcasting β bits from and to the ground population down to the
amortized optimal O(Nβ) when the protocol consumes on average at least n log(n) messages per
epoch and either the size of the ground population is at least n2 log n or the average messages size
is at least n log(n)κ. The time complexity is expected O(1) network delays as in [KKNS21].

Honest Majority Asynchronous Total-Order Broadcast with Covert Security [AL07] introduces a
notion of covert adversaries in which some parties are Byzantine corrupted but do not want to be
“caught”. Protocols are said to be covert secure if any breach of security will result in the honest
parties detecting a specific party who did not follow the protocol. [AO12] introduce a strengthened
model in which cheating parties are not only detected by an honest party with some probability,
but that party also receives a certificate demonstrating that a party cheated. We informally prove
that we can instantiate asynchronous RB with dishonest majority and covert security with public
verifiability, which in turn gives ATOB for honest majority secure against covert adversaries. The
idea is simple: senders sign their messages which are then flooded. If different messages were signed,
they will eventually meet and the sender is detected as corrupted.

Optimistic Responsiveness Optimistic responsive protocols [PS17] have safety in synchronous net-
works when the number of corruptions is bounded by ts but additionally a latency that only depends
on the actual (unknown) network delay when at most ta < ts parties are corrupted. In some cases
additional optimistic conditions, e.g., a leader being honest, must be met. We provide an optimistic
responsive RB protocol matching the optimal bounds for ta and ts, which in turn gives an optimistic
responsive TOB protocol. As the resulting protocol only retroactively elects a leader, and any valid
leader points to a core set of n − t inputs, the resulting protocol does not impose any restrictions
on the optimistic case besides having at most ta corruptions. The paper [HKL20] considers asyn-
chronous RB protocols with different corruption levels for the different security properties validity,
agreement and termination. This is related, but different as we consider synchronous protocols and
different running times for different thresholds.

Synchronous Consensus with Asynchronous Fallback The concept of synchronous protocols tolerat-
ing ts corruptions and additionally tolerating asynchrony when ta < ts parties are corrupted were
introduced in [BKL19]. It turns out that the protocol used to achieve optimistic responsiveness has

4

synchronous security with asynchronous fallback when adjusting the timeout used and instantiating
it with the optimal bounds for ta and ts in this model. Once more this immediately gives a TOB
protocol with optimal thresholds in this model.

Asymmetric Synchrony Assumptions To the best of our knowledge it is new that one can do TOB
for t < n/2 in the ASA model. The closest related work seems to be [DDFN07] where the authors
consider asymmetric trust in MPC. Each party has its own assumptions on which subsets of the
parties may be corrupted. However, [DDFN07] considers a fully synchronous network proceeding in
rounds, i.e., all parties share assumptions on the network delay, start the protocol at the same time
and have access to clocks to implement a round-based abstraction. Here we relax the model further
and assume that the parties might not even share assumptions on the network delay. We show how to
get TOB in this model. Our protocol has the interesting property that it is responsive in the largest
honest ∆i

Guess, i.e., the corrupted parties cannot do a denial of service attack by proposing artificially
large ∆i

Guess. Asymmetric trust in distributed systems and specifically total-order broadcast was also
studied in [CT19,CZ21,Cac21], but again only the assumptions on corruptions are asymmetric, not
assumptions on network delays.

Mixed Adversaries Mixed adversaries were studied in consensus and MPC before. In [GP92,MP91]
the authors give a consensus protocols for tCrash + 3tByz < n, but for the synchronous model.
In [FHM98] the authors give information theoretic MPC protocols which tolerates mixed adver-
saries. For the asynchronous model 2tCrash +3tByz < n is trivially optimal. An honest party can only
wait to hear from n − t parties without deadlocking, where t = tByz + tCrash. If 2tCrash + 3tByz = n
then two honest parties each hearing from n− t parties may only have an overlap of n− 2t = tByz.
Therefore honest parties can be partitioned and never receive information from each other and still
have to give an output. We are not aware of any concrete ATOB protocol for a mixed model with
2tCrash + 3tByz < n. We do, however, not claim that the feasibility is new. We are highlighting the
construction to show how easy it is to derive an ATOB for 2tCrash + 3tByz < n in our framework.
Getting a RB from 2tCrash + 3tByz < n is trivial, see Section 6.3, and the rest of the construction
does not consider mixed adversaries at all and works for t < n/2, i.e., 2tCrash + 2tByz < n.

Subquadratic AMPC with Optimal Resilience The final result we present is the fairly simple obser-
vation that using our subquadratic ATOB protocol as the broadcast channel in the AMPC protocol
in [Coh16] which only requires honest majority assuming such a broadcast channel, we get AMPC
which can be run by the honest majority committee and hence has subquadratic complexity with
optimal resilience. It has previously been shown that AMPC can be linear in the circuit size[CP15].
[CHL21] focuses on adaptive security and give a protocol with O(n poly(κ)) communication and
near-optimal resilience. But using our approach the communication complexity can be sublinear in
the size of the inputs and subquadratic in the size of the output for computations on many inputs.
Specifically if at least n2 log n members of the ground population give input of combined size β,
and the output has size γ then the communication complexity is O(nβ + nNγ).

2 Network Model and Technical Preliminaries

We use κ to denote the security parameter. We use σ to denote a statistical security parameter,
i.e., for all fixed σ it holds that the security of a protocol is 2−σ + negl(κ) as κ goes to ∞. In the

5

main analysis we assume that σ = Θ(κ) and only use κ. We revisit the distinction between the
parameters in Section 4 when discussing concrete parameters.

We consider protocols for a fixed set of parties G = {G1, . . . , GN}, which we call the ground
population. We assume that at most T < N/3 or these are corrupted. We also consider a small set
of parties S = {S1, . . . , Sn}, which we call the servers. For notational simplicity we assume that
Si = Gi. We assume that at most t < n/2 or these are corrupted. We offer the reader the intuition
that S has been sampled from the set G large enough that T < N/3 implies that t < n/2, except
with negligible probability. We therefore assume that n = O(σ). For simplicity we also assume that
n = Θ(κ) as it allows a more concise analysis in places. In Section 4 we discuss how to set n to
ensure t < n/2 except with probability 2−σ for different security levels σ.

We assume that the parties all have pairwise authenticated channels. We assume an asyn-
chronous communication model where the adversary schedules the delivery of the messages without
any restrictions. We use a simple model of eventuality. We say that event E (like termination of a
protocol) eventually happens (in a protocol with session identifier sid) if it holds that at any point
in time if the event E did not happen for session sid, then there is still a message in transit from
an honest party to an honest party with session identifier sid. Note that a protocol could hack this
definition by having two honest parties P1 and P2 sending back and forth a Ping message forever.
Then by definition all events eventually happen. However, all our protocols generate an expected
finite number of messages and the simple notion of eventually is meaningful for such protocols.

We also consider synchronous protocols. We use the above system model but assume a global
clock c ∈ N incremented by the adversary. We say that the network is ∆Net-synchronous if all
message sent by time c0 by an honest party to a honest party is delivered at time c1 ≤ c0 + ∆Net.
We do not give the parties access to the clock. Instead, when describing synchronous protocols we
will use time via an explicit timeout mechanism. A party can create a timeout of some duration ∆.
We say that the party calls Timeout(name, ∆). It is then guaranteed that the party at some point
in time at least ∆ time units after the call Timeout(name, ∆) will be activated with input name. It
is not guaranteed to happen after exactly duration ∆. We do not assume that parties in a protocol
start at the same time. We call this the timeout model.

We let Lg(n) = ⌈log2(n)⌉. We use an erasure code EC = (Enc, Dec). The encoding of m ∈
{0, 1}(t+1) Lg(n) as (m1, . . . , mn) proceeds as follows. Encode m as (α0, α1, . . . , αt) ∈ GF(2Lg(n))t+1,
let f(x) =

∑t
i=0 αixi, and let mj = f(j) for j = 1, . . . , n. We can decode from t + 1 values (j, mj)

by interpolating f(x) and reading off (α0, α1, . . . , αt). When n = 2t + 1 then clearly |mj | ≤ |m|/n.
We assume a collision resistant hash function Hash. Among other uses we use it to com-

pute a Merkle-tree h = HashTree(m1, . . . , mn) for messages mi. In this context we use Pathi =
Path(m1, . . . , mn, i) to denote the usual path used to prove that mi is consistent with being mes-
sage number i in the tree with root h. We let VerPath be the algorithm verifying that Pathi proves
that mi is in h.

We assume a signature scheme (Gen, Sig, Ver) which is EUF-CMA secure [GMR88] and we
assume a PKI. In some initial synchronous round all parties Gi ∈ G sample (vki, ski) ← Gen(1κ),
sends vki to a trusted third party which makes public (vk1, . . . , vkN). The adversary gets to see vki

for all honest Gi before picking its own keys, and it does not have to pick its own keys at random,
it can use any vkj for a corrupted Gj .

All our definitions and protocols tacitly assumes that a session identifier sid is given to distin-
guish different runs of a protocol. When signing a message in a session with session identifier sid
we tacitly add sid to the signed message to avoid replay attacks.

6

We assume some common setup among G. Initial some PPT algorithm (pv, sv1, . . . , svN) ←
Setup(1κ) is run and (pv, svi) is given to Gi. The secret values can be correlated, for instance a
sharing of a secret key. We do not assume special setup among the servers S. The reason is that
we think of S as having been sampled from G, possibly on the fly. Therefore any specialized setup
for S would reasonably have to be computed on the fly too, and we do not want to hide the cost of
this.

We use a threshold signature scheme with unique signatures (Setup, Sig, Ver, Combine), where
(vk, sk1, . . . , skN)← Setup(1κ) generates a verification key vk and a signing share ski for Gi, Sigski

partially signs m, Ver can verify a partial signature, and Combine computes σ = Sigsk(m) from T +1
verified shares, where T < N/3. Given only T of the signing keys ski the scheme is still EUF-CMA.
A detailed definition can be found in for instance [CKS00].

For one result we assume a threshold fully homomorphic encryption scheme (Setup, Enc, Eval,
Dec, Ver, Combine), where (ek, dk1, . . . , dkN) ← Setup(1κ) generates en encryption key ek and a
decryption share dki for Gi, Encek decrypts, Evalek(f, ·) applies f to the messages in ciphertexts,
Decdkj

(c) = yj produces a partial decryption, Ver verifies a decryption share, and Combine compute
Decdk(c) from T + 1 verified shares, where T < N/3. Given only T decryption keys the scheme is
IND-CPA. A detailed security definition can be found in [Coh16].

2.1 Eventual Justifiers

In our protocols all messages will have a message identifier mid specifying which protocol it belongs
to, what round of the protocol it comes form, sent by whom and so on. Each message identifier mid
specifies a party Pmid, which we think of as the party which is to send the message identified by
mid. Here P is either a server S or a ground member G. Each mid also specifies a so-called justifier
Jmid, which is a predicate depending on the message m and the local state of a party. When we
write pseudo-code then we write Jmid(m) to denote that the party P executing the code computes
Jmid on m using its current state. In definitions and proofs we write Jmid(m, P, t) to denote that
we apply Jmid to m and the local state of P at time t. The following definition is adopted from a
similar definition in [DMM+20].

Definition 1 (Justifier). For a message identifier mid we say that Jmid is a justifier if the fol-
lowing properties hold.

Monotone: If for an honest P and some time t it holds that Jmid(m, P, t) = ⊤ then at all t′ ≥ t
it holds that Jmid(m, P, t′) = ⊤.

Propagating: If for honest P and some point in time t it holds that Jmid(m, P, t) = ⊤, then
eventually the execution will reach a time t′ such that Jmid(m, P′, t′) = ⊤ for all honest parties
P′.

Definition 2 (Justified Protocol). We will work with justified protocols Π. If a protocol has an
input justifier Jin it means that a message identifier mid is associated with the input, Jin = Jmid, and
it is Pmid which gets the input. Furthermore, if Pmid is honest then it is guaranteed that Jin(m) = ⊤
whenever m is input to Pmid. If a protocol has an output justifier Jout it means that a message
identifier mid is associated with the output, Jout = Jmid, it is Pmid which gives the output, and
when it gives the output it sends it to all parties with message identifier mid. Furthermore, if Pmid

is honest then it is a security property of the protocol that Jout(m) = ⊤ whenever m is output by
Pmid.

