
Round-Optimal Black-Box Multiparty Computation
from Polynomial-Time Assumptions

Michele Ciampi1 , Rafail Ostrovsky2 ,
Luisa Siniscalchi3, and Hendrik Waldner4

1 The University of Edinburgh, Edinburgh, UK
mciampi@ed.ac.uk

2 University of California, Los Angeles, US
rafail@cs.ucla.edu

3 Technical University of Denmark, Kongens Lyngby, Denmark
luisi@dtu.dk

4 University of Maryland, College Park, US
hwaldner@umd.edu

Abstract. A central direction of research in secure multiparty computation with dishonest majority
has been to achieve three main goals:
1. reduce the total number of rounds of communication (to four, which is optimal);
2. use only polynomial-time hardness assumptions, and
3. rely solely on cryptographic assumptions in a black-box manner.

This is especially challenging when we do not allow a trusted setup assumption of any kind. While
protocols achieving two out of three goals in this setting have been designed in recent literature, achieving
all three simultaneously remained an elusive open question. Specifically, it was answered positively only
for a restricted class of functionalities. In this paper, we completely resolve this long-standing open
question. Specifically, we present a protocol for all polynomial-time computable functions that does not
require any trusted setup assumptions and achieves all three of the above goals simultaneously.

https://orcid.org/0000-0001-5062-0388
https://orcid.org/0000-0002-1501-1330
https://orcid.org/0000-0002-9083-5794
mailto:mciampi@ed.ac.uk
mailto:rafail@cs.ucla.edu
mailto:luisi@dtu.dk
mailto:hwaldner@umd.edu

Table of Contents

1 Introduction . 3
1.1 Our Contribution . 3
1.2 Technical Overview . 4

2 Preliminaries . 8
2.1 Oblivious Transfer . 8
2.2 MPC Definitions . 11
2.3 List MPC . 13
2.4 Garbled Circuits . 16
2.5 Symmetric Encryption and Message Authentication . 17
2.6 Outer Protocol . 18

3 Single Receiver, Multiple Senders Oblivious Transfer (1RnS OT) 19
3.1 1RnS Oblivious Transfer from 1-out-of-2 Oblivious Transfer 20
3.2 Definition of nRmS OT . 29
3.3 Formal Description of OTnRmS . 30

4 Inner Protocol . 31
4.1 Definition of the Inner-Protocol . 31
4.2 Realization of the Inner-Protocol . 34
4.3 Oblivious Transfer with Equivocal Receiver Security . 34
4.4 Protocol for the Double Selection Functionality DS [PS21] 35
4.5 Conforming Protocols . 37
4.6 Formal Description of the Three Round Inner Protocol . 38

5 Our Four-Round MPC Protocol . 53

1 Introduction

Secure multiparty computation (MPC) [Yao86,GMW87] enables a group of parties to jointly
evaluate any function over their inputs in a privacy preserving way. More precisely, even if a
subset of the parties collude to attack the protocol no one learns anything beyond the output
of the function. Since its introduction, there has been a long sequence of works that aims to
design efficient protocols while relying on well-understood cryptographic assumptions and
minimizing the need for trusted setups [GMW87,Kil88, IPS08,BMR90,KOS03,KO04,Pas04,
PW10,Wee10,Goy11,GMPP16,ACJ17,BHP17,DGL+21,GLO+21,COWZ22]. In 2004, Katz
and Ostrovsky [KO04] showed that, to securely realize the coin tossing functionality in the
two-party case in the plain model with static corruption and black-box simulation,5 the parties
need to interact in at least five rounds (where in each round only one party speaks). Following
this work, Garg et al. [GMPP16] established that if the parties are allowed to speak in the
same round (simultaneous communication model) then at least four rounds of communication
are needed to securely realize the coin tossing functionality. This result trivially extends to
the n party case, where up to (n − 1) parties can be corrupted and where, in each round,
all the parties are allowed to broadcast a message. Garg et al. also showed that four rounds
are sufficient to realize any two-party functionality while making non-black-box use of the
underlying cryptographic primitives. A sequence of works tried to match the same lower
bound for the multiparty setting [ACJ17,BHP17], and finally [BGJ+18,HHPV18] showed
the first four-round protocols based on polynomial time number theoretic assumptions. This
result was later improved in [CCG+20] proposing a four-round scheme based on maliciously
secure oblivious transfer (OT). However, all these results require non-black-box use of the
underlying primitives.

It is natural to ask whether it is possible to achieve similar results while relying on the
underlying primitives in a black-box way. This question has been investigated extensively
in the past years [IPS08, Wee10, Goy11], but only recently Ishai, Khurana, Sahai, and
Srinivasan [IKSS21] came close to matching the four-round lower bound, proposing a five-
round protocol that makes black-box use of secure oblivious transfer and public-key encryption
(PKE) with pseudorandom public keys. This result was later improved in [IKSS23] where the
same authors construct a (black-box) four-round protocol, requiring sub-exponential security
of the underlying assumptions. In a concurrent and independent work [COSW23a], propose a
black-box protocol that requires polynomial-time assumptions but only realizes a restricted
set of functionalities (i.e., input-less functionalities). This leaves open the following question:

Is it possible to construct a four-round protocol for securely evaluating generic multiparty
functionalities while making black-box use of polynomial-time hardness assumptions?

1.1 Our Contribution

We answer the above question positively, proposing a four-round MPC protocol that realizes
generic functionalities in the plain model in the dishonest majority setting while making

5 All the results presented in this paper are with respect to black-box simulation, dishonest majority, static corruption,
and in the plain model. Hence, we will not specify this in the remainder of the paper.

3

black-box use of any perfect correct two-round OT protocol with statistical sender privacy.
This notion of OT was introduced in [NP01,AIR01] and requires computational security for
the receiver’s message, i.e., it is computationally hard to distinguish whether the receiver’s
input bit b is equal to 0 or 1. Moreover, regardless of the receiver’s first message, the sender’s
message hides (statistically) at least one of its inputs (denoted by s0 and s1). This notion of
two-round OT can be obtained from LWE [BD18], or number theoretic assumptions such as
DDH/QR and Nth residuosity [NP01,AIR01,Kal05,HK12,DGI+19]. In summary, we prove
the following theorem.

Theorem (informal). There exists a 4-round MPC protocol that realizes any efficient func-
tionality having black-box access to any two-round oblivious transfer protocol with statistical
sender security.

1.2 Technical Overview

The MPC in the head IPS compiler, and existing round efficient protocols. Our
protocol is based on the approach proposed in [IKSS21] (and later improved in [IKSS23]),
which is based on the so-called IPS compiler [IPS08] which, in turn, is based on the MPC-in-
the-head framework of [IKOS07, IKOS09]. The IPS compiler relies on two main primitives: 1)
an MPC protocol Φ (called outer protocol), secure in the honest majority setting tolerating
adversarial parties that arbitrarily misbehave, and 2) a semi-honest protocol secure against a
dishonest majority (called inner protocol that we denote with Π). In particular, the outer
protocol Φ works in the client-server model, where n clients and m servers interact in two
rounds of communication. In the first round, each client sends a message (which corresponds
to a share of their input) to each of the m servers, and, in the second round, the servers send
a message back to the clients which can now compute the output of the function. Φ is secure
against malicious adversaries but requires the majority of the servers to be honest.

The goal of the IPS compiler is to combine the inner and outer protocol to exploit
the benefits of both schemes: security against a dishonest majority and resiliency against
adversaries misbehaving in an arbitrary way. Let f be a function that n parties want to
securely evaluate. The high-level idea proposed in [IPS08] is to let the n parties run m (where
m is polynomial in the security parameter) executions of the inner protocol where each of
these executions simulates a server of Φ. Φ here is an outer protocol that realizes the function
f . Combining the two protocols in this way clearly does not provide any additional security
as nothing prevents the corrupted parties from misbehaving in all of the inner-protocol
executions. Ishai et al. [IPS08] note that if one can argue that the adversarial parties behave
correctly in the majority of the inner protocol executions, then it is possible to rely on the
security of Φ, which, as we recall, is assumed to be secure in the honest-majority setting. To
ensure that this is indeed the case (i.e., the corrupted parties behave correctly in the majority
of the inner protocol executions), the IPS compiler requires each pair of parties to execute a
cut-and-choose over the randomness-input pairs used in the inner-protocol executions via a
so-called watchlist protocol. This watchlist protocol is realized by letting each pair of parties
engage in an k-out-of-m Oblivious Transfer (OT). In each OT execution, one party acts as

4

the sender using as its input the m defenses6 (used in the m inner-protocol executions) and
the receiver inputs a subset K ⊂ {1, . . . , m} of size k. Upon receiving the OT outputs, the
receiver checks that all the defenses are valid, and, if this is the case, it proceeds with the
execution of the protocol, otherwise, it aborts. The reason why this protocol is secure is that
during the cut-and-choose, each receiver learns a number of shares that is insufficient to
reconstruct the input of the other parties, but sufficient to argue whether the adversarial
parties are behaving correctly in the majority of the inner protocol executions. This, in turn,
means that if the cut-and-choose is successful, we can rely on the security of Φ.

In [IKSS21] the authors rely on a similar approach, but compress the IPS compiler into
five rounds by devising an inner protocol that enjoys delayed semi-malicious security and
a special type of four-round oblivious transfer protocol to realize the watchlist. Delayed
semi-malicious security guarantees that security holds as long as the adversary provides valid
defenses in the second last round of the protocol. Then, the authors instantiate the IPS
compiler using the mentioned primitives to obtain a five-round protocol. The reason why
the protocol does not have four rounds is mostly because the watchlist must be executed
before the last round of the inner protocol is sent to the adversary (recall that the inner
protocol is delayed semi-malicious). Hence, the watchlist is executed one round before the
inner-protocol executions can terminate. The main takeaway from this is that if we want a
four-round protocol, we need a three-round watchlist protocol. Indeed, this would make it
possible to check that the first messages of the inner protocol are correct, allowing to rely on
the security of the inner protocols that are completed during the last round of the overall
protocol.

However, as mentioned in the first part of the introduction, non-trivial functionalities
require at least four rounds of interaction to be realized. Given that the watchlist protocol
realizes an OT-like functionality, it seems that we need different ideas if we want to go
below 5 rounds. In [COSW23a], the authors show that the four-round lower bound can be
actually circumvented by relaxing the ideal world OT functionality which, in turn, can be
used to realize a three-round watchlist. The authors refer to this new functionality as list
OT functionality, following [BGJ+18] that introduced a similar notion for the coin tossing
functionality.

In this new OT definition, for a corrupted receiver, the ideal world is formalized as follows:
the adversary provides its input K ⊂ [m] and a parameter κ to the ideal functionality.
The ideal functionality then samples κ random tuples representing the input of the sender
(si

1, si
2, . . . , si

m)i∈κ, and provides (si
j)i∈[κ],j∈K to the adversary. The adversary now picks an

index c ∈ [κ] and sends it to the ideal functionality, which delivers {sc
j}j∈K to the sender in the

ideal world. This functionality can be seen as a random OT, in which the adversarial receiver
can slightly bias the output of the computation.7 After formalizing this new security definition,
the authors of [COSW23a] show how to realize a three-round list OT protocol, that is secure
against sometimes aborting adversaries, and generalize the result to obtain a three-round
list watchlist protocol, secure in the same setting. At a high level, the notion of security

6 A defense represents the input-randomness pair used to execute the inner protocol.
7 This is not exactly a random OT as only the input of the honest senders is sampled randomly.

5

against sometimes aborting adversaries guarantees that if the adversary provides a valid third
round, then it is possible to simulate, hence the inputs of the honest parties are protected. If,
instead, the adversary aborts, then there are no security guarantees. If we now use this tool
to replace the four-round watchlist protocol used in [IKSS21] then we obtain a final protocol
that is secure only against sometimes aborting adversaries. This is the main reason why the
protocol proposed in [COSW23a], which follows this paradigm, can only be proven secure
against a restricted class of adversaries (or a restricted class of functionalities). We note
that the reason why security does not hold against generic adversaries is because when the
adversary is aborting, the senders’ inputs of the watchlist protocol are leaked. Hence, all the
randomness-input pairs that the honest parties used to run the inner protocol are accessible to
the adversary and therefore the privacy of the honest parties is compromised. An alternative
approach to obtain a three-round watchlist protocol has been proposed in [IKSS23]. Here,
the authors show how to get security against any type of adversary relying on assumptions
secure against sub-exponential time adversaries, thus obtaining a four-round protocol that is
secure against any type of adversary. However, as just mentioned, this approach does not
rely on polynomial time assumptions.

Our approach. Now, we are ready to discuss the approach taken in this work. Our approach
is mostly based on the ideas of [COSW23a], i.e., we rely on a list watchlist protocol secure
against sometimes aborting but we combine it with a special inner protocol. In particular,
we observe that the three-round inner protocol proposed in [IKSS23,PS21] consists of two
components: one component that samples some keys, and one component that, depending on
the input of the parties, opportunely selects the keys, which are then used to compute the last
message of the protocol. At a higher level, we can syntactically divide this inner protocol into
two sub-algorithms. There is an interactive algorithm (denoted with Πno-inp) that on input
some randomness provides correlated randomness, and another algorithm (denoted with Πinp)
that works by using only the input of the parties and the correlated randomness obtained
from Πno-inp. We prove that this protocol retains its security under the condition that the
adversary provides randomness that explains the messages generated using the sub-protocol
Πno-inp. That is, the defense does not contain the input, but the simulator, upon receiving
valid randomness, can extract the input by using the obtained randomness in combination
with the messages generated from the adversary related to Πinp. Equipped with this special
inner-protocol, we can design the following variant of the IPS compiler.

We let the parties perform a cut-and-choose using the list watchlist protocol secure against
sometimes aborting adversaries only over the randomness used to generate the messages
of Πno-inp. This modification does not seem to add much security, as an adversary can still
abort the list watchlist protocol, obtain the randomness of the honest parties, and use this
randomness to infer the input of the honest parties looking at the messages generated by Πinp

(which are sent in the clear). To circumvent this issue, we rely on a conditional disclosure of
secret (CDS), that allows the adversary to access the messages of Πinp (the only messages
encoding the inputs of the parties) only if it does not abort in the list watchlist protocol.
To realize this CDS, we require each party to prepare a garbled circuit of the next message

6

function of Πinp parametrized with its input and the correlated randomness obtained from
Πno-inp. The parties then send the garbled circuit in the last round of the overall protocol. To
enable the evaluation of the garbled circuits, we additionally require the parties to engage in
an execution of a standard simulation-based secure four-round OT protocol Πot. In particular,
each party will act as a receiver in Πot, using as an input the message of Πinp, and act as a
sender in a second execution of Πot where the labels of the garbled circuit for the next-message
function of Πinp are used as an input. This allows the receiver to compute the last message
of Πinp and therefore the final output of the protocol. This mechanism allows to protect
the messages generated using Πinp as the adversary can obtain the messages related to Πinp

(by obtaining the garbled circuit and its labels in the fourth round) only if it successfully
completes the third round. This implies that we disclose the messages of Πinp only when it is
ensured that the adversary behaves correctly in the majority of the inner-protocol executions,
and, moreover, since the adversary did not abort enables us to rely on the security of the list
watchlist protocol. On the other hand, if the adversary aborts during the execution of the list
watchlist protocol, the receiver security of the OT protocol Πot (that enjoys the standard
simulation-based security notion) guarantees that the messages of Πinp generated by the
honest parties remain protected.

Subtleties. The above high-level description omits a few subtleties. The first is that we are
evaluating the next message function of Πinp inside a garbled circuit, hence, we are making
non-black-box use of Πinp. To make sure that this does not cause an implicit non-black-box
use of the primitives involved in the protocol, we will formally show that Πinp does not make
use of any computational cryptographic primitive. Indeed, we can move all the invocations to
cryptographic primitives to the inputless part Πno-inp.

The second issue that arises is the pair-wise execution of a standard secure four-round OT
protocol Πot. This allows a corrupted party to potentially use different inputs (i.e., different
messages of Πinp) in different OT executions, thus causing a security problem. Indeed, the
security of the inner protocol holds under the condition that each party sends the same
message to all the parties (i.e., each message is broadcast). To solve this issue, we replace the
OT protocol Πot with a new primitive we call Single Receiver, Multiple Senders Oblivious
Transfer (1RnS OT). This primitive guarantees that a receiver that engages in multiple OT
executions against multiple senders uses the same input in all the executions. We instantiate
our primitive using the techniques implicitly used in [CRSW22] (although for different
reasons). We refer to Section 3 for more details on the security definition of 1RnS and on
how to instantiate it.

The last issue we need to solve is related to the fact that we are running two interactive
primitives in parallel: the list watchlist protocol and our new 1RnS OT protocol. This can
cause rewinding issues. More precisely, the rewinds performed by the watchlist simulator
may perturb a reduction to the receiver security of the OT. However, we note that when the
adversary is aborting, we do not need to (and cannot) rely on the security of the watchlist
protocol. Nevertheless, we still need to rely on the security of the 1RnS OT protocol. On
the other hand, when the adversary does not abort, we only need to rely on the security of

7

the watchlist protocol as the messages of the inner protocol are guaranteed to be correctly
generated. Therefore, no harm can be caused by an adversary that has access to the receivers’
inputs of 1RnS (that we recall, are the messages of Πinp). For more details on how our final
protocol works and how we deal with all these subtleties, we refer to the technical part of the
paper.

2 Preliminaries

2.1 Oblivious Transfer

Private Two-Message Oblivious Transfer. A two-message oblivious transfer protocol
consists of a tuple PPT algorithm OT = (OT1, OT2, OT3) with the following syntax.

– OT1(1λ, β) takes the security parameter λ and a selection bit β and outputs a message
ot1 and secret state st.

– OT2(1λ, (ν0, ν1), ot1) takes the security parameter λ and two inputs (ν0, ν1) ∈ {0, 1}len

(where len is a parameter of the scheme) and a message ot1. It outputs a message ot2.
– OT3(1λ, st, ot2, β) takes the security parameter, the bit β, secret state st and message ot2

and outputs νβ ∈ {0, 1}len.

Correctness and security are defined as follows.

Definition 2.1 ([BD18]). A tuple PPT algorithm OT = (OT1, OT2, OT3) is a private-OT
scheme id the following hold.

Correctness For all λ, β, ν0, ν1, letting (ot1, st) = OT1(1λ, β), ot2 = OT2(1λ, (ν0, ν1), ot1),
ν ′ = OT3(1λ, st, ot2, β), it holds that ν ′ = νβ with probability 1.

Receiver Privacy Consider the distribution Dβ(λ) defined by running (ot1, st) = OT1(1λ, β)
and outputting ot1. Then D0,D1 are computationally indistinguishable.

Sender Privacy There exists an (not necessarily efficient) extractor OTExt s.t. for any se-
quence of messages ot1 = ot1(λ) and inputs (ν0, ν1), the distribution ensembles OT2(1λ, (ν0, ν1), ot1)
and OT2(1λ, (νβ′ , νβ′), ot1), where β′ = OTExt(ot1), are statistically indistinguishable.

Simulation-Based OT. Oblivious transfer (OT) is a two-party functionality FOT in which
a sender S holds a pair of strings (s0, s1), a receiver R holds a bit b and the receiver wants to
obtain the string sb. In this work, we focus on 4 round OT protocols with a delayed-input
property. Delayed-input here means that the input of the receiver is only required in the
third round and the input of the sender only in the fourth round.

Definition 2.2. A delayed-input four-round OT protocol is a tuple of five algorithms OT =
(OT1, OT2, OT3, OT4, OTout) with the following behavior:

OT1(1λ; rR): This algorithm is executed by the receiver R and takes as an input a unary
representation of the security parameter 1λ and the randomness rR of the receiver and
outputs the first round message ot1.

8

OT2(ot1; rR): This algorithm is executed by the sender S and takes as an input the message
of the previous round ot1 and the randomness rS of the sender and outputs the second
round message ot2.

OT3({oti}i∈[2], b; rR): This algorithm is executed by the receiver R and takes as an input the
previous round messages {oti}i∈[2], the input bit b of the receiver and the randomness rR

of the receiver and outputs the third round message ot3.
OT4({oti}i∈[3], (s0, s1); rS): This algorithm is executed by the sender S and takes as an input

the previous round messages {oti}i∈[3], the two input strings (s0, s1) of the receiver and
the randomness rS of the sender and outputs the fourth round message ot4.

OTout({oti}i∈[4]; rR): This algorithm is executed by the sender R and takes as an input the
previous round messages {oti}i∈[4] and the randomness rR of the receiver and computes
the final output y.

We say that a OT protocol is perfectly correct if for any (s0, s1) ∈ {0, 1}λ × {0, 1}λ and any
b ∈ {0, 1} it holds that:

Pr[OTout({oti}i∈[4]; rR) = sb] = 1,

where ot1 = OT1(1λ; rR), OT2 = ot2(OT2; rR), ot3 = OT3({OTi}i∈[2], b; rR) and ot4 =
OT4({OTi}i∈[3], (s0, s1); rS) for any rS, rR ∈ {0, 1}λ.

In this work, we require one-sided simulation security, where we require the existence of a
simulator against a malicious receiver and indistinguishability for the honest receiver’s input.
More formally:

Definition 2.3 (One-Sided Simulation [ORS15, COSV17]). Let FOT be the Oblivious
Transfer functionality as described in 2.1. We say that a protocol Π securely computes FOT
with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary R∗ controlling the receiver in the real world, there
exists a non-uniform PPT adversary Sim for the ideal world sucht that

{RealΠ,R∗(z)(1λ)}z∈{0,1}∗ ≈ {IdealFOT,Sim(1λ)}z∈{0,1}∗

where RealΠ,R∗(z) denotes the distribution of the output of the adversary R∗ (controlling
the receiver) after a real execution of the protocol Π where the sender S has inputs s0, s1
and the receiver has input b. IdealFOT,Sim denotes the analogous distribution in an ideal
execution with a trusted party that computes FOT for the parties and hands the output to
the receiver.

2. For every non-uniform PPT adversary S∗ controlling the sender it holds that:

{ViewR
Π,S∗(z)(s0, s1, 0)}z∈{0,1}∗ ≈ {ViewR

Π,S(s0, s1, 1)}z∈{0,1}∗

where ViewR
Π,S∗(z) denotes the view of adversary S∗ after a real execution of Π with the

honest receiver R.

9

Figure 2.1: The Oblivious Transfer Functionality FOT

Functionality FOT
FOT running with a sender S, a receiver R and an adversary Sim proceeds as follows:

– Upon receiving a message (send, s0, s1, S, R) from S where each s0, s1 ∈ {0, 1}λ,
record the tuple (s0, s1) and send send to R and Sim. Ignore any subsequent send
messages.

– Upon receiving a message (receive, b) from R, where b ∈ {0, 1} send sb to R and
receive to S and Sim and halt. (If no (send, ·) message was previously sent, do
nothing).

We also consider another OT functionality F m
OT where the sender S has 2m inputs and

the receiver R has as input a string of m bits; detail are provider below.

Definition 2.4 (Parallel Oblivious Transfer Functionality F m
OT [ORS15,COSV17]).

The parallel Oblivious Transfer Functionality F m
OT is identical to the functionality FOT, with

the difference that it takes as an input m pairs of strings (s1
0, s1

1, . . . , sm
0 , sm

1) from the sender
S (whereas FOT just takes one pair of strings from S) and m bits (b1, . . . , bm) from R (whereas
FOT just takes one bit from R) and outputs (s1

b1 , . . . , sm
bm

) to the receiver while the sender
receives nothing.

Also in the case we define one-sided simulation security.

Definition 2.5 (One-Sided Simulation Security for parallel Oblivious Transfer [ORS15,
COSV17]). Let F m

OT be the Oblivious Transfer functionality as described in Definition 2.4.
We say that a protocol Π securely computes F m

OT with one-sided simulation if the following
holds:
1. Sender Simulatability: For every non-uniform PPT adversary R∗ controlling the receiver

in the real world, there exists a non-uniform PPT adversary Sim for the ideal world sucht
that

{RealΠ,R∗(z)(1λ)}z∈{0,1}∗ ≈ {IdealFOT,Sim(1λ)}z∈{0,1}∗

where RealΠ,R∗(z) denotes the distribution of the output of the adversary R∗ (controlling
the receiver) after a real execution of the protocol Π where the sender S has inputs
(s1

0, s1
1, . . . , sm

0 , sm
1) and the receiver has inputs (b1, . . . , bm). IdealFOT,Simr∗(z) denotes the

analogous distribution in an ideal execution with a trusted party that computes F m
OT for

the parties and hands the output to the receiver.
2. Receiver Indistinguishability: For every non-uniform PPT adversary S∗ controlling the

sender it holds that:

{ViewR
Π,S∗(z)((s1

0, s1
1, . . . , sm

0 , sm
1), (b1, . . . , bm))}z∈{0,1}∗

≈{ViewR
Π,S∗(z)((s1

0, s1
1, . . . , sm

0 , sm
1), (b′1, . . . , b′m))}z∈{0,1}∗

where ViewR
Π,S∗(z) denotes the view of adversary S∗ after a real execution of Π with the

honest receiver R for any bi ∈ {0, 1} and b′i ∈ {0, 1} for all i ∈ [m].

10

In the rest of the paper whenever we refer to an OT protocol, we mean an OT protocol that
implements the F m

OT functionality. We note that the construction (Section 4) of [MOSV22]
satisfies Definition 2.5 and makes black-box use of private oblivious transfer. Moreover, we
note that the simulator SimMOSV22 (described to prove the sender simulatability properties in
Section 4 of [MOSV22]) has the following simulation strategy against a malicious receiver R∗:

– SimMOSV22 upon receiving ot1 from R∗ produces ot2.
– SimMOSV22 upon receiving ot3 from R∗, proceeds to the extraction of the R∗’s input

(rewinding R∗ from the third to the second round).
– SimMOSV22 invokes the ideal functionality using the input extracted from R∗, and uses the

output of the ideal functionality to produces ot4.

In the rest of the paper, we will indicate a simulator with the above simulation strategy
as a simulator that maintains the main thread.

2.2 MPC Definitions

Here, we provide a formal definition of secure multiparty computation verbatim taked
from [IKSS21] which, in turn has been taken from [Ode09].

A multiparty protocol is cast by specifying a random process that maps pairs of inputs to
pairs of outputs (one for each party). We refer to such a process as a functionality. The security
of a protocol is defined with respect to a functionality f . In particular, let n denote the
number of parties. A non-reactive n-party functionality f is a (possibly randomized) mapping
of n inputs ro n outputs. A multiparty protocol with security parameter λ for computing a
non-reactive functionality f is a protocol running in time poly(λ) and satisfying the following
correctness requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run
an honest execution of the protocol, then the joint distribution of the outputs y1, . . . , yn

of the parties is statistically close to f(x1, . . . , xn). A reactive functionality f is a sequence
of non-reactive functionalities f = (f1, . . . , fℓ) computed in a stateful fashion in a series of
phases. Let xj

i denote the input of Pi in phase j, and let sj denote the state of the computation
after phase j. Computation of f proceeds by setting s0 equal to the empty string and then
computing (yj

1, . . . , yj
n, sj)← fj(sj−1, xj

1, . . . , xj
n) for j ∈ [ℓ], where yj

i denotes the output of
Pi at the end of phase j. A multiparty protocol computing f also runs in ℓ phases, at the
beginning of which each party holds an input and at the end of which each party obtains
an output. (Note that parties may wait to decide on their phase-j input until the beginning
of that phase.) Parties maintain state throughout the entire execution. The correctness
requirement is that, in an honest execution of the protocol, the joint distribution of all the
outputs {yj

1, . . . , yj
n}ℓ

j=1 of all the phases is statistically close to the joint distribution of all
the outputs of all the phases in a computation of f on the same inputs used by the parties.

