
Random Beacons in Monte Carlo: Efficient Asynchronous
Random Beacon without Threshold Cryptography

Akhil Bandarupalli

Purdue University

abandaru@purdue.edu

Adithya Bhat

Visa Research

haxolotl.research@gmail.com

Saurabh Bagchi

Purdue University

sbagchi@purdue.edu

Aniket Kate

Purdue University / Supra Research

aniket@purdue.edu

Michael K. Reiter

Duke University / Chainlink Labs

michael.reiter@duke.edu

ABSTRACT
Regular access to unpredictable and bias-resistant randomness is

important for applications such as blockchains, voting, and secure

distributed computing. Distributed random beacon protocols ad-

dress this need by distributing trust across multiple nodes, with

the majority of them assumed to be honest. Numerous applications

across the blockchain space have led to the proposal of several dis-

tributed random beacon protocols, with some already implemented.

However, many current random beacon systems rely on threshold

cryptographic setups or exhibit high computational costs, while

others expect the network to be partial or bounded synchronous. To

overcome these limitations, we propose HashRand, a computation

and communication-efficient asynchronous random beacon proto-

col that only demands secure hash and pairwise secure channels to

generate beacons. HashRand has a per-node amortized communica-

tion complexity ofO(𝜆𝑛 log(𝑛)) bits per beacon. The computational

efficiency of HashRand is attributed to the two orders of magnitude

lower time of a one-wayHash computation compared to discrete log

exponentiation. Interestingly, besides reduced overhead, HashRand

achieves Post-Quantum security by leveraging the secure Hash

function against quantum adversaries, setting it apart from other

random beacon protocols that use discrete log cryptography. In a

geo-distributed testbed of 𝑛 = 136 nodes, HashRand produces 78

beacons per minute, which is at least 5x higher than Spurt [IEEE

S&P’22]. We also demonstrate the practical utility of HashRand by

implementing a Post-Quantum secure Asynchronous SMR protocol,

which has a response rate of over 135k transactions per second at a

latency of 2.3 seconds over a WAN for 𝑛 = 16 nodes.

CCS CONCEPTS
• Security and privacy→ Systems security; Distributed sys-
tems security;

KEYWORDS
Random Beacon, Byzantine Fault-Tolerance, Asynchronous, Hash

functions, Approximate Agreement, Post-Quantum Security

ACM Reference Format:
Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, andMichael

K. Reiter. 2024. Random Beacons in Monte Carlo: Efficient Asynchronous

Random Beacon without Threshold Cryptography . In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 20 pages. https://doi.org/10.1145/3658644.3670326

1 INTRODUCTION
Random beacon schemes [64, 76] emit random numbers at regular

intervals. They are often used as a source of secure randomness in

applications such as committee election in sharded and Proof-of-

Stake blockchains [36, 49, 52, 71]; common coins in asynchronous

Byzantine Agreement (BA) [3, 6, 66, 68]; State Machine Replication

(SMR) [30, 46, 51, 52, 63, 67, 82]; asynchronous Multi-Party Compu-

tation (MPC) [28, 74]; and also in layer-2 blockchain applications

in the DeFi and GameFi space [24]. The demand for secure random-

ness from these applications has recently surged and continues to

grow further [24].

Contemporary random beacon protocols make a wide variety

of trusted setup assumptions. Beacons from sources such as Ran-

dom.org [54] or NIST’s random beacon project [64] place complete

trust in the source. The sources here become single points of fail-

ure for the system’s liveness and safety as well as unpredictability

and bias-resistance of beacon values. Approaches like DRand [76],

Dfinity-DVRF [56], and Cachin et al. [19] mitigate these risks by

distributing the trust across some 𝑛 nodes such that the system

remains safe, live, and secure as long as a subset of 𝑡 + 1 or more

nodes are honest.

Under the hood, these approaches employ a threshold crypto-

graphic setup among 𝑛 nodes that enables them to generate (𝑛, 𝑡)-
threshold unique signatures, which offer unpredictability and bias-

resistance against an adversary corrupting 𝑡 < 𝑛
3
nodes (𝑡 < 𝑛

2
in

a synchronous network). Here, the trusted setup phase for thresh-

old signatures can be replaced with a Distributed Key Generation

(DKG) protocol [48, 60, 65]. However, DKG protocols are expen-

sive in computation and communication and must be re-executed

every time nodes’ participation changes. This constraint makes

threshold signatures costly for applications with churn, such as

Proof-of-Stake blockchains [49].

As a result, a few recent random beacon proposals [15, 16, 31, 55,

72, 77] avoid the threshold setup and the threshold unique signature

approach. Instead, they employ a Public Key Infrastructure (PKI)

setup or broadcast setup, where digital signatures and secure chan-

nels can be used to realize Verifiable Secret Sharing (VSS) and State

Machine Replication (SMR) primitives and build a beacon service

on top of those. However, they depend on some form of network

synchrony (bounded/partial) to achieve liveness and agreement

amongst participant nodes, and cannot be used in the asynchro-

nous communication setting. Indeed, as demonstrated by Miller et

al. [67], synchronous protocols cannot take full advantage of the

https://orcid.org/0000-0002-9669-5788
https://orcid.org/0000-0003-4099-4014
https://orcid.org/0000-0002-4239-5632
https://orcid.org/0000-0003-2246-8416
https://orcid.org/0000-0001-7007-8274
https://doi.org/10.1145/3658644.3670326

network speed and out-of-order message delivery, thereby offering

subpar performance under active adversarial scheduling.

Asynchronous randomness generation protocols that do not use

threshold signatures are available: Some of those use a PKI setup [4,

5, 32, 34, 47], while other need a pairwise-channels setup [37, 65].

However, all of these protocols have a high computational cost due

to discrete-log-based commitments used in their 𝑛-parallel Asyn-

chronous VSS (AVSS) phases. For example, in protocols with PKI

setup like Abraham et al. [5] and Bingo [4], the computational cost

of 𝑛-parallel AVSS amounts to Ω(𝑛2) discrete log exponentiations

andO(𝑛2) bilinear pairing computations per node per beacon. As an

exponentiation and a pairing respectively consume 100× and 1000×
more compute time and energy than a cryptographic hash, there is

significant scope for improvement. In protocols with only secure

channels such as Kogias et al. [65] and Freitas et al. [37], the cost

of 𝑛-parallel AVSS increases to O(𝑛3) discrete log exponentiations

per beacon per node. Overall, high computational cost becomes a

scalability bottleneck for the existing asynchronous randomness

generation protocols as 𝑛 grows.

Asynchronous beacon protocols in the realm of Information-

Theoretic and Statistical security utilize computation-efficient tech-

niques that do not use any expensive cryptographic operations.

For example, Huang et al. [59] use a technique called statistical

fraud detection to detect misbehavior by Byzantine-faulty nodes.

This approach has a communication complexity of Ω(𝑛6) bits per
beacon. Although such approaches are computationally efficient,

their high communication complexity hinders their practical use.

In this work, we ask the following question: Is there an asyn-
chronous random beacon protocol that does not use any threshold
cryptographic setup, is computationally efficient to output a high
throughput of beacons at high values of 𝑛, and has a practically
scalable communication complexity?
Our solution. We present HashRand, a computation-efficient

asynchronous random beacon protocol that uses hash functions

and a secure channel setup to output random beacons. HashRand

has an amortized O(𝜆𝑛 log(𝑛)) communication complexity per bea-

con per node, where 𝜆 is the range of the hash function in bits,

and requires amortized O(𝜆𝑛 log(𝑛)) Hash computations per bea-

con per node. HashRand requires only a pairwise secure channel

setup, where nodes can send private, authenticated messages to

each other. HashRand is computationally efficient because it only

uses lightweight cryptographic primitives like hash functions and

authenticated symmetric encryption. On top of computational effi-

ciency and practical communication complexity, HashRand is also

post-quantum secure assuming that cryptographic hash functions

like SHA256 behave like a Random Oracle against a polynomial-

time quantum adversary [18]. We offer a detailed comparison of

HashRand with related works in Table 1.

Evaluation.We implement HashRand in Rust and evaluate it in a

geo-distributed setting on AWS by measuring the throughput in

terms of the number of beacons output per minute. We also com-

pare HashRand with Dfinity-DVRF [56] based on BLS threshold

signatures and Spurt [31], which require a trusted DKG setup and

a PKI setup, respectively. Dfinity-DVRF’s computation and commu-

nication complexities are equivalent to Cachin et al. [19]. At 𝑛 = 40

nodes, HashRand outputs 1837 beacons per minute, against 1109

beacons pm for Dfinity-DVRF and 100 beacons pm for Spurt. The

computational efficiency of Hash functions allows HashRand to

produce beacons at a higher throughput at lower 𝑛.

With increasing 𝑛, HashRand’s throughput drops faster than

Dfinity-DVRF, with HashRand doing worse than Dfinity-DVRF

at 𝑛 = 64. This is because Dfinity-DVRF requires O(𝑛) discrete-log
exponentiations per beacon whereas HashRand scales as 𝑛2 log(𝑛)
hash computations per beacon at𝑛 < 64 (Refer to Table 1 for details).

However, recall that Dfinity-DVRF is not post-quantum secure and

needs DKG for a threshold signature setup, which is expensive for

systems with churn. On the other hand, HashRand continues to

scale much better than threshold-setup-free Spurt [31], outputting

5× the throughput of Spurt at 𝑛 = 136 nodes. Hence, HashRand is

the optimal choice in situations where threshold setup is infeasible.

An illustrative application. On top of implementing and evalu-

ating HashRand as an asynchronous beacon, we demonstrate its

practical utility by realizing a post-quantum secure asynchronous

SMR protocol. We integrate HashRand with Tusk [30], the state-

of-the-art asynchronous SMR protocol, to form PQ-Tusk, in which

HashRand provides the randomness needed for wave leader elec-

tion. We replace Tusk ’s digital signatures with DiLithium [44], a

post-quantum secure public key signature scheme. PQ-Tusk has an

optimal communication complexity of O(𝜆𝑛) bits per transaction
per node, which is much more practical than other post-quantum

SMR protocols like WaterBear [82] with worst case O(exp(𝑛)) com-

munication complexity. We also demonstrate the practicality of PQ-

SMR by evaluating our SMR protocol PQ-Tusk in a geo-distributed

setting. PQ-Tusk achieves a throughput of 135k transactions per

second for 𝑛 = 16 nodes with a latency of 2.3 seconds, compared to

150k transactions per second at a latency of 2.1 seconds for Tusk.

We also propose a signature-free asynchronous SMR protocol based

on DAG-Rider [63] for cross-chain consensus [78], an application

where signatures are expensive and infeasible.

2 SOLUTION OVERVIEW
2.1 System Model
We assume a set of 𝑛 nodesN connected by pairwise authenticated

and secure channels. We consider a polynomial-time quantum adap-

tive adversary A defined according to Boneh et al. [18], who has

access to a quantum computer and controls 𝑡 < 𝑛
3
nodes. The

channels connecting honest nodes are private and A cannot dis-

tinguish the contents of each message from a uniformly random

bitstring within polynomial time. An efficient post-quantum sym-

metric encryption scheme like AES can satisfy this assumption.

The network is asynchronous, where A can arbitrarily delay and

reorder messages. However, it cannot drop messages between two

honest nodes.

2.2 Asynchronous Random Beacons
We define a random beacon protocol and its properties based on

Spurt’s [31] definition and adapt it to asynchrony. Honest nodes

participating in a beacon protocolB output tuples of the form ⟨𝑖, 𝑏𝑖 ⟩,
where 𝑖 ∈ N is a unique beacon index and 𝑏𝑖 ∈ D is an element

from a predefined domain of numbers D.

Definition 2.1. A protocol B amongst 𝑛 nodes N consists of two
subprotocols B.Prep(.,.) and B.Open(.), with outputs of the form

2

Table 1: Comparison of relevant random beacon and asynchronous common coin protocols with HashRand.

Pr
ot
oc

ol

N
et
w
or
k

Po
st

Q
ua

nt
um

Se
cu

ri
ty

Te
rm

in
at
io
n

Fl
av

or

A
da

pt
iv
e

Se
cu

ri
ty

C
om

m
un

ic
at
io
n

C
om

pl
ex

it
y

(p
er

no
de

)

C
om

pu
ta
ti
on

al
C
om

pl
ex

it
y

(p
er

no
de

)

Se
tu
p

C
ry

pt
og

ra
ph

ic
A
ss
um

pt
io
n

Cachin et al. [19] async. ✗ D ✓ O(𝜆𝑛) O (𝑛) DLE DKG pRO & CDH

RandShare [77] async. ✗ LV ✗ O(𝜆𝑛3) O (𝑛3) DLE DKG DLog

Spurt [31] partial sync. ✗ D ✗ O(𝜆𝑛2) O (𝑛2) DLE¶ CRS & PKI pRO & DBDH

Kogias et al. [65] async. ✗ LV ✗ O(𝜆𝑛3) O (𝑛3) DLE Secure channels pRO & DDH

Das et al. [34] async. ✗ LV ✗ O(𝜆𝑛2) O (𝑛3) DLE PKI pRO & DDH

Gao et al. [47] async. ✗ LV ✗ O(𝜆𝑛2) Ω (𝑛2) DLE PKI pRO & SXDH

Abraham et al. [5] async. ✗ LV ✗ O(𝜆𝑛2) Ω (𝑛2) DLE PKI pRO & SXDH

Bingo [4] async. ✗ LV ✓ O(𝜆𝑛2) Ω (𝑛2) DLE SRS & PKI 𝑞−SDH
Freitas et al. [37] async. ✓ MC ✗ O(𝜆𝑛2

log(𝑛)) O (𝑛3) DLE Secure channels DLog

Huang et al. [59] async. ✓ LV ✓ Ω (𝑛6) 0 Auth channels None

HashRand async. ✓ MC ✓ O(𝜆𝑛 log(𝑛))† O(𝑛 log(𝑛)) H∗
Secure channels pRO

§

Termination Flavor: Monte-Carlo (MC) style protocols terminate in a deterministic number of rounds. But, even after termination, honest nodes can

disagree on the beacon with a practically negligible probability 𝑝 = 1 − 𝛿 . A lower 𝑝 implies a higher round complexity. Las Vegas (LV) style protocols

terminate only upon agreement amongst honest nodes on the beacon value. These protocols can have infinitely many executions and we report the expected

runtime complexities of these protocols. Deterministic (D) protocols offer agreement and a deterministic runtime.
∗Computational complexity: Concurrent

beacon and coin protocols use discrete log exponentiations (denoted by DLE), which is the main reason for their high computational cost.HashRand instead

uses 𝑛2 log(𝑛) Hash computations (100× cheaper than DLog expo and 1000× cheaper than a pairing computation) at low 𝑛 and O(𝑛 log(𝑛)) Hashes at high
𝑛 per beacon per node (denoted by H).

†AnyTrust Sampling: HashRand has a per-node communication of O(𝜆𝑐𝑛 log(𝑛)) bits per beacon. HashRand
randomly samples a set of nodes C of size 𝑐 and reconstructs secrets shared only by those nodes. We set the size of 𝑐 = |C | to ensure at least one honest node

is present in C with high probability. However, we note 𝑐 is a small constant (𝑐 < 70 for 𝑛 = 1024) at higher values of 𝑛, because of which we do not include it

in our communication cost.
§Hash function: HashRand assumes a Hash function to be a programmable Random Oracle (pRO) assumption to prove security

against an adaptive and quantum adversary. The techniques in recent works [73, 74] can be used to replace the pRO in HashRand with a collision-resistant

and linear hiding Hash function.
¶
The leader performs O(𝑛2) operations every round, while other nodes perform O(𝑛) operations each.

⟨𝑥, 𝑏𝑥 ⟩ : 𝑥 ∈ N, 𝑏𝑥 ∈ D. An honest node 𝑖 ∈ N invokes B.Prep(x,y)
: 𝑥,𝑦 ∈ N, 𝑥 ≤ 𝑦 to prepare beacons from index 𝑥 to𝑦. Upon terminat-
ing the preparation phase B.Prep(x,y) until index 𝑦, and outputting
⟨𝑥, 𝑏𝑥 ⟩ ∀𝑥 ∈ [1, 𝑦), an honest node 𝑖 invokes B.Open(y) to initiate
generating ⟨𝑦,𝑏𝑦⟩. Such a protocol B is a random beacon protocol if
and only if it satisfies the following properties.
(1) Agreement: For a given index 𝑥 , if honest nodes 𝑗 and 𝑘 output〈

𝑥, 𝑏𝑥 𝑗
〉
and ⟨𝑥, 𝑏𝑥𝑘 ⟩ respectively, then 𝑏𝑥 𝑗 = 𝑏𝑥𝑘 , except with a

probability negligible in 𝜆.
(2) Liveness: Every honest node 𝑗 must eventually output a beacon
⟨𝑥, 𝑏𝑥 ⟩ for all 𝑥 ≥ 1.

(3) Bias-resistance and Unpredictability: Given that no honest
node invoked B.Open(x) for an index 𝑥 ≥ 1, a polynomial time
quantum adversaryA should not have any advantage in predict-
ing the beacon output 𝑏𝑥 . D is the set of elements from which the
protocol B outputs a value.

Pr[A(𝑥) = 𝑏𝑥] =
1

|D|
Prior random beacon protocols [15, 16, 31] also guaranteed agree-

ment with probability 1 and unpredictability with A’s advantage

negligible in 𝜆. However, both properties cannot be achieved with

probability 1 [37].