7

We will sometimes talk about a property holding for all possible justified outputs of a justified
protocol, by which we mean that it holds also for adversarial outputs, as long as these are justified.
These outputs might not have been the output of any party in the protocol, the adversary is free
to cook them up. However, all outputs will be sent, and an output is only considered an output if
it meets Jout. Therefore we can identify adversarial outputs by messages that honest parties would
accept as justified.

Definition 3 (Possible Justified Outputs). Let Π be a protocol with output justifier J . When
we say that an ℓ-ary predicate P holds for all possible justified outputs we mean: Run the pro-
tocol Π under attack by the adversary. At some point the adversary may output a sequence
(P1, mid1, m1), . . . , (Pℓ, midℓ, mℓ). We say that the adversary wins if mid1, . . . , midℓ are identified
with outputs of Π, P1, . . . , Pℓ are honest, for j = 1, . . . , ℓ it holds that Jmidj (mj) = ⊤ at Pj, and
P (m1, . . . , mℓ) = ⊥. Otherwise the adversary looses the game. Any PPT adversary should win with
negligible probability.

Note that since the outputs of a justified protocol are sent to all parties they will become
known by the adversary, and we assume the output mi of all honest parties Pi are justified, i.e.,
Jmidi(mi) = ⊤ at Pmidi at the time of output, we have as a special case that P (m1, . . . , mℓ) = ⊤
for all honest outputs m1, . . . , mℓ, as the adversary can let Pj = Pmidj in the game. However, for
all possible justified outputs implies in addition that the adversary cannot even cook up outputs
which look justified to some honest parties and which does not have the property P .

2.2 Justified Reliable Subcast

We use the notion of reliable broadcast (RB) (cf. [Bra87]). For a message identifier mid we can force
a possible corrupt sender Gs to send a message m associated to mid such that all servers which
receive m will receive the same m. Furthermore, if any honest server receives m then they all receive
m. We look at a version where all parties in G can broadcast but only the subset of parties S ⊆ G
learn the output, so we call it a reliable subcast. Allowing only S to broadcast gives a normal RB
among S. Setting S = G gives a normal reliable broadcast among G.

Definition 4 (Justified Reliable Subcast). A protocol Π for n servers S1, . . . , Sn and N ground
members G1, . . . , GN , where all parties have input mid. The message identifier mid contains the
identity of a sender Gs along with the description of a justifier Jmid. The sender additionally has
input m ∈ {0, 1}∗ for which Jmid(m) = ⊤ at Gs at the time of input.

Validity: If honest Gs has input (mid, m) and an honest Si has output (mid, m′) then m′ = m.
Agreement: For all possible justified outputs (mid, m) and (mid, m′) it holds that m = m′.
Eventual Output 1: If Gs is honest and has input (mid, ·), and all honest Gj start running the

protocol, then eventually all honest Si have output (mid, ·).
Eventual Output 2: If an honest Sj has output (mid, ·), and all honest servers start running the

protocol then eventually all honest Si have output (mid, ·).

If only servers Si are allowed to give inputs then we call Π a RB (for the servers).

We will later give many different implementations of reliable subcast. We will also show how
to get total-order broadcast among S from reliable subcast secure against t < n/2 servers. We will
also need that the servers can reliably broadcast a message “out” to the ground population. In this
case we assume that all servers agree on the message m to be sent. We call this primitive outcast.

8

Definition 5 (Reliable Outcast). A protocol for n servers S1, . . . , Sn and N ground members
G1, . . . , GN , where all parties have input mid. The servers additionally have an already agreed upon
input m ∈ {0, 1}∗.

Validity: If all honest Si have input (mid, m) and an honest Gi has output (mid, m′) then m′ = m.
Eventual Output: If all honest Si have input (mid, m) and start running the protocol, then even-

tually all honest Gi which start running the protocol have an output (mid, ·).

Outcasting is trivial when at most t < n/2 servers are corrupt. First each server takes m
and uses an erasure code to encode it as (m1, . . . , mn) such that it can be decoded using n − t
of the values mi. Using standard techniques and assuming |m| ≥ n log n, this can be done with∑n

i=1 |mi| = O(|m|). Then each server computes a Merkle-Damg̊ard hash tree on (m1, . . . , mn) with
root h. Server Si sends to each Gj the root h and mi and a path hi showing that mi is in leaf i
of the tree with root h. Each ground member Gj waits for n − t identical reports of h and adopts
this value. It was sent by at least one honest server, so it must be correct. Then it waits for n− t
messages mi along with proofs that they are in h. From these n− t values it computes m. We call
this protocol ΠOutcast. This costs communication O(nN log(n)κ+ N |m|). For |m| ≥ n log(n)κ and
n = Θ(κ) this is O(N |m|), which is asymptotically optimal as each ground member has to receive
m. More details are given in Section 4.

2.3 Justified Leader Election

In the following definitions we will often drop the explicit mentioning of message identifiers. They
are tacitly identified by variable names and adding explicit message identifiers gives no more insight.
In addition, in each of the following protocols each party has an additional input sid, the session
identifier, allowing to identify different runs. We often let it be tacit. All security properties are
defined relative to the same sid and all protocol messages tacitly contains sid.

Definition 6 (Justified Leader Election). A protocol for n servers S1, . . . , Sn where the input
of the parties is a fixed symbol elect. The output is j ∈ [n]. There is an output justifier Jout
specified by the protocol.

Liveness: If all honest servers start running the protocol with input elect, then eventually all
honest parties Si have an output.

Validity: For all possible justified outputs j it holds that j ∈ {1, . . . , n}.
Agreement: For all possible justified outputs j and j′ it holds that j = j′.
Unpredictable: If no honest party had input elect yet, then the adversary cannot guess j neg-

ligibly better than at random. In particular, consider the game where the adversary can run the
protocol and at any point in time where no honest party has input elect yet—and at most
once—can output j′. It wins the game if it can continue the execution of the protocol and make
an honest party output j′. No PPT adversary should win this game with probability better than
1/n + negl.

We note that the leader election protocol from [CKS00] works for the asynchronous model with
t < n/2 corruptions if a threshold signature scheme with unique signatures has been set up among
the servers. On (elect, sid) server Si sends its signature share on sid. Given n− t signature shares
a server reconstructs σsid = Sigsk(sid), computes csid = Hash(σsid). Modelling Hash as a random

9

oracle this gives a uniformly random csid unknown until σsid is known, in particular until the first
honest parties gets input elect. This costs communication O(n2κ).

In a setting where we do not want to assume special setup among the servers we can share sk
among the ground population with reconstruction threshold T + 1. On input (elect, sid) a server
Si sends an authenticated (elect, sid) to the ground population. On seeing t + 1 such messages
a ground member sends its signature share to each of the n servers. Given T + 1 of the signature
shares the server can compute the coin as above. This costs communication O(Nnκ). Below we let
elect = Nnκ.

2.4 Causal Cast

We now present a framework for describing protocols for DAG-style protocols (cf. [KKNS21]) in
a modular way and in combination with non-DAG style protocols. In a DAG-style protocol all
messages m are reliably broadcast and they point to the other reliably broadcast messages they
were computed from. Therefore the receiver can recompute and check the message m. In fact,
the message m never has to be sent, the receiver can compute it itself. This allows to compress
the communication complexity. All that needs to be reliably broadcast are the pointers to the
messages used to compute m. This implements reliable, causal communication against a Byzantine
adversary. We will therefore call our system below causal cast (CauCast). Each message m to be
CauCast will have a message identifier mid. The set of message identifiers is divided into four
disjoint sets of free-choice identifiers, computed-message identifiers, leader-election identifiers, and
constant identifiers. We assume that the type of mid can be determined efficiently. Each free-choice,
computed message, and constant identifier mid specifies a sender Smid. Each free-choice identifier mid
specifies an input justifier Jmid

in . Each computed message identifier specifies a next message function
NextMessagemid. This function is PPT and takes as input a set of pairs M = {(midj , mj)}ℓj=1 and
outputs m = NextMessagemid(M), where m = ⊥ indicates that M is not a valid set of inputs
for computing the message for mid. For leader-election identifiers mid we have that mid = sid for a
session identifier sid for a justified leader-election protocol ΠElect with output justifier ΠElect.Jout.
The constant identifiers are just a convenient tool to define that some values on which the servers
already agree have been “delivered”, for instance hardwired values of the protocol.

The system guarantees liveness, agreement on all messages, and that all messages are valid
inputs, valid outputs of a leader election, or computed correctly from other valid messages.

Definition 7 (Causal Cast). A protocol for n servers S1, . . . , Sn is called a causal cast (CauCast)
if it has the following properties.

Free-Choice Send: A server Si can have input (caucast-send, mid, m) where mid is a free choice
identifier Si = Smid and Jmid

in (m) = ⊤ at Smid at the time of input.
Computed-Message Send: A server Si can have input (caucast-send, mid, m, mid1, . . . , midℓ),

where mid is a computed-message identifier, Si = Smid, Si earlier gave
outputs (caucast-del, midj , mj) for j = 1, . . . , ℓ, and ⊥ ≠ m =
NextMessagemid((mid1, m1), . . . , (midℓ, mℓ)).

Constant Send: A server Si can have input (caucast-send, mid, m) where mid is a constant
identifier. In that case it is guaranteed that all servers eventually have the same input
(caucast-send, mid, m).

10

Free-Choice Validity: A server Si can have output (caucast-del, mid, m), where mid is a free-
choice identifier. It then holds that Jmid

in (m) = ⊤ at Si at the time of output. Furthermore, if
Sj = Smid is honest, then Sj had input (caucast-send, mid, m).

Leader Election Validity: A server Si may output (caucast-del, mid, m) where mid is a leader-
election identifier. In that case mid = sid is a session identifier for a justified leader election
and ΠElect.J sid

out(m) at Si at the time of output.
Computed-Message Validity: A server Si can have output

(caucast-del, mid, m, mid1, . . . , midℓ), where mid is a computed-message identifier. In
that case Si earlier gave outputs (caucast-del, midj , mj , . . .) for j = 1, . . . , ℓ, and
⊥ ≠ m = NextMessagemid((mid1, m1), . . . , (midℓ, mℓ)).

Constant Validity: A server Si can have output (caucast-del, mid, m). In that case it immedi-
ately before had input (caucast-send, mid, m).

Liveness: If an honest server Si had input (caucast-send, mid, . . .) or some honest server had
output (caucast-del, mid, . . .) and all honest servers are running the system, then eventually
all honest servers have output (caucast-del, mid, . . .).

Agreement: For all possible justified outputs (caucast-del, mid, m, . . .) and
(caucast-del, mid, m′, . . .) it holds that m′ = m.

Below is a protocol implementing CauCast. It uses a sub-protocol for reliable broadcast (RB)
among the servers and a sub-protocol ΠElect for justified leader election. The protocol ΠElect may
be initialised by other protocols. The CauCast merely reports it outputs—this allows the elections
to be inputs for computed messages in the causal cast system.

Free-Choice Send: On input (caucast-send, mid, m) at Si where mid is a free choice Si will RB
m with message identifier mid.

Computed-Message Send: On input (caucast-send, mid, m, mid1, . . . , midℓ) at Si, where mid
is a computed-message identifier, Si will RB (mid1, . . . , midℓ) with message identifier mid.

Free-Choice Deliver: On RB m from with message identifier mid from Smid where mid is a free-
choice identifier, wait until Jmid

in (m) = ⊤ (possibly waiting forever if this never happens) and
then output (caucast-del, mid, m).

Computed-Message Deliver: On RB (mid1, . . . , midℓ) with message identifier mid from Smid

wait until outputs (caucast-del, midj , mj) were given for j = 1, . . . , ℓ (possibly waiting forever
if this never happens), compute m = NextMessagemid((mid1, m1), . . . , (midℓ, mℓ)), and output
(caucast-del, mid, m, mid1, . . . , midℓ) if m ̸= ⊥.

Leader-Election Deliver: On output (elect, sid, K) from ΠElect output
(caucast-del, sid, K).

