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Abstract. We introduce a new primitive called the asymmetric trap-
door pseudorandom generator (ATPRG), which belongs to pseudoran-
dom generators with two additional trapdoors (a public trapdoor and
a secret trapdoor) or backdoor pseudorandom generators with an addi-
tional trapdoor (a secret trapdoor). Specifically, ATPRG can only gen-
erate public pseudorandom numbers pr1, . . . , prn for the users having no
knowledge of the public trapdoor and the secret trapdoor; so that this
function is the same as pseudorandom generators. However, the users
having the public trapdoor can use any public pseudorandom number
pri to recover the whole pr sequence; so that this function is the same as
backdoor pseudorandom generators. Further, the users having the secret
trapdoor can use pr sequence to generate a sequence sr1, . . . , srn of the
secret pseudorandom numbers.
As for applications of ATPRG, we construct the first homomorphic sig-
nature scheme (in the standard model) whose public key size is only
O(T ) independent of the dataset size. As a comparison, the shortest size
of the existing public key is O(

√
N +

√
T ), proposed by Catalano et al.

(CRYPTO’15), where N is the dataset size and T is the dimension of
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the message. In other words, we provide the first homomorphic signature
scheme with O(1)-sized public keys for the one-dimension messages.

Keywords: Pseudorandom generators · Homomorphic MAC · Homo-
moprhic signatures · Standard model.

1 Introduction

1.1 Background

Some primitives of public key cryptography, such as multi-key fully homomorphic
encryption and homomorphic signatures (HS), have one main limitation that
the public key size is linear with the dataset size. When the dataset is large,
the public key size may reach MB or even GB magnitude, and the resulting
storage and communication overheads are burdensome for resource-constrained
devices, e.g., mobile devices and Internet of Thing (IoT) devices. To the best of
our knowledge, only Catalano et al. (CRYPTO’15) [7] proposed a HS scheme in
which the public key size is less than O(N + T ) in the past two decades, where
N is the dataset size and T is the dimension of the message.

HS schemes [20] allow a remote party to compute any functions from a class of
admissible functions over signed messages and derive verifiable signatures given
computed results, which can verify the correctness of the corresponding com-
puted results efficiently. HS can solve many problems in cloud computing, such
as data integrity checking, verifiable computation, electronic voting [17]. Accord-
ing to the identity of the verifier, HS can divide into homomorphic MAC (HA)
and signatures. The difference between the two is that the former is privately
verified, and the latter can be verified publicly. In the past two decades, HS has
undergone great development in the computed function, especially from linearly
HS that only supports addition or multiplication [1,7,9,10,14,15,18,20,22,23,27],
to bounded polynomials [2, 3, 5, 8] and to (level) fully homomorphic opera-
tions that allow computing the general arithmetic circuits of a priori bounded
depth [13, 16, 17]. However, as a notable limitation, in the standard model, the
public key sizes of [1–3,5,8–10,13–15,17,18,20,22,23,27] are all restricted to be
linear with the dataset size; the smallest of [7] is O(

√
N +

√
T ).

It is challenging to reduce the public key size, as there is no existing uni-
versal technique. In this paper, we attempt to design a universal technique to
shorten public keys from the perspective of pseudorandom number generators
(PRGs). In cryptographic theory, the security of most cryptographic tasks crit-
ically depends on the randomness quality. Since true random bits are hard to
generate without specialized hardware, PRGs are often alternatively used in
cryptographic schemes. PRG takes a short random seed as input and outputs
the bit-strings of arbitrary (polynomial) length. We can divide it into two cate-
gories: non-backdoor PRG and backdoor PRG (BPRG) [11,12,28], according to
whether a backdoor exists. Non-backdoor PRG can only output pseudorandom
numbers. BPRG is a standard PRG for adversary A without the backdoor tdB;
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however, there also exists another adversary B in BPRG who has the back-
door tdB [11]. B can use the backdoor and any BPRG output (a pseudorandom
number) to recover all the forward and backward pseudorandom numbers of the
BPRG output.

At the high level, the public keys are just a string of pseudorandom numbers,
and if we can compress n pseudorandom numbers into a shorter string, it ap-
pears that we can shorten length of the public keys. BPRG can provide similar
functionality since B can use the backdoor to recover the whole sequence of the
pseudorandom numbers. Unfortunately, the public keys only appear as pseudo-
random numbers but have some mappings with the secret keys (e.g., ϕ1 : sk → pk
is computationally easy, but ϕ−1

1 : pk → sk is computationally hard). Therefore,
the function of the public keys cannot be completely replaced by the pseudo-
random numbers generated by BPRG. We need a new security primitive for
generating the public keys so that it not only has the function of BPRG but
also can use the generated pseudorandom numbers (public keys) to provision
the corresponding secret keys. The above idea may sound like an intuitive way
to break the computationally hard condition of the ϕ−1

1 map; counter-intuitively,
we use an unusual bilinear group to build this new primitive, as will be described
later.

1.2 Our Contributions

ATPRG: We introduce a new primitive that we call the asymmetric trap-
door pseudorandom generator (ATPRG). Then we construct an ATPRG in-
stance upon techniques of PRG, reverse re-randomizable encryption, and trap-
door projection maps for bilinear groups. ATPRG has five algorithms (setup, init,
PRGen,SRGen, recB), where PRGen and SRGen are two algorithms for generat-
ing pseudorandom numbers, and setup can generate a public trapdoor tdB and
a secret trapdoor tdS . The users without tdB and tdS can only use the three
algorithms (setup, init,PRGen), which are equivalent to the non-backdoor PRG.
The users only have tdB can use the four algorithms (setup, init,PRGen, recB),
which are equivalent to BPRG. The users with tdB and tdS can run the whole
five algorithms.

More specifically, PRGen produces a sequence pr = {pr1, . . . , prn} of pub-
lic pseudorandom numbers, and SRGen (using pr and the secret trapdoor tdS )
produces a corresponding sequence sr = {sr1, . . . , srn} of secret pseudorandom
numbers. pr is to generate the public keys, and sr is to generate the correspond-
ing secret keys. We require the following relationships to hold among these four
sequences: ϕ1 : sk → pk, ϕ2 : pr(tdS ) → sr, and ϕ3 : sr → sk are computa-
tionally easy, but ϕ−1

1 : pk → sk and ϕ4 : pr → sr are computationally hard.
In addition, (setup, init,PRGen, recB) constitutes a BPRG; that is, one with a
backdoor tdB (public trapdoor) that can calculate all outputs of pr by algo-
rithm recB using any PRGen output pri. Therefore, the properties of these five
mappings guarantee the confidentiality of the secret keys and the compressibility
of the public keys.
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The challenge of designing ATPRG is how to construct the secret trapdoor
tdS . We address tdS construction by a trapdoor projection map for bilinear
groups. We first convert pri to a random element pr′i of elliptic curve group G and
then map pr′i to a torsional subgroup G1 of G by the trapdoor projection map.
The resulting image of this mapping is the corresponding secret pseudorandom
number sri (random element of group G1). According to the subgroup hiding
hypothesis, sr cannot be calculated effectively from pr without knowing the
secret trapdoor tdS . ATPRG provides a universal method to shorten the public
key size, which allows any user to recover the sequence of public keys of any size
through the public trapdoor tdB with a fixed size. At the same time, the secret
trapdoor tdS is used to ensure the confidentiality of secret keys. In other words,
ATPRG can reduce the storage and communication overheads of the public
keys of arbitrary length to a shortened size (e.g., O(1)) for some cryptographic
schemes.

Application: For the HS schemes (in the standard model), the public key
size is generally larger than or equal to O(N + T ), where N is the dataset size
and T is the dimension of the message. To the best of our knowledge, only [7]
proposed a HS scheme with O(

√
N +

√
T )-sized public keys exploiting tech-

niques of programmable hash and cover-free. We use ATPRG to design the first
HS scheme (in the standard model) whose public key size is independent of
the dataset size, and our scheme has only O(T )-sized public keys. Specifically,
for n T -dimension messages, we use PRGen algorithm to generate n pseudoran-
dom numbers R1, . . . , Rn, then use SRGen algorithm to transform R1, . . . , Rn to
S1, . . . , Sn. A simplified structure of our signature is as following:Si ·

T∏
j=1

h
mi[j]
j ·Wi

α

,

where mi[j] represents the j-th component of the i-th message, α is secret
key, hj and Wi are pseudorandom numbers, h1, . . . , hT are generated in the
key generation step, and Wi is generated by the signer. For a computed re-
sult m =

∏n
i=1 ci ∗mi (ci are coefficients of linear functions), we can verify the

correctness of m by using R1, . . . , Rn through an unusual bilinear mapping. In
our HS scheme, R1, . . . , Rn and h1, . . . , hT are the public keys, we only need
to store one element Ri for any i ∈ [n] since the algorithm recB can use Ri

and public trapdoor tdB to recover the whole sequence R1, . . . , Rn. Admittedly,
the PRGen algorithm of our ATPRG instance is not fine-grained. If we use it to
generate h1, . . . , hT , although we can get a HS scheme with O(1)-sized public
keys for the T -dimension messages, it would cause trouble for security reduc-
tion. Therefore, our final HS scheme has the O(T )-sized public keys for the
T -dimension messages. The notable benefit of this construction is that we can
prove the unforgeability of our HS scheme based on the discrete logarithm (DL)
and computational Diffie-Hellman (CDH) assumptions in the standard model.
We summarized and compare the public key sizes of different schemes in table
1.
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ATPRG can help design more space-efficient protocols where data/input/message
should respect a predefined (unchangeable) order to be correctly processed in a
computation or malleable cryptographic system. We believe that the shortest HS
scheme (O(1)-sized public keys for the T -dimension messages) can be obtained
asymptotically by this new primitive.