2.3 HashRand Key Insights
Conventional random beacon protocols (without the threshold

setup) consist of two building blocks: VSS and consensus [16, 31,

72, 77]. In these protocols, each node uses VSS to share a uniformly

random element from a given domain. Next, the nodes use some

version of consensus to agree on a set of 𝑡 + 1 nodes whose VSS
instances have been successfully terminated by every node in the

system. Finally, the nodes reconstruct the secrets shared by these

𝑡 + 1 nodes and aggregate them to output the beacon. This tem-

plate guarantees the contribution of at least one honest node to

the beacon, which ensures its unpredictability. The liveness and

agreement guarantees of such beacon protocols come from SMR’s

liveness and safety properties, respectively.

This design paradigm cannot be applied to an asynchronous

beacon. This is because asynchronous SMR requires random bea-

cons to terminate because of the FLP impossibility result [45]. This

creates a circular dependency between the beacon and SMR in

asynchrony [31]. A recent impossibility result by Freitas et al. [37]

throws light on methods to resolve this circularity. It states that it

is impossible for a deterministic asynchronous protocol to achieve

agreement, deterministic liveness, and unpredictability. Hence, an

asynchronous random beacon protocol must choose between the

Monte-Carlo and Las Vegas flavors of termination.
1

We propose HashRand, a Monte-Carlo style beacon protocol

with deterministic termination and a fixed probability of successful

execution denoted by 𝛿 . Mainly, HashRand breaks the beacon-

SMR circularity in the conventional design paradigm by replacing

the use of asynchronous SMR with the approximate agreement

1
Monte-Carlo algorithms always terminate in a deterministic amount of time and

return a correct result with some probability𝑝 and an incorrect result with a probability

1 − 𝑝 . In contrast, Las Vegas algorithms always return a correct result but have an

indeterminate runtime.

3

(AA) primitive [39]. An AA protocol allows nodes to agree on

values within a configured 𝜖 distance. Further, AA protocols offer

deterministic termination and do not require access to random

beacons. However, employing AA in HashRand requires us to

trade off a small probability of agreement failure, where nodes

output different beacons. This is because the approximation in the

agreement property of AA induces a small, yet finite probability

that nodes output different beacons.

HashRand overview. HashRand uses 𝑛-parallel AVSS [22], and

approximate agreement [39] as building blocks. Prior AVSS proto-

cols using discrete-log cryptography are communication efficient

but have a high computational complexity, which is a performance

bottleneck [33]. Although other AVSS protocols using Hash func-

tions are computationally efficient [11], they have an O(𝑛) order
increase in communication compared to discrete-log based AVSS

schemes, which makes them practically inefficient. In HashRand,

we overcome two challenges related to Hash-based AVSS using

two key observations that enable HashRand to be computationally

efficient with a practical communication complexity.

(1) We address the high communication cost of hash-based AVSS

by making the following observation. AVSS’s commitment property

requires honest nodes to always reconstruct a valid element in the

domain, even when the dealer is faulty. This commitment property

is the major reason for prior AVSS protocols being communica-

tion intensive [11]. However, we note that this strong property is

overkill for a random beacon protocol. As we show (Section 5.1), a

weaker commitment property, where nodes can reconstruct a value

⊥ designating an invalid sharing conducted by a malicious dealer,

is enough to guarantee all the desired properties of a beacon. Using

this weakened commitment property, we build a Batched Asyn-

chronous weak VSS (BAwVSS) on top of Dolev et al.’s [41] AwVSS.

For a batch size of O(𝑛), this BAwVSS scheme has an amortized

sharing complexity of O(𝜆 log(𝑛)) bits per node.
(2) The other source of high communication in HashRand’s

design is the requirement of reconstructing and aggregating at least

𝑡 + 1 secrets. This step requires O(𝑛2) bits of communication per

node (O(𝑛) bits per secret). We reduce this complexity by observing

that reconstructing 𝑡 + 1 secrets is not necessary to guarantee

the unpredictability of a beacon. We only need one honest node’s

contribution to ensure unpredictability. We propose an AnyTrust
sampling procedure that randomly samples nodes to form a set C
of size 𝑐 . With high probability, this set contains at least one honest

node 𝑖 whose BAwVSS instance will be terminated by all honest

nodes. All nodes later reconstruct the secrets proposed by nodes

that are a part of this set, which brings down the communication

complexity of the reconstruction phase to O(𝜆𝑛2 log(𝑛)) bits or
O(𝜆𝑛 log(𝑛)) bits per beacon per node.

The first observation allows us to reduce computational com-

plexity without increasing the communication complexity of the

beacon. The second observation enables HashRand to reduce com-

munication complexity by a O(𝑛) factor. Although conventional

committee-based protocols only show performance effects at very

large values of 𝑛, HashRand’s AnyTrust sample set achieves a

low statistical failure probability for much smaller 𝑐 . Both these

additions make HashRand computationally efficient while having

a practical O(𝜆𝑛 log(𝑛)) per node communication complexity.

Table 2: Symbols and notations used in HashRand

Symbol Description

𝛿 Statistical security parameter

𝜆 Computational security parameter

𝛽 Batch size in BAwVSS

𝜙 Period of BAwVSS

D Range of beacons

𝑟 Current round of HashRand

BAwVSS 𝑟,𝑖 BAwVSS instantiated by node 𝑖 in round 𝑟

𝑆𝑟,𝑖 Set of 𝛽 secrets shared by 𝑖 through round 𝑟 ’s

BAwVSS instance

C𝑟 Set of nodes sampled for BAwVSS 𝑟,.

𝐺𝑟,𝑖 Output from Gather.Term(𝑟 ,i) for a BAwVSS 𝑟,.

E𝑟,𝑖 AA instance corresponding to BAwVSS 𝑟,𝑖

instantiated in HashRand round 𝑟

B List of all prepared beacons yet to be opened

B𝑐 List of all prepared beacons for AnyTrust Sampling

Security. HashRand is a Monte-Carlo beacon protocol with suc-

cess probability 𝑝 ≤ 1 − 𝛿 + negl(𝜆). This corresponds to 𝜆 bits

of cryptographic security and log(1

1−𝛿) bits of statistical security
against a quantum adversary. We prove HashRand ’s properties

against a polynomial-time quantum adaptive adversary A under

the assumption that the hash function 𝐻 is a Random Oracle. We

first prove HashRand is adaptively secure against a classical ad-

versary and extend our proof to a quantum adversary using Boneh

et al.’s [18] template for proving post-quantum security.

3 BUILDING BLOCKS
3.1 Asynchronous weak Verifiable Secret

Sharing (AwVSS)
We describe the Asynchronous weak VSS primitive as defined by

Dolev et al. [33].

Definition 3.1. An (𝑛, 𝑡)-AwVSS scheme among a set of 𝑛 nodes
with a dealer 𝑑 consists of two subprotocols: the sharing protocol
AwVSS.Sh and the reconstruction phase AwVSS.Rec protocol.

• AwVSS𝑑 .Sh: A dealer 𝑑 shares a secret 𝑠𝑑 from a publicly known
domain of values D. At the end of AwVSS.Sh, at least 𝑡 + 1 honest
nodes 𝑖 ∈ N hold a secret share 𝑠𝑑,𝑖 .
• AwVSS𝑖 .Rec: Every honest node 𝑖 ∈ N reconstructs the secret 𝑠𝑑
in a distributed fashion by broadcasting its secret share 𝑠𝑑,𝑖 (if
available). If the dealer 𝑑 was honest, every honest 𝑖 outputs 𝑠𝑑 and
⊥ otherwise.

A protocol AwVSS implements (𝑛, 𝑡)-Asynchronous weak VSS if it
satisfies the following properties.

• Termination:
(1) If the dealer 𝑑 is honest, then each honest node will eventually

terminate AwVSS𝑑 .Sh.
(2) If an honest node terminates AwVSS𝑑 .Sh protocol, then every

honest node will eventually terminate AwVSS𝑑 .Sh.
(3) If all honest nodes start AwVSS.Rec, then each honest node

will eventually terminate AwVSS.Rec.

4

• Correctness: If𝑑 is honest, then each honest node upon terminating
AwVSS.Rec, outputs the shared secret 𝑠𝑑 ∈ D with probability
𝑝 ≥ 1 − negl(𝜆).
• Secrecy: If 𝑑 is honest and no honest node has started AwVSS.Rec,
then an adversary that corrupts up to 𝑡 nodes has no information
about 𝑠𝑑 .
• Weak Commitment: Even if 𝑑 is malicious, with probability at
least 𝑝 ≥ 1− negl(𝜆), there exists a value 𝑠∗ ∈ D ∪ {⊥} at the end
of AwVSS𝑑 .Sh, such that all honest nodes output 𝑠∗ at the end of
AwVSS.Rec phase.

This primitive is strictly weaker than AVSS because AVSS re-

quires the honest nodes to hold shares of a secret 𝑠 ∈ D. In AwVSS,

nodes can hold shares of a secret 𝑠 ∈ {D,⊥}. A malicious dealer

who conducts an invalid sharing is detected in the sharing phase

in AVSS and in the reconstruction phase in AwVSS.

We build on top of Dolev et al.’s [41] hash-based AwVSS protocol.

In this protocol, a dealer 𝑑 uses Shamir secret sharing to create

secret shares for a secret 𝑠𝑑 in domainD. D can either be a ring or

a finite field. The dealer 𝑑 then creates a Merkle tree on top of the

𝑛 secret shares. 𝑑 then sends individual shares along with Merkle

proofs to nodes and reliably broadcasts the Merkle root 𝑟 . An honest

node participates in the reliable broadcast of the root only upon

verifying its Merkle proof. During the reconstruction phase, nodes

that terminated with a share, broadcast their shares and Merkle

proofs. Upon receiving 𝑡 + 1 shares, every node reconstructs the

entire share vector and the Merkle tree and verifies if the root

broadcasted in the sharing phase 𝑟 matches the reconstructed root

𝑟 ′. It outputs the shared secret if 𝑟 = 𝑟 ′ and outputs ⊥ otherwise.

Batched AwVSS. In order to reduce amortized communication

complexity, we develop a batched version of AwVSS scheme. A

protocol BAwVSS implementing Batched AwVSS has subprotocols

BAwVSS𝑑 .Sh(𝑆𝑑) and BAwVSS𝑑 .Rec(i). The dealer 𝑑 shares a batch

of multiple secrets 𝑆𝑑 with BAwVSS𝑑 .Sh(𝑆𝑑) and honest nodes

reconstruct each secret with BAwVSS𝑑 .Rec(𝑖): ∀𝑖 ∈ {1, . . . , |𝑆𝑑 |}.

3.2 Gather
We also employ the Gather primitive [5].

Definition 3.2. Let Tbe any protocol among nodesN satisfying the
Totality property, which states that if an honest node 𝑗 terminates T,
then every other honest node𝑚 terminates T. Consider an 𝑛-parallel
instantiation of the protocol Tamong N , where node 𝑖 started the
instance T𝑖 . A protocol Gather implementing the Gather primitive is
defined by two subprotocols – Gather.Start and Gather.Term().
Every honest node 𝑖 starts by invoking Gather.Start (after invoking
T𝑖) and terminates by invoking Gather.Term(𝐺𝑖), where 𝐺𝑖 is a
set of node indices 𝑗 such that 𝑖 terminated T𝑗 . Gather satisfies the
following properties.
• Binding Common Core: Once the first honest node 𝑖 outputs set
𝐺𝑖 , out of all possible sets 𝐺 ′ ⊆ 𝐺𝑖 with size

��𝐺 ′�� = 𝑛 − 𝑡 , there
exists a unique core set 𝐺 such that every other honest node 𝑗 ’s
output 𝐺 𝑗 ∩𝐺𝑖 ⊇ 𝐺 . Moreover, the core set 𝐺 is binding, meaning
the adversary A cannot force any other honest node 𝑗 to output a
set 𝐺 𝑗 ⊉ 𝐺 .
• Termination: If every honest node invokes Gather.Start, then
every honest node 𝑖 will eventually invoke Gather.Term(𝐺𝑖) and
output a set 𝐺𝑖 : 𝐺 ⊆ 𝐺𝑖 .

1

2

3

4

A
V
S
S
.S
h

G
a
t
h
e
r
(𝐺

𝑖
)

E1

E2

E3

E4

E1

E2

E3

E4

AA rounds

A
V
S
S
.R
e
c

A
g
g
r
e
g
a
t
e

𝑜1

𝑜2

𝑜3

𝑜4

Figure 1: Approximate Common Coin: The structure of Fre-
itas et al.’s [37] protocol with 𝑛 = 4 nodes. Each node shares a
random secret using AVSS, invokes Gather, and participates
in 𝑛 AA instances to agree on a weight for each node. Then
nodes reconstruct and aggregate secrets to output 𝑜𝑖 .

We use Abraham et al.’s [5] Gather protocol in HashRand. This

protocol has a O(𝑛3) communication complexity and requires two

round trips to terminate.

3.3 Approximate agreement
We also use Approximate Agreement [40] (AA) primitive.

Definition 3.3. A protocol E implementing the approximate agree-
ment primitive among nodes N contains E.Start() and E.Term(),
where every honest node 𝑖 starts by invoking E.Start(𝑚𝑖) with a
value𝑚𝑖 ∈ R and terminates by invoking E.Term(𝑜𝑖) with output 𝑜𝑖 .
E satisfies the following properties.

• Termination: If every honest node invokes E.Start(), then every
honest node 𝑖 must eventually invoke E.Term(𝑜𝑖).
• 𝜖-agreement: For 𝜖 > 0, the outputs of any pair of honest nodes 𝑖
and 𝑗 satisfy |𝑜𝑖 − 𝑜 𝑗 | < 𝜖 .
• Validity: LetM be the set of honest nodes’ initial values𝑚𝑖 . The
decision value of every honest node must be within the range of
initial inputs of honest nodesM, minM ≤ 𝑜𝑖 ≤ maxM.

We use the Binary Approximate Agreement protocol [12] as

the Approximate Agreement (AA) protocol E in HashRand. This

protocol works under a binary input assumption, where honest

nodes’ inputs to E are publicly known binary values, for example,

0 and 1. This protocol proceeds in rounds, where after each round,

the range of honest nodes reduces by a factor of
1

2
. A prior version

of the protocol required O(𝑛2 log2 (1𝜖)) bits of communication and

log(1𝜖) rounds for achieving approximate agreement. However, this

communication can be improved to O(𝑛2 log(1𝜖) log log(
1

𝜖)) bits
using FIFO broadcast [1]. In this protocol [12], instead of broad-

casting the entire value, a node broadcasts a constant-sized update

of how its value changed in the previous round. Therefore, a node

can construct another node’s value in a round by applying updates

over the value broadcast in the first round.

We invoke this protocol in a modular manner with the following

methods: (a) E .Start(𝑣𝑖), using which node 𝑖 starts an instance of

the protocol with input 𝑣𝑖 ∈ {0, 1}, (b) E .StartRound(𝑟) for start-
ing round 𝑟 of the protocol, (c) E .EndRound(𝑟), a callback function
invoked after ending round 𝑟 , and (d) E .Term() for terminating the

AA instance with output𝑤𝑖 .

5

3.4 Approximate Common Coin
We utilize the approximate common coin [37] primitive.

Definition 3.4. A protocol ΠCC implementing the approximate
common coin primitive among nodes N is composed of methods
ΠCC.Start and ΠCC.End, where every honest node 𝑖 starts by invok-
ing ΠCC.Start and terminates by invoking ΠCC.End with output
𝑜𝑖 ∈ D, where D is a publicly defined set of values. ΠCC satisfies the
following properties.

• Termination: If every honest node 𝑖 ∈ N invokes ΠCC.Start,
then every honest node 𝑖 must invoke ΠCC.End with output 𝑜𝑖 .
• 𝜖-agreement: The outputs of any pair of honest nodes 𝑖 and 𝑗

satisfy |𝑜𝑖 − 𝑜 𝑗 | < 𝜖 .
• One process randomness: The value output by at least one honest
node must be uniformly distributed over the domain D.

We describe an overview of Freitas et al. [37] in Fig. 1.

4 DESIGN
We build HashRand from the Approximate Common Coin primi-

tive. A strawman approach for building a beacon from this prim-

itive is to start a brand new coin instance after terminating and

reconstructing the previous coin. This approach has high computa-

tion, communication, and latency costs because of two main rea-

sons. First, the n-parallel AVSS.Sh and AVSS.Rec phases cost O(𝑛3)
discrete log exponentiations per node if using discrete-log-based

AVSS [33]. If we instead use Backes et al.’s [11] Hash-based AVSS,

each beacon incurs O(𝑛3) communication per node. Second, the

AA phase has a high round complexity. Achieving a Monte-Carlo

agreement probability of 𝛿 requires log(𝑛
1−𝛿) rounds of AA. For

example, generating a single beacon with 𝛿 = 1 − 2−40, equivalent
to one expected failure in a trillion beacons, requires 200 round

trips of communication at 𝑛 = 40. We address these problems with

two optimizations: (a) Batching and pipelining with Hash-based

AwVSS for increasing throughput and reducing latency, and (b)

AnyTrust sampling for reducing communication complexity.

