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Abstract

We introduce an efficient SNARK for towers of binary fields. Adapting Brakedown (CRYPTO ’23),
we construct a multilinear polynomial commitment scheme suitable for polynomials over tiny fields, in-
cluding that with 2 elements. Our commitment scheme, unlike those of previous works, treats small-field
polynomials with zero embedding overhead. We further introduce binary-field adaptations of Hyper-
Plonk’s (EUROCRYPT ’23) product and permutation checks, as well as of Lasso’s lookup. Our scheme’s
binary PLONKish variant captures standard hash functions—like Keccak-256 and Grøstl—extremely
efficiently. With recourse to thorough performance benchmarks, we argue that our scheme can efficiently
generate precisely those Keccak-256-proofs which critically underlie modern efforts to scale Ethereum.

1 Introduction

Succinct non-interactive arguments of knowledge, or SNARKs, have witnessed a recent surge of interest
and application in blockchain protocols. Though long seen as impractical due to performance limitations,
SNARKs are now a viable solution to the issue of blockchain scalability, thanks to a renewed focus on
improving concrete efficiency.

Many modern SNARKs are constructed according to a framework that compiles polynomial interac-
tive oracle proofs into succinct arguments of knowledge by means of a polynomial commitment scheme.
This framework was formalized in the works of Bünz, Fisch and Szepieniec [BFS20] and Chiesa et al.
[Chi+20]. The latter—along with several previous works, like Maller, Bowe, Kohlweiss, and Meiklejohn’s
SONIC [Mal+19] and Gabizon, Williamson, and Ciobotaru’s PLONK [GWC19], in which the polynomial
IOP framework is implicit—uses a polynomial commitment scheme due to Kate, Zaverucha, and Goldberg
[KZG10] that relies on the hardness of the discrete logarithm problem in elliptic curve groups.

In contrast to SNARK constructions from elliptic curve cryptography, Ben-Sasson et al.’s highly influen-
tial Fast Reed–Solomon IOP of Proximity (FRI) [Ben+18a] has reënergized an alternative approach dating
originally to Killian [Kil92]. Operating in the interactive oracle proof (IOP) model [BCS16], these schemes
achieve succinct arguments with the aid of linear error-correcting codes and collision-resistant hash functions.
The most popular such scheme is the Scalable Transparent Arguments of Knowledge (STARK) protocol of
Ben-Sasson, Bentov, Horesh, and Riabzev [Ben+18b]. Subsequent expositions have reinterpreted STARKs
in the polynomial IOP framework discussed above (see for example [Hab22]); in this light, we freely refer
henceforth to the FRI polynomial commitment scheme, or FRI-PCS.

FRI-PCS is not the sole polynomial commitment scheme that leverages linear codes and hash functions.
Golovnev et al.’s Brakedown polynomial commitment scheme [Gol+23], which distills ideas from Bootle,
Chiesa, and Groth [BCG20] and Ames, Hazay, Ishai, and Venkitasubramaniam [Ame+23], also uses linear
error-correcting codes in the IOP model. Asymptotically, Brakedown’s verifier and proof size both grow on
the order of the square root of the size of the polynomial being committed. Diamond and Posen [DP23]
improve the concrete efficiency of Brakedown by a factor of roughly 2. While Brakedown’s asymptotic verifier
complexity is less favorable than that of FRI, for many practical parameter choices, the difference in concrete
efficiency is minimal and the improvement in prover efficiency presents a compelling tradeoff.

The disadvantage of Brakedown’s worse asymptotic complexity is further mitigated by the common
practice of using recursive proof composition to scale verifiable computation. Instead of proving an entire
statement or virtual machine execution in a single SNARK, one can often split up the statement in such
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a way that allows it to be verified incrementally. Valiant shows in [Val08] that incrementally verifiable
computation can be realized through recursive SNARK composition. A long virtual machine execution, say,
could be proven using only SNARKs for circuits of bounded size. The implication is that a series of inner
SNARKs with large proof sizes but fast proving times may be recursively composed with an outer SNARK
with small proof size and a relatively slower proving time, producing a hybrid system with small proof size
and fast proving time for large computations.

The class of SNARKs typified by the use of FRI-PCS or a Brakedown-style polynomial commitment
scheme has three properties that lead to advantages in proving performance over SNARKs from elliptic
curve group assumptions.

• Operation over small fields. Whereas elliptic curve groups must be on the order of 256 bits to attain
a standard security level, the ethSTARK [Sta21] and Plonky2 [Pol22] systems pioneer an alternative
design, characterized by the use of smaller fields (specifically, of prime fields on the order of 64 bits).
These systems leverage the relative efficiency of small-field arithmetic, and achieve state-of-the-art
proving performance. Moreover, these protocols’ use only of small-field elements moreover reduces
their storage requirements, which in turn leads to better cache-efficiency on CPUs.

• Flexibility in field selection. Beyond just the flexibility of field size, these schemes permit the
choice of fields with particular computational characteristics. Plonky2 [Pol22], for example, highlights
the benefits of the field Fp with p = 264 − 232 + 1, termed the Goldilocks field by the authors. This
prime modulus is a Solinas prime—that is, a prime of the form ϕ2 − ϕ + 1, where here ϕ = 232—and
consequently admits an efficient procedure for modular reduction.

• Cheaper cryptographic primitives. Standard-issue collision-resistant hash functions are much
faster than elliptic curve primitives.

As a rough comparison, committing 1 MiB of data with a FRI-based polynomial commitment scheme in
the Goldilocks field using Keccak-256 is about 7-fold faster than committing with the scheme of [KZG10]
over the BN254 bilinear group. We note that committing polynomials often accounts for the majority of the
cost in proving a SNARK.

Given the performance gains unlocked by the use of smaller finite fields, one perspective on our work
presented here is to extend this trend to its logical conclusion: SNARKS over the smallest field, F2.

Binary fields. Finite fields of characteristic 2, or binary fields, have a rich history in cryptography. The
AES block cipher, and the GMAC message authentication code standardized for use alongside AES, famously
use the binary fields F8

2 and F128
2 , respectively. There is also an important line of research in cryptographically

secure elliptic curves over binary fields; these curves feature uniquely efficient circuit instantiations. We recall
some basic properties of binary fields which account for their applicability in cryptography. The elements
of the field F2k can be unambiguously represented in k bits; for example, there is a bijection between bytes
of data and the finite field F28 . Field addition corresponds to the logical exclusive or operation (XOR)
on these bit representations. Also, squaring elements of a binary field is significantly less expensive than
multiplication of two distinct elements, thanks to the fact that (x+ y)2 = x2+ y2 for any x, y in these fields,
a property sometimes referred to as the “freshman’s dream.”

In this work, we present a SNARK construction over the field F2 that competes favorably with state-
of-the-art systems built with prime fields. Moreover, we argue that in the case of proving computations
that depend heavily on bitwise operations, such the SHA-256 and Keccak-256 hash functions, our system
outperforms the prime field-based alternatives. We must acknowledge that this is not the first work to
consider SNARKs over characteristic-2 fields; it is the first we are aware of, however, to give a SNARK
construction over F2 specifically, while avoiding embedding overhead, a term which we now explain. While
the work of [Ben+18b] does give a STARK construction over characteristic-2 fields, näıvely applying small
field techniques does not yield optimal concrete efficiency over F2 for a simple reason: the alphabet of Reed–
Solomon codes must be at least as large as the code length. Even if not for this limitation, which comes from
the FRI IOP of proximity, the ALI protocol in STARK—as well as DEEP-ALI from the successor work of
Ben-Sasson, Goldberg, Kopparty, and Saraf [Ben+19]—uses fast polynomial multiplication techniques. Fast

2



multiplication of polynomials over F2 requires embedding F2-elements into a larger extension field, effectively
limiting the field to have size on the same order as the size of the witness.

An influential line of recent works—which includes Spartan [Set20], HyperPlonk [Che+23], and CCS
[STW23a]—holds the promise of overcoming these limitations. These works develop a toolkit for construct-
ing SNARKs without requiring polynomial multiplication; instead they leverage the classical multivariate
sumcheck protocol of Lund, Fortnow, Karloff, and Nisan [Lun+92]. These protocols are constructed from
multilinear polynomial IOPs and multilinear polynomial commitment schemes, rather than the univariate
polynomial analogues. Combined with the polynomial commitment schemes of [Gol+23] and [DP23], which
do not mandate the use of Reed–Solomon codes and do work for general linear codes, the multilinear regime
carries the potential for efficient SNARKs over F2 with no embedding overhead.

While Reed–Solomon codes are far from the only choice available choice, they nonetheless remain attrac-
tive. They’re efficiently encodable and maximum-distance separable, and, moreover, admit a strengthened
proximity-gap result—due to Ben-Sasson, Carmon, Ishai, Kopparty, and Saraf [Ben+23]—which improves
upon the best currently-available analogues proven for general linear codes.

We propose two concrete polynomial commitment schemes over F2, both based on Brakedown. We
recall that Brakedown works at a high level by shaping the polynomial coefficients into a two-dimensional
matrix, encoding it row-wise, and then randomly sampling and testing columns for proximity to the code
and consistency with prover-supplied messages. One option for an F2-multilinear polynomial commitment is
Brakedown, instantiated with a concatenated code constructed from a Reed–Solomon outer code and an inner
code small enough to be selected by brute force. Targeting prover efficiency and implementation simplicity,
we propose a second option that generalizes Brakedown but which permits the use of Reed–Solomon codes
alone, using a technique we call block-level encoding. The idea is inspired by the concatenated code approach,
but simplifies both the proving and verification procedures by omitting the step of applying an inner code.
The idea is to pack elements of the encoded message into extension field elements, encode them with a
Reed–Solomon code, and then randomly sample and test blocks of contiguous columns from the encoded
matrix—which together form the Reed–Solomon symbols from the extension field—rather than sampling
and testing individual columns. This may come at the expense of slightly larger proof size and verifier cost
than the concatenated code method in certain cases, though we argue the advantages in implementation
simplicity make the tradeoff worthwhile.

With our block-level encoding technique, we attain the remarkable property of zero embedding overhead
in the commitment phase. That is, the cost of commiting a ν-variate multilinear polynomial t(X0, ..., Xν−1)
over F2 is nearly equivalent—aside from small data transposes—to that of committing a ν − κ-variate
polynomial t′(X0, . . . , Xν−κ) over the extension field F22κ , which contains the same quantity of information.
On the other hand, there is still an additional cost for proving evaluations of t versus t′, incurred by both
prover and verifier. There is also computational gap between a sumcheck over t and t′ stemming from the
fact that the sumcheck challenges come from a cryptographically-sized extension field, say F2128 . This latter
issue is ameliorated by certain optimizations available in the sumcheck proving algorithm that we discuss in
Section 4.2.

For this reason, we do not end our investigate of SNARKs over binary fields at F2. We push this approach
further by utilizing a full extension tower over F2, of the form F2 ⊂ F22 ⊂ F24 ⊂ F28 ⊂ · · · ⊂ F2128 . In this
manner, we introduce additional and novel flexibility at the arithmetization level to use finite fields that are
appropriately sized for the data types of the high-level program.

One example of the utility of tower fields at the arithmetization level is for constraint systems that verify
the Grøstl hash function [Gau+11]. Grøstl is a collision-resistant hash function that has undergone extensive
cryptanalysis and was a finalist candidate in the SHA-3 competition. The hash function’s design is based
on AES and uses the same Rijndael S-box as AES does. Like AES, Grøstl can be viewed as natively defined
over F28 and has an efficent arithmetization in constraint systems with native F28-operations. We believe
this makes Grøstl an attractive candidate hash function in the SNARK system presented here. Accordingly,
we expect low arithmetization overhead in recursively verifying SNARKs using the techniques presented
here when instantiated with Grøstl. We highlight this as a notable benefit over SNARKs over prime fields,
which rely on more recent, and less battle-tested, arithmetization-optimized hash functions, such as Poseidon
[Gra+19], for efficient recursive verification.

We find several further advantages to using binary field towers beyond the arithmetization layer. In
Subsection 2.3 below, we resurface an explicit, iterated construction of binary tower fields originally due
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to Wiedemann [Wie88]. This tower construction has some remarkable computational properties, which
were observed by Fan and Paar [FP97]; namely, multiplication and even inversion in the tower field F2k has
asymptotic complexity O(klog2 3), attained using Karatsuba techniques. Multiplication of field elements with
elements residing in a subfield has even better computational complexity, which we elaborate on in Section
2.3. Chen et al. [Che+18] exploit that property of tower fields to improve the performance of polynomial
multiplication in binary fields. In our performance evaluation in Section 6 below, we discuss the implications
of the recently introduced Intel Galois Field New Instructions (GFNI) instruction set extension on software
implementations targeting capable processors.

Our contributions. We summarize our contributions in this work as follows.

1. A formal definition of small-field polynomial commitment schemes. While small field tech-
nique already appear throughout various prior SNARKs—such as Plonky2 [Pol22] and RISC Zero
[BGT23]—the security of these schemes depends on a certain undocumented soundness property,
whereby the committed polynomial’s coefficients actually reside in the required ground field, as op-
posed to in the extension field from which the polynomial’s evaluation query is drawn. (See Definition
3.3.)

2. A proof that [DP23] achieves a small-field polynomial commitment scheme. Indeed, we
prove that the construction [DP23, Cons. 4.6]—with appropriate minor modifications—actually yields
a small-field scheme in the strong sense outlined above, and so provides “better-than-advertised”
security. (See Theorem 3.13.)

3. A generalization of [DP23], which uses block-level encoding. Our generalized construction
yields an efficient small-field polynomial commitment scheme, for F2-polynomials, which uses Reed–
Solomon codes, and which imposes zero embedding overhead during the commitment phase. (See
Subsection 3.4.)

4. An adaptation of PLONKish to the binary tower setting, and a SNARK for it. We adapt
the PLONKish arithmetization relation of HyperPlonk [Che+23, Def. 4.1] to our setting, and introduce
several modifications (most importantly, a generalized constraint system, defined over a tower of fields,
as opposed to just one). (See Subsection 5.1.)

5. An adaptation of the Lasso lookup argument [STW23b] to the binary tower setting.
Setty, Thaler and Wahby’s Lasso [STW23b] differs from prior lookup arguments—including that given
in HyperPlonk [Che+23, § 3.7]—in that it explicitly exploits the relative cheapness of committing
to small-valued elements. While the authors of [STW23b] highlight this benefit only in the setting of
elliptic curve-based polynomial commitments, we show how to capture it moreover in our tower setting.
(See Subsection 4.4.)

6. An efficient shift argument for polynomials over the boolean hypercube. That is, we define
an operator, which, on input a multivariate polynomial f , maps f to the multilinear extension of that
polynomial which takes the values of f on the hypercube at arbitrarily rotated points. This answers
an open problem posed in HyperPlonk (see [Che+23, p. 52] of the full version). (See Subsection 4.3.)

7. A performance evaluation of field arithmetic, the polynomial commitment scheme, and
the sumcheck protocol, in the tower setting. We moreover compare our software implemen-
tation to those of other state-of-the-art SNARKs based on prime fields. Our multilinear polynomial
commitment scheme can commit to a 228-coefficient F2-polynomial about 50-fold faster than plonky2’s
[Pol22] Goldilocks-based implementation of the FRI-PCS can, and about 150-fold faster than Hyrax
[Wah+18]. Even on 32-bit polynomials, our scheme achieves 35% and 15-fold advantages, respectively,
over these latter schemes. (See Section 6.)

8. An arithmetization of the Keccak-f [1600] permutation. This permutation resides at the core of
the Keccak-256 hash function enshrined in the Ethereum protocol, and represents a key a bottleneck
facing attempts to prove statements about the Ethereum blockchain. (See Appendix A.)
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2 Background and Notation

We write N for the set of nonnegative integers. For sets S and T , we write ST for the set of maps T → S.
Below, we require that all fields be finite. We fix an arbitrary finite field K (though do focus on the case when
K is of characteristic 2). For each ν ∈ N, we write Bν for the ν-dimensional boolean hypercube {0, 1}ν ⊂ Kν .
We occasionally identify Bν with the integer range {0, . . . 2ν − 1} lexicographically; that is, we identify each

v = (v0, . . . , vν−1) in Bν with the integer
∑ν−1
i=0 2i · vi, and moreover write {v} for this latter integer.

2.1 Polynomials

We recall certain basic facts pertaining to multivariate polynomials, referring throughout to Thaler [Tha22,
§ 3.5]. We recall the ring K[X0, . . . , Xν−1] of ν-variate polynomials over K. We write K[X0, . . . , Xν−1]

⪯d

for the set of ν-variate polynomials over K of individual degree at most d in each variable. Multilinear poly-
nomials are multivariate polynomials of individual degree at most 1 in each variable (see [Tha22, Def. 3.4]);
the set of all such polynomials is K[X0, . . . , Xν−1]

⪯1. A degree-d multivariate extension of a map f ∈ KBν

is a polynomial f̂ ∈ K[X0, . . . , Xν−1]
⪯d for which f̂(x) = f(x) holds for each x ∈ Bν .

Each map f ∈ KBν admits a unique degree-1 multivariate extension f̂ ∈ K[X0, . . . , Xν−1]
⪯1 (see [Tha22,

Fact 3.5]). We thus refer freely to the degree-1 multivariate extension of f ; we write f̃ for this polynomial and
call it f ’s multilinear extension (MLE). We recall the equality indicator function eq : Bν×Bν → Bν , (x, y) 7→
x

?
= y, as well as its MLE, the equality indicator polynomial (see [Tha22, Lem. 3.6]):

ẽq(X0, . . . , Xν−1, Y0, . . . , Yν−1) =

ν−1∏
i=0

Xi · Yi + (1−Xi) · (1− Yi).

For each f ∈ KBν , we have the following explicit representation of f ’s multilinear extension f̃ ∈
K[X0, . . . , Xν−1]

⪯1:

f̃(X0, . . . , Xν−1) =
∑
v∈Bν

f(v) · ẽq(v0, . . . , vν−1, X0, . . . , Xν−1).

The proof that f̃ is f ’s multilinear extension is straightforward (see [Tha22, Lem. 3.6], for example).
For each fixed (r0, . . . , rν−1) ∈ Kν , the vector (ẽq(v0, . . . , vν−1, r0, . . . , rν−1))v∈Bν takes the form(

ν−1∏
i=0

vi · ri + (1− vi) · (1− ri)

)
v∈Bν

= ((1− r0) · · · · · (1− rν−1), . . . , r0 · · · · · rν−1).

We call this vector the tensor product expansion of the point (r0, . . . , rν−1) ∈ Kν , and denote it by
⊗ν−1

i=0 (1−
ri, ri). We note the recursive description

⊗ν−1
i=0 (1− ri, ri) = (1− r0) ·

⊗ν−1
i=1 (1− ri, ri) ∥ r0 ·

⊗ν−1
i=1 (1− ri, ri).

This description yields a Θ(ν)-time algorithm which computes
⊗ν−1

i=0 (1− ri, ri) (see e.g. [Tha22, Lem. 3.8]).

2.2 Error-Correcting Codes

We adapt the notation of [DP23, § 2]. A code of block length n over the alphabet Σ is a subset of Σn. In Σn,
we write d for the Hamming distance between two vectors (i.e., the number of components at which they
differ). We again fix a field K. A linear code over K is a linear subspace of Kn. An [n, k, d]-code C ⊂ Kn

is a k-dimensional linear subspace of Kn for which each pair of unequal elements v0 and v1 of C satisfies
d(v0, v1) ≥ d.
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Given a linear code C ⊂ Kn and an integer m ≥ 1, we have C’s m-fold interleaved code, defined as the
subset Cm ⊂ (Kn)

m ∼= (Km)
n
. We understand this latter set as a length-n block code over the alphabet

Km. In particular, its elements are naturally identified with those matrices in Km×n each of whose rows is
a C-element. We write matrices (ui)

m−1
i=0 ∈ Km×n row-wise. By definition of Cm, two matrices in Km×n

differ at a column if they differ at any of that column’s components. That a matrix (ui)
m−1
i=0 ∈ Km×n is

within distance e to the code Cm—in which event we write dm
(
(ui)

m−1
i=0 , Cm

)
≤ e—thus entails precisely

that there exists a subset D := ∆m
(
(ui)

m−1
i=0 , Cm

)
, say, of {0, . . . , n − 1}, of size at most e, for which, for

each i ∈ {0, . . . ,m−1}, the row ui admits a codeword vi ∈ C for which ui|{0,...,n−1}\D = vi|{0,...,n−1}\D. We

emphasize that the subset D ⊂ {0, . . . , n− 1} is fixed, and does not vary as the row-index i ∈ {0, . . . ,m− 1}
varies. In this circumstance, following the terminology of [Ben+23], we say that the vectors (ui)

m−1
i=0 feature

correlated agreement outside of the set D, or that they feature e-correlated agreement. We note that the
condition whereby the vectors (ui)

m−1
i=0 feature e-correlated agreement with Cm implies a fortiori that every

element in (ui)
m−1
i=0 ’s row-span is itself within distance at most e from C.

We recall Reed–Solomon codes. For K again fixed, S = {s0, . . . , sn−1} a subset of K, and a mes-
sage length k ≤ n, the Reed–Solomon code RSK,S [n, k] is defined as the subset C := RSK,S [n, k] ={
(p(s0), . . . , p(sn−1))

∣∣ p(X) ∈ K[X]<k
}
. In words, RSK,S [n, k] is the set of n-tuples which arise as the

evaluations, over the n points of S, of some polynomial p(X) ∈ K[X] of degree less than K. Here, we
identify K[X]<k with Kk using the monomial K-basis 1, X, . . . ,Xk−1 of K[X]<k. The code RSK,S [n, k] is
of distance d = n − k + 1 (see e.g. Guruswami [Gur06, Def. 2.3]). Lin, Chung, and Han show in recent
work [LCH14] that, for K a binary field and S ⊂ K an appropriately chosen F2-affine linear subspace, the
encoding function of RSK,S [n, k]—or at least of a code isomorphic to it—can be computed in Θ(n · log k)
time. (The code C ⊂ Kn of [LCH14] differs from RSK,S [n, k] by precomposition with a K-isomorphism on
Kk, and so inherits RSK,S [n, k]’s properties in full.)

2.3 Binary Towers

In this subsection, we review towers of field extensions. Throughout the rest of this subsection, we restrict
to the setting of characteristic 2.

The following explicit construction of a tower over F2 is due to Wiedemann [Wie88], and appears
also in Cohen [Coh92] and Fan and Paar [FP97], for example; we refer the reader to Blake, Gao,
Mullin, Vanstone and Yaghoobian [Bla+93, § 3.4] for further historical remarks. We define a sequence
of rings inductively, by setting T0 := F2, T1 := F2[X0]/

(
X2

0 +X0 + 1
)
, and, for each ι > 1, Tι :=

Tι−1[Xι−1]/
(
X2
ι−1 +Xι−2 ·Xι−1 + 1

)
. It is shown in [Wie88, Thm. 1] that, for each ι > 1, the polyno-

mial X2
ι−1 +Xι−2 ·Xι−1 +1 is irreducible in Tι−1[Xι−1]. We conclude by induction that, for each ι ≥ 0, the

ring Tι is a field, isomorphic precisely to F22ι .
For each ι > 0, we naturally realize Tι−1 as a subfield of Tι, corresponding to (the equivalence classes of)

the constant polynomials. Applying induction, we obtain a natural tower construction T0 ⊂ T1 ⊂ · · · ⊂ Tι.
Moreover, for each ι ≥ 0, we have a straightforward identification of rings:

Tι = F2[X0, . . . , Xι−1]/
(
X2

0 +X0 + 1, . . . , X2
ι−1 +Xι−2 ·Xι−1 + 1

)
.

This identification respects the tower structure in the obvious way; indeed, Tι−1 ⊂ Tι is precisely the subring
consisting of the equivalence classes of those polynomials in which only the variables X0, . . . , Xι−2 appear.