Constant Deliver: On input (caucast-send, mid, m) where mid is a constant identifier, output
(caucast-del, mid, m).

Definition 8 (CauCast Conventions). When using CauCast we let the justifier Jmid of a mes-
sage m at Si be that (caucast-del, mid, m, . . .) was output by Si. When describing protocols using
CauCast we assume that all outputs were CauCast and this is how they are justified. Specifically,
the session identifier sid of the protocol specifies a message identifier mid and J sid

out(m) = Jmid(m).
When describing protocols using CauCast we will always as the first instruction CauCast the inputs
of the protocol as a free-choice message. In the typical case where the input x is the output y of
some previous protocol we will by convention have that y = m for some message with message
identifier mid, where m was by convention already CauCast. In that case we do not reCauCast the

11

input x. All servers will by convention know mid and that x = m, so getting input for the protocol
just means waiting for (caucast-del, mid, m) and then letting x = m.

We address communication complexity. We can represent a session identifier sid with κ bits as
we can always hash the session identifiers. We can let all servers Gi number the messages they send
using a counter ci = 1, 2, Then message identifiers can be of the form (sid, i, ci). We do not need
to send sid along with all mid as it is the same for all mid in the protocol. Using that n, N ∈ poly(κ)
and that ci can become at most polynomially large in a poly-time run of the system each mid can
therefore be represented in log(κ) extra bits. We can therefore represent (mid, mid1, . . . , midℓ) as
κ + ℓ log(κ) bits. Therefore the communication complexity is that of reliably broadcasting all free-
choice messages m, the leader elections, plus the complexity of reliably broadcasting κ + ℓ log(κ)
per computed message. In many cases a computed message is computed from n − t outputs of n
possible messages with session identifiers sid1, . . . , sidn known by all servers. In these cases we can
send an n-bit vector indicating the n− t session identifiers to use. Then the communication is only
O(κ + n) = O(κ) bits per computed message. We return to this when analysing the complexity of
concrete protocols below.

Definition 9 (Complexity). We say that a protocol Π using CauCast has (expected communica-
tion) complexity

O(c1 in +c2 rs +c3 rs# +c4elect + c5)

if the following holds in expectation, using the above methods for compression, and under O: c1
is the total number of bits that the protocol needs to reliably subcast1 its inputs, c2 is the total
number of bits that the protocol needs to reliably subcast intermediary values and outputs, c3 is the
number of reliable subcast instances run, c4 is the number of calls to the reliable leader election
primitive, and c5 is the total number of bits sent otherwise. Notice that we count all messages sent
by all servers. By time complexity of a protocol we mean how long wall clock time it takes to run,
measured in units of the longest it takes to deliver a message during the execution, called ∆Net.

The reason why we single out the complexity of inputs is that when we compose protocols, c1 in
falls away if the inputs are outputs of a previous protocol, as their cost is included in rs of that
protocol.

3 Total Order Broadcast from RB and t < n/2

We now present a protocol for total order broadcast. We will here make a distinction between
ground population which can broadcast and the servers holding the ledger.

Definition 10 (Total Order Subcast). A protocol for n servers S1, . . . , Sn and ground population
G1, . . . , GN . There is an input justifier Jin. Each Si holds a list Ledgeri.

Input: Gi get inputs m where Jin(m) = ⊤. We use Scheduled to denote the set of (i, m) such that
m was input at an honest Gi. We use Scheduledt to denote the value of this set at time t.

Liveness: For all honest Si and all times t it holds eventually that Scheduledt ⊆ Ledgeri.
Monotone: For all Si and t′ ≥ t it holds that Ledgert

i ⊏ Ledgert′
i .

Agreement: For all Si and Sj it holds that Ledgert
i ⊏ Ledgert

j or Ledgert
j ⊏ Ledgert

i.
1 I.e., the sum of the length of messages input to a reliable subcast.

12

If the above holds but with each Gi holding Ledgeri and Liveness, Monotone and Agreement holding
for all honest Gi and Gj instead of Si and Sj, then we call the protocol an Total Order Broadcast
(for the ground population).

In this section we build a Total Order Subcast which has communication complexity O(β · rs)
when there is enough traffic, as discussed in detail later. By letting the servers outcast the ledger
to the ground population the complexity becomes O(β · rs +βN) as we can outcast β bits with
complexity βN when outcasting in large enough blocks. The term βN is clearly optimal as all N
ground members need to receive all β bits in Total Order Broadcast. In the following we therefore
focus on presenting and proving the Total Order Subcast. It will be build up via a sequence of
increasingly powerful primitives.

3.1 Justified Gather

We describe and analyse our Justified Gather protocol. We consider protocols where each server
has an input Bi ∈ {0, 1}∗, which we will call a block below.

Definition 11 (block set). A block set is a set of pairs U = {(Sj , Bj)}Sj∈P , where P ⊂ S and
|P | ≥ n− t.

We think of (Sj , Bj) ∈ U as Sj having input Bj . The Gather primitive says that each server Si has
a block set Ui as output and there is a large common core, i.e., a set U of size n − t which is a
subset of each Ui. So all servers to some extend agree on a large set U , but some Si might have
extra elements in Ui and they do not know which are the extra ones.

Definition 12 (Justified Gather). A protocol for n servers S1, . . . , Sn. There is an input justifier
Jin and an output justifier Jout specified by the protocol. All honest Si have an input Bi for which
Jin(Bi) = ⊤ at Si at the time the input is given.

Liveness: If all honest parties start running the protocol with a Jin-justified input then eventually
all honest servers have a Jout-justified output.

Justified Blocks: For all possible justified outputs U and all (potentially corrupt) Si and all
(Si, Bi) ∈ U it holds that Jin(Bi) = ⊤.

Validity: For all possible justified outputs U and all honest Si and all (Si, Bi) ∈ U it holds that Si

had input Bi.
Agreement: For all possible justified outputs U and U ′ and all (Si, Bi) ∈ U and (Si, B′

i) ∈ U ′ it
holds that Bi = B′

i.
Large Core: For all possible justified outputs (U1, . . . , Um) it holds that |

⋂m
k=1 Uk| ≥ n− t.

The protocol works for t < n/2 corruptions and is inspired by the ACS protocol in [Can95] which
worked for t < n/3 corruptions. Making a variant of this protocol work for t < n/2 is central to the
results in this paper. The main observation is that if the sending of sets in [Can95] is replaced by
CauCast then it works for t < n/2. The protocol from [Can95] proceeds via a log(n)-round gather
structure. We add to this gather structure that late original blocks are added when they arrive,
this is the Xr

i sets below. This means that in constant time all honest parties have their blocks
enter the gather structure, which will build a large core in constant time. We then use a termination
condition from the Gather protocol CSS in [MMNT19,DMM+20]. This termination condition allows
detecting that a large core will be build in the ensuing round. This allows terminating no later than

13

when all honest inputs entered the gather structure. This makes the overall protocol constant time.
Note that the protocol might still run in log(n) rounds of communication even though it runs in
constant time. But this requires that the messages of the fastest honest parties are delivered with
delay ∆Net/ log(n) and the slowest honest parties have their messages delivered with delay ∆Net, so
there must be an asymptotic gap in the delays. The protocol is presented in Fig. 1.

1. The input of Si is Bi with Jin(Bi) = ⊤. Server Si CauCasts B0
i = Bi. The message is justified by being

RB’ed by Si and Jin(Bi) = ⊤.
2. Server Si collects incoming B0

j from servers Sj and lets P 1
i be the set of Sj it heard from. It waits until

|P 1
i | ≥ n− t, lets X1

i = P 1
i , lets

U1
i = {(Sj , B0

j)}Sj ∈P 1
i

,

and CauCasts U1
i . The set is justified by being computed as above from justified sets.a

3. For rounds r = 2, . . . server Si proceeds as follows:b
(a) Collects incoming Ur−1

j from servers Sj and lets P r
i be the set of Sj it heard from. It waits until

|P r
i | ≥ n− t.

(b) Lets distr−1(Sk) be the number of Ur−1
j such that (Sk, ·) ∈ Ur−1

j , called the distribution of Sk.
(c) Lets Xr

i be the set of servers Sj from whom Si by now received a justified input B0
j .

(d) Lets
Ur

i =
⋃

Sj ∈P r
i

Ur−1
j ∪ {(Sj , B0

j)}Sj ∈Xr
i

and CauCasts Ur
i . The set is justified by being computed as above from justified values.

4. If in any round r it happens that there are n− t servers Sk with distr−1(Sk) ≥ n− t, then output Ui = Ur
i ,

reliable broadcast the message Stop, and run for one more round and terminate after sending Ur+1
i . The

output Ui = Ur
i is justified by being computed as above from justified sets which have distr−1(Sk) ≥ n− t

for at least n− t servers Sk.
5. If in any round r it happens that n − t servers RB’ed Stop and Si already gave output Ui, then it

terminates.
a Note that Ur

i being a CauCast computed message means that sending bit vectors of Xr
i and P r

i through
reliable broadcast allows the receiver to uniquely compute U i

i .
b We later show that this process terminates in at most log n rounds.

Fig. 1. Protocol ΠGather.

Theorem 1. If t < n/2 then ΠGather is a Justified Gather. If β =
∑n

i=1 |Bi| then it has complexity

O(β in +n log(n) rs# +n2 log(n) rs) .

Let ∆RB be the actual delivery time of an RB while the protocol is run. Then all honest servers give
output within time 4∆RB. In particular, if the RB has constant time complexity then ΠGather has
constant time complexity.

Proof. We argue Justified Blocks. The message Bi is justified by being RB’ed by Si and Jin(Bi) =
⊤. All later messages are justified by justified messages from the previous rounds, and therefore
ultimately each Bi is justified by being RB’ed by Si and Jin(Bi) = ⊤. This also shows Validity.
Agreement follows similarly. For Bi and B′

i to appear as output blocks, they must be justified,
which implies that they were both reliably broadcast by Si. And then they are identical. To argue
liveness and large core we need a helper lemma.

14

We need to analyse the development of the support of the core. A core Cr for round r would
be a set of size at least n − t which is a subset of all justified U r

i . This in particular means it is a
subset of

⋂
Sj∈P r

i
U r

j for all justified P r
i , where we call P r

i justified if all Sj ∈ P r
i sent a justified U r

j .
We say that the core has support σ in round r if it holds for all P r

i of size at most σ that
⋂

Sj∈P r
i

U r
j

has size at least n− t. We let the support of a round r be the largest such σ, i.e.,

Σr = max

σ ≥ 1

∣∣∣∣∣∣
 min

justified P r
i : |P r

i |≤σ

∣∣∣∣∣∣
⋂

Sj∈P r
i

U r
j

∣∣∣∣∣∣
 ≥ n− t

 ,

where we let Σr = 0 if the set is empty.

Lemma 1 (growing core support). Σr ≥ 2r−1.

Proof. We prove the lemma by induction. The basis is r = 1 where U1
i = {(Sj , B0

j)}Sj∈P 1
i
. Note that

it has size n−t by construction and we only consider intersections between sets of size σ = 2r−1 = 1,
so the basis case is trivial. We then assume the induction hypothesis for r and prove it for r + 1.
We have to prove support σ = 2r. Consider a justified set P r+1

i with |P r+1
i | ≤ σ. It is enough to

show that ∣∣∣∣∣∣∣
⋂

Sj∈P r+1
i

U r+1
j

∣∣∣∣∣∣∣ ≥ n− t .

We can pair the 2r servers 2 in P r+1
i into (Sjk,1 , Sjk,2) for k = 1, . . . , 2r−1. For each of these pairs

there exists a server Sjk
such that U r

jk
⊆ U r+1

jk,1
and U r

jk
⊆ U r+1

jk,2
. This is because both U r+1

jk,1
and

U r+1
jk,2

to be justified contain the union of n− t ≥ t+1 justified sets U r
j , and these sets being justified

means that they are reliably broadcast, so since (n − t) + (t + 1) > n one identical U r
j will be a

subset of both U r+1
jk,1

and U r+1
jk,2

. This implies that U r
jk
⊆ U r+1

jk,1
∩ U r+1

jk,2
, which implies that

2r−1⋂
k=1

U r
jk
⊆

2r−1⋂
k=1

(
U r+1

jk,1
∩ U r+1

jk,2

)
.