4.1 Batching and Pipelining
AwVSS’s weak commitment property enables every honest node to

agree on the maliciousness of the dealer during the reconstruction

phase and discard the contributions of these nodes. This observation

enables us to use the AwVSS protocol proposed by Dolev et al. [41]

and defined in Section 3.1. Directly using this AwVSS protocol

in the strawman approach reduces the complexity of 𝑛-parallel

AwVSS by a O(𝑛) factor to O(𝜆𝑛2 log(𝑛)) bits per node.
We further improve on this AwVSS protocol by proposing two

crucial changes to develop BAwVSS, a Batched AwVSS protocol.

(1) We replace the computationally hiding commitments inDolev

et al. with unconditionally hiding commitments based on Backes

et al. [11]. Along with the share polynomial 𝑓 (𝑥) of degree 𝑡 , the
dealer also computes a nonce polynomial 𝑅(𝑥) of degree 𝑡 with
a secret 𝑅 of size twice the range of hash function 𝐻 (implies a

512-bit nonce for SHA256). The dealer then computes𝐻 (𝑅(𝑖), 𝑓 (𝑖))
as a commitment for the 𝑖th secret share, and builds a Merkle tree

on this commitment vector. This change allows us to prove the

security of HashRand against an adaptive adversary.

(2) We batch 𝛽 secrets in each BAwVSS instance and reliably

broadcast a vector of 𝛽 Merkle roots. This amortizes the cost of RBC

over 𝛽 secrets. This change allows us to amplify the throughput of

HashRand by sharing the expensive AA phase over all the secrets

in the batch to produce 𝛽 beacons at the end.

Replacing AVSS in the coin with BAwVSS drastically reduces the

computation cost of each beacon by replacingDLog exponentiations

with Hashes. It also amplifies the throughput by a O(𝛽) factor.
Further, for a batch size 𝛽 = O(𝑛) secrets,n-parallel BAwVSS has

an amortized sharing communication of O(𝜆 log(𝑛)) bits per node,
which is an O(log(𝑛)𝑛) improvement over AVSS.

Pipelining.We use a pipeline in HashRand to ensure a consistent

throughput of beacons. We leverage AA’s deterministic termination

property to create a pipeline of beacons with a pipelining period 𝜙 .

For example, 𝜙 = 10 implies one n-parallel BAwVSS instantiation

for every 10 rounds of AA. Using pipelining, HashRand main-

tains a steady throughput of beacons with a constant latency by

instantiating 𝑛-parallel BAwVSS every 𝜙 rounds and pipelining the

corresponding AA phases. HashRand moves to 𝑟 + 1 from round 𝑟

only after terminating the Gather instance corresponding to round

𝑟 , and round 𝑟 − 𝑟 ′ of instance E𝑟 ′, 𝑗 , 𝑟 ≤ 𝑟 ′ + 𝑟𝑡 . 𝑟𝑡 is the number of

rounds of AA required to achieve a success probability of 𝛿 .

The length of the pipeline is determined by the probability of

agreement 𝛿 and 𝑛. For constant 𝑛, a higher 𝛿 implies a longer

pipeline to fill, which increases the startup latency. However, once

full, HashRand keeps up a continuous and constant throughput of

𝛽

𝜙
Monte-Carlo beacons per round.

4.2 AnyTrust Sampling
The beacon opening phase requires HashRand to reconstruct

and aggregate at least 𝑡 + 1 secrets. Reconstructing a secret costs
O(𝜆𝑛 log(𝑛)) bits of communication per node. Therefore, the cost

of the beacon is O(𝜆𝑛2 log(𝑛)) bits per node and O(𝜆𝑛3 log(𝑛))
overall.

Ensuring the unpredictability of the beacon requires the con-

tribution of only one honest node. However, the current design

guarantees the contribution of at least 𝑡 + 1 honest nodes, which
is overkill and results in higher communication complexity. We

address this issue by using a sampling procedure called AnyTrust

sampling. In this procedure, honest nodes agree on a constant-sized

set of nodes C and run an AA instance E𝑖 ∀𝑖 : 𝑖 ∈ C only for

the node indices part of the sampled set, as opposed to running an

E𝑖 ∀𝑖 : 𝑖 ∈ N . Further, nodes sample C only after terminating

Gather corresponding to an 𝑛-parallel BAwVSS 𝑟,𝑖 instantiation.

The sampled set C requires the presence of only one honest node

that was part of the core set 𝐺 to guarantee unpredictability. This

condition is called the AnyTrust condition, which is satisfied at

much smaller sizes of sampled sets than conventional supermajor-

ity or honest majority committees traditionally used in down sam-

pled BFT systems [49, 53], and sharding systems [36], respectively.

Hence, with AnyTrust sampling, HashRand needs to reconstruct

secrets from at most 𝑐 = |C| nodes.
However, this sampling procedure requires distributed random-

ness with agreement, where we run into the randomness-agreement

circularity again. Moreover, the set must be randomly sampled with

a secure beacon for every new 𝑛-parallel BAwVSS instantiation.

6

E𝑟−2𝜙,1 E𝑟−𝜙,1

E𝑟−2𝜙,2

E𝑟−2𝜙,3 E𝑟−𝜙,3

E𝑟−𝜙,4

B
A
w
V
S
S(𝛽
+
𝑛)

G
a
t
h
e
r
(𝐺

𝑖
)

E𝑟−𝜙,1 E𝑟,1

E𝑟,2

E𝑟−𝜙,3 E𝑟,3

E𝑟−𝜙,4 E𝑟,4

E𝑟−𝜙,1 E𝑟,1

E𝑟,2

E𝑟−𝜙,3 E𝑟,3

E𝑟−𝜙,4 E𝑟,4

B
A
w
V
S
S(𝛽)

G
a
t
h
e
r
(𝐺

𝑖
)

N
o
d
e
S
a
m
p
l
e
(C
)

⟨𝑖, 𝑏𝑖 ⟩

E𝑟,1

E𝑟,2 E𝑟+𝜙,2

E𝑟,3 E𝑟+𝜙,3

E𝑟,4 E𝑟+𝜙,4

E𝑟,1

E𝑟,2 E𝑟+𝜙,2

E𝑟,3 E𝑟+𝜙,3

E𝑟,4 E𝑟+𝜙,4

B
A
w
V
S
S(𝛽)

G
a
t
h
e
r
(𝐺

𝑖
)

N
o
d
e
S
a
m
p
l
e
(C
)

B

B𝑐

Add 𝛽 beacons

⟨𝑖, 𝑏𝑖 ⟩
Add 𝑛 beacons Invoke beacon from B𝑐

Round 𝑟 = 𝜙𝑛 Round 𝑟 + 1 Round 𝑟 + 𝜙 Round 𝑟 + 𝜙 + 1 Round 𝑟 + 2𝜙

Figure 2: HashRand pipeline: We describe the pipeline of HashRand for 𝑛 = 4 with batch size 𝛽 period 𝜙 =
𝑟𝑡
2
. HashRand

initiates a new BAwVSS instance once every 𝜙 rounds and pipelines the corresponding AA instances E𝑟,𝑖 . HashRand also initiates
preparation of 𝑛 more beacons once every 𝜙𝑛 rounds. These beacons are prepared without node sampling, and therefore run
E𝑟,𝑗 for all 𝑛 nodes. Otherwise, nodes only run AA instances for sampled nodes (as in round 𝑟 + 𝜙 + 1 for AA phase of round
𝑟 + 𝜙). HashRand moves to the next round only after terminating BAwVSS,Gather, and round 𝑟 of E. instances in the pipeline.
After completing 𝑟𝑡 = 2𝜙 rounds, 𝛽 beacons initiated before 𝑟𝑡 rounds are added to B to be eventually reconstructed. Further, the
extra 𝑛 beacons prepared in round 𝑟 are added into a separate queue B𝑐 , used for AnyTrust sampling for future beacons in
rounds 𝑟 : 𝑟 mod 𝜙 = 0, 𝑟 mod 𝑛 ≠ 0.

Otherwise, the adversary can bias future beacons by preventing

the sampled members from being part of the Gather ’s core set.

To address this problem, we generate 𝑐𝑛 additional beacons once

every 𝜙𝑛 rounds and use these beacons for sampling for the next 𝑛

beacon preparation phases. We calculate the size of the sample set

C based on the hypergeometric distribution.

4.3 Protocol description
We present the full protocol in Algorithm 1 and give a pictorial

description in Fig. 2.

Beacon preparation phase. HashRand takes batch size 𝛽 and

instantiation period of BAwVSS 𝜙 , where 𝜙 ≤ log(𝑛
1−𝛿), as con-

figurable inputs. Once every 𝜙 rounds, nodes initiate BAwVSS by

selecting 𝛽 random secrets and secret sharing them by invoking

BAwVSS𝑟,𝑖 .Sh(𝑆𝑖) (Line 9). Once every 𝜙𝑛 rounds, nodes increase

the batch size 𝛽′ = 𝛽 + 𝑛 to output enough beacons for AnyTrust

sampling for the next 𝑛 BAwVSS instances (Line 8). After instantiat-

ing BAwVSS, nodes also call Gather.Start and instantiate round 𝑟

for each AA instance E𝑟 ′, 𝑗∀𝑗 ∈ N started in the last 𝑟 ′ ∈ [𝑟 − 𝑟𝑡 , 𝑟]
rounds (Line 9).

After terminating Gather, node 𝑖 calls Gather.Term(i) and out-

puts set 𝐺𝑖 . Next, nodes sample the set C using NodeSample

procedure, where they open the beacons prepared for commit-

tee election(Line 14). We note that nodes do not conduct sam-

pling in rounds where randomness for future sampling proce-

dures is being proposed. Once NodeSample terminates, the nodes

instantiate AA E𝑟,𝑖∀𝑖 ∈ C𝑟 . For indices 𝑖 in the committee C𝑟 ,

nodes call E.Start(𝑟 ,𝑖) (1) if 𝑖 ∈ 𝐺𝑖 and calling E.Start(𝑟 ,𝑖) (0)
if 𝑖 ∉ 𝐺𝑖∀𝑖 ∈ C𝑟 (Line 14). Nodes terminate round 𝑟 only after

all AA instances E𝑟 ′, 𝑗 : 𝑟 ′ ≥ 𝑟 − 𝑟𝑡 , 𝑗 ∈ C𝑟 ′ terminate round 𝑟

(Line 16). Once protocol reaches round 𝑟 , the beacons initiated

through BAwVSS in round 𝑟 − 𝑟𝑡 are terminated and added to the

beacon queue B (Line 19). These beacons are ready to be opened.

Open phase. 𝑖 broadcasts its shares by calling BAwVSS𝑟 ′, 𝑗 .Rec(𝑏)

∀𝑗 ∈ C𝑟 ′ (Line 26). It then waits until it reconstructs all secrets for

which the approximate agreement instance E𝑟 ′, 𝑗 terminated with

weight𝑤𝑟 ′, 𝑗 > 0 (Line 31). Then, 𝑖 outputs a weighted average of

reconstructed secrets and rounds it off to the nearest checkpoint,

which is a multiple of the domain size |D| (Line 33).
Verification. Any external client consuming beacons must receive

𝑡 + 1 equivalent authenticated beacon messages ⟨𝑖, 𝑏𝑖 ⟩ from 𝑡 + 1
nodes. However, HashRand’s beacon output can be made publicly

verifiable, i.e. any client can verify the output of HashRand with

a single message as opposed to 𝑡 + 1 messages, with a PKI and

digital signatures. Such a scheme is also Post-Quantum secure with

a PQ-secure digital signature scheme.

5 ANALYSIS
WeanalyzeHashRand in this section.We start by provingHashRand

’s security against an adversary corrupting at most
1

3
faults. Then,

we present the communication and computation complexity of

HashRand. We give a rough proof sketch for brevity and refer the

reader to the full version[13] for exhaustive proofs.

5.1 Security Analysis
We assume that the Hash function 𝐻 is a Random Oracle (or ROM)

for our proofs.We prove the liveness, correctness, andweak commit-

ment properties using collision-resistance and preimage-resistance

properties offered by 𝐻 under the ROM. We prove the secrecy of

BAwVSS against a PPT adaptive adversaryA. Our BAwVSS scheme

offers computational correctness with 𝑝 = 1 − negl(𝜆) and perfect

secrecy in the ROM. We defer the adaptive security analysis of our

BAwVSS scheme to the full version of the paper [13].

7

Algorithm 1 HashRand protocol

1: INPUT: D,𝛿 ,𝛽 ,𝜙 // 𝛽 : Batch size, 𝜙 : Pipelining period

⊲ Choosing parameters

2: D′: Domain of size at least ⌊ 4

1−𝛿 ⌋ |D |
3: 𝑟 ← 0; 𝜖 ← 1

𝑛D′ ; 𝑟𝑡 ← log(4𝑛D
1−𝛿)

4: 𝑐 : 𝑝𝑐 ≥ 2+𝛿
3

// Calculate sample size based on AnyTrust condition

5: B← {}; B𝑐 ← {} // Prepared Beacons; Beacons for AnyTrust

sampling

⊲ BAwVSS phase

6: upon receiving (ID.i, Start,𝑟) and 𝑟 mod 𝜙 = 0:

7: Initiate generating beacons by using BAwVSS to share a batch of 𝛽

random values, once every 𝜙 rounds

// More beacons for NodeSample every 𝜙𝑛 rounds

8: if 𝑟 mod 𝑛 = 0, then 𝛽 ′ ← 𝛽 + 𝑛
9: else 𝛽 ′ ← 𝛽

10: 𝑆𝑟,𝑖 [𝑗] ← Random(D′) ∀ 𝑗 ∈ {1, . . . , 𝛽 ′ } // 𝛽 ′ random numbers

11: Invoke BAwVSS𝑟,𝑖 .Sh(𝑆𝑟,𝑖)

12: Invoke Gather.Start () // Start Gather with BAwVSS

⊲ Gather phase

13: upon invoking Gather.Term(𝐺𝑖) for round 𝑟 :

14: C←NodeSample(𝑟)

15: ∀ 𝑗 ∈ C :

{
E𝑟,𝑗 .Start(1), if 𝑗 ∈ 𝐺𝑖

E𝑟,𝑗 .Start(0), otherwise
// Start AAA

⊲ Approximate Agreement phase

// Wait until terminating round 𝑟 for AA instances in the past 𝑟𝑡 rounds

16: upon invoking E𝑟 ′, 𝑗 .EndRound(𝑟 -𝑟 ’) ∀𝑟 ′ : {𝑟 ′ ∈ [𝑟 − 𝑟𝑡 , 𝑟] | 𝑟 ′
mod 𝜙 = 0} and ∀ 𝑗 ∈ C𝑟 ′ :

// Terminate AA instances that completed 𝑟𝑡 rounds

17: If 𝑟 − 𝑟𝑡 mod 𝜙 = 0

18: 𝑟 ′ ← 𝑟 − 𝑟𝑡
// Add beacons generated to prepared beacons list

19: If 𝑟 ′ mod 𝑛 ≠ 0 then B← B ∪ ⟨𝑟 ′, ⟨0, 𝛽 ⟩⟩
// Set aside beacons for AnyTrust Sampling

20: Else B← ⟨𝑟 ′, ⟨𝑛,𝑛 + 𝛽 ⟩⟩ ;B𝑐 ← B𝑐 ∪ ⟨𝑟 ′, ⟨0, 𝑛⟩⟩
21: 𝑟 ← 𝑟 + 1 // Increment round

22: for all E𝑟 ′, 𝑗 : {𝑟 ′ ∈ [𝑟 − 𝑟𝑡 , 𝑟] | 𝑟 ′ mod 𝜙 = 0} and 𝑗 ∈ C𝑟 ′ do

23: E𝑟 ′, 𝑗 .StartRound(𝑟 -𝑟 ’) // Start next round of AAs

24: If 𝑟 mod 𝜙 = 0 then goto Line 6

⊲ Beacon reconstruction phase

25: upon receiving (ID.i, Reconstruct,𝑘)

26: 𝑟 ′ ← ⌊ 𝑘
𝛽
⌋𝜙 ;𝑏 ← 𝑘 mod 𝛽

27: If 𝑟 ′ mod 𝑛 = 0 then 𝑏 ← 𝑏 + 𝑛 // First 𝑛 are for NodeSample

28: for all 𝑗 ∈ C𝑟 ′ do
29: 𝑤𝑗,𝑖 ← E𝑟 ′, 𝑗 .Term() // Output of E𝑟 ′, 𝑗
30: Invoke BAwVSS𝑟 ′, 𝑗 .Rec(𝑏)

31: 𝑥 𝑗 ←
{
BAwVSS𝑟 ′, 𝑗 .Rec(b).Term(), if 𝑤

′
𝑗
≠ 0

0, otherwise

32: 𝑦 𝑗 ←
{
0, if 𝑥 𝑗 =⊥
𝑥 𝑗 , otherwise

// Replace ⊥ with 0

33: 𝑜 ←
(∑

𝑗 ∈C𝑟 ′ 𝑦 𝑗 × 𝑤𝑗,𝑖

)
34: output

〈
𝑘,

⌊
𝑜⌊
4

1−𝛿
⌋ ⌋〉 and return

HashRand security. We start by proving the agreement, liveness,

and unpredictability properties for rounds without AnyTrust sam-

pling.

Theorem 5.1. Given correctness and termination of the BAwVSS

scheme, and secure Gather, and approximate agreement protocols,
HashRand satisfies liveness for beacon indices 𝑖 ∈ {0, . . . , 𝛽 + 𝑛}.