It follows—say, from Gröbner basis considerations—that, for each ι ≥ 0, each equivalence class in Tι has a
unique multilinear representative. We conclude that the set of monomials 1, X0, X1, X0 ·X1, . . . , X0 · · · ·Xι−1
gives a basis of Tι as an F2-vector space; we call this basis the multilinear basis. For each v ∈ Bι, with
boolean components (v0, . . . , vι−1), say, we write βv :=

∏ι−1
i=0(vi ·Xi + (1− vi)); that is, βv is that basis

vector corresponding to the product of precisely those indeterminates among the list X0, . . . , Xι−1 indexed
by v’s components. Slightly abusing notation, we occasionally write β0, . . . , β2ι−1 for this latter basis; in
other words, we define β{v} := βv, where we again identify {v} =

∑ι−1
i=0 vi · 2i.

More generally, for each pair of integers ι ≥ 0 and κ ≥ 0, the set 1, Xι, Xι+1, Xι ·Xι+1, . . . , Xι · · · · ·Xι+κ−1
likewise gives a Tι-basis of Tι+κ; we again write (βv)v∈Bκ for this latter basis. That is, for each v ∈ Bκ, we
write βv :=

∏κ−1
i=0 (vi ·Xι+i + (1− vi)).

6



We briefly survey the efficiency of tower-field arithmetic. In practice, we represent all Tι-elements in
coordinates with respect to the multilinear F2-basis, which we moreover sort in lexicographic order. In
particular, each Tι-element α admits a length-2ι coordinate vector α = (a0, . . . , a2ι−1), with components in
F2; we note, in light of our lexicographic basis-ordering, that this vector’s 0th and 1st halves α0 and α1 define
Tι−1-elements for which α = α1 ·Xι−1 + α0 in fact holds.

Throughout, addition amounts to bitwise XOR.We multiply Tι-elements in the following way. To multiply
the elements α1 ·Xι−1+α0 and α′1 ·Xι−1+α′0 of Tι, say, we first use the Karatsuba technique—that is, we use
three recursive multiplications in Tι−1—to obtain the expression α1 ·α′1 ·X2

ι−1+(α0 ·α′1+α1 ·α′0)·Xι−1+α0 ·α′0.
We then reduce this latter polynomial by subtracting α1 · α′1 ·

(
X2
ι−1 +Xι−2 ·Xι−1 + 1

)
from it; this step

itself entails computing the product α1 · α′1 ·Xι−2 in Tι−1.
It is shown by Fan and Paar [FP97, § III] that, in the Wiedemann tower, each such “constant

multiplication”—that is, each multiplication of a Tι-element by the constant Xι−1—can be carried out
in linear time Θ(2ι). In light of this fact, and using the “master theorem” for recurrence relations (see e.g.
Cormen, Leiserson, Rivest, and Stein [Cor+22, Thm. 4.1]), we conclude that this recursive, Karatsuba-based
approach features complexity Θ

(
2log 3·ι) (we refer also to [FP97, § IV] for a thorough analysis).

We finally record a further key property, whereby field-elements may be multiplied by subfield -elements
especially efficiently. In slightly more detail, the complexity of multiplying a Tι-element by a Tι+κ-element
grows just linearly in the extension degree of Tι+κ over Tι. We express this precisely as follows. For each
element α ∈ Tι+κ, with coordinate representation (av)v∈Bκ with respect to the multilinear Tι-basis of Tι+κ,
say, and each scalar b ∈ Tι, the representation of b · α with respect to this basis is (b · av)v∈Bκ . We conclude

that the multiplication of a Tι+κ-element by a Tι-element can be carried out in 2κ · Θ
(
2log 3·ι) time. This

property—that is, that whereby elements of differently-sized fields can be efficiently multiplied—has been
noted by previous authors; we refer for example to Bernstein and Chou [BC14, § 2.4].

Comparison with classical binary fields. We contrast this work’s tower-based approach with the
classical, univariate treatment of binary fields. Informally, towers feature both efficient embeddings and
efficient small-by-large multiplications; classical binary fields lack both of these properties. We record the
details. For fι(X) ∈ F2[X] irreducible of degree 2ι, the quotient ring F2[X]/(fι(X)) is isomorphic to F22ι ,
and admits the F2-basis 1, X, . . . ,X2ι−1, which we call the (univariate) monomial basis. We again fix ι and
κ in N. Clearly, on the level of abstract fields, we have an embedding F22ι ↪→ F22ι+κ (in fact, we have 2ι

choices, by Galois-theoretic considerations). Identifying these objects with F2ι

2 and F2ι+κ

2 , respectively—by

means of their monomial bases—our embedding induces a mapping F2ι

2 ↪→ F2ι+κ

2 of F2-vector spaces. What
is the bit-complexity of this mapping? When F22ι and F22ι+κ are constructed as univariate quotients, the
answer is, “it’s complicated”. (Informally, given a0+ · · ·+a2ι−1 ·X2ι−1, how do we determine the coefficients
of its image in F22ι+κ ?) Obviously, using binary matrix multiplication, one can do no worse than O(22·ι+κ)
bit-operations. Given irreducible polynomials fι(X) and fι+κ(X) sufficiently carefully chosen, one may be
able to do better; we refer to Bosma, Cannon and Steel [BCS97] for a thorough treatment of this issue.

In our tower setting, the embedding Tι ↪→ Tι+κ of fields again induces—via these fields’ respective

multilinear bases—a mapping F2ι

2 ↪→ F2ι+κ

2 of F2-vector spaces. This latter mapping, on the other hand,
is free! Indeed, it amounts to a trivial zero-padding operation. In the language of [BCS97], our tower
construction yields a lattice of compatibly embedded fields (though our “lattice” is in fact totally-ordered,
since we treat only power-of-2-degree extensions).

A similar issue affects the multiplication of F22ι+κ -elements by F22ι -elements. Indeed, to multiply an
element α ∈ F22ι+κ by b ∈ F22ι , say (and in fact, even to give sense to this operation), one could fix a
particular embedding F22ι ↪→ F22ι+κ , and multiply α by b’s image under this embedding. The cost of
this operation, however, would be—beyond that of embedding b—the same as a that of a standard F22ι+κ -
multiplication; in other words, it would fail to exploit the fact that b comes from the subfield F22ι ⊂ F22ι+κ .
Alternatively, we could pick an arbitrary F22ι -basis of F22ι+κ , express α = (a0, . . . , a2κ−1) in coordinates
with respect to this basis, multiply α by b componentwise, and finally convert the result back, let’s say.
This approach, however, would require two conversion operations, which could each cost as many as Ω(22·κ)
(i.e., quadratically many) F22ι -operations in the worst case. The first insight underlying our tower approach,
in fact, is that by representing F22ι+κ continually in coordinates with respect to some F22ι -basis, we may
avoid these conversions. This is exactly what we do; more precisely, our multilinear basis serves this purpose
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simultaneously for each possible intermediate field, and never requires conversions.

3 Small-Field Polynomial Commitments

In this section, we introduce small-field polynomial commitment schemes, and moreover supply several instan-
tiations based on binary tower fields. In Subsection 3.2 below, we define the basic cryptographic abstraction.
We then instantiate this abstraction in two different ways. In Subsection 3.3 below, we outline a “simple”
instantiation, suitable for polynomials whose coefficient field coincides with the alphabet of an available
code. In Subsection 3.4 below, we introduce a further variant, designed to support the commitment of
polynomials over fields even smaller than the alphabet of the code selected for use. Both schemes follow the
Brakedown-inspired scheme of Diamond and Posen [DP23, § 4], with appropriate adaptations.

We are motivated in Subsection 3.4 by the goal of committing to polynomials over very small fields
(like F2) while, simultaneously, making use of the Reed–Solomon code over larger alphabets (like F216). In
Subsection 3.4, we attain this goal, in a way, no less, which imposes essentially no overhead beyond that
inherent to, say, the commitment of an F216 -polynomial of equal size in bits. In other words, we pay only
for the size, in bits, of our polynomial at hand, regardless of the size of its field of definition.

3.1 The Extension Code

Before proceeding, we pause to record a certain key coding-theoretic construction, which figures prominently
in what follows. Informally, given some fixed code, with symbols in a field, our construction “lifts” the
code to one with symbols in a vector space over that field. The resulting object inherits many of the same
properties—most essentially, the distance—of the original code.

Definition 3.1. We fix a [n, k, d]-code C ⊂ Kn, with generator matrix M ∈ Kn×k, say, as well as a K-vector

space V over K. The extension code Ĉ ⊂ V n of C is the image of the map V k → V n which sends t 7→M · t.

In other words, the code Ĉ ⊂ V n simply reuses C’s generator matrix; we note that the action of a
K-matrix on a V -vector is well-defined.

The object Ĉ ⊂ V n isn’t, strictly speaking, a linear code; indeed, its symbols take values in V , which is
not (in general) a field. On the other hand, Ĉ inherits C’s distance, as the following theorem shows:

Theorem 3.2. The extension code Ĉ ⊂ V n has distance d, in the sense that each pair of unequal elements
u0 and u1 of Ĉ satisfies d(u0, u1) ≥ d.

Proof. We write η for the dimension of V over K, and fix a K-basis (α0, . . . , αη−1) of V , as well as two
unequal messages t0 and t1 in V k. Expressing these messages’ components in coordinates with respect to
the this basis, we obtain corresponding vectors t0,h and t1,h, in Kk, for each index h ∈ {0, . . . , η − 1}. Our
hypothesis t0 ̸= t1 implies that, for at least one index h∗ ∈ {0, . . . , η − 1}, the slices t0,h∗ and t1,h∗ are

unequal as elements of Kk. Since Ĉ’s generator matrix consists of K-elements, the encodings u0 := Enc(t0)
and u1 := Enc(t1) of t0 and t1 are themselves given, slice-wise, by the respective encodings of the slices

(t0,h)
η−1
h=0 and (t1,h)

η−1
h=0. We conclude that the slices u0,h∗ and u1,h∗ , viewed as elements of Kn, differ at at

least d positions, and thus finally that the elements u0 and u1 of V n also do. We see that the distance of Ĉ
is at least d. Conversely, we may easily construct unequal codewords in V n of distance exactly d. Indeed,
given unequal messages t0 and t1 in Kk whose encodings differ at exactly d positions, we embed both t0 and
t1 componentwise into V along the basis vector α0. We see that the resulting messages’ encodings u0 and
u1 in V n differ at exactly d positions; indeed, their discrepancies all arise from their respective 0th-indexed
slices, since these codewords’ positive-indexed slices are all identically zero. This completes the proof.

As V isn’t necessarily itself a field, Ĉ’s “dimension” k over V is of course not well-defined in general; we
note, however, that Ĉ is k-dimensional over V whenever V / K is a degree-η field extension.
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3.2 Definition of Small-Field Polynomial Commitment Schemes

We now define small-field polynomial commitment schemes, adapting [DP23, Defs. 4.1–4.3], which themselves
closely follow Setty [Set20, § 2.4]. Our adaptation requires that each multilinear polynomial t(X0, . . . , Xℓ−1)
at hand reside in K[X0, . . . , Xℓ−1], for a user-specified field K, allowed to be arbitrarily small. On the
other hand, we allow each evaluation query point (r0, . . . , rℓ−1) ∈ Lℓ, as well as each claimed evaluation
result s ∈ L, to be defined over an extension L / K of K. Thus, in short, Definition 3.3 below furnishes a
commitment scheme for polynomials over small fields, which can nonetheless be queried at points over large
extension fields of the polynomial’s field of definition.

Definition 3.3. A small-field multilinear polynomial commitment scheme is a tuple of algorithms Π =
(Setup,Commit,Open,Prove,Verify), with the following syntax:

• params ← Π.Setup(1λ, ℓ,K). On input the security parameter λ, a size parameter ℓ, and a field K,
Π.Setup samples params, which includes (possibly among other things) a field extension L / K.

• (c, u) ← Π.Commit(params, t). On input a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1, Π.Commit returns a commitment c to t, together with an opening hint u.

• b ← Π.Open(params, c; t, u). On input a commitment c, a multilinear polynomial t(X0, . . . , Xℓ−1) ∈
K[X0, . . . , Xℓ−1]

⪯1, and an opening hint u, Π.Open verifies the claimed decommitment t of c, using u.

• π ← Π.Prove(params, c, s, (r0, . . . , rℓ−1); t, u). On input a commitment c, a purported evaluation s ∈ L,
an evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, a multilinear polynomial t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]

⪯1,
and an opening hint u, Π.Prove generates an evaluation proof π.

• b ← Π.Verify(params, c, s, (r0, . . . , rℓ−1), π). On input a commitment c, a purported evaluation s, an
evaluation point (r0, . . . , rℓ−1) ∈ Lℓ, and a proof π, Π.Verify outputs a success bit b ∈ {0, 1}.

We note that, for Π to be efficiently computable, it’s necessary that ℓ = O(log λ), as well as that the
sizes log(|K|) and log(|L|) grow at most polynomially in λ. We assume as much throughout what follows.

We define the security properties binding and extractability, for small-field multilinear polynomial commit-
ment schemes, following [DP23, Def. 4.2] and [DP23, Def. 4.3], respectively, with various minor modifications.

Definition 3.4. For each small-field multilinear polynomial commitment scheme Π, size parameter ℓ, input
field K, and PPT adversary A, we define the binding experiment BindingΠ,ℓ,KA (λ) as follows:

1. The experimenter samples params← Π.Setup(1λ, ℓ,K), and gives params to A.

2. The adversary outputs (c, t0, t1, u0, u1)← A(params), where c is a commitment, t0(X0, . . . , Xℓ−1) and
t1(X0, . . . , Xℓ−1) are multilinear polynomials in K[X0, . . . , Xℓ−1]

⪯1, and u0 and u1 are opening hints.

3. The output of the experiment is defined to be 1 if t0 ̸= t1, Π.Open(params, c; t0, u0), and
Π.Open(params, c; t1, u1) all hold; otherwise, it is defined to be 0.

The small-field multilinear polynomial commitment scheme Π is binding if, for each PPT adversary A, there
is a negligible function negl(λ) for which, for each security parameter λ ∈ N and each choice of ℓ and K, it

holds that Pr
[
BindingΠ,ℓ,KA (λ)

]
≤ negl(λ).

Definition 3.5. For each small-field multilinear polynomial commitment scheme Π, security parameter λ,
values ℓ and K, PPT query sampler Q, PPT adversary A, expected PPT emulator E , and PPT distinguisher
D, we define two random variables RealΠ,ℓ,KQ,A,E,D(λ) and EmulΠ,ℓ,KQ,A,E,D(λ), each valued in {0, 1}, as follows:

1. The experimenter samples params← Π.Setup(1λ, ℓ,K), and gives params to A, Q and E .

2. The adversary outputs a commitment c← A(params).

3. The query sampler outputs (r0, . . . , rℓ−1)← Q(params).

4. The experimenter proceeds in one of two separate ways:
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• RealΠ,ℓ,KQ,A,E,D(λ): Run (s, π)← A(r0, . . . , rℓ−1). Output the single bit D(c, s, π).

• EmulΠ,ℓ,KQ,A,E,D(λ): Run (s, π; t, u) ← EA(r0, . . . , rℓ−1). Output the single bit D(c, s, π) ∧
(Π.Verify(params, c, s, (r0, . . . , rℓ−1), π) =⇒ (Π.Open(params, c; t, u) ∧ t(r0, . . . , rℓ−1) = s)).

The small-field multilinear polynomial commitment scheme Π is extractable with respect to the query sampler
Q if, for each PPT adversary A, there is an expected PPT emulator E such that, for each PPT distinguisher

D, the distributions
{
RealΠ,ℓ,KQ,A,E,D(λ)

}
(ℓ,K),λ∈N

and
{
EmulΠ,ℓ,KQ,A,E,D(λ)

}
(ℓ,K),λ∈N

are statistically close.

We note that, critically, the polynomial t(X0, . . . , Xℓ−1) extracted by E must reside in K[X0, . . . , Xℓ−1],
by definition of Π.Open.

The following definition is analogous to [DP23, Def. 4.4]; we refer to [DP23, Rem. 4.5] for further discus-
sion of this definition.

Definition 3.6. The query sampler Q is admissible if, for each λ, ℓ and K, and each parameter set params←
Π.Setup(1λ, ℓ,K), containing L/K, say, the evaluation point (r0, . . . , rℓ−1)← Q(params) is uniform over Lℓ.

3.3 Basic Small-Field Construction

We now give our simple small-field construction. This construction generalizes [DP23, Cons. 4.6], so as to
make that scheme instantiate the small-field abstraction of Definition 3.3. In our generalization, we allow the
polynomial’s coefficient field and the code’s alphabet to be sub-cryptographically sized, though we require
that these fields be equal to each other (compare Subsection 3.4 below). We obtain security by the means
of a cryptographically sized field extension. Our construction closely follows [DP23, Cons. 4.6], making only
minor modifications throughout.

Construction 3.7 (Simple small-field polynomial commitment scheme).
We define Π = (Setup,Commit,Open,Prove,Verify) as follows.

• params← Π.Setup(1λ, ℓ,K). On input 1λ, ℓ, and K, choose integers ℓ0 and ℓ1 for which ℓ0+ℓ1 = ℓ,
and write m0 := 2ℓ0 and m1 := 2ℓ1 . Return an extension field L / K for which |L| ≥ 2ω(log λ), an
[n,m1, d]-code C ⊂ Kn for which n = 2O(ℓ) and d = Ω(n), and a repetition parameter ρ = Θ(λ).

• (c, u) ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, express t =

(t0, . . . , t2ℓ−1) in coordinates with respect to the Lagrange basis on {0, 1}ℓ, collate the result-

ing vector into an m0×m1 matrix (ti)
m0−1
i=0 , and encode (ti)

m0−1
i=0 row-wise, so obtaining a further

matrix (ui)
m0−1
i=0 . Output a Merkle commitment c to (ui)

m0−1
i=0 and the opening hint u := (ui)

m0−1
i=0 .

• b ← Π.Open(params, c; t, u). On input t(X0, . . . , Xℓ−1) ∈ K[X0, . . . , Xℓ−1]
⪯1, opening hint

(ui)
m0−1
i=0 , and commitment c, verify that (ui)

m0−1
i=0 Merkle-hashes to c. Collate t into a matrix

(ti)
m0−1
i=0 , encode the resulting matrix row-wise, and verify that dm0

(
(Enc(ti))

m0−1
i=0 , (ui)

m0−1
i=0

)
?
< d

3 .

We define Π.Prove and Π.Verify by applying the Fiat–Shamir heuristic to the following interactive
protocol, where P has t(X0, . . . , Xℓ−1) and (ui)

m0−1
i=0 , and P and V have c, s ∈ L, and (r0, . . . , rℓ−1) ∈ Lℓ.

• P sends V the matrix–vector product t′ :=
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (ti)m0−1

i=0 in the clear.

• For each i ∈ {0, . . . , ρ− 1}, V samples ji ← {0, . . . , n− 1}. V sends P the set J := {j0, . . . , jρ−1}.

• P sends V the columns
{
(ui,j)

m0−1
i=0

}
j∈J

, each featuring an accompanying Merkle path against c.

• V computes Ênc(t′). For each j ∈ J , V verifies the Merkle path attesting to (ui,j)
m0−1
i=0 , and

moreover checks
⊗ℓ−1

i=ℓ1
(1−ri, ri)·(ui,j)m0−1

i=0

?
= Ênc(t′)j . Finally, V requires s

?
= t′·

⊗ℓ1−1
i=0 (1−ri, ri).
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In the very last step, we write Ênc for the encoding function of the natural extension code Ĉ ⊂ Ln (see
Section 2).

Though Construction 3.7 is both binding and extractable, we refrain from proving as much; instead, we
defer our proofs of security to Subsection 3.4 below. The proof of security of Construction 3.7 above can be
obtained by specializing that subsection’s scheme’s proof to the case κ := 0.

3.4 Block-Level Encoding

In this section, we describe a further variant of the polynomial commitment scheme given in Subsection 3.3
above, suitable for polynomials over fields smaller than the alphabet of the linear block code selected for
use. We refer throughout to Guruswami [Gur06].

The simple scheme given given in Construction 3.7 mandates the internal use of a code C ⊂ Kn over
the same field K as that passed into Π.Setup(1λ, ℓ,K). In other words, it requires that Π.Setup return
a code V whose alphabet K is identical to the coefficient field K of the commitment scheme’s message
space K[X0, . . . , Xℓ−1]

⪯1. This restriction presents no obstacle in theory, since constant-distance, constant-
rate families of codes exist even over arbitrarily small, fixed-size fields (this fact follows from the Gilbert–
Varshamov bound; see [Gur06, § 2.1]). Moreover, concretely good codes over small alphabets may be obtained
constructively using concatenated codes (see [Gur06, § 2.3]).

On the other hand, this restriction does preclude the use of “plain” Reed–Solomon codes in Construction
3.7, at least for certain ℓ and K; indeed, a Reed–Solomon [n, k, d]-code can exist only when |K| ≥ n. Reed–
Solomon codes remain attractive, however, for various practical reasons. They attain the Singleton bound,
and so maximally favorably negotiate the tension between distance and rate. Separately, they admit efficient
encoding algorithms. Specifically, each code RSK,S [n, k]’s encoding function Kk → Kn may be computed in
Θ(n · log k) time, at least for certain alphabets K and evaluation sets S ⊂ K. Crucially, we may number
among these favorable alphabets the fields K of characteristic 2, due to relatively recent work of Lin, Chung
and Han [LCH14] (in that work, the evaluation set S ⊂ K is an F2-affine linear subspace of K). We specialize
from this point onwards to the binary tower setting (see Subsection 2.3).

Concatenated codes. In order to develop certain intuitions essential to our packing scheme, we first
examine the effect of instantiating Construction 3.7, as written, on a concatenated code. A concatenated
code C ⊂ T nι is defined in terms of an outer [nout, kout, dout]-code Cout ⊂ T nout

ι+κ , say, where κ ∈ N, and an
inner [nin, kin, din]-code Cin ⊂ T nin

ι , where here we require kin = 2κ. The resulting concatenated code is
an [n, k, d]-code over C ⊂ T nι , where here we write n := nout · nin, k := kout · kin, and d := dout · din (we
refer to [Gur06, § 2.3] for further details). For example, upon concatenating the outer [215, 214, 214+1]-code
RST4 [2

15, 214] over T4 with the inner [25, 24, 23]-code RMT0 [2, 5] over T0, we would obtain a [220, 218, 217+23]-
code over T0 (here, RMT0 [2, 5] denotes a Reed–Muller code).

The concatenated code construction requires that the inner code’s message space coincide with the outer
code’s alphabet. On the other hand, above, we leverage the natural identification T 2κ

ι
∼= Tι+κ of Tι-vector

spaces (see Subsection 2.3). In different words, we may interpret blocks of adjacent tower-field elements
as elements of a larger tower field. That is, given integers ι and κ in N, we may “pack” each block of 2κ

Tι-elements into a single Tι+κ-element.
We recall that the concatenated code C ⊂ T nι ’s encoding procedure entails the following steps:

• pack the initial message in T kι into a vector in T koutι+κ ,

• encode the resulting vector using the outer code Cout’s encoder, so obtaining a codeword in T nout
ι+κ ,

• unpack each individual symbol of the resulting codeword into a message, in T kinι , and finally

• encode each such message, using the inner code Cin, into a codeword in T nin
ι , and concatenate them.

Construction 3.7, upon being instantiated with a concatenated code C ⊂ T nι , and with the extension field
Tτ / Tι, say, would stipulate that the verifier perform the encoding operation attached to the corresponding

extension code Ĉ ⊂ T nτ . This code is clearly well-defined (we recall Subsection 3.1); on the other hand, its
encoding procedure is significantly more complicated than C’s is. We have already discussed above how one
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might pack blocks of 2κ Tι-elements into Tι+κ-elements; in contrast, the corresponding packing operation on
blocks of 2κ Tτ -elements is more subtle.