By the induction hypothesis that round r had support 2r−1 we have that∣∣∣∣∣∣
2r−1⋂
k=1

U r
jk

∣∣∣∣∣∣ ≥ n− t .

By construction
2r−1⋂
k=1

(
U r+1

jk,1
∩ U r+1

jk,2

)
=

⋂
Sj∈P r+1

i

U r+1
j .

This combines to give the desired conclusion. ⊓⊔

Now let ℓ = ⌈log2(n)⌉+ 1. Then Σℓ ≥ 2ℓ−1 ≥ n, which implies that∣∣∣∣∣∣
n⋂

j=1
U ℓ

j

∣∣∣∣∣∣ ≥ n− t .

2 In case |P r+1
i | < σ one can consider inserting copies of one server to pad up to σ for the argument to go through.

15

We first argue Liveness. We do this in two steps. We argue that if no honest server terminates,
then at least one honest server terminates. We then argue that if one honest server terminates, then
all honest servers terminate. Assume for the sake of contradiction that no honest server terminates.
So they all reach round ℓ + 1. Now, clearly for all Sk ∈

⋂n
j=1 U ℓ

j we will have that distℓ(Sk) ≥ n− t

as it will be in all received U ℓ
j in round ℓ + 1. Therefore, in round ℓ + 1 all honest servers will have

n − t servers Sk with dist(Sk) ≥ n − t and will output U ℓ+1
i if they did not already give output.

And then they all run the next round, and then terminate, a contradiction. Assume then that some
honest Si terminates. Let Si be the first honest server to terminate and let ri be the round in which
it happened. Then in round ri − 1 server Si had n − t servers Sk with distri−2(Sk) ≥ n − t. Each
such Sk was in n − t ≥ t + 1 of the sets U ri−2

j . Since all servers in the next round collect n − t

sets U ri−2
j all servers (corrupted and honest) must collect at least one U ri−2

j which contains Sk.
Therefore Sk will be in all justified U ri−1

j . Note that all honest servers run at least until round ri.
In that round they will then all have distri−1(Sk) ≥ n− t for all n− t servers Sk for which Si had
distri−2(Sk) ≥ n− t in round ri−1. Therefore they give output and send Stop. Therefore they will
all eventually see n− t Stop messages and then they terminate.

We then argue Large Core. We argued above that all honest servers terminate. It is clear by
inspection that if an honest server terminates it also gave an output Ui. We have that Ui = U ri

i for
some ri. We argued as part of termination that when the first Si terminated with output Ui = U ri

i

then in round ri−1 the server Si had n− t servers Sk with distri−2(Sk) ≥ n− t and all these servers
ended up in all U ri

j . Therefore these Sk servers will be part of all justified outputs Uj .
We then address the communication complexity. In the first round all the blocks are CauCast,

for a total of β bits. In the next O(log(n)) rounds there are no further free choice inputs. The
servers only need to CauCast P r

i and Xr
i , which can be represented as two n-bit vectors. Sending

the stop signal is asymptotically negligible. We then consider the time complexity. Let ∆RB be the
actual maximum delivery time of an RB while the protocol is run. Within time 2∆RB all honest
Bi will via some Xr

j have entered U r
j at all honest Sj . Let r be the round in which this happens.

In the next round (r + 1), Bi will then be in all justified U r+1
k as all Sk must add in their union

one of the n − t ≥ t + 1 sets U r
j containing Bi. Therefore, in the next round (r + 2) we will have

distr+1(Si) ≥ n− t for all honest Si. And then all honest servers give output. Each round consists
of one round of reliable broadcast, so it takes time at most ∆RB. Therefore, all in all, within 4∆RB

time all honest servers give output. ⊓⊔

3.2 Justified Graded Gather

We describe and analyse our Justified Graded Gather protocol. This is just a Justified Gather,
where each server also has knowledge about the common core. Each Si will output a set Ti of size
at least n− t which is guaranteed to be a subset of the common core U .

Definition 13 (Justified Graded Gather). A protocol for n servers S1, . . . , Sn. There is an
input justifier Jin and an output justifier Jout specified by the protocol. All honest Si have an input
Bi for which Jin(Bi) = ⊤ at Si at the time the input is given.

Liveness: If all honest servers start running the protocol with a Jin-justified input then eventually
all honest servers have a Jout-justified output.

Justified Blocks: For all possible justified outputs (U, T) and all (potentially corrupt) Si and all
(Si, Bi) ∈ U it holds that Jin(Bi) = ⊤.

16

Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, T m)) it holds that T 1 ⊆
⋂m

k=1 Uk.
Validity: For all possible justified outputs (U, T) and all honest Si and all (Si, Bi) ∈ U it holds

that Si had input Bi.
Agreement: For all possible justified outputs (U, T) and (U ′, T ′) and all (Si, Bi) ∈ S and (Si, B′

i) ∈
U ′ it holds that Bi = B′

i.
Large Sub Core: For all possible justified outputs ((U1, T 1), . . . , (Um, T m)) it holds that
|
⋂m

k=1 T k| ≥ n− t.

1. The input of Si is Bi with Jin(Bi) = ⊤. All servers run ΠGather with Si inputting Bi justified by Jin.
2. Server Si waits for output U ′

i and CauCasts U ′
i .

3. Server Si collects U ′
j from servers Sj , lets Pi be the set of Sj it heard from and waits until |Pi| ≥ n− t.

4. Server Si lets
Ui =

⋃
Sj ∈Pi

U ′
j , Ti =

⋂
Sj ∈Pi

U ′
j

CauCasts (Ui, Ti) and outputs (Ui, Ti). The outputs are justified by being computed as above from
justified sets.

Fig. 2. ΠGradedGather

Theorem 2. If t < n/2 then ΠGradedGather is a Justified Graded Gather. If β =
∑n

i=1 |Bi| and
ΠGradedGather uses ΠGather from Fig. 1 as sub-protocol, then it has complexity

O(β in +n2 log(n) rs +n log(n) rs#) .

The time complexity is O(1) times that of the RB used.

Proof. Complexities, Liveness, Justified Blocks, Validity and Agreement follow from the same prop-
erties of Justified Gather. We have that

⋂n
k=1 Tk =

⋂n
k=1

⋂
Sj∈Pi

U ′
j , so Large Sub Core follows from

Large Core of Justified Gather. Sub Core follows from the below lemma.

Lemma 2 (Sub Core). Let (·, Ti) and (Uι, ·) be any possible justified outputs. Then Ti ⊆ Uι.

Proof. It is enough to argue that if (Sk, Bk) ∈ Ti then (Sk, Bk) ∈ Uι. If (Sk, Bk) ∈ Ti then Sk ∈ U ′
j

for all Sj ∈ Pi. Since |Pi| ≥ n − t ≥ t + 1 it follows that any server receiving n − t justified sets
U ′

j will also receive a set U ′
j with Sk ∈ U ′

j . Namely, the sets are reliably broadcast so if two servers
receive justified U ′

j and Û ′
j then U ′

j = Û ′
j . Since all servers collect n − t justified sets U ℓ

· to justify
Uι =

⋃
Sj∈P ℓ

ι
U ℓ

j it follows that (Sj , Bk) ∈ Uι. ⊓⊔

3.3 Justified Graded Block Selection

We now present our graded block selection protocol. Here each server has as input a block Bi and
as output a block Ci. The goal is to let Ci be one of the inputs and to agree on Ci. Since corrupted
servers can pick their own input and we allow that Ci = Bi for a corrupt Si we simply define validity
by saying that the output should be some justified input. Note that this implies that if there is only

17

1. The input of Si is Bi with Jin(Bi) = ⊤.
2. The servers run ΠGradedGather with input Bi and input justifier Jin. Let the output of Si be (Ui, Ti).
3. The servers run a justified leader election to elect a justified king Sk. Each server starts the leader election

only after getting output from the Graded Gather.
4. Server Si outputs

(Ci, gi) =


(Bk, 2) if ∃(Sk, Bk) ∈ Ti

(Bk, 1) if ∃(Sk, Bk) ∈ Ui \ Ti

(Bi, 0) if ∄(Sk, ·) ∈ Ui .

and CauCasts (Ci, gi) and outputs (Ci, gi). The output is justified by being computed as above from
justified values.

Fig. 3. ΠGradedSelectBlock

one possible justified input, then that will become the only justifiable output. We will not always
be able to perfectly agree on the output, instead the output will have a grade g ∈ {0, 1, 2}. The
grades are never more than 1 apart and if the grade is 2 then there was agreement on Ci. Finally,
we want that with some non-zero probability the grade will be 2.

Definition 14 (Justified Graded Block Selection). A protocol for n servers S1, . . . , Sn. There
is an input justifier Jin and an output justifier Jout specified by the protocol. All honest Si have an
input Bi for which Jin(Bi) = ⊤ at the time the input Bi is given. The output of the protocol is a
block Ci justified by Jout.

Liveness: If all honest servers start running the protocol with a Jin-justified input then eventually
all honest servers have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Graded Agreement: For all possible justified outputs (Ci, gi) and (Cj , gj) it holds that |gi−gj | ≤

1. Furthermore, if both gi, gj > 0 then Ci = Cj.
Positive Agreement: There exists α > 0 such that with probability at least α− negl some honest

Si will have output (Ci, gi) with gi = 2.
Stability: If there are possible justified outputs Ci and Cj with Ci ̸= Cj then there exist two

justified inputs Bi and Bj with Bi ̸= Bj.

Theorem 3. If t < n/2 then ΠSelectBlock is a Justified Graded Block Selection. When β =∑n
i=1 |Bi| and when using ΠGradedGather from Fig. 2 as sub-protocol the complexity is

O(β in +n2 log(n) rs +n log(n) rs# + elect) .

Proof. We start with the complexity. The protocol in Fig. 2 has complexity

O(β in +n2 log(n) rs +n log(n) rs#) .

In addition to this ΠSelectBlock only does one leader election. It has to send no more PUJM
information as the justifier for (Ci, gi) is the justified Bi, the justified (Ui, Ti), and the justified Sk,
which have all been CauCast already. Liveness is straight forward. We argue Justified Output. Let
(Ci, gi) be any justified output. If gi = 0 then by definition Ci = Bi is a justified input. If gi > 0
then Bi = Bk for (Sk, Ck) ∈ Ui and therefore Ck is a justified input to the Graded Gather which

18

also used Jin as input justifier. Then use the Justified Blocks property. To argue Graded Agreement
let (Ci, gi) and (Cj , gj) be any justified outputs. To argue that |gi − gj | ≤ 1 it is sufficient to prove
that if gi = 2 then gj ̸= 0. So assume that gi = 2. Then (Sk, Ci) ∈ Tk for some justified Tk.
Therefore, by Sub Core, (Sk, Ci) ∈ Uj , and therefore gj ≥ 1. Assume then that gi, gj > 0. In that
case (Sk, Ci) ∈ Ui and (Sk, Cj) ∈ Uj , so by Agreement of the Graded Gather it follows that Ci = Cj .
We then argue Positive Agreement for α = 1/2. It is sufficient to argue that with probability 1/2
it holds for some honest Si that Sk ∈ Ti. Consider the first honest Si to start running the leader
election. When this happens Ti is already defined, and Sk is unpredictable. Since |Ti| = n− t > n/2
it follows that Sk ∈ Ti with probability at least 1/2−negl. To argue Stability just note that it holds
for both Ci and Cj that they are justified inputs of ΠSelectBlock. ⊓⊔

3.4 Justified Block Selection

We now present our (ungraded) block selection protocol. The difference from graded block selection
is that all possible justified outputs Ci should be identical.

Definition 15 (Justified Block Selection). A protocol for n servers S1, . . . , Sn. There is an
input justifier Jin and an output justifier Jout. All honest Si have an input Bi for which Jin(Bi) = ⊤
at the time the input was given. The output of the protocol is a block Ci justified by Jout.

Liveness: If all honest servers start running the protocol with a Jin-justified input then eventually
all honest servers have a Jout-justified output.