Proof. From the termination property of BAwVSS, we know

that BAwVSS satisfies totality, which ensures that every honest

node 𝑖 terminates Gather. Every honest node therefore participates

in AA instance E0,𝑖∀𝑖 ∈ N . Hence, every honest node terminates

B.Prep(0,𝛽 + 𝑛). In the opening phase B.Open(l) ∀𝑙 ∈ {0, 𝛽 + 𝑛},
an honest node 𝑗 only waits to reconstruct secrets initiated by

nodes 𝑖 for which the output of E0,𝑖 , 𝑤 𝑗,𝑖 > 0. If 𝑗 ’s AA output

𝑤 𝑗,𝑖 > 0, then from the Validity of AA, at least one honest node 𝑘

must have input 1 to E0,𝑖 , meaning which 𝑘 terminated 𝑖’s BAwVSS

instance. Therefore, from the termination property of BAwVSS,

every honest node must eventually terminate 𝑖’s BAwVSS instance

and eventually reconstruct the secret shared by 𝑖 . Therefore, 𝑗 and

all honest nodes terminate B.Open(l) ∀𝑙 ∈ {0, . . . , 𝛽 + 𝑛}. □

Theorem 5.2. Assuming secure BAwVSS, Gather and approxi-
mate agreement protocols, HashRand satisfies unpredictability prop-
erty in Definition 2.1 for beacon indices 𝑖 ∈ {0, . . . , 𝛽 + 𝑛}.

Proof. We first show that at least 𝑡 + 1 honest nodes’ secrets
will always contribute to beacons at indices 𝑖 ∈ {0, . . . , 𝛽 +𝑛}. From
Gather’s binding common core property, we know that at the time

the first honest node 𝑖 terminates Gather and outputs 𝐺𝑖 , there is

a core set 𝐺 of size 𝑛 − 𝑡 such that every other honest node 𝑗 ’s

output after Gather, denoted by 𝐺 𝑗 , will contain 𝐺 . Every honest

node terminates BAwVSS instances 𝐵𝐴𝑤𝑉𝑆𝑆0, 𝑗 of 𝑡 + 1 honest

nodes 𝑗 ∈ 𝐺 , and inputs 1 to the AA instance E0, 𝑗∀𝑗 ∈ 𝐺 . From the

Validity property of AA, the output weights𝑤 𝑗,𝑖 = 1 for all honest

nodes 𝑗 ∈ 𝐺 and 𝑖 ∈ Nhon. Further, we note that the binding core

property of Gather ensures that𝐺 is immutable by the time the first

honest node begins AA. This immutability ensures that adversary

A cannot prevent the inclusion of the sum

∑
𝑗∈𝐺 𝑠 𝑗 in the beacon.

Therefore, from the secrecy property of BAwVSS, until the first

honest node invokes B.Open(i), A has no information about the

𝑖th beacon.

Further, we also show that A cannot bias a beacon ⟨𝑖, 𝑏𝑖 ⟩ af-
ter the first honest node invokes B.Open(i). An honest node 𝑗

invokes B.Open(k) : 𝑘 ∈ {1, . . . , 𝛽 + 𝑛} until all E0,𝑖∀𝑖 ∈ {1, . . . , 𝑛}
terminate at 𝑗 . From the 𝜖-agreement property of AA, we know

that |𝑤 𝑗,𝑖 − 𝑤 𝑗 ′,𝑖 | ≤ 𝜖∀𝑗, 𝑗 ′ ∈ Nhon and ∀𝑖 ∈ N . Therefore, the

maximum difference between two honest nodes’ weighted sums

|𝑜 𝑗 − 𝑜𝑖 | ≤ 𝑛𝜖D′ ≤ 1,∀𝑖, 𝑗 ∈ Nhon. Except for the cases where an

honest weighted sum 𝑜𝑖 is on the decision boundary of the round-

ing operation (which occurs with probability 𝛿 and agreement is

already violated), A cannot bias the beacon’s value after an honest

node 𝑗 starts reconstruction. □

Theorem 5.3. Assuming secure BAwVSS, Gather, and approxi-
mate agreement, HashRand described in Algorithm 1 satisfies the
agreement property in Definition 2.1 with probability 𝑝 ≥ 2+𝛿

3
−

negl(𝜆) for beacon indices 𝑖 ∈ {0, . . . , 𝛽 + 𝑛}.
8

Proof. From the weak commitment property of BAwVSS, at the

end of B.Open(i) for an index 𝑖 , honest nodes each have a weighted

sum of secrets (Line 33) which correspond to a random range of

𝜖 = 2 numbers in the domain ⌊ 4D
1−𝛿 ⌋ with probability 𝑝 ≥ 1−negl(𝜆).

When divided by
4D
1−𝛿 and rounded off to the closest number, the

probability that all honest nodes agree is 𝑝 = 2+𝛿
3
− negl(𝜆). □

Using the properties of the first 𝛽 + 𝑛 beacons, we derive the

security properties of all future beacons.

Theorem 5.4. Assuming beacons at indices 𝑖 ∈ {0, . . . , 𝛽 + 𝑛}
satisfy Liveness, Unpredictability, and Agreement with probability
𝑝 ≥ 2+𝛿

3
− negl(𝜆), HashRand described in Algorithm 1 will output

beacons ⟨𝑖, 𝑏𝑖 ⟩∀𝑖 > 0 that satisfy the properties in Definition 2.1 with
probability 𝑝 ≥ 𝛿 − negl(𝜆).

Proof. Every batch of beacons instantiated in rounds 𝑟 > 𝑟𝑡 ; 𝑟

mod 𝑛 ≠ 0 samples a set of nodes using previously prepared bea-

cons. From the security properties of first 𝛽 + 𝑛 beacons, these

beacons are securewith probability 𝑝𝑐 = 2+𝛿
3
−negl(𝜆), and is unpre-

dictable. Therefore, every honest node starts AA instance E𝑟,𝑖∀𝑖 ∈ C
with probability 𝑝𝑐 , and eventually terminates E𝑟,𝑖∀𝑖 ∈ C, guaran-
teeing liveness with probability 𝑝𝑐 .

The sampled setC has at least one honest node 𝑗 that is part of the

core set𝐺 with probability 𝑝ℎ = 2+𝛿
3
. Additionally, no honest node

opens the beacon for sampling until it terminates Gather, which

implies 𝑗 ’s secret will haveweight𝑤 𝑗,𝑖 = 1∀𝑖 ∈ Nhon. Therefore, the

output beacon will always be the contribution of at least one honest

node with probability 𝑝𝑐𝑝ℎ = (2+𝛿
3
)2 − negl(𝜆) > 𝛿 − negl(𝜆).

Sampling with an adaptive adversary.We show that HashRand

with AnyTrust sampling is adaptively secure under the secure era-

sure model [27, 35], where nodes can securely erase specified por-

tions of their random execution tapes. In the BAwVSS phase, every

honest node erases the sampled secrets and corresponding secret

shares of nodes from its tape simultaneously while sending out the

SHARE messages.

We utilize secure erasures to prove unpredictability. Consider

BAwVSS and Gather instantiated in round 𝑟 for which honest

nodes use AnyTrust sampling. An honest node 𝑖 invokes B.Open(j)
for sampling for round 𝑟 only after terminating Gather of round 𝑟

(Line 14). From the unpredictability property of the beacons used for

sampling, we know thatA cannot distinguish the sample members

from uniformly random until 𝑖 terminates Gather. Further, from

the properties of Gather, the sampled node set C𝑟 must contain

at least one honest node 𝑗 part of the core set 𝐺𝑟 with probability

𝑝ℎ = 2+𝛿
3
. Moreover, as node 𝑖 already terminated 𝑗 ’s BAwVSS

instance, 𝑗 would have already erased all data about its shared

secret. Therefore, if A corrupts 𝑗 after knowing its membership

in the committee, it would only get 𝑗 ’s share of the secret. A can

corrupt at most 𝑡 nodes and access 𝑡 shares, which provides no

information about 𝑗 ’s secret and thereby ensures unpredictability.

In the no-erasures model of adaptive security [27], where the ad-

versary gets access to the entire tape of a corrupted node, the above

argument for adaptive security will not hold. The adversary can

adaptively corrupt all committeemembers, gain access to the secrets

shared by them, and know the beacons beforehand, which breaks

unpredictability. HashRand needs to be run without AnyTrust

sampling in this model.The per-node communication complexity

in this model increases to O(𝜆𝑛2 log(𝑛)) bits per beacon.
After sampling a node set C𝑟 with probability 𝑝𝑐 and having at

least one honest node 𝑗 ∈ 𝐺𝑟 with probability 𝑝ℎ , AA and weighted

average of random secrets enables honest nodes to agree on the

beacon value with probability 𝑝 = 𝑝𝑐𝑝ℎ𝑝𝑎 = (2+𝛿
3
)3 − negl(𝜆) >

𝛿 − negl(𝜆), where 𝑝𝑎 is the probability that the weighted average

results in the same beacon at all nodes. Thus, beacons prepared with

AnyTrust sampling are secure with probability 𝑝 > 𝛿 −negl(𝜆). □

Post Quantum security. We translate the proofs of BAwVSS and

HashRand to be secure against a polynomial time quantum adver-

sary. For this reduction, we require the Quantum Random Oracle

Model(QROM) [18] to deduce that Grover’s algorithm [50], the cur-

rent best quantum algorithm to find collisions, needs at least 2
𝜆/3

operations to find a collision with probability at least
1

2
. We also

employ the history-free reduction technique proposed by Boneh

et al. [18] to prove that HashRand is secure against a polynomial

time quantum adversary. This technique states that a proof in the

classical RO model can be translated to a proof in the quantum RO

model, provided the proof simulates a RO in a history-free fashion.
This implies that the RO’s responses to a given query must not de-

pend on its previous responses and query history. Our proofs (both

static and adaptive) satisfy this condition because we do not pro-

gram the RO based on prior query history. Hence, we also avoid the

problem of recording a quantum adversary’s queries and achieve

post-quantum security in the Quantum RO model [18].

5.2 Complexity Analysis
We analyze the communication and computation complexity of

HashRand. The 𝑛-parallel BAwVSS phase in round 𝑟 : 𝑟 mod 𝜙 =

0 with 𝛽 secrets costs O(𝛽𝑛 log(𝑛) + 𝜆𝑛2) bits of communication

per node, with each node sending 𝛽 Merkle proofs and reliably

broadcasting a vector of 𝛽 commitments. With Cachin-Tessaro’s

RBC [20], this complexity becomes O(𝛽𝜆𝑛 log(𝑛) + 𝜆𝑛2 log(𝑛)) per
node for each n-parallel BAwVSS. The Gather primitive requires

O(𝑛2) bits per node. The AA phase for a round that does not use

AnyTrust sampling (𝑟 mod 𝑛 = 0) requires 𝑛 BinAA instances,

with each round of one instance costing O(𝑛 log log(D
1−𝛿)) bits

per node. Overall, O(𝑛) BinAA instances running for log(𝑛D
1−𝛿)

rounds costsO(𝑛2 log(𝑛) log(D
1−𝛿) log log(

D
1−𝛿)) bits per node. For

every beacon, the opening phase requires every node to broad-

cast secret shares of O(𝑛) secrets with evaluation proofs to all

other nodes, which gives this phase a communication complex-

ity of O(𝜆𝑛2 log(𝑛)) bits per node per beacon. Therefore, for 𝛽

beacons, the overall communication per node without sampling

is O(𝛽𝜆𝑛 log(𝑛) + 𝜆𝑛2 log(𝑛) + 𝑛2 log(𝑛) log(D
1−𝛿) log log(

D
1−𝛿) +

𝛽𝜆𝑛2 log(𝑛)) = O(𝛽𝜆𝑛2 log(𝑛)) bits per node for 𝛽 = O(𝑛). The
asymptotic communication complexity per beacon is dominated by

the opening phase.

With AnyTrust sampling, each batch of 𝛽 beacons requires hon-

est nodes to open a beacon in BC with O(𝜆𝑛2 log(𝑛)) per node.
Then, the nodes run only 𝑐 = |C𝑟 | AA instances and require open-

ing only 𝑐 secrets. This results in a communication complexity of

O(𝛽𝜆𝑛 log(𝑛)+𝜆𝑛2 log(𝑛)+𝑐𝑛 log(D
1−𝛿) log log(

D
1−𝛿)+𝛽𝜆𝑐𝑛 log(𝑛))

per 𝛽 beacons. For 𝛽 = O(𝑛), the communication complexity

9

per node comes to O(𝜆𝑛 log(𝑛)) bits. As beacon generation for

sampling happens once every 𝜙𝑛 rounds, the average communica-

tion complexity per beacon totals
𝜆𝑛2

log(𝑛)
𝑛 + (1 − 1

𝑛)𝜆𝑛 log(𝑛) =
O(𝜆𝑛 log(𝑛)) bits per beacon per node. The computation complex-

ity can also be calculated in a similar fashion. For rounds 𝑟 : 𝑟

mod 𝑛 = 0, each node performs O(𝑛2 log(𝑛)) hash computations to

verify O(𝑛) secret shares each for O(𝑛) secrets part of the beacon.
With sampling, each node computes O(𝑐𝑛 log(𝑛)) hashes for at
most 𝑐 secrets part of the beacon, and the average is O(𝑛 log(𝑛))
hashes per beacon.

6 APPLICATIONS
We present two asynchronous SMR protocols with HashRand

providing common coins for liveness in asynchrony.

Post Quantum SMR.We demonstrate the utility of HashRand by

implementing a Post-Quantum asynchronous SMR protocol using

HashRand for Post-Quantum Liveness. There exist asynchronous

SMR protocols like DAG-Rider [63] and FIN [43] that achieve post-

quantum safety by using only symmetric key primitives like Mes-

sage Authentication Codes (MACs), which are PQ-secure. However,

these protocols depend on quantum-insecure random beacons like

BLS threshold signatures [17] for liveness. Prior to HashRand, the

PQ-secure random beacon protocol with the best communication

complexity is Freitas et al. [37] with Dolev et al.’s [41] AwVSS.

With this beacon, the communication complexity of PQ-secure

asynchronous SMR is O(𝑛2 log(𝑛)) bits per block per node.

We present PQ-Tusk, an efficient post-quantum secure asynchro-

nous SMR protocol built on top of Tusk [30]. Our choice of Tusk is

motivated by its exceptional performance in a WAN. We create PQ-

Tusk by using HashRand to provide the distributed randomness

necessary for electing wave leaders. We tune HashRand’s config-

uration parameters 𝛽 and 𝜙 to ensure that HashRand prepares

exactly one beacon per wave. Since revealing a prepared beacon in

HashRand takes only one round trip in HashRand, PQ-Tusk can

commit blocks at network speed. However, Tusk uses quantum-

insecure EdDSA signatures for certificate generation. We replace

this scheme with an appropriate PQ-secure signature scheme that

offers maximum performance benefits in this context. Using PQ-

secure signatures in Tusk does not induce any asymptotic overheads.
However, PQ-secure signatures do induce a computation and com-

munication overhead over traditional EdDSA signatures. We refer

to Section 7.2 for a detailed discussion on PQ-secure signatures

for SMR. Overall, PQ-Tusk has a communication complexity of

O(𝜆𝑛 log(𝑛)) bits per block per node, which is an O(𝑛) factor better
than the current best PQ-secure asynchronous SMR protocol, and

only an O(log(𝑛)) factor higher than PQ-insecure Tusk.

Cross chain consensus.We also use HashRand to create the first

asynchronous cross-chain consensus protocol without a PKI setup.

A cross-chain consensus protocol is a key building block in creating

a combined ledger with boosted trust from individual blockchains.

Recent work TrustBoost [78] implements cross-chain consensus

using a smart contract that runs on each participating blockchain.

These contracts communicate using an inter-blockchain commu-

nication (IBC) protocol. A major challenge noted by TrustBoost

is the computational expense of signature verification in promi-

nent consensus protocols like HotStuff [79]. Further, TrustBoost

also notes a limitation in the underlying IBC protocol, which pre-

vents the use of public-key signatures in cross-chain consensus.

These issues motivated TrustBoost to use Information-theoretic

HotStuff (IT-HS) [7], which does not use any signatures. Moreover,

these issues are also the main roadblock in running asynchronous

cross-chain consensus. We propose a signature and PKI-free asyn-

chronous cross-chain consensus protocol. We use DAG-Rider [63],

a DAG-based atomic broadcast protocol with HashRand, to create

a PKI-free asynchronous SMR protocol. This SMR protocol has a

communication complexity of O(𝜆𝑛2 log(𝑛)) bits per transaction,
which is O(log(𝑛)/𝑛) factor more efficient than IT-HotStuff in the

worst case, and only O(log(𝑛)) factor higher than IT-HS under a

stable leader.

7 EVALUATION
We describe the evaluation of HashRand in this section. We eval-

uate HashRand in a geo-distributed setting and compare it with

Dfinity-DVRF [56] based on BLS threshold signatures [17]. We also

evaluate PQ-Tusk with HashRand providing common coins.

Implementation. We implement HashRand in Rust with the

tokio library as our asynchronous runtime. We use SHA256 as our

hash function𝐻 . We use Cachin-Tessaro’s [20] computationally effi-

cient Reliable Broadcast protocol in HashRand and use the Erasure

Codes library. We then integrate HashRand with Tusk ’s [30] code-

base and use HashRand ’s beacons to elect wave leaders in Tusk.