The subtlety arises from the interplay of the three fields Tι, Tι+κ, and Tτ . In a sense, the packing
operation operates over a different “dimension” than does the field extension Tτ / Tι; that is, it acts across
Tι-elements, instead of extending them. For the sake of intuition, we suggest imagining the parameterization
ι := 0, κ := 4, and τ := 7, as well as the concatenated code sketched above, throughout what follows.

Sketch of our approach. We explain the encoding procedure of a concatenated code’s extended code
in the following way. We define a certain data structure, which “packs” a number of Tι-elements into a
rectangular array. This data structure is depicted in Figure 1 below.

Aι,κ,τ2τ−ι

⟨1⟩ ⟨Y0⟩ ⟨Y0 · · · · · Yκ−1⟩

⟨1⟩

⟨Xι⟩

⟨Xι · · · · ·Xτ−1⟩

T τ

T ι+κ

2κ

Tι Tι · · · Tι

Tι

...
...

Tι · · · Tι


Figure 1: A depiction of our “tower algebra” data structure.

Figure 1 depicts an array of 2τ−ι rows and 2κ columns (where, again, each cell is a Tι-element). The
extended concatenated code’s encoding procedure stipulates that we first pack each block of 2κ consecutive
Tτ -elements into exactly such an array, that we then apply the outer code—whose alphabet is Tι+κ—row-wise,
and that, finally, we then apply the inner code, again row-wise, to each resulting array.

In pursuit of an even simpler construction, we simply omit the inner code—or equivalently, we use the
identity inner code—and use the Reed–Solomon outer code. Were we to apply Construction 3.7 näıvely
to this latter code, we would encounter a relatively inefficient verifier; indeed, this particular concatenated
code features a relative distance kin-fold worse than the simple Reed–Solomon code’s. Instead, though
we do omit the inner code, we compensate by decreeing that the verifier test entire packed blocks of the
prover’s committed matrix, instead of testing individual columns. Crucially, we no longer view our code’s
encoding procedure as a Tι-linear one; rather, our code’s “symbols” are, now, packed vectors of Tι-elements.
To resuscitate our security analysis—which itself depends fundamentally on the proximity gap phenomenon
exhibited by error-correcting codes—we must investigate in what sense the rows of our committed matrix
are, in fact, codewords of some different code. As it turns out, the array of Figure 1 can be endowed with a
certain algebraic structure—which we describe thoroughly throughout what follows—which, serving in the
capacity of the alphabet of a certain extension code, makes possible our adaptation of [DP23]’s security
analysis.

Interestingly, our block-level testing scheme achieves a proof size profile close to that which Construction
3.7 can attain even on a nontrivial concatenated code. (Comparing these approaches is of course difficult—
and in the limit, impossible—since the latter approach mandates the selection of an ad-hoc inner code for
each statement size. We opt simply to select the highest-distance known inner code for each statement size
we benchmark, and to avoid asymptotic comparisons.) At the same time, it’s significantly simpler, and
more efficient, for the prover. These observations affirm our contention that, taken in full, this section’s
construction represents a compelling tradeoff. Indeed, we seek first of all to deliver a highly efficient prover;
on the other hand, this measure imposes only a limited cost on the verifier. We thoroughly benchmark these
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schemes’ proof sizes in Table 1 below.

The tower algebra. We discuss, first informally and then precisely, two distinct multiplication operations,
defined on 2τ−ι× 2κ-sized arrays over Tι like that in Figure 1. To multiply the entire array by a Tι-element,
we may simply proceed cell-wise. We may moreover coherently define multiplication operations involving
elements of certain larger fields. For example, to multiply the entire array by a Tτ -element r ∈ Tτ , we
may interpret the array’s columns as Tτ -elements—respectively called γ0, . . . , γ2κ−1, say—and overwrite
γi ×= r for each column index i ∈ {0, . . . , 2κ − 1}. On the other hand, we may moreover interpret each
of the array’s rows as a Tι+κ-element. We thus further define multiplication by Tι+κ-elements; that is, to
multiply the entire matrix by an element s ∈ Tι+κ, we interpret the array’s rows as Tι+κ-elements—called
(ζ0, . . . , ζ2τ−ι−1), say—and overwrite ζi ×= s for each i ∈ {0, . . . , 2τ−ι − 1}.

This “dual view” of the array—that is, either as an array of 2κ Tτ -elements, with a Tτ -vector space struc-
ture or as an array of 2τ−ι Tι+κ-elements, with a Tι+κ-vector space structure—will prove crucial throughout
our exposition of the packing scheme. Essentially, our packing scheme entails packing Tι-elements “horizon-
tally”, into Tι+κ-elements, in order to encode them; in order to obtain cryptographic security, on the other
hand, we moreover extend them “vertically”, into Tτ -elements.

To make precise our packing scheme, we introduce a certain polynomial ring.

Definition 3.8. For parameters ι, κ, and τ in N, where τ ≥ ι, we define the tower algebra Aι,κ,τ as:

Aι,κ,τ := Tτ [Y0, . . . , Yκ−1]/
(
Y 2
0 +Xι−1 · Y0 + 1, Y 2

1 + Y0 · Y1 + 1, . . . , Y 2
κ−1 + Yκ−2 · Yκ−1 + 1

)
,

where we understand Xι−1 as a Tτ -element (and slightly abuse notation by letting X−1 := 1 if necessary).

We note that Aι,κ,τ admits a natural description as a 2κ-dimensional vector space over Tτ , via the basis
1, Y0, Y1, Y0 · Y1, . . . , Y0 · · · ·Yκ−1 (cf. the Tι-basis (βv)v∈Bκ of Tι+κ from Subsection 2.3). This basis gives

rise to an isomorphism aι,κ,τ : T 2κ

τ → Aι,κ,τ of Tτ -vector spaces, which we call the natural embedding. The
restriction of this embedding to its domain’s 0th factor Tτ ⊂ T 2κ

τ maps Tτ isomorphically to the subring
Aι,0,τ ⊂ Aι,κ,τ consisting of the constant polynomials in the indeterminates Y0, . . . , Yκ−1.

We understand the tower algebra in the following way. The formal variables Y0, . . . , Yκ−1 define “syn-
thetic analogues” of the variables Xι, . . . , Xι+κ−1, which would—upon being adjoined to Tι—yield the field
extension Tι ⊂ Tι+κ; moreover, these synthetic variables are designed to behave like their genuine analogues
(by means of the relations defining Aι,κ,τ ). In fact, this design gives rise to a certain key property of the
tower algebra, whereby the subring Aι,κ,ι ⊂ Aι,κ,τ consisting of those polynomials whose coefficients reside
exclusively in the subfield Tι ⊂ Tτ is precisely Tι+κ. We restate this essential property as follows:

Theorem 3.9. The restriction aι,κ,τ |T 2κ
ι

: T 2κ

ι → Aι,κ,τ of the natural embedding to the subset T 2κ

ι ⊂ T 2κ

τ

is an injection of Tι-vector spaces, whose image, the subring Aι,κ,ι ⊂ Aι,κ,τ , is isomorphic as a ring to Tι+κ.

Proof. Indeed, the subring Aι,κ,ι ⊂ Aι,κ,τ is easily seen to be identical to Tι+κ, albeit with the variables
Xι, . . . , Xι+κ−1 respectively renamed to Y0, . . . , Yκ−1.

We implicitly, and unambiguously, understand Aι,κ,τ as a Tι-vector space in the first part of the statement
of Theorem 3.9; indeed, this action arises from the subring Tι ⊂ Aι,κ,τ consisting of those constant polyno-
mials in the indeterminates Y0, . . . , Yκ−1 whose constant—i.e., only—term resides in the subfield Tι ⊂ Tτ .

On the other hand, Theorem 3.9 shows that, over certain fields strictly larger than Tι, the ring Aι,κ,τ
admits multiple—and incompatible—vector space structures, a fact which we now take pains to explain
carefully. Of course, Aι,κ,τ has an obvious Tτ -action—already noted above—coming from the subring Tτ ∼=
Aι,0,τ ⊂ Aι,κ,τ consisting of constant polynomials in the indeterminates Y0, . . . , Yκ−1. To distinguish this
subring from Theorem 3.9’s, we call it the constant subring throughout what follows. On the other hand,
Theorem 3.9 further realizes the field Tι+κ ∼= Aι,κ,ι ⊂ Aι,κ,τ as the subring consisting of those arbitrary-degree
polynomials in the indeterminates Y0, . . . , Yκ−1 whose coefficients, on the other hand, reside in Tι ⊂ Tτ . We
refer to Theorem 3.9’s subring, throughout what follows, as the synthetic subring. We take care below,
whenever we understand Aι,κ,τ as an algebra or as a vector space, to carefully specify the particular field,
and the particular vector space structure, that we intend. As a rule, whenever we speak of Aι,κ,τ as a
Tτ -algebra, we understand the constant subring ; whenever we speak of it as a Tι+κ-algebra, we understand
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the synthetic subring. (The constant and synthetic subrings appear in Figure 1 as the vertical and horizontal
shaded regions, respectively.)

We write (βv)v∈Bτ−ι for the multilinear Tι-basis of Tτ (i.e., for the basis 1, Xι, Xι+1, Xι ·Xι+1, . . . , Xι · · · · ·
Xτ−1; we refer again to Subsection 2.3). We finally note that (βv)v∈Bτ−ι simultaneously yields a Tι+κ-basis
of Aι,κ,τ—where we of course endow the latter ring with the synthetic Tι+κ-vector space structure—provided
that we identify each βv ∈ Tτ with the constant polynomial βv in the indeterminates Y0, . . . , Yκ−1.

For each ι, κ, and τ in N, each tower algebra Aι,κ,τ , and each standard [n, k, d]-code C ⊂ T nι+κ over
the alphabet Tι+κ, we recall the extension code construction of Definition 3.1. That is, in view of the
synthetic Tι+κ-vector space structure—i.e., that of Theorem 3.9—on Aι,κ,τ , C’s generator matrix induces a

map Ênc : Akι,κ,τ → Anι,κ,τ of Tι+κ-vector spaces; we write Ĉ ⊂ Anι,κ,τ for this map’s image. (Equivalently,
we may simply embed C’s generator matrix entry-wise along the subring Tι+κ ⊂ Aι,κ,τ of Theorem 3.9, and

view it as an Aι,κ,τ -matrix.) It is shown in Theorem 3.2 above that Ĉ ⊂ Anι,κ,τ has distance d. Importantly,

we note that Ênc is simultaneously Tτ -linear, where now we understand both Akι,κ,τ and Anι,κ,τ as Tτ -vector
spaces (via the constant embedding on each factor). To show this, we observe first that Ênc amounts to a
matrix–vector product over the ring Aι,κ,τ (where we again synthetically embed Tι+κ ⊂ Aι,κ,τ ). On the other
hand, any Tτ -linear combination of Akι,κ,τ -vectors can itself be expressed as a scalar–vector combination over

the ring Aι,κ,τ (where we now embed Tτ ⊂ Aι,κ,τ ). The Tτ -linearity of Ênc thus amounts to a distributive
matrix identity over Aι,κ,τ ; on the other hand, matrix multiplication is certainly distributive for arbitrary
commutative rings.

We finally prepare the ground for our packing construction by recording a proximity gap result—that
is, an analogue of [DP23, Thm. 3.1]—for tower algebras. In the below theorem, we give meaning to the

row-combination
⊗ℓ−1

i=ℓ1
(1 − ri, ri) · (ui)m0−1

i=0 by means of the constant Tτ -vector space structure on Aι,κ,τ .
The key difference between [DP23, Thm. 3.1] and Theorem 3.10 below, then, is that the code at hand has

symbols in the Tτ -vector space Aι,κ,τ , though the combination vector
⊗ℓ−1

i=ℓ1
(1− ri, ri) nonetheless still has

entries in the ground field Tτ .

Theorem 3.10 (Diamond–Posen [DP23, Thm. 3.1]). Fix an arbitrary [n, k, d]-code C ⊂ T nι+κ, with extended

code Ĉ ⊂ Anι,κ,τ , and a proximity parameter e ∈ {1, . . . ,
⌊
d−1
3

⌋
}. If elements u0, . . . , um0−1 of Anι,κ,τ satisfy

Pr
(rℓ1 ,...,rℓ−1)∈T

ℓ0
τ

d
[ ⊗ℓ−1

i=ℓ1
(1− ri, ri)

]
·

 u0

· · ·
um0−1

, Ĉ
 ≤ e

 > 2 · logm0 ·
e

|Tτ |
,

then dm0

(
(ui)

m−1
i=0 , Ĉm0

)
≤ e.

Proof. The proof goes through almost exactly as does that of [DP23, Thm. 3.1], with select modifications.
Indeed, we require only a substitute for the Schwartz–Zippel-based argument given in [DP23, Lem. 3.4]. In
our setting, each locus Cb,j ⊂ T ℓ0−1τ is, now, the vanishing locus in T ℓ0−1τ of a certain polynomial expression
in the variables (rℓ1 , . . . , rℓ−1), whose coefficients, on the other hand, reside in Aι,κ,τ (and moreover are
not all zero). Decomposing each such coefficient into a 2κ-tuple of Tτ -elements, using the natural Tτ -basis
1, Y0, Y1, . . . , Y0 · · · ·Yκ−1 of Aι,κ,τ , we see that the vanishing locus Cb,j is the intersection in T ℓ0−1τ of
2κ vanishing loci, each itself the vanishing locus of a certain combination of the ℓ0 − 1-variate, multilinear
Lagrange basis polynomials in the standard polynomial ring Tτ [Rℓ1 , . . . , Rℓ−2]. Moreover, at least one among
these latter combinations features a nonzero combination vector. Applying Schwartz–Zippel to all 2κ loci,
then, we see that at least one among these loci is bounded from above in mass by (ℓ0− 1) · e

|Tτ | , so that their

intersection also is. This completes the argument that µ(Cb,j) ≤ ℓ0−1
|Tτ | . We note that a identical adaptation,

in the univariate setting, must also be made to the proof of [DP23, Thm. 2.1]. Up to these adjustments, the
proof of [DP23, Thm. 3.1] otherwise goes through in our setting without change.

Our construction. We now define our packing-based construction, which adapts and extends Construc-
tion 3.7 above. Slightly restricting that construction’s signature, we require that K take the form Tι, for
some ι (and that Π.Setup directly accept the parameter ι, instead of K).
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Construction 3.11 (Block-level encoding-based polynomial commitment scheme).
We define Π = (Setup,Commit,Open,Prove,Verify) as follows.

• params← Π.Setup(1λ, ℓ, ι). On input 1λ, ℓ, and ι, choose integers ℓ0 and ℓ1 for which ℓ0 + ℓ1 = ℓ,
and write m0 := 2ℓ0 and m1 := 2ℓ1 . Return an integer κ ≥ 0, a tower height τ ≥ log(ω(log λ)), an[
n, m1

2κ , d
]
-code C ⊂ T nι+κ for which n = 2O(ℓ) and d = Ω(n), and a repetition parameter ρ = Θ(λ).

• (c, u) ← Π.Commit(params, t). On input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1, express t =

(t0, . . . , t2ℓ−1) in coordinates with respect to the multilinear Lagrange basis and collate the result

row-wise into an m0 ×m1 matrix (ti)
m0−1
i=0 . By grouping the column indices {0, . . . ,m1 − 1} into

2κ-sized chunks and, for each row, applying the natural embedding chunk-wise, realize (ti)
m0−1
i=0

as an m0 × m1

2κ matrix, with entries in Aι,κ,ι ⊂ Aι,κ,τ . Apply Ĉ’s encoding function row-wise to

each of (ti)
m0−1
i=0 ’s rows, so obtaining a further, m0 × n matrix (ui)

m0−1
i=0 , again with entries in

Aι,κ,ι ⊂ Aι,κ,τ . Output a Merkle commitment c to (ui)
m0−1
i=0 and the opening hint u := (ui)

m0−1
i=0 .

• b ← Π.Open(params, c; t, u). On input t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]
⪯1, opening hint

(ui)
m0−1
i=0 , and commitment c, verify that (ui)

m0−1
i=0 Merkle-hashes to c. Collate t into a matrix

(ti)
m0−1
i=0 , encode the resulting matrix as above, and verify that dm0

(
(Enc(ti))

m0−1
i=0 , (ui)

m0−1
i=0

)
?
< d

3 .

We define Π.Prove and Π.Verify by applying the Fiat–Shamir heuristic to the following interactive
protocol, where P has t(X0, . . . , Xℓ−1) and (ui)

m0−1
i=0 , and P and V have c, s, and (r0, . . . , rℓ−1) ∈ T ℓτ .

• P computes the matrix–vector product t′ :=
⊗ℓ−1

i=ℓ1
(1 − ri, ri) · (ti)m0−1

i=0 , here interpreting the

matrix (ti)
m0−1
i=0 as an unpacked, m0 ×m1 matrix with entries in Tι. P sends V t′ in the clear.

• For each i ∈ {0, . . . , ρ− 1}, V samples ji ← {0, . . . , n− 1}. V sends P the set J := {j0, . . . , jρ−1}.

• For each j ∈ J , P sends V the column (ui,j)
m0−1
i=0 , interpreted as a vector with entries in the

subring Aι,κ,ι ⊂ Aι,κ,τ , as well as an accompanying Merkle authentication path against c.

• First, V requires s
?
= t′ ·

⊗ℓ1−1
i=0 (1− ri, ri) (i.e., a simple dot-product over Tτ ). V then applies the

natural embedding to the Tτ -vector t′, chunk-wise, so realizing it as a length-m1

2κ vector with entries

in Aι,κ,τ , and finally encodes this latter vector, writing u′ := Ênc(t′), say. For each j ∈ J , V verifies

the Merkle path attesting to (ui,j)
m0−1
i=0 , and moreover checks

⊗ℓ−1
i=ℓ1

(1− ri, ri) · (ui,j)m0−1
i=0

?
= u′j ,

where we use the constant Tτ -action on Aι,κ,τ on the left, and the equality is one of Aι,κ,τ -elements.

We again require that ι ∈ O(log(λ)), lest the scheme fail to be efficiently computable; we moreover assume
that τ ≥ ι, so that the tower algebra Aι,κ,τ is well-defined. We note that the growth requirement τ ≥
log(ω(log λ)) captures precisely the condition whereby 1

|Tτ | is negligible in λ. Indeed, while requiring τ ≥
Ω(log λ), say, would more-than-guarantee our scheme’s asymptotic security, the more delicate allowance
τ ≥ log(ω(log λ)) in fact suffices, and moreover figures centrally in our sharp asymptotic efficiency analysis
below (see Theorem 3.14).

We emphasize that Construction 3.11’s setup routine Π.Setup returns a code C over the alphabet Tι+κ,
which—in general—is larger than the coefficient field Tι at hand. On the other hand, the efficiency of
Construction 3.11 is identical to that which Construction 3.7 above would feature if it were run on a Tι+κ-
matrix of size m0× m1

2κ . In other words, Construction 3.11 makes possible the use of a code over an alphabet
2κ-fold larger, say, than Tι, and yet simultaneously “compensates” for this expense by shrinking the prover’s
matrix.

Construction 3.11’s completeness amounts to the “commutativity” of a certain sequence of actions on the
Tι-matrix (ti)

m0−1
i=0 ; that is, (ti)

m0−1
i=0 either is combined, packed, and then encoded, or else is packed, encoded,

and then combined. Since the natural embedding is Tτ -linear, the first pathway’s combination and packing
operations can be interchanged. On the other hand, the interchangability of the combination and encoding

operations entails exactly the Tτ -linearity of Ênc, which we have already established above.
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We note that the security results below draw significantly from [DP23, § 4], and repeat certain swathes
of that work verbatim.

Theorem 3.12. The scheme of Construction 3.11 is binding.

Proof. Deferred to Appendix B.

Theorem 3.13. If the query sampler Q is admissible, then the scheme of Construction 3.11 is extractable.

Proof. Deferred to Appendix B.

3.5 Efficiency

In this subsection, we discuss the efficiency of Construction 3.11, with a view towards attaining certain
concrete soundness thresholds. We note that a somewhat more rudimentary treatment of this section’s
material appears in [DP23].

Verifier cost. Departing slightly from standard efficiency analyses, we analyze both proof size and verifier
runtime under one banner; indeed, we view both metrics as disparate aspects of a unified verifier cost. (This
approach comports well with the cost structure of Ethereum, say, in which each transaction’s calldata size
and verification complexity contribute jointly to its gas cost.) We define the relevant variables as follows:

• b: The cost, to the verifier, of each bit transmitted to it.

• Tι: The cost, to the verifier, of multiplying two Tι-elements.

• Tτ : The cost, to the verifier, of multiplying two Tτ -elements.

• Enc: The cost, to the verifier, of encoding a message in T m1/2κ

ι+κ .

• Hash. The cost, to the verifier, of hashing a single Tι+κ-element.

We recall that a Tτ -element and a Tι-element can be multiplied together with cost 2τ−ι · Tι. Finally, we
ignore throughout the cost of addition (which amounts to bitwise XOR).

We reckon the verifier’s costs as follows. The prover must transmit to the verifier the message t′, which
consists of m1 Tτ -elements, as well as the ρ m0-element columns (ui,j)

m0−1
i=0 , for j ∈ J , each valued in Tι+κ.

The total proof size is thus 2τ · m1 + 2ι+κ · m0 · ρ bits. Computationally, the verifier must first compute
the tensor-expansions

⊗ℓ1−1
i=0 (1 − ri, ri) and

⊗ℓ−1
i=ℓ1

(1 − ri, ri). Using the algorithm [Tha22, Lem. 3.8], the
verifier can compute these using m1 and m0 Tτ -multiplications, respectively. To encode the message t′, the
verifier must perform C ⊂ T nι+κ’s encoding operation 2τ−ι times. In addition, the verifier must perform
ρ · 2κ Tτ -by-Tι dot products, each of length m0. The total cost of these latter dot-products equals that of
m0 · ρ · 2κ · 2τ−ι Tι-multiplications. Finally, the verifier must perform ρ Merkle-path verifications. Each such
verification entails hashing a column of m0 Tι+κ-elements (as well as performing l1 further hash evaluations,
which we ignore).

Adding all of these components, we obtain the following total verifier costs:

• b: 2τ ·m1 + 2ι+κ ·m0 · ρ.

• Tι: m0 · ρ · 2τ−ι+κ.

• Tτ : m0 +m1.

• Enc: 2τ−ι.

• Hash. ρ ·m0.

We pause to record to the following fundamental asymptotic guarantee:

Theorem 3.14. For each fixed ι ∈ N, and arbitrary ℓ and λ in N, Construction 3.11 can be instantiated in

such a way as to impose verifier cost Õ
(√

λ · 2ℓ
)
, counting both bits transferred and bit-operations performed.
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Proof. Deferred to Appendix B.

We note that the analyses of both Brakedown [Gol+23, Thm. 1] and of Diamond and Posen [DP23, § 4]
measure only field-elements transferred and field-operations. Theorem 3.14 performs a sharper asymptotic
analysis; it shows that—provided that it chooses τ sufficiently carefully—Construction 3.11 in fact attains
square-root verifier efficiency, in both in the security parameter and the polynomial’s size, even at the level
of bits.

Concrete soundness. We identify and discuss, in concrete terms, the various sources of soundness error
which arise throughout Theorem 3.13. We refer throughout to the parameters d, n, ρ, ι, κ, τ , m0 and m1,
recalling their roles in Π.Setup.

• Tensor batching error ΞB. This is the probability, taken over the query sampler’s choice of

(r0, . . . , rℓ−1)← T ℓτ , that, though dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
≥ d

3 , we nonetheless have d
(
u′, Ĉ

)
< d

3 , where

we write u′ :=
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (ui)m0−1

i=0 . By Theorem 3.10 (see also Lemma B.1), ΞB ≤ 2 · ℓ0 · d
3·|Tτ | .

• Non-proximal per-query error ΞN . This is the probability, taken over the verifier’s choice of a

single index j ← {0, . . . , n − 1}, that, though d
(
u′, Ĉ

)
≥ d

3 , nonetheless u′j = Enc(t′)j holds. The

analysis of Lemma B.1 shows that ΞN ≤ 1− d
3·n .