Defining Security We assume that the reader is familiar with standard simulation-based
definitions of security multiparty computation in the standalone setting. We provide a self-
contained definition for completeness and refer to [Ode09] for a more complete description.
The security of a protocol (w.r.t. a functionality f) is defined by comparing the real-world

11

execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversary A, which attacks the real execution of the
protocol, there exists an adversary Sim, also referred to as the simulator, which can achieve
the same effect in the ideal-world. We denote x⃗ = (x1, . . . , xn).

The real execution. In the real execution the n-party protocol π for computing f is
executed in the presence of an adversary A. The honest parties follow the instructions of π.
The adversary A takes as input the security parameter λ, the set I ⊂ [n] of corrupted parties,
the inputs of the corrupted parties, and an auxiliary input z. A sends all messages in place
of corrupted parties and may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable Realπ,A(z),I(λ, x⃗) whose
value is determined by the coin tosses of the adversary and the honest players. This random
variable contains the output of the adversary (which may be an arbitrary function of its view)
as well as the outputs of the uncorrupted parties. We let Realπ,A(z),I denote the distribution
ensemble {Realπ,A(z),I(λ, x⃗)}λ∈N,x⃗,z∈{0,1}∗ .

The ideal execution - security with abort. In this model, an ideal execution for a
function f proceeds as follows:

– Send inputs to the trusted party: As before, the parties send their inputs to the
trusted party, and we let x′i denote the value sent by Pi.

– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x′n) =
(y1, . . . , yn) and sends {yi}i∈I to the adversary.

– Adversary instructs trusted party to abort or continue: This is formalized by
having the adversary send either a continue or abort message to the trusted party. (A
semi-honest adversary never aborts.) In the latter case, the trusted party sends to each
uncorrupted party Pi its output value yi. In the former case, the trusted party sends the
special symbol ⊥ to each uncorrupted party.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output
the values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable Idealf,Sim(z)(λ, x⃗)
as above, and we let {Idealf,Sim(z),I(λ, x⃗)}λ∈N,x⃗,z∈{0,1}∗ . Having defined the real and the ideal
worlds, we can now proceed to define the security notion.

Definition 2.6. Let λ be the security parameter, f an n-party randomized functionality, and
Π an n-party protocol for n ∈ N. We say that Π t-securely computes f in the presence of
malicious adversaries if for every PPT adversary A there exists a PPT adversary Sim such
that for any I ⊂ [n] with |I| ≤ t the following quantity is negligible:

|Pr[Realπ,A(z),I(λ, x⃗) = 1]− Pr[Idealf,A(z),I(λ, x⃗) = 1]|,

where x⃗ = {xi}I∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

12

Remark 2.7 (Security with Selective Abort). We can consider a slightly weaker definition of
security where the ideal world adversary can instruct the trusted party to send aborts to a
subset of the uncorrupted parties. For the rest of the uncorrupted parties, it instructs the
trusted functionality to deliver their output. This weakened definition is called security with
selective abort.
Remark 2.8 (Privacy with Knowledge of Outputs). Ishai et al. [IKP10] considered a further
weakening of the security definition where the trusted party first delivers the output to
the ideal world adversary which then provides an output to be delivered to all the honest
parties. They called this security notion privacy with knowledge of outputs and showed a
transformation from this notion to security with selective abort using unconditional MACs.

2.3 List MPC
The definitions here are taken from [COSW23b]. Let f be the function that n parties P1, . . . , Pn

want to compute: f : X0 × · · · ×Xn → Y 1 × · · · × Y n. We denote with X i a PPT sampler
for X i for each i ∈ [n]. The notion of list MPC differs from the standard notion of MPC as
follows. Let M ⊆ [n] denote the indices of the corrupted parties and H := [n] \M . In the
ideal world experiment, the adversary sends its inputs {xi ∈ X i}i∈M to the ideal functionality,
which we denote with F{X i}i∈H , together with an integer k. The ideal functionality does not
wait to receive the input from the honest parties, instead, it samples k inputs uniformly
at random from the input domains of the honest parties {xi

1 ← X i}i∈H , . . . , {xi
k ← X i}i∈H ,

and, for each j ∈ [k] computes (out1
j , . . . , outn

j) ← f({xi
j}i∈H , {xi

j}i∈M). Then the values
{outi

1, . . . , outi
k}i∈M are given to the adversary. The adversary now sends an index j ∈ [k] to

the ideal functionality, which then sends (xi
j, outi

j) to the ideal-world honest party Pi for each
i ∈ H. We propose the formal definition of the real and the ideal world in Figure 2.2. To
make this definition stronger and usable as a sub-routine of other protocols, the adversary is
given the chance to see the inputs of the honest parties.8 In the ideal world, we do that by
explicitly giving this input to the adversary together with the second round of the protocol.
In the ideal world experiment, we do something similar, by allowing to send the input of the
honest parties to the adversary upon request of the simulator. More precisely, if the simulator
sends a message to the adversary ({πi}i∈H , j), then the real-world experiment would forward
to the adversary the message ({πi, xi

j}i∈H). This guarantees that the distinguisher will get
access to the honest party’s input, while the simulator does not (this is exactly what makes
our definition non-trivial to realize). We refer to Figure 2.2 for the formal specification of
real and ideal world and state the following:
Definition 2.9 (List MPC). We say that a protocol Π is a secure List MPC protocol if for
every malicious PPT adversary A corrupting an arbitrary set of parties in indices M ⊆ [n]
(the indices of the honest parties are denoted with H := [n] \M), there exists a (expected)
PPT simulator Sim = {Sim1, Sim2} such that

{RealA,Π(1λ, M, H)}λ ≈c {IdealSim,F{X i}(1λ, M, H)}λ,

8 In the standard MPC definition the inputs of the honest parties are fixed from the beginning, hence the adversary
and the distinguisher are implicitly aware of the honest parties inputs.

13

where λ ∈ N.

Figure 2.2: Real and ideal world

RealA,Π(1λ, M, H):
1. For each i ∈ H sample xi ← X i, and compute

the first round πi
1 of Π as the honest Pi would do

on input xi and the randomness ri ← {0, 1}λ and
send πi

1 to A.
2. Upon receiving {πi

1}i∈M from A, for each i ∈ H
compute the second round πi

2 of Π as the hon-
est party Pi on input (r, xi) would do and send
(πi

2, xi) to A.
3. Upon receiving {πi

2}i∈M from A, for each i ∈
H compute πi

3 as the honest party Pi would do
having on input (πi

1, πi
2, ri, xi) and send πi

3 to A.
4. Upon receiving {πi

3}i∈M , compute the output outi

as Pi would do, and return the view of A.

IdealSim,F{X i}i∈M
(1λ, M, H):

1. ({xi}i∈M , 1k, z)← SimA
1 (1λ)

2. Send {xi}i∈M to the ideal functionality
F{X i}i∈M which computes {outi

j}i∈M,j∈[k] as
described using the sampled inputs {xi

j}j∈[k].
3. Whenever SimA

2 ({outi
j}i∈M,j∈[k], z) queries A

with a message ({πi}i∈H , j), replace the query
with ({πi, xi

j}i∈H) and forward the pair to A.
4. (i, View) ← SimA

2 ({outi
j}i∈M,j∈[k], z) with i ∈

[k] ∪ {⊥}.
5. Send i to the ideal functionality, or abort if i = ⊥

to instruct the honest party to abort, and return
View.

Sometimes aborting adversaries. In this paper we consider the notion of sometimes aborting
adversaries. This notion is the same as the list simulation notion, but it requires the list
simulator to provide a simulated transcript with overwhelming probability, conditioned on
the adversary providing an accepting transcript in the main thread. We still provide no
security requirements (unless otherwise specified), in the case that the adversary aborts with
overwhelming probability, or it does not provide an accepting transcript in the main thread.

Multiparty Simultaneous OT. Now, we recap the definition for the list (multiparty)
simultaneous OT functionality which has been introduced in [COSW23a]. In this work, the
authors also show how to realize this primitive from statistical sender private two-message OT.
The (multiparty) simultaneous OT functionality is an n-party functionality that implements
simultaneous (or parallel) α-out-of-β OTs between n parties. Informally, this functionality
consists of n · (n− 1) instances of α-out-of-β OT. For every i ∈ [n], j ∈ [n], j ̸= i, a secure
OT is implemented between the pair (Pi, Pj) where Pi is the sender and Pj is the receiver.

Formally, we define the ideal (multiparty) simultaneous OT functionality Fn·(n−1)
OT . this

consists of n(n − 1) independent instances of a α-out-of-β OTs, one for each ordered pair
(i, j) ∈ [n]× [n] such that i ̸= j. The (i, j)-th OT instance obtains input xi,j = (x1

i,j, . . . , xβ
i,j)

form sender Pi and input yi,j ⊆ [β] with |yi,j| = α from the receiver Pj. The functionality
then outputs {xk

i,j}k∈yj,i
to Pj and outputs ⊥ to Pi for each i, j ∈ {[n]× [n]} with i ̸= j.

Definition 2.10 (Simultaneous OT Protocol). A (multiparty) simultaneous OT protocol
mpOT is defined by a tuple of algorithms (mpOT1, mpOT2, mpOT3, outmpOT). For each round
r ∈ [4], the i-th party in the protocol runs mpOTr on 1λ, the index i, the private input
{xi,j, yi,j}i ̸=j and the transcript of the protocol in the first (r − 1) rounds to obtain mpOTi

r.
It sends mpOTi

r to every other party via a broadcast channel. We let mpOT(r) denote the
transcript of the protocol mpOT in the first r rounds. The output computing function outmpOT
takes the index i of a party, its private input, its random tape, and the transcript mpOT(3) and
generates the output outi. The protocol is required to satisfy the following property correctness

14

property Pr[(out1, . . . , outn) = Fn·(n−1)
OT ({xi,j, yi,j}i∈[n],j ̸=i)] = 1, where outi denotes the output

obtained by the i-th party from the mpOT protocol when executed on the private input and
random tape of Pi.

In terms of security, we consider a slight variation of the notion of list MPC that we have
recalled in Definition 2.9. In particular, in this notion we have two types of inputs: static,
and list. The static inputs are inputs decided at the onset of the ideal/real-world experiment,
whereas the list-inputs are the inputs sampled by the ideal functionality (on behalf of the
honest parties) by using some samplers {Xi}i∈[H]. In the specific case of the OT functionality
we consider here, the inputs of the honest receivers are fixed, whereas the inputs of the honest
senders are sampled from the ideal functionality in the spirit of Definition 2.9. We provide
the formal definition of the ideal and real-world in Figure 2.4, and we say that a simultaneous
OT protocol is secure if it satisfies the following.

Definition 2.11 (Secure Simultaneous OT Protocol). Let A be an adversary corrupting
an arbitrary subset of parties indexed by M (we denote the indices of the honest parties with
H = [n] \M), that obtains auxiliary input aux. Let {RealA,mpOT(1λ, M, H, {yi,j}i∈H,j∈M)}λ

denote the joint distribution of the view of the adversary and the outputs of honest parties
in the real-world world experiment described in Figure 2.4. We require the existence of an
expected polynomial time simulator Sim that with black-box access to the adversary A interacts
with the ideal functionality F list

OT α,β (see Figure 2.3) as described in the ideal world experiment
of Figure 2.4, and return an output, denoted by {IdealSim,F list

OT α,β
(1λ, M, H, {yi,j}i∈H,j∈M)}

such that the following holds for any {yi,j}i∈H,j∈M {RealA,mpOT(1λ, M, H, {yi,j}i∈H,j∈M)}λ∈N
is indistinguishable from {IdealSim,F list

OT α,β
(1λ, M, H, {yi,j}i∈H,j∈M)}λ∈N.

Figure 2.3: The list functionality F list
OT α,β

The functionality is parametrized by the samplers {Xi}i∈H , and by the honest receivers
inputs {yi,j}i∈H,j∈M , where yi,j ⊆ [β], with |yi,j| = α for each i ∈ H, j ∈M .

1. Upon receiving the receivers-inputs of the corrupted parties {yi,j}i∈M,j∈H , and k ∈ N,
for each κ ∈ [k] do the following

- For each i ∈ H, j ∈ M sample xi,j,κ ← Xi, where xi,j,κ = (x1
i,j,κ, . . . , xβ

i,j,κ), and
compute outκ

i,j := {xc
i,j,κ}c∈yj,i

2. Send {outκ
i,j}κ∈[k],i∈H,j∈M to A

3. Upon receiving (ι, {xi,j}i∈M,j∈H , abort) from A do the following. For each j ∈ H \
abort send {xc

i,j}i∈M,c∈yj,i
and {xj,i,ι}i∈M to the honest Pj. For each j ∈ abort send

an abort command to Pj.

15

Figure 2.4: Real and ideal world

RealA,mpOT(1λ, M, H, {yi,j}i∈H,j∈M)
1. For each i ∈ H sample {xi,j}j∈[M] ← X i.
2. For each i ∈ H compute the first round πi

1 of mpOT as
the honest Pi would do on input ({xi,j , yi,j}j∈[n]\{i})
and the randomness ri ← {0, 1}λ and send πi

1 to A.
3. Upon receiving {πi

1}i∈M from A, for each i ∈ H
compute the second round πi

2 of mpOT as the honest
party Pi thus obtaining πi

2 and send (πi
2, {xi,j}j∈M)

to A.
4. Upon receiving {πi

2}i∈M from A, for each i ∈ H
compute πi

3 as the honest party Pi would do thus
obtaining πi

3, and send πi
3 to A.

5. Upon receiving {πi
3}i∈M , compute the output outi

as Pi would do, and return the view of A.

IdealSim,F list
OT α,β

(1λ, M, H, {yi,j}i∈H,j∈M)

1. ({yi,j}i∈M,j∈H , 1k, z)← SimA
1 (1λ)

2. Send {yi,j}i∈M,j∈H to the ideal functionality
F list

OT α,β which computes {outκ
i,j}i∈H,j∈M,κ∈[k]

as described using the sampled inputs
{xi,j,κ}i∈[H],j∈M,κ∈[k] as described before.

3. Whenever SimA
2 ({outκ

i,j}i∈M,j∈H,κ∈[k], z)
queries A with a message ({πi}i∈H , γ)
(with γ ∈ [k]), replace the query with
({πi}i∈H , {xi,j,γ}i∈[H],j∈M , γ) and forward the
pair to A.

4. (ι, {xi,j}i∈[M],j∈H , View) ←
SimA

2 ({outκ
i,j}i∈M,j∈H,κ∈[k], z) with

ι ∈ [k] ∪ {⊥}.
5. Send (ι, {xi,j}i∈[M],j∈H , abort) where abort is a

set of indices that determines which honest parties
should not receive the output from F list

OT α,β .
6. Return View.

2.4 Garbled Circuits

This section is taken verbatim from [PS21].
We recall the definition of garbling schemes for circuits [Yao86] (see Applebaum et

al. [AIK04, App17], Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed
proof and further discussion). A garbling scheme for circuits is a tuple of PPT algorithms
(Garble, Eval). Garble is the circuit garbling procedure and Eval is the corresponding evaluation
procedure. More formally:
– (C̃, {labw,b}w∈inp(C),b∈{0,1})← Garble(1λ, C): Garble takes as input a security parameter 1λ,

a circuit C, and outputs a garbled circuit C̃ along with labels labw,b where w ∈ inp(C)
(inp(C) is the set of input wires of C) and b ∈ {0, 1}. Each label labw,b is assumed to be
in {0, 1}λ.

– y ← Eval(C̃, {labw,xw}w∈inp(C)): Given a garbled circuit C̃ and a sequence of input labels
{labw,xw}w∈inp(C) (referred to as the garbled input), Eval outputs a string y.

Correctness. For correctness, we require that for any circuit C and any input x ∈ {0, 1}|inp(C)|,
we have that:

Pr[C(x) = Eval(C̃, {labw,xw}w∈inp(C))] = 1

where (C̃, {labw,b}w∈inp(C),b∈{0,1})← Garble(1λ, C).

Security. For security, we require that there exists a PPT simulator SimGC such that for any
circuit C and any input x ∈ {0, 1}|inp(C)|, we have that:

(C̃, {labw,xw}w∈inp(C)) ≈c SimGC(1|C|, 1|x|, C(x))

where (C̃, {labw,b}w∈inp(C),b∈{0,1})← Garble(1λ, C).

16

Authenticity of Input labels. We require for any circuit C and input x ∈ {0, 1}|inp(C)| and
for any PPT adversary A, the probability that the following game outputs 1 is negligible.

(C̃, {labw}w∈inp(C))←Sim(1|C|, 1|x|, C(x))
{lab′w}w∈inp(C) ←A

y =Eval(C̃, {lab′w}w∈inp(C))
({labw}w∈inp(C) ̸= {lab′w}w∈inp(C))∧(y ̸= ⊥)

As noted in [GS18], the authenticity of input labels property can be added to any garbled
circuit by digitally signing the labels and including the signatures along with the labels and
including the verification key along with the garbled circuit C̃. The evaluation procedure first
checks the signatures before proceeding with the actual evaluation of the garbled circuit.

2.5 Symmetric Encryption and Message Authentication

In this section, we recall the definitions of symmetric encryption, message authentication
codes, digital signatures, and commitments.

Definition 2.12 (Symmetric Encryption [GB96]). A symmetric encryption scheme
(SE) for the message space M is a tuple of three algorithms SE = (Setup, Enc, Dec):

Setup(1λ): Takes as input a unary representation of the security parameter λ, and outputs a
key k.

Enc(k, m): Takes as input the symmetric key k, a message m ∈M to encrypt, and outputs a
ciphertext ct.

Dec(k, ct): Takes as input the symmetric key k and a ciphertext ct and outputs a message or
⊥ if decryption fails.

A scheme SE is correct, if for all λ ∈ N, k← Setup(1λ), m ∈M, we have

Pr [Dec(k, Enc(k, m)) = m] = 1 .

Security for a symmetric encryption scheme is defined in an indistinguishable manner.

Definition 2.13 (IND-CPA Security of SE). Let SE = (Setup, Enc, Dec) be an SE
scheme, for the message space M. For β ∈ {0, 1}, we define the experiment IND-CPASE

β

in Fig. 1, where the encryption oracle QEnc outputs ct← Enc(k, xβ) on a query (x0, x1). We
define the advantage of an adversary A in the following way

AdvIND-CPA
SE,A (λ) = |Pr[IND-CPASE

0 (λ,A) = 1]− Pr[IND-CPASE
1 (λ) = 1]| .

A symmetric encryption scheme SE is called IND-CPA secure, if for any PPT adversary A
it holds that AdvIND-CPA

SE,A (λ) ≤ negl(λ).

17

IND-CPASE
β (1λ,A)

sk← Setup(1λ)
α← AQEnc(·,·)(1λ)
Output: α

Fig. 1: IND-CPA Security Game for a symmetric encryption scheme SE.

In our protocol, it is sufficient to use a symmetric encryption scheme that fulfills one-time
security. In this special case of IND-CPA security the encryption oracle can only be queried
once. The one-time pad is a candidate scheme that fulfills this notion.

Definition 2.14 (Message Authentication Code [Gol04]). A message authentication
code (MAC) for the message space M is a tuple of three algorithms (Setup, Auth, Verify):

Setup(1λ): Takes as input a unary representation of the security parameter 1λ, and outputs a
key k.

Auth(k, m): Takes as input the key k, a message m ∈M, and outputs a tag τ .
Verify(k, m): takes as input a key k, a message m and a tag τ and outputs either 0 or 1.

A scheme MAC is correct, if for all λ ∈ N, k← Setup(1λ), m ∈M, we have

Pr [Verify(k, m, Auth(k, m)) = 1] = 1 .

Definition 2.15 (Unforgeability of MAC). Let MAC = (Setup, Auth, Verify) be a MAC,
for the message space M. We define the experiment EUF-CMAMAC in Fig. 2 with Q being
the set containing the queries of A to the authentication oracle Auth(k, ·).

A message authentication code MAC is called existentially unforgeable under adaptive
chosen-message attacks (EUF-CMA secure), if for any PPT adversary A it holds that
Pr[EUF-CMAMAC(λ,A) = 1] ≤ negl(λ).

EUF-CMAMAC(1λ,A)
k← Setup(1λ)
(m∗, τ ∗)← AAuth(k,·)(1λ)
Output: Verify(k, m∗, τ ∗) = 1 ∧m /∈ Q

Fig. 2: The Existentially Unforgeability Game for a message authentication code MAC.

2.6 Outer Protocol

The outer protocol that is used in this work needs to achieve the same properties as the outer
protocol used in [IKSS21] which we recap here verbatim.

18

Their outer protocol is a 2-round, n-client, m-server MPC protocol achieving privacy with
knowledge of outputs (Remark 2.8) against a malicious, adaptive adversary corrupting up to
n− 1 clients and t = (m− 1)/3 servers. Such a protocol was constructed in [IKP10] making
black-box use of a pseudorandom generator (PRG). We set m = 8λn2. We now give details
about the syntax of this protocol:

1. In the first round, the i’th client runs Φ1 on input 1λ, the index i and its private input xi

to obtain (ϕi→1
1 , . . . , ϕi→m

1). Here, ϕi→j
1 denotes the private message that this client needs

to send to the j’th server (for each j ∈ [m]) in the first round.
2. In the second round, the j’th server runs Φ2(j, (ϕ1→j

1 , . . . , ϕn→j
1)) to obtain ϕj

2 and this is
sent to the output client in the second round.

3. Finally, the output client runs outΦ(ϕ1
2, . . . , ϕm

2) to compute the output of the protocol.

Remark 2.16. We require the functions computed by the servers to be information-theoretic
and not involve any cryptographic operations. In the protocol of [IKP10], the servers have to
perform several PRG computations. To deal with this challenge, we delegate the computation
of the PRG to each of the clients. Specifically, for every PRG computation to be done by
each server, every client chooses a random seed and gives the output of the PRG on this
seed to the server. Let (seedi, PRG(seedi)) be the contribution from the i’th client where PRG
has a sufficiently long stretch. The server sets seed = (seed1, . . . , seedn) and defines a new
PRG′(seed) = ⊕iPRG(seedi). The seed and the PRG computation is sent as part of the first
message from the client to the servers. The watchlist protocol is then used to ensure that the
PRG computations done by the honest servers are correct.

3 Single Receiver, Multiple Senders Oblivious Transfer (1RnS OT)

A 1RnS OT is a protocol between n parties acting as senders S⃗ = {Si}i∈[n] and one party
acting as a receiver R. At a high level, the functionality realized by a 1RnS OT protocol
can be described as follows: each sender engages in a 1-out-of-2 oblivious transfer protocol
against the same receiver, which is guaranteed to use the same input, in all the n 1-out-of-2
OT executions. Formally, we denote the functionality realized by our protocol with FS⃗,R,
and denote the input of the i-th sender Si, for each i ∈ [n], with (s0

i , s1
i), where sd

i (with
d ∈ {0, 1}) is a vector that contains ℓ bit-strings (of size λ): sd

i,1, . . . , sd
i,ℓ. We denote the

receiver’s input with m ∈ {0, 1}ℓ. Upon receiving the inputs from the honest senders and
the honest receiver, the functionality returns ({sm1

i,1 }i∈[n], . . . , {smℓ
i,ℓ }i∈[n]) to the receiver, and

nothing to the senders. We say that a protocol is a secure 1RnS OT if it satisfies Definition 3.1
described below.

Definition 3.1. An 1RnS OT protocol is defined by the following tuple of algorithms OTS⃗,R =
(OTR,1, OTS,2, OTR,3, OTS,4, OTout), where the senders speak in the second and fourth rounds
while the receiver speaks in the first and third rounds over a broadcast channel. We denote
with τOT the transcript of the protocol. The algorithm OTout takes as input τOT, the input and
randomness of the receiver and generates the output outR for the receiver. We say that an
1RnS OT protocol is secure if it satisfies the following properties.

19

Delayed-Input Correctness: For every possible input ({(s0
i , s1

i)}i∈[n], m), let S⃗ = {Si}i∈[n]
be senders that follow the protocol specification, which receive the inputs at the end of
the third round and, R be an honest receiver R which receives the input at the end of the
second round, we have that: Pr

[
outR = FS⃗,R({(s0

i , s1
i)}i∈[n], m)

]
= 1, where outR denotes

the output obtained by the receiver at the end of the protocol.
Sender Privacy: Let A be a PPT adversary, with any auxiliary input z, that corrupts the

receiver and an arbitrary subset of senders with indices I ⊆ [n]. For every set of vector
pairs {(s0

i , s1
i)}i∈H (where H = {1, . . . , n} \ I) we require that there exists an expected

polynomial time simulator Sim with the following characteristics.
1. It has black-box access to A.
2. It works in two phases. In the first phase, it returns m (which implicitly denotes the

input of the corrupted receiver). In the second phase, the simulator is fed with the vectors
({σ0

i , σ1
i }i∈H constructed as follows. For each i ∈ [n], d ∈ {0, 1} σd

i := (σd
i,1, . . . , σd

i,ℓ),
where for each i ∈ H, j ∈ [ℓ] σ

mj

i,j := s
mj

i,j , σ
1−mj

i,j := 0λ.
3. Upon receiving the above input, the simulator returns the output and stops.
Sender privacy requires that the following two distributions to be computationally in-
distinguishable: View(A(z), {Si}i∈H({s0

i , s1
i }i∈H)) ≈ and {SimA(1λ, z)}λ∈N,z∈{0,1}⋆, where

ViewA(A(z), {Si}i∈H, {s0
i , s1

i }i∈H) denotes the view of A during the execution of OTS⃗,R

where the honest parties {Si}i∈H use the inputs {(s0
i , s1

i)}i∈H, and SimA(1λ, z) denotes the
output of the simulator described above.

Receiver Privacy: Let A be a PPT adversary, with any auxiliary input z, that corrupts an
arbitrary subset of senders with indices I ⊆ [n]. For every set of vector pairs {(s0

i , s1
i)}i∈H

(where H = {1, . . . , n} \ I) and every pair of ℓ-bit strings m, m′, we require the fol-
lowing to be computationally indistinguishable: View(A(z), ({Si}i∈H({s0

i , s1
i }i∈H), R(m))),

View(A(z), ({Si}i∈H({s0
i , s1

i }i∈H), R(m′))), where ViewA(A(z), ({Si}i∈H, {s0
i , s1

i }i∈H, R(m)))
denotes the view of A during the execution of OTS⃗,R where the honest sender {Si}i∈H use
the inputs {(s0

i , s1
i)}i∈H and the receiver uses the input m.