Further, we implement PQ-Tusk by replacing the quantum-insecure

EdDSA signatures in Tusk with PQ-secure DiLithium Signatures

from the pqcrypto library.

Evaluation setup. We evaluate HashRand and its correspond-

ing integrated asynchronous SMR protocols in a Geo-distributed

testbed on Amazon Web Services (AWS). We evaluate HashRand

with varying nodes 𝑛 = 16, 40, 64, 112, and 136. We run our protocol

on t3a.medium nodes, each with 2 cores and 4GB RAM. We also

evaluate PQ-Tusk on a testbed with c5.large instances, each with

2 cores (but higher frequency than t3a.medium) and 4GB RAM,

with 𝑛 = 16, 40 nodes. We create a geo-distributed testbed of 𝑛

nodes to simulate execution over the internet. We distribute the

nodes equally across 8 regions: N. Virginia, Ohio, N. California,

Oregon, Canada, Ireland, Singapore, and Tokyo.

Baselines. We compare HashRand with an asynchronous beacon

protocol based on Dfinity-DVRF [56], which uses BLS threshold

signatures [17]. Prior works such as Spurt [31] and OptRand [15] di-

rectly used DRand [76] as a benchmark for a beacon with threshold

setup. However, we note that DRand’s codebase does not produce

beacons at network speed and thereby misrepresents the true pace

of beacon generation with a threshold setup. To ensure a fair com-

parison, we implement the Dfinity-DVRF protocol using the Rust-

based BLS signature library blstrson the bls12-381 curve, which
internally uses the blstpairing library. An honest node constructs

⟨𝑖, 𝑏𝑖 ⟩ immediately after it possesses ⟨𝑖 − 1, 𝑏𝑖−1⟩, thus generat-
ing beacons at network speed. We also compare the numbers of

HashRand to Spurt’s [31] stated numbers. We ensure a fair com-

parison by running HashRand using the same geo distribution

of nodes and configuration of machines as in Spurt. We compare

the throughput of beacons produced by each protocol using the

10

metric beacons per minute. We also benchmark the performance

of PQ-Tusk with PQ-security against a non PQ-secure Tusk [30].

7.1 HashRand evaluation
We configure HashRand to emit beacons for committee election in

asynchronous SMR or blockchain sharding. For this application, the

domain of beaconsD is the total number of nodes in the system.We

set a statistical success probability of 𝛿 = 1 − 2−38, which amounts

to one failure in 10
12

beacons. Even with an optimistic 10
6
beacons

being invoked everyday, the average expected time for a failure

is 2739 years. Assuming a domain D of size 2048, we choose the

domainD′ for BAwVSS to be a finite field of size |D′ | > 2
50
. Nodes

invoke B.Open(i+1) immediately after they terminate B.Open(i) to
generate beacons at network speed.

Tuning 𝛽 and 𝜙 . HashRand’s runtime configuration parameters

comprise the BAwVSS batch size 𝛽 , and the period of BAwVSS

instantiation 𝜙 . These parameters control the pace of beacon gen-

eration. In Fig. 3, we present the impact of these parameters on the

HashRand’s throughput using a heat map. For a given 𝛽 , there

is an optimal 𝜙 of BAwVSS instantiation that maximizes the use

of the compute and network’s resources. For example, in the row

with 𝛽 = 100, the throughput increases with reducing period until

𝜙 = 10, after which it decreases again. The low throughput at a high

period is resultant of idle time at the CPU, where nodes exhaust

their available pool of prepared beacons faster than they can pre-

pare new beacons. Similarly, at a lower period, the nodes saturate

their network bandwidth by initiating BAwVSS in quick succession,

which keeps increasing the pool of prepared beacons waiting to be

reconstructed. Moreover, the period of maximum throughput 𝜙 is

smaller for smaller 𝛽 . Therefore, for any given 𝑛, there exists an

optimal (𝛽, 𝜙) configuration that gives the maximum throughput

of beacons. For 𝑛 = 40 nodes, HashRand produces a maximum

throughput of 1837 beacons pm at (𝛽, 𝜙) = (100, 10).
Scalability. We evaluate HashRand with increasing 𝑛 in Fig. 4.

At low 𝑛, the computational efficiency of hash computations out-

performs threshold signing where for 𝑛 = 40, HashRand out-

puts 66% more beacons than Dfinity. However, HashRand scales

as O(𝑛2 log(𝑛)) Hash computations per node at small 𝑛, whereas

threshold signatures scale linearly at all 𝑛. This rate of change is

visible in Fig. 4 where Dfinity’s slope is lower than HashRand. The

cross-over point between HashRand and Dfinity-DVRF is between

𝑛 = 40 and 𝑛 = 64.

We observe the AnyTrust sampling procedure taking effect with

increasing 𝑛. At small 𝑛, the set size 𝑐 grows with 𝑛, resulting in a

computation and communication complexity of O(𝑛2 log(𝑛)). How-
ever, with increasing 𝑛, 𝑐 becomes constant and the complexities

grow as O(𝑛 log(𝑛)). In Fig. 4, the rate of decrease of through-

put of HashRand decreases with increasing 𝑛, where at higher

𝑛, HashRand scales more gracefully. Due to this improvement,

HashRand outputs 78 beacons pm at 𝑛 = 136 nodes without a

threshold setup.

Hardware-accelerated Hash functions. The performance can

further be improved using efficient hash functions accelerated by

hardware. For example, cryptographic hash functions built from

fixed-key block ciphers like AES [70] can be accelerated using

1 5 10 15
Period of BAWVSS

20
0

15
0

10
0

50
B

at
ch

 si
ze

527 1356 1540 1690

626 1337 1672 1765

768 1369 1837 1586

704 1578 1253 932

1000

1500

Figure 3: The rate of beacon generation (/min) vs 𝛽 and 𝜙 . The
figure shows the number of beacons emitted by HashRand

per minute for 𝑛 = 40 nodes with configuration parameters
batch size 𝛽 in each BAwVSS instance and the number of
BAwVSS instances. For every value of 𝑛, there exists a sweet
spot of 𝛽 and 𝜙 that gives maximum throughput

25 50 75 100 125
Number of nodes n

102

103

104

B
ea

co
ns

/m
in

HashRand
Dfinity-DVRF
Spurt

Figure 4: Scalability results: The figure shows the num-
ber of beacons produced per minute by HashRand, Dfinity-
DVRF [56], and the numbers reported by Spurt [31] in the
same geo-distributed setting. HashRand’s O(𝑛2 log(𝑛)) Hash
computational cost results in a steeper slope than Dfinity’s
O(𝑛) computational cost. Dfinity’s cost doesn’t include the
cost for ADKG. HashRand’s computational efficiency allows
it to produce to produce 1 beacon per second at 𝑛 = 136 with-
out a threshold setup,which is 5x higher than Spurt at𝑛 = 128.

the AES-NI hardware instruction set provided by many concur-

rent processors. These hash computations offer 20× speed up over

conventional SHA256 computations. With such specialized hash

functions, we expect HashRand to outperform Dfinity at higher

values of 𝑛.

HashRand vastly outperforms Spurt at all values of 𝑛. Partic-

ularly, at 𝑛 = 128, Spurt outputs only 15 beacons pm, which is 5x

lower than HashRand at 𝑛 = 136 nodes. Even though Spurt and

HashRand have the same asymptotic communication complexity,

HashRand’s computational efficiency allows it to produce bea-

cons at a much higher rate. This difference between Hashes and

DLog exponentiations is more visible at small 𝑛 where HashRand

uses O(𝑛2 log(𝑛)) computations per beacon as compared to Spurt’s

O(𝑛2) DLog exponentiations. Overall, HashRand scales gracefully

with 𝑛 and is currently the best way to generate distributed random-

ness without a threshold setup and with Post-Quantum security.

11

7.2 SMR Evaluation
We also evaluate PQ-Tusk and compare it to classical Tusk without

PQ-security. We test both protocols by offering increasing trans-

action loads and measuring the response rate and latency for that

request rate. We then plot the response rate vs latency in Fig. 5

and check the value of response rate for which the latency has

a disproportionate jump. Each transaction is of size 256 bytes.

PQ-secure signatures for SMR. We consider three PQ-secure

signature schemes for use in PQ-Tusk: a) DiLithium based on

Lattice cryptography [44], b) SPHINCS-256 [14] based on the Hash-

based Winternitz One-Time Signatures(WOTS), and c) PICNIC [25]

based on the MPC-in-the-head approach with symmetric key prim-

itives. We notice that the signing and verification times coupled

with the signature size of a signature scheme have the highest im-

pact on Tusk’s latency and throughput. This is because Tusk has

a O(𝑛) signing and O(𝑛2) verification complexity per wave per

node. Nodes in Tusk also broadcast O(𝑛2) signatures per wave.
PICNIC and SPHINCS-256 have been optimized for the internet set-

ting and therefore prioritize low public key and private key sizes.

Hence, both have high signing and verification times in millisec-

onds. Both schemes also have high signature sizes(40 KB and 140

KB). DiLithium requires 220 and 70 microseconds to sign and ver-

ify a message respectively, and has a modest signature size of 4 KB

for 128-bits of quantum security. DiLithium has larger public and

secret keys compared to PICNIC and SPHINCS-256, which is not a

problem in a permissioned SMR system.

In the WAN setting, PQ-Tusk has a response rate of 135k trans-

actions per second at 𝑛 = 16 nodes, with an optimal latency of 2.3

seconds per transaction confirmation. This response rate is only

10% lower than classical Tusk. PQ-Tusk is also very efficient com-

pared to other prominent and implemented PQ-secure protocols

like WaterBear [82] that uses local coins to generate distributed

randomness. At 𝑛 = 16 in a geo-distributed setting, WaterBear

offers a peak response rate of 70k transactions per second with

transaction size of 100 bytes in m5.xlargemachines (twice as pow-

erful as c5.large) as compared to 135k transactions per second at

256 byte transaction size for PQ-Tusk.

At higher 𝑛 = 40 and 𝑛 = 64, PQ-Tusk offers a peak response

rate of 122k transactions per second at a latency of 17.5 seconds per

transaction, and 40k txns per second at a latency of 50 seconds. We

do an ablation study of PQ-Tusk to identify the bottleneck at higher

𝑛. We implement and observe the response rate for Tusk with

DiLithium signatures and BLS threshold signatures. This variant

of Tusk underperforms compared to our PQ-Tusk at 𝑛 = 16 with

20% lesser response rate at 108k transactions per second.We identify

the higher signing and verification times of DiLithium signatures

over EdDSA signatures as the bottleneck for PQ-Tusk. Therefore,

with HashRand, we remove the Post-Quantum liveness bottleneck

and establish that randomness from Hash functions is currently the

most practical way to achieve Post-Quantum SMR.

8 DISCUSSION
8.1 VSS-SMR
We discuss an alternate approach for building an asynchronous

random beacon protocol, titled VSS-SMR, which addresses the asyn-

chronous SMR-Beacon circularity mentioned in Section 2.3 by using

0 20 40 60 80 100 120 140 160
Response Rate (ktxns/sec)

0

10

20

30

40

50

La
te

nc
y

(s
)

PQ-Tusk n=16
Tusk n=16
PQ-Tusk n=40
Tusk n=40
PQ-Tusk n=64

Figure 5: Post-Quantum SMR: The figure describes the
latency-response rate curve for PQ-Tusk, and Tusk. PQ-Tusk
has a response rate of 135k transactions per second at a la-
tency of 2.3 seconds for 𝑛 = 16, and 122k transactions per
second at a latency of 17.5 seconds for 𝑛 = 40 nodes.

asynchronous SMR as a setup. This approach first generates a batch

of O(𝜆) beacons using our BAwVSS protocol and an SMR protocol

that does not require a DKG setup. Abraham et al. [2] is one such

Information-Theoretically (IT) secure asynchronous SMR protocol

with a communication complexity of O(𝑛4 log(𝑛)) bits. Nodes use
these O(𝜆) beacons as common coins for an efficient asynchronous

SMR protocol like FIN [43] with O(𝜆𝑛3) communication. Then,

nodes use our BAwVSS protocol with this efficient SMR instance

to agree on a set of 𝑛 − 𝑡 successful VSS instances and generate

a fresh batch of O(𝛽 + 𝜆) beacons. Out of these beacons, nodes

output O(𝛽) beacons and set aside O(𝜆) beacons as common coins

for the next SMR instance. Through this established pipeline, nodes

generate beacons while ensuring sufficient beacons are available

to ensure SMR terminates. For every coin used, FIN’s termination

probability reduces by a factor of
1

3
. This implies O(𝜆) beacons

are sufficient to ensure that FIN always terminates, except with

probability negligible in 𝜆. With a batch size of 𝛽 = O(𝑛) beacons,
this approach requires O(𝜆𝑛2 log(𝑛)) bits of communication per

beacon per node, which can be reduced to O(𝜆𝑛 log(𝑛)) bits using
AnyTrust sampling (Failure probability analysis required).

Comparison with HashRand. HashRand and VSS-SMR differ in

their styles of termination with Monte-Carlo and Las-Vegas styles

of termination, respectively. Comparing their efficiency, both proto-

cols have the same VSS phase, whereas VSS-SMR’s reconstruction

phase is O(𝑛) factor more expensive than HashRand. Although we

can use our AnyTrust sampling/shuffling for VSS-SMR to generate

multiple beacons from the 𝑛 − 𝑡 agreed VSSes through SMR, this

technique requires further analysis in terms of failure probability.

HashRand’s agreement phase uses Gather and 𝑐 AA instances,

with O(𝑛2 log(1

1−𝛿)) and O(𝑛
3 + 𝑐𝑛2 log(1

1−𝛿) log log(
1

1−𝛿)) mes-

sage and communication complexities. FIN requires O(𝑛3) mes-

sages andO(𝜆𝑛3) communication. Further, HashRand’s agreement

phase leads to a statistical security of log(1

1−𝛿) bits and FIN has a

cryptographic security of 𝜆 = 𝜅
3
bits against a quantum adversary,

where 𝜅 is the output size of a collision-resistant Hash function.

Asymptotically, HashRand scales better than FIN by an O(𝑛) fac-
tor in message complexity and by a O(𝜅) factor in communication

12

complexity. Concretely, with 40 bits of statistical security (1 failure

in a trillion beacons) and using a standard 256-bit Hash function,

HashRand’s O(𝑐 log(1

1−𝛿) log log(
1

1−𝛿)) factor scales better than
VSS-SMR’s O(𝜅𝑛) after 𝑛 = 45. Further, HashRand’s bootstrapping

phase also has a O(𝑛) factor lower communication than Abraham

et al. [2], enabling efficient reconfiguration.

8.2 AwVSS vs ACSS protocols
The Asynchronous Complete Secret Sharing (ACSS) is a stronger

VSS primitive which ensures every honest node terminates with

a secret share, even when the dealer is malicious. Owing to this

stronger completeness property, ACSS is more expensive to achieve

compared to AwVSS. However, secrets shared through an ACSS

protocol can be reconstructed using Reed-Solomon Error Correction

Codes (ECC), where nodes only send their secret shares to other

nodes. This method of reconstruction has O(𝑛) communication per

secret per node and is more efficient than AwVSS, where nodes

must also attach a proof of share validity to secret shares (Merkle

proofs for our AwVSS).

Given a Hash-based ACSS protocol with O(𝑛𝛽) communica-

tion complexity, we can improve HashRand’s communication to

O(𝑛) per beacon per node using the batch reconstruction tech-

nique in Choudhury and Patra [26]. We can also combine the above

VSS-SMR approach with the Vandermonde hyperinvertible matrix

technique [29] to generate O(𝑛𝛽) beacons from a single SMR in-

stance. Overall, with a big enough 𝛽 , this approach would also have

a communication complexity of O(𝑛) bits per beacon per node.

Therefore, improvements in Hash-based ACSS protocols can be

utilized to improve PQ-secure asynchronous random beacons.

A recent work by Shoup and Smart [74] proposes a Hash-based

ACSS protocol with O(𝑛𝛽 + 𝑛3) communication in the good case

with an honest dealer, andO(𝑛2𝛽+𝑛3) with a faulty dealer. However,
this protocol uses a random beacon as a building block, and requires

nodes to be online to listen to complaints. Further, it has a high

O(𝑛3) free term, so it is unclear how it would perform in practice.

8.3 Comparison with ADKG protocols
We set aside Post-Quantum security for this discussion and only

compare performance of ADKG and HashRand. Asynchronous

DKG protocols enable nodes to generate beacons efficiently us-

ing threshold unique signatures. Particularly, BLS threshold sig-

natures [17] are highly efficient because of their non-interactive

construction. However, the ADKG protocols required to establish a

setup for BLS threshold signatures are very expensive. In summary,

beacon generation using threshold signatures can be viewed as a

highly expensive setup phase followed by efficient beacon genera-

tion. In contrast, at higher values of 𝑛, HashRand has a relatively

cheaper, computationally efficient bootstrapping phase and rela-

tively expensive beacon generation with O(log(𝑛)) factor more

communication. Comparing performances, the current best imple-

mented ADKG protocol by Das et al. [34] at 𝑛 = 136 nodes takes 37

seconds to terminate versus 25 seconds for HashRand’s bootstrap-

ping phase in the same geo-distributed setup. This gap widens with

increasing 𝑛 with HashRand’s computational efficiency helping

it scale better than ADKG. Using ADKG is more favorable when

its high setup cost can be recovered by efficiently generating suffi-

cient number of beacons. In scenarios with a low reconfiguration

period, the high cost of ADKG setup becomes a bottleneck, and

HashRand’s tradeoffs are more favorable. Similarly, with a high

reconfiguration period, HashRand’s relatively expensive beacon

generation offers subpar performance compared to ADKG.