• Proximal per-query error ΞP . This is the probability, taken over the verifier’s choice of a single

index j ← {0, . . . , n−1}, that, in the case d
(
u′, Ĉ

)
< d

3 but the message t′ ̸=
⊗ℓ−1

i=ℓ1
(1−ri, ri)·(ti)m0−1

i=0

is wrong, nonetheless u′j = Enc(t′)j holds. The analysis of Lemma B.2 shows that ΞP ≤ 1− 2·d
3·n .

Putting these three sources of error together, and following the analyses of Lemmas B.1 and B.2, we
define the protocol’s total soundness error as follows:

Ξ := Ξ(d, n, ρ, τ, ℓ0, ℓ1) = max(ΞB + ΞρN ,ΞρP ).

We justify this definition in the following way (in fact, this is a very rough summary of the proof of Theorem

3.13). We note that either the prover’s committed matrix (ui)
m0−1
i=0 satisfies dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
< d

3 or

it doesn’t. If it doesn’t, then the analysis of Lemma B.1 bounds the verifier’s acceptance probability from
above by ΞB + ΞρN . If it does, then the message list (ti)

m0−1
i=0 is well-defined, so that t′ is either correct or

it’s not; in the latter case, Lemma B.2 bounds the verifier’s probability of acceptance by ΞρP . Barring all of
these failure events, we indeed have that s = t(r0, . . . , rℓ−1). We note that we slightly simplify our treatment
here by analyzing Construction 3.11 as an IOP, and ignoring the runtime of the emulator E , as well as the
probability that E aborts on a successful proof (say, because it fails to extract (ui)

m0−1
i=0 ). This simplification,

in the setting of concrete analysis, is justified in Brakedown [Gol+23, p. 211], for example.
We define the bits of security obtained by Construction 3.11 as λ := − log(Ξ).

Case studies. In order to concretely assess the performance characteristics of Construction 3.11, we study
various instantiations of that scheme. For comparison, we also explore various approaches based on the
use of concatenated codes in Construction 3.7. In each the following examples, we set ι := 0 (that is, we
commit to F2-polynomials), as well as ℓ := 32, so that the total size of the polynomial at hand is 512 MiB.
Throughout each example, we attain 100 bits of security. To standardize the case studies’ respective prover
complexities, we consider only codes with the fixed relative rate γ := 1

4 .

Example 3.15 (Reed–Solomon code with block-level testing). We begin with the efficiency of Construction
3.11. We first remark that the alphabet size parameter κ := 4 makes available only those width parameters

ℓ1 at most 18; indeed, the Reed–Solomon requirement |K| ≥ n demands that |Tκ| = 22
κ ≥ 1

γ ·
2ℓ1

2κ , so that

2κ ≥ 2+ℓ1−κ. In fact, we set κ := 4, ℓ0 := 14 and ℓ1 := 18 (these choices yield the smallest possible proofs).
We thus have m1 = 218, k = 214, and n = 216. Setting τ := 7—and using d = n − k + 1 = 216 − 214 + 1 =
49,153—we compute ΞB ≤ 2 ·14 · d

3·2128 ≈ 2−109.193. Moreover, we compute the non-proximal per-query error
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ΞN ≤ 1− d
3·n ≈ 0.75 and the proximal per-query error ΞP ≤ 1− 2·d

3·n ≈ 0.5. Using a direct computation, we
see that the total soundness error Ξ of equation (3.5) drops below 2−100 just when the number of queries ρ
becomes 241 or greater. Using the expression for b given above, we compute directly the proof size of 11.531
MiB, or about 226.527 bits.

Example 3.16 (Concatenated code with trivial inner code). For reference, we compare Example 3.15 to the
construction whereby a trivial concatenated code—i.e., with Reed–Solomon outer code and identity inner
code—is used in Construction 3.7 (i.e., without block-level testing). We again set κ := 4, ℓ0 := 15 and
ℓ1 := 21. In this setting, the resulting binary code has distance d = 49,153 identical to the code of the above
construction; on the other hand, its message length k = 218 and block length n = 220 are both 2κ-fold higher.
We thus obtain the identical batching error ΞB ≈ 2−109.193; our non-proximal and proximal per-query errors,
on the other hand, are ΞN = 1− d

3·n ≈ 0.984 and ΞP = 1− 2·d
3·n ≈ 0.969. Again calculating directly, we see

that 4,402 queries are required to obtain 100 bits of soundness. This scheme’s queries, however, are each
16-fold cheaper than Example 3.15’s are; we obtain a total proof size of 12.598 MiB, or about 226.655 bits.

Example 3.17 (Nontrivial concatenated code). We finally examine the efficiency of Construction 3.7’s
instantiation on a nontrivial concatenated code (i.e., with nonidentity inner code). In order to run an
apples-to-apples comparison—i.e., between schemes whose prover costs are comparable—we set both our
inner code and outer code’s rates to be 1

2 , so that our concatenated code has rate 1
4 . Specifically, we set

κ := 4, and set Cout ⊂ T nout
4 to be the Reed–Solomon code RST4 [2

15, 214]; for Cin ⊂ T kin0 , we use the
Reed–Muller [32, 16, 8]-code RMT0 [2, 5]. (We note that 8 is actually the best possible distance that a binary
[32, 16]-code can attain; we refer to the database of Grassl [Gra].) We see that our concatenated code
satisfies k = 218 and n = 220, and has distance d = 8 · (214 + 1) = 131,080. We accordingly compute
ΞB ≤ 2 · 14 · d

3·2128 ≈ 2−107.778, as well as ΞN = 1− d
3·n ≈ 0.958 and ΞP = 1− 2·d

3·n ≈ 0.917. We calculate that
1,629 queries suffice to deliver 100 bits of soundness, and obtain a proof size of 7.182 MiB, or 225.844 bits.

Remark 3.18. We find it plausible that, in the setting of Example 3.15, the stronger proximity gap result of
Ben-Sasson, Carmon, Ishai, Kopparty, and Saraf [Ben+23, Thm. 1.4] could be brought to bear. Indeed, that
result guarantees that, in the Reed–Solomon setting, even for those proximity parameters e ∈ {0, . . . ,

⌊
d−1
2

⌋
}

allowed to range as high as the unique decoding radius, we nonetheless obtain a proximity gap, albeit with
the false witness probability n

Tτ slightly worse than that of e+1
|Tτ | guaranteed by [DP23, Thm. 2.1] (we refer

to [DP23, Rem. 3.7] for further comparison of these results). Of course, to apply that result to Example
3.15, we would need an analogue of Theorem 3.10 above; that is, we would need a result in the algebra
setting which adapts [Ben+23, Thm. 1.4], precisely as Theorem 3.10 adapts [DP23, Thm. 3.1]. While we feel
confident that such an adaptation should be possible, we have not undertaken it. If that adaptation were
available, then, in Example 3.15, we would obtain the rather better proof size of 50.5 MiB, or 228.658 bits.

We record selected proof size benchmarks in the below table. We record the benchmarks derived above,
which pertain to the case ℓ = 32 (so that the total data size is 512 MiB), as well as benchmarks for the
further case ℓ = 36 (corresponding to 8 GiB of total data).

Construction Used Num. Variables ℓ Parameters (ℓ0, ℓ1, κ) Proof Size (MiB)

Reed–Solomon with block-level testing. 32 (14, 18, 4) 11.531

(See Example 3.15.) 36 (15, 21, 5) 66.527

Reed–Solomon, assum. prox-gap
⌊
d−1
2

⌋
. 32 (14, 18, 4) 8.625

(See Remark 3.18.) 36 (15, 21, 5) 50.500

Concatenated code w/ ad-hoc inner code. 32 (14, 18, 4) 7.182

(See Example 3.17.) 36 (16, 20, 5) 33.063

Table 1: Proof size benchmarks.

In the final benchmark—that describing a concatenated code with κ := 5—we use the ad-hoc inner
[64, 32, 12]-code of Grassl [Gra+19] (this code is a subcode of an extended BCH code). As Grassl’s database

18



indicates, we are able neither to construct, nor to rule out the existence of, a binary [64, 32, 16]-code. The
existence of just such a code would further improve the benchmark given in the last row.

We present comprehensive benchmarks in Section 6 below.

4 Polynomial IOPs for Binary Tower Fields

In this section, we review and develop several interactive protocols and polynomial IOPs, which we more-
over specialize to the setting of binary tower fields. Certain among these protocols adapt already-known
techniques, but surface further performance improvements made possible by the tower setting. We refer
throughout to Chen, Bünz, Boneh and Zhang’s HyperPlonk [Che+23, Def. 4.1], though we modify rather
significantly that work’s formalisms.

4.1 Definitions and Notions

We fix throughout what follows a maximal tower height τ ∈ N; we understand τ := τ(λ) as depending on an
available security parameter.

Definition 4.1. A polynomial IOP Π = (I,P,V) is an interactive protocol in which the parties may freely
use a certain multilinear polynomial oracle, which operates as follows, on the security parameter λ ∈ N:

FUNCTIONALITY 4.2 (polynomial oracle).
A tower height τ := τ(λ) and a binary tower T0 ⊂ T1 ⊂ · · · ⊂ Tτ are fixed.

• On input (submit, ι, ν, t) from I or P, where ι ∈ {0, . . . , τ}, ν ∈ N, and t ∈ Tι[X0, . . . , Xν−1]
⪯1,

output (receipt, ι, ν, [t]) to I, P and V, where [t] is some unique handle onto the polynomial t.

• On input (query, [t], r) from V, where r ∈ T ντ , send V (evaluation, t(r0, . . . , rν−1)).

Definition 4.3. The polynomial IOP Π = (I,P,V) for the indexed relation R is secure if, for each PPT
adversary A, there exists an expected PPT emulator E and a negligible function negl, such that, for each
security parameter λ ∈ N and each pair (i,x), provided that the protocol is run on the security parameter
λ, writing vp := I(i) and w← EA(i,x), we have |Pr[⟨A(i,x),V(vp,x)⟩ = 1]− Pr[R(i,x,w) = 1]| ≤ negl(λ).

We note that we grant E full internal access to A. In particular, E may intercept all outbound messages
sent by A, including those messages (submit, ι, ν, t) A sends directly to the polynomial oracle, as well as, of
course, those it sends to V. We note that, in practice, our emulator E will be straight-line (i.e., non-rewinding)
and strict polynomial-time, though these latter properties aren’t required by Definition 4.3.

It is shown in [BFS20, § E] that, by inlining an extractable polynomial commitment scheme (in the sense
of Definition 3.5) into a secure polynomial IOP (in the sense of Definition 4.3), one obtains a secure argument
of knowledge for the relation R.

Definition 4.4. For parameters ι, ν, and µ in N, ν-variate, µ-ary polynomial predicate over Tι is a boolean-
valued function Φι,ν : Tι[X0, . . . , Xν−1]

µ → {0, 1}.

Example 4.5. We record certain key polynomial predicates, roughly following HyperPlonk [Che+23].

1. Query. On parameters ι and ν in N, s ∈ Tτ , and r ∈ T ντ , sends Query(r, s)ι,ν : T 7→ T (r0, . . . , rν−1) = s.

2. Sum. On parameters ι and ν in N and e ∈ Tι, sends Sum(e)ι,ν : T 7→
∑
v∈Bν T (v) = e.

3. Zero. On parameters ι and ν in N, sends Zeroι,ν : T 7→
∧
v∈Bν T (v) = 0.

4. Product. On parameters ι and ν in N, the binary product predicate sends Productι,ν : (T,U) 7→∏
v∈Bν T (v) =

∏
v∈Bν U(v) ∧

∧
v∈Bν (T (v) = 0 ⇐⇒ U(v) = 0).

5. Multiset. On parameters ι, ν, and µ in N, the 2 · µ-ary multiset predicate sends Multiset(µ)ι,ν :
(T0, . . . , Tµ−1, U0, . . . , Uµ−1) 7→ {(T0(v), . . . , Tµ−1(v)) | v ∈ Bν} = {(U0(v), . . . , Uµ−1(v)) | v ∈ Bν},
where we understand both objects on the right-hand side as multisets (counted with multiplicity).
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6. Permutation. On parameters ι, ν, and µ in N, and a bijection σ : {0, . . . , µ − 1} × Bν →
{0, . . . , µ − 1} × Bν , the µ-ary permutation predicate sends Permutation(σ)ι,ν : (T0, . . . , Tµ−1) 7→∧

(i,v)∈{0,...,µ−1}×Bν Ti′(v
′) = Ti(v), where we write (i

′, v′) := σ(i, v) for each (i, v) ∈ {0, . . . , µ−1}×Bν .

7. Lookup. On parameters ι and ν in N, sends Lookupι,ν : (T,U) 7→
∧
v∈Bν ∃v

′ ∈ Bν : U(v) = T (v′).

We note that each predicate Query(r, s)ι,ν can be evaluated directly by the verifier, on any handle [t], by
means of a single query to the polynomial oracle.

Our product predicate diverges from HyperPlonk’s [Che+23, § 3.3] in various respects. Their predi-
cate requires that the “denominator” U be everywhere-nonzero on the cube, as well as that the product∏
v∈Bν

T (v)
U(v) equal a prescribed value. We simplify that predicate by specializing this prescribed value to 1;

on the other hand, we also more correctly handle the case of “division by zero” (their protocol actually fails
to assert that U is everywhere-nonvanishing on the cube). Though our product predicate indeed admits

a generalization which more closely follows [Che+23, § 3.3]—i.e., where the product
∏
v∈Bν

T (v)
U(v) can be

arbitrary, and where we moreover correctly handle those denominators U which vanish—this generalization
is complicated, and we have opted not to present it. We discuss this matter further in Remark 4.18 below.
Finally, we present a permutation predicate slightly more sophisticated than HyperPlonk’s [Che+23, § 3.5];
specifically, ours supports permutations which act across multiple “columns”.

The following notational abstraction figures extensively in what follows.

Definition 4.6. A ν-variate virtual polynomial over Tι is a list of handles [t0], . . . , [tµ−1], each representing
a polynomial defined over Tι, together with an arithmetic circuit, whose leaves are either indeterminates in
the list X0, . . . Xν−1 or else constants in Tι, and in which we permit not just the binary gates + and ×, but
moreover, for each i ∈ {0, . . . , µ− 1}, the νi-ary gate ti(X0, . . . , Xνi−1) (assuming that ti is νi-variate). We
write T ∈ Tι[X0, . . . , Xν−1] for the polynomial represented by the circuit, and [T ] for the virtual polynomial.

We note that each virtual polynomial [T ] may be evaluated at any input (x0, . . . , xν−1) ∈ T νι —albeit in
general, not efficiently—by any machine which can query the handles [t0], . . . , [tµ−1]. We now treat efficient
protocols for virtual polynomials.

Definition 4.7. A virtual polynomial protocol for the µ-ary polynomial predicate Φι,ν is an interactive
protocol Σ = (P,V) which takes as common input a list ([T0], . . . , [Tµ−1]) of ν-variate virtual polynomials.
The protocol Σ is secure with respect to Φι,ν if, for each PPT adversary A, there is a negligible function
negl for which, for each λ ∈ N and each input list ([T0], . . . , [Tµ−1]), if the protocol is run on the security
parameter λ, then we have Pr[⟨A(T0, . . . , Tµ−1),V([T0], . . . , [Tµ−1])⟩ = 1 ∧ Φι,ν(T0, . . . , Tµ−1) = 0] ≤ negl(λ).

We note that, in the cases we treat below, a single negligible function negl suffices for all adversaries A,
though this state of affairs is not mandated by Definition 4.7.

We highlight, in particular, the special case of Definition 4.7 in which Φι,ν takes the form Query(r, s)ι,ν .

Definition 4.8. An evaluation protocol for the ν-variate virtual polynomial [T ] over Tι is a family of virtual
polynomial protocols, parameterized by r ∈ T ντ and s ∈ Tτ , for the predicates Query(r, s)ι,ν on the input [T ].

In practice, we often attach to each virtual polynomial T an appropriate evaluation protocol, and refer
to the resulting bundle as an evaluable virtual polynomial.

Example 4.9 (Compositions). A certain particularly simple sort of virtual polynomial consists of a list
of ν-variate handles [t0], . . . , [tµ−1], together with a µ-variate composition polynomial g ∈ Tι[X0, . . . , Xµ−1],
and represents the composition T := g(t0(X0, . . . , Xν−1), . . . , tµ−1(X0, . . . , Xν−1)). We note that [T ] admits
an efficient evaluation protocol, at least if g is succinct; indeed, to decide the predicate Query(r, s)ι,ν , V may
directly query each of the handles at r, evaluate g itself on the results, and finally compare the result to s.

Example 4.10 (Piecewise multilinears). A further sort of virtual polynomial arises in the following way. For
integers ι, ν, and µ in N, where µ = 2α is a power of 2, say, and ν-variate handles [t0], . . . , [tµ−1] over Tι, we
introduce a piecewise function T ∈ T Bν+αι , defined so that, for each v ∈ Bν and u ∈ Bα, T (u ∥ v) = t{u}(v)

holds (we recall the identification {u} :=
∑α−1
i=0 2i · ui). We finally identify T with its multilinear extension

T (X0, . . . , Xν+α−1) ∈ Tι[X0, . . . , Xν+α−1]
⪯1. We note that T defines a valid virtual polynomial in the
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handles [t0], . . . , [tµ−1]; moreover, T is evaluable, provided µ is small. Indeed, to decide Query(r, s)ι,ν+α, say,
V may destructure (r0, . . . , rν+α−1) := r, query the polynomials [t0], . . . , [tµ−1] at (rα, . . . , rν+α−1), obtaining

the results s0, . . . , sµ−1, say, and finally output s
?
=
⊗α−1

i=0 (1−ri, ri)·(si)
µ−1
i=0 (here,

⊗α−1
i=0 (1−ri, ri) is a tensor

product expansion in the sense of Subsection 2.2, and can be computed in Θ(µ) time). The correctness of
this procedure is essentially [Tha22, Lem. 3.6]. We write [T ] := merge([t0], . . . , [tµ−1]) for this construction.

We finally note that virtual polynomials can be composed. Indeed, upon replacing some among the
handles [t0], . . . , [tµ−1] of some virtual polynomial [T ] with further virtual polynomials, we may nonetheless
“unroll” the resulting object into a proper virtual polynomial [T ′] in its own right. Finally, if [T ] and all of
the sub-virtual polynomials are efficiently evaluable, then the composed virtual polynomial [T ′] also is.

4.2 Prior Virtual Polynomial Protocols

By way of background, we briefly recall various well-known virtual protocols, for use below. We refer
primarily to Thaler [Tha22] and HyperPlonk [Che+23, § 3].

Sumcheck. The sumcheck protocol is a virtual polynomial protocol for the predicate Sum(e)ι,ν : T 7→∑
v∈Bν T (v) = e. Internally, on input an evaluable, ν-variate virtual polynomial [T ], sumcheck invokes

[T ]’s implicit Query(r, s)ι,ν protocol, on parameters r ∈ T ντ and s ∈ Tτ derived during the course of the
sumcheck. The definition of the sumcheck protocol, as well as a proof that it securely evaluates Sum(e)ι,ν in
the sense of Definition 4.7, appear in Thaler [Tha22, § 4.1]. The protocol’s soundness error is at most ν·d

|Tτ | ,

where d is the maximum individual degree exhibited by any of T ’s variables (plus the error inherent to [T ]’s
evaluation protocol). We emphasize that the known, highly-efficient algorithms for the sumcheck protocol’s
prover require that [T ] take the particular form given in Example 4.9 (i.e., that [T ] be a composition of
multilinears); we refer to [Tha22, Lem. 4.5] for a discussion of these algorithms.

Zerocheck. We recall the predicate Zeroι,ν : T 7→
∧
v∈Bν T (v) = 0, as well as the zerocheck protocol of

HyperPlonk [Che+23, § 3.2] (see also Spartan [Set20]).

PROTOCOL 4.11 (Zerocheck).
Parameters ι, ν, and τ in N and a ν-variate virtual polynomials [T ] over Tι is fixed.

• V samples r ← T τν , and sends r to P.

• P and V run the sumcheck protocol, with statement 0, on the virtual polynomial [T ′] :=
ẽq(r0, . . . , rν−1, X0, . . . , Xν−1) · T (X0, . . . , Xν−1).

We note first of all that [T ′] is a valid virtual polynomial, which moreover admits its own evaluation protocol.
Indeed, to decide Query(r′, s′)τ,ν(T

′), say, V may, after first locally evaluating a := ẽq(r, r′)—which takes

O(ν) work—immediately return s′
?
= 0 in case a = 0, and otherwise proceed with the appropriate protocol

(i.e., that attached to [T ]) deciding Query
(
r′, s

′

a

)
ι,ν

(T ).

Theorem 4.12. Protocol 4.11 securely decides the predicate Zeroι,ν on T .

Proof. Assuming that Zeroι,ν(T ) = 0, we show that Sum(0)τ,ν(T
′) = 1 holds with negligible prob-

ability over V’s random coins. Our hypothesis implies precisely that T ’s MLE T̃ =
∑
v∈Bν T (v) ·

ẽq(v0, . . . , vν−1, X0, . . . , Xν−1) is not identically zero. By the Schwartz–Zippel lemma, the probability,

over V’s choice of r ← T τν , that T̃ (r) = 0 is thus at most ν
|Tτ | . On the other hand, if T̃ (r) ̸= 0, then∑

v∈Bν T (v) · ẽq(v0, . . . , vν−1, r0, . . . , rν−1) ̸= 0, so that Sum(0)τ,ν(T
′) = 0, as required.

The soundness error of the zerocheck protocol thus ν
|Tτ | +

(d+1)·ν
|Tτ | , where d, again, is the maximum

individual degree exhibited by any of T ’s variables (plus, again, the error inherent to [T ]’s implicit evaluation

protocol). The first of these two terms is a zerocheck-specific soundness error; the term (d+1)·ν
|Tτ | arises from

zerocheck’s internal use of the sumcheck on [T ′].
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Product check. We now record a protocol for the product predicate Productι,ν : (T,U) 7→
∏
v∈Bν T (v) =∏

v∈Bν U(v)∧
∧
v∈Bν (T (v) = 0 ⇐⇒ U(v) = 0) above, roughly following Setty and Lee’s Quarks [SL20, § 5]

and HyperPlonk [Che+23, § 3.3].

PROTOCOL 4.13 (Product check).
Parameters ι and ν in N, and ν-variate virtual polynomials [T ] and [U ] over Tι, are fixed.

• P defines the function f ∈ T Bνι as follows. For each v ∈ Bν P sets f(v) := T (v)
U(v) if U(v) ̸= 0, and

f(v) := 1 otherwise. P submits (submit, ι, ν + 1, f ′) to the oracle, where f ′ ∈ Tι[X0, . . . , Xν ]
⪯1 is

such that, for each v ∈ Bν+1, both f ′(v ∥ 0) = f(v) and f ′(v ∥ 1) = f ′(0 ∥ v) · f ′(1 ∥ v) hold.

• Upon receiving (receipt, ι, ν +1, [f ′]) from the oracle, V submits (query, [f ′], (0, 1, . . . , 1)) to the

oracle; V requires that the response (evaluation, f ′(0, 1, . . . , 1)) satisfy f ′(0, 1, . . . , 1)
?
= 1.

• P and V define a ν + 1-variate virtual polynomial [T ′] as follows:

[T ′] := merge([T ], [f ′](· ∥ 1))− merge([U ], [f ′](0 ∥ ·)) · merge([f ′](· ∥ 0), [f ′](1 ∥ ·)).

P and V run a zerocheck on the virtual polynomial [T ′].

Above, the expression [f ′](· ∥ 0) denotes the ν-variate virtual polynomial which one obtains from the ν + 1-
variate handle [f ′] upon fixing that function’s last argument to be 0; its variants are analogous.