Table 1: Comparison of public key size (in the standard model)
Schemes Public keys Secret keys

[1–3,5, 8–10,13–15,17,18,20,22,23,27] O(N + T ) O(1) ∼ O(N + T )

[7] O(
√
N +

√
T ) O(

√
N +

√
T )

Our scheme O(T ) O(1)

1.3 Organization
In Section 2, we introduce necessary notations and definitions, which will be
utilized to construct the proposed ATPRG. In Section 3, we give the definitions
of ATPRG and construct an ATPRG instance upon techniques of PRG, reverse
re-randomizable encryption, and trapdoor projection maps for bilinear groups.
In Section 4, we elaborate on the construction of our HS scheme with shorter
public keys. We conclude this paper and discuss other ATPRG applications in
Section 5.

2 Preliminaries

2.1 Notation
Let λ denote a security parameter, a $← A denotes that sampling uniformly at
random the value a from the distribution A. η(λ) represents a class of negligible
function on λ. [q] represents 1, . . . , q. The logarithms in this paper are to base
two.

2.2 Reverse Re-randomizable Encryption
Before introducing the reverse re-randomizable encryption scheme, we first give
two definitions of IND$-CPA-secure PKE and re-randomizable encryption since
the latter two are the basis for building the former.
Definition 1. A (t, q, δ)-IND$-CPA-secure PKE scheme [12] has three Proba-
bilistic polynomial time (PPT) algorithms (KeyGen,Enc,Dec) such that for all
adversaries A running in time t and making at most q queries, it holds that

AdvIND$−CPA
A := |Pr[(pk, sk)← KeyGen : A Enc(pk,·)(pk) = 1]−

Pr[(pk, sk)← KeyGen : A $(·)(pk) = 1]| ≤ δ,
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where $(·) is such that on input a message M , it returns a random string of size
|Enc(pk,M)|.

Apparently, a (t, q, δ)-IND$-CPA-secure PKE scheme is also a (t, q, 2δ)-IND-
CPA-secure PKE scheme. Since the backdoor pseudorandom generators, re-
randomizable encryption, and reverse re-randomizable encryption in this pa-
per all use pseudorandom ciphertext, we focus on the IND$-CPA-secure PKE
scheme.

Definition 2. A (t, q, δ, ν)-IND$-CPA-secure re-randomizable encryption scheme
[19] has four PPT algorithms (KeyGen,Enc,Dec,Rand), where (KeyGen,Enc,Dec)
is a standard IND$-CPA-secure PKE scheme (which implies the correctness of
PKE). Rand is an efficiently randomised algorithm such that for all (pk, sk) ←
KeyGen, M , and R1, we have

∆(
{
R0

$← Coins(Enc) : Enc(pk,M ;R0)
}
,{

R′ $← Coins(Rand) : Rand(Enc(pk,M ;R1);R
′)
}
) ≤ ν,

where Coins(A) denotes the distribution of the internal randomness of A so that
the distribution

{
a

$← A
}

is actually
{
r

$← Coins(A) : a = A(r)
}

. That is, the
distributions of a ciphertext generated by a standard PKE scheme and a cipher-
text generated by Rand with arbitrary randomness are statistically close.

The reverse re-randomizable encryption [11] scheme has an additional prop-
erty compared to the re-randomizable encryption scheme, which is reverse re-
randomizable.

Definition 3. A (t, q, δ, ν)-IND$-CPA-secure reverse re-randomizable encryp-
tion scheme has five PPT algorithms (KeyGen,Enc,Dec,Rand,Rand−1), where
(KeyGen,Enc, Dec,Rand) is a (t, q, δ, ν)-IND$-CPA-secure re-randomizable en-
cryption scheme. Rand−1 is an efficient algorithm such that for all (pk, sk) ←
KeyGen, M , R0, and R1, we have

Pr[Rand−1(Rand(Enc(pk,M ;R0);R1);R1) = Enc(pk,M ;R0)] = 1.

2.3 Pseudorandom Generators

A PRG takes a short random seed as input and outputs the bit-strings of arbi-
trary (polynomial) length. Following [11,12], we also equip PRG with a param-
eter generation algorithm setup, which can simplify the following description of
the backdoor PRG.

Definition 4. A PRG has three PPT algorithms (setup, init, next) which can be
defined with two parameters (n, l) ∈ N2:

– (pp, bk) ← setup(coins) : {0, 1}∗ → {0, 1}∗ × {0, 1}∗. This algorithm takes
a random coin as input and outputs a public parameter pp and a secret
backdoor parameter bk. For a non-backdoor PRG, bk = ⊥.
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– s ← init(pp, coins) : {0, 1}∗ × {0, 1}∗ → {0, 1}n. This algorithm takes a
public parameter pp and a random coin as input and outputs an initial state
s0 ∈ {0, 1}n of PRG.

– (r, s′) ← next(pp, s) : {0, 1}∗ × {0, 1}n → {0, 1}l × {0, 1}n. This algorithm
takes a public parameter pp and a state s ∈ {0, 1}n as input and outputs a
pseudorandom l-bits string and a next state s′.
According to the PRG definition, as long as we initialize a PRG, we can

iterate the next algorithm to generate a fairly long pseudorandom bit string.
Suppose that we iterate k next algorithm, we can let outk(next) = r1, . . . , rk
and statek(next) = s1, . . . , sk to represent the k outputs of the pseudorandom
numbers and the states. Next, we give some security definitions of PRG.
Definition 5 (PRG Distinguishing Advantage). The distinguishing advan-
tage of A against PRG is defined as follows:

AdvPRG.distA ,q := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r01, . . . , r
0
q ← outq(next),

r11, . . . , r
1
q

$← {0, 1}l ,
b

$← {0, 1} ,
b′ ← A (pp, rb1, . . . , r

b
q) :

b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The adversary A receives either q PRG outputs or q random l-bits strings.
Based on the PRG distinguishing advantage, we can define a (t, q, δ)-secure

PRG.
Definition 6 ((t, q, δ)-secure PRG). A PRG is said to be (t, q, δ)-secure if for
all adversaries A running in time t, it holds that AdvPRG.distA ,q ≤ δ.

We can define a stronger security definition of PRG if we give the extra final
state to the adversary A , called forward security.
Definition 7 (PRG Forward-security Advantage). The forward-security
advantage of A against PRG is defined as follows:

AdvPRG.fwd
A ,q := 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r01, . . . , r
0
q ← outq(next),

r11, . . . , r
1
q

$← {0, 1}l ,
s1, . . . , sq ← stateq(next),

b
$← {0, 1} ,

b′ ← A (pp, rb1, . . . , r
b
q, sq) :

b = b′


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The adversary A receives either q PRG outputs or q random l-bits strings.
Definition 8 ((t, q, δ)-FWD-secure PRG). A PRG is said to be (t, q, δ)-FWD-
secure if for all adversaries A running in time t, it holds that AdvPRG.fwd

A ,q ≤ δ.
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2.4 Backdoor Pseudorandom Generators

Differing from the standard PRG, there is an another backdoor attacker B in
BPRG; that is, there exists two attackers in a BPRG system, A and B. The
goal of A is to break the security of the BPRG scheme without access to the
backdoor tdB, in this case, the security model of BPRG is the same as PRG.
However, attacker B can recover the backward/forward outputs of BPRG using
the backdoor tdB.

Definition 9. A BPRG has four PPT algorithms (setup, init, next, recB):

– (pp, bk) ← setup(coins). This algorithm takes a random coin as input and
outputs a public parameter pp and a secret backdoor parameter bk.

– s0 ← init(pp, coins). This algorithm takes a public parameter pp and a ran-
dom coin as input and outputs an initial value s0 of BPRG.

– (r, s′)← next(pp, s). This algorithm takes a public parameter pp and a BPRG
state value s as input and outputs a random bit-string and a next BPRG state
value s′. This step seems to be the same as PRG, but for the backdoor setting,
the internal process differs from PRG.

