
Maravedí: A Secure and Practical Protocol to Trade Risk for
Instantaneous Finality

Mario Larangeira

Tokyo Institute of Technology

Input Output Global - IOG

mario@c.titech.ac.jp/mario.larangeira@iohk.io

Maxim Jourenko

Tokyo Institute of Technology

Input Output Global - IOG

jourenko.m.ab@m.titech.ac.jp

ABSTRACT
The efficiency of blockchain systems is often compared to popular

credit card networks with respect to the transactions per second

rate. This seems to be an unfair comparison since these networks

do not complete a transaction from beginning to end. Rather they

buy the risk and settle it much later. Typically transactions have

only two players, the payer and the payee, and the settlement of this

transaction requires time since it depends on basic properties of the

consensus protocol. In practice, the payee, very often, needs to wait

for confirmation in order to ship the traded goods. Alternatively,

the payee, or merchant, can ship it in faith that the transaction will

be confirmed. Our contribution, the Maravedí Protocol, introduces

a third player to minimize the risk of the payee to be left without

the payment even without the consensus layer confirmation. The

main idea is that the third player can work similarly to a credit
card company. That is, it buys the risk from the merchant, by a

small discount, and allows the third player to pay it instantaneously

via a payment-channel like protocol. In parallel, the third player

receives the regular payment transaction from the payer that can be

settled on the chain, thus, after waiting the consensus/blockchain

required time. Moreover, the on-chain transaction pays the full

amount, allowing the third player to cash in the discount. Hence

on the side of the merchant, our protocol puts forth instantaneous
finality in a novel way to the best of our knowledge.

1 INTRODUCTION
The most widely known application for blockchain based systems

is cryptocurrency. One of the main bottlenecks for mass adoption

boils down to the number of transactions per second (TPS) rate

such systems can process. New transactions are confirmed by the

system as new blocks are added to the blockchain, and the same

chain is agreed among all the honest nodes of the network via a

Nakamoto style consensus protocol. The design and security of the

consensus protocol plays a major role in the transaction validation

process because it dictates the rate of block creation either in Proof

of Stake (PoS) or Proof of Work (PoW) systems. Different protocols

implement different refresh rates. Therefore, in order to confirm a

transaction, i.e., beyond the non-negligible probability of disappear-
ing from the blockchain, it is necessary to wait a few blocks. At

the end of this confirmation period, the systems offer finality, i.e.,
informally, a period of time that a user needs to wait in order to be

sure the transaction cannot be reversed. The time requirement for

such desirable property varies depending on the system, for exam-

ple, Bitcoin [17] needs on average every 60 minutes (or 6 blocks),

Ethereum [23] requires 2,5 min (or 10 blocks), Cardano/Ouroboros

theoretically requires one time-slot which is 20 seconds (however

for true immutability of the chain according to the newest setting

can be 36 hours) [4, 8]. In general, pure blockchain based consensus

protocols are slower than BFT systems, e.g., PBFT [3]. Therefore,

in order to circumvent this crucial limitation in distributed sys-

tems, hybrid protocols, i.e., combination of blockchain and BFT

approaches, were suggested, e.g., Algorand [9] and Thunder [18].

However the proposed protocols still require some waiting for the

confirmation time in order to achieve finality.

Concretely, the confirmation time for the transferred funds can

be particularly risky to settle a transaction. Namely, after the Cus-

tomer performs a payment, i.e., the payer, how to assure, quickly, to

the Merchant, i.e., the payee, that it is safe to deliver the purchased

goods. In practice, within a distributed environment with confirma-

tion time, the Merchant can deliver the goods in the optimistic case,

i.e., on faith that the transaction will be finalized, after the issue of

the payment. Technically, in this scenario, the Merchant is under

the risk that the transaction will not be finalized given the waiting

time of the consensus protocol. In other words, the Merchant is left

without any guarantees of receiving the payment. Researchers and

practitioners have allocated effort, which has not yet produced a

clear definitive solution to the described limitation. In particular,

businesses that rely on cryptocurrency are keen to know whether

transactions can be securely confirmed much faster.

An earlier attempt to improve the TPS ratio is based on protocols

that do not perform most of its transactions on the chain, i.e., an off-

chain protocol. The most widely used is the Lightning Protocol [20]

which establishes a channel between two parties and limits the

interaction with the blockchain. While the work in [20] does offer

a way to issue instantaneous, and verifiable, transactions between

the two parties, the initial establishment of the channel requires the

interaction with the blockchain, and, therefore, it is necessary to

wait for the confirmation time. Thus it is not suitable to the case of

several parties, as every new payment should trigger the creation

of a new channel.