With Post-Quantum security, HashRand’s beacon generation is

vastly superior compared to other IT-secure beacons and Lattice-

based threshold signature schemes [38]. We are also unaware of any

practical asynchronous DKG protocols for these schemes. In our

knowledge, HashRand is the only practical asynchronous beacon

protocol with PQ security.

8.4 Setup costs and tradeoffs
HashRand requires a secure channel setup among participant

nodes. In a Post-Quantumworld, establishing secure channels needs

PQ-secure TLS, which is a notable cost. However, this setup cost is

only incurred once, after which nodes use efficient symmetric-key

cryptography. In contrast, protocols relying on a PKI setup do not

incur this cost, but instead use computationally expensive public

key cryptography like encryption and digital signatures. Based on

the discussions in Section 7.2 and the efficiency of symmetric-key

cryptography, this tradeoff skews towards secure channels for all

practical reconfiguration periods.

9 RELATEDWORK
We use different trusted setup levels by Abraham and Yanai [8] to

describe setup assumptions of related beacon protocols.

Synchronous and partially synchronous protocols. Beacon
protocols in the synchronous world consists of protocols [15, 16,

23, 31, 72, 77] that use VSS driven by CRS or SRS setup(Level 4

in [8]). All these protocols require some variant of SMR to achieve

the properties of a random beacon. We discuss OptRand [15], and

Spurt [31] in this category. OptRand [15] is an optimistically re-

sponsive random beacon that uses OptSync’s [75] commit rule to

generate beacons at network speed. The protocol however depends

on a synchronous timeout to implicate faulty leaders. Spurt is a

partially synchronous protocol that uses n-parallel PVSS (requiring

a Level 4 CRS setup) with leader-based secret aggregation to ensure

unpredictability within O(𝑛2) communication. The secrecy of the

PVSS scheme depends on the DBDH assumption.Spurt internally

uses the HotStuff [79] SMR protocol to enable honest nodes to

terminate and output the beacon value.

Asynchronous protocols. Asynchronous random beacon proto-

cols are bound by Freitas et al. ’s [37] impossibility result. Protocols

with a DKG setup(Level 5 in [8]) such as Cachin et al. [19] are not

bound by this impossibility result because the output from thresh-

old signatures is equivalent to distributed pseudorandomness and

is a deterministic function of honest nodes’ states.

Randomness Protocols with Las-Vegas style agreement have

been traditionally employed in Asynchronous Distributed Key Gen-

eration (ADKG) [4, 5, 32, 34, 47, 65]. Kogias et al. [65] propose an

Eventually Perfect Common Coin (EPCC) using a high-threshold

AVSS scheme conducted over a secure channel setup(Level 2). Their

protocol uses the DDH assumption with a RO. This protocol also

13

has a O(𝑛3) computational complexity per node, which makes it

very expensive in practice.

Other asynchronous protocols use a partially public setup like

PKI with CRS or SRS(Level 4 setup). Abraham et al. [5] use PKI-

based VRFs and Gather to agree on a random node’s index. This

protocol uses the SXDH assumption with a RO to achieve unpre-

dictability. A recent work called Bingo [4] produces adaptively

secure randomness using a Packed AVSS scheme, which requires a

PKI and an SRS setup. Abraham et al., and Bingo have Ω𝑛2 compu-

tational complexity, which makes them computationally inefficient.

Such protocols can be used for a one-shot ADKG and later use

Cachin et al. ’s [19] approach for generating pseudorandom bea-

cons. This approach does not work with mobile participants and

also suffers from key leakage attacks, which prompted a wave of

research on mobile proactive [57, 81] and refreshable secret shar-

ing [53]. Moreover, Kogias et al. ’s approach is the only current way

to achieve ADKG at a Level 2 setup (without PKI or CRS) in [8],

whose expensiveness hinders its practical application.

Freitas et al. ’s [37] protocol achieves deterministic termination

with a statistical probability of disagreement with a Level 2 setup

(pairwise secure channels). This protocol uses AVSS, Gather, and

approximate agreement to output a random 𝜖 interval of numbers.

The AVSS used in this protocol depends on Pedersen commitments

and the DLog assumption for unconditional hiding and hence, does

not require a RO for unpredictability. However, this protocol has

a higher computation complexity of O(𝑛3) per node and a high

round complexity of log(𝑛
1−𝛿) rounds.

Information-theoretic protocols. Statistically and information-

theoretically secure schemes can be used to develop computation-

ally efficient beacon protocols. For example, Patra et al. [69] propose

a statistically secure AVSS scheme with O(𝑛4 log(𝑛)) communica-

tion complexity. This work combined with packed AVSS and Freitas

et al.’s Monte-Carlo coin technique results in an overall communi-

cation complexity of O(𝑛4 log(𝑛)) per beacon.

10 CONCLUSION
Wepresented HashRand, a computationally efficient practical asyn-

chronous random beacon protocol that requires a pairwise-channel

setup. HashRand guarantees Monte-Carlo agreement, liveness,

and unpredictability by only using the properties of a one-way

Hash function. HashRand outputs each beacon with amortized

O(𝜆𝑛 log(𝑛)) bits of communication per node and is computation-

ally efficient with amortized O(𝑛 log(𝑛)) hash computations per

beacon. We proved HashRand ’s security using standard proper-

ties of one-way Hash functions against an adaptive and quantum

adversary. HashRand provides post-quantum liveness for asyn-

chronous SMR protocols with only O(log(𝑛)) more communication

than threshold signatures. We also demonstrated HashRand ’s scal-

ability and utility in making post-quantum SMR practical.

We also find that this work, especially with its performance

analysis, establishes an interesting research direction for secure

distributed systems: when aiming for post-quantum security for

distributed systems such as SMR or MPC, the protocol builders

should consider hash-based approaches rather than directly resort-

ing to the information-theoretic or statistically-secure protocols

with significantly higher communication complexities.

ACKNOWLEDGEMENTS
We thank our anonymous shepherd and reviewers for helpful sug-

gestions about the paper. We also thank Sourav Das for his insight-

ful suggestions on the paper. This work was supported in part by

NIFA award number 2021-67021-34252, the National Science Foun-

dation under Grant Numbers CNS-2038986 and CNS-2038566, and

the Army Research Office under Contract number W911NF-2020-

221. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not nec-

essarily reflect the views of the sponsors.

REFERENCES
[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. 2004. Optimal Resilience Asyn-

chronous Approximate Agreement (OPODIS’04). Springer-Verlag, Berlin, Heidel-
berg, 229–239.

[2] Ittai Abraham, Gilad Asharov, Arpita Patra, and Gilad Stern. 2023. Asynchro-

nous Agreement on a Core Set in Constant Expected Time and More Efficient

Asynchronous VSS and MPC. Cryptology ePrint Archive, Paper 2023/1130.

https://eprint.iacr.org/2023/1130 https://eprint.iacr.org/2023/1130.

[3] Ittai Abraham, Naama Ben-David, and Sravya Yandamuri. 2022. Efficient and

Adaptively Secure Asynchronous Binary Agreement via Binding Crusader Agree-

ment. In PODC ’22, Alessia Milani and Philipp Woelfel (Eds.). ACM, 381–391.

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2023. Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and

Distributed Key Generation. In CRYPTO 2023 (Santa Barbara, CA, USA). 39–70.
[5] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Reaching consensus for asynchronous distributed key

generation. In PODC’21. 363–373.
[6] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

optimal validated asynchronous byzantine agreement. In PODC 2019. 337–346.
[7] Ittai Abraham and Gilad Stern. [n. d.]. Information Theoretic HotStuff. In OPODIS

2020, Vol. 184. 11:1–11:16.
[8] Ittai Abraham and Gilad Stern. 2019. Trusted Setup

assumptions,https://decentralizedthoughts.github.io/2019-07-19-setup-
assumptions/.

[9] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-threshold avss

with optimal communication complexity. In FC 2021. Springer, 479–498.
[10] Michael Backes, Amit Datta, and Aniket Kate. 2013. Asynchronous computational

VSS with reduced communication complexity. In Cryptographers’ Track at the
RSA Conference. Springer, 259–276.

[11] Michael Backes, Aniket Kate, and Arpita Patra. 2011. Computational verifiable

secret sharing revisited. In ASIACRYPT 2011. Springer, 590–609.
[12] Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, Chen-Da Liu-

Zhang, and Michael K. Reiter. 2024. Delphi: Efficient Asynchronous Approximate

Agreement for Distributed Oracles. In IEEE/IFIP DSN 2024. 14 pages.
[13] Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, and Michael

Reiter. 2023. HashRand: Efficient Asynchronous Random Beacon without

Threshold Cryptographic Setup. Cryptology ePrint Archive, Paper 2023/1755.

https://eprint.iacr.org/2023/1755

[14] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-

hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko

Wilcox-O’Hearn. 2015. SPHINCS: practical stateless hash-based signatures. In

Annual international conference on the theory and applications of cryptographic
techniques. Springer, 368–397.

[15] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2023. OptRand:

Optimistically Responsive Reconfigurable Distributed Randomness. In NDSS 2023.
The Internet Society.

[16] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. RandPiper: Reconfiguration-Friendly Random Beacons with Quadratic

Communication. In CCS 2021. 3502–3524.
[17] Alexandra Boldyreva. 2002. Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In Public
Key Cryptography — PKC 2003, Yvo G. Desmedt (Ed.). 31–46.

[18] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,

and Mark Zhandry. 2010. Random Oracles in a Quantum World. Cryptology

ePrint Archive, Paper 2010/428. https://eprint.iacr.org/2010/428.

[19] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random Oracles in

Constantipole: Practical Asynchronous Byzantine Agreement Using Cryptogra-

phy (Extended Abstract). In PODC 2000. 123–132.
[20] C. Cachin and S. Tessaro. 2005. Asynchronous verifiable information dispersal.

In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05). 191–201.

14

https://eprint.iacr.org/2023/1130
https://eprint.iacr.org/2023/1130
https://eprint.iacr.org/2023/1755
https://eprint.iacr.org/2010/428

[21] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin.

2001. On adaptive vs. non-adaptive security of multiparty protocols. In EURO-
CRYPT 2001. Springer, 262–279.

[22] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing. 42–51.

[23] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable randomness

attested by public entities. In International Conference on Applied Cryptography
and Network Security. Springer, 537–556.

[24] Chainlink. 2023. 35+ Blockchain RNG Use Cases Enabled by Chainlink VRF. https:

//chain.link/education-hub/rng-in-blockchain-use-cases

[25] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-

quantum zero-knowledge and signatures from symmetric-key primitives. In CCS
2017. 1825–1842.

[26] Ashish Choudhury and Arpita Patra. 2017. An Efficient Framework for Uncon-

ditionally Secure Multiparty Computation. IEEE Transactions on Information
Theory 63, 1 (2017), 428–468.

[27] Ran Cohen, Abhi Shelat, and Daniel Wichs. 2019. Adaptively Secure MPC with

Sublinear Communication Complexity. In Advances in Cryptology – CRYPTO
2019, Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer International

Publishing, Cham, 30–60.

[28] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. 2009.

Asynchronous multiparty computation: Theory and implementation. In Interna-
tional workshop on public key cryptography. Springer, 160–179.

[29] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and Unconditionally

Secure Multiparty Computation. InAdvances in Cryptology - CRYPTO 2007, Alfred
Menezes (Ed.). 572–590.

[30] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, andAlexander Spiegel-

man. 2022. Narwhal and Tusk: A DAG-Based Mempool and Efficient BFT Con-

sensus. In Eurosys 2022. 34–50.
[31] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt:

Scalable Distributed Randomness Beacon with Transparent Setup. In 2022 IEEE
Symposium on Security and Privacy (SP). 2502–2517.

[32] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2023. Practi-

cal Asynchronous High-threshold Distributed Key Generation and Distributed

Polynomial Sampling. https://eprint.iacr.org/2022/1389 https://eprint.iacr.org/

2022/1389.

[33] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemina-

tion and Its Applications. In CCS 2021. 2705–2721.
[34] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.

In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2518–2534.
[35] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT 2018, Vol. 10821. 66–98.
[36] Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel

Tschudi. 2022. GearBox: Optimal-Size Shard Committees by Leveraging the

Safety-Liveness Dichotomy. In CCS 2022. 683–696.
[37] Luciano Freitas de Souza, Petr Kuznetsov, and Andrei Tonkikh. 2022. Distributed

Randomness from Approximate Agreement. In DISC 2022, Vol. 246. 24:1–24:21.
[38] Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas

Prest, andMarkku-Juhani Saarinen. 2024. Threshold Raccoon: Practical Threshold

Signatures from Standard Lattice Assumptions. Cryptology ePrint Archive, Paper

2024/184. https://eprint.iacr.org/2024/184

[39] Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark, and William E

Weihl. 1986. Reaching approximate agreement in the presence of faults. Journal
of the ACM (JACM) 33, 3 (1986), 499–516.

[40] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.
[41] Shlomi Dolev and ZiyuWang. 2021. SodsBC/SodsBC++; SodsMPC: Post-Quantum

Asynchronous Blockchain Suite for Consensus and Smart Contracts. In Stabiliza-
tion, Safety, and Security of Distributed Systems: 23rd International Symposium,
SSS 2021. 510–515.

[42] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

Made Practical. In CCS 2018. 2028–2041. https://doi.org/10.1145/3243734.3243812
[43] Sisi Duan, Xin Wang, and Haibin Zhang. 2023. Fin: Practical signature-free

asynchronous common subset in constant time. In CCS 2023. 815–829.
[44] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. 2018. Crystals-dilithium: A lattice-based digital

signature scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2018), 238–268.

[45] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility

of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (April 1985),

374–382. https://doi.org/10.1145/3149.214121

[46] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Dumbo-NG: Fast Asynchronous BFT Consensus with Throughput-

Oblivious Latency. In CCS 2022. ACM, 1187–1201.

[47] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Efficient Asynchronous Byzantine Agreement without Private Setups. In

ICDCS 2022. IEEE, 246–257.
[48] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology 20 (2007), 51–83.

[49] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In SOSP
2017. 51–68.

[50] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.

In STOC 1996. 212–219.
[51] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.

2022. Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice. In NDSS
2022.

[52] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols. 803–818.
[53] Christoph U. Günther, Sourav Das, and Lefteris Kokoris-Kogias. 2022. Prac-

tical Asynchronous Proactive Secret Sharing and Key Refresh. Cryptology

ePrint Archive, Paper 2022/1586. https://eprint.iacr.org/2022/1586 https:

//eprint.iacr.org/2022/1586.

[54] Mads Haahr. 1999. random. org: Introduction to Randomness and Random

Numbers. Statistics,(June) (1999), 1–4.
[55] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2020. RandChain: A Scalable and Fair

Decentralised Randomness Beacon. Cryptology ePrint Archive, Paper 2020/1033.

https://eprint.iacr.org/2020/1033 https://eprint.iacr.org/2020/1033.

[56] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. Dfinity technol-

ogy overview series, consensus system. arXiv preprint arXiv:1805.04548 (2018).
[57] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk, and Moti Yung. 1995. Proac-

tive secret sharing or: How to cope with perpetual leakage. In annual international
cryptology conference. Springer, 339–352.

[58] Martin Hirt, Chen-Da Liu-Zhang, and Ueli Maurer. 2021. Adaptive Security of

Multi-party Protocols, Revisited. In TCC 2021 (Lecture Notes in Computer Science,
Vol. 13042), Kobbi Nissim and Brent Waters (Eds.). Springer, 686–716.

[59] Shang-En Huang, Seth Pettie, and Leqi Zhu. 2023. Byzantine Agreement with

Optimal Resilience via Statistical Fraud Detection. In SODA 2023, Nikhil Bansal
and Viswanath Nagarajan (Eds.). SIAM, 4335–4353.

[60] Aniket Kate, Yizhou Huang, and Ian Goldberg. 2012. Distributed Key Generation

in the Wild. IACR Cryptol. ePrint Arch. 2012 (2012), 377.
[61] Aniket Kate, Andrew Miller, and Tom Yurek. 2019. Brief Note: Asynchronous

Verifiable Secret Sharingwith Optimal Resilience and Linear Amortized Overhead.

arXiv:1902.06095 [cs.CR]

[62] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. InASIACRYPT 2010. Springer,
177–194.

[63] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.

2021. All You Need is DAG. In PODC 2021. 165–175.
[64] John Kelsey, Luís TAN Brandão, Rene Peralta, and Harold Booth. 2019. A reference

for randomness beacons: Format and protocol version 2. Technical Report. National
Institute of Standards and Technology.

[65] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures.. In CCS 2020. 1751–1767.
[66] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-MVBA:

Optimal Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited.

In PODC 2020, Yuval Emek and Christian Cachin (Eds.). 129–138.