– outB ← recB(bk, ri, i, pp). This algorithm inputs a backdoor bk = tdB, a
pseudorandom number ri generated by BPRG.next with its index i, and a
public parameter pp. It outputs some forward or backward values outB, where
outB maybe the sequence of the pseudorandom numbers r1, . . . , ri, . . . or the
sequence of BPRG state values s0, . . . , si−1, . . . .

Following [12], BPRG has three security advantages for attacker B: AdvBPRG.distB,q ,
AdvBPRG.nextB,q , and AdvBPRG.rskB,q . And then [11] gives two stronger security advan-
tages AdvBPRG.firstB,q and AdvBPRG.outB,q . We only give the definitions of AdvBPRG.firstB,q

and AdvBPRG.outB,q since they imply the correctness of our ATPRG to recover pub-
lic pseudorandom sequence. The original paper of BPRG does not provide a
direct definition of correctness; instead, it uses AdvBPRG.firstB,q and AdvBPRG.outB,q to
imply the correctness advantage, probably because the authors are targeting
"Big Brother" to research.

Definition 10 (BPRG First Advantage). The first advantage of B against
BPRG is defined as follows:

AdvBPRG.firstB,q := Pr


(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r1, . . . , rq ← outq(next),
s∗0 ← B(pp, tdB, ri) :

s0 = s∗0

 .
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Definition 11 (BPRG Output Advantage). The output advantage of B
against BPRG is defined as follows:

AdvBPRG.outB,q := Pr


(pp, bk)← setup(coins),
s0 ← init(pp, coins),

r1, . . . , rq ← outq(next),
r∗1 , . . . , r

∗
q ← B(pp, tdB, ri, i) :

r1, . . . , rq = r∗1 , . . . , r
∗
q

 .
Based on the above five security advantages of BPRG, we can define a

(t, q, δ, (·, ϵ)) (-FWD)-secure BPRG, where the · in (·, ϵ) represents dist/next/rsk/first/out.

Definition 12 ((t, q, δ, (·, ϵ))-secure BPRG). A BPRG = (setup, init, next, recB)
is said to be (t, q, δ, (·, ϵ))-secure if for all adversaries B running in time t, it
holds that AdvBPRG.(·)B,q ≥ ϵ and (setup, init, next) is a (t, q, δ)-secure PRG.

Definition 13 ((t, q, δ, (·, ϵ))-FWD-secure BPRG). A BPRG = (setup, init,
next, recB) is said to be (t, q, δ, (·, ϵ))-FWD-secure if for all adversaries B run-
ning in time t, it holds that Adv

BPRG.(·)
B,q ≥ ϵ and (setup, init, next) is a (t, q, δ)-

FWD-secure PRG.

2.5 Trapdoor Projection Maps for Bilinear Groups

Fig. 1: TBG construction

Pairing-based cryptography is a striking illustration of the value of algebraic
structure for constructing cryptographic schemes: a richer structure allows for
a wider variety of cryptographic schemes, provided that there exists some hard
problems on which security can be based. Groups with computable pairings
have proved to be fruitful for designing cryptographic primitives and protocols.
Meiklejohn et al. [24] give a surprising and unprecedented new structure of the
pairing-friendly elliptic curve proposed by Boneh, Rubin, and Silverberg [4]. In



10 Hou et al.

a nutshell, their new structure (later called TBG) can project a point from the
group G onto its subgroup G1 or G2 with knowledge of a trapdoor.

We describe the TBG construction in Fig. 1. For a bilinear map e : G×G→
GT (used especially for Weil pairing), TBG first generates parameters using the
following setup algorithm.

Definition 14. TBG.setup(1λ). Use the algorithms in [24, Algorithm 1] to gen-
erate a prime q, a composite N , an elliptic curve E defined over Fq such that
G := E[N ] contains N2 points, and two distortion-free subgroups G1 and G2

of the N-torsion group G with their generators P1 and P2. Finally, let e be the
Weil pairing and GT := µN . Output bilinear group public parameters bgpp =
(N,G1, G2, GT , e, P1, P2).

Because we do not need to discuss the underlying mathematics, we switch
from additive to multiplicative notation so that we use g1 and g2 to represent the
generators ofG1 andG2, respectively. Therefore, bgpp = (N,G1, G2, GT , e, P1, P2)
can be represented as bgpp = (N,G1, G2, GT , e, g1, g2).

Definition 15 (Trapdoor Projection Map [24]). We say that a function
f : G → G′ is a projection map if it satisfies: (1) efficiently computable; (2)
idempotent; and (3) G′ ⊂ G. If, furthermore, f is assumed to be hard to compute
without the knowledge of some additional piece of information, then we say that
it is a trapdoor projection map.

After generating bgpp, we can use the method in [24, section 3.1] to get a
trapdoor projection map tdS = f . Then, we can map the elements of G to its
torsion subgroups G1 (tdS = f1) and G2 (tdS = f2), and even further map
the elements of G1 and G2 to their subgroups G1p (tdS = f1p), G1q(tdS =
f1q), G2p(tdS = f2p), and G2q(tdS = f2q). we have the following lemma 1 to
guarantee the quality of the above mappings.

Lemma 1. For bgpp = (N,G1, G2, GT , e, g1, g2) ← TBG.setup, G1 ∩ G2 = O,
where O = End(E) is an order in some imaginary quadratic field K [24, Lemma
3.2.].

The following properties of the bgpp with trapdoor tdS = f are used in this
paper: (1) u = f1(u) · f2(u), for any u ∈ G; (2) for any a, b ∈ G1 or a, b ∈ G2,
e(a, b) = 1; (3) for u, v ∈ G, e(f1(u), v) = e(u, f2(v)). Further, we use its special
case e(f1(u), g) = e(u, g2).

Note that bgpp implies the group G and its generator g. When we obtain
bgpp, we actually learn about G and g at the same time.

3 Asymmetric Trapdoor Pseudorandom Generators

3.1 Definitions

We first introduce the definitions of our ATPRG, then give its security defini-
tions.
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Definition 16. An ATPRG has five algorithms (setup, init,PRGen,SRGen, recB),
to simplify the description, we have omitted the random coins:

– (pp, tdB, tdS )← setup. Output a public parameter pp, a public trapdoor tdB

for recovering public pseudorandom sequence pr, and a secret trapdoor tdS

for generating secret pseudorandom sequence sr.
– s0 ← init(pp). Output an initial state of ATPRG.
– (pr, s′) ← PRGen(pp, s). Input a public parameter pp and a state s. Output

a public pseudorandom number pr and the next state s′.
– sr ← SRGen(pp, pr, tdS ). Input a public parameter pp, a public pseudoran-

dom number pr, and a secret trapdoor tdS . Output a secret pseudorandom
number sr.

– pr ← recB(pp, tdB, prn, n). Input a public parameter pp, a public trapdoor
tdB, a public pseudorandom number prn with its index n. Output a recovered
sequence pr = {pr1, . . . , prn} of the public pseudorandom numbers. Note that
the length of the sequence pr can be longer than n.

In recB, the recovered sequence pr implies a sequence of the state values si,
but the main role of our ATPRG is to recover the sequence of public pseudoran-
dom numbers, so other recoverable information is ignored. ATPRG also exists
two types of attackers: A and B, and their behaviors are the same as BPRG.
We expect ATPRG to be equivalent to a standard PRG for attacker A , and
ATPRG to be equivalent to a standard BPRG for attacker B. Besides, we also
expect that A and B cannot recover the sequence sr of the secret pseudoran-
dom numbers by pr without the secret trapdoor tdS . We, therefore, have the
following security definitions:

Definition 17 (ATPRG Inverse Advantage). The inverse advantage of B
against ATPRG is defined as follows:

AdvATPRG.invB,q := Pr


(pp, tdB, tdS )← setup,

s0 ← init(pp),
pr1, . . . , prq ← outq(PRGen),
sr1, . . . , srq ← outq(SRGen),

sr∗1 , . . . , sr
∗
q ← B(pp, pr1, . . . , prq) :

sr1, . . . , srq = sr∗1 , . . . , sr
∗
q

 .

Definition 18 (ATPRG Correctness Advantage). The correctness advan-
tage of B against ATPRG is defined as follows:

AdvATPRG.crtB,q := Pr


(pp, tdB, tdS )← setup,

s0 ← init(pp),
pr1, . . . , prq ← outq(PRGen),
sr1, . . . , srq ← outq(SRGen),

sr∗1 , . . . , sr
∗
q ← B(pp, tdS , pr1, . . . , prq) :

sr1, . . . , srq = sr∗1 , . . . , sr
∗
q

 .
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Note that the public pseudorandom sequence can be recovered completely
(for pr = {pr1, . . . , prn}, we can use public trapdoor and pri, i ∈ [n], to recover
a sequence pr∗ = {pr∗1 , . . . , pr∗n} such that pr = pr∗) if AdvBPRG.firstB,q = 1 or
AdvBPRG.outB,q = 1. Therefore, we only define the correctness advantage of secret
pseudorandom sequence.