An Unfair Comparison. It is well known that centralized pay-

ment methods like debit cards, Paypal or Payment Hubs [11] are

orders of magnitude faster than blockchain based systems, and they

do offer instantaneous (with the disclaimer we do not consider card

information checking, receipt issuing, etc, which in fact make it

not strictly “instantaneous”). However, when discussing the trans-

action throughput of cryptocurrencies, a very common comparison

often appears between the decentralized ledger technology and

credit card networks. Whereas the former most known example,

i.e., Bitcoin, carries 7 TPS [21], the latter handles tens of thousands
per second [21]. This alarming difference can be explained by the

centralized nature of the network of the credit card company. While

decentralized ledger technology is mostly, well, decentralized, which
imposes significant overheads in the processing speed. To the best

1

Mario Larangeira and Maxim Jourenko

of our knowledge, another often overlooked difference is that credit

card companies do not only intermediate the transaction between

Customer and Merchant, they, in fact, buy the risk, i.e., the credit
risk, from the Merchant by a profit. In the light of this description,

this credit card model does not seem to have a counterpart in the

cryptocurrency realm. More concretely, in the physical world, a

Customer would ask for the credit card company, which we de-

note Risk Buyer, to pay the Merchant, while in a future date the

Customer pays the Risk Buyer back.

In this setting, the Merchant is assured, given the prior deal with

the Risk Buyer, that it will receive the funds even if the Customer

does not fulfill its part of the deal. In the real world, the Risk Buyer

would require extra information from the Customer to build con-

fidence and, therefore, buy the risk. Concrete examples of extra

information are typically background check, spending history, rep-

utation, etc. Moreover Risk Buyer would also require some discount

from the Merchant. By paying the Merchant in advance, the Risk

Buyer receives a profit in order to engage in the deal in the first

place. The crucial term is “in advance”. That is, how quick, and

guaranteed, this payment should be performed in order to satisfy

the finality property in the eyes of the Merchant.

Instantaneous Payment over Blockchain. Not all types of

payments require confirmation time in the blockchain realm. In

fact, several protocols put forth instantaneous confirmation pay-

ments via payment/state channels [6, 13], i.e., depend virtually on

the network speed, and the already mentioned [20]. Typically, these

protocols need an initial phase which indeed requires confirmation

time. Subsequent payments, under certain values, are instantaneous
between payer and payee, albeit they are not reflected in the consen-

sus protocol immediately. The result of these payments are reflected

in the underlying ledger when the channel is closed which requires,

again, the confirmation time in order to persist the final state of

the channel.

Our approach takes this natural property of payment chan-

nels, i.e., instantaneous payments, and combines it with blockchain

aided transaction, in order to provide instantaneous settlement, i.e.,
finality, to the receiver of the funds, i.e., the Merchant, in an ad-hoc

transaction, i.e., without prior interaction to the Costumer. Our

approach is in sharp contrast to the existing protocols as we put

forth a novel approach: a hybrid design for protocols, and a relaxed

notion of finality, i.e., only applies for the Merchant.

Related Work. As already outlined, early attempts to increase

the TPS rate of blockchain based systems rely on the establishment

of payment channels. Such protocols, in general, work by locking

funds from two participants, i.e., the capacity of the channel, by

standard transactions registered in the ledger, after the confirma-

tion of such a transactions, they interact directly, i.e., without the
ledger. Such an approach, effectively allows these participants to

carry out numerous direct transactions without time limitations

from the consensus protocol. Such transactions are settled instanta-

neously, although they are not registered in the blockchain/ledger

until the channel is closed. It is important to notice that, although

the transaction is not present in the ledger, by the time of its set-

tlement, the participants cannot revert it due to mechanisms of

the typical payment channel protocol, e.g., [20]. Such a class of

protocols, named layer-2 (layer-1 being the consensus layer), has

already accumulated a large body of work [12].

The protocol in [20] had received a formal treatment by Kiayias

et al. [15], which also showed evidence that common ledger func-

tionalities (in the UC sense) introduced in the literature do not seem

to be realizable (for instantaneous finality) under realistic network

assumptions. In particular, they remark that [6, 7, 16] presents a

model that settles every submitted transaction immediately which

does not seem to be realistic for existing the network models. A

significant reminder of the need for protocols that offer quick fi-

nality, and therefore motivates our novel approach and suggested

protocols. A later work by Dinsdale-Younget al. [5] tackles the
slow consensus drawback by introducing a (formal) concrete final-

ity layer. The work relies on the formal properties of blockchain,

i.e., common-prefix, chain-growth and chain-quality. Despite its

ingenuity, it still cannot offer quick finality.