3.1 1RnS Oblivious Transfer from 1-out-of-2 Oblivious Transfer

In this section, we show how to obtain a 1RnS OT protocol according to Definition 3.1. For
simplicity, we consider the case where the receiver has one-bit input and each sender Si has
two strings as its input (s0

i , s1
i), for i ∈ [n]. Each sender Si computes an n-out-of-n additive

secret sharing of its inputs, obtaining sb
i,1, . . . , sb

i,n such that sb
i = sb

i,1 ⊕ · · · ⊕ sb
i,n for each

b ∈ {0, 1}. Then, Si sends the shares (s0
i,j, s1

i,j) to Sj for each i ̸= j privately.9
In parallel, each sender Si engages with the receiver in an execution of a 1-out-of-2

simulation-based secure four-round OT, which we denote with OT, using, as its first input,
(s0

1,i|| . . . ||s0
n,i), and (s1

1,i|| . . . ||s1
n,i) as its second input. The honest receiver uses the same

input m in all the executions of OT. At the end of the protocol, the honest receiver can
reconstruct the outputs by computing sm

i,1 ⊕ · · · ⊕ sm
i,1 for each i ∈ n. The above mechanism

9 The private communication is implemented using CPA public-key encryption, where the keys are exchanged in the
second round and the shares are encrypted and sent in the third round.

20

ensures that if a corrupted receiver uses different inputs across different executions of OT,
that it will not be able to reconstruct any output at all. This holds because a subset of OT
executions would output additive shares of the senders’ inputs corresponding to 0, while the
others would output additive shares corresponding to 1; which is insufficient to reconstruct
either of the senders’ inputs. We notice that in the above approach, to realize a 4-round
protocol, the shares already need to be communicated in the second round. Therefore, the
senders’ inputs are also required in the second round. To satisfy the delayed-input property,
we let each sender Si follow the steps explained above w.r.t. two uniformly sampled keys kb

i .
Then, Si sends one-time pad encryptions of their inputs using the sampled keys in the last
round. Namely, Si sends kb

i ⊕ sb
i , b ∈ {0, 1} and i ∈ [n].

We present our protocol formally in Figure 3.1, and summarize the required tools below.
1. A 4-round, delayed-input 1-out-of-2 oblivious transfer protocol

OT = (OT1, OT2, OT3, OT4, OTout) which satisfies the properties of sender simulatability
and receiver privacy (Definition 2.5). Here receiver privacy means that a corrupted sender
should not be able to tell apart whether the input used by the receiver is 0 or 1.

2. A CPA-secure public-key encryption scheme PKE = (KeyGen, Enc, Dec).

Figure 3.1: Oblivious Transfer OT1RnS

Initialization: Each sender Si (at the end of the third round) uses as its input string
vectors ({x0

i,l, x1
i,l}l∈[ℓ]), for i ∈ [n] (the l-th element xb

i,l, is λ-bits long for b ∈ {0, 1}).
The receiver R (at the end of the second round) uses as its input the bit string
m = m1, . . . , mℓ.

Round 1 (Receiver).
1. For each i ∈ [n], compute oti

1 ← OT1(1λ)
2. Broadcast {oti

1}i∈[n].
Round 2 (Senders). Each sender Si for i ∈ [n] does the following.

1. Run the setup of the PKE scheme as (pki, ski)← KeyGen(1λ).
2. Compute oti

2 ← OT2(1λ, oti
1).

3. Broadcast {pki}i∈[n], {oti
2}i∈[n].

Round 3 (Senders). Each sender Si for i ∈ [n] does the following.
1. For each l ∈ [ℓ] sample two λ-bit strings K0

i,l, K1
i,l ← {0, 1}λ.

2. For b ∈ {0, 1}, for l ∈ [ℓ] compute an n-out-of-n additive secret sharing of Kb
i,l

obtaining shares {kb
i,l,j}j∈[n]

3. For each j ∈ [n] and b ∈ {0, 1} compute {ctb
i,l,j = Enc(pkj, kb

i,l,j)}l∈[ℓ]
4. Broadcast {ct0

i,l,j, ct1
i,l,j}j∈[n],l∈[ℓ].

Round 3 (Receiver). The receiver R computes the following steps.
1. For each i ∈ [n] compute oti

3 ← OT3(m, (oti
1, oti

2)).
2. Broadcast {oti

3}i∈[n].
Round 4 (Senders). Each sender Si for i ∈ [n] does the following.

1. For b ∈ {0, 1}, for j ∈ [n] compute {kb
j,l,i ← Dec(ski, ctb

j,l,i)}l∈[ℓ].
2. For each l ∈ [ℓ] compute {Xb

i,l = xb
i,l ⊕Kb

i,l}b∈{0,1}.

21

3. Compute oti
4 ← OT4({k0

j,l,i, k1
j,l,i}l∈[ℓ],j∈[n], (oti

1, oti
2, oti

3)).
4. Broadcast {X0

i,l, X1
i,l}l∈[ℓ], {oti

4}i∈[n].
Output Computation.

1. For each i ∈ [n], R computes {kml
i,l,j}l∈[ℓ],j∈[n] ← OTout(oti

1, oti
2, oti

3, oti
4).

2. For each l ∈ [ℓ] and i ∈ [n] R computes Kml
i,l = ⊕

j∈[n] kml
i,l,j.

3. For each l ∈ [ℓ] and i ∈ [n] R outputs xml
i,l = Xml

i,l ⊕Kml
i,l .

Remark 3.2. Note that in Figure 3.1 the senders speak both in the second and the third
round. We observe that this communication is only necessary to allow the senders to send
each other private messages. In the rest of the paper, we abstract this detail away for a
clearer exposition and we assume that the senders have access to private channels, and use
them in the second round to send the shares (but we note that this private channel can be
implemented using public-key encryption as shown in Figure 3.1). Therefore, in the rest of
the paper, when we use OT1RnS, we will avoid specifying that senders speak also in the third
round.

Theorem 3.3. Assuming that OT enjoys the property of sender simulatability and receiver
privacy, then OT1RnS satisfies Definition 3.1. Moreover OT1RnS makes black-box use of OT
and PKE.

The correctness follows by inspection. The receiver’s privacy follows immediately from
the receiver’s privacy of OT. We will proceed now through a series of hybrid arguments to
prove that OT1RnS satisfies also sender privacy, switching from the real-world experiment
to the simulated experiment, where the simulator SimOT1RnS is defined in Figure 3.4. Note
that SimOT1RnS of Figure 3.1 maintains the main-thread during the simulation. Let A be
the adversary that corrupts a subset I ⊆ [n] of senders and the receiver. Let H be the set
{1, . . . , n} \ I.

H0 The first hybrid H0 is the experiment where the honest sender {Si}i∈H, interacts with
A following the protocol description with honest inputs {x0

i , x1
i }i∈H. The output of the

experiment is the view of the adversary.
H1 This hybrid works as the previous one except that the ciphertexts sent in the second

round between honest parties are encryption of the message 0λ. More in detail, for i, j ∈ H
the hybrids computes (in the third round) {ctb

i,l,j = Enc(pkj, 0λ)}l∈[ℓ],b∈{0,1}. This hybrid is
indistinguishable from the previous one due to the CPA security of the encryption scheme
PKE.

H2 This hybrid works as the previous one except that for each i ∈ H in the i-th execution of
OT the senders’ messages are simulated and the input of the receiver m∗i is extracted. In
more detail, the hybrid executes the same steps that SimOT1RnS performs for the extraction
of the receiver’s inputs and the simulation of the OT sender messages (which are generated
using OT.Sim). The indistinguishability between this and the previous hybrid follows from
the sender simulatability of OT.

22

H3 This hybrid works as the previous one except for the way the values {kb
i,l,i}l∈[ℓ] are

generated. In particular, let {m∗i }i∈H the receiver’s input extracted as described in H2,
then to generate the values the hybrid for each i ∈ H is performing the following steps:
1. If |H| ≥ 2 and there exists j∗ ∈ H s.t. m∗i ̸= m∗j for any j ∈ H, then for each l ∈ [ℓ]

pick {kb
i,l,j}j∈[n] from the uniform distribution over {0, 1}λ, where b = m∗i,l.

2. Otherwise, pick {kb′
i,l,j}l∈[ℓ],j∈[n]\{i} and {Kb′

i,j}l∈[ℓ],j∈[n]\{i},b∈{0,1} from the uniform distri-
bution over {0, 1}λ, and set kb

i,l,i = Kb
i,l

⊕
j∈[n]\{i} kb

i,l,j.
3. For each l ∈ [ℓ] pick {k1−b

i,l,j}j∈[n] from the uniform distribution over {0, 1}λ, where
b = m∗i,l.

The perfect indistinguishability between this and the previous hybrid follows from the fact
that if condition (1) verifies then the adversary does not have enough shares to reconstruct
any of the keys used to encrypt the sender’s inputs.

H5 This hybrid works as the previous one except for the way the values {X1−b
i,l }l∈[ℓ] are

generated. In particular, let {m∗i }i∈H the receiver’s input extracted as described in H2,
then to generate the values the hybrid for each i ∈ H is performing the following steps:
1. If |H| ≥ 2 and there exists j∗ ∈ H s.t. m∗i ̸= m∗j for any j ∈ H, then for each l ∈ [ℓ]

pick {Xb
i,l}l∈[ℓ] from the uniform distribution over {0, 1}λ, where b = m∗i,l.

2. The values {X1−b
i,l }l∈[ℓ] are sampled from the uniform distribution over {0, 1}λ, where

b = m∗i,l.
The perfect indistinguishability between this and the previous hybrid follows from the
security of the one-time pad.

Figure 3.2: The simulator SimOT1RnS

Notation: Let A be the adversary that corrupts a subset I ⊆ [n] of senders and the
receiver. Let H be the set {1, . . . , n} \ I.

Simulation The simulator SimOT1RnS on input 1λ computes the following steps:
1. Upon receiving {oti

1}i∈[n] from A, for each i ∈ H send oti
1 to OT.Sim and collect

oti
2 from OT.Sim.

2. For each i ∈ H run the setup of the PKE scheme as (pki, ski)← KeyGen(1λ) and
broadcast pki, oti

2.
3. Upon receiving {pki, oti

2}i∈I continue with the following steps:
4. For b ∈ {0, 1}, for l ∈ [ℓ] and i ∈ H sample {kb

i,l,j}j∈[n]\{i} from the uniform
distribution over {0, 1}λ.

5. For each j ∈ I, i ∈ H and b ∈ {0, 1} compute {ctb
i,l,j = Enc(pkj, kb

i,l,j)}l∈[ℓ].
6. For each j, i ∈ H and b ∈ {0, 1} compute {ctb

i,l,j = Enc(pkj, 0λ)}l∈[ℓ].
7. Broadcast {ct0

i,l,j, ct1
i,l,j}j∈[n],i∈H,l∈[ℓ] to A

8. Upon receiving {oti
3}i∈[n] from A for each i ∈ H send oti

3 to OT.Sim and proceed
to the next stage.

Extraction. The simulator SimOT1RnS computes the following steps:
1. For each i∗ ∈ H run OT.Sim as follows:

(a) Upon receiving oti∗
2 from OT.Sim rewind A in the beginning of the second

round and compute the following steps:

23

i. For each i ∈ H \ {i∗} compute oti
2 ← OT2(1λ, oti

1)
ii. Set oti∗

2 = oti∗
2

iii. For each i ∈ H run the setup of the PKE scheme as (pki, ski) ←
KeyGen(1λ) and broadcast pki, oti

2.
iv. Upon receiving {pki, oti

2}i∈I from A continue with the following steps.
v. For b ∈ {0, 1}, for l ∈ [ℓ] and i ∈ H sample {kb

i,l,j}j∈[n]\{i} from the uniform
distribution over {0, 1}λ.

vi. For each j ∈ I, i ∈ H and b ∈ {0, 1} compute {ctb
i,l,j = Enc(pkj, kb

i,l,j)}l∈[ℓ].
vii. For each j, i ∈ H and b ∈ {0, 1} compute {ctb

i,l,j = Enc(pkj, 0λ)}l∈[ℓ].
viii. Broadcast {ct0

i,l,j, ct1
i,l,j}j∈[n],i∈H,l∈[ℓ] to A.

ix. Upon receiving {oti
3}i∈[n] from A, set oti∗

3 = oti∗
3 and send it to OT.Sim.

x. If OT.Sim outputs m∗i∗ go to step (1), otherwise go back to step (a).
Simulation. The simulator SimOT1RnS sends {m∗i }i∈H to the ideal functionality obtaining
{σ0

i , σ1
i }i∈H. Then SimOT1RnS computes the following steps:

1. For each honest sender Si for i ∈ H
(a) For b ∈ {0, 1}, for j ∈ [n] compute {kb

j,l,i ← Dec(ski, ctb
j,l,i)}l∈[ℓ].

(b) For each l ∈ [ℓ] pick X1−b
i,l from the uniform distribution over {0, 1}λ, where

b = m∗i,l.
(c) If |H| ≥ 2 and there exists j∗ ∈ H s.t. m∗i ̸= m∗j for any j ∈ H, then pick
{kb

i,l,i}l∈[ℓ] and Xb
i,l from the uniform distribution over {0, 1}λ, where b = m∗i,l.

(d) Otherwise, for each j ∈ H, for each l ∈ [ℓ], set b = m∗i,l (which is the l-th bit
of m∗i,l) and compute the following steps:
i. For each l ∈ [ℓ] sample two λ-bit strings Kb

i,l from the uniform distribution
over {0, 1}λ and set kb

i,l,i = Kb
i,l

⊕
j∈[n]\{i} kb

i,l,j.
ii. Set Xb

i,l = σb
i,l,j ⊕Kb

i,l.
(e) For each i ∈ H upon receiving the call to the ideal functionality from OT.Sim

acts as the ideal functionality and send {kb
i,l,j}j∈[n] in order to get oti

4, where
b = m∗i,l (which is the l-th bit of m∗i,l,j).

2. Broadcast {X0
i,l, X1

i,l}i∈H,l∈[ℓ], {oti
4}i∈H to A.

3. SimOT1RnS gives in output the view of A and stop.

Running time of SimOT1RnS. From the sender simulation security of OT follows that OT.Sim
extracts the input of the receiver from one OT execution in expected polynomial time.
Since the simulator executes OT.Sim a polynomial number of times and each execution is
independent of the others the simulator SimOT1RnS runs in expected polynomial time for the
extraction of the receiver’s input. Moreover, since OT.Sim simulates the sender’ round of
OT in polynomial time (because OT.Sim maintains the main thread), also SimOT1RnS runs in
polynomial time to simulate the senders’ rounds of OT1RnS.

nRmS Oblivious Transfer. This section considers a slight variation of the 1RnS OT introduced
in the previous section. The notion of nRmS can be seen as multiple executions (n) of a
protocol that realizes the 1RnS notion. That is, we have n receivers, each of them interacting

24

with m distinct senders, and we have the guarantee that each receiver uses the same input
when interacting with multiple senders (but different receivers may have different inputs). In
more detail our ideal functionality, denoted with Fm,n, works as follows: for each receiver Ri,
we have m senders S⃗i = {S1,i, . . . , Sm,i}, with i ∈ n, which engage with the ideal functionality
of FS⃗i,Ri

described in Definition 3.1 with a nominated receiver Ri. If Figure 3.3 we propose
the formal description of our ideal functionality.

Figure 3.3: Fm,n

Functionality Fm,n

The functionality interacts with a sets of senders {S⃗i}i∈[n] (with |S⃗i| = m, i ∈ [n]) and
the receivers {Ri}i∈[n], and emulates the behavior of the functionality FS⃗i,Ri

for each
i ∈ m as described below.

– Upon receiving the inputs from all the senders in S⃗i act as FS⃗i,Ri
would act upon

receiving the inputs from the senders.
– Upon receiving a message (receive, m) from Ri act as FS⃗i,Ri

when receiving the input
m from the sender S⃗i.

– Whenever FS⃗i,Ri
wants to return an output, return outi

R to Ri.

The security offered from a nRmS OT protocol is essentially the same as the one described
in Definition 3.1, with the only difference that more than one receiver can be corrupted.

Definition 3.4. An nRmS OT is defined by the following tuple of algorithms OTS⃗,R⃗
:=

{(OTi
R,1, OTi

S,2, OTi
R,3, OTi

S,4, OTi
out)}i∈n, where, for each i ∈ [n], j ∈ [m] the sender Sj,i

speaks in the second and fourth rounds using respectively the algorithms OTi
S,2 and OT i

S,4
while for each i ∈ [n] the receiver Ri speaks in the first and third rounds using the algorithms
OTi

R,1 and OTi
R,3 respectively. The parties have access to a broadcast channel. We denote

with τOT the transcript of the protocol. The algorithm OTi
out takes as input τOT, the input

and randomness of the receiver Ri and generates the output outi
R for the receiver Ri for each

i ∈ [n].

Delayed-Input Correctness: For each j ∈ [n], we denote the input used by the senders
S⃗j with sj = {(s0

i,j, s1
i,j)}i∈[m] (i.e., each sender’s input, as before, is represented by a pair

of vectors of size ℓ, where each component is a λ-bit string). For every possible input
{si, mi}i∈[n], where si denotes the inputs of the senders S⃗i and mi the input of the receiver,
with i ∈ [n] and where |S⃗i| = m we require the following to hold in the case when all the
parties are honest:

Pr
[
{outi

R}i∈[n] = Fm,n({si, mi}i∈[n])
]

= 1

where outi
R denotes the output obtained by the receiver Ri at the end of the protocol. We

also require the honest senders to receive the input at the end of the third round and the
honest receivers to receive it at the end of the second round.

25

Sender Privacy: Let A be a PPT adversary, with any auxiliary input z, that corrupts
an arbitrary subset of senders Si,j with (i, j) ∈ IS ⊆ [m] × [n] and of receivers Ri with
i ∈ IR ⊆ [n]. We denote the indices of the honest senders with HS = [m]× [n] \ IS, and
the indices of the honest receivers with HR = [n] \ IR

For every set of vector pairs {(s0
i,j, s1

i,j)}(i,j)∈HS
we require that there exists an expected

polynomial time simulator Sim with the following characteristics.

1. It has black-box access to A.
2. It works in two phases. In the first phase, it returns {mk}k∈IR

(which implicitly
denotes the inputs of the corrupted receivers {Rk}k∈IR

). In the second phase, the
simulator is fed with the vectors ({σ0

i,j, σ1
i,j}(i,j)∈HS

constructed as follows. For each
(i, j) ∈ [m] × [n], d ∈ {0, 1} σd

i,j := (σd
i,j,1, . . . , σd

i,j,ℓ), where for each (i, j) ∈ HS with
j ∈ IR, k ∈ [ℓ] σ

mj,k

i,j,k := s
mj,k

i,j,k , σ
1−mj,k

i,j,k := 0λ, where mj,k represents the k-th bit of mj.
3. Upon receiving the above input, the simulator returns the output and stops.

Sender privacy requires that the following two distributions to be computationally indistin-
guishable

View(A(z),HS,HR, {(s0
i,j, s1

i,j)}(i,j)∈H, {mi}i∈HR
) ≈ {SimA(1λ, z)}λ∈N,z∈{0,1}⋆

where the left part of the above denotes the view of A during the execution of OTS⃗,R⃗ where
the honest senders use the inputs {(s0

i,j, s1
i,j)}(i,j)∈H and the honest receivers use the inputs

{mi}i∈HR
, while SimA(1λ, z) denotes the output of the simulator described above.

Receiver Privacy: Let A be a PPT adversary, with auxiliary input z ∈ {0, 1}λ, that corrupts
an arbitrary subset of senders with indices IS ⊆ [m]×[n] and receivers with indices IR ⊆ [n]
(as before we denote the indices of the honest senders and receivers respectively with HS

and HR). For every pairs of receivers’ inputs {mi}i∈HR
, {m′i}i∈HR

and for every honest
senders’ inputs {(s0

i,j, s1
i,j)}(i,j)∈HS

we require that

View(A(z),HS,HR, {(s0
i,j, s1

i,j)}(i,j)∈H, {mi}i∈HR
) ≈c

View(A(z),HS,HR, {(s0
i,j, s1

i,j)}(i,j)∈H, {m′i}i∈HR
)

where View(·) is defined as above.

From 1RnS Oblivious Transfer to nRmS Oblivious Transfer. We construct an nRmS OT
protocol, which we denote with OTnRmS, satisfying Definition 3.6. The construction of OTnRmS
is quite simple, as it simply consists of letting each set of senders S⃗i engage in an execution
of the 1RnS OT protocol against the receiver Ri for each i ∈ n.

Theorem 3.5. Assuming that OT enjoys the property of sender simulatability and receiver
privacy, then OT1RnS satisfies Definition 3.1. Moreover OT1RnS makes black-box use of OT
and PKE.

26

The correctness follows by inspection. The receiver’s privacy follows immediately from
the receiver’s privacy of OT. We will proceed now through a series of hybrid arguments to
prove that OT1RnS satisfies also sender privacy, switching from the real-world experiment
to the simulated experiment, where the simulator SimOT1RnS is defined in Figure 3.4. Note
that SimOT1RnS of Figure 3.1 maintains the main-thread during the simulation. Let A be
the adversary that corrupts a subset I ⊆ [n] of senders and the receiver. Let H be the set
{1, . . . , n} \ I.
H0 The first hybrid H0 is the experiment where the honest sender {Si}i∈H, interacts with
A following the protocol description with honest inputs {x0

i , x1
i }i∈H. The output of the

experiment is the view of the adversary.
H1 This hybrid works as the previous one except that the ciphertexts sent in the second

round between honest parties are encryption of the message 0λ. More in detail, for i, j ∈ H
the hybrids computes (in the third round) {ctb

i,l,j = Enc(pkj, 0λ)}l∈[ℓ],b∈{0,1}. This hybrid is
indistinguishable from the previous one due to the CPA security of the encryption scheme
PKE.

H2 This hybrid works as the previous one except that for each i ∈ H in the i-th execution of
OT the senders’ messages are simulated and the input of the receiver m∗i is extracted. In
more detail, the hybrid executes the same steps that SimOT1RnS performs for the extraction
of the receiver’s inputs and the simulation of the OT sender messages (which are generated
using OT.Sim). The indistinguishability between this and the previous hybrid follows from
the sender simulatability of OT.

H3 This hybrid works as the previous one except for the way the values {kb
i,l,i}l∈[ℓ] are

generated. In particular, let {m∗i }i∈H the receiver’s input extracted as described in H2,
then to generate the values the hybrid for each i ∈ H is performing the following steps:
1. If |H| ≥ 2 and there exists j∗ ∈ H s.t. m∗i ̸= m∗j for any j ∈ H, then for each l ∈ [ℓ]

pick {kb
i,l,j}j∈[n] from the uniform distribution over {0, 1}λ, where b = m∗i,l.

2. Otherwise, pick {kb′
i,l,j}l∈[ℓ],j∈[n]\{i} and {Kb′

i,j}l∈[ℓ],j∈[n]\{i},b∈{0,1} from the uniform distri-
bution over {0, 1}λ, and set kb

i,l,i = Kb
i,l

⊕
j∈[n]\{i} kb

i,l,j.
3. For each l ∈ [ℓ] pick {k1−b

i,l,j}j∈[n] from the uniform distribution over {0, 1}λ, where
b = m∗i,l.

The perfect indistinguishability between this and the previous hybrid follows from the fact
that if condition (1) verifies then the adversary does not have enough shares to reconstruct
any of the keys used to encrypt the sender’s inputs.

H5 This hybrid works as the previous one except for the way the values {X1−b
i,l }l∈[ℓ] are

generated. In particular, let {m∗i }i∈H the receiver’s input extracted as described in H2,
then to generate the values the hybrid for each i ∈ H is performing the following steps:
1. If |H| ≥ 2 and there exists j∗ ∈ H s.t. m∗i ̸= m∗j for any j ∈ H, then for each l ∈ [ℓ]

pick {Xb
i,l}l∈[ℓ] from the uniform distribution over {0, 1}λ, where b = m∗i,l.

2. The values {X1−b
i,l }l∈[ℓ] are sampled from the uniform distribution over {0, 1}λ, where

b = m∗i,l.
The perfect indistinguishability between this and the previous hybrid follows from the
security of the one-time pad.

27

Figure 3.4: The simulator SimOT1RnS

Notation: Let A be the adversary that corrupts a subset I ⊆ [n] of senders and the
receiver. Let H be the set {1, . . . , n} \ I.

Simulation The simulator SimOT1RnS on input 1λ computes the following steps:
1. Upon receiving {oti

1}i∈[n] from A, for each i ∈ H send oti
1 to OT.Sim and collect

oti
2 from OT.Sim.

2. For each i ∈ H run the setup of the PKE scheme as (pki, ski)← KeyGen(1λ) and
broadcast pki, oti

2.
3. Upon receiving {pki, oti

2}i∈I continue with the following steps:
4. For b ∈ {0, 1}, for l ∈ [ℓ] and i ∈ H sample {kb

i,l,j}j∈[n]\{i} from the uniform
distribution over {0, 1}λ.

5. For each j ∈ I, i ∈ H and b ∈ {0, 1} compute {ctb
i,l,j = Enc(pkj, kb

i,l,j)}l∈[ℓ].
6. For each j, i ∈ H and b ∈ {0, 1} compute {ctb

i,l,j = Enc(pkj, 0λ)}l∈[ℓ].
7. Broadcast {ct0

i,l,j, ct1
i,l,j}j∈[n],i∈H,l∈[ℓ] to A

8. Upon receiving {oti
3}i∈[n] from A for each i ∈ H send oti

3 to OT.Sim and proceed
to the next stage.

Extraction. The simulator SimOT1RnS computes the following steps:
1. For each i∗ ∈ H run OT.Sim as follows:

(a) Upon receiving oti∗
2 from OT.Sim rewind A in the beginning of the second

round and compute the following steps:
i. For each i ∈ H \ {i∗} compute oti

2 ← OT2(1λ, oti
1)

ii. Set oti∗
2 = oti∗

2
iii. For each i ∈ H run the setup of the PKE scheme as (pki, ski) ←

KeyGen(1λ) and broadcast pki, oti
2.

iv. Upon receiving {pki, oti
2}i∈I from A continue with the following steps.

v. For b ∈ {0, 1}, for l ∈ [ℓ] and i ∈ H sample {kb
i,l,j}j∈[n]\{i} from the uniform

distribution over {0, 1}λ.
vi. For each j ∈ I, i ∈ H and b ∈ {0, 1} compute {ctb

i,l,j = Enc(pkj, kb
i,l,j)}l∈[ℓ].

vii. For each j, i ∈ H and b ∈ {0, 1} compute {ctb
i,l,j = Enc(pkj, 0λ)}l∈[ℓ].

viii. Broadcast {ct0
i,l,j, ct1

i,l,j}j∈[n],i∈H,l∈[ℓ] to A.
ix. Upon receiving {oti

3}i∈[n] from A, set oti∗
3 = oti∗

3 and send it to OT.Sim.
x. If OT.Sim outputs m∗i∗ go to step (1), otherwise go back to step (a).

Simulation. The simulator SimOT1RnS sends {m∗i }i∈H to the ideal functionality obtaining
{σ0

i , σ1
i }i∈H. Then SimOT1RnS computes the following steps:

1. For each honest sender Si for i ∈ H
(a) For b ∈ {0, 1}, for j ∈ [n] compute {kb

j,l,i ← Dec(ski, ctb
j,l,i)}l∈[ℓ].