Justified Output: Jin(Ci) = ⊤ holds for all possible Jout-justified outputs Ci.
Agreement: For all possible justified outputs Ci and Cj it holds that Ci = Cj.

1. The input of Si is Bi with Jin(Bi) = ⊤. It initialises GaveOutputi = ⊥.
2. Let B0

i = Bi and g0
i = 0 and CauCast (B0

i , g0
i), which is justified if Jin(B0

i) = ⊤ and g0
i = 0.

3. For rounds r = 1, . . . the servers run ΠGradedSelectBlock where:
(a) Si has input Br−1

i .
(b) The input of Si is justified by a justified (Br−1

i , gr−1
i).

(c) Si eventually gets justified output (Br
i , gr

i).
4. In addition to the above loop each Si runs the following echo rules:

– In the first round r where GaveOutputi = ⊥ and gr
i = 2, set GaveOutputi = ⊤ and output Ci = Br

i .
The output justifier is the justifier for (Br

i , gr
i).

– In the first round r where GaveOutputi = ⊥ and where some justified (Bρ
j , gρ

j) propagated from
Sj ̸= Si with gρ

j = 2, set GaveOutputi = ⊤, and output Ci = Bρ
j . The output justifier is the justifier

for (Bρ
j , gρ

j).

Fig. 4. ΠSelectBlock

Theorem 4. If t < n/2 then ΠSelectBlock is a Justified Select Block Protocol. When β =
∑n

i=1 |Bi|
and using the protocol ΠGradedSelectBlock from Fig. 3 as sub-protocol the complexity is

O(β in +n2 log(n) rs +n log(n) rs# + elect) .

19

Proof. We start with the complexity. In Step 2 the servers need only CauCast the inputs Bi as
B0

i and g0
i can be computed from Bi. This gives β in. Each run of ΠGradedSelectBlock from Fig. 3

has complexity O(n2 log(n) rs +n log(n) rs# +elect), where we ignore the in component as we
are CauCasting computed values which have known message identifiers. Besides this the protocol
only CauCasts computed values for which the receiver knows the message identifier, so there is no
more information to CauCast. The protocol terminates in expected O(1) rounds as argued below.
This gives the desired complexity. Liveness follows from Positive Agreement: at some point some
honest server will have gr

i = 2 and then the protocol will eventually terminate by construction of
the echo rules. Justified Outputs is clear by the Justified Output rule of ΠGradedSelectBlock which
maintains that Jin(Br

i) = ⊤ for all r. We then argue Agreement. Assume that some Si outputs Ci.
Then it saw a justified (Br

j = Ci, 2). Let r be the smallest r for which a justified (Br
j , 2) was seen

by an honest server. Then by graded agreement all justified (Br
j , g) for round r will have Br

j = Ci.
Therefore, by Stability, it holds for all justified (Bρ

j , g) for rounds ρ ≥ r that Bρ
j = Ci. Now consider

any other honest server Sk which outputs Ck. Then it saw some justified (Br′
j = Ck, 2). Since we

picked r to be minimal we have that r′ ≥ r. From this it follows that Br′
j = Ci. Ergo Cj = Ci. ⊓⊔

3.5 Justified Agreement on a Core Set

We then present a protocol for Justified Agreement on a Core Set (JACS). It just lets each server
propose a set and then picks n− t of them.

Definition 16 (Justified Agreement on a Core Set). A protocol for n servers S1, . . . , Sn with
input and output justifiers Jin and Jout. All honest Si have an input Bi for which Jin(Bi) = ⊤ at
the time of input.

Liveness: If all honest servers start running the protocol with a Jin-justified input then eventually
all honest servers have a Jout-justified output.

Validity: For all possible Jout-justified outputs U and all honest Si and all (Si, Bi) ∈ U it holds
that Si had input Bi.

Justified Blocks: For all possible justified outputs U and all (potentially corrupt) Si and all
(Si, Bi) ∈ U it holds that Jin(Bi) = ⊤.

Agreement: For all possible justified outputs Ui and Uj it holds that Ui = Uj.
Large Core: For all possible justified outputs U it holds that |S| ≥ n− t.

1. The input of Si is Bi with Jin(Bi) = ⊤.
2. Server Si CauCasts Bi. This message is justified by Jin(Bi) = ⊤ and Bi having been reliably broadcast

by Si.
3. Server Si collects at least n− t justified Bj from servers Sj ∈ Pi and lets Ui = {(Sj , Bj)}Sj ∈Pi . This value

is justified by each Bj being justified and |Ui| ≥ n− t. CauCast Ui.
4. Run ΠSelectBlock where Si inputs Ui. The input justifier of ΠSelectBlock is to check that Ui is justifiable

as defined in the above step.
5. Server Si gets output Ci from ΠSelectBlock and outputs Ci. The output justifier is that Ci is a justified

output from the above ΠSelectBlock.

Fig. 5. Protocol to Agree on a Core Set ΠACS

20

Theorem 5. If t < n/2 then ΠACS is a JACS protocol. When β =
∑n

i=1 |Bi| and when using
ΠSelectBlock from Fig. 4 as sub-protocol the complexity is

O(β in +n2 log(n) rs +n log(n) rs# + elect) .

Proof. Safety and liveness properties follows directly from those of ΠSelectBlock. We address the
complexity. The CauCast of Bi costs β in. CauCasting Ui costs n2 rs to specify the sets Pi. Running
ΠSelectBlock from Fig. 4 costs expected O(n2 log(n) rs +n log(n) rs# + elect), where we ignore
the in component as it is run on computed messages. There are no further costs. ⊓⊔

3.6 Total Order Subcast

We now give a protocol for total order subcast assuming reliable subcast. The protocol uses an
erasure code with reconstruction from n− t code words out of n. It also uses a PKI for G. We first
discuss some hairy details of how transactions are collected to not clutter the protocol description
with these.

Definition 17 (Transaction identifiers, Blocks, Message Sets). The first item establishes
a FIFO delivery on reliable broadcast of transactions. The second item establishes a causal order
on transaction sets using vector clocks. The last item collects all messages in the causal past of a
transaction set.

– In the ΠTOS protocol the servers will send around so-called transaction identifier (j, cj) iden-
tifying transaction number cj by Gj. We say that (j, cj) is justified at Si if it saw that some
(j, cj , mj) was reliable subcast by Gj and cj = 1 or (j, cj − 1) is similarly justified at Si. This
means that the transaction identifiers become justified in order cj = 1, 2, . . . and that when (j, cj)
is justified, the message mj is known. Let Msg(j, cj) = mj.

– Servers Si will send out (and relay) blocks (Be
i , we

i), where e is an epoch number, Be
i is a set of

transaction identifiers (j, cj), and we
i = (v1

i , . . . , vn
i) is a vector clock. The set Be

i is justified at Sk

if all (j, cj) ∈ Be
i are justified and Sk already received previous blocks ((Bv1

i
1 , w

v1
i

1), . . . , (Bvn
i

n , w
vn

i
n))

from (S1, . . . , Sn) which are similarly justified.3
– Justified blocks define message sets as follows. For justified Be

i let Msg(Be
i) =

{Msg(j, cj)|(j, cj) ∈ Be
i }. Let Msg(B0

i , w0
i) = ∅ and for e > 0 and justified (Be

i , we
i) let

Msg(Be
i , we

i) = Msg(Be
i) ∪

⋃n
j=1 Msg(Bvj

i
j , w

vj
i

j).

Theorem 6. If t < n/2 then protocol ΠTOS is a total order subcast. When β is the total bit-length
of all inputs, ι is the number of inputs, and ρ is the number of epochs in the protocol, and when
using ΠACS from Fig. 5 as sub-protocol, and assuming that on average inputs have length at least
κ log(κ), the communication complexity is

O
(
β rs +ι · rs# +ρ ·

(
n2 log(n) rs +n log(n) rs# + elect

))
.

Proof. The ledger is clearly monotone. Consider Agreement. By Agreement of ΠACS there is agree-
ment on U e. As Msg is a function this implies agreement on M e, and thus agreement on Ledger

3 The blocks with e = 0 are empty and always justified, so the recursion ends at e = 0.

21

Init: All Si lets Ledgeri = (), Scheduledi = ∅, OnGoingi = ⊥, and ei = 0. Define B0
i = ∅, w0

i = (0, . . . , 0) and
that (B0

i , w0
i) has been CauCast received from Si by all Sj already. For all Gj ∈ G let cj = 0.

Input: Gi: On input m at Gi where Jin(m) = ⊤ let ci ← ci + 1 and reliably subcast (ci, m).
Schedule: Si: On arrival of RB of (cj , m) from Gj where cj = 1 or (j, cj − 1) ∈ Scheduledi, add (j, cj) to

Scheduledi.
Keep vector clock: Si: Throughout the protocol, for each Sj let vj

i be the largest integer such that B
v

j
i

j was

received via CauCast, in particular vi
i = ei − 1. Let wi := (v1

i , . . . , vn
i). Let InBlocksi :=

⋃
j

Msg
(

B
v

j
i

j

)
.

Propose Next Block: Server Si: If OnGoingi = ⊥ and Scheduledi \ InBlocksi ̸= ∅, let OnGoingi = ⊤ and
atomically do the following:a
1. Let ei ← ei + 1.
2. Let Bei

i = Scheduledi \ InBlocksi, wei
i = wi, and CauCast (Bei

i , wei
i) justified as explained in Defini-

tion 17. b

3. Start Πei
ACS with input (Bei

i , wei
i) with the input justifier being that the value was CauCast.

Extend Ledger: If OnGoingi = ⊤ and Πei
ACS produces output Uei = {(Sj , (Bei

j , wei
j))}Sj ∈P , then let Mei =

∪Sj ∈P Msg(Bei
j , wei

j), sort Mei \ Ledgeri using some deterministic rule to get a list M , and let Ledgeri ←
Ledgeri∥M . Then let OnGoingi = ⊥.

a Here any non-deadlocking condition Waiti can be added to let Scheduledi \ InBlocksi grow to some bigger
size.

b Note that this involves only RB’ing identifiers of the values justifying (Bei
i , wei

i). We discuss as part of
analysing communication complexity exactly which values need to be sent.

Fig. 6. Totally Ordered Subcast Protocol ΠTOS.

by a simple induction. We then look at liveness. Liveness of subcast means that (j, cj) eventu-
ally ends up in Bei

i at all honest Si. This Bei
i will eventually reach all honest Sj which will set

vi
j ≥ ei. After that m is in Msg(Bej

j , w
ej

j) for all honest Sj . In the next run of ΠACS message mj

will then be in Msg(Bej

j , w
ej

j) for all honest Sj ∈ P . Since |P | = n − t ≥ t + 1 there is an hon-
est Sj in P , so m will be in M ei and then Ledgeri. We count complexity. Each input is reliably
subcast. This is O(β rs +ι rs#). To CauCast the blocks we only need to CauCast the transaction
identifiers and wi, as it is clear from wi which other values are needed to justify the block. We
count the total length of the sets in all blocks, i.e.,

∑
i,e | enc(Be

i)| for an asymptotically optimal
encoding of the set of transaction identifiers. For each input we add (j, cj) to at most n blocks.
Since j and cj are counters they will be O(poly(κ)) in any poly-time run, so we represent them
with O(log(poly(κ))) = O(log(κ)) bits. Therefore

∑
i,e | enc(Be

i)| = O(ιn log(κ)). This overall adds
O(ιn log(κ) rs). We assumed that inputs have length at least κ log(κ) and that n = Θ(κ). There-
fore ιn log(κ) = O(β), so the contribution is O(β rs). In each epoch Si CauCasts Bi along with
the vector clock which also has size n log(κ). Ignoring the size of the blocks, which we already
accounted for, this adds up to O(ρn2 log(κ) rs +ρn rs#). In each of ρ epochs ΠACS contributes an
extra O(n2 log(n) rs +n log(n) rs# + elect). Sum and use that n = Θ(κ). ⊓⊔

3.7 Total Order Broadcast

We finally note that from TOS we can get TOB. We will use the protocol ΠTOS in a white-box
manner. After each epoch we will outcast the new part of the ledger to the ground population to
let them learn the update. The protocol is given in Fig. 7.

22

Init: All Gi ∈ S keeps an ordered list Ledgeri as part of ΠTOS. All Gi ∈ G \ S will keep their own Ledgeri,
initially empty.