[67] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In CCS 2016. 31–42.
[68] Achour Mostéfaoui, HamoumaMoumen, and Michel Raynal. 2015. Signature-free

asynchronous binary Byzantine consensus with t< n/3, O (n2) messages, and O

(1) expected time. Journal of the ACM (JACM) 62, 4 (2015), 1–21.
[69] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. 2009. Efficient statistical

asynchronous verifiable secret sharing with optimal resilience. In International
Conference on Information Theoretic Security. Springer, 74–92.

[70] Phillip Rogaway and John Steinberger. 2008. Constructing cryptographic hash

functions from fixed-key blockciphers. In Advances in Cryptology–CRYPTO 2008:
28th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings 28. Springer, 433–450.

[71] Sambhav Satija, Apurv Mehra, Sudheesh Singanamalla, Karan Grover, Muthian

Sivathanu, Nishanth Chandran, Divya Gupta, and Satya Lokam. 2020. Blockene:

A high-throughput blockchain over mobile devices. In OSDI 2020. 567–582.
[72] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2020.

HydRand: Efficient Continuous Distributed Randomness. In 2020 IEEE Symposium
on Security and Privacy (SP). 73–89.

[73] Victor Shoup. 2024. A Theoretical Take on a Practical Consensus Protocol.

Cryptology ePrint Archive, Paper 2024/696. https://eprint.iacr.org/2024/696

[74] Victor Shoup and Nigel P. Smart. 2023. Lightweight Asynchronous Verifiable Se-

cret Sharing with Optimal Resilience. Cryptology ePrint Archive, Paper 2023/536.

https://eprint.iacr.org/2023/536

15

https://chain.link/education-hub/rng-in-blockchain-use-cases
https://chain.link/education-hub/rng-in-blockchain-use-cases
https://eprint.iacr.org/2022/1389
https://eprint.iacr.org/2022/1389
https://eprint.iacr.org/2022/1389
https://eprint.iacr.org/2024/184
https://doi.org/10.1145/3243734.3243812
https://doi.org/10.1145/3149.214121
https://eprint.iacr.org/2022/1586
https://eprint.iacr.org/2022/1586
https://eprint.iacr.org/2022/1586
https://eprint.iacr.org/2020/1033
https://eprint.iacr.org/2020/1033
https://arxiv.org/abs/1902.06095
https://eprint.iacr.org/2024/696
https://eprint.iacr.org/2023/536

0 4𝑧| | |

𝑧 2𝑧 3𝑧

minO1 maxO1
2

minO2 maxO2
2

Figure 6: Monte-Carlo beacons: The picture describes a
Monte-Carlo beacon in the context of leader election in an
𝑛 = 4 system. In this context, the beacon must be a random
number in the domain D = {1, 2, 3, 4}. The nodes participate
in the approximate common coin primitive by secret shar-
ing a random secret from a domain D′ of size 𝑧 |D|, where
𝑧 = 2

1−𝛿 and 𝜖 = 1

𝑧 |D | . Let Oi be set of outputs 𝑜 𝑗,𝑖 of honest
nodes 𝑗 ∈ N from the approximate common coin for beacon
index 𝑖. Oi is an interval with |Oi | ≤ 2 numbers inD′ = [0, 4𝑧).
Every node 𝑗 outputs 𝑏𝑖 =

⌊
𝑜 𝑗,𝑖

𝑧

⌋
+ 1 as the beacon output. If Oi

is on different sides of a checkpoint, then nodes output dif-
ferent beacons resulting in a disagreement. The probability
this event happening is 1 − 𝛿 because the set Oi is distributed
uniformly randomly in D′. In this example, the second bea-
con 𝑏2 corresponding to O2 results in disagreement.

[75] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. 2020. On the

optimality of optimistic responsiveness. In CCS 2020. 839–857.
[76] Open source contributors. 2019. DRand - A Distributed Randomness Beacon

Daemon - https://github.com/drand/drand. https://github.com/drand/drand

[77] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. In 2017 IEEE Symposium on Security and
Privacy (SP). 444–460.

[78] Xuechao Wang, Peiyao Sheng, Sreeram Kannan, Kartik Nayak, and Pramod

Viswanath. 2023. TrustBoost: Boosting Trust among Interoperable Blockchains.

In CCS 2023. 1–15. https://eprint.iacr.org/2022/1428.
[79] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In PODC
2019. 347–356.

[80] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.

2022. hbACSS: How to Robustly Share Many Secrets. In NDSS 2022.
[81] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. 2023. Long live the

honey badger: Robust asynchronous dpss and its applications. (2023).

[82] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. 2023. WaterBear: Prac-

tical Asynchronous BFT Matching Security Guarantees of Partially Synchronous

BFT. In USENIX Security Symposium’23. 1–16.

A CALCULATING ANYTRUST SAMPLE SIZE
Weuse a hypergeometric probability distribution tomodel sampling

from a group of nodes without repetition. The sampled set C must

contain at least one honest node 𝑖 whose secret will have a weight

𝑤𝑖, 𝑗 = 1∀𝑗 ∈ Nhon in the aggregation. We know that the core set

of Gather contains at least 𝑡 + 1 honest nodes, out of which at least

one honest node must be in the C. Therefore, the probability of at

least one such honest node being on a committee of size 𝑐 is given

as follows.

𝑝𝑐 = 1 −H .cdf (0, 𝑛, 𝑐, 𝑡 + 1) (1)

H is a hypergeometric distribution with total population 𝑛 and

𝑛 − 2𝑡 ≥ 𝑡 + 1 honest nodes part of the Gather core set 𝐺 as the

0 500 1000 1500
Number of nodes n

0

20

40

60

80

C
om

m
itt

ee
 si

ze
 c

=
|N

|

pc = 1 10 15

pc = 1 10 12

Figure 7: The plot describes the size of the committee 𝑐 = |C|
with probability of at least one honest node in the core set
𝐺 being part of the committee C, whose secrets eventually
contribute to the beacon. For 𝑝𝑐 = 1 − 10−12, the committee
size caps at 𝑐 = 60 for higher values of 𝑛.

population with the desired feature. We plot the committee size

𝑐 = |C| for a given probability 𝑝𝑐 with varying 𝑛 in the Fig. 7.

B EXTENDED RELATEDWORK
AVSS schemes. There are many AVSS schemes with different hard-

ness assumptions and corresponding computation and communi-

cation complexities. In the DLog world, Das et al.’s [33] scheme

with Pedersen commitments has the lowest O(𝜅𝑛2) communication

complexity. It uses O(𝑛) exponentiations in the sharing phase and

O(𝑛2) exponentiations in the reconstruction phase. At the other

end of the spectrum, information-theoretic (IT) VSS protocols such

as statistical AVSS and perfect AVSS have communication com-

plexities of O(𝑛4 log(𝑛)) and do not use any hardness assumption.

Computational AVSS schemes such as Backes et al. [11] assume

a one-way function for polynomial commitments. This variant of

AVSS has a communication complexity of O(𝜅𝑛3), less than IT pro-

tocols but higher than Das et al. Other AVSS schemes with differing

commitment properties have also been proposed. One such prop-

erty is the strong commitment [10] or completeness property used

in ACSS protocols, necessary for AMPC and ADKG. ACSS protocols

with O(𝜅𝑛2) comm. complexity depend on a Level 4 setup with PKI

and a CRS(for DLog NIZK proofs of valid encryption) [9, 33, 61]

or SRS setup(powers of tau) [4, 10, 80] for achieving the complete-

ness property. Kogias et al. ’s [65] HAVSS achieves completeness

with O(𝜅𝑛3) complexity and a Level 2 setup. AVSS schemes with

weaker commitment properties have also been proposed. Dolev

et al. [41] proposed a weaker variant of AVSS that offers weak

commitments, where a malicious dealer is only detected in the re-

construction phase, and honest nodes agree on the dealer being

malicious. HashRand builds on top of this scheme to further im-

prove the comm. complexity of this primitive. A weaker form of VSS

called Asynchronous Weak Secret Sharing (AWSS) was proposed

by Patra et al. [69] where a malicious dealer can force a subset of

honest nodes to reconstruct ⊥. The AwVSS primitive is stronger

than AWSS because of its requirement of honest nodes agreeing on

the maliciousness of the dealer.

Asynchronous SMR protocols. HoneyBadgerBFT [67] was the

first practical asynchronous SMR protocol. It used n binary BA

16

https://github.com/drand/drand
https://eprint.iacr.org/2022/1428

instances to agree on an Asynchronous Common Subset (ACS) and

requires expected O(𝑛 log(𝑛)) bits of randomness to terminate. The

Dumbo family of protocols — Dumbo [52], Speeding Dumbo [51],

and Dumbo-NG [46] — conduct SMR using Multi-Valued Validated

BA (MVBA), where nodes elect a leader and its corresponding

𝑛 − 𝑡 referenced RBC messages. These protocols use aggregatable

threshold signatures to achieve a O(𝑛2) communication complex-

ity. Without aggregatable threshold signatures, the state-of-the-art

MVBA [43] has O(𝑛3) communication complexity. However, the

MVBA family of protocols requires expected O(log(𝑛)) bits of ran-
domness to elect the leader. Recent DAG-based SMR protocols like

DAG-Rider [63] and Tusk [30] commit blocks in waves by electing

wave leaders. Both MVBA and DAG-based protocols use coins for

leader election where the protocol’s safety depends on the coin’s

agreement property. However, protocols like HoneyBadgerBFT [67],

Beat [42], and Dumbo 1 [52] depend on the coin only for achieving

liveness in their Binary BA instances.

C BATCH AWVSS
We present the full BAwVSS protocol along with its security proofs

in this section.

BAwVSS security. The Termination, Correctness, and Weak Com-

mitment properties of our BAwVSS scheme followDolev et al.’s [41]

scheme.

Lemma C.1. Under collision resistance and preimage resistance of
the hash function 𝐻 , the BAwVSS protocol in Algorithm 2 satisfies
Termination, Correctness, and Weak Commitment.

Proof. If the dealer 𝑑 is honest, every honest node will send

out ECHOs by verifying their share tuples and their inclusion in

the root vector. By the liveness and totality properties of reliable

broadcast, every honest node will eventually terminate the sharing

phase of the protocol, and at least 𝑡 + 1 honest nodes will have

shares for all 𝑘 secrets. If all nodes terminated BAwVSS. .Sh(𝑑) and

start BAwVSS. .Rec(.), then at least 𝑡 + 1 honest nodes must broad-

cast their shares to everyone. Since the degree of the sharing and

nonce polynomial is 𝑡 , these 𝑡 + 1 points are enough to reconstruct

both share and nonce polynomials and verify the validity of the

root. With the help of these 𝑡 + 1 honest nodes, every honest node

terminates BAwVSS. .Rec(.).

We prove correctness by contradiction. If the dealer 𝐷 is honest,

the honest nodes reach an agreement on the root vector, and at

least 𝑡 + 1 honest nodes have shares for all 𝑘 secrets. Assuming

an honest node 𝑖 reconstructs 𝑠𝑖 ≠ 𝑠𝑖 shared by the dealer, the

node 𝑖 must have reconstructed the polynomials 𝑔′
𝑖
(𝑥) ≠ 𝑔𝑖 (𝑥) and

𝑟 ′
𝑖
(𝑥) ≠ 𝑟𝑖 (𝑥). For this to happen, 𝑖 must have used a share 𝑠𝑚 not

shared by the dealer 𝐷 in Lagrange interpolation. However, since 𝑖

validated the share 𝑠𝑚 , the adversary must have generated a valid

commitment𝐻 (𝑠𝑚, 𝑟𝑚) for a share not generated by the dealer. This
implies that the adversary found a hash collision, which violates the

collision resistance property of the function𝐻 . Hence, Algorithm 2

satisfies Correctness.

We prove weak commitment by contradiction under two cases:

a) Honest nodes 𝑖, 𝑗 reconstructed different secrets in the field D
and b) Honest node 𝑖 reconstructed a valid secret in D whereas 𝑗

reconstructed ⊥.

(1) Let 𝑖, 𝑗 reconstruct 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑓 𝑖𝑒𝑙𝑑 respectively. From the Termi-

nation property of BAwVSS. .Sh(𝑑), both 𝑖, 𝑗 must terminate

with the same root vector. Since 𝑠𝑖 ≠ 𝑠 𝑗 , two different degree

𝑡 polynomials 𝑔′
𝑖
(𝑥) and 𝑔′

𝑗
(𝑥) construct two Merkle trees

with the same root, which implies that there must be at least

one hash collision while aiding the disagreement. This colli-

sion violates the collision-resistance property of the Hash

function 𝐻 .

(2) Let 𝑖, 𝑗 reconstruct 𝑠𝑖 ∈ D,⊥ respectively. From the termi-

nation property of BAwVSS. .Sh(𝑑), 𝑖, 𝑗 terminated with the

same root vector. This disagreement implies that 𝑖 and 𝑗

used a different set of 𝑡 + 1 shares to construct their polyno-

mials 𝑔′
𝑖
(𝑥) and 𝑔′

𝑗
(𝑥). 𝑖 constructed a degree 𝑡 polynomial

and validated all 𝑛 shares, which included the set of 𝑡 + 1
shares used by 𝑗 to construct 𝑔′

𝑗
(𝑥). Since 𝑗 reconstructed a

different degree 𝑡 polynomial with the shares validated by

𝑖 , a malicious node must have sent a wrong share 𝑠𝑚 to 𝑗 ,

which had the same commitment as the corresponding share

validated by 𝑖 . This violates the collision-resistance property

of the hash function 𝐻 .

□

We prove the secrecy property of our BAwVSS scheme, where

we establish that if no honest node invoked BAwVSS𝑑 .Rec(i) for the

𝑖th secret in the batch, then the adversary has no information about

it. We prove this property against an adaptive adversary using the

definition of simulation-based security. We use a zero-knowledge

simulator Sim to provide arguments of indistinguishability of the

adversary’s view when interacting with the simulator (who has no

knowledge of the secrets) and a real dealer. We utilize the termi-

nology and methods specified in Bingo [4] to build our proof. We

define the adversary model, the secrecy game between the simu-

lator Sim and the adversary A, and the methodology followed by

the simulator to prove indistinguishability.

Adversary model. We assume a probabilistic polynomial time

(PPT) adaptive adversary A capable of corrupting nodes in the

system at any time during the execution. Further, A controls the

network and therefore decides the time and relative order of mes-

sage delivery, with the restriction that messages must eventually

be delivered. We model A’s interactions with the system using

a set of Oracles, using which A performs a specific action. We

use Bingo’s [4] definitions directly for this model. The functions

provided by the oracles reflect A’s power to schedule messages

sent over the network and the power to corrupt nodes at any time

during the execution.

(1) Obuf is a message buffer which allows the adversary to send

a message to any honest node in the system. This oracle has

three functions: (1) Obuf (add, 𝑥) adds a message 𝑥 to the

message buffer, which allows A to send a message to an

honest node from a faulty node, (2) Obuf (deliver, 𝑗) which
delivers the 𝑗th message in the buffer, and (3) Obuf (see),
which allows A to see all the messages in the buffer.

(2) Ocorr allows A to corrupt a node 𝑖 in the system at an

indexed step 𝑡 by invoking Ocorr (𝑖, 𝑡). A gets access to the

view of 𝑖 at step 𝑡 denoted by view𝑖,𝑡 .