(b) For each l ∈ [ℓ] pick X1−b
i,l from the uniform distribution over {0, 1}λ, where

b = m∗i,l.
(c) If |H| ≥ 2 and there exists j∗ ∈ H s.t. m∗i ̸= m∗j for any j ∈ H, then pick
{kb

i,l,i}l∈[ℓ] and Xb
i,l from the uniform distribution over {0, 1}λ, where b = m∗i,l.

28

(d) Otherwise, for each j ∈ H, for each l ∈ [ℓ], set b = m∗i,l (which is the l-th bit
of m∗i,l) and compute the following steps:
i. For each l ∈ [ℓ] sample two λ-bit strings Kb

i,l from the uniform distribution
over {0, 1}λ and set kb

i,l,i = Kb
i,l

⊕
j∈[n]\{i} kb

i,l,j.
ii. Set Xb

i,l = σb
i,l,j ⊕Kb

i,l.
(e) For each i ∈ H upon receiving the call to the ideal functionality from OT.Sim

acts as the ideal functionality and send {kb
i,l,j}j∈[n] in order to get oti

4, where
b = m∗i,l (which is the l-th bit of m∗i,l,j).

2. Broadcast {X0
i,l, X1

i,l}i∈H,l∈[ℓ], {oti
4}i∈H to A.

3. SimOT1RnS gives in output the view of A and stop.

Running time of SimOT1RnS. From the sender simulation security of OT follows that OT.Sim
extracts the input of the receiver from one OT execution in expected polynomial time.
Since the simulator executes OT.Sim a polynomial number of times and each execution is
independent of the others the simulator SimOT1RnS runs in expected polynomial time for the
extraction of the receiver’s input. Moreover, since OT.Sim simulates the sender’ round of
OT in polynomial time (because OT.Sim maintains the main thread), also SimOT1RnS runs in
polynomial time to simulate the senders’ rounds of OT1RnS.

3.2 Definition of nRmS OT

Definition 3.6. An nRmS OT is defined by the following tuple of algorithms OTS⃗,R⃗
:=

{(OTi
R,1, OTi

S,2, OTi
R,3, OTi

S,4, OTi
out)}i∈n, where, for each i ∈ [n], j ∈ [m] the sender Sj,i

speaks in the second and fourth rounds using respectively the algorithms OTi
S,2 and OT i

S,4
while for each i ∈ [n] the receiver Ri speaks in the first and third rounds using the algorithms
OTi

R,1 and OTi
R,3 respectively. The parties have access to a broadcast channel. We denote

with τOT the transcript of the protocol. The algorithm OTi
out takes as input τOT, the input

and randomness of the receiver Ri and generates the output outi
R for the receiver Ri for each

i ∈ [n].

Delayed-Input Correctness: For each j ∈ [n], we denote the input used by the senders
S⃗j with sj = {(s0

i,j, s1
i,j)}i∈[m] (i.e., each sender’s input, as before, is represented by a pair

of vectors of size ℓ, where each component is a λ-bit string). For every possible input
{si, mi}i∈[n], where si denotes the inputs of the senders S⃗i and mi the input of the receiver,
with i ∈ [n] and where |S⃗i| = m we require the following to hold in the case when all the
parties are honest:

Pr
[
{outi

R}i∈[n] = Fm,n({si, mi}i∈[n])
]

= 1

where outi
R denotes the output obtained by the receiver Ri at the end of the protocol. We

also require the honest senders to receive the input at the end of the third round and the
honest receivers to receive it at the end of the second round.

29

Sender Privacy: Let A be a PPT adversary, with any auxiliary input z, that corrupts
an arbitrary subset of senders Si,j with (i, j) ∈ IS ⊆ [m] × [n] and of receivers Ri with
i ∈ IR ⊆ [n]. We denote the indices of the honest senders with HS = [m]× [n] \ IS, and
the indices of the honest receivers with HR = [n] \ IR

For every set of vector pairs {(s0
i,j, s1

i,j)}(i,j)∈HS
we require that there exists an expected

polynomial time simulator Sim with the following characteristics.
1. It has black-box access to A.
2. It works in two phases. In the first phase, it returns {mk}k∈IR

(which implicitly
denotes the inputs of the corrupted receivers {Rk}k∈IR

). In the second phase, the
simulator is fed with the vectors ({σ0

i,j, σ1
i,j}(i,j)∈HS

constructed as follows. For each
(i, j) ∈ [m] × [n], d ∈ {0, 1} σd

i,j := (σd
i,j,1, . . . , σd

i,j,ℓ), where for each (i, j) ∈ HS with
j ∈ IR, k ∈ [ℓ] σ

mj,k

i,j,k := s
mj,k

i,j,k , σ
1−mj,k

i,j,k := 0λ, where mj,k represents the k-th bit of mj.
3. Upon receiving the above input, the simulator returns the output and stops.
Sender privacy requires that the following two distributions to be computationally indistin-
guishable

View(A(z),HS,HR, {(s0
i,j, s1

i,j)}(i,j)∈H, {mi}i∈HR
) ≈ {SimA(1λ, z)}λ∈N,z∈{0,1}⋆

where the left part of the above denotes the view of A during the execution of OTS⃗,R⃗ where
the honest senders use the inputs {(s0

i,j, s1
i,j)}(i,j)∈H and the honest receivers use the inputs

{mi}i∈HR
, while SimA(1λ, z) denotes the output of the simulator described above.

Receiver Privacy: Let A be a PPT adversary, with auxiliary input z ∈ {0, 1}λ, that corrupts
an arbitrary subset of senders with indices IS ⊆ [m]×[n] and receivers with indices IR ⊆ [n]
(as before we denote the indices of the honest senders and receivers respectively with HS

and HR). For every pairs of receivers’ inputs {mi}i∈HR
, {m′i}i∈HR

and for every honest
senders’ inputs {(s0

i,j, s1
i,j)}(i,j)∈HS

we require that

View(A(z),HS,HR, {(s0
i,j, s1

i,j)}(i,j)∈H, {mi}i∈HR
) ≈c

View(A(z),HS,HR, {(s0
i,j, s1

i,j)}(i,j)∈H, {m′i}i∈HR
)

where View(·) is defined as above.

3.3 Formal Description of OTnRmS

OTnRmS is described in details in Figure 3.5 and makes use of the 1RnS OT protocol OT1RnS =
(OT1

1RnS, {OT2,j
1RnS}j∈[m], OT3

1RnS, {OT4,j
1RnS}j∈[m], OTout

1RnS) constructed in Section 3.1.

Figure 3.5: Oblivious Transfer OTnRmS

Initialization: Each set of m-senders S⃗i (at the end of the third round) has in input
string vectors {(s0

i,j, s1
i,j)}j∈[m] (the l-element of the vector sb

i,j is long λ-bits, b ∈ {0, 1},

30

l ∈ [ℓ]). The i-th receiver Ri (at the end of the second round) has input bit string
mi = mi

1, . . . , mi
ℓ, for i ∈ [n].

Round 1 (Receivers).
1. For each i ∈ [n] the receiver Ri computes ot1,i

1RnS = OT1
1RnS(1λ) and broadcast

ot1,i
1RnS.

Round 2 (Senders).
1. For each i ∈ [n] each sender Sj in S⃗i computes ot2,i,j

1RnS = OT1,j
1RnS(1λ, ot1,i

1RnS) and
broadcast ot2,i,j

1RnS.
Round 3 (Receivers).

1. For each i ∈ [n] the receiver Ri computes ot3,i
1RnS =

OT1
1RnS(mi, (ot1,i

1RnS, {ot2,i,j
1RnS}j∈[m])) and broadcast ot3,i

1RnS.
Round 4 (Senders).

1. For each i ∈ [n] each sender Sj in S⃗i computes ot4,i,j
1RnS =

OT4,j
1RnS((s0

i,j, s1
i,j), (ot1,i

1RnS, {ot2,i,j
1RnS, }j∈[m], ot3,i

1RnS) and broadcast ot4,i,j
1RnS.

Output Computation.
1. For each receiver Ri computes and outputs {sml

i,j }j∈[m],l∈ℓ =
OTout

1RnS(ot1,i
1RnS, {ot2,i,j

1RnS, }j∈[m], ot3,i
1RnS, {ot4,i,j

1RnS, }j∈[m])

Theorem 3.7. Let OT1RnS be the 1RnS oblivious transfer (satisfying Definition 3.1) con-
structed in Section 3.1, then OTnRmS of Figure 3.5 satisfies Definition 3.6. Moreover OTnRmS
makes black-box use of OT1RnS.

Proof. (Sketch) The correctness property follows by inspection and the receiver privacy follows
from the receiver privacy of OT1RnS. The property of sender privacy follows a similar proof to
the one given for Theorem 3.5. In particular, the set of hybrids (and the simulation strategy)
are the same considered for the proof of Theorem 3.5, the only difference is that the hybrids
are iterated for each i-th OT1RnS executions, for i ∈ [n]. The transition between the hybrids
can be argued similarly to the proof of Theorem 3.5. ⊓⊔

4 Inner Protocol

4.1 Definition of the Inner-Protocol

In this section, we provide the security definition for the inner protocol (which is inspired
by [IKSS23]). Then, we show that the protocol described in [PS21] satisfies our security
definition. We start the section with an informal description of our inner-protocol definition
and its instantiation. Compared to the definition of the inner protocol proposed in [IKSS23],
we require some additional properties. Specifically, our inner protocol is formulated with a
clear separation between an inputless and an input part. We formalize this separation by
splitting the algorithms of the protocol into two parts: one procedure that is responsible for
establishing correlated randomness between the parties (and is therefore inputless), denoted
by Πno-inp, and one procedure that requires the inputs, denoted by Πinp. Here, we allow

31

the “no-input” procedure to interact with the “input” procedure using an auxiliary input.
Furthermore, we also require Πinp to not make any use of computational cryptographic
primitives. As mentioned in the introductory section of the paper, this separation is necessary
since in our final MPC protocol we will evaluate Πinp inside a garbled circuit and, to guarantee
the black-box use of primitives, this procedure cannot perform cryptographic operations. In
terms of security, we require two properties:

Equivocality: If the adversary is misbehaving in the first two rounds of Πno-inp, the inputs
of the honest parties are leaked to the adversary in the third round.

Semi-maliciousness: If the adversary is computing honestly the first two rounds of Πno-inp,
and provide a defense that explains his behavior with respect to the first two messages of
Πno-inp then no information about the honest parties’ inputs is leaked, except what can be
inferred from the output of the function.

The difference between our notion and the one proposed in [IKSS23], is that we only
require the adversary to behave honestly (and provide a defense) for the first two messages
related to Πno-inp. In particular, this means that the simulator does not receive the inputs of
the adversary (as the messages of Πno-inp do not necessitate any input). Hence, the simulator
must be able to extract the input of the adversary by just looking at the messages received
from the adversary and at the randomness the adversary used to compute the messages of
Πno-inp.

After the informal description, we now present the formal definition.
A three-round inner protocol computing a function f is given by a tuple of algorithms

Π = ({Πno-inp
i }i∈[3], {Πinp

i }i∈1,2, Πout) with the following syntax. The i-th party Pi on private
input xi executes the following steps:

– In the first round compute and broadcast (πi
1, zi)← Πno-inp

1 (1λ, i)
– In the second round upon receiving {πj

1}j∈[n]\{i} compute (z′i, πi
2)← Πno-inp

2 (1λ, i, {πj
1}j∈[n]\{i}, zi)

and π̃i
1 ← Πinp

1 (i, xi, z′i). Broadcast (πi
2, π̃i

1).
– In the third round upon receiving {πj

2, π̃j
1}j∈[n]\{i} for each j ∈ [n]\{i} compute (z′′i , πi

3)←
Πno-inp

3 (1λ, i, z′i, {π
j
2, πj

1}j∈[n]\{i}) and π̃i
2 ← Πinp

2 (i, xi, z′′i , {π̃j
1}j∈[n]\{i}), and broadcast (πi

3, π̃i
2).

– Upon receiving {πj
3, π̃j

2}j∈[n]\{i} for each j ∈ [n]\{i} output Πout(xi, {πj
3, πj

k, π̃j
k}j∈[n]\{i},k∈[2]).

32

Figure 4.1: Security game for the inner protocol

Real(A, {xi, ri}i∈H)

1. For each i ∈ H, compute (πi
1, zi)←

Πno-inp
1 (1λ, i; ri).

2. Send {πi
1}i∈H to A.

3. Receive {πi
1}i∈M from A.

4. For each i ∈ H, compute
(z′i, πi

2; ri) := Πno-inp
2 (1λ, i,

{πj
1}j∈[n]\{i}, zi) and π̃i

1 :=
Πinp

1 (i, xi, z′i; ri). Broadcast (πi
2, π̃i

1).
5. Send {πi

2, π̃i
1}i∈H to A.

6. Receive {πi
2, π̃i

1, ri}i∈M from A.
7. For each i ∈ H, compute (z′′i , πi

3)←
Πno-inp

3 (1λ, i, z′i, {π
j
2, πj

1}j∈[n]\{i}) and
π̃i

2 ← Πinp
2 (i, xi, z′′i , {π̃j

1}j∈[n]\{i})
8. Send {πi

3, π̃i
2}i∈H to A.

9. Receive {πi
3, π̃i

2}i∈M from A.
10. Output the view of A and {Πout(xi,
{πj

3, πj
k, π̃j

k}j∈[n]\{i},k∈[2])}i∈H

Ideal(A, SimΠ, {xi}i∈H)

1. For each i ∈ H, compute πi
1 ←

SimΠ(1λ, i).
2. Send {πi

1}i∈H to A.
3. Receive {πi

1}i∈M from A.
4. For each i ∈ H, compute (πi

2, π̃i
1)←

SimΠ({πi
1}i∈M)

5. Send {πi
2, π̃i

1}i∈H to A.
6. Receive {πi

2, π̃i
1, ri}i∈M from A.

7. Check if the messages sent by the
corrupted parties in {πi

1, πi
2}i∈M are

consistent with {ri}i∈M .
8. Semi-Malicious Security: if they

are consistent:
(a) {xi}i∈M ←

SimΠ(1λ, i, {πi
2, π̃i

1}i∈M , {ri}i∈M)
(b) For each i ∈ H, com-

pute (πi
3, π̃i

2) ← SimΠ(i,
f(x1, . . . , xn)).

9. Equivocality: if they are not con-
sistent:

(a) For each i ∈ H, compute
(πi

3, π̃i
2)← SimΠ(1λ, i, {xi}i∈H)

10. Send {πi
3, π̃i

2}i∈H to A.
11. Receive {πi

3, π̃i
2}i∈M from A.

12. Output the view of A and {Πout(xi,
{πj

3, πj
k, π̃j

k}j∈[n]\{i},k∈[2])}i∈H .

Definition 4.1. As inner protocol Π for f is secure if it satisfies the following properties:
Correctness: The protocol Π correctly computes a function f if for every choice of inputs
xi for party Pi, Pr[Πout(τΠ)) = f(x1, . . . , xn)] = 1, where τΠ denotes the transcript of the
protocol Π when the input of Pi is xi.
Security: Let A be an adversary corrupting a subset of the parties indexed by the set M
and let H be the set of indices denoting the honest parties. We require the existence of a
simulator SimΠ such that for any choice of honest parties inputs {xi}i∈H , the real world
Real(A, {xi, ri}i∈H) and the ideal world Ideal(A, SimΠ, {xi}i∈H) are indistinguishable. Here,
the real and ideal experiments are described in Fig. 4.1 and for each i ∈ H, ri is uniformly
chosen.
Primitive Independency: We require that the operations performed by the algorithm Πinp

2
are independent of any computational cryptographic primitive.

33

After presenting the formal definition of the inner-protocol, we describe how this definition
can be realized.

4.2 Realization of the Inner-Protocol

The work of [PS21] realizes a 3-round MPC protocol ΠPS for any functionality making
black-box use of oblivious transfer against an active adversary in the CRS model. To realize
our inner protocol, as in the work of Ishai et al. [IKSS23], we rely on ΠPS which, in turn,
uses the round-collapsing compiler of [GS18,GIS18]. We now proceed with a brief overview
of [GS18, GIS18] and [PS21] and explain why it satisfies the definition described above.
In [GS18] the authors propose a compiler ΠGS that collapses an MPC protocol Φ with an
arbitrary number of rounds into a two-round protocol. The main technical contribution
of [GS18] is to replace the interactions between the parties with a mechanism that emulates
these interactions via nested layers of garbled circuits. The interaction between the garbled
circuits is then performed using an oblivious transfer. Subsequently, in [GIS18], the authors
show that the above compiler can make black-box use of the underlying primitives if Φ is an
information-theoretic protocol in the OT correlations model. In [PS21], the authors show how
to execute ΠGS and generate the corresponding OT correlations in three rounds. In particular,
they present a 3-round protocol Γ which generates the OT correlations and provide them
as input to the first layer of the garbled circuits of ΠGS. To be more precise, in the first
round of ΠPS the parties compute the first round of Γ , then they execute the subsequent
rounds of ΠGS and Γ in parallel, using the inputs of Γ as an additional input to ΠGS. Note
that Γ is generating a preprocessing phase (i.e. OT correlations) for ΠGS and therefore does
not need the inputs of the parties. Our only modification to the above-described protocol
is syntactical, as we divide the protocol into two sub-protocols Πno-inp and Πinp. We observe
that the generation of the leveled garbled circuits (and corresponding labels) executed in
ΠGS can be seen as a preprocessing phase, while the parties’ inputs are only involved in the
process of selecting the appropriate labels for the layers of the garbled circuits. Therefore,
Πno-inp, besides executing the protocol Γ, is also used to setup the garbled circuits and OTs
that are part of the computation of ΠGS. The labels of the garbled circuits generated using
Πno-inp are then passed as auxiliary information to Πinp. Finally, Πinp outputs the correct set
of labels based on the parties’ actual inputs.

Before formally presenting the inner protocol, we need to introduce, in the subsequent
sections, some preliminary tools which are used to construct the final protocol.

4.3 Oblivious Transfer with Equivocal Receiver Security

Syntax. Let OT = (OT1, OT2, outOT) be a two-round oblivious transfer protocol. The OT1
algorithm takes in a unary representation of the security parameter 1λ and the receiver’s
choice bit b and outputs the first round message ot1 along with a secret key sk. The OT2
algorithm takes in the first round message ot1, the sender inputs m0, m1 and outputs the
sender message ot2. The outOT algorithm takes in the sender message ot2 and the secret key
sk and outputs the message mb.

34

Definition 4.2 ([IKSS23]). We say that the OT protocol is a two-round oblivious transfer
with equivocal receiver security [GS18,PS21] if it satisfies the following properties:

Correctness: For every input b of the receiver and m0, m1 of the sender:

Pr[outOT(ot2, (b, sk)) = mb] = 1,

where (ot1, sk)← OT1(1λ, b) and ot2 ← OT2(ot1, m0, m1).
Equivocal Receiver Security: There exists a special algorithm SimEq

OT that on input 1λ

outputs (ot1, sk0, sk1) such that for any b ∈ {0, 1},

{(ot1, skb) : (ot1, sk0, sk1)← SimEq
OT(1λ)} ≈c {(ot1, sk) : (ot1, sk)← OT1(1λ, b)}

Sender Privacy: For any input m0, m1 of the sender and any bit b and a string r ∈ {0, 1}∗:

{b, r, ot1 := OT1(1λ, b; r), OT2(ot1, m0, m1)} ≈c

{b, r, ot1 := OT1(1λ, b; r), OT2(ot1, mb, mb)}

A protocol that achieves the described security requirements is the two-round OT protocol
with equivocal receiver security of [GS18,IKSS21]. In [IKSS23, Theorem 3.4] it is specified that
such a protocol can be constructed from the black-box use of a two-message semi-malicious
OT protocol (Definition 2.1).

4.4 Protocol for the Double Selection Functionality DS [PS21]

Γ is a three-round protocol that computes the double selection functionality DS [PS21]
with publicly decodable transcript. By public decodable, we mean that output can be
computed without having access to the private randomness of the parties. The double
selection functionality is a multiparty functionality where P1 has input (α, r) ∈ {0, 1}×{0, 1},
P2 has input (s0, s1) ∈ {0, 1} × {0, 1} and for each i ∈ [n], Pi has additional inputs (zi

0, zi
1).

The output of the functionality is given by (sα ⊕ r, {zi
sα⊕r
}i∈[n]). The protocol Γ has the

following syntax:
Syntax. The three-round protocol Γ computing the double selection function DS is

given by a tuple of algorithsm (Γ1, Γ2, Γ3, outΓ) with the following syntax. For each round
r ∈ [3], the i’th party in the protocol runs Γr on 1λ, the index i, the private input xi and the
transcript of the protocol for the first (r− 1) rounds to obtain γr,i. It sends γr,i to every other
party via a broadcast channel. At the end of the interaction, the public output procedure
outΓ({γi,r}∈[n],r∈[3]) is executed to compute the final output.

The security definition that we require from the protocol Γ is the same as in [IKSS23,
Section 8.2.1] and is defined as follows:

Definition 4.3. The protocol Γ is said to compute the double selection functionality DS if it
satisfies the following properties:

35

Correctness: The protocol Γ correctly computes the double selection function DS if for every
choice of inputs xi for party Pi,

Pr[outΓ({γi,r}∈[n],r∈[3]) = DS(x1, . . . , xn)] = 1

where {γi,r}∈[n],r∈[3] denotes the transcript of the protocol Γ when the input of Pi is xi.

Security: Let xi be the input used by party Pi in the protocol Γ. Let A be any malicious
adversary that is corrupting a set of parties indexed by M and let H be the set of honest
parties. We require the existence of a stateful simulator SimΓ such that: SimΓ, on input
1λ and i, outputs the first round message γ1,i and tdi. Using tdi and the input xi of party
Pi, there is a polynomial time algorithm Equiv that outputs the second and third round
messages of the protocol Γ such that the view of any adversary in the real execution with
the honest parties is computationally indistinguishable to the distribution of messages
generated as above.

RealΓ(A, {xi, ri}i∈H) ≈c IdealΓ(A, SimΓ, {xi}i∈H),

where the real and ideal experiments are described in Figure 4.2 and for each i ∈ H, ri is
uniformly chosen.

36

Figure 4.2: Security game for the protocol Γ

RealΓ(A, {xi, ri}i∈H)

1. For each i ∈ H, compute γi
1 :=

Γ1(1λ, i, xi; ri)
2. Send {γ1,i}i∈H to A.
3. Receive {γ1,i, (xi, ri)}i∈M from A.
4. For round r ∈ {2, 3}:

(a) For each i ∈ H, compute γr,i :=
Γr(1λ, i, xi, {γ(r−1),i}i∈[n]; ri).

(b) Send {γr,i}i∈H to A.
(c) Receiver {γr,i} from A.

5. Output the view of A and
outΓ({γi,r}∈[n],r∈[3]).

IdealΓ(A, SimΓ, {xi}i∈H)

1. For each i ∈ H, compute γ1,i :=
SimΓ(1λ, i).

2. Send {γ1,i}i∈H to A.
3. Receive {γ1,i, (xi, ri)}i∈M from A.
4. For round r ∈ {2, 3}:

(a) Check if the messages sent
by the corrupted parties in
{γ(r−1),i}i∈[n] are consistent with
{ri}i∈M .

(b) Semi-Malicious Security: if
they are consistent:
i. For each i ∈ H, compute

γi
r := SimΓ(1λ, i, {xi, ri}i∈M ,

DS(x1, . . . , xn),
{γ(r−1),i}i∈[n]).a

(c) Equivocality: if they are not
consistent:
i. For each i ∈ H, compute

γi
r := SimΓ(1λ, i, {xi}i∈H ,
{γ(r−1),i}i∈[n]).

(d) Send {γr,i}i∈H to A.
(e) Receiver {γr,i} from A.

5. Output the view of A and
outΓ({γi,r}∈[n],r∈[3]).

a Here, the value DS(x1, . . . , xn) is the reply of
the ideal functionality on the query {xi, ri}i∈M .

A protocol that realizes this notion is the protocol presented in [IKSS23, Figure 10] which,
in turn, adapts the work of [PS21] and can be instantiated using black-box use of the OT
with equivocal receiver security.

4.5 Conforming Protocols

Now, we introduce the notion of conforming protocols. This part is taken from [PS21].
Consider an n-party deterministic10 MPC protocol Φ between parties P1, . . . , Pn with

inputs x1, . . . , xn, respectively computing some function f(x1, . . . , xn). For each i ∈ [n], we
let xi ∈ {0, 1}m denote the input of party Pi. A conforming protocol Φ is defined by functions

10 Randomized protocols can be handled by including the randomness used by a party as part of its input.

37

pre, post, and computations steps or what we call actions ϕ1, . . . , ϕT . The protocol Φ proceeds
in three stages: the pre-processing stage, the computation stage and the output stage.

Pre-processing phase: For each i ∈ [n], party Pi first samples vi ← {0, 1}ℓ (where ℓ is the
parameter of the protocol) as the output of a randomized function pre(1λ, i) and sets zi as

zi = (xi ⊕ vi[(i− 1)ℓ/n + 1, (i− 1)ℓ/n + m])∥0ℓ/n−m

where vi[(i− 1)ℓ/n + 1, (i− 1)ℓ/n + m] denotes the bits of the string vi in the positions
[(i− 1)ℓ/n + 1, (i− 1)ℓ/n + m]. Pi retains vi as the secret information and broadcasts zi to
every other party. We require that vi[k] = 0 for all k ∈ [ℓ] \ {(i− 1)ℓ/n + 1, . . . , iℓ/n}.11.

Computation phase: For each i ∈ [n], party Pi sets st := (z1∥ . . . ∥zn). Next, for each
t ∈ [T] parties proceed as follows:
1. Parse action ϕt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [ℓ].
2. Party Pi computes one NAND gate as st[h] = NAND (st[f]⊕ vi[f], st[g]⊕ vi[g])⊕ vi[h]

and broadcasts st[h] to every other party.
3. Every party Pj for j ̸= i updates st[h] to the bit value received from Pi.
We require that for all t, t′ ∈ [T] such that t ≠ t′, we have that if ϕt = (·, ·, ·, h) and
ϕt′ = (·, ·, ·, h′) then h ̸= h′. Also, we denote Ai ⊂ [T] to be the set of rounds in which
party Pi sends a bit. Namely, Ai = {t ∈ T |ϕt = (i, ·, ·, ·)}.

Output phase: For each i ∈ [n], party Pi outputs post(st, vi).

In [GS18, Section 4.2] it has been shown how any MPC protocol can be turned into a
conforming protocol. This does not change anything w.r.t. the way in which the underlying
primitives are being invoked. In our work, we use the perfect/statistical protocol in the OT
correlations model, e.g., [Kil88, IPS08].

4.6 Formal Description of the Three Round Inner Protocol
In this section, we recall the protocol described in [PS21] casting it using the syntax of our
inner-protocol defined in Section 4.1. Further, we prove that it satisfies Definition 4.1.

For the construction, we require all the primitives introduced in this section so far. Namely,
the protocol Γ (Section 4.4) for the double selection functionality, the OT protocol OT
(Section 4.3) with equivocal receiver security, as well as a conforming protocol Φ (Section 4.5).