Input: On input m at Gi input m to ΠTOS.
Outcast: Si ∈ S: When computing Ledgeri ← Ledgeri∥M in ΠTOS in epoch ei input M to ΠReliableOutcast

with session identifier ei.
Extend Ledger: Gj ∈ G \ S: On output M from Πei

ReliableOutcast let Ledgeri ← Ledgeri∥M .

Fig. 7. Total-Order Broadcast ΠTOB

Theorem 7. If t < n/2 then protocol ΠTOB is a total order broadcast. When β is the total bit-
length of all inputs, ι is the number of inputs, and ρ is the number of epoch in ΠTOS, and when
using ΠTOS from Fig. 6 and ΠOutcast from Section 2.2 as sub-protocol, and assuming that on
average inputs have length at least κ log(κ), the communication complexity is

O
(
β(rs +N) + ι · rs# +ρ ·

(
n2 log(n)(rs +N) + n log(n) rs# + elect

))
.

Proof. The sub-protocol ΠTOS has communication complexity

O
(
β rs +ι · rs# +ρ ·

(
n2 log(n) rs +n log(n) rs# + elect

))
and ΠOutcast has communication complexity O(nN log(n)κ+N |M |) for each M . We run ΠOutcast
once each epoch and on M ’s of total length β. This gives a total contribution of O(ρnN log(n)κ +
Nβ) from the outcasting. Then use that ρnN log(n) = Θ(ρNn2 log(n)) and sum. ⊓⊔

4 RB with Subsampling

We now present a reliable subcast protocol for N ground members and n servers. We assume that
at most T < N/3 ground members are corrupt and at most t < n/2 servers are corrupt.

As demonstrated in [ACKN23] this setting can be used to get sub-quadratic communication
with good constants in a setting with static security from the assumption that less that N/3 ground
members are corrupt. The basic idea is that from the N ground members one samples a uniformly
random subset S of size n = Θ(κ). Since we are sampling from a set with a supermajority of honest
servers and only need that S has a majority of honest servers the size of S can be practical. In
our setting the set S could be constructed simply by running n = |S| justified leader elections in
parallel and wait for all of them and let S be the n winners. A party elected multiple times can be
handled by proceeding with a smaller S or letting the party run multiple servers. There are, however,
many different ways in the literature for doing sub-sampling of committees. We therefore leave the
concrete subsampling out of the description and just assume that it has been done and that there
are at most t < n/2 corruptions in S. For now we just remark that if committees are sampled with
replacement from the ground population with equal probability, the amount of honest parties in
the committee follows the binomial distribution. In [ACKN23] this is used to show that 653 is the
minimal committee size needed to get honest majority with 60 bits of statistical security, when
assuming less than a third corrupted parties in the ground population. Using the same method—
checking that the cumulative distribution function of the honest parties getting elected for any
number ≤ n/2 of seats on the committee is negligible—we compute (cf. Appendix A) the minimal
secure committee sizes for various choices of statistical security parameter (σ) and maximal fraction

23

Setup: We assume a setup for a threshold signature scheme with verification key vk being public and each Gi

holding key share ski. The reconstruction threshold is N −T . The protocol also use a Merkle-tree scheme
(HashTree, Path, VerPath) and uses an erasure code EC = (Enc, Dec) with n code words and reconstruction
threshold n− t.

Input: Gj : On input (mid, m) with Gmid = Gj (i.e., Gj is the designated sender of mid) and Jmid(m) = ⊤ let
(m1, . . . , mn) = EC.Enc(m), let h = HashTree(m1, . . . , mn), and send (mid, h) to all Gk.

SubSign Gk: On receiving (mid, h) from Gj = Gmid, where no (mid, ·) was received from Gj before and
Jmid(m) = ⊤, send σk = Sigskk

((mid, h)) to Gj .
Send Shards: Gj : On having received N − T valid signature shares compute σ = Sigsk((mid, h)) using

Combine and send (mid, h, σ, mi, Pathi = Path(m1, . . . , mn, i)) to Si.
Echo and Record own Shard: Si: On having received (mid, h, σ, mi, Pathi) with Vervk((mid, h), σ) = ⊤

and VerPath(h, i, mi, Pathi) = ⊤ from Gj = Gmid or some server Sj ∈ S send (mid, h, σ, mi, Pathi) to all
other servers and record (mid, h, i, mi).

Record other Shards: Sj : On having received (mid, h, σ, mi, Pathi) with Vervk((mid, h), σ) = ⊤ and
VerPath(h, i, mi, Pathi) = ⊤ from Si record (mid, h, i, mi). Note that we deliberately do not echo here.

Combine Shards: Sj : On having recorded (mid, h, i, mi) for n − t servers Si for the same mid, call the
set of these servers S, compute m = EC.Dec({(i, mi)}Si∈S) and (m1, . . . , mn) = EC.Enc(m) and h′ =
HashTree(m1, . . . , mn). If h′ = h then output (mid, m) and for each Si ∈ S send (mid, h, σ, mi, Pathi) to
Si.

Fig. 8. RSS: A protocol for reliable subcast with N ground members, n servers, at most T < N/3 corrupt ground
members, and at most t < n/2 corrupt servers.

of corruption tolerated in the ground population (c). The results are shown in Table 1. In particular
it shows that a committee of 173 parties would be resilient against a 1/5 of the ground population
being corrupt with 60 bits of security. This compares very favourably against the Algorand setting
in which less than a 1/5 of the ground population is assumed to be corrupted in order to get 56
bits of security with committees of 6000 parties (cf. [BBK+23]).

σ 30 40 60 80
c 1/5 1/4 1/3 1/5 1/4 1/3 1/5 1/4 1/3 1/5 1/4 1/3
n 81 127 307 111 173 423 173 269 653 235 363 887

Table 1. Minimal committee sizes (n) that guarantee an honest majority (except with probability 2−σ) when parties
are sampled according to the binomial distribution from a ground population in which less than a fraction c of the
parties are corrupted.

Theorem 8. If t < n/2 and T < N/3, then RSS is a reliable subcast. If messages have length
β ≥ κ log(κ), then the complexity is O(βn + Nκ + n2 log(n)κ, which is of the form O(β rs + rs#)
for rs = n and rs# = Nκ + n2 log(n)κ. For large populations N ≥ n2 log(n) or large messages
β ≥ n log(n)κ the complexity is O(βn + Nκ) such that rs# = Nκ.

Proof. We argue agreement. If a server accepts (mid, h, σ, mi, Pathi) then it was signed by N − T
ground members and therefore at least T +1 honest ground members. Therefore h is unique for mid.
And if Sj outputs (mid, m) then h = HashTree(EC.Enc(m)) and therefore they all output the same m
if they output something. Eventual Output 1 is trivial. We argue eventual Output 2. Assume some
honest Sj outputs (mid, m). Then it sends (mid, h, σ, mi, Pathi) to each Si and therefore each honest
Si sends (mid, h, σ, mi, Pathi) to all servers in Echo and Record own Shard. There are n−t honest

24

servers doing this, so all honest will end up recording n−t shards and output (mid, m) in Combine
Shards. We count complexity. Getting the signature shares from N ground members Gj costs Nκ.
Each mi and Pathi it sent to and from Si at most O(n) times which contributes O(n|mi|+n log(n)κ).
Summing over Si this gives O(n|m|+ n2 log(n)κ). For large ground populations N ≥ n2 log(n) we
have that O(βn + Nκ + n2 log(n)κ) = O(βn + Nκ + Nκ) = O(βn + Nκ). For large messages
β ≥ n log(n)κ we have that O(βn + Nκ + n2 log(n)κ) = O(βn + Nκ + nβ) = O(βn + Nκ + nβ). ⊓⊔

Corollary 1. Protocol ΠTOS when using ΠACS for ACS, ΠConstantine for leader election, and RSS
for RB is a total order subcast. Let β be the total length of inputs and let ι be the number of inputs.
Then the communication complexity is

βn + ι · (Nκ + n2 log(n)κ) + ρ ·
(
Nn log(n)κ + n3 log2(n)κ

)
. (1)

If there is a large ground population N ≥ n2 log(n) or messages which are large on average (i.e.
β/ι ≥ n log(n)κ), and if the protocol on average consumes at least n log(n) messages per epoch, then
the complexity is

βn + ιNκ . (2)

Proof. The complexity is β rs +ι · rs# +ρ ·
(
n2 log(n) rs + elect +n log(n) rs#

)
. Plug in rs = n,

rs# = Nκ + n2 log(n)κ, and elect = Nnκ to get

βn + ι · (Nκ + n2 log(n)κ) + ρ ·
(
Nn log(n)κ + n3 log2(n)κ

)
.

If on average we consume n log(n) messages per epoch then ρn log(n) ≤ ι, so we get

ρ ·
(
Nn log(n)κ + n3 log2(n)κ

)
≤ ι · (Nκ + n2 log(n)κ) .

So we can drop the LHS asymptotically. If N ≥ n2 log(n) then Nκ ≥ n2 log(n)κ. Equivalently, if
β/ι ≥ n log(n)κ then βn ≥ ι ·n2 log(n)κ. In both cases we can drop ι ·n2 log(n)κ asymptotically. ⊓⊔

Corollary 2. Protocol ΠTOB when using ΠTOS from Corollary 1 for TOS and ΠOutcast for out-
casting is a TOB. Let β be the total length of inputs and let ι be the number of inputs. Then the
communication complexity is

βN + ι · (Nκ + n2 log(n)κ) + ρ ·
(
Nn log(n)κ + n3 log2(n)κ

)
. (3)

For a large ground population N ≥ n2 log(n) or messages which are large on average (i.e., β/ι ≥
n log(n)κ), and if the protocol on average consumes at least n log(n) messages per epoch, then the
complexity is

βN . (4)

Proof. The contribution of outcasting is O(βN + ρNn log(n)κ). The term ρNn log(n)κ is already
dominated by Eq. (1). Adding βN to Eq. (1) gives Eq. (3). Adding βN to Eq. (2) gives βN + ιNκ.
Then use that ικ ≤ β to get Eq. (4). ⊓⊔

25

5 RB with Dual Threshold and Asymmetric Synchrony Assumptions

We now present a RB for the servers only. We will not focus on communication complexity but
resilience. The protocol can be turned into a communication efficient reliable subcast using threshold
signatures and the sharding technique from RSS, but we leave this out of the description to focus
on the main contribution. The protocol will have two corruption thresholds ta and ts where ta ≤
ts ≤ n/2 and where there are at most ts corruptions.

The protocol uses one timeout per server—server Si waits ∆i
Wait seconds. The protocol has the

property that if there are at most ta corruptions then the running time of protocol does not depend
on the ∆i

Wait. However, if the actual number of corruptions t is in the interval ta < t ≤ ts then the
running time of the protocol does depend on the ∆i

Wait.

Input We assume a PKI for a signature scheme. The input of the designated sender Ss is m with Jin(m) =
⊤. In response to this input SS sends (m, σs = Sigsks

(m)) to all servers. Create initially empty sets
SignedAsync and SignedSync.

Asynchronous Echo Si: On receiving (m, σs) from Ss, where Jin(m) = ⊤ and Vervks (m, σs) = ⊤ and where
no such message was received before and there is no (Sj , mj , σj) ∈ SignedAsync with mj ̸= m, proceed as
follows:
1. Let σi = Sigski

((Async, m)) and send (m, σs, σi) to all servers.
2. Add (Si, m, σi) to SignedAsync.
3. Set a timeout Timeout(CollectFromHonest, ∆i

Wait).
Collect Asynchronous Echos All servers: On receiving (mj , σs, σj) from Sj , where Vervks (mj , σs) = ⊤

and Vervkj ((Async, mj), σj) = ⊤ and no such value was received from Sj before, add (Sj , mj , σj) to
SignedAsync.