17

Algorithm 2 BAwVSS: Batch Asynchronous Weak Verifiable Secret Sharing (BAwVSS)

1: INPUT: N,𝑅𝐵𝐶 ,𝑆𝑑 // 𝑅𝐵𝐶 : RBC protocol,𝑆𝑑 : secrets to share

2: Protocol BAwVSS𝑑 .Sh(𝑆𝑑):

3: upon receiving (ID.d,in,share,𝑆𝑑): // As a dealer

// Sample |𝑆𝑑 | nonces from a domain D𝑟 at least twice the 𝐻 ’s output

range 𝑅𝑑 [𝑖] ← 𝑅𝑎𝑛𝑑𝑜𝑚 (D𝑟)∀𝑖 ∈ {1, . . . , |𝑆𝑑 | }
// Use Shamir’s SS scheme to create shares for secrets in 𝑆𝑑 , 𝑅𝑑 [𝑖]

4: S𝑑 [𝑖] ←Shamir.Split(𝑆𝑑 [i],n,𝑡) ∀𝑖 ∈ {1, . . . , |𝑆𝑑 | }
5: R𝑑 [𝑖] ←Shamir.Split(𝑅𝑑 [𝑖],n,𝑡) ∀𝑖 ∈ {1, . . . , |𝑆𝑑 | }

// Compute Commitments

6: C𝑑 [𝑖] ← ⟨𝐻 (R𝑑 [𝑖] [0], S𝑑 [𝑖] [0]), . . . , 𝐻 (R𝑑 [𝑖] [𝑛], S𝑑 [𝑖] [𝑛]) ⟩ ∀𝑖 ∈
{1, . . . , |𝑆𝑑 | }

// Compute Merkle Trees

7: 𝑀𝑑 [𝑖] =Merkle(C𝑑 [𝑖]) ∀𝑖 ∈ {1, . . . , |𝑆𝑑 | }
8: R𝑑 ← {𝑀𝑑 [0] .Root, . . . , 𝑀𝑑 [𝑘] .Root}
9: S𝑑 [𝑗] [𝑖] ← ⟨S𝑑 [𝑖] [𝑗], R𝑑 [𝑖] [𝑗], 𝑀𝑑 [𝑖] .Proof(𝑗) ⟩ ∀𝑖 ∈
{1, . . . , |𝑆𝑑 | }, ∀ 𝑗 ∈ {1, . . . , 𝑛}

// Send shares to all nodes

10: for 𝑗 ∈ {1, . . . , 𝑛} do
11: Send "ID.d, share, S𝑑 [𝑗]" to node 𝑗

12: end for
// Reliably Broadcast root vector

13: Invoke 𝑅𝐵𝐶 .Broadcast(R𝑑)

// As a participant

14: upon receiving "ID.d,share,S𝑑 [𝑗]" and 𝑅𝐵𝐶 .Init(R𝑑) from dealer 𝑑 :

// Verify commitments and participate in 𝑅𝐵𝐶 if all pass

15: if Merkle.Verify(R𝑑 [𝑖],S𝑑 [𝑗] [𝑖] .share,S𝑑 [𝑗] [𝑖].proof) = 1∀𝑖 ∈
{1, . . . , |𝑆𝑑 | } then

16: Send ECHO messages in 𝑑 ’s RBC protocol 𝑅𝐵𝐶

17: end if
18: upon invoking 𝑅𝐵𝐶 .Deliver(R𝑑) with share:

19: output (ID.d,out,share,R𝑑)
20: upon invoking 𝑅𝐵𝐶 .Deliver(R𝑑) with no share:

21: output (ID.d,out,no-share,R𝑑)

1: Protocol BAwVSS𝑑 .Rec(i):

2: 𝑆𝑆𝑑 [𝑖] ← ∅
3: upon receiving (ID.d,in,recon,𝑖):

4: if terminated with share then
5: for 𝑗 ∈ {1, . . . , 𝑛} do
6: Send "ID.d, recon,S𝑗 [𝑖]" to node 𝑗

7: end for
8: end if
9: upon receiving (ID.d,recon,S𝑑 [𝑚] [𝑖]) from node𝑚:

10: if Merkle.Verify(R𝑑 [𝑖],S𝑑 [𝑚] [𝑖] .share,S𝑑 [𝑚] [𝑖].proof) = 1

then
11: 𝑆𝑆𝑑 [𝑖] ← 𝑆𝑆𝑑 [𝑖] ∪ ⟨𝑚, S𝑑 [𝑚] [𝑖] ⟩
12: end if

upon
��𝑆𝑆 𝑗 [𝑖]�� ≥ 𝑡 + 1

// Combine shares and reverify root vector commitment

13: S𝑑 [𝑖], R𝑑 [𝑖] ← Shamir.Combine(𝑆𝑆𝑑 [𝑖],n,𝑡)
14: C𝑑 [𝑖] ← ⟨𝐻 (R𝑑 [𝑖] [0], S𝑑 [𝑖] [0]), . . . , 𝐻 (R𝑑 [𝑖] [𝑛], S𝑑 [𝑖] [𝑛]) ⟩ ∀𝑖 ∈
{1, . . . , |𝑆𝑑 | }

15: if Merkle(C𝑑 [𝑖]).Root = R𝑖 then
16: output (ID.d,out,reconstructed,S𝑑 [𝑖] [0],𝑖)
17: else
18: output (ID.d,out,reconstructed,⊥,𝑖)
19: end if

(3) OS is a sharing oracle which allows A to control the time

at which the sharing phase begins. A invokes OS (𝑖) to let

node 𝑖 participate in the protocol.

(4) OR is a reconstruction oracle which allows A to control the

time at which reconstruction begins. A invokes OR (𝑖, 𝑘) to
enable node 𝑖 to start reconstructing the 𝑘th secret in the

batch.

Game definition.We define the secrecy game between the sim-

ulator Sim and the adversary A according to Bingo [4]. In this

game, A chooses a batch of 𝛽 secrets denoted by 𝑆A and interacts

either with the simulator Sim (denoted by 𝑏 = 0), which has no

knowledge of 𝑆A , or with a system of 𝑛 nodes with a designated

dealer (denoted by value 𝑏 = 1), which knows 𝑆A . A does not

know who they are interacting with and does not know the value

of 𝑏. A invokes an initialization oracle Oinit (𝑆A) with the batch

of secrets. The game chooses a bit 𝑏 randomly and initializes the

Sim if 𝑏 = 0 or the designated dealer node with the secrets 𝑆A if

𝑏 = 1. A uses the described oracles to interact with the underlying

player. At the end of the game, A must guess whether it played

with the simulator or the real set of nodes.

The simulator Sim does not have any information about the

secrets 𝑆A in the sharing phase BAwVSS𝑑 .𝑆ℎ(𝑖)∀𝑖 ∈ {1, . . . , |𝑆A |}.
However, if Sim does not know 𝑆A in the reconstruction phase, then

it would be trivial forA to recognize the difference between the two

described scenarios. Therefore, the game provides the 𝑖th secret to

Sim right beforeA instructs an honest node to start reconstruction

of secret 𝑖 . In other words, the game provides the secret to Sim at

the latest possible step at which it would become trivial for A to

determine if it were interacting with Sim or a real dealer [4].

We restate Bingo’s definition of the secrecy game here.

Definition C.1. Secrecy [4]: Consider a simulator Sim that inter-
acts with adversary A on behalf of all honest nodes. We define A’s
advantage as Adv𝑠𝑒𝑐𝑟𝑒𝑐𝑦A (𝜆) = 2Pr[GA𝑠𝑒𝑐𝑟𝑒𝑐𝑦] − 1, where GA𝑠𝑒𝑐𝑟𝑒𝑐𝑦
is defined as follows, given the dealer is party 𝑑 who deals only after
receiving a start message from the adversary:

MAIN GA𝑠𝑒𝑐𝑟𝑒𝑐𝑦 (𝜆):
b←𝑟 {0, 1};
b’← AObuf (𝑎𝑑𝑑,.),Obuf (𝑠𝑒𝑒),O*

,Ocorr,Oinit,OS,OR (1𝜆)
return (𝑏′ = 𝑏)
Oinit (𝑠0, . . . , 𝑠𝑚)
𝑆𝑖 ← 𝑠𝑖∀𝑖 ∈ [𝑚]
Ocorr (i)
if (i=d) // If the adversary corrupts the dealer

add 𝑆1, . . . , 𝑆𝑚 to StateSim // Give secrets to Sim
end if
remove i from set of honest nodes
O
*
(m)

18

if (b=0)
run Sim(𝐻,𝑚)

else
Initialize dealer 𝑑 with ®𝑆 and run Obuf (deliver,𝑚)

end if
OR (𝑖, 𝑘)
// Instruct node 𝑖 to reconstruct the 𝑘th secret
upon finishing AwVSS𝑑 .Sh:

add 𝑆𝑘 to StateSim // Provide secret to Sim
start AwVSS𝑑 .𝑅𝑒𝑐 (𝑘)

Secrecy holds if for all PPT adversaries A, there exists a negligible
function 𝜈 (𝜆) such that Adv𝑠𝑒𝑐𝑟𝑒𝑐𝑦A (𝜆) < 𝜈 (𝜆)

Now, we formally define the secrecy property of our BAwVSS

scheme. We prove secrecy of our scheme by following Bingo’s

proof approach of using a blinding polynomial to unconditionally

hide the original polynomial. Bingo’s PAVSS scheme uses KZG

commitments [62] depending on a powers-of-tau ceremony and

the q-Strong Diffie Hellman (q-SDH) assumption. Hence, Bingo

instantiates Simwith a trapdoor 𝜏𝑠 of the powers-of-tau setup. This

enables Sim to utilize any adversarial advantage Adv𝑠𝑒𝑐𝑟𝑒𝑐𝑦A (𝜆) and

break the 𝑞-SDH hardness assumption.

When A corrupts an honest node 𝑖 at step 𝑡 in the protocol,

Sim must return a view view𝑖,𝑡 that is consistent with the state of

the faulty nodes controlled by A. Further, Sim must also ensure

that view𝑖,𝑡 is consistent with the public information disseminated

to all nodes in the sharing phase. Moreover, Sim only gets the in-

formation about the secret 𝑠𝑖 right before reconstruction, which

implies that Sim must construct the public commitment informa-

tion without any knowledge of the secrets. This problem has been

described as the explainability problem or commitment problem

in prior literature on adaptive security [21, 58]. Bingo solves this

problem by first creating a simulated commitment without any

knowledge of the secrets. Later, when Sim learns the secret, it uses

the blinding polynomial and the 𝑃𝑜𝜏 trapdoor to fit the secret to
the commitment.

We use a similar approach to solve this commitment problem.

We use unconditionally hiding commitments, which uses a blinding

polynomial in a bigger domainD𝑟 , with each element at least twice

the size of the output of𝐻 (for SHA256, the domainD𝑟 is of size 512

bits). InWe choose a large blinding polynomial size to support secret

sharing across arbitrarily small or large domains D. We assume

the Hash function 𝐻 is a Random Oracle (RO). In our approach,

Sim has programmable access to 𝐻 and can adaptively program

the outputs of 𝐻 . We utilize this access to solve the explainability

problem described above by enabling Sim to fit the view view𝑖,𝑡 to

the public commitment information.

Theorem C.2. Under the assumption that the Hash function 𝐻 is
a programmable Random Oracle, the BAwVSS scheme in Algorithm 2
satisfies secrecy defined according to Definition C.1.

Proof. We define the program followed by the simulator Sim
on each oracle call made by the adversary A. Then, we argue that

A cannot distinguish between a real protocol execution and the

simulated execution based on the Random Oracle assumption. We

denote the set of honest nodes by Nhon and the set of corrupted

nodes by Ncorr.

• When the oracle O
*
(𝑚) is called to start the game and if 𝑏 = 0,

Sim samples 𝛽 random polynomials 𝑓𝑖 (𝑥), 𝑟𝑖 (𝑥)∀𝑖 ∈ {1, . . . , 𝛽},
with secrets 𝑆Sim = {𝑓1 (0), . . . , 𝑓𝛽 (0)}. Sim then acts as the dealer

running the Sharing protocol BAwVSSSim.Sh(𝑆Sim) among the

set of 𝑛 nodes. The nodes in Ncorr would receive messages from

honest nodes just like in a real execution. We denote the gener-

ated commitments in Line 6 using CSim [𝑖]∀𝑖 ∈ {1, . . . , 𝛽}. The
transcripts of messages between nodes in Nhon are encrypted

with an encryption scheme with forward secrecy (also called non-

committal encryption [21]), which allows Sim to later change the

content within these messages without changing the transcript.

• When A invokes OR (𝑖, 𝑘), Sim receives the 𝑘th secret 𝑆A [𝑘].
Consider the 𝑘th secret and nonce polynomial 𝑓𝑘 (𝑥),𝑟𝑘 (𝑥). Sim
creates a set of evaluations {𝑆A [𝑘], 𝑓𝑘 (𝑖1), . . . , 𝑓𝑘 (𝑖 𝑗)} at indices
of points 0 ∪ 𝑃corr, where 𝑃corr is the set of indices of nodes

in set Ncorr, and samples a random degree-𝑡 polynomial 𝑓
′

𝑘
(𝑥)

passing through these points. Similarly, Sim also samples a new

nonce polynomial 𝑟
′

𝑘
(𝑥) using evaluations {𝑅(𝑘)𝑖1, . . . , 𝑅(𝑘)𝑖 𝑗 }

at points 𝑃corr. Note that if |Ncorr | = 𝑡 , there is only one unique

polynomial 𝑓
′

𝑘
(𝑥) passing through the 𝑡 + 1 points.

Next, Sim programs the randomoracle to output valuesCSim [𝑘] [𝑖]
for inputs𝐻 (𝑟 ′

𝑘
(𝑖), 𝑓 ′

𝑘
(𝑖))∀𝑖 ∈ N , with𝐻 (𝑟 ′

𝑘
(𝑖), 𝑓 ′

𝑘
(𝑖)) = CSim [𝑘] [𝑖]

∀𝑖 ∈ N . Note that this programming is consistent with all the

public information in the protocol. The Merkle tree built on the

commitments built from these new values will be equivalent to

the Merkle tree built from old shares.

Finally, for each node in set Nhon, Sim replaces the old Share

messages (in Line 11) in the message buffer with new updated

shares from polynomials 𝑓
′

𝑘
(𝑥) and 𝑟 ′

𝑘
(𝑥). If specific honest nodes

already processed the message, then Sim changes their internal

state to update the 𝑘th share to the new value. The node 𝑖 runs

reconstruction by sending its updated secret share, which will

be reconstructed to A’s secret 𝑆A [𝑘].
• When A invokes Ocorr (𝑖) on node 𝑖 , Sim checks if OR has been

invoked byA on any secret. IfA invokedOR, then Sim conducts

the share replacement and oracle programming described in the

previous bullet (Sim ignores this stage if it has already been

performed), and then transfers the internal state of node 𝑖 to

A. If A did not invoke OR yet on any secret, then Sim directly

transfers the internal state of 𝑖 toA without making any changes.

We argue that the adversary A cannot distinguish a simulator

Sim following the described program from a real protocol execution

with probability 𝑝 > 𝜈 (𝜆).
We first note that the generated public transcripts (Commitment

Vectors and Merkle trees) come from probabilistically equivalent

distributions of the RO. This is because Sim uses fully random values

in O
*
to generate the commitment vector CSim [𝑖]∀𝑖 ∈ {1, . . . , 𝛽}.

Similarly, the real dealer also chooses polynomial coefficients of

both polynomials 𝑓𝑑,𝑖 (𝑥) and 𝑟𝑑,𝑖 (𝑥) ∀𝑖 ∈ {1, . . . , 𝛽} randomly. We

also note that Sim has not programmed the RO yet, because of

which both commitment vectors and Merkle trees come from prob-

abilistically identical RO models. Therefore,A cannot decipher any

information from public transcripts alone.

Next, we show that A also cannot decipher any distinguish-

ing information from secret shares. From the properties of Shamir

secret sharing, an adversary with at most 𝑡 points on a degree-𝑡

19

polynomial has no information about the encoded secret. In the

sharing phase, A controls at most 𝑡 nodes and knows at most 𝑡

points on Sim’s polynomials 𝑓Sim,𝑖 (𝑥) and 𝑟Sim,𝑖 (𝑥) ∀𝑖 ∈ {1, . . . , 𝛽}.
Therefore, A cannot distinguish Sim’s polynomials from 𝑑’s poly-

nomials in the sharing phase. In the reconstruction phase, Sim
replaces the shares of all honest nodes to reflect A’s provided se-

crets. Therefore, A cannot distinguish the simulated view and the

real view from received secret shares alone.

Finally, we note that the only distinguishing factor between the

real and simulated views is the state of the Random Oracle in the

reconstruction phase, where Sim programs the RO in response to

A’sOR invocations. In the simulated view, the Sim programs the RO

at most O(𝛽𝑛) times, O(𝑛) times per secret. This programming may

result in A receiving conflicting responses from the RO. Therefore,

we split this situation into the following two cases:

(1) Adversary A receives conflicting responses from the RO for

the same input string. This only happens when the Sim overwrites

the response encoded in the RO for an input string queried byA. In

this case,A recognizes that they are in a simulation. The probability

of this event occurring is the probability that A queried the same

string sampled by Sim in response toOR invocation. As Sim samples

these values randomly from domain D𝑟 = 1
2𝜆
, the probability of

a single query matching one of O(𝛽𝑛) queries is 𝑝 =
𝛽𝑛

exp(𝜆) . The

probability of a PPT adversary A succeeding is 𝑝𝑠 ≤ poly(𝜆)𝛽𝑛
exp(𝜆) . As

𝑛 and 𝛽 are both polynomially bound, the probability of success is

𝑝𝑠 ≤ poly(𝜆)
exp(𝜆) , which is negligible in 𝜆.

(2) A does not receive conflicting responses from the RO. In this

case, A cannot gauge any distinguishing information between the

real execution and the simulation. This is because from the Pigeon

Hole principle, an expected 2
𝜆
entries in the domain D𝑟 map to

each entry in RO’s range. Therefore, A cannot infer any details

from polynomial number of input-output queries from the RO.

Therefore, under the assumption that the Hash function 𝐻 is a

Random Oracle, the adversaryA’s advantage in the game GA𝑠𝑒𝑐𝑟𝑒𝑐𝑦
is bounded by the negligible function 𝜈 (𝜆) = poly(𝜆)

exp(𝜆) , which gives

Adv𝑠𝑒𝑐𝑟𝑒𝑐𝑦A (𝜆) < 𝜈 (𝜆). □

20

	Abstract
	1 Introduction
	2 Solution Overview
	2.1 System Model
	2.2 Asynchronous Random Beacons
	2.3 HashRand Key Insights

	3 Building Blocks
	3.1 Asynchronous weak Verifiable Secret Sharing (AwVSS)
	3.2 Gather
	3.3 Approximate agreement
	3.4 Approximate Common Coin

	4 Design
	4.1 Batching and Pipelining
	4.2 AnyTrust Sampling
	4.3 Protocol description

	5 Analysis
	5.1 Security Analysis
	5.2 Complexity Analysis

	6 Applications
	7 Evaluation
	7.1 HashRand evaluation
	7.2 SMR Evaluation

	8 Discussion
	8.1 VSS-SMR
	8.2 AwVSS vs ACSS protocols
	8.3 Comparison with ADKG protocols
	8.4 Setup costs and tradeoffs

	9 Related work
	10 Conclusion
	References
	A Calculating AnyTrust Sample size
	B Extended related work
	C Batch AwVSS