We modify the protocol given in [Che+23, § 3.3] in two distinct ways. On the one hand, our prover
constructs the auxiliary function f in such a way as to appropriately handle the vanishing of the “de-
nominator” U within the cube; we discuss this issue further in Remark 4.18. Separately, we define
the virtual polynomial [T ′] above—that is, the target of the zerocheck reduction—differently than does
[Che+23, § 3.3], as we presently explain. The work [Che+23, § 3.3] sets (adapting their notation to ours)
[T ′] := merge([T ]− [U ] · [f ′](· ∥ 0), [f ′](· ∥ 1)− [f ′](0 ∥ ·) · [f ′](1 ∥ ·)). While this construction is correct—
and in fact agrees with our [T ′] identically on Bν+1—it suffers from the defect whereby [T ′] is not a com-
position of multilinears in the sense of Example 4.9, even if T and U are themselves multilinear, and so
fails to admit an (obvious) efficient sumcheck. Our construction remedies this issue, in that our [T ′] is a
composition of multilinears, at least if T and U are themselves multilinear. We emphasize that our protocol
is correct and secure regardless of T and U ; on the other hand, the efficiency of its implementation may
require that T and U be multilinear (as they will be in our applications below).

Theorem 4.14. Protocol 4.13 securely decides the predicate Productι,ν on [T ] and [U ].

Proof. Assuming that V accepts and that Zeroι,ν+1(T
′) = 1, where T ′ is the virtual polynomial constructed

during Protocol 4.13, we show that Productι,ν(T,U) = 1 holds with probability 1. It follows directly from
the definition of merge that, under our hypothesis Zeroι,ν+1(T

′) = 1 we have, for each v ∈ Bν , that both
T (v) = U(v) · f ′(v ∥ 0) and f ′(v ∥ 1) = f ′(0 ∥ v) · f ′(1 ∥ v) hold. This latter equality, in light of [SL20,
Lem 5.1], implies that

∏
v∈Bν f

′(v ∥ 0) = f ′(0, 1, . . . , 1), which itself equals 1 whenever V accepts. Taking the
product of the former equality over all v ∈ Bν , we thus conclude immediately that

∏
v∈Bν T (v) =

∏
v∈Bν U(v).

Separately, from the relation
∏
v∈Bν f

′(v ∥ 0) = 1, we conclude that, for each v ∈ Bν , f ′(v ∥ 0) is individually
nonzero, so that the guarantee T (v) = U(v) · f ′(v ∥ 0) in particular implies T (v) = 0 ⇐⇒ U(v) = 0.

The product check protocol—once fully unrolled—makes just one query each to [T ] and [U ]. Its soundness
error is thus that of the zerocheck protocol, when run on [T ′], together with whatever error arises from [T ]
[U ]’s respective implicit query protocols.

Remark 4.15. Were we to remove the conjunct
∧
v∈Bν (T (v) = 0 ⇐⇒ U(v) = 0) from the predicate

Productι,ν above, Protocol 4.13 would cease to be complete. Indeed, upon initiating Protocol 4.13 on
polynomials T and U for which, at the point v∗ ∈ Bν let’s say, U(v∗) ̸= 0 and T (v∗) = 0 both held—and
for which

∏
v∈Bν T (v) =

∏
v∈Bν U(v) moreover held, let’s say (so that U(v) = 0 for some v ∈ Bν \ {v∗})—P

would find itself unable to generate a passing proof. Indeed, to pass, P would have to set f ′(v∗ ∥ 0) = 0;
this would necessitate, in turn, that

∏
v∈Bν f

′(v ∥ 0) = f ′(0, 1, . . . , 1) = 0. Separately, assuming U(v∗) = 0
and T (v∗) ̸= 0, P would become unable to select f ′(v∗ ∥ 0) so as to cause T (v∗) = U(v∗) · f ′(v∗ ∥ 0) to hold.
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Multiset check. We recall the 2 · µ-ary multiset predicate Multiset(µ)ι,ν : (T0, . . . , Tµ−1, U0, . . . , Uµ−1) 7→
{(T0(v), . . . , Tµ−1(v)) | v ∈ Bν} = {(U0(v), . . . , Uµ−1(v)) | v ∈ Bν}, where the equality is of multisets. Hyper-
Plonk [Che+23, § 3.4] defines a protocol for Multiset(µ)ι,ν in two steps, first by reducing Multiset(1)ι,ν to
Productι,ν , and then by reducing Multiset(µ)ι,ν , for k > 1, to Multiset(1)ι,ν . Though our treatment is similar
to HyperPlonk’s, we reproduce the details for self-containedness.

PROTOCOL 4.16 (1-dimensional multiset check [Che+23, § 3.4]).
Parameters ι, ν and τ in N, and ν-variate virtual polynomials [T0] and [U0] over Tι, are fixed.

• V samples r ← Tτ , and sends r to P.

• P and V run a product check on the virtual polynomials [T ′] := r − [T0] and [U ′] := r − [U0].

Theorem 4.17. Protocol 4.16 securely decides the predicate Multiset(1)ι,ν on [T0] and [U0].

Proof. We follow [Che+23, Thm. 3.4], with appropriate adaptations. Assuming Multiset(1)ι,ν(T0, U0) = 0,
we argue that Productτ,ν(T

′, U ′) = 1 holds with negligible probability over the verifier’s random coins.

Our hypothesis entails directly that the degree-2ν , univariate polynomials T̂ (Y ) :=
∏
v∈Bν (Y − T0(v)) and

Û(Y ) :=
∏
v∈Bν (Y − U0(v)), which we now view as elements of Tτ [Y ], are unequal. We see that the difference

T̂ (Y ) − Û(Y ) is not identically zero, and moreover of degree at most 2ν ; we write R ⊂ Tτ for its roots. If
r ̸∈ R, then

∏
v∈Bν (r − T0(v)) ̸=

∏
v∈Bν (r − U0(v)), so that Productτ,ν(T

′, U ′) = 0 necessarily holds.

Remark 4.18. We compare our treatment of the product and multiset predicates to HyperPlonk’s [Che+23,
§§ 3.3–3.4]. HyperPlonk’s product protocol [Che+23, § 3.3] purports to securely decide the predicate

(T,U) 7→
∧
v∈Bν U(v) ̸= 0 ∧

∏
v∈Bν

T (v)
U(v) = e, where e ∈ Tι is a statement. In words, HyperPlonk’s stated

predicate requires that the denominator U be nowhere-vanishing on the cube, as well as that the product,
over the cube, of the pointwise quotient between T and U equal e. In actuality, that protocol decides a
significantly-more-complicated predicate, as we presently explain. The predicate actually decided by that
protocol allows U to vanish on the cube, albeit with caveats. Indeed, it requires in this case merely that
the numerator T also vanish wherever U does, and moreover stipulates that, if U vanishes anywhere on the
cube, then T and U fulfill a weaker variant of the product relationship whereby, if e ̸= 0, then T is nonzero
wherever U is. In simple terms, by setting T and U both equal to 0 at v∗ ∈ Bν , say, the prover may cause
the verifier to accept for arbitrary e (provided, again, that T is nonzero wherever U is, a circumstance which
the prover can easily arrange). This breaks the security guarantees of [Che+23, § 3.3] as stated. We note
that, in this situation, our relation

∏
v∈Bν T (v) =

∏
v∈Bν U(v) does hold, while HyperPlonk’s does not; the

issue is an illegal “division by 0”. In fact, our relation Productι,ν above is precisely the specialization of the
“complicated” relation just described to the case e := 1 (where significant simplifications emerge). We note
that the k = 1 multiset check of Protocol 4.16 above—which is identical to [Che+23, § 3.4]—is nonetheless
still secure, and with a simpler proof of security no less. Indeed, if HyperPlonk’s product protocol actually
decided the stated relation of [Che+23, § 3.3], then its multiset protocol would fail to be perfectly complete.

We now present the protocol for 2 · µ-ary multiset check; our treatment of this protocol is identical to
HyperPlonk’s [Che+23, § 3.4].

PROTOCOL 4.19 (µ-dimensional multiset check [Che+23, § 3.4]).
Parameters ι, ν, and τ in N, as well as ν-variate virtual polynomials [T0], . . . , [Tµ−1] and [U0], . . . , [Uµ−1]
over Tι, where µ > 1, are fixed.

• V samples random scalars r1, . . . , rµ−1 from Tτ , and sends them to P.

• P and V run a 1-dimensional multiset check on the virtual polynomials [T ′] := [T0] + r1 · [T1] +
· · ·+ rµ−1 · [Tµ−1] and [U ′] := [U0] + r1 · [U1] + · · ·+ rµ−1 · [Uµ−1].

Theorem 4.20. Protocol 4.19 securely decides the predicate Multiset(µ)ι,ν on ([Ti])
µ−1
i=0 and ([Ui])

µ−1
i=0 .
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Proof. Assuming that Multiset(µ)ι,ν(T0, . . . , Tµ−1, U0, . . . , Uµ−1) = 0, we show that Multiset(1)ι,ν(T
′, U ′) = 1

holds with negligible probability over V’s random coins. We follow the proof strategy of [Che+23, Thm. 3.5].
We write T := {(T0(v), . . . , Tµ−1(v)) | v ∈ Bν} and U := {(U0(v), . . . , Uµ−1(v)) | v ∈ Bν} for the multisets

at hand, as well as T̂ := T \ U and Û := U \ T , where we understand all set-differences as multi-

set operations. Since T and U are equally sized as multisets, T̂ and Û necessarily also are; moreover,
our hypothesis entails precisely that T̂ and Û are nonempty. We fix an element t∗ ∈ T̂ . We write
R :=

{
(1, r1, . . . , rµ−1)

∣∣ (r1, . . . , rµ−1) ∈ T µ−1τ

}
; moreover, for each r ∈ R, we write φr : T µτ → Tτ

for the map φr : (a0, . . . , aµ−1) 7→ a0 + r1 · a1 + · · · + rµ−1 · aµ−1. Finally, for each u ∈ Û , we set

Ru :=
{
r ∈ R

∣∣∣ φr(t∗) ?
= φr(u)

}
. If the verifier’s challenge r ̸∈

⋃
u∈Û Ru, then Multiset(1)ι,ν(T

′, U ′) = 0

certainly holds; indeed, in this case, the count of the element φr(t
∗) in the multiset {φr(t) | t ∈ T} necessarily

exceeds by at least 1 the count of this element in {φr(u) | u ∈ U}, so that {φr(t) | t ∈ T} ≠ {φr(u) | u ∈ U}.
On the other hand, each Ru is precisely the intersection in T µτ between the affine hyperplane R and the nor-
mal hyperplane {r ∈ T µτ | r · (t∗ − u) = 0} (which is necessarily non-degenerate, by our choice of t∗). Each
Ru is thus a proper affine subspace of R, and so covers a proportion consisting of at most 1

|Tτ | of R’s points.

The union
⋃
u∈Û Ru thus covers at most |Û | · 1

|Tτ | ≤
2ν

|Tτ | among R’s points (where |Û | here is a multiset

cardinality). This completes the proof.

Permutation check. We finally describe a protocol for the predicate Permutation(σ)ι,ν : (T0, . . . , Tµ−1) 7→∧
(i,v)∈{0,...,µ−1}×Bν Ti′(v

′) = Ti(v) above; here, as before, we fix a bijection σ : {0, . . . , µ − 1} × Bν →
{0, . . . , µ−1}×Bν . Though we follow HyperPlonk [Che+23, § 3.5], our protocol decides a more sophisticated
variant of that work’s predicate, which, in particular, allows multiple inputs, as well as permutations which
act across these inputs.

Our protocol takes as common input a list [T0], . . . , [Tµ−1] of virtual polynomials. It also—unlike the
protocols already given above—makes use of the indexer ; specifically, the protocol takes as common input
further handles [sid] and [sσ], which jointly capture the permutation σ : {0, . . . , µ − 1} × Bν → {0, . . . , µ −
1} × Bν . We argue first that we may freely assume that µ = 2α is a power of 2; indeed, we may always
extend σ by the identity map, as well as pad the list [T0], . . . , [Tµ−1] with further virtual polynomials (set to
be identically zero, say). Clearly, the padded predicate holds if and only if the unpadded one does.

We fix an arbitrary injection s : {0, . . . , µ − 1} × Bν ↪→ Tτ (we assume without further comment that
τ is sufficiently large). For each i ∈ {0, . . . , µ − 1}, we define mappings idi : Bν → Tτ and σi : Bν → Tτ
by setting idi : v 7→ s(i, v) and σi : v 7→ s(σ(i, v)). We finally write sid := merge(id0, . . . , idµ−1) and
sσ := merge(σ0, . . . , σµ−1), following Example 4.10. We stipulate that the indexer output [sid] and [sσ]
directly as ν + α-variate handles (though this latter measure is not necessary, it improves efficiency).

PROTOCOL 4.21 (Permutation check [Che+23, § 3.4]).
Parameters ι, ν, and τ in N, a bijection σ : {0, . . . , µ − 1} × Bν → {0, . . . , µ − 1} × Bν , ν-variate
polynomials [T0], . . . , [Tµ−1], and finally the further handles [sid] and [sσ] constructed above, are fixed.

• P and V construct the virtual polynomial [T ] := merge(T0, . . . , Tµ−1).

• P and V run a 4-ary multicheck check on the ν + α-variate pairs ([sid], [T ]) and ([sσ], [T ]).

Theorem 4.22. Protocol 4.21 securely decides the predicate Permutation(σ)ι,ν on [T0], . . . , [Tµ−1].

Proof. Assuming that Multiset(2)ι,ν(sid, T, sσ, T ) = 1, we show that Permutation(σ)ι,ν(T0, . . . , Tµ−1) = 1

holds with probability 1. We write T̂id := {(sid(u), T (u)) | uBν+α} and T̂σ := {(sσ(u), T (u)) | u ∈ Bν+α}
(both viewed as multisubsets of T 2

τ ). We let (i, v) ∈ {0, . . . , µ − 1} × Bν be arbitrary, and write (i′, v′) :=

σ(i, v). We note that the multisets T̂id and T̂σ each admit precisely one element whose 0th component equals
s(i′, v′); indeed, these elements are exactly (s(i′, v′), Ti′(v

′)) and (s(i′, v′), Ti(v)), respectively, by construction

of sid, sσ, and T . By the assumed equality of T̂id and T̂σ of multisets, we conclude that Ti′(v
′) = Ti(v).
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4.3 New Virtual Polynomials

We now introduce a handful of new virtual polynomial constructions. Each of these constructions—on input
a handle, or even a further virtual polynomial—materializes a virtual polynomial, which relates to its input
in a specified way.

Packed virtual polynomials. We fix integers ι, κ, τ , and ν in N. We recall from Subsection 2.3 the
multilinear Tι-basis (βv)v∈Bκ of Tι+κ. We finally fix a vector f ∈ T Bνι .

We define the packing operator packκ : T Bνι → T Bν−κι+κ in the following way:

packκ(f) :=

(∑
v∈Bκ

f(v ∥ u) · βv

)
u∈Bν−κ

.

Intuitively, packκ iteratively processes “chunks” consisting of 2κ lexicographically adjacent Tι-elements; it
assembles the constituents of each such chunk into a single Tι+κ-element.

We now record a virtual polynomial materialization of packκ(f). For f ∈ T Bνι again as above, we write

f̃ ∈ Tι[X0, . . . , Xν−1]
⪯1 for the MLE of f ; we moreover write p̃ackκ(f) ∈ Tι+κ[X0, . . . , Xν−κ−1]

⪯1 for the

MLE of packκ(f). We finally note the following explicit expression for p̃ackκ(f):

p̃ackκ(f)(X0, . . . , Xν−κ−1) =
∑
v∈Bκ

f̃(v0, . . . , vκ−1, X0, . . . , Xν−κ−1) · βv,

where we destructure (v0, . . . , vκ−1) = v for each v ∈ Bκ. Indeed, for each (u0, . . . , uν−κ−1) = u ∈ Bν−κ,
p̃ackκ(f)(u0, . . . , uν−κ−1) = packκ(f)(u) necessarily holds; moreover, the polynomial above is multilinear.

When f̃ is given as a handle [f ], the expression p̃ackκ(f) above defines a ν−κ-variate virtual polynomial,
in the sense of Definition 4.6. In fact, this virtual polynomial moreover admits an evaluation protocol, as
we now argue. We fix a query Query(r′, s′)ν−κ,ι+κ. We note that the evaluation p̃ackκ(f)(r

′) =
∑
v∈Bκ βv ·

f̃(v0, . . . , vκ−1, r
′
0, . . . , r

′
ν−κ−1) is itself the sum, over the cube Bκ, of the κ-variate polynomial:

p̃ackκ(f, r
′)(Y0, . . . , Yκ−1) := f̃(Y0, . . . , Yκ−1, r

′
0, . . . , r

′
ν−κ−1) · β̃(Y0, . . . , Yκ−1),

where we write β̃ ∈ Tι+κ[X0, . . . , Xκ−1]
⪯1 for the MLE of (βu)u∈Bκ . It thus suffices for the verifier to decide

Sum(s′)ν−κ,τ on p̃ackκ(f, r
′). Using the sumcheck protocol, the verifier may in turn reduce this predicate to

Query(r, s)ν−κ,τ , say, on p̃ackκ(f, r
′). To decide this latter predicate, V may simply check β̃(r) · f̃(r ∥ r′) ?

= s.

We assume that κ is sufficiently small that V may evaluate β̃(r) itself; on the other hand, V may ascertain

f̃(r ∥ r′) by means of one query to [f ].

Shifted virtual polynomials. We again write Tι ⊂ Tτ for an arbitrary tower subfield, and fix an integer
ν ∈ N. We recall the identification introduced in Section 2, which, for each k ∈ {0, . . . , ν}, maps v ∈ Bk to

{v} :=
∑k−1
i=0 2i · vi.

For each block size parameter b ∈ {0, . . . , ν} and each shift offset o ∈ Bb, the shift operator, on input
f ∈ T Bνι , partitions f ’s index set Bν into b-dimensional subcubes, and then circularly rotates each resulting
sub-array by o steps (where we, implicitly, flatten each sub-array lexicographically). We make this precise
in the following way. For b ∈ {0, . . . , ν} and o ∈ Bb and above, we define the shift mapping sb,o : Bν → Bν
by declaring, for each input v = (v0, . . . , vν−1) ∈ Bν , that sb,o(v) := u, where u = (u0, . . . , uν−1) is such
that the most-significant substrings (ub, . . . , uν−1) and (vb . . . , vν−1) agree, and {u} + {o} ≡ {v} (mod 2b)
moreover holds. We define the shift operator shiftb,o : T Bνι → T Bνι by mapping each f ∈ T Bνι to the vector
shiftb,o(f) := (f(sb,o(v)))v∈Bν . We note that, provided that we write down the mappings f and shiftb,o(f)

as flattened vectors—that is, using the lexicographic identification v 7→
∑ν−1
i=0 vi ·2i—we find that shiftb,o(f)

has precisely the effect of circularly rotating each contiguous 2b-sized block of f downward by {o} steps. We
sometimes abuse notation, below, by writing shiftb,o(f) and shiftb,{o}(f) interchangeably.
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We initiate an arithmetic characterization of the shift operator, which expresses each shifted vector
shiftb,o(f) as a virtual polynomial on its input f . In fact, our construction moreover admits a linear-
time—that is, a Θ(b)-time—evaluation algorithm, as we explain below. Our approach is inspired by, and
generalizes, the “adding 1 in binary” multilinear indicator of Setty, Thaler, and Wahby [STW23a, Sec. 5.1].

We first define the length-b, o-step shift indicator function s-indb,o : Bb × Bb → {0, 1}, in the following
way:

s-indb,o(x, y) 7→

{
1 if {y} ?≡ {x}+ {o} (mod 2b)

0 otherwise.

For b and (o0, . . . , ob−1) = o ∈ Bb again fixed, we realize the shift indicator function s-indb,o inductively,
by means of a sequence of functions s-ind′k,o and s-ind′′k,o, each mapping Bk×Bk → {0, 1}, for k ∈ {0, . . . , b}.
That is, for each k ∈ {0, . . . , b}, on arguments x and y in Bk, we define the function s-ind′k,o(x, y) so as

to detect the condition {y} ?
= {x} + {o}, and define s-ind′′k,o(x, y) so as to detect the condition {y} ?

=

{x}+{o}−2k, where, in both expressions, we interpret o = (o0, . . . , ok−1) as an element of Bk by truncating
its bits. In words, s-ind′k,o detects the condition whereby the k-bit strings x and y differ exactly by the binary
addition of o’s least-significant k bits, and without overflow no less; s-ind′′k,o detects the analogous condition,

modulo an overflow into the kth-indexed bit position. We finally note that s-indb,o := s-ind′b,o ∨ s-ind′′b,o.
We now supply an inductive—and arithmetically friendly—description of the functions s-ind′k,o and

s-ind′′k,o, for k ∈ {0, . . . , b}. For typographical convenience, we give meaning to expressions of the form
s-ind′k−1,o(x, y) and s-ind′′k−1,o(x, y), for arguments x and y in Bk—i.e., rather than in the domain of
definition Bk−1—by stipulating that the functions simply ignore their arguments’ respective most-significant

(that is, k−1-indexed) bits. Finally, below, we understand the expression xk−1
?
= ok−1+yk−1 and its variants

over the integers (i.e., as integer expressions over the arguments xk−1, yk−1, and ok−1 in {0, 1} ⊂ Z).

case k = 0.
s-ind′0,o = 1.
s-ind′′0,o = 0.

case k > 0.

s-ind′k,o(x, y) =


s-ind′k−1,o(x, y) if xk−1 + ok−1

?
= yk−1

s-ind′′k−1,o(x, y) if xk−1 + ok−1 + 1
?
= yk−1

0 otherwise.

s-ind′′k,o(x, y) =


s-ind′k−1,o(x, y) if xk−1 + ok−1

?
= yk−1 + 2

s-ind′′k−1,o(x, y) if xk−1 + ok−1 + 1
?
= yk−1 + 2

0 otherwise.

The correctness of this inductive description may be explicitly checked. We note that certain among the

case-expressions above can only hold in particular settings; for example, xk−1+ ok−1
?
= yk−1+2 holds if and

only if xk−1 and ok−1 both equal 1 and yk−1 is 0. Finally, we note that s-indb,o(x, y) = s-ind′b,o(x, y) +
s-ind′′b,o(x, y) holds for each (x, y) ∈ Bb × Bb.

Exploiting the inductive description just given, we now arithmetically characterize the MLEs in
Tι[X0, . . . , Xk−1, Y0, . . . , Yk−1]

⪯1 of the shift-indicator functions s-ind′k,o and s-ind′′k,o.

case k = 0.
s̃-ind

′
0,o = 1.

s̃-ind
′′
0,o = 0.

case k > 0.

s̃-ind
′
k,o(X,Y ) =

{
ẽq(Xk−1, Yk−1) · s̃-ind

′
k−1,o(X,Y ) + (1−Xk−1) · Yk−1 · s̃-ind

′′
k−1,o(X,Y ) ok−1

?
= 0.

(1−Xk−1) · Yk−1 · s̃-ind
′
k−1,o(X,Y ) ok−1

?
= 1.
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s̃-ind
′′
k,o(X,Y ) =

{
Xk−1 · (1− Yk−1) · s̃-ind

′′
k−1,o(X,Y ) ok−1

?
= 0.

Xk−1 · (1− Yk−1) · s̃-ind
′
k−1,o(X,Y ) + ẽq(Xk−1, Yk−1) · s̃-ind

′′
k−1,o(X,Y ) ok−1

?
= 1.

Above, we denote by eq : B2 → {0, 1} the boolean equality function (Xk−1, Yk−1) 7→ Xk−1
?
= Yk−1, and

by ẽq its Tι-multilinear extension. We again stipulate that the functions s̃-ind
′
k−1,o and s̃-ind

′′
k−1,o, upon

being fed k-variate arguments, simply ignore these arguments’ respective last variables.

Finally, we define s̃-indb,o := s̃-ind
′
b,o + s̃-ind

′′
b,o.

Theorem 4.23. The polynomial s̃-indb,o ∈ Tι[X0, . . . , Xb−1, Y0, . . . , Yb−1] just given is the MLE of s-indb,o.