Synchronous Echo Si: If CollectFromHonest occurred and there exists m such that there are at least
n − ts values (Sj , m, ·) ∈ SignedAsync and there does not exist (Sk, m′, ·) ∈ SignedAsync where m′ ̸= m,
then let σi = Sigski

((Sync, m)) and send (m, σi) to all servers.
Collect Synchronous Echos All servers: On receiving (mj , σj) from Sj , where Vervkj ((Sync, mj), σj) = ⊤

and no such value was received from Sj before, add (Sj , mj , σj) to SignedSync.
Asynchronous Output All servers: If there exists m such that there are n − ta values (Sj , m, σj) ∈

SignedAsync then let Σ = {(Sj , σj)}(Sj ,m,σj)∈SignedAsync, output m, send (m, Σ) to all servers, and ter-
minate.

Synchronous Output All servers: If there exists m such that there are n−ts values (Sj , m, σj) ∈ SignedSync
then let Σ = {(Sj , σj)}(Sj ,m,σj)∈SignedSync, output m, send (m, Σ) to all servers, and terminate.

Output by Relay On receiving (m, Σ) from any server where either
– Σ contains n − ts values (Sj , m, σj) for distinct Sj such that Vervkj ((Sync, m), σj) = ⊤ (call such a

value synchronous-valid), or
– Σ contains n− ta values (Sj , m, σj) for distinct Sj such that Vervkj ((Async, m), σj) = ⊤ (call such a

value asynchronous-valid),
output m, send (m, Σ) to all servers, and terminate.

Fig. 9. RBD: A protocol for RB with dual thresholds ts and ta. For conciseness we do not explicitly mentioning the
messages identifier mid and we let Ss = Smid and let Jin = Jmid.

The protocol can be proven secure in two settings. One is a setting where the network is always
synchronous and where ts + 2ta < n. In this setting we need that ∆i

Wait ≥ 2∆Net. We call this the
optimistic model. In the other setting we can tolerate that the network is sometimes asynchronous.
Here we only need ∆i

Wait ≥ ∆Net. However, we need that 2ts + ta < n. As a strengthening we can
here tolerate that either the network is synchronous and there are at most t ≤ ts corruptions or the

26

network is asynchronous and there are at most t ≤ ta corruptions. We call this the fallback model
below.

5.1 Asymmetric Synchrony Assumptions

We construct our TOBs for a model with asymmetric synchrony assumptions, which is meant as a
model making it easier to implement the needed notion of synchrony in practice. Consider a setting
where a group of servers S1, . . . , Sn have just been thrown together, maybe sampled at random from
a larger ground population. They want to run a synchronous protocol to be able to tolerate t < n/2.
Assume that each Si can set a sound timeout length ∆i

Guess, i.e., all messages sent to Si are received
within time ∆i

Guess. This still opens the question of what timeout length to use in the protocol if
a common timeout is needed. Note that we cannot broadcast the values ∆i

Guess to help us pick a
common value, as broadcast is the problem we are trying to solve. This motivates implementing
TOB in the following model where the parties do not agree on a common timeout value.

Definition 18 (Asymmetric Synchrony Assumption (ASA) Model). The ASA model con-
siders n servers S1, . . . , Sn. Each Si gets its own ∆i

Guess as private input, i.e., the other servers
are not given ∆i

Guess. The adversary schedules messages, but it is guaranteed that all messages
sent at time t from an honest server to an honest server Si are delivered no later than at time
t + ∆i

Guess. Note the only messages to Si are delivered in time ∆i
Guess. Messages to other honest

servers may be slower. Round complexity is measured in units of ∆Max
Guess := maxhonest Si

∆i
Guess and

∆Net, where ∆Net is the longest it took to send a message from an honest server to an honest
server. In the weakly asymmetric synchrony assumption (WASA) model we make the stronger as-
sumption that all messages between honest servers are delivered faster than any honest ∆i

Guess, i.e.,
∆Net ≤ ∆Min

Guess := minhonest Si
∆i

Guess.

Definition 19. Let RBDopt be the protocol RBD in Fig. 9 with ∆i
Wait = 2∆i

Guess and ta ≤ ts < n/2
and ts + 2ta < n. Let RBDfallback be the protocol RBD with ∆i

Wait = ∆i
Guess and ta ≤ ts < n/2 and

2ts + ta < n.

5.2 Synchronous Security with Asynchronous Fallback

We now analyse RBDfallback in the ASA model.

Theorem 9 (Fallback). RBDfallback is a justified RB protocol for the model where either the
network is ASA synchronous and there are at most ts corruptions or the network is asynchronous
and there are at most ta corruptions. All servers terminate within time 2∆Net +∆Max

Guess. Furthermore,
if t ≤ ta and the sender is honest then all honest servers terminate within time 2∆Net.

It is not hard to see that the protocol has eventual output and validity. The running time is also
straight forward. The main observation is that when t ≤ ta then within time ∆Net the n− ta honest
servers trigger Asynchronous Echo and then within ∆Net all servers have a asynchronous-valid
output. We sketch why the protocol has agreement. The pivotal property which the protocol has
by design is the following.

Lemma 3 (Synchronous Echo Agreement). If two honest Si and Sj send (mi, σi) and (mj , σj)
in Synchronous Echo then mi = mj.

27

Proof. Consider Si and Sj sending (mi, σi) and (mj , σj) in Synchronous Echo. Then obviously
they sent some (mi, σs, σ′

i) and (mj , σ′
s, σ′

j) in Asynchronous Echo. Assume Si sent (mi, σs, σ′
i)

first. Then Sj started Timeout(CollectFromHonest, ∆j
Wait) for ∆j

Wait = ∆j
Guess after (mi, σs, σ′

i) was
sent. Assume that the network is synchronous. Since we are in the ASA model Sj thus saw
(mi, σs, σ′

i) before CollectFromHonest occurred and (mj , σj) was sent. Therefore mj = mi, or
(mi, σs, σ′

i) would have blocked the sending of (mj , σj). Assume then that the network is asyn-
chronous. Then by assumption t ≤ ta. Recall that 2ts + ta < n. If Si sent (mi, σi) then it saw n− ts
values (Sk, mi, ·) ∈ SignedAsync. If Sj sent (mj , σj) then it saw n−ts values (Sk, mj , ·) ∈ SignedAsync.
This means they saw values from n−2ts > ta common parties. So they saw (Sk, mi, ·) and (Sk, mj , ·)
from at least one joint honest Sk. Therefore mi = mj . ⊓⊔

Lemma 4 (Fallback Agreement). If Si and Sj are honest and output mi and mj then mi = mj.

Proof. If Si outputs mi then it saw a valid (mi, Σi) and if Sj outputs mj then it saw a valid
(mj , Σj). If any of the servers saw a synchronous-valid value, then rename the servers such
that Si saw one. This gives three cases on the validity flavour of (mi, Σi)-(mj , Σj): synchronous-
synchronous, synchronous-asynchronous, and asynchronous-asynchronous. Assume first they both
are synchronous-valid. Recall that 2ts− ta < n. Among the n− ts servers in Σi there is at least one
honest server as n− ts > t, where t is the actual number of corruptions. Similarly, among the n− ts
servers in Σj there is at least one honest server. Agreement then follows from Lemma 3. Assume
then that both (mi, Σi) and (mj , Σj) are asynchronous-valid. Then among the n− ta servers in Σi

and the n − ta servers in Σj there are at least n − ta − ta > 2ts − ta > ts ≥ t common servers.
Therefore there is at least one common honest server. Honest servers sign at most one message
m. Assume then that (mi, Σi) is synchronous-valid and (mj , Σj) is asynchronous-valid. Among
the n − ts servers in Σi and the n − ta servers in Σj there are at least n − ts − ta > ts common
servers. Since ts ≥ t, where t is the actual number of corruptions, it follows that there is at least
one honest server in common among Σi and Σj . Clearly, if an honest server signs both (Sync, m)
and (Async, m′) then m′ = m. Therefore mi = mj . ⊓⊔

5.3 Synchronous Security with Optimistic Responsiveness

Theorem 10 (Optimistic). RBDopt is a justified RB protocol for the WASA model with at most
ts corruptions. All servers terminate within time 2∆Net + ∆Max

Guess. Furthermore, if t ≤ ta and the
sender is honest then all honest servers terminate within time 2∆Net.

It is not hard to see that the protocol has eventual output, validity, and the stated time com-
plexity. We sketch why the protocol has agreement. Note that Lemma 3 still holds. Namely, we now
wait 2∆i

Guess instead of ∆i
Guess, we are in the WASA model which gives stronger guarantees, and the

network is alway synchronous, so the preconditions used for proving Lemma 3 are all stronger.

Lemma 5 (Optimistic Agreement). If Si and Sj are honest and output mi and mj then
mi = mj.

Proof. As in the proof of Lemma 4 we break into cases. The proofs of the cases synchronous-
synchronous and asynchronous-asynchronous can basically be repeated verbatim, so we skip them.
This leaves us with the case where (mi, Σi) is synchronous-valid and (mj , Σj) is asynchronous-valid.
We have that ∆i

Wait ≥ 2∆i
Guess ≥ 2∆Net, as we are in the WASA model. Since n − ts > t, clearly,

28

at least one honest Sk signed (Sync, mi) which in turn implies that it earlier signed (Async, mi),
say at time ti. Furthermore, at least one honest Sℓ signed (Async, mj), say at time tj . Assume for
the sake of contradiction that mi ̸= mj . If ti ≤ tj −∆Net then (Async, mi) would by definition of
∆Net have reached Sℓ before tj and then Sℓ would by construction not have signed (Async, mj). So
we can assume that tj < ti + ∆Net. This means that the (Async, mj) signed by Sℓ reached Sk by
tj + ∆Net < ti + 2∆Net. When Sk signed (Async, mj) by time ti then it did not sign (Sync, mi) until
time ti+2∆Net. But by ti+2∆Net it received (Async, mj). And then by construction of Synchronous
Echo and mi ̸= mj it will not sign (Sync, mi), a contradiction. ⊓⊔

6 Corollaries

In this section we mention a few easy corollaries of our result.

6.1 Sub-Quadratic Asynchronous MPC with T < N/3

As shown in Lemma 6.1 in [Coh16], given threshold fully homomorphic encryption and total order
broadcast and t < n/2 corruptions one can implement asynchronous multiparty computation for
t < n/2. Since we implement total order broadcast among the servers for t < n/2 from RB we
can directly run [Coh16] in our framework and get AMPC from RB and t < n/2. This gives
MPC for the fallback model and the optimistic model. We can also run the protocol in the sub-
sampling setting with N ground members and n servers, with corruption threshold t < n/2 and
T < N/3. To avoid having specialised setup among the servers S we can use that [Coh16] uses
threshold decryption as a blackbox: it only uses that if all parties agree on a ciphertext c and that
it should be decrypted, then they can eventually learn y = Decsk(c). We can therefore secret share
sk among G with reconstruction threshold T + 1 and let them provide decryption as a service for
the servers. The servers outcast the encryption c of the output and the servers send a decryption
share to each party. If we have a large ground population N ≥ n2 log(n) and they all give one
input we can enforce that they give inputs in the same rounds, and then our total order subcast
has communication complexity O(βn), where β is the total length of the encrypted input. And
outcasting y has complexity O(N |y|) and returning the decryptions shares has complexity Nn|y|.
This gives sub-quadratic AMPC for T < N/3 corruptions.

Theorem 11 (informal). Assume t < n/2 corruption in S and T < N/3 corruptions in G,
assume N ≥ n2 log(n), let f be an N -party function, let β be the total length of the inputs xi and
let γ be the length of the output y = f(x1, . . . , nN). Then there is an AMPC protocol for G with
communication complexity O(nβ + nNγ).

Note that we can use the expensive ΠConstantine with communication O(Nnκ) to implement
AMPC and then use the AMPC to do distributed key generation for ΠConstantine among the n
servers and thereafter do get communication O(n2κ). It is an interesting open problem to propose
concretely efficient asynchronous distributed key distributions for the setting with t < n/2.

6.2 Asynchronous Covert TOB with t < n/2

We can also get total order broadcast for the model with covert security [AL07]. We assume
that every Gi and Si can be Byzantine but does not do anything which will lead to an even-
tual common detection, where all honest Sj output a proof that Si was corrupted. We only

29

need to assume that at most t < n servers are corrupted for the RB to work. Our protocol
works as follows. When Si sends (mid, m) it sends along a signature σi on (mid, Hash(m)). On
receiving (mid, m, σi) with a valid signature Sj outputs (mid, m) and forwards (mid, h, σi). On re-
ceiving two valid (mid, h′, σ′

i) and (mid, h, σi) with h′ ̸= h a server forwards them and outputs
(Si is corrupt: (mid, h′, σ′

i), (mid, h, σi)). The message m can be relayed with linear complexity
using an erasure code EC as in RSS.