An ATPRG should satisfy three properties: PR correctness, SR correctness,
and non-reversibility. PR correctness requires that the public pseudorandom
sequence can be recovered completely; specifically, it requires that (setup, init,
PRGen, recB) is a BPRG with AdvBPRG.firstB,q = 1 or AdvBPRG.outB,q = 1. SR correct-
ness requires that any user holding the secret trapdoor tdS will compute the
same sri for the same pri. Non-reversibility requires that ψ : pr → sr is com-
putationally hard. If ψ is computationally easy, the adversary can easily use the
public key to compute the secret key and make the cryptographic scheme based
on ATPRG insecure. When an ATPRG satisfies all the above three properties,
it has all the functions envisaged in Section 1. The formal definitions of these
three properties are as follows:

Definition 19 (PR Correctness). An ATPRG satisfies PR correctness if (setup,
init,PRGen, recB) is a (t, q, δ, (first/out, 1))-secure n-outputs BPRG or (t, q, δ,
(first/out, 1))-FWD-secure n-outputs BPRG.

Definition 20 (SR Correctness). An ATPRG satisfies SR correctness if AdvATPRG.crtB,q

is non-negligible.

Definition 21 (Non-Reversibility). An ATPRG satisfies non-reversibility if
AdvATPRG.invB,q is negligible.

3.2 Construction

We use a (t, q, ϵ)-FWD-secure PRG (setup, init, next), a (t, q, δ, ν)-IND$-CPA-
secure reverse re-randomizable encryption scheme (KeyGen,Enc,Dec,Rand,Rand−1),
and TBG to construct our ATPRG = (setup, init,PRGen,SRGen, recB). The de-
tails are shown in Fig. 2.

Theorem 1. Our ATPRG instance satisfies PR correctness.

Proof. From [11], the algorithms (setup, init,PRGen, recB) of our ATPRG instance
form a (t, q, δ, (first, 1))-FWD-secure BPRG.

Theorem 2. Our ATPRG instance satisfies SR correctness.

Proof. AdvATPRG.crtB,q = 1 since f1 map is trapdoor projection maps.

Assumption 1 Given bgpp← TBG.setup and random u
$← G for G : G1 ×G2,

it is hard to compute f1(u) [24, Assumption 4.4].

Theorem 3. Our ATPRG instance satisfies non-reversibility.
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– setup:
1. (pk, sk)← KeyGen;
2. pp′ ← PRG.setup;
3. pp← (pk, pp′);
4. tdB ← sk;
5. (bgpp, tdS )← TBG.setup.

Output (pp, bgpp, tdB, tdS ).

– init(pp):
1. (pk, pp′)← pp;
2. s∗0 ← PRG.init(pp′);
3. r0 ← Enc(pk, s∗0);
4. s0 ← (r0, s

∗
0).

Output s0.

– PRGen(pp, s):
1. (pk, pp′)← pp;
2. (r, s∗)← s;
3. (t, s#)← PRG.next(pp′, s∗);
4. r# ← Rand(r, t);
5. s′ ← (r#, s#);
6. pr ← r.

Output (pr, s′).

– SRGen(bgpp, pr, tdS ):
1. f1 ← tdS ;
2. T ∈ G← Transform(pr);
3. sr ∈ G1 ← f1(T ).

Output sr.

– recB(pp, tdB, prn, n):
1. sk ← tdB;
2. (pk, pp′)← pp;
3. s∗0 ← Dec(sk, prn);
4. (t1, . . . , tn)← outn(PRG.next(pp′, s∗0));
5. for i = n, . . . , 2:

pri−1 ← Rand−1(pri, ti);
6. pr ← {pr1, . . . , prn}.

Output pr.

Fig. 2: ATPRG construction

Proof. From assumption 1, AdvATPRG.invB,q = η(λ).

The type of pr values depends on the type of the ciphertexts of the reverse re-
randomizable encryption scheme. The type of sr values is not only can be the tor-
sion subgroup G1 but also can be other torsion subgroups G2, G1p, G2p, G1q, G2q

(mapping by the secret trapdoors f2, f1p, f2p, f1q, f2q). For different (pairing-
based) cryptographic schemes, we can use pr as public key, then use a hash
function H : {0, 1}|pr| → G as the Transform method to transform pr to the
elements of G, and finally, use the secret trapdoor to get sr as secret key. The
hash function does not affect the compressibility of the sequence of pr values,
and the advantage of AdvATPRG.invB,q . Further, we can use (pp, tdB, prn, n) as pub-
lic keys and (bgpp, tdS ) as secret keys to reduce the pk and sk sizes by adding
some bearable computational overheads. In addition, we can also directly use the
reverse re-randomizable encryption scheme whose ciphertext belongs to group
G to cancel hash functions. However, this approach requires a restriction on the
types of encryption schemes. In contrast, using hash functions as the Transform
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method, an ATPRG can be constructed using any (t, q, δ, ν)-IND$-CPA-secure
reverse re-randomizable encryption scheme.

4 Homomorphic Signature Scheme with Shorter Public
Keys

In this section, we first introduce the definitions of HS scheme. Then, we give
the construction of our HS scheme with O(T )-sized public keys. Specifically,
in Section 4.2, we use the complete ATPRG algorithm to construct the HS
scheme; in Section 4.3, we use some unique properties of homomorphic signature
to simplify the scheme and eliminate the requirement of the public trapdoor.
Finally, we prove the unforgeability of our scheme based on the DL and CDH
assumptions in the standard model.

4.1 Definitions

We first give the definitions of labeled programs, multi-labeled programs [16],
and well-defined programs [6].

Definition 22 (Labeled Programs). A labeled program P includes a tuple
(f, τ1, . . . , τn), where f : Ln → L and τi is the label of the input of f . For labeled
programs P1, . . . ,Pt, they have a composed program P∗ of a function g : Lt → L
such that P∗ = g(P1, . . . ,Pt).

Definition 23 (Multi-labeled Programs). A multi-labeled program P∆ in-
cludes a tuple (P,∆), where P is a labeled program (f, τ1, . . . , τn) and ∆ is a
dataset identifier. For multi-labeled programs (P1,∆), . . . , (Pt,∆), they have a
composed program P∗ of a function g : Lt → L within the same dataset such
that P∗

∆ = (P∗ = g(P1, . . . ,Pt),∆).

Definition 24 (Well-defined Programs). Let T∆ = {(τ1,m1), . . . , (τn,mn)}
represents a list of the dataset ∆. A labeled program P = (f, τ1, . . . , τn) is well-
defined with respect to T∆ if either one of the following cases holds:

1. For the existing messages m1, . . . ,mn, T∆ contains all tuples (τ1,m1), . . . , (τn,mn),
which means that the entire input space of f for the dataset ∆ has been au-
thenticated.

2. For the tuple (τj ,mj) /∈ T∆, the output space of the function f({mi}(τi,mi)∈T∆
∪

{mj}(τj ,mj)/∈T∆
) is equal to the output space of the function f({mi}(τi,mi)∈T∆

).

Definition 25 (Homomorphic Signature for Multi-labeled Programs).
A HS scheme has four PPT algorithms (KeyGen,Sign,Eval,Ver):

– (sk, pk) ← KeyGen(1λ). Input a security parameter λ. Output a secret key
sk, a public key pk.

– σ ← Sign(sk, L,m). Input the secret key sk, a message m with its multi-label
L = (∆, τ). Output a signature σ.
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– σ ← Eval(pk, f, σ⃗). Input the public key pk, a computed function f , and a
set of signatures σ⃗ = σ1, . . . , σn corresponding to the inputs of f (assuming
that f takes n inputs), where σi is generated by the Sign algorithm for any
i ∈ [n]. Output an evaluation signature σ.

– 0/1← Ver(pk,P∆,m, σ). Input the public key pk, a computed result m with
its evaluation signature σ, and the multi-labeled program P∆ corresponding
to σ. Output 1 represents that m is the correct result of f(m1, . . . ,mn) and
0 is incorrect.

HS schemes have four properties: signature correctness, evaluation correct-
ness, succinctness, and security (unforgeability).

Definition 26 (Signature Correctness). A HS scheme satisfies signature
correctness if for a given label space L, all key pairs (sk, pk)← KeyGen(1λ), any
label τ ∈ L, data identifier ∆ ∈ {0, 1}∗, and any signature σ ← Sign(sk, Li,mi),
1← Ver(pk,P∆,mi, σi) holds with all but negligible probability.

Definition 27 (Evaluation Correctness). A HS scheme satisfies evaluation
correctness if for a key pair (sk, pk) ← KeyGen(1λ), any set of {Pi,mi, σi}ti=1

such that 1← Ver(pk,P,m, σ), and a function g :Mt →M, 1← Ver(pk,P∗,m∗, σ∗)
holds with all but negligible probability, where P∗ = g(P1, . . . ,Pt), m∗ = g(m1, . . . ,mt),
and σ∗ = Eval(pk, g, σ1, . . . , σt).