Proof. The function s̃-indb,o’s pointwise agreement with s-indb,o over Bb × Bb is self-evident. Its multilin-

earity holds by induction; indeed, for each k ∈ {1, . . . , b}, we note that both s̃-ind
′
k,o and s̃-ind

′′
k,o are sums

of products between some multilinear function of Xk−1 and Yk−1 and either s̃-ind
′
k−1,o or s̃-ind

′′
k−1,o, func-

tions which themselves are—by induction—multilinear in the variables (X0, . . . , Xk−2, Y0, . . . , Yk−2). Each
such product expression is necessarily multilinear in the variables (X0, . . . , Xk−1, Y0, . . . , Yk−1).

We finally note that the polynomial s̃-indb,o admits a Θ(b)-sized, layered arithmetic circuit; this circuit’s
description arises straightforwardly from the function’s inductive characterization just given above.

We return to the shift operator shiftb,o : T Bνι → T Bνι already introduced. Leveraging the arithmetized
shift-indicator functions just treated, we now present an arithmetical description of shiftb,o. Indeed, for
each f ∈ T Bνι and each v ∈ Bν , we have the equality:

shiftb,o(f)(v) =
∑
u∈Bb

f(u0, . . . , ub−1, vb, . . . , vν−1) · s-indb,o(u0, . . . , ub−1, v0, . . . , vb−1).

Finally, we write s̃hiftb,o(f) ∈ Tι[X0, . . . , Xν−1]
⪯1 for the MLE of shiftb,o(f). We note the explicit

expression:

s̃hiftb,o(f)(X0, . . . , Xν−1) =
∑
u∈Bb

f̃(u0, . . . , ub−1, Xb, . . . , Xν−1) · s̃-indb,o(u0, . . . , ub−1, X0, . . . , Xb−1).

Indeed, the polynomial above is clearly multilinear, and agrees pointwise with shiftb,o(f) over Bν .
When [f ] is a handle, the expression s̃hiftb,o(f) defines a virtual polynomial, which we again claim is

efficiently evaluable. We fix a query Query(r′, s′)ι,ν . We note that the evaluation s̃hiftb,o(f)(r
′) is itself the

sum, over the cube Bb, of the b-variate polynomial:

s̃hiftb,o(f, r
′)(Y0, . . . , Yb−1) := f̃(Y0, . . . , Yb−1, r

′
b, . . . , r

′
ν−1) · s̃-indb,o

(
Y0, . . . , Yb−1, r

′
0, . . . , r

′
b−1
)
.

It thus suffices for V to decide Sum(s′)τ,b on s̃hiftb,o(f, r
′); using a sumcheck, V may in turn may reduce

this predicate to Query(r, s)ι,b on s̃hiftb,o(f, r
′), for values r ∈ T bτ and s ∈ Tτ derived during the sumcheck.

As before, V may decide this latter predicate itself, by locally evaluating s̃-indb,o(r0, . . . , rb−1, r
′
0, . . . , r

′
b−1)

and querying f(r0, . . . , rb−1, r
′
b, . . . , r

′
ν−1).

We will occasionally find reason to insist on the nonexistence or the existence of an overflow. In these
cases, respectively, we may simply replace the shift-indicator function s-indb,o with its simpler analogues
s-ind′b,o and s-ind′′b,o, in the expression for shiftb,o above. We write shift′b,o and shift′′b,o for the resulting
overflow-free and overflow-mandated shift operators.

Example 4.24. We set ι := 0 and b := 5, and fix ν ≥ 5 and o := (o0, . . . , o4) ∈ B5 arbitrarily. For each
vector f ∈ T Bν0 —which we view as a length-2ν column of bits, by means of the lexicographic flattening

v 7→
∑ν−1
i=0 2i · vi—the operator shiftb,o(f) breaks f into 32-elements chunks, and then circularly rotates

each chunk downwards by {o} steps (or equivalently, upward by 32 − {o} steps). On the other hand, the
overflow-free shift operator shift′b,o(f) rotates each chunk downwards by {o} steps, without rotation; that
is, it 0-fills the first {o} components of each chunk. Finally, the operator shift′′b,o(f) acts by upwardly
shifting f by 32− {o} steps, 0-filling the bottom 32− {o} elements of each chunk.
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The saturation operator. We record a final, and very simple, virtual polynomial construction, which we
use in our multiplication gadget below (see Subsection 5.3). For ν ≥ 0 fixed, and given block size and offset
parameters b ∈ {0, . . . , ν} and o ∈ Bb as above, the saturation operator, on input f ∈ T Bνι , partitions f ’s
index set Bν into b-dimensional subcubes, and “saturates” each resulting block with a single value (i.e., that
which f takes at the block’s oth position). More precisely, we define the saturation mapping rb,o : Bν → Bν
by setting rb,o(v0, . . . , vν−1) := (o0, . . . , ob−1, vb, . . . , vν−1), for each v = (v0, . . . , vν−1) ∈ Bν ; finally, we define
the saturation operator satb,o : T Bνι → T Bνι by setting satb,o(f) := (f(rb,o(v)))v∈Bν .

We record a virtual polynomial realization of the saturation operator. Indeed, for b ∈ {0, . . . , ν} and
o ∈ Bb as above, and for each f ∈ T Bνι and v ∈ Bν , we have that:

satb,o(f)(v) = f(o0, . . . , ob−1, vb, . . . , vν−1);

writing s̃atb,o(f) ∈ Tι[X0, . . . , Xν−1]
⪯1 for the MLE of satb,o(f), we conclude that:

s̃atb,o(f)(X0, . . . , Xν−1) = f̃(o0, . . . , ob−1, Xb, . . . , Xν−1).

The polynomial above is clearly multilinear, and agrees pointwise with satb,o(f) over Bν .
When f is a virtual polynomial, s̃atb,o(f) clearly also is, and can be evaluated as efficiently as f can.

4.4 Binary-Field Lasso

In this subsection, we discuss the work Lasso of Setty, Thaler and Wahby [STW23b] and adapt that work
to our binary tower setting.

We develop a distilled, conceptually minimal approach to Lasso, by teasing apart its various components.
Indeed, we contend that Lasso ultimately amounts to a combination of the following components:

• A virtual polynomial abstraction, which materializes large tables. Indeed, Lasso’s “SOS
tables” [STW23b, § 3.2] can be viewed as composition virtual polynomials in the sense of Example 4.9
above, which, operating over subtables, virtually materialize large tables.

• A small-table lookup procedure. Lasso’s core contribution is, arguably, its single-table lookup
procedure [STW23a, Claim. 3], a virtual polynomial protocol which—using offline memory-checking
in the sense of Blum, Evans, Gemmell, Kannan, and Naor [Blu+91]—proves that the values taken over
the cube by one virtual polynomial represent a subset of the values taken over the cube by another
virtual polynomial. More precisely, Lasso’s lookup procedure reduces precisely this predicate to a
multiset predicate on certain further virtual polynomials.

• A multiset-check. Finally, Lasso employs a virtual protocol which securely decides the multiset
predicate [STW23a, Claim. 4], in the sense already developed in Subsections 4.1 and 4.2 above.

Leveraging our abstractions, already developed above, for virtual polynomials and multisets, we thus
record a minimal rendition of Lasso, which, in particular, isolates its memory-checking component. Im-
portantly, we excise the table-virtualization process from the jurisdiction of the lookup itself, and subsume
it into the constraint-satisfaction apparatus already furnished by the higher-level SNARK (see Section 5
below). This separation of concerns yields a conceptually simpler framework.

Separately, we adapt Lasso to the setting of binary fields. On the one hand, the remark [STW23a, Rem. 2]
addresses the small-characteristic setting; it suggests that the memory-checker, as opposed to additively
incrementing the prover’s vector of read-counts, instead multiply them element-wise by a multiplicative
generator. We note, however, that this approach is insecure; indeed, by exploiting the degenerate element
0—whose multiplicative orbit is, of course, of size 1—the prover may attack multiplicative Lasso as written.
We remedy this issue below, at the cost of requiring that the prover commit to an additional polynomial;
indeed, our approach forces the prover to submit an everywhere-nonzero vector of read-counts.

We now record our protocol for the lookup predicate Lookupι,ν : (T,U) 7→
∧
v∈Bν ∃v

′ ∈ Bν : U(v) = T (v′).
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PROTOCOL 4.25 (Lasso-based lookup [STW23a]).
Parameters ι and ν in N, and ν-variate virtual polynomials [T ] and [U ] over Tι, are fixed.

• P and V set ζ ≥ 0 minimally so that |Tζ | − 1 > 2ν holds (equivalently, they set ζ := ⌈log(ν + 1)⌉);
P and V moreover fix a generator α ∈ T ∗ζ of Tζ ’s multiplicative group of units T ∗ζ .

• P defines arrays R and F in T Bνζ as follows. P initializes F := (1)v∈Bν , and then executes:

1: for each v ∈ Bν , in any order, do
2: pick an arbitrary v′ ∈ Bν for which U(v) = T (v′) holds.
3: assign R[v] := F [v′].
4: overwrite F [v′] ×= α.

P sets R′ :=
(

1
R(v)

)
v∈Bν

to be the pointwise reciprocal of the vector R. P submits the multilinear

extensions
(
submit, ζ, ν, R̃

)
,
(
submit, ζ, ν, R̃′

)
, and

(
submit, ζ, ν, F̃

)
to the oracle.

• P and V run a zerocheck on the ν-variate virtual polynomial R ·R′ − 1 over Tζ .

• P and V define further ν-variate virtual polynomials as follows. They set O : (X0, . . . , Xν−1) 7→ 1
to be the identically-1 polynomial, and set W := α ·R. P and V finally run a 4-ary multiset check
on the ν + 1-variate pairs (merge(T,U), merge(O,W )) and (merge(T,U), merge(F,R)).

Above, our F corresponds to Lasso’s array of “final counts”, R correspond to its array of inline read counts,
and W corresponds to its array of inline write counts. We refer to [STW23a, Claim 3]. Protocol 4.25’s
completeness amounts to a more-or-less straightforward, albeit slightly subtle exercise, and essentially follows
from [STW23a, Claim 2]. We suggest the following inductive proof. Indeed, assuming that R is initialized
to the all-zero array (0)v∈Bν , we argue that the the relevant equality

{(T (v), 1) | v ∈ Bν} ∪ {(U(v), α ·R(v)) | v ∈ Bν} = {(T (v), F (v)) | v ∈ Bν} ∪ {(U(v), R(v)) | v ∈ Bν} (1)

of multisets is an algorithmic invariant of the main loop above (that is, it holds as of the beginning of each
iteration). The base case is clear (both multisets at hand equal {(T (v), 1) | v ∈ Bν} ∪ {(U(v), 0) | v ∈ Bν}).
We fix an iteration index v ∈ Bν of the above loop. The assignment 3 entails removing (U(v), 0) from both
multisets, as well as adding (U(v), α · F [v′]) to the left multiset and (U(v), F [v′]) to the right. On the other
hand, the update 4 entails removing (T (v′), F [v′]) from the right multiset and adding (T (v′), α · F [v′]) to
the right multiset. Since T (v′) = U(v), these changes balance; assuming that the equality held at the loop’s
beginning, we conclude that it likewise holds as of the loop’s end. This completes the proof of completeness.

Theorem 4.26. Protocol 4.25 securely decides the lookup predicate on T and U .

Proof. We adapt Setty, Thaler, and Wahby [STW23a, Claim 3] to the multiplicative setting. Assuming that
Zeroζ,ν(R ·R′ − 1) = 1 and Multiset(4)τ,ν+1(merge(T,U), merge(O,W ), merge(T,U), merge(F,R)) = 1 both
hold, we show that Lookupι,ν(T,U) = 1 holds with probability 1. Our assumption Zeroζ,ν(R · R′ − 1) = 1
immediately implies that, for each v ∈ Bν , R(v) · R′(v) = 1, so that R(v) ̸= 0. Our second assumption is
precisely the equality (1) of multisets. From it, we conclude a fortiori that

{(U(v), R(v)) | v ∈ Bν} ⊂ {(T (v), 1) | v ∈ Bν} ∪ {(U(v), α ·R(v)) | v ∈ Bν} (2)

as multisets. We suppose, for contradiction, that v0 ∈ Bν , say, were such that, for each v′ ∈ Bν , U(v0) ̸= T (v′)
held. Since certainly (U(v0), R(v0)) ̸∈ {(T (v), 1) | v ∈ Bν}, by hypothesis on v0, we conclude from (2) that
(U(v0), R(v0)) ∈ {(U(v), α ·R(v)) | v ∈ Bν}, so that v1 ∈ Bν , say, is such that (U(v0), R(v0)) = (U(v1), α ·
R(v1)). Since U(v1) = U(v2), applying (2) again to the pair (U(v1), R(v1)), we find as before an element
v2 ∈ Bν , say, for which (U(v1), R(v1)) = (U(v2), α ·R(v2)). Proceeding in this way, we obtain a sequence of
elements vi ∈ Bν , for i ∈ {0, . . . , 2ν}, for which, for each i ∈ {0, . . . , 2ν − 1}, we have R(vi+1) · α = R(vi).
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Since |Bν | = 2ν , by the pidgeonhole principle, we must have a collision vi = vj , for unequal indices i < j,
say, in {0, . . . , 2ν}. We conclude that R(vi) = αj−i · R(vj) = αj−i · R(vi); using our guarantee whereby
R(vi) ̸= 0, we finally conclude that αj−i = 1. Since j − i ∈ {1, . . . , 2ν}, and α’s multiplicative order is
exactly |Tζ | − 1 > 2ν , we obtain a contradiction. We conclude that Lookupι,ν(T,U) = 1, as desired.

5 A SNARK over Binary Tower Fields

We now present a practical SNARK, suitable for general statements over binary tower fields. Its arith-
metization scheme—that is, the method by which it algebraically captures general computations—refines
the PLONKish scheme of Grigg, Bowe, Hopwood and Lai [Gri+22], and in particular its adaptation, due to
Chen, Bünz, Boneh and Zhang’s HyperPlonk [Che+23, Def. 4.1], to the multivariate setting. The PLONKish
arithmetization arranges its witness data into a computational trace, called a trace matrix, of field elements.
The scheme moreover makes use of a plurality of gate constraints; these are multivariate polynomials, to be
evaluated over certain subsets of the trace matrix.

Our treatment differs from HyperPlonk’s primarily in that we do not confine ourselves to a single finite
field. Rather, we partition our trace matrix’s column set into regions, each in turn corresponding to different
subfields in the tower. For example, our trace matrix might feature certain columns defined over F2, others
over F28 , and still others over F232 , say. Our gate constraints, moreover, may express polynomial relations
defined over particular subfields of the tower. In fact, even a single gate constraint may freely act on
columns which themselves belong to unequally sized subfields; indeed, each among the tower’s subfields
embeds unambiguously into each of its larger fields.

We pause to emphasize the utility of the virtual polynomial abstraction constructions in our SNARK.
Indeed, the “virtual polynomial-centric” approach we pursue serves to vastly reduce the number of trace
columns which the prover must explicitly commit to. That is, instead of requiring that the prover commit
to certain auxiliary columns, and only then ensuring that they relate as prescribed to the trace columns,
the verifier may instead directly materialize the needed auxiliary columns virtually. The verifier may then,
finally, check that the relevant polynomial relations—each defined over a collection consisting of both explicit
and virtual columns—hold.

5.1 The PLONK relation

We define the indexed relation RPLONK on tuples of the form (i,x;w), where the index i captures the public
parameters of the constraint system, the statement x represents the circuit’s public inputs, and the witness
w includes further inputs to the circuit.

The index is defined to be a tuple of the form i = (τ, ν, ξ, nφ, nψ, ι, a, g, σ), where:

• τ ∈ N is the height of the maximally-indexed tower step Tτ in use,

• ν ∈ N is the base-2 logarithm of the number of trace rows (we require ν ≤ 2τ ),

• ξ ∈ {0, . . . , ν} is the base-2 logarithm of the statement length,

• nφ ∈ N is the number of fixed columns,

• nψ ∈ N is the number of witness columns,

• ι : {0, . . . , nψ−1} → {0, . . . , τ} is a mapping, which assigns to each witness column a tower field index,

• a ∈
(
T Bντ

)nφ
is the array of fixed columns,

• (g0, . . . , gµ−1) is a list of ν-variate virtual polynomials, each of which operates over nφ + nψ handles,

• σ : {0, . . . , nφ + nψ} × Bν → {0, . . . , nφ + nψ} × Bν defines a plurality of global copy constraints.

The statement is x := x ∈ T Bξτ , a vector of input values. The witness is w := w ∈
(
T Bντ

)nψ , an array of
witness columns.
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We record several remarks. We assume throughout that τ is sufficiently large that an injection s :
{0, . . . , nφ + nψ} × Bν ↪→ Tτ exists. Above, we slightly abuse notation by calling the objects (g0, . . . , gµ−1)
“virtual polynomials”; more properly, these are circuits which operates over “placeholder” handles (i.e.,
handles which don’t exist yet). Once the relevant handles become available—i.e., after the indexer and prover
commit to the fixed and witness columns, respectively—the verifier may, by “plugging in” the appropriate
handles, create from each of these circuits a genuine virtual polynomial. On the other hand, upon being fed
real polynomials (as opposed to handles), these virtual polynomials of course become standard polynomials.

For convenience, we write padν(x) ∈ T Bντ for the zero-extension of the vector x ∈ T Bιτ to the domain Bν ;
we moreover write c ∈

(
T Bντ

)nφ+nψ for the concatenation of columns c := a ∥ w ∥ padν(x). The indexed
relation RPLONK holds, by definition, if and only if:

1. For each i ∈ {0, . . . , µ− 1}, the polynomial gi
(
c0, . . . , cnφ+nψ−1

)
is identically zero over Bν .

2. For each (i, v) ∈ {0, . . . , nφ + nψ} × Bν , it holds that ci(v) = ci′(v
′), where we write (i′, v′) := σ(i, v).

3. For each (i, v) ∈ {0, . . . , nψ − 1} × Bν , it holds that wi(v) ∈ Tι(i) ⊂ Tτ .

These three conditions capture, respectively, the witness’s satisfaction of all gate constraints, its satis-
faction of all global copy constraints, and finally its satisfaction of all subfield constraints. The first two
conditions are standard across PLONKish variants (see e.g. [Che+23, Def. 4.1]); the third condition is new,
and pertains specifically to our tower setting. We note that we do not isolate so-called selector columns, as
prior formalizations do (see e.g. [Che+23, Sec. 4.1] and [STW23a, Sec. 2.2]); instead, we subsume these into
our fixed columns a.

5.2 Our Protocol

We now present a tower field multilinear polynomial IOP for the indexed relation RPLONK. On the input i,
the indexer I, for each i ∈ {0, . . . , nφ−1}, submits (submit, τ, ν, ãi) to the oracle, where ãi is the MLE of the
fixed column ai ∈ T Bντ , and receives (receipt, τ, ν, [ai]). Moreover, I performs the permutation check ’s setup
procedure—already described in detail in advance of Protocol 4.21 above—with respect to the permutation
σ : {0, . . . , nφ + nψ} × Bν → {0, . . . , nφ + nψ} × Bν ; in this way, I obtains further handles [sid] and [sσ].
Finally, I outputs the list of handles vp :=

(
[a0], . . . , [anφ−1], [sid], [sσ]

)
.

PROTOCOL 5.1 (main polynomial IOP for RPLONK).
On the security parameter λ, and common input i and x, P and V proceed as follows.

• Both P and V compute the zero-extension padν(cι), as well as its MLE p̃adν(cι).

• For each i ∈ {0, . . . , nψ − 1}, P sends (submit, ι(i), ν, wi) to the polynomial oracle.

• For each i ∈ {0, . . . , nψ−1}, upon receiving (receipt, ιi, ν, [wi]) from the oracle, V checks ιi
?
= ι(i).

We abbreviate
(
[c0], . . . , [cnφ+nψ−1]

)
:=
(
[a0], . . . , [anφ−1], [w0], . . . , [wnψ−1]

)
.

• For each i ∈ {0, . . . , µ− 1}, P and V zerocheck the virtual polynomial gi
(
[c0], . . . , [cnφ+nψ−1]

)
.

• P and V run a permutation check, with statement σ, on the input
(
[c0], . . . , [cnφ+nψ ]

)
.

Theorem 5.2. Protocol 5.1 securely computes the relation RPLONK.

Proof. We construct an emulator E . Our emulator E operates as follows, given access to A, and to i and x:

1. E independently runs vp := I(i), internally simulating the existence of the polynomial oracle.

2. Using vp, and playing the role of V, E runs A internally, and in particular intercepts its submissions
(submit, ιi, ν, wi) intended for the polynomial oracle. As V would, E aborts if, for any index i ∈
{0, . . . , nψ− 1}, either A fails to submit the expected witness wi or the tower height ιi ̸= ι(i) is wrong.
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3. E continues to simulate the role of V internally toA, during the course of the virtual protocols prescribed
by Protocol 5.1. If, at any point, the verifier V in E ’s head aborts, then E does too (i.e., it outputs ⊥).

4. E outputs w :=
(
w0, . . . , wnψ−1

)
and terminates.

We argue that E fulfills the requirements of Definition 4.3 with respect to the relation RPLONK. We note
first that E outputs w in step 4 above with the same probability with which V accepts. It follows that the
relevant discrepancy |Pr[⟨A(i,x),V(vp,x)⟩ = 1]− Pr[R(i,x,w) = 1]| is equal to the probability with which
A submits a well-formed witness w for which R(i,x,w) = 0 holds and V nonetheless accepts. This latter
probability is negligible precisely in virtue of the security—in the sense of Definition 4.7—of the zerocheck
and permutation check virtual protocols which V runs with A in Protocol 5.1.

5.3 Gadgets

In this subsection, we record composable gadgets for various key operations, including (arithmetic) addition
and multiplication. In our setting, a “gadget” is a special sort of virtual polynomial protocol in which the
predicate at hand may apply not just to input columns—that is, to polynomials known to both parties before
the protocol begins—but moreover to further virtual polynomials which arise during the protocol. Informally,
a gadget is a virtual protocol in which, if the verifier doesn’t abort, the parties output a further virtual
polynomial, which necessarily relates to the protocol’s inputs in a prescribed way. This slight relaxation of
Definition 4.7 doesn’t change the spirit of that definition.

Addition. We record a simple gadget for the arithmetic addition of unsigned integers. Our construction,
informally, captures the raw relationship at the level of bits, using a few simple F2-constraints, as well as
a shift (see Subsection 4.3); it then uses the packing operator to materialize the relevant bit-columns into
virtual columns of blocks.

We fix a column size ν ≥ 0 and a bit-width b ∈ {0, . . . , ν}. On inputs X, Y , and Z in T Bν0 , the addition

predicate sends Addν,b : (X,Y, Z) 7→
∧
v∈Bν−b{packb(X)(v)} + {packb(Y )(v)} ≡ {packb(Z)(v)} (mod 22

b

).

That is, the addition predicate requires that, for each v ∈ Bν−b, the elements packb(X)(v), packb(Y )(v), and
packb(Z)(v) of Tb respectively have monomial basis representations x = (x0, . . . , x2b−1), y = (z0, . . . , z2b−1),

and z = (z0, . . . , z2b−1) for which {x}+ {y} ≡ {z} (mod 22
b

) holds (as usual, we write {v} :=
∑2b−1
i=0 2i · vi).

PROTOCOL 5.3 (Addition gadget).
Parameters ν ∈ N and b ∈ {0, . . . , ν} and ν-variate virtual polynomials [X] and [Y ] over T0 are fixed.

• By performing 2ν−b independent 2b-bit ripple-carry additions, P obtains the vector of carry-outs
cin ∈ T Bν0 . P submits (submit, 0, ν, c̃in) to the oracle.

• P and V define ν-variate virtual polynomials cin := shift′b,1(cout) and Z := X + Y + cin over T0.

• P and V zerocheck the ν-variate virtual polynomial X · Y +X · cin + Y · cin − cout over T0.