In the protocol below, we denote by κ the number of required random OT correlations
between party Pi (acting as the receiver) and Pj (acting as the sender) in the protocol Φ.
Furthermore, we require a helper function GetIndex:

GetIndex(i, j, k): Takes i, j, k as inputs (where i, j ∈ [n], i ̸= j and k ∈ [κ]) and returns an
index IND ∈ [ℓ] of the state st of the conforming protocol that corresponds to the received
bit in the k’th OT correlation between Pi (acting as the receiver) and Pj (acting as the
sender).

11 Here, as in [PS21], we slightly differ from the formulation used in [GS18,GIS18]. In their work, pre is defined to
additionally take xi as an input and outputs (zi, vi). However, the transformation from any protocol to a conforming
protocol given in these works has the above structure where the last ℓ/n − m bits of zi are 0 and the first m bits of
zi is the XOR of xi and vi[(i − 1)ℓ/n + 1, (i − 1)ℓ/n + m].

38

Figure 4.3: Inner-Protocol Π for function f

Round 1.
Πno-inp

1 (1λ, i; ri):
1. Sample vi randomly.
2. Execute the protocol Γ (n− 1)2κ-times. In those k-th executions (for k ∈ [κ]),

we denote the message γj,l,k
1,i as the message generated in the setting where

Pj behaves as party P1 and Pl behaves as party P2, sent by party i. The
messages in those executions are generated as follows:
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k

1,i ← Γ1(1λ, 1, (αi,j
k , ri,j

k)), on
behalf of P1, using αi,j

k , a uniformly chosen bit, ri,j
k := vi[GetIndex(i, j, k)]

and (ski,i,j
k,0 , ski,i,j

k,1) are generated using Gen(1λ).
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k

1,i ← Γ1(1λ, 2, (yj,i
k,0, yj,i

k,1)), on
behalf of P2, using uniformly chosen bits yj,i

k,0, yj,i
k,1 and (ski,j,i

k,0 , ski,j,i
k,1) are

generated using Gen(1λ).
– For all j, l ∈ [n] with l ̸= j, generate γj,l,k

1,i ← Γ1(1λ, i, (ski,j,l
k,0 , ski,j,l

k,1)) with
ski,j,l

k,0 , ski,j,l
k,1 being generated using Gen(1λ).a

3. Let stΓ := (vi, {αi,j
k , yj,i

k,0, yj,i
k,1}j∈[n]\{i},k∈[κ]).

4. Output {{γi,j,k
1,i , γj,i,k

1,i }j∈[n]\{i}, {γj,l,k
1,i }j,l∈[n],l ̸=j}k∈[κ].

Round 2.
Πno-inp

2 (1λ, i; ri):
1. For each t such that ϕt = (i, f, g, h) (Ai is the set of such values of t), for

each α, β ∈ {0, 1}, it computes: (oti,t,α,β
1 , µi,t,α,β)← OT1(vi[h]⊕NAND(vi[f]⊕

α, vi[g]⊕ β)).
2. Continue the execution of the (n − 1)2κ instances of the protocol Γ. The

messages in those executions are generated as follows:
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k

2,i ← Γ2(1λ, 1, (αi,j
k , ri,j

k)), on
behalf of P1.

– For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k
2,i ← Γ2(1λ, 2, (yj,i

k,0, yj,i
k,1)), on

behalf of P2.
– For all j, l ∈ [n] with l ̸= j, generate γj,l,k

2,i ← Γ2(1λ, i, (ski,j,l
k,0 , ski,j,l

k,1)).
3. Output {oti,t,α,β

1 }t∈Ai,α,β∈{0,1}, {{γi,j,k
2,i , γj,i,k

2,i }j∈[n]\{i}, {γj,l,k
2,i }j,l∈[n],l ̸=j}k∈[κ].

Πinp
1 (1λ, i, xi, stΓ; r̃i):

1. Set xpart
i := (xi, {αi,j

k , yj,i
k,0, yj,i

k,1}j∈[n]\{i},k∈[κ]).
2. Set zpart

i := xpart
i ⊕ vi[(i− 1)ℓ/n + (n− 1)κ + 1, iℓ/n].

3. Output zpart
i .

Round 3.
Πno-inp

3 (1λ, i; ri):
1. Set labi,T +1 := {labi,T +1

k,0 , labi,T +1
k,1 }k∈[ℓ] where for each k ∈ [ℓ] and b ∈

{0, 1}, labi,T +1 := ⊥.
2. For each t from T down to 1, do the following:

39

(a) Let ϕt as (i∗, f, g, h).
(b) If i = i∗, compute (C̃i,t, labi,t) ←

Garble(1λ, Ci,t[vi, {µi,t,α,β}α,β,⊥, labi,t+1]).
(c) If i ̸= i∗, then for every α, β ∈ {0, 1}, set oti∗,t,α,β

2 ←
OT2(oti∗,t,α,β

1 , labi,t+1
h,0 , labi,t+1

h,1) and compute (C̃i,t, labi,t) ←
Garble(1λ, Ci,t[vi,⊥, {oti,t,α,β

2 }α,β, labi,t+1]).
3. For each j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ], compute cti,j,j′

k,0 =
Enc(ski,j,j′

k,0 , labi,1
GetIndex(j,j′,k),0) and cti,j,j′

k,1 = Enc(ski,j,j′

k,1 , labi,1
GetIndex(j,j′,k),1).

4. Set stlab := labi,1.
5. Continue the execution of the (n − 1)2κ instances of the protocol Γ. The

messages in those executions are generated as follows:
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k

3,i ← Γ3(1λ, 1, (αi,j
k , ri,j

k)), on
behalf of P1.

– For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k
3,i ← Γ3(1λ, 2, (yj,i

k,0, yj,i
k,1)), on

behalf of P2.
– For all j, l ∈ [n] with l ̸= j, generate γj,l,k

3,i ← Γ3(1λ, i, (ski,j,l
k,0 , ski,j,l

k,1)).
6. Output {C̃i,t}t∈[T], (cti,j,j′

k,0 , cti,j,j′

k,1)j,j′∈[n],j ̸=j′,k∈[κ] and {{γi,j,k
3,i , γj,i,k

3,i }j∈[n]\{i},

{γj,l,k
3,i }j,l∈[n],l ̸=j}k∈[κ].

Πinp
2 (1λ, i, xi, stlab; r̃i):

1. Set st :=
(
(0(n−1)κ∥zpart

1)∥ . . . ∥(0(n−1)κ∥zpart
n)

)
.

2. Output {labi,1
k,st[k]}k /∈[(j−1)ℓ/n+1,(j−1)ℓ/n+(n−1)κ].

Output Computation.
1. For each j, j′ ∈ [n] such that j ̸= j′ and for each k ∈ [κ], let η := GetIndex(i, j, k),

do the following:
(a) Compute the output of the protocol Γ, i.e., (zη, {sks,j,j′}s∈[n]) :=

outΓ({γj,j′,k
l,r }l∈[n],r∈[3]).

(b) Reset st[η] = zη.
(c) For each s ∈ [n], set labs,1

η,st[η] := Dec(sks,j,j′

k,zη
, cts,j,j′

k,st[η]).
2. For every j ∈ [n], let l̃ab

j,1 := {labj,1
k,st[k]}k∈[ℓ], where

{labj,1
k,st[k]}k∈[(j−1)ℓ/n+1,(j−1)ℓ/n+(n−1)κ] are decrypted as above and the rest

received from Pj’s third-round message.
3. For each t from 1 to T do:

(a) Parse ϕt as (i∗, f, g, h).
(b) Compute ((α, β, γ), µ, l̃ab

i∗,t+1) := Eval(C̃i∗,t, l̃ab
i∗,t).

(c) Set st[h] := γ.
(d) For each j ̸= i∗, do:

i. Compute ot2,
ii. Recover labj,t+1

h,st[h] := OT3(ot2, (γ, µ)).
iii. Set l̃ab

j,t+1 := {labj,t+1
k,st[k]}k∈[ℓ].

40

4. Output post(st, vi)
a Here, we have to ensure that the party acts (n − 1)-times as party 1 in Γ, (n − 1)-times as party 2, and

takes the role of one of the remaining parties in the other executions of Γ.

Figure 4.4: Circuit Ci,t

Input. st

Hard-coded Information. vi, {µi,t,α,β}α,β, {ott,α,β
2 }α,β and lab = {labk,0, labk,1}k∈[ℓ].

– Let ϕt = (i∗, f, g, h).
– If i = i∗,then:
• Compute st[h] := NAND(st[f]⊕ vi[f], st[g]⊕ vi[g])⊕ vi[h].
• Output ((st[f], st[g], st[h]), µi,t,st[f],st[g], {labk,st[k]}k∈[ℓ]).

– Else:
• Output (oti∗,t,st[f],st[g]

2 , {labk,st[k]}k∈[ℓ]\{h}).

Theorem 4.4. Let Γ be the protocol for the double selection functionality defined in Sec-
tion 4.4, OT be the oblivious transfer protocol with equivocal receiver security defined in Sec-
tion 4.3 and let Φ be a conforming protocol with statistical security in the OT correlation
model defined in Section 4.5, then Π satisfies Definition 4.1 and makes black box use of Γ, Φ
and OT.

Proof. To prove the security of the protocol, we define the simulator below. Before describing
the simulator, we introduce an additional procedure called Faithful:

Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β): An interactive procedure that on input i ∈ [n], st∗, {bi,t,α,β}t∈Ai,α,β∈{0,1}
produces protocol Φ message on behalf of party Pi (acting consistently/faithfully with
the extracted values) as follows: For t ∈ [T]:
– Parse ϕt = (i∗, f, g, h).
– If i ≠ i∗ then it waits for a bit from Pi∗ and sets st[h] to be the received bit once it is

received. Otherwise, set st[h] := bi∗,t,st∗[f],st∗[g] and it to all the other parties.

Figure 4.5: Simulator of the Inner-Protocol

Round 1.
SimΠ(1λ):

1. Initialize a list aux = ⊥. This list contains the input and output of every
corrupted party given to each invocation of the OT with an honest party in
the correlation generation phase.

2. For all i ∈ H, execute the protocol Γ (n− 1)2κ-times. In the k-th execution
(with k ∈ [κ]), we denote the message γj,l,k

1,i as the message generated in the
setting where Pj behaves as party P1 and Pl behaves as party P2, sent by

41

party i. To generate these messages the simulator SimΠ behaves for all i ∈ H
as follows (namely it uses the honest party procedure of Γ):

(a) For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k
1,i ← Γ1(1λ, 1, (αi,j

k , ri,j
k)), on

behalf of P1, using αi,j
k , a uniformly chosen bit, ri,j

k := vi[GetIndex(i, j, k)]
and (ski,i,j

k,0 , ski,i,j
k,1) are generated using Gen(1λ).

(b) For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k
1,i ← Γ1(1λ, 2, (yj,i

k,0, yj,i
k,1)), on

behalf of P2, using uniformly chosen bits yj,i
k,0, yj,i

k,1 and (ski,j,i
k,0 , ski,j,i

k,1) are
generated using Gen(1λ).

(c) For all j, l ∈ [n] with l ̸= j, generate γj,l,k
1,i ← Γ1(1λ, i, (ski,j,l

k,0 , ski,j,l
k,1)) with

ski,j,l
k,0 , ski,j,l

k,1 being generated using Gen(1λ).a

3. Output msg1
Γ,H := {{{γi,j,k

1,i , γj,i,k
1,i }j∈[n]\{i}, {γj,l,k

1,i }j,l∈[n],l ̸=j}k∈[κ]}i∈H .
Receive msg1

Γ,A := {{{γi,j,k
1,i , γj,i,k

1,i }j∈[n]\{i}, {γj,l,k
1,i }j,l∈[n],l ̸=j}k∈[κ]}i∈M from A.

Round 2.
SimΠ(1λ):

1. For each i ∈ H and for each t such that ϕt = (i, f, g, h) (Ai is the set of such
values of t), for each α, β ∈ {0, 1}, it computes: (oti,t,α,β

1 , µi,t,α,β
0 , µi,t,α,β

1) ←
SimOT

Eq (1λ)
2. Continue the execution of the (n − 1)2κ instances of the protocol Γ. The

messages in those executions are generated by the simulator SimΠ as follows
for all i ∈ H:
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k

2,i ← Γ2(1λ, 1, (αi,j
k , ri,j

k)), on
behalf of P1.

– For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k
2,i ← Γ2(1λ, 2, (yj,i

k,0, yj,i
k,1)), on

behalf of P2.
– For all j, l ∈ [n] with l ̸= j, generate γj,l,k

2,i ← Γ2(1λ, i, (ski,j,l
k,0 , ski,j,l

k,1)).
3. For all i ∈ H, set zi := ri∥0ℓ/n−m with ri being randomly chosen from {0, 1}m

where m is the total length of the inputs of Pi (the actual input and the OT
correlation).

4. For all i ∈ H, set zpart
i = zi[(n− 1)κ + 1, ℓ/n].

5. Output msg2
H := {{oti,t,α,β

1 }t∈Ai,α,β∈{0,1}, zpart
i }i∈H and msg2

Γ,H :=
{{{γi,j,k

2,i , γj,i,k
2,i }j∈[n]\{i}, {γj,l,k

2,i }j,ℓ∈[n],l ̸=j}k∈[κ]}i∈H .
Receive msg2

A := {{oti,t,α,β
1 }t∈Ai,α,β∈{0,1}}i∈M , m̃sg2

A := {zpart
i }i∈M , msg2

Γ,A :=
{{{γi,j,k

2,i , γj,i,k
2,i }j∈[n]\{i}, {γj,l,k

2,i }j,l∈[n],l ̸=j}k∈[κ]}i∈M , as well as (ri)i∈M from A.
Round 3. On receiving the random tapes (Ri)i∈M from A we distinguish between two

cases:
(a) At least one of the messages (msg1

Γ,A, msg2
Γ,A, msg2

A)
is inconsistent w.r.t. the random tapes (Ri)i∈M provided by
A:

1. Sample vi randomly.
2. Set vi[(i− 1)ℓ/n + (n− 1)κ + 1, iℓ/n] := zpart

i ⊕ xpart
i .

42

3. For each i ∈ H and for each t such that ϕt = (i, f, g, h) (Ai is the set of such
values of t), for each α, β ∈ {0, 1}, µi,t,α,β := µi,t,α,β

vi[h]⊕NAND(vi[f]⊕α,vi[g]⊕β)

4. Set labi,T +1 := {labi,T +1
k,0 , labi,T +1

k,1 }k∈[ℓ] where for each k ∈ [ℓ] and b ∈
{0, 1}, labi,T +1 := ⊥.

5. For each t from T down to 1, do the following:
(a) Let ϕt as (i∗, f, g, h).
(b) If i = i∗, compute (C̃i,t, labi,t) ←

Garble(1λ, Ci,t[vi, {µi,t,α,β}α,β,⊥, labi,t+1]).
(c) If i ̸= i∗, then for every α, β ∈ {0, 1}, set oti∗,t,α,β

2 ←
OT2(oti∗,t,α,β

1 , labi,t+1
h,0 , labi,t+1

h,1) and compute (C̃i,t, labi,t) ←
Garble(1λ, Ci,t[vi,⊥, {oti,t,α,β

2 }α,β, labi,t+1]).
6. For each j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ], compute cti,j,j′

k,0 =
Enc(ski,j,j′

k,0 , labi,1
GetIndex(j,j′,k),0) and cti,j,j′

k,1 = Enc(ski,j,j′

k,1 , labi,1
GetIndex(j,j′,k),1).

7. Continue the execution of the (n − 1)2κ instances of the protocol Γ. The
messages in those executions are generated as follows:
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k

3,i ← Γ3(1λ, 1, (αi,j
k , ri,j

k)), on
behalf of P1.

– For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k
3,i ← Γ3(1λ, 2, (yj,i

k,0, yj,i
k,1)), on

behalf of P2.
– For all j, l ∈ [n] with l ̸= j, generate γj,l,k

3,i ← Γ3(1λ, i, (ski,j,l
k,0 , ski,j,l

k,1)).
8. Set st :=

(
(0(n−1)κ∥zpart

1)∥ . . . ∥(0(n−1)κ∥zpart
n)

)
.

9. Output msg3
H := ({C̃i,t}t∈[T], (cti,j,j′

k,0 , cti,j,j′

k,1)j,j′∈[n],j ̸=j′,k∈[κ],
{labi,1

k,st[k]}k /∈[(j−1)ℓ/n+1,(j−1)ℓ/n+(n−1)κ])i∈H and msg3
Γ,H :=

{{{γi,j,k
3,i , γj,i,k

3,i }j∈[n]\{i}, {γj,l,k
3,i }j,l∈[n],l ̸=j}k∈[κ]}i∈H.

(b) All the messages (msg1
Γ,A, msg2

Γ,A, msg2
A)

are consistent w.r.t. random tapes {Ri}i∈M provided by A:
SimΠ(1λ, aux): 1. Set st∗ :=

(
(0(n−1)κ∥zpart

1)∥ . . . ∥(0(n−1)κ∥zpart
n)

)
.

2. For each j ∈ H and for each k ∈ [(j − 1)ℓ/n + 1, (j − 1)ℓ/n + (n− 1)κ],
set st∗[k] = zj[k − (j − 1)ℓ/n].

3. For every i ∈M :
(a) Using messages msg1

Γ,A, msg2
Γ,A and randomness (Ri)i∈M compute

(αi,j
k , ri,j

k) for all i ∈ M, j ∈ H, k ∈ [κ]. Afterwards, add
((i, j, k), (αi,j

k , yi,j

k,αi,j
k

)) to aux for all i ∈ M, j ∈ H, k ∈ [κ], where yi,j

k,αi,j
k

is chosen uniformly at random in Round 1.
(b) Using messages msg1

Γ,A, msg2
Γ,A and randomness (Ri)i∈M compute

((i, j, k), (yj,i
k,0, yj,i

k,1)) for all i ∈ H, j ∈ M, k ∈ [κ]. Afterwards, add
((i, j, k), (yj,i

k,0, yj,i
k,1)) to aux for all i ∈ H, j ∈M, k ∈ [κ].

(c) For every j ∈ H, j ̸= i and for each k ∈ [κ] set st∗[GetIndex(i, j, k)] :=
yi,j

k,αi,j
k

⊕ ri,j
k .

43

(d) For every j ∈ M , j ̸= i and for each k ∈ [κ], using messages
msg1

Γ,A, msg2
Γ,A and randomness (Ri)i∈M to compute βi,j

k and set
st∗[GetIndex(i, j, k)] := βi,j

k .
4. Use the randomness (Ri)i∈M to compute bi,t,α,β as the input used for

oti,t,α,β
1 for all t ∈ Ai, α, β ∈ {0, 1}.

5. Initialize the simulator SimΦ of the conforming protocol Φ with the values
(H, st∗, aux) to start the computation phase of Φ with the simulator SimΦ.

6. The messages for SimΦ for the corrupted parties i ∈ M are simulated
using the Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β) execution, i.e., for all i ∈M , the
procedure Faithful is executed and the resulting messages are used as an
input to SimΦ.

7. Once the simulator SimΦ submits the ideal functionality query {xi}i∈M ,
this query is forwarded to the ideal functionality, to obtain as an output
the function evaluation out. This, in turn, is forwarded as a reply to the
simulator SimΦ. SimΦ then continues the simulation of the conforming
protocol.

8. Let Z ∈ {0, 1}t where Zt is the bit sent in the t’th round of the computation
phase of Φ, and let st∗T be the state value at the end of the faithful execution
of one of the corrupted parties (this value is the same for all the parties).
For each t ∈ ∪i∈HAi and α, β ∈ {0, 1}, set µi,t,α,β := µi,t,α,β

Zt
.

9. Set labi,T +1 := {labi,T +1
k,0 , labi,T +1

k,1 }k∈[ℓ] where for each k ∈ [ℓ] and b ∈
{0, 1}, labi,T +1 := ⊥.

10. For each t from T down to 1, do the following:
(a) Parse ϕt as (i∗, f, g, h).
(b) Set α∗ := st∗T [f], β∗ := st∗T [g], and γ∗ := st∗T [h].
(c) If i = i∗, compute (C̃i,t, {labi,t

k,st∗
T [k]}k∈[ℓ]) ← SimGC(1λ, 1|Ci,t|, 1ℓ,(

(α∗, β∗, γ∗), µi∗,t,α∗,β∗
, {labi,t+1

k }k∈[ℓ]
)
).

(d) If i ̸= i∗, then set oti,t,α∗,β∗

2 ← OT2(oti∗,t,α∗,β∗

1 , labi,t+1
h , labi,t+1

h)
and compute oti∗,t,α,β

2 ← OT2(oti∗,t,α,β
1 , labi,t+1

h,0 , labi,t+1
h,1) and compute

(C̃i,t, {labi,t
k }k∈[ℓ])← SimGC(1λ, 1|Ci,t|, 1ℓ,

(
oti,t,α∗,β∗

2 , {labi,t+1
k }k∈[ℓ]\{h}

)
).

11. For each j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ], compute cti,j,j′

k,0 =
Enc(ski,j,j′

k,0 , labi,1
GetIndex(j,j′,k)) and cti,j,j′

k,1 = Enc(ski,j,j′

k,1 , labi,1
GetIndex(j,j′,k)).

12. Continue the execution of the (n− 1)2κ instances of the protocol Γ. The
messages in those executions are generated as follows:
– For all j ∈ [n] \ {i}, k ∈ [κ], generate γi,j,k

3,i ← Γ3(1λ, 1, (αi,j
k , ri,j

k)), on
behalf of P1.

– For all j ∈ [n] \ {i}, k ∈ [κ], generate γj,i,k
3,i ← Γ3(1λ, 2, (yj,i

k,0, yj,i
k,1)), on

behalf of P2.
– For all j, l ∈ [n] with l ̸= j, generate γj,l,k

3,i ← Γ3(1λ, i, (ski,j,l
k,0 , ski,j,l

k,1)).

44

13. Output msg3
H := ({C̃i,t}t∈[T], (cti,j,j′

k,0 , cti,j,j′

k,1)j,j′∈[n],j ̸=j′,k∈[κ],
{labi,1

k,st[k]}k /∈[(j−1)ℓ/n+1,(j−1)ℓ/n+(n−1)κ])i∈H and msg3
Γ,H :=

{{{γi,j,k
3,i , γj,i,k

3,i }j∈[n]\{i}, {γj,l,k
3,i }j,l∈[n],l ̸=j}k∈[κ]}i∈H.

Output Computation. Obtain the third round messages for all i ∈ M and check
if the execution of the garbled succeeds. If the computation succeeds, then Sim
computes the output of the honest parties otherwise Sim sets the output of the
honest parties to ⊥. Sim outputs the view of A in the above execution and the
outputs of the honest parties.

a Here, we have to ensure that the party acts (n − 1)-times as party 1 in Γ, (n − 1)-times as party 2, and
takes the role of one of the remaining parties in the other executions of Γ.

Before beginning to prove the semi-malicious security of the protocol, we observe that the
equivocal security of the protocol directly follows from the analysis presented in [IKSS23,
Section 8.4] since their analysis for the case of equivocal security corresponds to the same
simulator as the one described above.

Furthermore, it follows by inspection that the operations computed by the algorithm
Πinp

2 do not involve any cryptographic computation, which covers the second property of the
security definition.

Now, we proceed with the hybrids used to prove the semi-malicious security (the proof
proceeds similarly to [IKSS23] and [PS21]):

Hybrid H0: This hybrid corresponds to the real-world experiment. The output of the hybrid
is the view of A in the this execution and the outputs of the honest parties.

Hybrid H1: This hybrid is defined as the previous one but instead of executing the protocol
Γ honestly, we run it in equivocation mode. In more detail, the first round messages msg1

Γ,H
are generated using SimΓ(1λ, i) for all i ∈ H and the remaining messages are generated
using Equiv instead of Γj(1λ, i, ·) for all i ∈ H, j ∈ {2, 3}. The indistinguishability between
this and the previous hybrid follows from the security of Γ, which we argue formally
in Lemma 4.5.

Hybrid H2: This hybrid is defined as the previous one but runs in exponential time to extract
the inputs {xi}i∈H of the malicious parties in the first round msg1

Γ,A of Γ. Then, the hybrid
runs SimΓj

(1λ, i, {xi}i∈H), for all i ∈ H, j ∈ {2, 3}, to simulate the second msg2
Γ,H and

third round msg3
Γ,H of Γ on behalf of the honest parties. The indistinguishability between

this and the previous hybrid follows from the security of Γ, which we argue more formally
in Lemma 4.6.

Hybrid H3: This hybrid is defined as the previous one but we change the way in which
the messages oti∗,t,α,β

2 inside the garbled circuits are generated. In more detail, for all
i ∈ H, for each t ∈ [T], and α, β ∈ {0, 1} let ϕt = (i∗, f, g, h), then for all i ̸= i∗,
oti,t,α∗,β∗

2 ← OT2(oti∗,t,α∗,β∗

1 , labi,t+1
bi,t,α,β , labi,t+1

bi,t,α,β) where bi,t,α,β is the input obtained from
the messages of the adversary as described in the simulation strategy, if i∗ ∈ M and
bi,t,α,β := vi∗ [h]⊕NAND(vi∗ [f]⊕ α, vi∗ [g]⊕ β), if i∗ ∈ H. The indistinguishability between

45

this and the previous hybrid follows from the sender privacy of the OT, which we argue
more formally in Lemma 4.7.

Hybrid H4: This hybrid is defined as the previous one but we generate the OT messages
oti,t,α,β

1 using the equivocator. In more detail, for all i ∈ H and for each t ∈ Ai and α, β ∈
{0, 1}, the messages oti,t,α,β

1 are generated using (oti,t,α,β
1 , µi,t,α,β

0 , µi,t,α,β
1) ← SimOT

Eq (1λ)
instead of (oti,t,α,β

1 , µi,t,α,β)← OT1(vi[h]⊕NAND(vi[f]⊕α, vi[g]⊕ β)). The indistinguisha-
bility between this and the previous hybrid follows from the equivocal receiver security of
the OT, which we argue more formally in Lemma 4.8.

Hybrid H5: This hybrid is defined as the previous one but we generate the state st∗ and
initialize the list aux with respect to the values used in the protocol Γ. This happens
almost as described in the simulator above (Step 2(b) of round 1 and step 1-3 of round 3).
In more detail:
1. Initialize aux = ⊥.
2. Set st∗ =

(
(0(n−1)κ∥zpart

1)∥ . . . ∥(0(n−1)κ∥zpart
n)

)
.

3. For every i ∈M :
– For every j ∈ H with j ̸= i and for each k ∈ [κ]:

(a) Compute αi,j
k , ri,j

k using the messages and the randomness of the adversary as
described in the simulation strategy.

(b) Choose a random bit yi,j

k,αi,j
k

.
(c) Set st∗[GetIndex(i, j, k)] := yi,j

k,αi,j
k

⊕ ri,j
k .

(d) Add ((i, j, k), (αi,j
k , yi,j

k,αi,j
k

)) to aux.
– For every j ∈M with j ̸= i and for each k ∈ [κ]:

(a) Set st∗[GetIndex(i, j, k)] := βi,j
k .