Definition 28 (Succinctness). A HS scheme satisfies succinctness if for a
fixed security parameter λ, the size of the signatures depends at most logarith-
mically on the dataset size.

To define the security of the HS scheme, we need to define an experiment
ExpEUF−CMA

A ,HS first. Note that, compared with ExpEUF−CMA
A ,HA , this experiment does

not need Ver queries since the HS scheme is public verified.

Definition 29. The experiment ExpEUF−CMA
A ,HS includes three steps (Setup,Sign

queries,Forgery):

– Setup: The challenger runs (sk, pk) ← KeyGen(1λ) and gives pk to the ad-
versary A .

– Sign queries: The adversary A asks for signatures on (L,m), where L =
(∆, τ). If (L,m) is the first query with the dataset ∆, then the challenger
initializes an empty list T∆ = ∅. If (τ,m) /∈ T∆, the challenger runs σ ←
Sign(sk, L,m), gives σ to A , and adds (τ,m) to T∆. If (τ,m) ∈ T∆, the
challenger gives the corresponding signature σ to A . If, for (τ,m), τ ∈ T∆
but m ̸= m∗ (m∗ is the corresponding message of τ in T∆), the challenger
does not reply.

– Forgery: The adversary A finally returns a forgery tuple (P∗
∆,m

∗, σ∗). The
output of the experiment is 1 iff 1 ← Ver(pk,P∗

∆,m
∗, σ∗) and one of the

following three forgery types holds.
1. No list T∆ was created during the experiment.
2. P∗ is well-defined and m∗ ̸= f∗({mi}(τi,mi)∈T∆∗ ).
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3. P∗ is not well-defined.

Definition 30 (Security (Unforgeability)). A HS scheme satisfies unforge-
ability if the following equation holds.

Pr[ExpEUF−CMA
A ,HS = 1] ≤ η(λ). (1)

Besides, some HS schemes may have an extra property: efficient verification,
which improves verification efficiency (in the sense of amortization):

Definition 31 (Efficient Verification). A HS scheme for multi-labeled pro-
grams satisfies efficient verification, if there exists two algorithms (VerPerp,EffVer)
such that:

– vkP ← VerPerp(pk,P). Input the public key pk and the labeled program P =
(f, τ1, . . . , τn). Output a concise verification key vkP which does not depend
on any dataset identifier ∆.

– 0/1 ← EffVer(pk, vkP ,∆,m, σ). Input the public key pk, the concise veri-
fication key vkP , a dataset identifier ∆, and a computed result m with its
evaluation signature σ. Output 0 (reject) or 1 (accept).

VerPerp and EffVer are required to satisfy the following properties:

1. Correctness. Let (sk, pk) ← KeyGen(1λ) be honestly generated keys, given
any correct tuple (P∆,m, σ) such that 1 ← Ver(pk,P∆,m, σ), for every
vkP ← VerPerp(pk,P), we have Pr[EffVer(pk, vkP ,∆,m, σ) = 1] = 1.

2. Amortized Efficiency. Given P∆ = (f, τ1, . . . , τn,∆) and valid input mes-
sages m1, . . . ,mn, let t(n) be the time of compute P(m1, . . . ,mn), we require
that the time of EffVer(pk, vkP ,∆,m, σ) is independent of n, i.e., O(1).

4.2 Construction

This section mainly shows a general approach constructing HS scheme using AT-
PRG, which can provide design ideas for other cryptographic schemes based on
ATPRG. Specifically, we generate secret pseudorandom sequence sr = {S1, . . . , Sn}
by a public pseudorandom sequence pr = {R1, . . . , Rn}, therefore, the public
trapdoor tdB and Ri for any i ∈ [n] can be used to recover the whole sequence
R1, . . . , Rn. We use a hash function H : {0, 1}∗ → G to construct ATPRG.SRGen
algorithm, the details of which are as follows:

– SRGen(bgpp,Ri, tdS ):
1. f1 ← tdS ;
2. T ∈ G← H(Ri);
3. Si ∈ G1 ← f1(T ).

Output Si = f1(H(Ri)).
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We construct the HS scheme upon the work of Catalano et al. [7], and the
regular digital signature scheme Σ′ used in our scheme is the same as theirs.
Thus, following [7], the public key length of Σ′ can be regarded as O(1) size
when computing the public key size. Roughly speaking, the main difference be-
tween our scheme and [7] is: Catalano et al. introduce the notion of asymmetric
programmable hash functions (APHFs) and design a HS scheme with short pub-
lic key size based on APHFs, which reduced the public key size of HS from
O(N + T ) to O(

√
N +

√
T ); we introduce a new primitive ATPRG, and then

replace APHFs in their scheme with ATPRG to obtain a HS scheme with shorter
public key size, which further reduces the public key size of HS from O(

√
N+
√
T )

to O(T ). Note that N is dataset size and T is data dimension; intuitively, many
practical large-scale datasets should have N much larger than T .

Our homomorphic signature scheme HS = (KeyGen,Sign,Eval,Ver) is as fol-
lows:

– (sk, pk)← KeyGen(1λ):
1. (pp, bgpp, tdB, tdS )← ATPRG.setup, where bgpp = (N,G1, G2, GT , e, g1,
g2), then run ATPRG.init;

2. Define a hash function H : {0, 1}∗ → G and a pseudorandom function
FK : {0, 1}∗ → ZN , then choose a random seed K

$← K for FK ;
3. Randomly choose T elements h1, . . . , hT from G1 group, where T is the

dimension of message m, let h = (h1, . . . , hT );
4. Give a regular digital signature scheme Σ′ = (KeyGen′,Sign′,Ver′), and

generate a key pair (pk′, sk′) ← KeyGen′(1λ) for the regular signature
scheme;

5. Run ATPRG.PRGen to get R1, . . . , Rn such that we have R1, . . . , Rn ←
recB(pp, tdB, Rn, n), where Ri ∈ {0, 1}∗ for i ∈ [n];

6. sk ← (bgpp, pp,K, tdS , sk
′), pk ← (bgpp, pp, tdB, pk

′, h, Rn).

– σ ← Sign(sk, L,mi): To sign a message mi ∈ ZN with its multi-label L =
(∆, τi), proceed as follows.
1. α← FK(∆), computeA(i) = (A

(i)
1 , A

(i)
2 ) = (gα, gα2 ) and σ(i)

∆ ← Sign′(sk′,∆|A);
2. Run f1(H(Ri)) ∈ G1 ← ATPRG.SRGen(bgpp,Ri, tdS ), select Wi

$← G1,
then compute

Ui =

f1(H(Ri)) ·
T∏

j=1

h
mi[j]
j ·Wi

α

;

3. σi ← (σ
(i)
∆ , A(i), Ui,Wi).

– σ ← Eval(pk, f, σ⃗): for a linear function f : Zn
N → ZN described by its

coefficients f = (c1, . . . , cn)

1. (σ1, . . . , σn)← σ⃗ where σi = (σ
(i)
∆ , A(i), Ui,Wi) for all i ∈ [n];

2. Compute

U =

n∏
i=1

U ci
i , W =

n∏
i=1

W ci
i ;
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3. σ ← (σ∆ = σ
(1)
∆ , A = A(1), U,W ).

– 0/1← Ver(pk,P∆,m, σ): for verifying the correctness of the computed result
m =

∑n
i=1 ci ·mi,

1. Run recB(pp, tdB, Rn, n) to recover R1, . . . , Rn;
2. Run Ver′(pk′,∆|A, σ∆) to check whether σ∆ is valid, if not, stop and

output 0. Otherwise, output 1 iff the following equations are satisfied:

e(U, g1) = 1, (2)

e

(
n∏

i=1

H(Ri)
ci , A2

)
·e

 T∏
j=1

h
m[j]
j , A1

·e( n∏
i=1

W ci
i , A1

)
= e(U, g). (3)

Comparison of public key size: The public key of [7] is (pk′, bgpp, pek,
pek′), where pk′ is the public key of the regularly digital signature scheme, bgpp =
(p,G1, G2, GT , g1, g2, e) is the parameters of bilinear group, pek = {Ai, Bi}

⌈√N⌉
i=1 ,

and pek′ =
{
A′

j , B
′
j

}⌈√T⌉
j=1

. Therefore, [7] has O(
√
N +

√
T )-sized public keys.

The public key of our construction is pk = (bgpp, pp, tdB, pk
′, h, Rn), where the

size of (bgpp, pp, pk′, tdB, Rn) is O(1), and h = (h1, . . . , hT ). Therefore, our HS
scheme only has O(T )-sized public keys, independent of the dataset size.

Comparison of secret key size: The secret key of [7] is (sk′,K, K̂, sek,
sek′), where sk′ is the secret key of the regularly digital signature scheme, K
and K̂ are the two random seeds, sek = {αi, βi}

⌈√N⌉
i=1 , and sek′ =

{
α′
j , β

′
j

}⌈√T⌉
j=1

.
Therefore, [7] also has O(

√
N +

√
T )-sized secret keys. The secret key of our HS

scheme is sk = (bgpp, pp,K, tdS , sk
′), which is O(1) size. Hence, Our HS scheme

has more advantages of applying to the single user with large-scale datasets.