Theorem 12 (informal). Assume that t < n and the servers are Byzantine but covert. Then
CRSS is a secure subcast protocol. If messages have length β ≥ κ log(κ), then the complexity is
O(βn + n2 log(n)κ), which is of the form O(β rs + rs#) for rs = n and rs# = n2 log(n)κ.

We can use this to get a total order subcast protocol secure against t < n/2 Byzantine corruptions
in the covert model with communication βn + ι · (n2 log(n)κ) + ρ ·

(
n3 log2(n)κ

)
.

Input The input of the designated sender Ss is m with Jin(m) = ⊤. In response to this input Ss sends
(m, σs = Sigsks

(m)) to all servers. Create initially empty set SignedAsync.
Asynchronous Echo Si: On receiving (m, σs) from Ss, where Jin(m) = ⊤ and Vervks (m, σs) = ⊤ and where

there are no (Sj , mj , σj) ∈ SignedAsync with mj ̸= m proceed as below, let σi = Sigski
((Async, m)), send

(m, σs, σi) to all servers, and add (Si, m, σi) to SignedAsync.
Collect Asynchronous Echos All servers: On receiving (mj , σs, σj) from Sj , where

Vervkj ((Async, mj), σj) = ⊤ and Vervks (mj , σs) = ⊤ and no such value was received from Sj

before, add (Sj , mj , σj) to SignedAsync.
Output All servers: If there exists m such that there are n − t values (Sj , m, σj) ∈ SignedAsync then let

Σ = {(Sj , σj)}(Sj ,m,σj)∈SignedAsync, output m, send (m, Σ) to all servers, and terminate.
Output by Relay On receiving (m, Σ) from any server where Σ contains n−t values (Sj , m, σj) for distinct

Sj such that Vervkj ((Async, m), σj) = ⊤, output m, send (m, Σ) to all servers, and terminate.

Fig. 10. RBMA: A protocol for RB against mixed adversaries. For conciseness we do not explicitly mentioning the
messages identifier mid and we let Ss = Smid and let Jin = Jmid.

6.3 Mixed Adversary ATOB

We can also get ATOB for the model with mixed adversaries. We assume servers can either silently
crash or be fully Byzantine corrupted. We assume there are at most tByz fully Byzantine parties
and tCrash additional crash-silent corruptions. We let t = tByz + tCrash in the protocol. The protocol
is given in Fig. 10.

Theorem 13. Assume that 2tCrash +3tByz < n. Then RBMA is a justified reliable broadcast protocol.

Proof. Eventual output is trivial as there are n− t honest parties. Agreement follows from the fact
that any two sets Σ and Σ′ will overlap on at least n − t − t parties and from 2tCrash + 3tByz < n
and t = tByz + tCrash we have that n− t− t > tByz. Validity follows using similar arguments. ⊓⊔

References

ACKN23. Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus Nielsen. Practical large-scale
proof-of-stake asynchronous total-order broadcast. Cryptology ePrint Archive, Paper 2023/1103, 2023.
https://eprint.iacr.org/2023/1103.

30

https://eprint.iacr.org/2023/1103

AJM+21. Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu. Reach-
ing consensus for asynchronous distributed key generation. CoRR, abs/2102.09041, 2021.

AL07. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols for realistic
adversaries. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 137–156, Amsterdam,
The Netherlands, February 21–24, 2007. Springer, Heidelberg, Germany.

AO12. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 681–698,
Beijing, China, December 2–6, 2012. Springer, Heidelberg, Germany.

BBK+23. Fabrice Benhamouda, Erica Blum, Jonathan Katz, Derek Leung, Julian Loss, and Tal Rabin. Analyzing
the real-world security of the algorand blockchain. Cryptology ePrint Archive, Paper 2023/1344, 2023.
https://eprint.iacr.org/2023/1344.

BCG93. Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In 25th ACM
STOC, pages 52–61, San Diego, CA, USA, May 16–18, 1993. ACM Press.

BKL19. Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asynchronous fallback
guarantees. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I, volume 11891 of
Lecture Notes in Computer Science, pages 131–150. Springer, 2019.

BKLL20. Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine agreement
with subquadratic communication. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography
- 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part
I, volume 12550 of Lecture Notes in Computer Science, pages 353–380. Springer, 2020.

Bra87. Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143, nov 1987.
Cac21. Christian Cachin. Asymmetric distributed trust. In ICDCN ’21: International Conference on Distributed

Computing and Networking, Virtual Event, Nara, Japan, January 5-8, 2021, page 3. ACM, 2021.
Can95. Ran Canetti. Studies in secure multiparty computation and applications. 1995.
CHL21. Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asynchronous MPC

with adaptive security. IACR Cryptol. ePrint Arch., page 1174, 2021.
CKS00. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantipole: practical asyn-

chronous byzantine agreement using cryptography (extended abstract). In Gil Neiger, editor, Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, July 16-19, 2000,
Portland, Oregon, USA, pages 123–132. ACM, 2000.

CKS20. Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a coincidence: Sub-quadratic asynchronous
byzantine agreement WHP. In Hagit Attiya, editor, 34th International Symposium on Distributed Com-
puting, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 25:1–25:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

Coh16. Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography - PKC 2016 - 19th IACR
International Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, March 6-9,
2016, Proceedings, Part II, volume 9615 of Lecture Notes in Computer Science, pages 183–207. Springer,
2016.

CP15. Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with linear communication
complexity. In Sajal K. Das, Dilip Krishnaswamy, Santonu Karkar, Amos Korman, Mohan J. Kumar,
Marius Portmann, and Srikanth Sastry, editors, Proceedings of the 2015 International Conference on
Distributed Computing and Networking, ICDCN 2015, Goa, India, January 4-7, 2015, pages 5:1–5:10.
ACM, 2015.

CT05. Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In Pierre Fraigni-
aud, editor, Distributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, Septem-
ber 26-29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer Science, pages 503–504. Springer,
2005.

CT19. Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In Pascal Felber, Roy Fried-
man, Seth Gilbert, and Avery Miller, editors, 23rd International Conference on Principles of Distributed
Systems, OPODIS 2019, December 17-19, 2019, Neuchâtel, Switzerland, volume 153 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

CZ21. Christian Cachin and Luca Zanolini. Asymmetric asynchronous byzantine consensus. In Joaqúın Garćıa-
Alfaro, Jose Luis Muñoz-Tapia, Guillermo Navarro-Arribas, and Miguel Soriano, editors, Data Privacy
Management, Cryptocurrencies and Blockchain Technology - ESORICS 2021 International Workshops,

31

https://eprint.iacr.org/2023/1344

DPM 2021 and CBT 2021, Darmstadt, Germany, October 8, 2021, Revised Selected Papers, volume
13140 of Lecture Notes in Computer Science, pages 192–207. Springer, 2021.

DDFN07. Ivan Damg̊ard, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure protocols with asymmet-
ric trust. In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia,
December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 357–375.
Springer, 2007.

DMM+20. Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Afgjort: A partially synchronous finality layer for blockchains. In Clemente Galdi and Vladimir Kolesnikov,
editors, Security and Cryptography for Networks - 12th International Conference, SCN 2020, Amalfi, Italy,
September 14-16, 2020, Proceedings, volume 12238 of Lecture Notes in Computer Science, pages 24–44.
Springer, 2020.

DMM+22. Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi. Gearbox:
Optimal-size shard committees by leveraging the safety-liveness dichotomy. In Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 683–696.
ACM, 2022.

FHM98. Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for privacy in unconditional multi-
party computation (extended abstract). In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462 of Lecture Notes in Computer Science, pages 121–136. Springer, 1998.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Paper 2017/454, 2017. https:
//eprint.iacr.org/2017/454.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988.

GP92. Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed computing. In
Adrian Segall and Shmuel Zaks, editors, Distributed Algorithms, 6th International Workshop, WDAG
’92, Haifa, Israel, November 2-4, 1992, Proceedings, volume 647 of Lecture Notes in Computer Science,
pages 153–165. Springer, 1992.

HKL20. Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang. Brief announcement: Multi-threshold asynchronous
reliable broadcast and consensus. In Hagit Attiya, editor, 34th International Symposium on Distributed
Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 48:1–48:3.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

KKNS21. Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is DAG.
In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 165–175. ACM, 2021.

MMNT19. Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi. Afgjort - A semi-synchronous
finality layer for blockchains. IACR Cryptol. ePrint Arch., page 504, 2019.

MP91. F.J. Meyer and D.K. Pradhan. Consensus with dual failure modes. IEEE Transactions on Parallel and
Distributed Systems, 2(2):214–222, 1991.

PS17. Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In
Andréa W. Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October
16-20, 2017, Vienna, Austria, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

A Script for calculating minimal committee sizes

The following python script computes the minimal secure committee for various security parameters
and corruption thresholds.
from s c ipy . s t a t s import binom
import math
from f r a c t i o n s import Fract ion

32

https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454

Check i f a committee o f s i z e n has an honest major i ty
with p r o b a b i l i t y a t l e a s t 1−2ˆ−secparam
when sampled from a ground popu la t i on wi th at most t co r rup t i ons
def check committee (n , secparam , t = 1 /3) :

neg l prob = Fract ion (1 , pow(2 , secparam))
l e a s t m a j o r i t y = math . c e i l ((n + 1) / 2)
p r o b a b i l i t y t h a t each member i s honest
p honest = 1−t
cdf over honest p a r t i e s having 0 , 1 , . . . , l e a s t m a j o r i t y −1 s p o t s
p co r rupt ma jo r i t y = binom (n , p honest) . cd f (l e a s t m a j o r i t y −1)
return p co r rupt ma jo r i t y < neg l prob

def s m a l l e s t s a f e c o m m i t t e e (secparam , t = 1/ 3) :
lower bound = 1
while not check committee (lower bound ∗ 2 , secparam , t) :

lower bound ∗= 2
upper bound = 2 ∗ lower bound
while lower bound < upper bound :

t e s t = (lower bound + upper bound) // 2
i f check committee (t e s t , secparam , t) :

upper bound = t e s t
else :

lower bound = t e s t
i f upper bound − lower bound < 2 :

break
H e u r i s t i c a l l y s u b t r a c t 10 from lower bound and t r y each p o s s i b i l i t y
because the p r e d i c a t e i s not monotone .
The r e l a t i v e d i f f e r e n c e between odd and even s i z e committees i s
l a r g e r f o r sma l l e r committees and we overshoo t by < 4 f o r the
examples in main , so 10 shou ld s u f f i c e f o r r e a l i s t i c s e c u r i t y parameters
for i in range (lower bound − 10 , upper bound + 1) :

i f check committee (i , secparam , t) :
print (

i , ” in committee and up to ” , t ,
” o f ground populat ion corrupted g i v e s honest major i ty with ” ,
secparam , ” b i t s s e c u r i t y ”)

return i

i f name == ’ ma in ’ :
s e cu r i t y pa ra met e r s = [3 0 , 40 , 60 , 80]
Get numbers f o r t = 1/3 opt imal r e s i l i e n c y
print (”Committee s i z e with opt imal r e s i l i e n c e : ”)
for secpar in s e cu r i t y pa ra met e r s :

s m a l l e s t s a f e c o m m i t t e e (secpar)
t = 0.25
print (”Committee s i z e with <1/4 o f GP corrupted : ”)
for secpar in s e cu r i t y pa ra met e r s :

s m a l l e s t s a f e c o m m i t t e e (secpar , 1/4)
algorand s e t t i n g , t = 0.2
print (”Committee s i z e <1/4 o f GP corrupted (Algorand s e t t i n g) : ”)
for secpar in s e cu r i t y pa ra met e r s :

s m a l l e s t s a f e c o m m i t t e e (secpar , 1/5)

33

	 Byzantine Agreement Decomposed: Honest Majority Asynchronous Total-Order Broadcast from Reliable Broadcast