Our Contribution. This work introduces the study of finality

via risk trade. To the best of our knowledge, it is the first time

this approach is suggested. We discuss the desiderata for such an

approach. Furthermore, we present the Maravedí Protocol which

takes this fundamentally different approach to implement finality.
Namely, it puts forth instantaneous finality to the receiver of the

funds (which in our jargon is the “Merchant”). Our design sidesteps

the drawback of distributed systems, i.e., the confirmation time

of the blockchain systems, by allowing a “pre-processing” phase

which is mainly the establishment of a pairwise payment chan-

nel. The channel bridges the Merchant and the participant who

pays in advance, therefore buying the risk, (which in our model is

the “Risk Buyer”). Hence the payment to the Merchant is timely

performed via the already established payment channel, taking

advantage of the existing property of the cited protocol [15, 20], i.e.,
instantaneous payment. Note that the channel creation requires the

confirmation time from the ledger. However, made in advance, the

required time does not interfere in the instantaneous interaction

between the Risk Buyer and the Merchant.

Our design allows any Customer to approach the Merchant in

an ad hoc manner, i.e., without any previous interaction, a desirable
property. The Customer issues a regular transaction to the Mer-

chant, i.e., “regular” means it requires time to settle in the ledger,

however it is assigned to the Risk Buyer. The Merchant forwards

the transaction to the Risk Buyer conditioned with a payment under

its jointly created payment channel. A technical issue we solve in

our construction is conditionally fixing the regular payment and

the payment channel transferring of funds, without requiring trust

between the two participants, i.e., Risk Buyer and Merchant. We

adapted the Hash Time Lock Contract (HTLC) technique used in

the Lightning Network [15, 20] by allowing the Risk Buyer to keep

the value x while delivering y = H (x) to the Merchant (which for-

wards it to the Costumer), for a hash function H . The transaction

issued by the Customer is conditioned to the disclosing of x , which
happens when the final payment is done via the payment channel

or the ledger.

More concretely, in our construction the HTLC technique is

leveraged to provide atomicity between the transaction to be pub-

lished in the ledger and the one performed in the payment-channel.

2

Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality

Anytime the Risk Buyer publishes the received blockchain transac-

tion, it also discloses x which allows the Merchant to also cash in

the funds in the channel. We remark that the instantaneous finality

provided by our protocol relies on the combination of the ledger

transaction and the payment-channel transferring of funds. Despite

the funds being locked in the channel, the Merchant is assured to

receive it given that the “pre-processing" phase within the channel

was established. The guarantee provided by the channel construc-

tion is more desirable than solely relying on the optimistic heuristic

that nodes will reach an eventual consensus in the blockchain based

system. Note, for example, that a naive construction would be re-

quiring Risk Buyer to pay the Merchant right away, via the payment

channel, and just wait for the transaction (from the Customer) to

be confirmed. However, in this case, there is no guarantee that

the Merchant would cooperate, by, for example, publishing the

transaction or sending it to the Risk Buyer.

In summary our contributions are

• We start by a discussion of the desiderata for risk trade in

order to obtain finality for the point of view of the Mer-

chant. A notion we introduce in this work in the best of our

knowledge;

• We propose the Maravedí Protocol which concretely illus-

trates this novel approach to put forth instantaneous finality

for the Merchant;

• Finally, we describe themain property of our protocol, namely,

the Merchant and the Risk Buyer redeem the respective pay-

ment securely.

We remark our protocol is quite practical since we adapted an

already existing construction, the Lighting Protocol [15, 20].We also

show chase that our approach does not require any sort of collateral,

smart-contract capability or checkpoints, e.g., [14]. Furthermore, we

believe that the adaptation we propose for the HTLC can be easily

implemented taking the original source [20] code as a blueprint for

the construction.

Roadmap. One of our main contributions is presented in Sec-

tion 3 with a discussion with the requirements, i.e., desiderata, of a
three participant trade risk. Section 4 outlines the main phases of

our construction, and provides an intuition for the approach, while

Section 5.2 describes the concrete construction. We provide the

security analysis in Section 6 along with a discussion with respect

to the early introduced desiderata. The last section, i.e., Section 7,

presents our final comments.