Theorem 4. The scheme satisfies efficient verification.

Proof. The verification algorithm can be rewritten as:

– vkP ← VerPerp(pk,P). Input the public key pk and P = (f, τ1, . . . , τn). Run
recB(pp, tdB, Rn, n) to recover R1, . . . , Rn, compute vkP = f(H(R1), . . . ,
H(Rn)) =

∏n
i=1 H(Ri)

ci . Output a concise verification key vkP .
– 0/1← EffVer(pk, vkP ,∆,m, σ). Run Ver′(pk′,∆|A, σ∆) to check whether σ∆

is valid, if not, stop and output 0. Otherwise, output 1 iff the following
equations are satisfied:

e(U, g1) = 1, (4)

e (vkP , A2) · e

 T∏
j=1

h
m[j]
j , A1

 · e( n∏
i=1

W ci
i , A1

)
= e(U, g). (5)

Theorem 5. The scheme satisfies succinctness.

Proof. The signature size of our HS scheme is independent of the dataset size.
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Theorem 6. The scheme satisfies signature correctness.

Proof. Let (sk, pk)← KeyGen(1λ) be an honestly generated key pair with (sk =
(bgpp, pp,K, tdS , sk

′), pk = (bgpp, pp, tdB, pk
′, h, Rn)) and let σi ← Sign(sk, L,mi)

be a honestly generated signature. For Ver(pk,P∆,mi, σ), we have

e(Ui, g1) = 1,

since Ui ∈ G1. And

e(Ri, A2) · e

 T∏
j=1

h
mi[j]
j , A1

 · e(Wi, A2)

= e(Ri, g
α
2 ) · e

 T∏
j=1

h
mi[j]
j , gα

 · e(Wi, g
α)

= e(f1(Ri), g)
α · e

 T∏
j=1

h
mi[j]
j , g

α

· e(Wi, g)
α

= e

f1(Ri) ·
T∏

j=1

h
mi[j]
j ·Wi

α

, g


= e(Ui, g).

Theorem 7. The scheme satisfies evaluation correctness.

Proof. Let (sk, pk)← KeyGen(1λ) be an honestly generated key pair with (sk =
(bgpp, pp,K, tdS , sk

′), pk = (bgpp, pp, tdB, pk
′, h, Rn)). Given {Pi,∆,mi, σi}ti=1

such that 1← Ver(pk,Pi,∆,mi, σi), for all i = 1 to t. Let σ ← Eval(pk, f, σ1, . . . , σt).
Finally, we want to prove that the verification algorithm Ver(pk,P∆,m, σ) out-
puts 1.
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Since each σi verifies correctly, we have U =
∏t

i=1 U
ci
i ∈ G1, thus e(U, g1) =

1. And for equation 3, we have

e

(
t∏

i=1

Rci
i , A2

)
· e

 T∏
j=1

h
m[j]
j , A1

 · e( t∏
i=1

W ci
i , A1

)

= e

(
t∏

i=1

Rci
i , g

α
2

)
· e

 T∏
j=1

h
m[j]
j , gα

 · e( t∏
i=1

W ci
i , g

α

)

= e

(
t∏

i=1

Rci
i , g2

)α

· e

 t∏
i=1

 T∏
j=1

h
mi[j]
j

ci

, g

α

· e

(
t∏

i=1

W ci
i , g

)α

= e

(
t∏

i=1

f1(Ri)
ci , g

)α

· e

 t∏
i=1

 T∏
j=1

h
mi[j]
j

ci

, g

α

· e

(
t∏

i=1

W ci
i , g

)α

= e

 t∏
i=1

f1 (Ri) ·
T∏

j=1

h
mi[j]
j ·Wi

αci

, g


= e

(
t∏

i=1

U ci
i , g

)
= e(U, g).

Theorem 8. The scheme satisfies unforgeability if DL and CDH problems are
hard, FK is a pseudorandom function, and the one-way function exists for ad-
versary B.

Proof. We can only deal with forgery 1 and 2 since forgery 3 can be converted
into forgery 2 [7]. Our idea is similar to [7,26]. To prove this theorem, we need to
define a series of games with the adversary B and we will show that the adversary
B wins (the game outputs 1) only with negligible probability. Following the
notation of [7], we also write Gi(B) to denote that game i outputs 1, and badi
represents the flag values of game i. badi initially sets to false, if at the end of the
game any of these flags is set to true, the game outputs 0. We use Badi represents
the event that badi is set to true during the game.

– Game 1: This game is the security experiment ExpEUF−CMA
B,HS , where B only

outputs forgery 1 and 2.
– Game 2: This game is defined as Game 1 apart from the fact that whenever

B outputs a forgery tuple (P∗
∆,m

∗, σ∗), where σ∗ = (σ∗
∆, A

∗, U
∗
,W

∗
) such

that A∗ was not generated by the challenger, then Game 2 sets bad2 = true.
– Game 3: This game is defined as Game 2 except that the pseudorandom

function FK of our scheme is replaced with a true random function F :
{0, 1}∗ → ZN .



Asymmetric Trapdoor Pseudorandom Generators 21

– Game 4: This game is defined as Game 3 except for an additional check.
For a forgery tuple (P∗

∆,m
∗, σ∗), it computes m =

∑n
i=1 ci ·mi, and checks

whether
∏T

j=1 h
m[j]
j =

∏T
j=1 h

m∗[j]
j . If it does, sets bad4 = true.

Games 1 and 2 are only different if Bad2 occurs, which means that the ad-
versary B can obtain an existential forgery for the regular digital signature
scheme. (EUF-CMA-secure digital signatures can be constructed from one-way
functions [21, 25]). Games 2 and 3 are computationally indistinguishable when
FK is a pseudorandom function. Games 3 and 4 have the following relationship:
|Pr[G3(B)] − Pr[G4(B)]| ≤ Pr[Bad4]. In Lemma 2 we show that Bad4 is negli-
gible for adversary B under DL assumption. Afterward, in Lemma 3, we show
how a challenger can use an adversary B winning Game 4 to break the CDH
assumption.

Lemma 2. Pr[Bad4] ≤ η(λ) if the DL assumption holds in G1.

Proof. Given (g1, g
a
1 ) ∈ G1, we show how the challenger to break DL assumption

in G1. Our simulation is similar to [26].

– Setup: The challenger selects an index i ∈ [T ] and runs (sk, pk)← KeyGen(1λ)

except for the generation of the h. It chooses x1, . . . , xT
$← ZN , sets hj = g

xj

1

for j ̸= i and sets hi = (ga1 )
xi . This is perfectly indistinguishable from a real

execution of this game since xj is random. Finally, the challenger gives pk
to the adversary B.

– Sign queries: The challenger answers all queries of the adversary B faithfully.
– Forgery: The adversary B finally returns a forgery tuple (P∗

∆,m
∗, σ∗), where∏T

j=1 h
m[j]
j =

∏T
j=1 h

m∗[j]
j .

For the forgery tuple (P∗
∆,m

∗, σ∗), the challenger checks whether m[i] ̸=
m∗[i]. If not, restarts the simulation. Otherwise, we have

T∏
j=1

h
m[j]
j =

T∏
j=1,j ̸=i

g
xj ·m[j]
1 · ga·xi·m[j]

1 =

T∏
j=1,j ̸=i

g
xj ·m∗[j]
1 · ga·xi·m∗[j]

1 =

T∏
j=1

h
m∗[j]
j

⇒ a · xi ·m[i] +

T∑
j=1,j ̸=i

xj ·m[j] = a · xi ·m∗[i] +

T∑
j=1,j ̸=i

xj ·m∗[j].

The challenger can compute

a =
1

xi · (m∗[i]−m[i])

T∑
j=1,j ̸=i

xj · (m[j]−m∗[j]).

Lemma 3. The challenger can use an adversary B that wins in Game 4 to
break the CDH assumption.

Proof. Given (bgpp = (N,G1, G2, GT , e, g1, g2), g
a
1 , g

b
1, g

b
2, g

b), where a, b $← ZN ,
we show how the challenger to break CDH assumption in G1.
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– Setup: Let Q be the number of datasets in which the adversary B makes
signature queries. The challenger guesses the dataset ∆̂ in which the adver-
sary B produces a forgery, then runs (sk, pk)← KeyGen(1λ) except for the
generation of the h. It choose x1, . . . , xT

$← ZN , sets hj = (ga1 )
xj for j ∈ [T ].

This is perfectly indistinguishable from an honest setup since xj is random.
Finally, the challenger gives pk to the adversary B.

– Sign queries: The adversary B asks for signatures on (L,m), where L =
(∆, τ).