• P and V output Z.

Theorem 5.4. Protocol 5.3 securely decides the predicate Addν,b on [X], [Y ] and [Z].

Proof. Indeed, assuming that Zero0,ν(X · Y + X · cin + Y · cin − cout) = 1, we show that Addν,b(X,Y, Z)
holds with probability 1. Protocol 5.3 captures the action of a ripple-carry adder on each 2b-bit chunk of the
inputs X and Y . Indeed, our hypothesis entails exactly that the F2-identity X · Y +X · cin + Y · cin = cout
holds identically over Bν . This shows that, logically, cout = X ∧ Y ∨X ∧ cin ∨ Y ∧ cin holds identically over
Bν , so that cout relates as required to X, Y and cin. On the other hand, the relationship between cin and
cout is correct, by definition of shift′b,1. We conclude that Z := X + Y + cin has the required property.

Multiplication. We now describe a gadget which captures unsigned integer multiplication. For each
ν ≥ 0 and b ∈ {0, . . . , ν}, we define the multiplication predicate Multν,b(X,Y, Z) 7→

∧
v∈Bν−b{packb(X)(v)} ·

{packb(Y )(v)} ≡ {packb(Z)(v)} (mod 22
b

).
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Informally, our multiplication gadget executes the schoolbook algorithm on a-bit words, where a, a
tunable parameter, controls the size of a certain lookup table. We check the relevant word-by-word multi-
plications using lookups; the remaining work amounts to appropriately combining the results of the various
word-wise multiplications.

We fix a lookup table size parameter a ∈ {0, . . . , b−1}. We recall the multilinear Ta-basis 1, Xa, Xa+1, Xa ·
Xa+1 of Ta+2. We define the multiplication lookup table T ∈ T B2a×B2a

a+2 as follows:

T : (x, y) 7→ x · 1 + y ·Xa + z0(x, y) ·Xa+1 + z1(x, y) ·Xa ·Xa+1.

Above, we first identify the B2a -elements x and y with Ta-elements, by means of the multilinear F2-basis of
Ta. Moreover, we write z0(x, y) and z1(x, y) for the unique Ta-elements for which {z0(x, y)}+22

a ·{z1(x, y)} =
{x} · {y} holds; here, the right-hand quantity is a simple product of integers. In words, z0(x, y) and z1(x, y),
on the level of bits, respectively give the lower and upper halves of the 2 · 2a-bit integer product {x} · {y}.
Informally, the lookup table T takes, as its values over the 2a + 2a-dimensional hypercube, precisely the
concatenations x ∥ y ∥ x · y of the “legal” multiplication triples (this concatenation takes place in Ta+2).

We how have the following virtual polynomial protocol:

PROTOCOL 5.5 (Multiplication gadget).

Parameters ν ∈ N, b ∈ {0, . . . , ν}, and a ∈ {0, . . . , b − 1}, as above, the lookup table T ∈ T B2a+1

a+2 , and
finally ν-variate virtual polynomials [X] and [Y ] over T0 are fixed.

• P and V initialize the identically-zero ν-variate virtual column [Z] over T0.

• For each u ∈ Bb−a, P and V proceed as follows:

– P and V define Xu := shift′b−a,u(packa(X)) and Yu := satb−a,u(packa(Y )).

– P constructs the array crossu := (z0(Xu(v), Yu(v)) + z1(Xu(v), Yu(v)) ·Xa)v∈Bν−a in T Bν−aa+1 ,

where z0 and z1 are as above, and submits (submit, a+ 1, ν − a, c̃rossu) to the oracle.

– P and V perform a lookup on Uu := Xu · 1 + Yu ·Xa + crossu ·Xa+1 against T .

– For each parity bit j ∈ {0, 1}, P defines auxu,j ∈ T Bν0 by concatenating the bits of
the 2ν−a−1 Ta+1-elements of the substring (crossu(j, v1, . . . , vν−a−1))v∈Bν−a−1

. P submits

(submit, 0, ν, ãux0) and (submit, 0, ν, ãux1) to the oracle. P and V run a zerocheck on the
ν − a-variate polynomial merge

(
packa+1(auxu,0), packa+1(auxu,1)

)
− crossu over Ta+1.

– By running the addition gadget twice, each time with block parameter b, P and V update
Z += auxu,0 + shift′b,2a(auxu,1).

• P and V output the virtual polynomial [Z].

In the last line of the main loop, we slightly abuse notation by writing shift′b,2a to signify shift′b,o,

where o ∈ Bb is chosen so that {o} = 2a holds; that is, we set o := (0, . . . , 0, 1, 0 . . . 0︸ ︷︷ ︸
a

).

The completeness of Protocol 5.5 is a straightforward, though delicate, exercise. We note that, for
each u ∈ Bb−a, the elements aux0 and aux1 of T Bν0 are defined precisely so that packa+1(auxu,0) and
packa+1(auxu,1) respectively yield the even and odd substrings of crossu. In other words, the equality

merge
(
packa+1(auxu,0), packa+1(auxu,1)

)
= crossu ensured during the zerocheck holds essentially by fiat.

The completeness of the lookups follows directly from the construction of crossu.

Theorem 5.6. Protocol 5.5 securely decides the predicate Multν,b on [X], [Y ] and [Z].

Proof. If V accepts, then Lookup(T,Uu) = 1 holds for each u ∈ Bb−a; in particular, for each u ∈ Bb−a and

each v ∈ Bν−a, we have the equality {crossu(v)} =
{
shift′b−a,u(packa(X))(v)

}
· {satb−a,u(packa(Y ))(v)}

of unsigned, 2a+1-bit integers. Unwinding the definitions of shift′b−a,u and satb−a,u, we conclude fur-
ther that, for each iteration u ∈ Bb−a as above and each chunk index (vb−a, . . . , vν−a−1), the vector
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crossu, restricted to the chunk indexed by (vb−a, . . . , vν−a−1), contains exactly the 2b−a double-width cross
terms {packa(X)(s0, . . . , sb−a−1, vb−a, . . . , vν−a−1)} · {packa(Y )(u0, . . . , ub−a−1, vb−a, . . . , vν−a−1)}, where
the strings s := (s0, . . . , sb−a−1) are such that {s} ranges through the list

(
0, . . . , 0, 1, 2, . . . , 2b−a − 1− {u}

)
.

In words, (crossu(w0, . . . , wb−a−1, vb−a, . . . , vν−a))w∈Bb−a yields precisely the {u}th row of the triangular

array associated with the schoolbook multiplication of (packa(X)(w0, . . . , wb−a−1, vb−a, . . . , vν−a−1))w∈Bb−a
and (packa(Y )(w0, . . . , wb−a−1, vb−a, . . . , vν−a−1))w∈Bb−a , which we understand 2b−a-limb integers. Each

cell of this array, moreover, is double-width—that is, 2a+1 bits—and needs to be reduced.

To “fold” the elements of this row, with carries, we use a trick. Working modulo 22
b

, we must add
the 2b−a 2a+1-bit elements of each chunk of crossu, after shifting each successive element moreover by 2a

further positions (and truncating the most-significant 2a bits of the last-indexed element in each chunk).
Upon writing each integer in its proper place, we find that the even-indexed components of the chunk—
corresponding to those indices (0, w1, . . . , wb−a−1, vb−a, . . . , vν−a−1), for (w1, . . . , wb−a−1) ∈ Bb−a−1—don’t
overlap; the odd-indexed components (1, w1, . . . , wb−a−1, vb−a, . . . , vν−a−1) similarly lack overlaps. We thus
“lift” both of these respective substrings to bit-vectors, so that we can add them. The bit-vectors auxu,0
and auxu,1, we see, are defined to be the respective lifts to T Bν0 of the even and odd substrings of crossu;
the verifier’s zerocheck ensures that they take exactly this form. It thus remains only to show that, for each
block index (vb−a, . . . , vν−a−1), we have that

∑
w∈Bb−a 2

{w}·a ·{crossu(w0, . . . , wb−a−1, vb−a, . . . , vν−a−1)} ≡

{packb(auxu,0)(vb−a, . . . , vν−a−1)} +
{
packb

(
shift′b,2a(auxu,1)

)
(vb−a, . . . , vν−a−1)

}
(mod 22

b

). We ob-

serve finally that the two terms on this expression’s right-hand correspond precisely to its left-hand sum’s
even-indexed and odd-indexed subset sums. This completes the proof.

We finally remark upon the efficiency of Protocol 5.5. Protocol 5.5 entails O(2b−a) executions of the

addition gadget, as well as 2b−a lookups, each into tables T and Uu sized 22
a+1

and 2ν−a, respectively. The
parameter a ∈ {0, . . . , b− 1}, we see, mediates a tradeoff between more lookups and more expensive lookups;
those choices of a for which these costs become similar appear to be the best.

Example 5.7. In the case ν := 20 and b := 5, Protocol 5.5 yields a multiplication gadget for 32-bit integers.
Setting a := 3, we obtain a limb size of 23 = 8 bits, as well as a lookup table T—of size 22

3+1

= 216—which
contains all possible byte-by-byte products. Finally, each looked-up column Uu is of size 220−3 = 217. These
sizes thus all-but balance, and seem to be optimal. In this setting, we see that Protocol 5.5 proceeds by
performing the schoolbook method, chunk-wise, on pairs of 4-limb integers, using lookups to handle each
individual product of bytes.

6 Performance Evaluation

We implemented certain key subroutines of our system in Rust. We focus our performance evaluation here
on the polynomial commitment scheme and sumcheck protocol, which together dominate the prover’s overall
computation. Our software of course implements the required tower field arithmetic primitives. We use
the Intel Galois Field New Instructions (GFNI) instruction set extension to accelerate the fundamental
multiplication and inversion operations. The GFNI extension includes the SIMD instruction GF2P8MULB,
which multiplies elements of the field F28

∼= F2[X]/(X8 + X4 + X3 + X + 1). Though this instruction
assumes a monomial—as opposed to a tower—F2-basis of F28 , we convert between these representations
using the further instruction GF2P8AFFINEQB; that is, by using both instructions together, we obtain a short
sequence of CPU instructions which multiplies F28-elements expressed in coordinates with respect to the
tower basis. For those towers Tι for which ι > 3, we use the binary, recursive Karatsuba approach discussed
above (see Subsection 2.3), though we now terminate its recursion at the base case F28 .

We benchmark our polynomial commitment scheme’s performance on polynomials over 1-bit, 8-bit, 32-
bit, and 64-bit binary fields. The schemes of Section 3 allow the use of any collision-resistant hash function;
we instantiate them with the Grøstl hash function, which, as discussed in the introduction, is both performant
and recursion-friendly. We use the Reed–Solomon code with rate 1

2 . We present benchmarks for both single-
threaded execution, in Table 2, and multi-threaded execution, in Table 3, though we note that our code does
not yet implement multi-threading in a thoroughly optimized manner.
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We compare the performance results of our polynomial commitment scheme to two high-performance
software implementations of alternative schemes. We benchmark against the Lasso open-source project’s1

implementation of Wahby, et al.’s Hyrax [Wah+18], using the BN254 elliptic curve. This library was chosen
as a point of comparison because it is built atop the well-known arkworks project [con22] and includes
further optimizations when committing small-valued field elements. The Lasso project makes efficient use
of multithreading in the commitment phase. We also benchmark against plonky2 2, which implements FRI-
PCS, parameterized with a 100-bit conjectured security target. Even though plonky2’s FRI-PCS is univariate
and the other schemes benchmarked here are multivariate, we find it as useful point of comparison because
of its highly-regarded performance characteristics. Like our construction, the FRI-PCS allows a choice of
hash function, and so we show performance results for both the Poseidon and Keccak-256 hash functions,
noting that Poseidon is slower but often used in practice for its recursion-friendliness. The plonky2 system
also implements multithreading, but optimizes for batched polynomial commitments, as opposed to single
polynomial commitments. Seeking a more fair comparison, we also show how FRI-PCS performs with
batched commitments and opening proofs on a batch of 256 committed polynomials, each with 256-fold
fewer coefficents. For the FRI-PCS benchmarks, we observed that, as expected, the time required to commit
elements smaller than 64 bits is nearly identical to the time to commit 64-bit elements, and so only show
the unified results.

Table 4 shows our performance results for the sumcheck prover. The sumcheck protocol’s performance
profile depends on the form of the virtual polynomial that the protocol is applied to. We adopt the standard
course whereby we benchmark only multivariate polynomials defined as the product of several multilinears.
Specifically, we include in the table results corresponding to the products of 2, 3, and 4 multilinears. One
sumcheck prover benchmarked below uses the tower field T7 ∼= F2128 . We moreover benchmark the sumcheck
prover over the monomial-basis binary field F2128

∼= F2[X]/(X128 +X127 +X126 +X121 + 1). This field—
and in particular, its irreducible polynomial—appears in Gueron, Langley and Lindell’s RFC 8452 [GLL19,
Sec. 3], and figures in that document’s POLYVAL polynomial authenticator. This particular field makes
available a certain highly optimized multiplication algorithm, which appears, for both the x86 64 and the
ARM64 instruction sets, in Thomas Pornin’s BearSSL3 (these implementations use the PCLMULQDQ and
PMULL instructions, respectively). We note that a prover may explictly convert between the tower field T7
and the isomorphic monomial-basis field F2128 for the sake computational efficiency without necessitating
any change to the protocol verification logic. Finally, we compare performance against the implementation
of sumcheck over the BN254 scalar field, as implemented in Lasso.

We ran all benchmarks on an Amazon Web Services c7i.16xlarge compute-optimized cloud instance,
with a 4th-generation Intel Xeon Scalable (“Sapphire Rapids 8488C”) processor, 64 virtual cores, and 128
GiB of RAM.

1https://github.com/a16z/Lasso.git
2https://github.com/0xPolygonZero/plonky2
3https://bearssl.org/
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Commitment Scheme Num. Coefficients Size (bits) Commit (s) Prove (s) Verify (s)

Hyrax, BN254 G1 220 1 0.3328 0.2817 0.02251

8 0.5550 0.2792 0.02243

32 1.606 0.2790 0.02261

64 3.258 0.2795 0.02270

224 1 5.240 2.816 0.07090

8 7.641 2.922 71.232

32 22.38 2.917 0.07100

64 40.959 2.894 0.07082

228 1 84.65 54.72 0.2378

8 118.5 55.72 0.2389

32 287.1 55.73 0.2394

64 597.7 55.08 0.2392

FRI-PCS, 220 64 3.068 1.217 0.01016

Goldilocks-64, Poseidon 224 64 50.11 19.93 0.01358

228 64 824.5 326.6 0.001728

FRI-PCS, 220 64 1.168 0.5371 0.003998

Goldilocks-64, Keccak-256 224 64 19.89 8.884 0.005193

228 64 342.4 149.4 0.006509

Batched FRI-PCS, 220 64 0.3552 0.1438 0.00783

Goldilocks-64, Poseidon 224 64 5.752 0.3860 0.01041

228 64 97.654 8.228 0.01327

Batched FRI-PCS, 220 64 0.07485 0.06851 0.002408

Goldilocks-64, Keccak-256 224 64 1.326 0.1815 0.003438

228 64 28.617 8.168 0.004466

Our construction 220 1 0.006090 0.007672 0.01159

8 0.04163 0.005218 0.02261

32 0.1564 0.01547 0.03611

64 0.2230 0.05640 0.03685

224 1 0.04337 0.1180 0.03353

8 0.3629 0.07936 0.06968

32 1.470 0.2412 0.1286

64 2.575 0.8953 0.1370

228 1 0.5703 1.856 0.1265

8 4.934 1.252 0.2722

32 18.67 3.381 0.1827

64 37.63 14.28 0.3044

Table 2: Single-threaded comparison of commitment schemes for polynomials with coefficients of varying
bit-lengths.
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Commitment Scheme Num. Coefficients Size (bits) Commit (s) Prove (s) Verify (s)

Hyrax, BN254 G1 220 1 0.02535 0.2357 0.02483

8 0.02835 0.2431 0.02565

32 0.06567 0.23749 0.002331

64 0.1271 0.2410 0.02497

224 1 0.1904 0.9233 0.07479

8 0.2405 0.9294 0.07398

32 0.7117 0.9152 0.07267

64 1.266 0.9254 0.07140

228 1 2.592 4.421 0.2374

8 3.518 4.323 0.2367

32 8.619 4.347 0.2367

64 18.55 4.377 0.2352

FRI-PCS, 220 64 0.1690 0.3110 0.008183

Goldilocks-64, Poseidon 224 64 3.495 6.033 0.01128

228 64 64.07 107.4 0.01501

FRI-PCS, 220 64 0.1009 0.2867 0.003521

Goldilocks-64, Keccak-256 224 64 2.386 5.676 0.004669

228 64 44.87 99.40 0.005895

Batched FRI-PCS, 220 64 0.02384 0.01369 0.007848

Goldilocks-64, Poseidon 224 64 0.2407 0.1761 0.01039

228 64 5.186 7.396 13.438

Batched FRI-PCS, 220 64 0.004309 0.02017 0.002416

Goldilocks-64, Keccak-256 224 64 0.04893 0.1724 0.003427

228 64 2.545 7.430 0.004574

Our construction 220 1 0.03715 0.006876 0.03295

8 0.2172 0.004718 0.1050

32 0.8271 0.01548 0.1849

64 1.052 0.05643 0.2231

224 1 0.1640 0.1057 0.1181

8 1.321 0.07364 0.3588

32 5.283 0.2416 0.6586

64 6.521 0.8947 0.6761

228 1 1.025 1.672 0.4251

8 8.306 1.149 1.301

32 13.687 3.827 0.7312

64 17.56 14.28 0.8522

Table 3: Multi-threaded performance of commitment schemes for polynomials with coefficients of varying
bit-lengths.
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Field Num. Variables ℓ Composition Degree Time (s)

BN254 Fr 20 2 0.119

3 0.1401

4 0.1756

24 2 1.626

3 1.908

4 2.482

28 2 24.83

3 46.66

4 72.01

T7, tower basis 20 2 0.08228

3 0.081812

4 0.1510

24 2 0.7168

3 1.3281

4 1.928

28 2 11.94

3 19.99

4 29.99

F2128 , monomial basis 20 2 0.06221

3 0.08993

4 0.09911

24 2 0.6048

3 0.6979

4 1.158

28 2 7.707

3 12.00

4 15.98

Table 4: Multi-threaded performance of the sumcheck prover on products of multilinear polynomials.
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A Case Study: Keccak-256 Arithmetization

In this appendix, we supply a PLONKish arithmetization (in the sense of Section 5.1 above) for the
Keccak-f [1600] permutation [Ber+11, § 1.2], which resides at the heart of the Keccak family of sponge
functions. The Keccak-256 hash function in particular represents a core bottleneck facing modern efforts to
scale Ethereum using SNARKs. Our arithmetization captures the correct computation of Keccak-f [1600],
and exploits the unique advantages of our tower-field setting.

We recall the full Keccak-f [b] permutation. We follow the treatment of that algorithm given in [Ber+11,
§ 1.2], as well as a pseudo-code description given online4. The permutation state consists of a b-bit-array
A ∈ F5×5×w

2 , where w := 2ℓ for some power ℓ ∈ {0, . . . , 6} (below, we in fact fix ℓ := 6, so that b = 1600).
We understand A throughout as a 5 × 5 array of lanes, or w-bit words (see [Ber+11, Fig. 1.1]), and index
into it accordingly. We define addition and multiplication on lanes componentwise; to avoid confusion, we
denote using the symbol ∗ the componentwise multiplication of lanes (i.e., the bitwise AND operation).
The intermediate value B below takes the same shape as A does; the objects C and D below are one-
dimensional, length-5 arrays of lanes. We understand all indices into these arrays modulo 5. We moreover
make use of various constants. That is, we have a number nr of rounds (per Keccak’s specification, we set
nr := 12 + 2 · ℓ = 24); as well as a 5 × 5 array r ∈ {0, . . . , w − 1}5×5 of rotation offsets, whose derivation is
explained in [Ber+11, § 1.2]. We finally have an array RC of round constants, whose construction is again
detailed in [Ber+11, § 1.2]; for each ir ∈ {0, . . . , nr − 1}, RC[ir] ∈ Fw2 is a single binary word. We reproduce
the Keccak-f [b] permutation in full in Algorithm 1 below.

4https://keccak.team/keccak_specs_summary.html
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Algorithm 1 (Keccak-f [b] permutation [Ber+11].)

1: procedure Keccak-f [b](A)
2: for ir ∈ {0, . . . , nr − 1} do
3: for x ∈ {0, . . . , 4} do C[x] := A[x, 0] +A[x, 1] +A[x, 2] +A[x, 3] +A[x, 4]. ▷ begin θ step

4: for x ∈ {0, . . . , 4} do D[x] := C[x− 1] + rot(C[x+ 1], 1).

5: for (x, y) ∈ {0, . . . , 4} × {0, . . . , 4} do A[x, y] += D[x].

6: for (x, y) ∈ {0, . . . , 4} × {0, . . . , 4} do B[y, 2 · x+ 3 · y] := rot(A[x, y], r[x, y]). ▷ ρ and π steps

7: for (x, y) ∈ {0, . . . , 4} × {0, . . . , 4} do A[x, y] = (B[x+ 1, y] + 1) ∗B[x+ 2, y]. ▷ χ step

8: A[0, 0] += RC[ir]. ▷ ι step

We build our PLONK constraint system for Keccak-f [1600] over two tower fields, T0 and T6. We take
the liberty of defining the constraint system over committed columns of different lengths, linking them by
means of a packing argument (see Subsection 4.3). The constraint system has 25 rows, so that it can to
accommodate nr = 24 rounds; it uses one row per round. It uses two fixed columns:

• qround ∈ T0[X0, ..., X4]
⪯1 is the selector for the round computation. It takes the value 1 on those cube

points lexicographically indexed {0, . . . , 23} and 0 on the points indexed {24, . . . , 31}. This polynomial
has a simple description as a multilinear extension over the dimension-5 cube, and so can be efficiently
evaluated locally by the verifier (i.e., without the aid of a commitment or an opening proof).

• RC ∈ T6[X0, ..., X4]
⪯1 is the column of 64-bit round constants.

The permutation state is committed in the following group of columns:

• A ∈
(
T0[X0, ..., X10]

⪯1)5×5 captures the 25 lanes of state, as of the beginning of each successive round.

• C ∈
(
T0[X0, ..., X10]

⪯1)5 represents C in the θ step above.

• D ∈
(
T0[X0, ..., X10]

⪯1)5 represents D in the θ step above.

• Aχ ∈
(
T0[X0, ..., X10]

⪯1)5×5 captures the state of A as of the conclusion of the χ step.

We further define a series of virtual polynomials:

• Aθ ∈
(
T0[X0, ..., X10]

⪯1)5×5 represents the state of A as of the conclusion of the θ step. For each

x ∈ {0, . . . , 4} and y ∈ {0, . . . , 4}, we define Aθ
x,y := Ax,y +Dx.

• B ∈
(
T0[X0, ..., X10]

⪯1)5×5 represents the state of B as of the conclusion of the π and ρ steps. For

each x ∈ {0, . . . , 4} and y ∈ {0, . . . , 4}, we define By,2x+3y := shift6,r(x,y)(A
θ
x,y).

We impose the following gate constraints:

• For each x ∈ {0, ..., 4}, Cx −
∑4
y=0 Ax,y = 0.

• For each x ∈ {0, ..., 4}, Cx−1 + shift6,1(Cx+1)−Dx = 0.

• For each (x, y) ∈ {0, ..., 4} × {0, ..., 4}, Aχ
x,y − ((1−Bx+1,y) ·Bx+2,y) = 0.

• qround ·
(
pack6

(
Aχ

0,0

)
+RC− shift′′5,−1(pack6(A0,0))

)
= 0.

• For each (x, y) ∈ {0, ..., 4} × {0, ..., 4} \ {(0, 0)}, qround ·
(
shift′′5,−1(pack6(Ax,y))− pack6(A

χ
x,y)
)
= 0.