4. For each i ∈ H:
(a) Compute (yi,j

k,0, yi,j
k,1) using the messages and the randomness of the adversary as

described in the simulation strategy.
(b) Set st∗[GetIndex(i, j, k)] := yi,j

k,αi,j
k

⊕ ri,j
k where αi,j

k , ri,j
k and (yi,j

k,0, yi,j
k,1) (if j ∈ H) are

computed using the honest parties randomness.
(c) Add ((i, j, k), (yi,j

k,0, yi,j
k,1)) to aux if j ∈M .

From the construction of the state st∗, it follows that it is consistent with the adversarial
and the honest parties input/randomness in the correlations phase. The same holds for
the list aux which contains the inputs and outputs of the adversarial parties during OT
invocations with an honest party in the correlations phase. Since this hybrid does not
change the distributions of the messages with respect to the previous hybrid, those hybrids
are identical.

Hybrid H6: This hybrid is defined as the previous one but we change the encryptions of the
labels for the garbled circuits that are output in the third round of the protocol. In more
detail, the hybrid proceeds as follow: For all j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ] on behalf
of all the honest parties i ∈ H
1. Set η = GetIndex(j, j′, k)
2. Compute and ouput cti,j,j′

k,0 = Enc(ski,j,j′

k,0 , labi,1
η,st∗[η]) and cti,j,j′

k,1 = Enc(ski,j,j′

k,1 , labi,1
η,st∗[η])

46

The indistinguishability between this and the previous hybrid follows from the semantic
security of the symmetric encryption scheme, which we argue more formally in Lemma 4.9.

Hybrid H7: This hybrid is defined as the previous one but the garbled circuits for all the T
different steps of the conforming protocol Φ are simulated instead of honestly generated.
In more detail, we introduce the intermediate hybrids H7,t for t ∈ {0, . . . , T} where the
distribution of H7,t is the same as the one of H7,t−1 except for the garbled circuits (in the
third round) that play a role in the execution of the t’th round of the protocol Φ; namely,
the action ϕt = (i∗, f, g, h). Here, the execution of Φ is completed using the honest parties
inputs and randomness. The messages on behalf of the the corrupted parties are generated
via faithful execution, i.e., by executing Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β) for the malicious
parties. Let Z ∈ {0, 1}T be the transcript obtained using the above step. Let st∗T be the
public state of one of the corrupted parties a the end of faithful execution and let st∗t
be the public state of the parties at the end of the t’th round of the computation phase.
Finally, let α∗ := st∗T [f], β∗ := st∗T [g] and γ∗ := st∗T [h]. In H7,t the following changes are
made with respect to hybrid H7,t−1:
1. We make the following two changes in how we generate messages for other honest

parties i ∈ H \ {i∗}. We do not generate four oti∗,t,α,β
2 values but just one of them;

namely, we generate oti∗,t,α∗,β∗

2 as OT2(oti∗,t,α∗,β∗

1 , labi,t+1
h,Zt

, labi,t+1
h,Zt

). Second, we generate
the garbled circuit

(C̃i,t, {labi,t
k }k∈[ℓ])← SimGC

(
1λ, 1|Ci,t|, 1ℓ,

(
oti∗,t,α∗,β∗

2 , {labi,t+1
k,st∗

t [k]}k∈[ℓ]\{h}
))

.

2. If i∗ ∈M then skip these changes. We make two changes in how we generate messages
on behalf of i∗. First, for all α, β ∈ {0, 1}, we set µi∗,t,α∗,β∗ as µi∗,t,α∗,β∗

Zt
rather than

µi∗,t,α∗,β∗

vi∗ [h]⊕NAND(vi∗ [f]⊕α∗,vi∗ [g]⊕β∗) (note that these two values are the same when using the
honest party’s input and randomness). Second, it generates the garbled circuit

(C̃i∗,t, {labi∗,t
k }k∈[ℓ])← SimGC

(
1λ, 1|Ci,t|, 1ℓ,

(
(α∗, β∗, γ∗), µi∗,t,α∗,β∗

, {labi∗,t+1
k,st∗

t [k]}k∈[ℓ]
))

.

The labels {labi,t+1
k,st∗

t [k]}k∈[ℓ]/{labi∗,t+1
k,st∗

t [k]}k∈[ℓ] here are the honestly generated input labels
for the garbled circuit C̃i,t+1/C̃i∗,t+1 (for any t ≤ T − 1) and for t = T, {labi,T +1

k,st∗
T [k] :=

⊥}k∈[ℓ]/{labi∗,T +1
k,st∗

T [k] := ⊥}k∈[ℓ].
The indistinguishability between H7,t−1 and H7,t for every t ∈ [T] follows from the security
of the garbled circuit which we prove more formally in Lemma 4.10. This, in turn, then
implies the indistinguishability between H6 and H7.

Hybrid H8: This hybrid is defined as the previous one but the output phase of the computa-
tion is modified to execute the garbled circuits provided by A on behalf of the corrupted
parties and check if their execution proceeds consistently with the transcript Z. If the
computation succeeds then for each i ∈ H, the parties are instructed to output the result
of the output computation, else, they are instructed to output ⊥. The indistinguishability
between this and the previous hybrid follows from the authenticity of the input labels
property of the garbled circuit.

47

Hybrid H9: This hybrid is defined as the previous one but we change the way in which the
transcripts Z, {zi}i∈H and the values st∗T are generated are changed. Instead of generating
these values using the input of the honest party in the faithful execution of Φ, they are
generated via the simulator SimΦ using the list aux as an additional input. More specifically,
zi is generated as (ri∥0ℓ/n−m) where ri is a uniformly chosen random string of length m for
each i ∈ H. Here, st∗T is generated as described in the simulator. To generate the transcript
of Φ, the simulator SimΦ is executed using the input (H, st∗, aux) where messages on
behalf of each corrupted party Pi are generated using Faithful(i, st∗, {bi,tα,β}t∈Ai,α,β). From
the statistical security of Φ it now follows that this hybrid is identically distributed to the
previous hybrid, which we argue more formally in Lemma 4.11.

Hybrid H10: This hybrid is defined as the previous one but we invert the change from hybrid
H2. In more detail, instead of simulating the second and third rounds of the protocol Γ,
those messages are generated honestly again using a random input. This hybrid is also not
executed in exponential time anymore. The indistinguishability of this and the previous
hybrid follows analogously to the indistinguishability of H1 and H2. We refer to the proof
of Lemma 4.6 for further details.

Hybrid H11: This hybrid corresponds to the ideal world. In this hybrid, we also execute
the first message of the protocol Γ honestly and not using Equiv. This hybrid inverts the
change of H1 and its indistinguishability to the previous hybrid follows analogously to the
indistinguishability of hybrid H0 and H1. We refer to the proof of Lemma 4.5 for further
details.

⊓⊔

Lemma 4.5 (Transition from Hybrid H0 to H1). Let Γ be secure as defined in Defini-
tion 4.3, then the hybrids H0 and H1 are indistinguishable.

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H0 and H1 with non-negligible probability. We use
this adversary to construct an adversary B that breaks the security of the protocol Γ with
non-negligible probability.

Now, we describe the behavior of the adversary B, which behaves on behalf of the honest
parties i ∈ H, interacting with the challenger of the security of the protocol Γ and the adversary
A. In the first step, the adversary B generates {(αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ],

(ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ]}i∈H as described in H0 and send them to the challenger obtaining
msg1

Γ,H.
B start the execution with A behaving as in the protocol, except for the generation

of the messages msg1
Γ,H, which B receives from the underlying challenger of Γ. Afterwards,

the adversary B receives as a reply the messages msg1
Γ,A from A. For the second round,

the adversary B behaves again as in the previous hybrid to generate msg2
H. To obtain the

messages msg2
Γ,A, the adversary B sends msg1

Γ,A to the underlying challenger which will
reply with msg2

Γ,H. The messages msg2
H and msg2

Γ,H are then forwarded to A which replies
with msg2

A, msg2
Γ,A. The messages msg2

Γ,A are used to receive the messages msg3
Γ,H from the

underlying challenger. The messages msg3
H are then generated as in the previous hybrid and

48

sent together with msg3
H to A. Finally, the adversary A outputs the messages msg3

A and
msg3

Γ,A.
We observe that if the underlying challenger generates the messages msg1

Γ,H, msg2
Γ,H and

msg3
Γ,H honestly, then the adversary B simulates the hybrid H0 towards A and if the underlying

challenger generates these messages using Equv then the adversary B simulates the hybrid
H1 towards A. This directly results in the fact that if A can distinguish the hybrids H0 and
H1 with non-negligible probability then B can also break the security of the protocol Γ with
non-negligible probability. This concludes the proof of the lemma. ⊓⊔

Lemma 4.6 (Transition from Hybrid H1 to H2). Let Γ be secure, then the hybrids H1
and H2 are indistinguishable.

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H1 and H2 with non-negligible probability. We use
this adversary to construct an adversary B that breaks the security of the protocol Γ with
non-negligible probability.

Since in both the hybrids the first round of the protocol is identically distributed then we
can non-uniformly fix it, and therefore we can also non-uniformly fix the input and randomness
used by the adversary in the first round (a similar argument was used in [IKSS23]). Since these
values are fixed we can set them as an auxiliary input of the reduction, namely the auxiliary
input of B is (αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ] and (ski,j,l

k,0 , ski,j,l
k,1)j,l∈[n],j ̸=l,k∈[κ] for all

i ∈M which are the values used for the generation of msg1
Γ,A.

Now, we describe the behavior of the adversary B, which behaves on behalf of the hon-
est parties i ∈ H, interacting with the challenger of the security of the protocol Γ and
the adversary A. In the first step, the adversary B behaves as in the protocol, starting
from the second round. For the second round, the adversary B behaves as in the pre-
vious hybrid to generate msg2

H. To obtain the messages msg2
Γ,A, the adversary B sends

({(αi,j
k , ri,j

k)j∈[n]\{i},k∈[κ], (yj,i
k,0, yj,i

k,1)j∈[n]\{i},k∈[κ], (ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ]}i∈H ,
{{(zGetIndex(i,j,k), {sks,j,j′}s∈[n])}j,j′∈[n],j ̸=j′,k∈[κ]}i∈[n]), computed using the auxiliary input, as
well as msg1

Γ,A to the underlying challenger which will reply with msg2
Γ,H. The messages msg2

H
and msg2

Γ,H are then forwarded to A which replies with msg2
A, msg2

Γ,A. The messages msg2
Γ,A

are used to receive the messages msg3
Γ,H from the underlying challenger. The messages msg3

H
are then generated as in the previous hybrid and sent together with msg3

H to A. Finally, the
adversary A outputs the messages msg3

A and msg3
Γ,A.

We observe that if the underlying challenger generates the messages msg2
Γ,H and msg3

Γ,H
using Equiv, then the adversary B simulates the hybrid H1 towards A and if the underlying
challenger generates these messages using the simulator then the adversary B simulates the
hybrid H2 towards A. This directly results in the fact that if A can distinguish the hybrids
H1 and H2 with non-negligible probability then B can also break the security of the protocol
Γ with non-negligible probability. This concludes the proof of the lemma. ⊓⊔

Lemma 4.7 (Transition from Hybrid H2 to H3). Let OT be sender private, then the
hybrids H2 and H3 are indistinguishable.

49

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H3 and H4 with non-negligible probability. We use
this adversary to construct an adversary B that breaks the sender privacy of the OT protocol
OT with non-negligible probability.

Using the same argument as in the transition from hybrid H1 to H2 (Lemma 4.6), also
here B receives as an auxiliary input the values (αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ]

and (ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ] for all i ∈ M which are the values used for the generation of
msg1

Γ,A.
Now, we describe the behavior of the adversary B, which behaves on behalf of the honest

parties i ∈ H, interacting with the challenger of the adaptive semi-honest sender security of
the OT protocol OT, for all the honest parties i ∈ H, and the adversary A. The adversary
behaves exactly as in the previous hybrid to generate the messages msg2

Γ,H, msg2
H, msg3

Γ,H. To
generate the messages oti∗,t,α,β

2 for the garbled circuits and labels that are part of the final
message msg3

H, the adversary B interacts with the underlying challenger. In more detail, for
all i ∈ H, for each t ∈ [T], let ϕt = (i∗, f, g, h), then for all i ̸= i∗, B computes bi,t,α,β from
the randomness (Ri) of the adversary (as specified in the simulation strategy), if i∗ ∈ M
and bi,t,α,β := vi∗ [h]⊕ NAND(vi∗ [f]⊕ α, vi∗ [g]⊕ β), if i∗ ∈ H. The adversary B then submits
(bi,t,α,β, Ri, oti,t,α,β

1 , labi,t+1
0 , labi,t+1

1) to the underlying challenger, where oti,t,α,β
1 is part of msg2

A
received from A. The underlying challenger will reply with oti,t,α∗,β∗

2 which is then used as in
the previous hybrid to generate the final message msg3

H. We observe that if the underlying
challenger generates the second round of the OT using the inputs (labi,t+1

0 , labi,t+1
1) on behalf

of the honest parties then the hybrid H2 is simulated towards A and if the underlying
challenger generates the OTs using the inputs (labi,t+1

bi,t,α,β , labi,t+1
bi,t,α,β) then the hybrid H3 is

simulated towards A. This directly results in the fact that if A can distinguish the hybrids
H2 and H3 with non-negligible probability then B can also break the sender privacy with
non-negligible probability. This concludes the proof of the lemma. ⊓⊔

Lemma 4.8 (Transition from Hybrid H3 to H4). Let OT be equivocal receiver secure,
then the hybrids H3 and H4 are indistinguishable.

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H3 and H4 with non-negligible probability. We use
this adversary to construct an adversary B that breaks the equivocal receiver security of the
OT protocol OT with non-negligible probability.

Using the same argument as in the transition from hybrid H1 to H2 (Lemma 4.6), also
here B receives as an auxiliary input the values (αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ]

and (ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ] for all i ∈ M which are the values used for the generation of
msg1

Γ,A.
Now, we describe the behavior of the adversary B, which behaves on behalf of the honest

parties i ∈ H, interacting with the challenger of the equivocal receiver security of the OT
protocol OT, for all the honest parties i ∈ H, and the adversary A. The adversary behaves
exactly as in the previous hybrid to generate the messages msg2

Γ,H, msg3
Γ,H, msg3

H as well
as the {zpart

i }i∈H part of the message msg2
H. To generate the remaining values of the OT

50

protocol for all i ∈ H, the adversary B submits (vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)) to its
underlying challenger. The underlying challenger will then reply with (oti,t,α,β

1 , µi,t,α,β) which
the adversary B uses to compute the remaining messages msg2

H, msg3
H. Here, the message

msg3
H is, as already mentioned before, computed as in the previous hybrid using the value

µi,t,α,β received from the challenger.
We observe that if the underlying challenger generates the OT message using the honest

input (vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)) on behalf of the honest parties then the hybrid
H3 is simulated towards A and if the underlying challenger generates the OTs using the
equivocator SimEq

OT, then the hybrid H4 is simulated towards A. This directly results in the
fact that if A can distinguish the hybrids H3 and H4 with non-negligible probability then B
can also break the equivocal receiver security with non-negligible probability. This concludes
the proof of the lemma. ⊓⊔

Lemma 4.9 (Transition from Hybrid H5 to H6). Let SKE be a semantic secure symmetric
encryption scheme, then the hybrids H5 and H6 are indistinguishable.

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H5 and H6 with non-negligible probability. We use this
adversary to construct an adversary B that breaks the semantic security of the symmetric
encryption scheme SKE with non-negligible probability. More precisely, here, the adversary B
interacts with multiple instances of a symmetric encryption scheme challenger such that the
ciphertexts for all the required instances (for all i ∈ H and j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ])
can be generated. In this setting, all the challengers use the same challenge bit.

Using the same argument as in the transition from hybrid H1 to H2 (Lemma 4.6), also
here B receives as an auxiliary input the values (αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ]

and (ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ] for all i ∈ M which are the values used for the generation of
msg1

Γ,A.
Now, we describe the behavior of the adversary B, which behaves on behalf of the honest

parties i ∈ H, interacting with the challenger of the semantic secure symmetric encryption
scheme SKE, for all the honest parties i ∈ H and j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ], and the
adversary A.

The adversary behaves exactly as in the previous hybrid to generate the messages
msg2

Γ,H, msg2
H, msg3

Γ,H as well as the {C̃i,t}t∈[T] and
{labi,1

k,st[k]}k /∈[(j−1)ℓ/n+1,(j−1)ℓ/n+(n−1)κ] as part of the message msg3
H for all i ∈ H. To generate

the remaining ciphertexts (cti,j,j′

k,0 , cti,j,j′

k,1)j,j′∈[n],j ̸=j′,k∈[κ] for all i ∈ H, the adversary B submits
(labi,1

GetIndex(j,j′,k),1−st∗[GetIndex(j,j′,k)],

labi,1
GetIndex(j,j′,k),st∗[GetIndex(j,j′,k)]) to its underlying challenger for all i ∈ H and j, j′ ∈ [n]

with j ̸= j′ and k ∈ [κ]. The underlying challenger will then reply with cti,j,j′

k,0 for all i ∈ H

and j, j′ ∈ [n] with j ̸= j′ and k ∈ [κ]. To generate the remaining ciphertexts cti,j,j′

k,1 , the
adversary B computes Enc(ski,j,j′

k,1 , labi,1
GetIndex(j,j′,k),st∗[GetIndex(j,j′,k)]) for all i ∈ H and j, j′ ∈ [n]

with j ̸= j′ and k ∈ [κ] where ski,j,j′

k,1 are part of the execution of Γ. These ciphertexts are
then used to conclude the computation of the message msg3

H which is sent to A.

51

We observe that if the underlying challenger generates the ciphertexts
(cti,j,j′

k,0)j,j′∈[n],j ̸=j′,k∈[κ] by encrypting labi,1
GetIndex(j,j′,k),1−st∗[GetIndex(j,j′,k)], then the hybrid H5 is sim-

ulated towardsA and if the underlying challenger generates the ciphertext (cti,j,j′

k,0)j,j′∈[n],j ̸=j′,k∈[κ]

by encrypting labi,1
GetIndex(j,j′,k),st∗[GetIndex(j,j′,k)], then the hybrid H6 is simulated towards A. This

directly results in the fact that if A can distinguish the hybrids H5 and H6 with non-negligible
probability then B can also break the semantic security of the symmetric encryption scheme
with non-negligible probability. This concludes the proof of the lemma. ⊓⊔

Lemma 4.10 (Transition from Hybrid H6 to H7). Let GC be a secure garbled circuit,
then the hybrids H7,t−1 and H7,t are indistinguishable for all t ∈ [T].

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H7,t−1 and H7,t for any t ∈ [T] with non-negligible
probability. We use this adversary to construct an adversary B that breaks the security of
the garbled circuit GC with non-negligible probability.

Using the same argument as in the transition from hybrid H1 to H2 (Lemma 4.6), also
here B receives as an auxiliary input the values (αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ]

and (ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ] for all i ∈ M which are the values used for the generation of
msg1

Γ,A.
Now, we describe the behavior of the adversary B, which behaves on behalf of the honest

parties i ∈ H, interacting with the challenger of the garbled circuit GC, for all the honest
parties i ∈ H, and the adversary A. The adversary behaves exactly as in the previous hybrid
to generate the messages msg2

Γ,H, msg2
H, msg3

Γ,H. For the generation of the message msg3
H, the

adversary B behaves as before with a change in execution of the t’th round of the protocol Φ;
namely, the action ϕt = (i∗, f, g, h). This change works as follows: it completes the execution
of Φ using the honest parties inputs and randomness, where the messages of the the corrupted
parties are generated via faithful execution. In more detail, st∗ is used to start the mental
execution of Φ. In this computation phase, the honest parties messages are generated using the
inputs and random coins of the honest parties and the messages of each of the malicious parties
Pi are generated by executing Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β). Let Z ∈ {0, 1}T be the transcript
obtained using the above step. Let st∗T be the public state of one of the corrupted parties a
the end of faithful execution and let st∗t be the public state of the parties at the end of the t’th
round of the computation phase. Finally, let α∗ := st∗T [f], β∗ := st∗T [g] and γ∗ := st∗T [h]. To
generate the messages for the other honest parties i ∈ H \{i∗}, we submit to challenges to the
underlying challenger, the first one being ((Ci,t[vi,⊥, {OT2(labi,t+1

bi,t,α,β , labi,t+1
bi,t,α,β)}α,β, labi,t+1]),

((OT2(oti∗,t,α∗,β∗

1 , labi,t+1
h,Zt

, labi,t+1
h,Zt

), {labi,t+1
k,st∗

t [k]}k∈[ℓ]\{h})) for which the adversary B will receive
as a reply (C̃i,t, {labi,t

k }k∈[ℓ]) and, if i∗ ∈ M , the adversary B submits the second query
((Ci,t[vi, {µi∗,t,α∗,β∗

vi∗ [h]⊕NAND(vi∗ [f]⊕α∗,vi∗ [g]⊕β∗)}α,β,⊥, labi,t+1]),
((α∗, β∗, γ∗), µi∗,t,α∗,β∗

Zt
, {labi∗,t+1

k,st∗
t [k]}k∈[ℓ])) to which it will receive as a reply

(C̃i∗,t, {labi∗,t
k }k∈[ℓ]). These values are then used to generate the final message msg3

H in which
the ciphertexts (cti,j,j′

k,0 , cti,j,j′

k,1)j,j′∈[n],j ̸=j′,k∈[κ] are generated as in the previous hybrid.

52

We observe that if the underlying challenger generates the garbled circuits using the
submitted circuits, then the hybrid H7,t−1 is simulated towards A and if the underlying
challenger simulates the garbled circuits using the submitted outputs, then the hybrid H7,t is
simulated towards A. This directly results in the fact that if A can distinguish the hybrids
H7,t−1 and H7,t with non-negligible probability then B can also break the equivocal receiver
security with non-negligible probability. Taking into account that the above argument holds
for all t ∈ [T] implies that H6 = H7,0 and H7 = H7,T are indistinguishable. ⊓⊔

Lemma 4.11 (Transition from Hybrid H8 to H9). Let Φ be statistical secure, then the
hybrids H8 and H9 are indistinguishable.

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A
that distinguishes between the hybrids H8 and H9 with non-negligible probability. We use
this adversary to construct an adversary B that breaks the security of the protocol Φ with
non-negligible probability.

Using the same argument as in the transition from hybrid H1 to H2 (Lemma 4.6), also
here B receives as an auxiliary input the values (αi,j

k , ri,j
k)j∈[n]\{i},k∈[κ], (yj,i

k,0, yj,i
k,1)j∈[n]\{i},k∈[κ]

and (ski,j,l
k,0 , ski,j,l

k,1)j,l∈[n],j ̸=l,k∈[κ] for all i ∈ M which are the values used for the generation of
msg1

Γ,A.
Now, we describe the behavior of the adversary B, which behaves on behalf of the honest

parties i ∈ H, interacting with the challenger of the security of the protocol Φ, for all
the honest parties i ∈ H, and the adversary A. The adversary behaves exactly as in the
previous hybrid to generate the messages msg2

Γ,H, msg2
H, msg3

Γ,H. To generate the remaining
message msg3

H, the adversary B interacts with its underlying challenger. In more detail,
the adversary B generates the tuple (H, st∗, aux) as described in the simulator and then
submits (({bi,tα,β}t∈Ai,α,β)i∈H , (H, st∗, aux)) to the underlying challenger, where the values
({bi,tα,β}t∈Ai,α,β)i∈H are part of the inputs of the honest parties. To generate the corresponding
messages of the malicious parties, the adversary B executes Faithful(i, st∗, {bi,tα,β}t∈Ai,α,β) for
all i ∈M . and uses the output of this procedure in the interaction with the challenger. Once
this interaction completes, the adversary B can use the obtained values of the protocol Φ to
generate the final message msg3

H as described in the previous hybrid.
We observe that if the underlying challenger generates the messages of Φ using the

honest inputs ({bi,tα,β}t∈Ai,α,β)i∈H , then the hybrid H8 is simulated towards A and if the
underlying challenger simulates the messages of Φ, then the hybrid H9 is simulated towards
A. This directly results in the fact that if A can distinguish the hybrids H8 and H9 with
non-negligible probability then B can also break the equivocal receiver security with non-
negligible probability. This concludes the proof of the lemma. ⊓⊔

5 Our Four-Round MPC Protocol

Our four-round black-box MPC protocol makes use of the following primitives.

1. A MAC scheme MAC.

53

2. The Outer Protocol Φ = (Φ1, Φ2), a 2-round, n-client, m-server MPC protocol achieving
privacy with knowledge of outputs (Remark 2.8) against a malicious, adaptive adversary
corrupting up to n− 1 clients and t = (m− 1)/3 servers. Φ realizes the functionality g,
wich takes the inputs (z1, . . . , zn), and does the following:

(a) For each i ∈ [n] parse zi as xi, ki.
(b) Compute y := f(x1, . . . , xn).
(c) Compute σi := MAC(ki, y) for all i ∈ [n]
(d) Return (y, σ1, . . . , σn).
In our protocol, we set t = 2λn2 and refer to Section 2.6 for more details about the outer
protocol we use. All the properties required by our outer protocol are satisfied by the
construction proposed in [IKP10, IKSS21].

3. A simultaneous OT protocol that satisfies Definitions 2.10 and 2.11 WL = (WL1, WL2, WL3)
for the functionality F list

OT λ,m that is secure against sometimes aborting adversaries. The
functionality is parametrized by Xi, which represents the input space of the senders Sj,i

for each j ∈ [n]. The sampler of Xi is defined by the following process
Initialize the empty list Y . For each h ∈ [m]:

(a) Sample a set of random seeds si, and let Si be the evaluation of a PRG on each of the
sampled seeds, also sample ri,h, rprg

i,h ← {0, 1}λ.
(b) Add (ri,h, rprg

i,h , si,h, Si,h) to Y .
return Z = {Y, . . . , Y } with |Z| = n.
We refer to this protocol as the Watchlist Protocol.

4. A 2n-party protocol Π = ({Πno-inp
i }i∈[3], {Πinp

i }i∈{1,2}, Πout) that satisfies Definition 4.1 and
realizes the function Φ2. The function Φ2 has n inputs (one for each of the clients of the
outer protocol), and each input is a tuple (si, Si, ϕi), where, as discussed in Section 2.6,
si denotes a set of seeds sampled by the clients of the outer protocol Φ, Si contains the
PRG evaluations of the seeds, and ϕi denotes the first round of the client of the original
protocol described in [IKP10]. In our final MPC protocol we will have n parties, each
running two sub-parties in each execution of the inner protocol Π. The first sub-party
will use as input the sets (si, Si), and the other sub-party will use the ϕi. We denote the
maximum size (in bits) of a message of the protocol with ℓ.

5. The nRmS OT OTS⃗,R⃗ := {(OTi
R,1, OTi

S,2, OTi
R,3, OTi

S,4, OTi
out)}i∈n of Section 3 that realizes

the functionality Fn,n−1 (see Figure 3.3) accordingly to Definition 3.6. More precisely,
we have n receivers and each receiver interacts with (n− 1) senders. In particular, the
input of each receiver corresponds to the concatenation of all the second-round messages
of Π generated by the party using the algorithm Πinp

1 (i.e., the input of the receiver is a
bit string of total size mℓ). The input of the sender Si,j corresponds to the labels of the
garbled circuit described in Figure 5.2 needed to encode the i-th input (represented by a
message of Π generated using Πinp

1) to the circuit.
6. A garbling scheme GC = (Garble, Eval). We denote with SimGC the simulator of the scheme.