1. If the adversary B queries signatures for the dataset ∆ ̸= ∆̂. The chal-
lenger runs α ← FK(∆), sets A = (A1, A2) = (gα, gα2 ) , and σ∆ ←
Sign′(sk′,∆|A). It selects r $← ZN , sets W = gr1 · g

a·
∑T

j=1 −xj ·m[j]

1 , com-
putes

U =

f1(H(R)) ·
T∏

j=1

h
m[j]
j ·W

α

= (f1(H(R)) · gr1)
α
.

Finally, the challenger returns σ = (σ∆, A, U,W ) to B. The signature
correctness can be easily verified: e(U, g1) = 1 and

e(H(R), A2) · e

 T∏
j=1

h
m[j]
j , A1

 · e(W,A1)

= e(H(R), gα2 ) · e

 T∏
j=1

((ga1 )
xj )m[j], gα

 · e(gr1 · ga·∑T
j=1 −xj ·m[j]

1 , gα
)

= e(H(R), g2)
α · e(gr1, g)α

= e ((f1(H(R)) · gr1)α, g)
= e(U, g).

2. If the adversary B queries signatures for the dataset ∆ = ∆̂. The chal-
lenger selects y $← ZN , then sets A = (A1, A2) = ((gb)y, (gb2)

y) and
σ∆ ← Sign′(sk′,∆|A). It selects r $← ZN , sets W = f1(H(R))−1 · gr1 ·
g
a·
∑T

j=1 −xj ·m[j]

1 (f1(H(R))−1 represents the inverse of f1(H(R))), com-
putes U = (gb1)

r·y. Finally, the challenger returns σ = (σ∆, A, U,W ) to
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B. The signature correctness can be verified: e(U, g1) = 1 and

e(H(R), A2) · e

 T∏
j=1

h
m[j]
j , A1

 · e(W,A1)

= e(H(R), gb·y2 ) · e
(
f1(H(R))−1 · gr1 · g

a·
∑T

j=1 −xj ·m[j]

1 , gb·y
)

· e

 T∏
j=1

((ga1 )
xj )m[j], gb·y


= e(f1(H(R)), g)b·y · e(f1(H(R))−1 · gr1, g)b·y

= e
(
(gb1)

r·y, g
)

= e(U, g).

– Forgery: The adversary B finally returns a forgery tuple (P∗
∆,m

∗, σ∗), where∏T
j=1 h

m[j]
j ̸=

∏T
j=1 h

m∗[j]
j and

∑T
j=1 xj ·m[j] ̸=

∑T
j=1 xj ·m

∗[j] since bad4 =
true.

U and U
∗ are valid signatures for the function f , we have

U =

(
n∏

i=1

f1(H(Ri))
ci ·W

)b·y

·

 T∏
j=1

h
m[j]
j

b·y

=

(
n∏

i=1

f1(H(Ri))
ci

)b·y

·

(
n∏

i=1

W ci
i

)b·y

·
(
g
b·y·a·

∑T
j=1 xj ·m[j]

1

)
and

U
∗
=

(
n∏

i=1

f1(H(Ri))
ci ·W

)b·y

·

 T∏
j=1

h
m∗[j]
j

b·y

=

(
n∏

i=1

f1(H(Ri))
ci

)b·y

·

(
n∏

i=1

W ci
i

)b·y

·
(
g
b·y·a·

∑T
j=1 xj ·m∗[j]

1

)
.

If compute U · (U∗
)−1, we can get

U

U
∗ =

(
∏n

i=1 f1(H(Ri))
ci)

b·y · (
∏n

i=1W
ci
i )

b·y ·
(
g
b·y·a·

∑T
j=1 xj ·m[j]

1

)
(
∏n

i=1 f1(H(Ri))ci)
b·y · (

∏n
i=1W

ci
i )

b·y ·
(
g
b·y·a·

∑T
j=1 xj ·m∗[j]

1

)
= g

a·b·(y·
∑T

j=1 xj ·(m[j]−m∗[j]))

1 .

The challenger, therefore, can get gab1 by computing(
U

U
∗

) 1

y·
∑T

j=1
xj ·(m[j]−m∗[j])

= g

a·b·(y·
∑T

j=1 xj ·(m[j]−m∗[j]))

y·
∑T

j=1
xj ·(m[j]−m∗[j])

1 = gab1 .
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Lemma 3 requires that f1(H(R))−1 is computationally easy if we know H(R)
and f1. The following Lemma 4 shows that f1(H(R))−1 can be computed effi-
ciently by the challenger.

Lemma 4. The challenger can easily compute f1(H(R))−1 if it knows H(R)
and f1.

Proof. In a nutshell, f1 map preserves the group structure, for an element u ∈ G
and its inverse u−1 ∈ G, f1(u)−1 = f1(u

−1). Therefore, the challenger can
first compute H(R)−1 (e.g., use extended Euclidean algorithm, O(log n) com-
putation complexity), then compute f1(H(R)−1) to obtain f1(H(R))−1 since
f1(H(R)−1) = f1(H(R))−1. Specifically, from [24], the group G has a fact that
G = G1 ⊕ G2; in other words, G has exponent N but contains N2 points, it
can be represented as the product of two cyclic groups (G1 and G2) of order
N . Therefore, we can write any element ga ∈ G uniquely as ga = gb1g

c
2, where

b, c ∈ Z/NZ, g1 = g
σ+s
2s , and g2 = g

s−σ
2s ( σ+s

2s and s−σ
2s involve knowledge of the

underlying elliptic curve, we will not explain their construction in detail. The
readers can read [24] for the technical details, and treat them as constants in this
proof). The computation of f1 map can be described as f1(ga) = (ga)

σ+s
2s = ga1 .

The challenger knows the values H(R) and f1, therefore, it also knows the in-
verse H(R)−1. We write H(R) as ga and H(R)−1 as g−a, then their f1 map are
f1(g

a) = ga1 and f1(g
−a) = g−a

1 , respectively. Hence, the challenger can easily
compute f1(H(R))−1 if it knows H(R) and f1.

4.3 Other Constructions

We discover that the public labels of HS have the same size as the dataset,
and we can use this feature to simplify the scheme in the previous section.
Note that this simplification does not apply to all cryptographic schemes and
is only customized for HS. Specifically, we can also borrow labels τ1, . . . , τn to
generate secret pseudorandom sequence sr. In other words, instead of running
ATPRG.PRGen to generate public pseudorandom sequence pr, we borrow the
published labels as pr. The modified construction is as follows:

– (sk, pk)← KeyGen(1λ):
1. (pp, bgpp, tdB =⊥, tdS )← ATPRG.setup, where bgpp = (N,G1, G2, GT , e,
g1, g2), then run ATPRG.init;

2. Define a hash function H : {0, 1}∗ → G and a pseudorandom function
FK : {0, 1}∗ → ZN , then choose a random seed K

$← K for FK ;
3. Randomly choose h = (h1, . . . , hT ) from G1, where T is the dimension

of message m;
4. Give a regular digital signature scheme Σ′ = (KeyGen′,Sign′,Ver′), and

generate a key pair (pk′, sk′) ← KeyGen′(1λ) for the regular signature
scheme;

5. sk ← (bgpp, pp,K, tdS , sk
′), pk ← (bgpp, pp, tdB, pk

′, h).
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– σ ← Sign(sk, L,mi): To sign a message mi ∈ ZN with its multi-label L =
(∆, τi), proceed as follows.
1. α← FK(∆), computeA(i) = (A

(i)
1 , A

(i)
2 ) = (gα, gα2 ) and σ(i)

∆ ← Sign′(sk′,∆|A);
2. Select Wi

$← G1 and run f1(H(τi))← ATPRG.SRGen(bgpp, τi, tdS ), then
compute

Ui =

f1(H(τi)) ·
T∏

j=1

h
mi[j]
i ·Wi

α

;

3. σi ← (σ
(i)
∆ , A(i), Ui,Wi).

– σ ← Eval(pk, f, σ⃗): for a linear function f : Zn
N → ZN described by its

coefficients f = (c1, . . . , cn)

1. (σ1, . . . , σn)← σ⃗ where σi = (σ
(i)
∆ , A(i), Ui,Wi) for all i ∈ [n];

2. Compute

U =

n∏
i=1

U ci
i , W =

n∏
i=1

W ci
i ;

3. σ ← (σ∆ = σ
(1)
∆ , A = A(1), U,W ).

– 0/1← Ver(pk,P∆,m, σ): for verifying the correctness of the computed result
m =

∑n
i=1 ci ·mi,

1. Run Ver′(pk′,∆|A, σ∆) to check whether σ∆ is valid, if not, stop and
output 0. Otherwise, output 1 iff the following equations are satisfied:

e(U, g1) = 1, (6)

e

(
n∏

i=1

(H(τi))
ci , A2

)
· e

 T∏
j=1

h
m[j]
j , A1

 · e(W,A1) = e(U, g). (7)

Comparison of public key size: The public key of this construction is
pk = (bgpp, pp, tdB, pk

′, h), where the size of (bgpp, pp, pk′, tdB) is O(1), and h =
(h1, . . . , hT ). Therefore, this scheme also hasO(T )-sized public keys, independent
of the dataset size.