Provided that these constraints are fulfilled, we see that the arrays (pack6(Ax,y)(v))(x,y)∈{0,...,4}×{0,...,4},

for the row-indices {v} = 0 and {v} = 24 respectively, are related exactly by the Keccak-f [1600] permuta-
tion.
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B Deferred Proofs

Proof of Theorem 3.12. We fix a tuple (c, t0, t1, u0, u1) for which Π.Open(params, c; t0, s0) and
Π.Open(params, c; t1, s1) both hold. Barring a collision in the random oracle, we have that u0 = u1; we write

(ui)
m0−1
i=0 for the common hint. By hypothesis, the respective encodings (Enc(t0,i))

m0−1
i=0 and (Enc(t1,i))

m0−1
i=0

of t0 and t1 satisfy dm0

(
(Enc(t0,i))

m0−1
i=0 , (ui)

m0−1
i=0

)
< d

3 and dm0

(
(Enc(t1,i))

m0−1
i=0 , (ui)

m0−1
i=0

)
< d

3 . By

unique decoding, we conclude that (Enc(t0,i))
m0−1
i=0 = (Enc(t1,i))

m0−1
i=0 . Because Enc is injective, we finally

conclude that t0 = t1 as packed matrices; because the natural embedding is injective (see also Theorem
3.9 above), we finally deduce the equality of t0 and t1 unpacked matrices, and hence as polynomials in
Tι[X0, . . . , Xℓ−1].

Proof of Theorem 3.13. We define an emulator E in the following way. Given access to A, and on inputs
params, c and (r0, . . . , rℓ−1), E operates as follows:

1. E internally runs A on the further input (r0, . . . , rℓ−1) in a straight-line manner, until A outputs s and
π. If Π.Verify(params, c, s, (r0, . . . , rℓ−1), π) = 0, then E outputs (s, π;⊥,⊥) and terminates.

2. Having already obtainedA’s commitment c and observedA’s random oracle queries, E runs the straight-
line extractor of [BCS16, § A.1], and so obtains u := (ui)

m0−1
i=0 , or else outputs (s, π;⊥,⊥) if it fails.

3. E writes (r0,0, . . . , r0,ℓ−1) for the randomness it used above and t′0 for the message sent by A during
the course of its initial proof, and moreover proceeds as follows:

Algorithm 2

1: assign i := 1.
2: while i < m0 do
3: rewind A to its initial point (i.e., immediately after outputting c).
4: freshly sample (ri,0, . . . , ri,ℓ−1)← Q(params).
5: run A again on (ri,0, . . . , ri,ℓ−1), with fresh verifier randomness, until it outputs (s, π).
6: if Π.Verify(params, c, s, (ri,0, . . . , ri,ℓ−1), π) then
7: write t′i for the message sent by A during its proof.
8: increment i += 1.

E checks if the m0 ×m0 matrix
(⊗ℓ−1

j=ℓ1
(1− ri,j , ri,j)

)m0−1

i=0
is singular. If it is, E outputs (s, π;⊥, u).

4. Otherwise, using the constant Tτ -vector space structure on Aι,κ,τ , E performs the matrix operation: t0
· · ·

tm0−1

 :=


⊗ℓ−1

j=ℓ1
(1− r0,j , r0,j)

· · ·⊗ℓ−1
j=ℓ1

(1− rm0−1,j , rm0−1,j)


−1

·

 t′0
· · ·

t′m0−1

.
If the entries of (ti)

m0−1
i=0 do not reside entirely in the subring Aι,κ,ι ⊂ Aι,κ,τ , then E outputs (s, π;⊥, u).

Otherwise, E recovers the unpacked matrix (ti)
m0−1
i=0 by reversing the Tι-isomorphism of Theorem

3.9, sets as t(X0, · · · , Xℓ−1) ∈ Tι[X0, · · · , Xℓ−1] the polynomial whose coefficients (in the multilinear

Lagrange basis) are given by the concatenation of (ti)
m0−1
i=0 ’s rows, and outputs (s, π; t, u).

We now argue that E meets the requirements of Definition 3.5. We first argue that E runs in expected
polynomial time in λ. We write ε for the probability that A passes, conditioned on its state as of the point
at which it outputs c (this latter probability is taken over the coins of both Q and V, and over the further
coins of A). We note that, for each c, E enters Algorithm 2 above with probability exactly ε, and, moreover,
satisfies the condition of line 6 with probability exactly ε per iteration of that algorithm (since E simulates
the same view to A during each successive iteration of Algorithm 3 as it does during its initial execution of
A). We conclude that E ’s total expected runtime is at most 1+ ε · m0−1

ε = m0 times the time it takes to run
Construction 3.7 once; this total time is thus polynomial in λ (and independent of c and ε).
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We now analyze the distribution returned by E . We note that the outputs (c, s, π) upon which D runs are
identically distributed in the real and emulated distributions. It thus suffices to show that it holds in at most
negligibly many executions of A, Q and E that, simultaneously, Π.Verify(params, c, s, (r0, . . . , rℓ−1), π) = 1
and either Π.Open(params, c; t, u) = 0 or t(r0, . . . , rℓ−1) ̸= s.

We write Q(λ) for the number of queries A makes to the random oracle during one execution. By [BCS16,

Lem. 3], it holds with probability at most Q(λ)2+1
2λ

, which is negligible, that either E fails to extract c in
step 2 or that A outputs inconsistent Merkle leaves during its initial proof π. We thus freely assume that
E successfully extracts the opening hint u := (ui)

m0−1
i=0 in step 2 and that, throughout its initial proof π, A

outputs Merkle leaves (ui,j)
m0−1
i=0 consistent with (ui)

m0−1
i=0 .

We recall the extension code Ĉ ⊂ Aι,κ,τ of the code C ⊂ T nι+κ output by Π.Setup (i.e., see Subsection
3.1). The following lemma shows that we may, moreover, safely restrict our attention to the setting in

which the extracted matrix (ui)
m0−1
i=0 features correlated agreement with Ĉ. Though the matrix (ui)

m0−1
i=0

has, by definition, entries in the synthetic subring Aι,κ,ι ⊂ Aι,κ,τ , for the purposes of the below lemma, we
temporarily view it as a matrix with entries in Aι,κ,τ .

Lemma B.1. If its matrix satisfies dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
≥ d

3 , then A passes with negligible probability.

Proof. We abbreviate u′ :=
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (ui)m0−1

i=0 . Under the hypothesis of the lemma, Theorem 3.10,

applied with the proximity parameter e :=
⌊
d−1
3

⌋
, implies that, if the second part (rℓ1 , . . . , rℓ−1) ∈ T ℓ0τ of the

verifier’s random point resides outside a set of mass at most 2 · ℓ0 · d
3·|Tτ | in T

ℓ0
τ , then we have d

(
u′, Ĉ

)
≥ d

3 .

For such (rℓ1 , . . . , rℓ−1), we thus have in particular that d(u′,Enc(t′)) ≥ d
3 , since Enc(t′) is a codeword. It

follows that Prj←{0,...,n−1}
[
u′j = Enc(t′)j

]
≤ 1 − d

3·n . Finally, by our assumption about A’s Merkle paths,

we have that
⊗ℓ−1

i=ℓ1
(1 − ri, ri) · (ui,j)m0−1

i=0 = u′j for each column (ui,j)
m0−1
i=0 output by A. We see that A’s

chance of passing (over the coins of Q and V) is at most ℓ0 · 2·d
3·|Tτ | +

(
1− d

3·n
)ρ
. As |Tτ | ≥ 2ω(log λ) holds by

construction, and d and ℓ0 are polynomial in λ, ℓ0 · 2·d
3·|Tτ | is negligible. On the other hand, because d ∈ Ω(n)

and ρ ∈ Θ(λ), we likewise have that
(
1− d

3·n
)ρ ≤ (1− Ω(1))

Θ(λ)
is negligible. This completes the proof of

the lemma.

Indeed, the lemma shows that it holds only for a negligible proportion of executions that

dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
≥ d

3 and E proceeds into step 3. We may thus safely ignore these executions. We

accordingly assume throughout what follows that dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
< d

3 . In particular, it holds that

the respective messages underlying A’s initial matrix (ui)
m0−1
i=0 are well-defined; we write (ti)

m0−1
i=0 for these

messages. The following lemma shows that we may further restrict our attention to the case in which A
correctly outputs t′ =

⊗ℓ−1
i=ℓ1

(1− ri, ri) · (ti)m0−1
i=0 during its initial proof.

Lemma B.2. If its message t′ ̸=
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (ti)m0−1

i=0 , then A passes with negligible probability.

Proof. We again fix e :=
⌊
d−1
3

⌋
and abbreviate u′ :=

⊗ℓ−1
i=ℓ1

(1 − ri, ri) · (ui)m0−1
i=0 ; we moreover write v′ :=⊗ℓ−1

i=ℓ1
(1 − ri, ri) · (Enc(ti))m0−1

i=0 . By our assumption above, dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
≤ e holds; in particular,

d(u′, v′) ≤ e. On the other hand, our hypothesis implies that Enc(t′) ̸= v′. Finally, since Ĉ is Tτ -linear (as
discussed above), v′ ∈ Ĉ is a codeword. By the reverse triangle inequality, we thus have:

d(u′,Enc(t′)) ≥ |d(Enc(t′), v′)− d(u′, v′)| ≥ d− e.

As above, we conclude that Prj←{0,...,n−1}
[
u′j = Enc(t′)j

]
≤ 1− d−e

n ; moreover, we again have that
⊗ℓ−1

i=ℓ1
(1−

ri, ri) · (ui,j)ℓ−1i=0 = u′j for each j ∈ J queried by the verifier. We thus upper-bound A’s probability of passing

by
(
1− 2·d

3·n
)ρ
. This again completes the proof, in light of the guarantees d ∈ Ω(n) and ρ ∈ Θ(λ).

The following lemma is specific to our setting, and doesn’t appear in [DP23]. In the following lemma,

we continue to assume that (ui)
m0−1
i=0 has entries in the synthetic subring Aι,κ,ι ⊂ Aι,κ,τ , as well as that

dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
< d

3 holds.
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Lemma B.3. The matrix of messages (ti)
m0−1
i=0 also has entries in the subring Aι,κ,ι ⊂ Aι,κ,τ .

Proof. We suppose for contradiction that some row ti∗ , say, where i
∗ ∈ {0, . . . ,m0−1}, satisfies ti∗,j∗ ̸∈ Aι,κ,ι,

for some component j∗ ∈ {0, . . . , m1

2κ − 1}. We recall the Tι+κ-basis (βv)v∈Bτ−ι of Aι,κ,τ introduced above.
Expressing each component of ti∗ in coordinates with respect to this basis, we express ti∗ as a collection of

2τ−ι vectors ti∗,v ∈ T
m1/2κ

ι+κ , for v ∈ Bτ−ι. Our hypothesis on ti∗ entails precisely that at least one nonzero-

indexed slice—indexed v∗ ∈ Bτ−ι \ {(0, . . . , 0)}, say—is not identically zero (i.e., as T m1/2κ

ι+κ -element).

Again exploiting the fact that Ĉ’s generator matrix has entries in Tι+κ, we see that the encoding Enc(ti∗) ∈
Anι,κ,τ is precisely given, slice-wise, by the respective slice-encodings Enc(ti∗,v), for v ∈ Bτ−ι. Since ti∗,v∗ is
not identically zero, we conclude that Enc(ti∗,v∗) ∈ T nι+κ is necessarily nonzero at at least d positions.

Since ui∗ is defined over Aι,κ,ι, its v
∗th slice ui∗,v∗ is identically zero. We conclude that d(ui∗ ,Enc(ti∗)) ≥

d; this contradicts the inequality d(ui∗ ,Enc(ti∗)) <
d
3 , itself a direct consequence of ti∗ ’s construction.

Lemma B.3 shows that, under the hypothesis dm0

(
(ui)

m0−1
i=0 , Ĉm0

)
< d

3—and assuming, as usual, that

(ui)
m0−1
i=0 is defined over Aι,κ,ι ⊂ Aι,κ,τ—we actually obtain the stronger conclusion dm0

(
(ui)

m0−1
i=0 , Cm0

)
<

d
3 . Indeed, for each i ∈ {0, . . . ,m0−1}, since ti ∈ A

m1/2κ
ι,κ,ι (by Lemma B.3), we conclude that Enc(ti) ∈ Anι,κ,ι.

We thus restrict our attention to the case in which A’s initial proof π verifies, E successfully extracts

(ui)
m0−1
i=0 , and both dm0

(
(ui)

m0−1
i=0 , Cm0

)
< d

3 and t′ =
⊗ℓ−1

i=ℓ1
(1− ri, ri) · (ti)m0−1

i=0 hold. We denote:

δ :=
ℓ0
|Tτ |

+

(
1− 2 · d

3 · n

)ρ
+

Q(λ)2 + 1

2λ
.

Since δ is negligible in λ,
√
δ also is. In this light, we may simply ignore each execution for which A’s

probability of success ε ≤
√
δ, since in that case E proceeds into step 3 in the first place with negligible

probability. We thus assume that ε >
√
δ in what follows.

We first show that, with overwhelming probability, as of the conclusion of each iteration i ∈ {1, . . . ,m0−1}
of Algorithm 2, we have t′i =

⊗ℓ−1
j=ℓ1

(1− ri,j , ri,j) · (ti)m0−1
i=0 .

Lemma B.4. The probability that t′i ̸=
⊗ℓ−1

j=ℓ1
(1−ri,j , ri,j)·(ti)m0−1

i=0 for any i ∈ {1, . . . ,m0−1} is negligible.

Proof. We write V for the event in which A submits an accepting proof, and E for the event in which A
outputs the correct message t′ =

⊗ℓ−1
i=ℓ1

(1− ri, ri) · (ti)m0−1
i=0 . By the argument of Lemma B.2, if A submits

Merkle leaves consistent with (ui)
m0−1
i=0 , then V accepts with probability at most

(
1− 2·d

3·n
)ρ
. By a union

bound, we conclude that Pr[V | ¬E] ≤ Q(λ)2+1
2λ

+
(
1− 2·d

3·n
)ρ ≤ δ. Our assumption ε >

√
δ thus implies:

√
δ < ε = Pr[V ] = Pr[V ∧ E] + Pr[V | ¬E] · Pr[¬E] ≤ Pr[V ∧ E] + Pr[¬E] · δ,

so that Pr[V ∧ E] >
√
δ − Pr[¬E] · δ ≥

√
δ − δ.

By Bayes’ theorem—and using the facts noted above—we conclude that:

Pr[E | V ] =
Pr[V ∧ E]

Pr[V ∧ E] + Pr[V | ¬E] · Pr[¬E]
>

√
δ − δ√

δ − δ + δ
= 1−

√
δ.

We thus see that, under our assumption, the probability that all of E ’s iterations i ∈ {1, . . . ,m0− 1} satisfy
t′i =

⊗ℓ−1
j=ℓ1

(1 − ri,j , ri,j) · (ti)m0−1
i=0 is greater than

(
1−
√
δ
)m0−1

, which is overwhelming. Indeed, by a

standard binomial approximation, we have that 1−
(
1−
√
δ
)m0−1

≤ (m0 − 1) ·
√
δ, which is negligible.

The following lemma is the last remaining step.

Lemma B.5. The probability that the rows
(⊗ℓ−1

j=ℓ1
(1− ri,j , ri,j)

)m0−1

i=0
are linearly dependent is negligible.
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Proof. We fix an arbitrary proper Tτ -linear subspace A ⊂ T m0
τ , and moreover define its preimage S :={

(rℓ1 , . . . , rℓ−1) ∈ T ℓ0τ
∣∣∣ ⊗ℓ−1

i=ℓ1
(1− ri, ri) ∈ A

}
under the tensor map. We first argue that µ(S) ≤ ℓ0

|Tτ | . It

suffices to prove the result only in case A is a hyperplane. We write a = (a0, . . . , am0−1) ∈ T m0
τ for a vector

of coefficients, not all zero, for which A = {u ∈ T m0
τ | u · a = 0} holds. By construction, (rℓ1 , . . . , rℓ−1) ∈ S

if and only if
⊗ℓ−1

i=ℓ1
(1− ri, ri) · a = 0.

We note that S ⊂ T ℓ0τ is nothing other than the vanishing locus of that combination of the ℓ0-variate
multilinear Lagrange polynomials given by the coefficient vector a. Because a is not identically zero and
these polynomials are linearly independent, we conclude that the combination is itself nonzero. Applying
Schwartz–Zippel, we conclude that its vanishing locus S ⊂ T ℓ0τ is of mass at most µ(S) ≤ ℓ0

|Tτ | , as desired.

As before, we write V for the event in which A submits an accepting proof; slightly abusing notation, we
denote also by S the event in which Q’s query satisfies (rℓ1 , . . . , rℓ−1) ∈ S. By the above argument, we have
that µ(S) = ℓ0

|Tτ | ≤ δ. On the other hand, by our assumption ε >
√
δ, we have:

√
δ < ε = Pr[V ] ≤ µ(S) + Pr[V | ¬S] · (1− µ(S)),

so that Pr[V | ¬S] · (1− µ(S)) >
√
δ − µ(S) ≥

√
δ − δ.

Again using Bayes’ theorem, and using the above facts, we have that:

Pr[¬S | V ] =
Pr[V | ¬S] · (1− µ(S))

Pr[V | ¬S] · (1− µ(S)) + Pr[V | S] · µ(S)
>

√
δ − δ√

δ − δ + δ
= 1−

√
δ.

We now consider the successive vectors (ri,ℓ1 , . . . , ri,ℓ−1) ∈ T ℓ0τ collected by E over the course of its successful
executions of the main loop of Algorithm 3. For each i∗ ∈ {1, . . . ,m0 − 1}, writing A ⊂ T m0

τ for the span of

the vectors
(⊗ℓ−1

j=ℓ1
(1− ri,j , ri,j)

)i∗−1
i=0

, we conclude that, with probability greater than 1 −
√
δ, the vector

(ri∗,ℓ1 , . . . , ri∗,ℓ−1) ∈ T ℓ0τ collected during the i∗th iteration satisfies
⊗ℓ−1

j=ℓ1
(1− ri∗,j , ri∗,j) ̸∈ A. We see that

the rows
(⊗ℓ−1

j=ℓ1
(1− ri,j , ri,j)

)m0−1

i=0
are independent with probability greater than

(
1−
√
δ
)m0−1

, which is

overwhelming, as 1−
(
1−
√
δ
)m0−1

≤ (m0−1) ·
√
δ is negligible. This completes the proof of the lemma.

We finally argue that the values t and u = (ui)
m0−1
i=0 extracted by E satisfy Π.Open(params, c; t, u) and

t(r0, . . . , rℓ−1) = s. Indeed, under the condition guaranteed by the successful execution of step 2 above,

A’s initial matrix (ui)
m0−1
i=0 is well-defined, and hashes to c, and moreover is successfully extracted by

E . Under the condition guaranteed by Lemma B.1, a matrix (ti)
m0−1
i=0 with entries in Aι,κ,τ for which

dm0

(
(Enc(ti))

m0−1
i=0 , (ui)

m0−1
i=0

)
< d

3 exists and is unique. Under the conditions guaranteed by Lemmas B.4

and B.5, E extracts precisely this matrix (ti)
m0−1
i=0 in steps 3 and 4. By Lemma B.3, this matrix is a

posteriori defined over Aι,κ,ι, and—up to reversing Theorem 3.9’s Tι-isomorphism—defines a polynomial
t(X0, . . . , Xℓ−1) ∈ Tι[X0, . . . , Xℓ−1]

⪯1, as required. Finally, Lemma B.2 guarantees that A’s first message

satisfies t′ =
⊗ℓ−1

i=ℓ1
(1−ri, ri)·(ti)m0−1

i=0 ; on the other hand, Π.Verify(params, c, s, (r0, . . . , rℓ−1), π) implies that

s = t′ ·
⊗ℓ0−1

i=0 (1−ri, ri). We conclude that s =
⊗ℓ−1

i=ℓ1
(1−ri, ri) ·(ti)m0−1

i=0 ·
⊗ℓ0−1

i=0 (1−ri, ri) = t(r0, . . . , rℓ−1),
as required. This completes the proof of the theorem.

Proof of Theorem 3.14. We recall first of all the guarantee ℓ = O(log λ), which holds by assumption through-
out Construction 3.11; we moreover assume that, for ι ≥ 0 arbitrary, each Tι-multiplication imposes a cost
polynomial in the bit-length 2ι.

We set ρ := λ and τ :=
⌈
log(log2(λ))

⌉
, as well as as well as ℓ1 :=

⌈
1
2 · (ℓ+ log ρ)

⌉
and ℓ0 := ℓ − ℓ1, and

finally write m0 := 2ℓ0 and m1 := 2ℓ1 . Since the statement is asymptotic and ι is constant, we assume freely
that τ ≥ ι. We note that m0 and m1 differ by at most a factor of 2 from, respectively, 1√

ρ ·
√
2ℓ and

√
ρ · 2ℓ.

We fix the rate γ := 1
2 , and moreover set κ ≥ 0 minimally so that |Tι+κ| = 22

ι+κ ≥ 1
γ ·

m1

2κ holds (equivalently,

so that 2ι+κ + κ ≥ − log γ + ℓ1 holds). We note that this minimal κ necessarily satisfies κ ≤ ℓ1. Indeed,
the choice κ = ℓ1 itself certainly satisfies 2ι+ℓ1 + ℓ1 ≥ 1 + ℓ1 = − log γ + ℓ1, as required. We conclude that
2κ ≤ m1; we finally write k := m1

2κ and n := 1
γ · k, and set as C ⊂ T nι+κ the Reed–Solomon code RSTι+κ [n, k].
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We note that, by our choice of κ, this code exists. On the other hand, by the minimality of κ, we moreover
have the upper-bound 2ι+κ ≤ 2 · (− log(γ) + ℓ1 − κ) = O(ℓ). We note that the values ρ, τ , κ, and C ⊂ T nι+κ
chosen in this way fulfill the requirements of Π.Setup.

We assume that each bit received imposes constant cost; we see immediately that the protocol’s total

communication-attendant cost is 2τ ·m1 + 2ι+κ ·m0 · ρ = O
(
log2(λ) ·

√
ρ · 2ℓ + ℓ ·

√
2ℓ

ρ · ρ
)
= Õ(

√
2ℓ).

Again by our choice of τ , we see that each Tτ -operation costs polynomially in 2τ = O(log2 λ), and so costs

Õ(1). We see that the total cost of all Tτ -operations is Õ(m0+m1) = Õ
(√

λ · 2ℓ
)
. We analyze the total cost

of all Tι operations in the following way. Since 2κ ≤ 2ι+κ = O(ℓ), and since the cost of 2τ−ι Tι-operations is
certainly at most that of one Tτ -operation, we see that the total cost imposed by 2κ · 2τ−ι Tι-operations is
at most O(ℓ) · Õ(1) = Õ(1). The total cost of all Tι-operations is thus Õ(ρ ·m0) = Õ(

√
ρ · 2ℓ) = Õ(

√
λ · 2ℓ).

Using the upper-bound 2ι+κ = O(ℓ) = O(log λ), we see that each Tι+κ-operation costs Õ(1). On the other

hand, the result [LCH14] ensures that the cost of Enc is equal to that of O(n · log k) = O
(

1
γ ·

m1

2κ · log(
m1

2κ )
)
=

Õ
(√

2ℓ
)
Tι+κ-operations, and so is itself Õ

(√
2ℓ
)
. The total cost of all 2τ−ι encoding operations is thus

O(log2 λ) · Õ
(√

2ℓ
)
= Õ

(√
2ℓ
)
, as required.

We assume, as Brakedown’s analysis does (see [Gol+23, § 1]), that the cost Hash of hashing a vector
of m0 Tι+κ-elements is comparable to that of performing m0 Tι+κ-operations. The total cost of each Hash

operation is thus Õ
(

1√
ρ ·
√
2ℓ
)
, so that the total cost of all ρ Hash-operations is Õ(

√
ρ · 2ℓ) = Õ(

√
λ · 2ℓ).
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