As anticipated, the circuit that will be garbled is described in Figure 5.2.

We propose the formal description of our protocol in Figure 5.1 and refer to reader to the
introductory section for a high-level overview of the scheme.

54

Figure 5.1: Our MPC protocol

Each party Pi has an input xi, and in act as described below (with i ∈ [n]).

Round 1.
1. Choose a random MAC key ki ← {0, 1}∗ and set zi := (xi, ki).
2. Compute (ϕi→1

1 , . . . , ϕi→m
1)← Φ1(1λ, i, zi).

3. Sample a random subset KI ⊂ [m] of size λ and set xi,j := Ki for all j ∈ [n] \ {i}.
4. Sample the PRG seeds and evaluate the PRG over these seeds. We denote with

si,h the set containing all the seeds that will be sent to the h-th server and with
Si,h the set containing the evaluations of the PRG on the seeds contained in si,h,
with h ∈ [m].

5. Sample ri,h, rprg
i,h ← {0, 1}λ for all h ∈ [m] and set yi,j := {ri,h, rprg

i,h , si,h, Si,h}h∈[m]
for all j ∈ [n] \ {i}.

6. Compute wli1 ← WL1(1λ, i, {xi,j, yi,j}j∈[n]\{i}, wl(0)) (here wl(r) denotes the tran-
script in the first r rounds of WL).

7. Sample ρi ← {0, 1}λ and compute oti
1 ← OTi

R,1(1λ; ρi).
8. Broadcast (wli1, oti

1).
Round 2.

1. Compute wli2 ← WL2(1λ, i, {xi,j, yi,j}j∈[n]\{i}, wl(1)).
2. πi

h,1 := Πno-inp
h,1 (1λ, i; ri,h), πprg,i

h,1 := Πno-inp
h,1 (1λ, i; rprg

i,h) for all h ∈ [m].
3. For each j ∈ [n] \ {i} compute oti,j

2 ← OTj
S,2(ot(1)) (here ot(r) denotes the

transcript in the first r rounds of OTS⃗,R⃗).
4. Broadcast wli2, {πi

h,1, πprg,i
h,1 }h∈[m], {oti,j

2 }j∈[n]\{i}.
Round 3.

1. Compute wli3 ← WL3(1λ, i, {xi,j, yi,j}j∈[n]\{i}, wl(2)).
2. For each h ∈ [m] compute the following

– (zh, πi
h,2)← Πno-inp

2 (i, 1λ, πh(1); ri,h), π̃i
h,1 ← Πinp

1 (i, ϕi→h
1 , zh)

– (zprg
h , πi,prg

h,2)← Πno-inp
2 (i, 1λ, πprg

h (1); rprg
i,h), π̃i,prg

h,1 ← Πinp
1 (i, (si,h, Si,h), zprg

h)
3. Set otinpi := (π̃i

h,1)h∈[m], compute oti
3 ← OTi

R,3(otinpi, oti(2); ρi).
4. Broadcast wli3, {πi

h,2, πprg,i
h,2 , π̃i,prg

h,1 }h∈[m], oti
3.

Round 4.
1. Run outWL on input the randomness used to compute WL messages and wl(4)

thus obtaining {rj,h, rprg
j,h , (sj,h, Sj,h)}j∈[n]\{i},h∈Ki

.
2. For all j ∈ [n] \ {i} and h ∈ Ki, check that:

– The PRG computations in (sj,h, Sj,h) are correct.
– Compute π⋆j

h,1 := Πno-inp
h,1 (1λ, j, πh(0); rj,h) and π⋆j,prg

h,1 :=
Πno-inp

h,1 (1λ, j, πh(0); rprg
j,h), check that π⋆j

h,1 = πj
h,1 and π⋆j,prg

h,1 = πj,prg
h,1 .

– Compute (zh, πj⋆
h,2) := Πno-inp

2 (j, 1λ, πh(1); rj,h) check that πj⋆
h,2 = πj

h,2.
– Compute (zprg

h , πprg,j⋆
h,2) := Πno-inp

2 (j, 1λ, πh(1), rprg
j,h) and π̃prg,j⋆

1,h :=
Πinp

1 (j, (sj,h, Sj,h), zprg
h), check that πprg,j⋆

h,2 = πprg,j
h,2 and π̃prg,j⋆

1,h = π̃prg,j
1,h

3. If any of the above checks fail, output ⊥.

55

4. For each h ∈ [m] compute C̃h, {labj,k,h
0 , labj,k,h

1 }j∈[n]\{i},k∈[ℓ],h∈[m] ←
Garble(1λ, Ch[ϕi→h

1 , si,h, Si,h, zh, zprg
h , {π̃prg,j

h,1 }j∈[n]])
5. For each j ∈ [n] \ {i}, compute otj,i

4 ←
OTj

S,4(1λ, ((labj,k,h
0 , labj,k,h

1)k∈[ℓ])h∈[m], ot(2)).
6. For all h ∈ [m], compute πi

h,3 := Πno-inp
h,3 (1λ, i, πh(2); ri,h) πprg,i

h,3 :=
Πno-inp

h,3 (1λ, i, πh(2); rprg
i,h).

7. Broadcast {πi
h,3, πprg,i

h,3 , C̃h}h∈[m], {otj,i
4 }j∈[n]\{i}, (otinpi, ρi).

Output Computation.
1. For each j ∈ [n] use the input randomness pair (otinpi, ρi) to execute OTj

out thus
obtaining the output of the j-th receiver ((labj,h,c)h∈[m])c∈[n]\{j}.

2. Let {C̃c,h} be the set of GCs received from the c-th party in the fourth round.
For each h ∈ [m], c ∈ [n], (π̃c

2,h, π̃prg,c
2,h) := Eval(C̃c,h, (labj,h,c)j∈[n]\{i}).

3. For each h ∈ [m] compute ϕh
2 ← Πout(ϕi→h

1 , π(2))
4. Compute (y, σ1, . . . , σn) := outΦ({ϕh

2}h∈[m]).
5. Check if σi is a valid tag on y using the key ki. If the check is successful output

y, otherwise output ⊥.

Figure 5.2: Circuit C computed by Ch[ϕ, s, S, z, zprg, {π̃prg,j
h,1 }j∈[n]]

On input {π̃j
h,1}j∈[n]\{i}, set π̃ = {π̃j

h,1, π̃prg
h,1, }j∈[n]\{i} compute π̃i

h,2 ← Πinp
2 (i, ϕ, z, π̃),

π̃prg,i
2 ← Πinp

2 (i, (s, S), zprg, π̃). Return (π̃i
2, π̃prg,i

2)

Theorem 5.1. Assuming the security of the primitives listed above, the protocol of Figure 5.1
is a secure 4-round MPC protocol.

Simulator. Let A be an adversary that corrupts the set of parties indexed by M and let
H := [n]\M . Let Simot be the simulator of the nRmS OT protocol OTS⃗,R⃗. Let (Sim1

WL, Sim2
WL)

be simulator of the watchlist protocol WL = (WL1, WL2, WL3). The simulator of Πmpc then
works as described in Figure 5.3:

Figure 5.3: Simulator Sim

1. Run Sim1
WL against the adversaryM (defined in Figure 5.4) by sending messages on

its right interface with the following modifications. When M waits for the messages
of OTS⃗,R⃗ computed on behalf of the honest senders, Sim computes these messages
as the honest senders of OTS⃗,R⃗ (note that to compute these messages not input
is required), thus obtaining {oti,j

2 }i∈H,j∈M and send them to the right interface of
OTS⃗,R⃗ along with the messages of Sim1

WL.
2. If Sim1

WL stops and returns ⊥, then instruct the ideal functionality to abort and
return the view of M. Else, when Sim1

WL returns the output ({xi,j}i∈M,j∈H , 1k),
emulate the behavior of F list

OT λ,m on input {xi,j}i∈M,j∈H to obtain {outκ
i,j}i∈H,j∈M,κ∈[k].

56

3. Set C := {xi,j}i∈M,j∈H and send (continue, C) to the right interface of M.
4. Run Simot against the adversary M, and any time that M needs a message of the

watchlist protocol compute it accordingly to Sim1
WL. If Simot returns ⊥, then instruct

the ideal functionality to abort. Else, if Simot returns {otinpi}i∈M send {otinpi}i∈M

to the right interface ofM along with any information that will be sent in the third
round directed to the right interface of M from now on.

5. Run Sim2
WL({outκ

i,j}i∈M,j∈H,κ∈[k], z) against the adversaryM, emulating F list
OT λ,m with

the following modification. When M waits for the messages of OTS⃗,R⃗ computed on
behalf of the honest senders during the second round, compute these messages as the
honest senders of OTS⃗,R⃗ would using default inputs, thus obtaining {oti,j

2 }i∈H,j∈M

and send them to the right interface of OTS⃗,R⃗ along with the messages of Sim1
WL.

6. Let (ι, {yi,j}i∈M,j∈H , View) be the output of Sim2
WL, send {yi,j}i∈M,j∈H to the right

interface of M along with the third round of Sim2
WL generated in the output thread

whenever M is waiting to receive a message on the right interface after having
completed the third round.

7. Upon receiving {labi,h,c}i∈H,h∈[m],c∈[n]\{i} from M, complete the execution of Simot,
by relying on its query with the messages {labi,h,c}i∈H,h∈[m],c∈[n]\{i} (the simulated
garbled circuit labels computed byM in the last step) thus obtaining {oti,j

4 }i∈H,j∈M ,
and send it to the right interface of M.

8. Return what M returns.

Figure 5.4: M

Let SimΠh
denote the simulator for the h-th inner-protocol, and let SimΦ denote the

simulator for the outer protocol Φ = (Φ1, Φ2, outΦ). This machine has oracle access to
A, the adversary attacking our MPC protocol.
Round 1.

1. Upon receiving {wli1}i∈H from the right interface, for each i ∈ H sample ρi ←
{0, 1}λ and compute oti

1 ← OTi
R,1(1λ; ρi) and send (wli1, oti

1) to A.
2. Upon receiving (wli1, oti

1)i∈M from A forward these messages on to the right
interface.

Round 2 (pre-extraction). Upon receiving {(wli2, yi,j), oti,j
2 }i∈H,j∈M from the right

interface, for each i ∈ H, j ∈ M parse yi,j as {ri,h, rprg
i,h , si,h, Si,h}h∈[m] and do the

following.
1. For each h ∈ [m] compute πi

h,1 := Πno-inp
h,1 (1λ, i; ri,h), πprg,i

h,1 := Πno-inp
h,1 (1λ, i; rprg

i,h) for
all h ∈ [m].

2. For each h ∈ [m] send wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈[n]\{i} to A

Round 3 (pre-extraction). Upon receiving {wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈H}i∈H

from A do the following
1. Forward {wli2}i∈M to the right interface. Upon receiving {wli3}i∈H from the right

interface, for each i ∈ H do as follows.

57

2. Sample ki ← {0, 1}∗, set zi := (0λ, ki), compute (ϕi→1
1 , . . . , ϕi→m

1)← Φ1(1λ, i, zi).
3. For each h ∈ [m] do the following

(a) (zh, πi
h,2)← Πno-inp

2 (i, 1λ, πh(1); ri,h), π̃i
h,1 ← Πinp

1 (i, ϕi→1
1 , zh)

(b) (zprg
h , πi,prg

h,2)← Πno-inp
2 (i, 1λ, πprg

h (1); rprg
i,h), π̃i,prg

h,1 ← Πinp
1 (i, (si,h, Si,h), zprg

h)
4. Set otinpi := (π̃i

h,1)h∈[m], compute oti
3 ← OTi

R,3(otinpi, oti(2); ρi).
5. Send wli3, {πi

h,2, πprg,i
h,2 , π̃i,prg

h,1 }h∈[m], oti
3 to A.

Extraction phase. Upon receiving {wli3, {πi
h,2, πprg,i

h,2 , π̃i,prg
h,1 }h∈[m], oti

3}i∈M from A, for-
ward {wli3, oti

3}i∈M to the right interface. If the right interface sends the message abort,
then return the view of A and stop, else, if the right interface sends (continue, C)
change the way in which the second and the third round of the protocol are computed
as described below.

Post-extraction 2-nd round. Upon receiving {wli2, yi, oti,j
2 }i∈H,j∈M from the right

interface, for each i ∈ H, j ∈ M parse yi,j as {ri,h, rprg
i,h , si,h, Si,h}h∈C and do the

following.
1. For each h /∈ C, compute {πi

h,1, πprg,i
h,1 }i∈[n]\C ← SimΠh

(1λ) (where SimΠh
is

executed with a set of corrupted parties C).
2. For each h ∈ C compute πi

h,1 := Πno-inp
h,1 (1λ, i; ri,h), πprg,i

h,1 := Πno-inp
h,1 (1λ, i; rprg

i,h) for
all h ∈ [m].

3. For each i ∈ H send wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈M to A

Post-extraction 3rd round. Upon receiving {wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈H}i∈H

from A do the following steps.
1. Forward {wli2}i∈M to the right interface. Upon receiving {wli3}i∈H from the right

interface, and for each i ∈ H do as follows.
2. Invoke SimΦ by corrupting the set of clients indexed by M and corrupting the

set of servers indexed by C, thus obtaining {ϕi→j
1 }i∈H,j∈C .

3. For each h /∈ C compute {(πi
h,2, π̃i

h,1), (πi,prg
h,2 , π̃i,prg

h,1)}i∈H ← SimΠh
(π(1))

4. For each h ∈ C, i ∈ H compute (zh, πi
h,2) ← Πno-inp

2 (i, 1λ, πh(1); ri,h),
π̃i

h,1 ← Πinp
1 (i, ϕi→h

1 , zh) and (zprg
h , πi,prg

h,2) ← Πno-inp
2 (i, 1λ, πprg

h (1); rprg
i,h), π̃i,prg

h,1 ←
Πinp

1 (i, (si,h, Si,h), zprg
h)

5. Set otinpi := (π̃i
h,1)h∈[m], compute oti

3 ← OTi
R,3(otinpi, oti(2); ρi).

6. Send wli3, {πi
h,2, πprg,i

h,2 , π̃i,prg
h,1 }h∈[m], oti

3 to A.
Round 4. Upon receiving {wli3, {πi

h,2, πprg,i
h,2 , π̃i,prg

h,1 }h∈[m], oti
3}i∈M from A do as follows.

1. Forward {wli3, oti
3}i∈M to the right interface. And upon receiving

({yi,j}i∈M,j∈H , {otinpi}i∈M) from the right interface (where {yi,j}i∈M,j∈H

represent the values extracted related to the watchlist senders’ inputs, and
{otinpi}i∈M represent the receivers’ input used by the adversary in the execution
of nRmS), parse otinpi as (π̃i

h,1)h∈[m] (with i ∈M) and continue as follows.
2. Initialize the empty set C ′. For each h ∈ [m], check if there exists some j ∈ H

such that for every i ∈M, yi,j contains the randomness that explains the messages
sent by corrupted parties in Πh as well as the correct PRG computations. If not,
it adds h to C ′.

58

3. If |C ′| > λn2 stop and and instructs all the honest parties to output ⊥, else
continue.

4. Instruct SimΦ to additionally corrupt the servers indexed by C ′ thus obtaining
{ϕi→j

1 }i∈H,j∈C′ .
5. For each h ∈ C, i ∈ H

(a) Set π̃ = {π̃j
h,1, π̃prg

h,1, }j∈[n]\{i}

(b) Compute πi
h,3 := Πno-inp

h,3 (1λ, i, πh(2); ri,h) πprg,i
h,3 := Πno-inp

h,3 (1λ, i, πh(2); rprg
i,h) com-

pute π̃i
h,2 ← Πinp

2 (i, ϕi→h
1 , zi,h, π̃), π̃prg,i

2 ← Πinp
2 (i, (si,h, Si,h), zprg

i,h , π̃).
6. For each h ∈ C ′

(a) {πi
h,3, π̃i

h,2, πprg,i
h,3 , π̃prg,i

h,2 }i∈H ← SimΠh
(1λ, i, ({ϕi→h

1 , si,h, Si,h)}i∈H)
7. For each h ∈ [m] \ {C ′ ∪ C} run SimΠh

(1λ, i, {rj,h, rprg
j,h}j∈M) and wait for its

query.
8. Let {ϕi

h,1}i∈M be the query made by the h-th simulator SimΠh
, with h ∈

[m] \ {C ′ ∪ C}, send {ϕi→h
1 }i∈M,h∈[m]\{C∪C′} to SimΦ. When SimΦ queries its

ideal functionality g with the inptus {zi = (xi, ki)}i∈M send {xi}i∈M to the ideal
functionality f thus obtaining y. For each i ∈ [n] compute σi ← MAC(ki, y). For-
ward (y, σ1, . . . , σn) as the response to SimΦ, which will return {ϕh

2}h∈[m]\{C∪C′}.
For each h ∈ [m]\{C ′∪C}, reply to the simulator SimΠh

with ϕh
2 , thus obtaining

{πi
h,3, π̃i

h,2, πprg,i
h,3 , π̃prg,i

h,2 }i∈H

9. For each i ∈ H, h ∈ [m] compute C̃i
h, (labi,h,c)c∈[n]\{i} ← SimGC(1λ, (π̃i

2, π̃prg,i
2))

10. Send (labels, {labi,h,c}i∈H,h∈[m],c∈[n]\{i}) to the right interface. Upon receiv-
ing {otj,i

4 }j∈M,i∈H from the right interface, for each i ∈ H send
{πi

h,3, πprg,i
h,3 , C̃i

h}h∈[m], {otj,i
4 }j∈[n]\{i}, (otinpi, ρi) to A

Output
1. If some party aborted at the end of the third round, then instruct the ideal

functionality to send ⊥ to all honest parties.
2. For each h ∈ [m], compute ϕh

2 using the output outΠh

3. Run outΦ on (ϕ1
2, . . . , ϕm

2) to compute (y′, σ1, . . . , σn).
4. For each i ∈ H, if (y, σi) ̸= (y′, σ′i) then Sim instructs the trusted functionality

to send ⊥ to Pi. Else, it instructs the functionality to deliver the output to Pi.
5. Return what A returns.

Running time of the Simulator. The running time of this simulator is dominated by the
simulators Simwl and Simot, each running in expected polynomial time. The simulators for
the inner-protocol SimΠh

and the simulator for the outer protocol Φ all run in polynomial
time. Given that Simwl and Simot are executed one after the other, we obtain that the total
running time of the simulator is still expected polynomial time. The proof is divided into two
main parts as we distinguish the case where the adversary makes the simulator abort in the
third round and the case where the simulator does not abort. We start by proving security in
the first case.

59

Security against aborting adversaries. Consider the case where the adversary provides a set
of messages in the first three rounds that make the honest parties abort. We note that the
honest parties do not use their inputs to compute the first and the second rounds. Hence, if
the adversary aborts in the first or the second round, the inputs of the honest parties are
trivially protected. The only interesting case occurs when the adversary provides an aborting
transcript in the third round, after having received the third round message of the honest
parties. However, we note that in the event that all the honest parties abort, then these
honest parties will just send an abort message in the fourth round. In particular, the honest
parties will not disclose the input-randomness pair used to generate the messages of the
nRmS OT OTS⃗,R⃗ protocol. Hence, the input of the parties remains protected, as the only
protocol message that encodes the input of an honest party is π̃i

h,1 (with i ∈ H and h ∈ [m]),
which is used only as an input to the i-th receiver of the nRmS OT protocol. Hence, we can
rely on the security of OTS⃗,R⃗, to argue that the view of the adversary in the real game is
indistinguishable from the view of an adversary in which the honest receivers, running OTS⃗,R⃗,
use a default input instead of π̃i

h,1, for each i ∈ H and h ∈ [m]. We finally observe that this
reduction is immediate as there are no other rewinds that could affect it. Indeed, Sim1

wl does
not perform any rewind in the case when the adversary aborts in the third round.

Security against sometimes aborting adversaries. Assuming that the adversary provides an
accepting third round for at least one honest party, we want to argue that our protocol is
secure. The proof proceeds by a sequence of hybrid experiments that we summarize below.

Hybrid H0: This corresponds to the real world experiment (we refer to Definition 2.6 for
the formal definition of real-ideal world) where the adversary A corrupts the parties with
indices M and interacts with the honest parties indexed by H.

Hybrid H1: This hybrid is the same as the previous one with the exception that the messages
of the watchlist protocol are simulated. We refer to Figure 5.5 for the formal description
of the hybrid. The indistinguishability between the two hybrids follows from the security
of WL. Note that in this part of the proof we are considering adversaries that provide an
accepting third round, and that WL is secure against this type of adversaries.

Hybrid H2: This hybrid is the same as the previous one with the exception that the messages
of OTS⃗,R⃗, where the honest parties act as senders, are simulated (we refer to Figure 5.6
for the formal description of this hybrid). The reduction to the security of OTS⃗,R⃗ is almost
straightforward, but we need to argue that the rewinds performed by the simulator of WL
do not perturb the reduction. This can be easily argued since we consider all the receivers
in the reduction to be corrupted, and only a subset of the senders (those controlled by the
honest parties) as being honest. Note that the challenger for the security game defined
in Definition 3.6 sends messages only in the second (in the third we implicitly send the
public keys needed to realize the private channel as discussed in Section 3) and the last
round. Hence, in the rewinding threads generated by the simulator of WL, the reduction
can generate the second and the third rounds using fresh randomness. The messages of
the challenger will be used only in the output thread generated by WL. We finally note
that in this part of the proof we do not care about protecting the inputs of the honest

60

receivers since, in the case where the adversary provides an accepting transcript with
non-negligible probability, the input and the randomness of the receivers will be anyway
disclosed in the last round. Therefore, an adversary that does not abort in the third round
has always access to the message π̃ used by the honest parties as the receiver’s input of
OTS⃗,R⃗.

Hybrid H3: This hybrid is the same as the previous one with the exception of the following:
initialize an empty set C ′. For each h ∈ [m], check if there exists some j ∈ H such that for
every i ∈M, yi,j contains the randomness that explains the messages sent by the corrupted
parties in Πh as well as the correct PRG computations. If not, add h to C ′. If |C ′| > λn2

stop and instruct all the honest parties to output ⊥, else continue. In Lemma 5.2, we
argue that this and the previous hybrid are statistically indistinguishable.

Hybrid H4: This hybrid is the same as the previous one with the exception that the garbled
circuits generated by the honest parties are simulated. This results in a different interaction
of the augmented machine with the simulators of wl and ot. We provide a formal description
of the augmented machine in Figure 5.8. At a high level, the main difference between this
and the previous hybrid is the following: let otinpi = (π̃i

h,1)h∈[m] be the input extracted
from Simot, for each i ∈M . The hybrid computes the third round message of Π by running
Πinp

2 (this can be done because the messages {π̃i
h,1}h∈[m] are now available in the clear

since Simot extracted them). Let (π̃i
2, π̃prg,i

2) denote the output obtained from Πinp
2 for each

i ∈ H, then the h-th garbled circuit for the i-th party is computed using the simulator of
the garbled circuit on the input (π̃i

2, π̃prg,i
2). The indistinguishability between the previous

and this hybrid comes from the security of the garbled circuit scheme.
Hybrid H5: This hybrid is the same as the previous one with the the following differences.

After the extraction phase, the hybrid, with respect to the messages of the inner-protocol
executions (Π), behaves exactly like described in Figure 5.4. During the extraction phase,
the messages of Π are simulated. After the extraction, we construct the sets C ′ and C in
the same way as in the simulator of Figure 5.4, and then compute the second and third
round messages of the inner protocol executions, the hybrid acts as the honest parties
would for all the inner protocols with indices in C. All the other inner protocol messages
are computed using the simulator SimΠh

for each h /∈ C. To compute the inner protocol
messages for the fourth round, the hybrid acts as follows:
– For each h ∈ C compute the messages of Πh as the honest parties would.
– For each h ∈ C ′ feed the simulator with the inputs that the honest parties would have

used to compute the messages of the h-th inner protocol.
– For each h ∈ [n] \ {C ∪ C ′} feed the simulator SimΠh

with the randomness provided
by the adversary in yi,j (for each i ∈ H, j ∈ M). When SimΠh

makes a query to its
ideal functionality, reply to the query by evaluating Φh

2 using the inputs provided by
the simulator SimΠh

and the input of the honest parties.
The indistinguishability between this and the previous hybrid comes from the security of
the inner protocol.

Hybrid H6: This hybrid is the same as the previous one with the exception that the messages
of the outer protocol are not computed using Φh

2 , but are simulated exactly as described

61

in Sim (Figure 5.3). The indistinguishability between this and the previous hybrid follows
from the security against adaptive corruption of Φ.

Hybrid H7: In this hybrid we make the following change: in the output phase, we recover
(y′, σ1, . . . , σ1) as in the previous hybrid and then check if y′ = y and if for each i ∈ H,
σ′i = σi. For every i ∈ H, for which the above check passes, the ideal functionality is
instructed to deliver the output of Pi. For all the remaining parties, it instructs them to
abort. In Lemma 5.3 we show that H7 and H6 are statistically indistinguishable by relying
on the security of the MAC scheme. The formal description of the hybrid corresponds
to the description of the simulator. The proof concludes with the observation that the
output of H7 is identically distributed to the output of the ideal world execution.

Lemma 5.2 (Indistinguishability of hybrids H1 and H2). The hybrids H1 and H2 are
statistically indistinguishable.
Proof. This proof works exactly in the same way as the proof of [IKSS21, Claim 6.7]. We
recap it here verbatim for completeness. Fix any honest party Pi. Note that Pi aborts in H2 if
|Ki ∩ C ′| ≠ 0. We show that if |C ′| > λn2 then the probability of |Ki ∩ C ′| = 0 is negligible.

Note that Ki is distributed as a random subset of [m] of size λ. We now upper bound the
probability that |Ki ∩ C ′| = 0.

Pr[|Ki ∩ C ′| = 0] =

(
m−|C′|

λ

)
(

m
λ

)
<

(
m−λn2

λ

)
(

m
λ

)
= (m− λn2)!

m!
(m− λ)!