Theorem 9. The scheme satisfies efficient verification.

Proof. The verification algorithm can be rewritten as:
– vkP ← VerPerp(pk,P). Input the public key pk and P = (f, τ1, . . . , τn). Set
H(τ1), . . . , H(τn), compute vkP = f(H(τ1), . . . , H(τn)) =

∏n
i=1 (H(τi))

ci .
Output a concise verification key vkP .

– 0/1← EffVer(pk, vkP ,∆,m, σ). Run Ver′(pk′,∆|A, σ∆) to check whether σ∆
is valid, if not, stop and output 0. Otherwise, output 1 iff the following
equations are satisfied:

e(U, g1) = 1, (8)

e (vkP , A2) · e

 T∏
j=1

h
m[j]
j , A1

 · e(W,A1) = e(U, g). (9)
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Theorem 10. The scheme satisfies succinctness.

Proof. The signature size of our HS scheme is independent of the dataset size.

Theorem 11. The scheme satisfies signature correctness.

Proof. The proof is the same as in theorem 6, by replacing Ri with τi in theorem
6.

Theorem 12. The scheme satisfies evaluation correctness.

Proof. The proof is the same as in theorem 7, by replacing Ri with τi in theorem
7.

Theorem 13. The scheme satisfies unforgeability if DL and CDH problems are
hard, FK is a pseudorandom function, and the one-way function exists for ad-
versary B.

Proof. To prove this theorem, we need to define a series of games with the
adversary B and we will show that the adversary B wins (the game outputs 1)
only with negligible probability.

– Game 1: This game is the security experiment ExpEUF−CMA
B,HS , where B only

outputs forgery 1 and 2.
– Game 2: This game is defined as Game 1 apart from the fact that whenever

B outputs a forgery tuple (P∗
∆,m

∗, σ∗), where σ∗ = (σ∗
∆, A

∗, U
∗
,W

∗
) such

that A∗ was not generated by the challenger, then Game 2 sets bad2 = true.
– Game 3: This game is defined as Game 2 except that the pseudorandom

function FK of our scheme is replaced with a true random function F :
{0, 1}∗ → ZN .

– Game 4: This game is defined as Game 3 except for an additional check.
For a forgery tuple (P∗

∆,m
∗, σ∗), it computes m =

∑n
i=1 ci ·mi, and checks

whether
∏T

j=1 h
m[j]
j =

∏T
j=1 h

m∗[j]
j . If it does, sets bad4 = true.

In Lemma 5 we show that Bad4 is negligible for adversary B under DL
assumption. Afterward, in Lemma 6, we show how a challenger can use an ad-
versary B winning Game 4 to break the CDH assumption.

Lemma 5. Pr[Bad4] ≤ η(λ) if the DL assumption holds in G1.

Proof. The proof is the same as lemma 2.

Lemma 6. The challenger can use an adversary B that wins in Game 4 to
break the CDH assumption.

Proof. Given (bgpp = (N,G1, G2, GT , e, g1, g2), g
a
1 , g

b
1, g

b
2, g

b), where a, b $← ZN ,
we show how the challenger to break CDH assumption in G1.



Asymmetric Trapdoor Pseudorandom Generators 27

– Setup: Let Q be the number of datasets in which the adversary B makes
signature queries. The challenger guesses the dataset ∆̂ in which the adver-
sary B produces a forgery, then runs (sk, pk)← KeyGen(1λ) except for the
generation of the h. It choose x1, . . . , xT

$← ZN , sets hj = (ga1 )
xj for j ∈ [T ].

This is perfectly indistinguishable from an honest setup since xj is random.
Finally, the challenger gives pk to the adversary B.

– Sign queries: The adversary B asks for signatures on (L,m), where L =
(∆, τ).

1. If the adversary B queries signatures for the dataset ∆ ̸= ∆̂. The chal-
lenger runs α ← FK(∆), sets A = (A1, A2) = (gα, gα2 ) , and σ∆ ←
Sign′(sk′,∆|A). It selects r $← ZN , sets W = gr1 · g

a·
∑T

j=1 −xj ·m[j]

1 , com-
putes

U =

f1(H(τ)) ·
T∏

j=1

h
m[j]
j ·W

α

= (f1(H(τ)) · gr1)
α
.

Finally, the challenger returns σ = (σ∆, A, U,W ) to B. The signature
correctness can be easily verified.

2. If the adversary B queries signatures for the dataset ∆ = ∆̂. The chal-
lenger selects y $← ZN , then sets A = (A1, A2) = ((gb)y, (gb2)

y) and
σ∆ ← Sign′(sk′,∆|A). It selects r $← ZN , sets W = f1(H(τ))−1 · gr1 ·
g
a·
∑T

j=1 −xj ·m[j]

1 , computes U = (gb1)
r·y. Finally, the challenger returns

σ = (σ∆, A, U,W ) to B. The signature correctness can be verified:
e(U, g1) = 1 and

e(H(τ), A2) · e

 T∏
j=1

h
m[j]
j , A1

 · e(W,A1)

= e(H(τ), gb·y2 ) · e
(
f1(H(τ))−1 · gr1 · g

a·
∑T

j=1 −xj ·m[j]

1 , gb·y
)

· e

 T∏
j=1

((ga1 )
xj )m[j], gb·y


= e(f1(H(τ)), g)b·y · e(f1(H(τ))−1 · gr1, g)b·y

= e
(
(gb1)

r·y, g
)

= e(U, g).

– Forgery: The adversary B finally returns a forgery tuple (P∗
∆,m

∗, σ∗), where∏T
j=1 h

m[j]
j ̸=

∏T
j=1 h

m∗[j]
j and

∑T
j=1 xj ·m[j] ̸=

∑T
j=1 xj ·m

∗[j] since bad4 =
true.
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U and U
∗ are valid signatures for the function f , we have

U =

(
n∏

i=1

f1(H(τi))
ci ·W

)b·y

·

 T∏
j=1

h
m[j]
j

b·y

=

(
n∏

i=1

f1(H(τi))
ci

)b·y

·

(
n∏

i=1

W ci
i

)b·y

·
(
g
b·y·a·

∑T
j=1 xj ·m[j]

1

)
and

U
∗
=

(
n∏

i=1

f1(H(τi))
ci ·W

)b·y

·

 T∏
j=1

h
m∗[j]
j

b·y

=

(
n∏

i=1

f1(H(τi))
ci

)b·y

·

(
n∏

i=1

W ci
i

)b·y

·
(
g
b·y·a·

∑T
j=1 xj ·m∗[j]

1

)
.

If compute U · (U∗
)−1, we can get

U

U
∗ =

(
∏n

i=1 f1(H(τi))
ci)

b·y · (
∏n

i=1W
ci
i )

b·y ·
(
g
b·y·a·

∑T
j=1 xj ·m[j]

1

)
(
∏n

i=1 f1(H(τi))ci)
b·y · (

∏n
i=1W

ci
i )

b·y ·
(
g
b·y·a·

∑T
j=1 xj ·m∗[j]

1

)
= g

a·b·(y·
∑T

j=1 xj ·(m[j]−m∗[j]))

1 .

The challenger, therefore, can get gab1 by computing

(
U

U
∗

) 1

y·
∑T

j=1
xj ·(m[j]−m∗[j])

= g

a·b·(y·
∑T

j=1 xj ·(m[j]−m∗[j]))

y·
∑T

j=1
xj ·(m[j]−m∗[j])

1 = gab1 .

5 Conclusion

In this work, we proposed a new primitive called ATPRG, which can be regarded
as a new type of PRG. We showed how to construct a secure ATPRG via PRG,
reverse re-randomizable encryption, and TBG. We further studied the applica-
tions of our ATPRG, and we used ATPRG to construct the first homomorphic
signature scheme with only O(T )-sized public keys in the standard model.

Next, we discuss some other potential applications of ATPRG. (1) For data
compression, if we use PRGen to generate the pseudorandom data (e.g., id), then
we can use recB to compress these data to O(1) size, which even maybe close to
the Shannon limit (traditional data compression algorithms are hard to compress
pseudorandom data). Further, if we use SRGen to generate the pseudorandom
data, then we can obtain a privacy-preserving data compression approach since
only the users with the secret trapdoor can recover the data correctly; (2) for
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information hiding, if we use PRGen and SRGen to generate two sequences of
the pseudorandom data, we can obtain an information hiding approach, which
means that the pr sequence is superficial data, but there hides a secret sequence
sr; (3) in [24], the authors use TBG to design an extended variant of the Boneh-
Goh-Nissim cryptosystem, a variant of the Groth-Ostrovsky-Sahai NIZK, and
new anonymous IBE, signature, and encryption schemes; therefore, our ATPRG
may also be applicable in these fields.

We finally leave some open problems:

In which applications the discussional approaches are feasible?

and

How close is discussion (1) to the Shannon limit in different applications?
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