(m− λ− λn2)!
< (1− λ/m)λn2

< 2−O(λ)

The lemma now follows from a standard union bound over the set of all honest parties. ⊓⊔
Lemma 5.3 (Indistinguishability of hybrids H6 and H7). Let MAC be a secure MAC
scheme, then the hybrids H6 and H7 are indistinguishable.
Proof. The only difference between the two hybrids is that in H7 it is checked that y = y′ and
that for each i ∈ H, σ′i = σi. For the honest parties where this check fails, they are instructed
to abort. All other honest parties are instructed to output y. In hybrid H6, on the other hand,
the honest parties are instructed to do the MAC verification and, depending on the result,
they abort or output y′. If an honest party does not abort in H7, then the correctness of the
verification procedure implies that it does not abort in H6. Assume that there exists an honest
party Pi that aborts in H7, but that does not abort with non-negligible probability in H6,
then this means that (y′, σ′i) ̸= (y, σi) and that the verification procedure on (y′, σ′i) outputs
1. This contradicts the security of the MAC scheme and therefore the theorem follows. ⊓⊔

62

Figure 5.5: Hybrid H1

1. Run Sim1
WL against the adversary MH1,2 (defined in Figure 5.7) by sending mes-

sages on its right interface with the following modifications. When MH1,2 waits for
the messages of OTS⃗,R⃗, computed on behalf of the honest senders in the second
round, compute these messages as the honest senders of OTS⃗,R⃗ do, thus obtaining
{oti,j

2 }i∈H,j∈M (note that no input is needed to the sender to compute the second
round of OTS⃗,R⃗) and send them to the right interface of OTS⃗,R⃗ along with the
messages of Sim1

WL.
2. If Sim1

WL stops and returns ⊥, then instructMH1,2 to abort, and return whatMH1,2

returns. Else, Sim1
WL returns the output ({xi,j}i∈M,j∈H , 1k), and the behavior of

F list
OT λ,m on input {xi,j}i∈M,j∈H is emulated to obtain {outκ

i,j}i∈H,j∈M,κ∈[k].
3. Run Sim2

WL({outκ
i,j}i∈M,j∈H,κ∈[k], z) against the adversary MH1,2 .

4. Let (ι, {yi,j}i∈[M],j∈H , View) be the output of Sim2
WL, send {yi,j}i∈[M],j∈H to the right

interface of MH1,2 along with the third round of Sim2
WL.

5. When MH1,2 outputs (labels, {labi}i∈H) on its right interface, then, for each i:
(a) Parse labi as {labj,k,h

0 , labj,k,h
1 }j∈[n]\{i},k∈[ℓ],h∈[m]

(b) For each j ∈ [n] \ {i}, compute otj,i
4 ←

OTj
S,4(1λ, ((labj,k,h

0 , labj,k,h
1)k∈[ℓ])h∈[m], ot(2)).

6. Send {oti,j
2 }i∈H,j∈M to MH1,2 .

7. Return what MH1,2 returns.

Figure 5.6: Hybrid H2

1. Run Sim1
WL against the adversary MH1,2 (defined in Figure 5.7) by sending mes-

sages on its right interface with the following modifications. When MH1,2 waits for
the messages of OTS⃗,R⃗, computed on behalf of the honest senders in the second
round, compute these messages as the honest senders of OTS⃗,R⃗ do, thus obtaining
{oti,j

2 }i∈H,j∈M (note that no input is needed to the sender to compute the second
round of OTS⃗,R⃗) and send them to the right interface of OTS⃗,R⃗ along with the
messages of Sim1

WL.
2. If Sim1

WL stops and returns ⊥, then instructMH1,2 to abort, and return whatMH1,2

returns. Else, Sim1
WL returns the output ({xi,j}i∈M,j∈H , 1k), and the behavior of

F list
OT λ,m is emulated on input {xi,j}i∈M,j∈H to obtain {outκ

i,j}i∈H,j∈M,κ∈[k].
3. Run Simot against the adversaryMH1,2 , and any time thatMH1,2 requires a message

of the watchlist protocol compute it accordingly to Sim1
WL. If Simot returns ⊥,

instruct the ideal functionality to abort. Else, if Simot returns {otinpi}i∈M , continue
as follows.

4. Run Sim2
WL({outκ

i,j}i∈M,j∈H,κ∈[k], z) against the adversary MH1,2 .
5. Let (ι, {yi,j}i∈[M],j∈H , View) be the output of Sim2

WL, send {yi,j}i∈[M],j∈H to the right
interface of MH1,2 along with the third round of Sim2

WL to MH1,2 .

63

6. When MH1,2 outputs (labels, {labi}i∈H) on its right interface do the following
(a) For each i ∈ H parse labi as {labj,k,h

0 , labj,k,h
1 }j∈[n]\{i},k∈[ℓ],h∈[m]

– For each j ∈ M parse otinpj as {otinpj,c}c∈H and set labi,j :=
{labj,k,h

otinpj,i
}k∈[ℓ],h∈[m].

7. Reply to Simot, acting on behalf of its ideal functionality, with the values
{labi,j}i∈H,j∈M , and, upon receiving {oti,j

2 }i∈H,j∈M , forward it to MH1,2 .
8. Return what MH1,2 returns.

Figure 5.7: MH1,2

This machine has oracle access to A, the adversary attacking our MPC protocol.

Round 1:
1. Upon receiving {wli1}i∈H from the right interface, for each i ∈ H sample ρi ←
{0, 1}λ, compute oti

1 ← OTi
R,1(1λ; ρi) and send (wli1, oti

1) to A.
2. Upon receiving (wli1, oti

1)i∈M from A forward these messages on the right interface.
Round 2. Upon receiving {(wli2, yi,j), oti,j

2 }i∈H,j∈M from the right interface, for each
i ∈ H, j ∈M parse yi,j as {ri,h, rprg

i,h , si,h, Si,h}h∈[m] and do the following:
1. For each h ∈ [m] compute πi

h,1 := Πno-inp
h,1 (1λ, i; ri,h), πprg,i

h,1 := Πno-inp
h,1 (1λ, i; rprg

i,h) for
all h ∈ [m].

2. For each h ∈ [m] send wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈[n]\{i} to A.

Round 3. Upon receiving {wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈H}i∈H from A do the follow-

ing:
1. Forward {wli2}i∈M to the right interface. Upon receiving {wli3}i∈H from the right

interface, for each i ∈ H do the following.
2. Sample ki ← {0, 1}∗, set zi := (xi, ki), compute (ϕi→1

1 , . . . , ϕi→m
1)← Φ1(1λ, i, zi).

3. For each h ∈ [m] do the following
(a) (zh, πi

h,2)← Πno-inp
2 (i, 1λ, πh(1); ri,h), π̃i

h,1 ← Πinp
1 (i, ϕi→1

1 , zh)
(b) (zprg

h , πi,prg
h,2)← Πno-inp

2 (i, 1λ, πprg
h (1); rprg

i,h), π̃i,prg
h,1 ← Πinp

1 (i, (si,h, Si,h), zprg
h)

4. Set otinpi := (π̃i
h,1)h∈[m], compute oti

3 ← OTi
R,3(otinpi, oti(2); ρi).

5. Send wli3, {πi
h,2, πprg,i

h,2 , π̃i,prg
h,1 }h∈[m], oti

3 to A.
Round 4. Upon receiving {wli3, {πi

h,2, πprg,i
h,2 , π̃i,prg

h,1 }h∈[m], oti
3}i∈M from A, forward

{wli3, oti
3}i∈M to the right interface. On receiving ({yi,j}i∈M,j∈H) from the right

interface (where {yi,j}i∈M,j∈H represents the extracted values related to the watchlist
senders’ inputs (recall that yi,j = {ri,h, rprg

i,h , si,h, Si,h}h∈[m]) continue as follows.
1. For all j ∈M and h ∈ Ki, check that:

– The PRG computations in (sj,h, Sj,h) are correct.
– Compute π⋆j

h,1 := Πno-inp
h,1 (1λ, j, πh(0); rj,h) and π⋆j,prg

h,1 :=
Πno-inp

h,1 (1λ, j, πh(0); rprg
j,h), check that π⋆j

h,1 = πj
h,1 and π⋆j,prg

h,1 = πj,prg
h,1 .

– Compute (zh, πj⋆
h,2) := Πno-inp

2 (j, 1λ, πh(1); rj,h) check that πj⋆
h,2 = πj

h,2.

64

– Compute (zprg
h , πprg,j⋆

h,2) := Πno-inp
2 (j, 1λ, πh(1), rprg

j,h) and π̃prg,j⋆
1,h :=

Πinp
1 (j, (sj,h, Sj,h), zprg

h), check that πprg,j⋆
h,2 = πprg,j

h,2 and π̃prg,j⋆
1,h = π̃prg,j

1,h

2. If any of the above checks fail, output ⊥, else, for each i ∈ H, do the following
(a) For each h ∈ [m] compute C̃i

h, {labj,k,h
0 , labj,k,h

1 }j∈[n]\{i},k∈[ℓ],h∈[m] ← Garble(1λ,

Ch[ϕi→h
1 , si,h, Si,h, zh, zprg

h , {π̃prg,j
h,1 }j∈[n]])

(b) Set labi := {labj,k,h
0 , labj,k,h

1 }j∈[n]\{i},k∈[ℓ],h∈[m]

(c) For all h ∈ [m], compute πi
h,3 := Πno-inp

h,3 (1λ, i, πh(2); ri,h) πprg,i
h,3 :=

Πno-inp
h,3 (1λ, i, πh(2); rprg

i,h).
3. Send (labels, {labi}i∈H) to the right interface. Upon receiving
{otj,i

4 }j∈M,i∈H from the right interface, for each i ∈ H, send
{πi

h,3, πprg,i
h,3 , C̃i

h}h∈[m], {otj,i
4 }j∈[n]\{i}, (otinpi, ρi) to A

Output
1. For each h ∈ [m], compute ϕh

2 using the output outΠh
.

2. Run outΦ on (ϕ1
2, . . . , ϕm

2) to compute (y′, σ1, . . . , σn).
3. Return y′ and what A returns.

Figure 5.8: MH4

This machine has oracle access to A, the adversary attacking our MPC protocol.

Round 1:
1. Upon receiving {wli1}i∈H from the right interface, for each i ∈ H sample ρi ←
{0, 1}λ, compute oti

1 ← OTi
R,1(1λ; ρi) and send (wli1, oti

1) to A.
2. Upon receiving (wli1, oti

1)i∈M from A forward these messages to the right interface.
Round 2. Upon receiving {(wli2, yi,j), oti,j

2 }i∈H,j∈M from the right interface, for each
i ∈ H, j ∈M , parse yi,j as {ri,h, rprg

i,h , si,h, Si,h}h∈[m] and do the following:
1. For each h ∈ [m], compute πi

h,1 := Πno-inp
h,1 (1λ, i; ri,h), πprg,i

h,1 := Πno-inp
h,1 (1λ, i; rprg

i,h) for
all h ∈ [m].

2. For each h ∈ [m], send wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈[n]\{i} to A.

Round 3. Upon receiving {wli2, {πi
h,1, πprg,i

h,1 }h∈[m], {oti,j
2 }j∈H}i∈H from A do the follow-

ing:
1. Forward {wli2}i∈M to the right interface. Upon receiving {wli3}i∈H from the right

interface, for each i ∈ H do as follows.
2. Sample ki ← {0, 1}∗, set zi := (xi, ki), compute (ϕi→1

1 , . . . , ϕi→m
1)← Φ1(1λ, i, zi).

3. For each h ∈ [m] do the following:
(a) (zh, πi

h,2)← Πno-inp
2 (i, 1λ, πh(1); ri,h), π̃i

h,1 ← Πinp
1 (i, ϕi→1

1 , zh)
(b) (zprg

h , πi,prg
h,2)← Πno-inp

2 (i, 1λ, πprg
h (1); rprg

i,h), π̃i,prg
h,1 ← Πinp

1 (i, (si,h, Si,h), zprg
h)

4. Set otinpi := (π̃i
h,1)h∈[m], compute oti

3 ← OTi
R,3(otinpi, oti(2); ρi).

5. Send wli3, {πi
h,2, πprg,i

h,2 , π̃i,prg
h,1 }h∈[m], oti

3 to A.

65

Round 4. Upon receiving {wli3, {πi
h,2, πprg,i

h,2 , π̃i,prg
h,1 }h∈[m], oti

3}i∈M from
A, forward {wli3, oti

3}i∈M to the right interface. On receiving
({yi,j}i∈M,j∈H , {oti,j

4 }i∈H,j∈[n]\{i}, {otinpi}i∈M) from the right interface (where
{yi,j}i∈M,j∈H represents the extracted values related to the watchlist senders’ inputs
(recall that yi,j = {ri,h, rprg

i,h , si,h, Si,h}h∈[m]), and {otinpi}i∈M represent the receivers’
input used by the adversary in the execution of nRmS), parse otinpi as (π̃i

h,1)h∈[m]
(with i ∈M) and continue as follows.
1. Initialize the empty set C ′. For each h ∈ [m], check if there exists some j ∈ H

such that for every i ∈M, yi,j contains the randomness that explains the messages
sent by corrupted parties in Πh as well as the correct PRG computations. If not,
it adds h to C ′. If |C ′| > λn2 stop and and instructs all the honest parties to
output ⊥, else continue.

2. For all j ∈ [n] \ {i} and h ∈ Ki, check that:
– The PRG computations in (si,h, Si,h) are correct.
– Compute π⋆j

h,1 := Πno-inp
h,1 (1λ, j, πh(0); rj,h) and π⋆j,prg

h,1 :=
Πno-inp

h,1 (1λ, j, πh(0); rprg
j,h), check that π⋆j

h,1 = πj
h,1 and π⋆j,prg

h,1 = πj,prg
h,1 .

– Compute (zh, πj⋆
h,2) := Πno-inp

2 (j, 1λ, πh(1); rj,h) check that πj⋆
h,2 = πj

h,2.
– Compute (zprg

h , πprg,j⋆
h,2) := Πno-inp

2 (j, 1λ, πh(1), rprg
j,h) and π̃prg,j⋆

1,h :=
Πinp

1 (j, (sj,h, Sj,h), zprg
h), check that πprg,j⋆

h,2 = πprg,j
h,2 and π̃prg,j⋆

1,h = π̃prg,j
1,h

3. If any of the above checks fail, output ⊥.
4. For each h ∈ C, i ∈ H

(a) Set π̃ = {π̃j
h,1, π̃prg

h,1, }j∈[n]\{i}

(b) πi
h,3 := Πno-inp

h,3 (1λ, i, πh(2); ri,h)
(c) πprg,i

h,3 := Πno-inp
h,3 (1λ, i, πh(2); rprg

i,h)
(d) π̃i

h,2 ← Πinp
2 (i, ϕi→h

1 , zi,h, π̃),
(e) π̃prg,i

2 ← Πinp
2 (i, (si,h, Si,h), zprg

i,h , π̃).
5. For each i ∈ H, h ∈ [m] compute

C̃i
h, (labi,h,c)c∈[n]\{i} ← SimGC(1λ, (π̃i

2, π̃prg,i
2))

6. Send (labels, {labi,h,c}i∈H,h∈[m],c∈[n]\{i}) to the right interface. Upon receiv-
ing {otj,i

4 }j∈M,i∈H from the right interface, for each i ∈ H send
{πi

h,3, πprg,i
h,3 , C̃i

h}h∈[m], {otj,i
4 }j∈[n]\{i}, (otinpi, ρi) to A.

Output
1. For each h ∈ [m], compute ϕh

2 using the output outΠh

2. Run outΦ on (ϕ1
2, . . . , ϕm

2) to compute (y′, σ1, . . . , σn).
3. Return y′ and what A returns.

Corollary 5.4. The protocol of Figure 5.1 makes black-box use of two-round OTs with
statistical sender security.

Before arguing this corollary, we observe that we can instantiate the four-round simulatable
OT from statistical sender private OT using the work of [MOSV22]. In more detail, in this

66

work, the authors show how to realize four-round simulatable OT by relying, in a black-box
way, on what they call a defensible OT. As observed in [MOSV22, Section 3.2 & 3.3] this
notion is achieved by a statistical sender private OT, therefore, we obtain a four-round
simulatable OT. The list simulatable watchlist protocol can be instantiated using statistical
sender private OT as it has been shown in [COSW23a]. For the remaining primitives used
in the above protocol, we already observed in Sections 2.6, 3.1, and 4.6 that they can be
realized using maliciously secure two-round statistical sender private OT in a black-box
way For this corollary to hold, it remains to argue that the protocol uses the mentioned
primitives in a black-box way. For the first three rounds, this can be seen directly since the
mentioned primitives are all executed on their own. These first three rounds of the protocol
also corresponds to the standard [IPS08, IKSS21, IKSS23] protocol with the execution of an
additional OT protocol OTS⃗,R⃗. It remains to be argued that the fourth round of the protocol
only makes black-box use of the primitives. The critical step here is the conditional disclosure
of secrets implemented using the garbled circuit. If the conditional disclosure of secret, i.e.,
the garbled circuit, needs to evaluate a specific circuit of a cryptographic operation, then this
results in a non-black-box use of primitives. In our protocol, we overcome this obstacle by
letting the garbled circuit evaluate an information-theoretic operation that does not have
any specific dependency on the underlying cryptographic primitive. In more detail, since
we required the operations Πinp

2 to be information-theoretic (it consists of an operation that
outputs a specific subset) our conditional disclosure of secrets uses the inner protocol Π in a
black-box way. This concludes the argument for the corollary.

Acknowledgements

Supported in part by DARPA under Cooperative Agreement HR0011-20-2-0025, the Algorand
Centers of Excellence programme managed by Algorand Foundation, NSF grants CNS-
2246355, CCF-2220450 and CNS-2001096, US-Israel BSF grant 2022370, Amazon Faculty
Award, Cisco Research Award and Sunday Group. Any views, opinions, findings, conclusions
or recommendations contained herein are those of the author(s) and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of DARPA,
the Department of Defense, the Algorand Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copyright annotation therein. The first author has performed part of this
work while consulting for Stealth Software Technologies, Inc. The fourth author is supported
by an MC2 postdoctoral fellowship.

References
ACJ17. P. Ananth, A. R. Choudhuri, and A. Jain. A new approach to round-optimal secure multiparty computation.

In CRYPTO 2017, Part I, LNCS 10401, pages 468–499. Springer, Heidelberg, August 2017. (Page 3.)
AIK04. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In 45th FOCS, pages 166–175. IEEE

Computer Society Press, October 2004. (Page 16.)
AIR01. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods. In EURO-

CRYPT 2001, LNCS 2045, pages 119–135. Springer, Heidelberg, May 2001. (Page 4.)

67

App17. B. Applebaum. Garbled circuits as randomized encodings of functions: a primer. In Tutorials on the
Foundations of Cryptography, pages 1–44. Springer International Publishing, 2017. (Page 16.)

BD18. Z. Brakerski and N. Döttling. Two-message statistically sender-private OT from LWE. In TCC 2018,
Part II, LNCS 11240, pages 370–390. Springer, Heidelberg, November 2018. (Pages 4 and 8.)

BGJ+18. S. Badrinarayanan, V. Goyal, A. Jain, Y. T. Kalai, D. Khurana, and A. Sahai. Promise zero knowledge
and its applications to round optimal MPC. In CRYPTO 2018, Part II, LNCS 10992, pages 459–487.
Springer, Heidelberg, August 2018. (Pages 3 and 5.)

BHP17. Z. Brakerski, S. Halevi, and A. Polychroniadou. Four round secure computation without setup. In
TCC 2017, Part I, LNCS 10677, pages 645–677. Springer, Heidelberg, November 2017. (Page 3.)

BHR12. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM CCS 2012, pages
784–796. ACM Press, October 2012. (Page 16.)

BMR90. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract). In
22nd ACM STOC, pages 503–513. ACM Press, May 1990. (Page 3.)

CCG+20. A. R. Choudhuri, M. Ciampi, V. Goyal, A. Jain, and R. Ostrovsky. Round optimal secure multiparty
computation from minimal assumptions. In TCC 2020, Part II, LNCS 12551, pages 291–319. Springer,
Heidelberg, November 2020. (Page 3.)

COSV17. M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Round-optimal secure two-party computation
from trapdoor permutations. In TCC 2017, Part I, LNCS 10677, pages 678–710. Springer, Heidelberg,
November 2017. (Pages 9 and 10.)

COSW23a. M. Ciampi, R. Ostrovsky, L. Siniscalchi, and H. Waldner. List oblivious transfer and applications to
round-optimal black-box multiparty coin tossing. In Advances in Cryptology - CRYPTO 2023 - 43rd
Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part I, Lecture Notes in Computer Science 14081, pages 459–488. Springer, 2023.
(Pages 3, 5, 6, 14, and 67.)

COSW23b. M. Ciampi, R. Ostrovsky, L. Siniscalchi, and H. Waldner. List oblivious transfer and applications to
round-optimal black-box multiparty coin tossing. Cryptology ePrint Archive, Paper 2023/1512, 2023.
https://eprint.iacr.org/2023/1512. (Page 13.)

COWZ22. M. Ciampi, R. Ostrovsky, H. Waldner, and V. Zikas. Round-optimal and communication-efficient
multiparty computation. In EUROCRYPT 2022, Part I, LNCS 13275, pages 65–95. Springer, Heidelberg,
May / June 2022. (Page 3.)

CRSW22. M. Ciampi, D. Ravi, L. Siniscalchi, and H. Waldner. Round-optimal multi-party computation with
identifiable abort. In EUROCRYPT 2022, Part I, LNCS 13275, pages 335–364. Springer, Heidelberg,
May / June 2022. (Page 7.)

DGI+19. N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor hash functions and
their applications. In CRYPTO 2019, Part III, LNCS 11694, pages 3–32. Springer, Heidelberg, August
2019. (Page 4.)

DGL+21. X. Duan, V. Goyal, H. Li, R. Ostrovsky, A. Polychroniadou, and Y. Song. ACCO: algebraic computation
with comparison. In CCSW@CCS ’21: Proceedings of the 2021 on Cloud Computing Security Workshop,
Virtual Event, Republic of Korea, 15 November 2021, pages 21–38. ACM, 2021. (Page 3.)

GB96. S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer course “Cryptography and
computer security” at MIT, 1999:1999, 1996. (Page 17.)

GIS18. S. Garg, Y. Ishai, and A. Srinivasan. Two-round MPC: Information-theoretic and black-box. In TCC 2018,
Part I, LNCS 11239, pages 123–151. Springer, Heidelberg, November 2018. (Pages 34 and 38.)

GLO+21. V. Goyal, H. Li, R. Ostrovsky, A. Polychroniadou, and Y. Song. ATLAS: efficient and scalable MPC in
the honest majority setting. In Advances in Cryptology - CRYPTO 2021 - 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part II, Lecture
Notes in Computer Science 12826, pages 244–274. Springer, 2021. (Page 3.)

GMPP16. S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou. The exact round complexity of secure
computation. In EUROCRYPT 2016, Part II, LNCS 9666, pages 448–476. Springer, Heidelberg, May
2016. (Page 3.)

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press, May 1987. (Page 3.)

Gol04. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University
Press, 2004. (Page 18.)

Goy11. V. Goyal. Constant round non-malleable protocols using one way functions. In 43rd ACM STOC, pages
695–704. ACM Press, June 2011. (Page 3.)

68

https://eprint.iacr.org/2023/1512

GS18. S. Garg and A. Srinivasan. Two-round multiparty secure computation from minimal assumptions. In
EUROCRYPT 2018, Part II, LNCS 10821, pages 468–499. Springer, Heidelberg, April / May 2018.
(Pages 17, 34, 35, and 38.)

HHPV18. S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. Round-optimal secure multi-party
computation. In CRYPTO 2018, Part II, LNCS 10992, pages 488–520. Springer, Heidelberg, August
2018. (Page 3.)

HK12. S. Halevi and Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer. Journal of
Cryptology, 25(1):158–193, January 2012. (Page 4.)

IKOS07. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty computation.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 21–30, 2007.
(Page 4.)

IKOS09. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from secure multiparty
computation. SIAM Journal on Computing, 39(3):1121–1152, 2009. (Page 4.)

IKP10. Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal interaction. In
CRYPTO 2010, LNCS 6223, pages 577–594. Springer, Heidelberg, August 2010. (Pages 13, 19, and 54.)

IKSS21. Y. Ishai, D. Khurana, A. Sahai, and A. Srinivasan. On the round complexity of black-box secure MPC. In
CRYPTO 2021, Part II, LNCS 12826, pages 214–243, Virtual Event, August 2021. Springer, Heidelberg.
(Pages 3, 4, 5, 6, 11, 18, 35, 54, 62, and 67.)

IKSS23. Y. Ishai, D. Khurana, A. Sahai, and A. Srinivasan. Round-optimal black-box MPC in the plain model. In
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO
2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, Lecture Notes in Computer
Science 14081, pages 393–426. Springer, 2023. (Pages 3, 4, 6, 31, 32, 34, 35, 37, 45, 49, and 67.)

IPS08. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In
CRYPTO 2008, LNCS 5157, pages 572–591. Springer, Heidelberg, August 2008. (Pages 3, 4, 38, and 67.)

Kal05. Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer. In EUROCRYPT 2005,
LNCS 3494, pages 78–95. Springer, Heidelberg, May 2005. (Page 4.)

Kil88. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM Press,
May 1988. (Pages 3 and 38.)

KO04. J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In CRYPTO 2004, LNCS 3152,
pages 335–354. Springer, Heidelberg, August 2004. (Page 3.)

KOS03. J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a dishonest
majority. In EUROCRYPT 2003, LNCS 2656, pages 578–595. Springer, Heidelberg, May 2003. (Page 3.)

LP09. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161–188, April 2009. (Page 16.)

MOSV22. V. Madathil, C. Orsini, A. Scafuro, and D. Venturi. From privacy-only to simulatable OT: black-box,
round-optimal, information-theoretic. In 3rd Conference on Information-Theoretic Cryptography, ITC
2022, July 5-7, 2022, Cambridge, MA, USA, LIPIcs 230, pages 5:1–5:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. (Pages 11, 66, and 67.)

NP01. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th SODA, pages 448–457. ACM-SIAM,
January 2001. (Page 4.)

Ode09. G. Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, USA,
1st edition, 2009. (Page 11.)

ORS15. R. Ostrovsky, S. Richelson, and A. Scafuro. Round-optimal black-box two-party computation. In
CRYPTO 2015, Part II, LNCS 9216, pages 339–358. Springer, Heidelberg, August 2015. (Pages 9
and 10.)

Pas04. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In 36th ACM
STOC, pages 232–241. ACM Press, June 2004. (Page 3.)

PS21. A. Patra and A. Srinivasan. Three-round secure multiparty computation from black-box two-round
oblivious transfer. In CRYPTO 2021, Part II, LNCS 12826, pages 185–213, Virtual Event, August 2021.
Springer, Heidelberg. (Pages 2, 6, 16, 31, 34, 35, 37, 38, and 45.)

PW10. R. Pass and H. Wee. Constant-round non-malleable commitments from sub-exponential one-way functions.
In EUROCRYPT 2010, LNCS 6110, pages 638–655. Springer, Heidelberg, May / June 2010. (Page 3.)

Wee10. H. Wee. Black-box, round-efficient secure computation via non-malleability amplification. In 51st FOCS,
pages 531–540. IEEE Computer Society Press, October 2010. (Page 3.)

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986. (Pages 3 and 16.)

69

	Introduction
	Our Contribution
	Technical Overview

	Preliminaries
	Oblivious Transfer
	MPC Definitions
	List MPC
	Garbled Circuits
	Symmetric Encryption and Message Authentication
	Outer Protocol

	Single Receiver, Multiple Senders Oblivious Transfer (1RnS OT)
	1RnS Oblivious Transfer from 1-out-of-2 Oblivious Transfer
	Definition of nRmS OT
	Formal Description of OT_nRmS

	Inner Protocol
	Definition of the Inner-Protocol
	Realization of the Inner-Protocol
	Oblivious Transfer with Equivocal Receiver Security
	Protocol for the Double Selection Functionality DS C:PatSri21
	Conforming Protocols
	Formal Description of the Three Round Inner Protocol

	Our Four-Round MPC Protocol