2 PRELIMINARIES
Our protocol relies on the payment-channel protocol for the risk

trade for the payment to the Risk Buyer. It is convenient to review

the UTXO Model and the Lighting Network design. In addition, for

completeness, it is necessary to recall the digital signature primi-

tives used in our construction. However we first start by the prim-

itive which allows us to derive new keys. From now, let λ be the

security parameter, while neдl(λ) is the standard negligible func-

tion and x
r
← X is the sampling algorithm for x from a uniform

distribution X.

2.1 Pseudorandom Function
Each payment performed within the channel, a new set of keys

are generated from the original set of master keys. From now, we

present a formal definition for the Pseudorandom Function (PRF)

and its security notion.

Definition 2.1 (PRF). Let λ ∈ N, s ∈ {0, 1}∗,p : N→ N and fs be

a family of functions from {0, 1}p(|s |) to {0, 1}p(|s |). Furthermore,

let Funcλ be the uniform distribution over the set of all {0, 1}λ →

{0, 1}λ functions. We say that fs is a pseudorandom function family

if:

• ∀s ∈ {0, 1}∗,∀x ∈ {0, 1}p(|s |), ∃ PPT algorithm, denoted

PRF(x, s), that computes fs (x)
• ∀λ ∈ N, ∀ PPT A,��� Pr

s
r
←{0,1}λ

A’s coins

[Afs (·)(1λ) = 1] − Pr

PRF

r
←Funcλ

A’s coins

[APRF(·)(1λ) = 1]

��� =
neдl(λ),

where A is given oracle access to fs (·) and PRF in each of the

probability expressions above respectively.

2.2 Digital Signature Schemes
Typically, the standard digital signature scheme is the main crypto-

graphic primitive for transaction frameworks. Furthermore, pay-

ment channel [15, 20] relies on two extra signature schemes, namely,

Identity Based Signature and Combined Signature. It is convenient

to review the three schemes.

Definition 2.2 (The Digital Signature Scheme [10]). It is the triple
of algorithms S = ⟨Gen,VerDS, SignDS⟩, and it is said to be resis-

tant to Existential Unforgeable under Adaptive Chosen Message

Attacks (EUF-CMA) if, with respect to the security parameter λ, for
any PPT algorithm Af orдer , which can query the signature oracle

SignDS(sk, ·) for signatures on a polynomial number of messages

mi , it holds Pr[(vk, sk) ← Gen(1λ) : (m,σ) ← A
SignDS(sk, ·)
f orдer ∧m ,

mi] < neдl(λ), where all the probabilities are computed over the

random coins of the adversary and the signature algorithms.

Definition 2.3 (Identity Based Signature (IBS) [19, 22]). The IBS
scheme is a 5-algorithm tuple IBS = ⟨Setup, KeyDer, PubKeyDer,

SignIBS, VerifyIBS⟩, which is an augmented version used in [15]

of the originals proposed in [10]. Each algorithm is used as follows:

• Setup(1λ) → (mvk,msk): The setup algorithm takes the

security parameter and outputs the master key pair;

• KeyDer(mvk,msk, ℓ) → (vkℓ, skℓ): The regular signing key
pair is derived with respect to the label ℓ;

• PubKeyDer(mvkℓ) → (vkℓ): It is possible derive only the

verification key PubKeyDer with only the label ℓ and the

master verification key mvk;
• SignIBS(m, skℓ): This is the regular signing algorithm. That

is, it requires only the message m and the secret key sk;
• VerifyIBS(SignIBS,m, vkℓ) → {0, 1}: The verification is

performed, as usual, using the vk, m and SignIBS.

3

Mario Larangeira and Maxim Jourenko

Definition 2.4 (Combined Signature (CS) [15]). The CS scheme

is a 7-algorithm tuple CS = ⟨MasterKeyGen, KeyShareGen,

CombinePubKey,CombineKey,TestKey, SignCS,VerifyCS⟩which

was introduced informally in [20] and formally analized [15]. Each

algorithm is used as follows:

• MasterKeyGen(1λ) → (mvk,msk): The key generation al-

gorithm takes the security parameter and outputs the master

key pair;

• KeyShareGen(1λ) → (vk, sk): The key generation algo-

rithm takes the security parameter and outputs a regular key

pair;

• CombinePubKey(mvk, vk) → cvk: The combination algo-

rithm combines both master and regular verification keys

into a new verification key;

• CombineKey(mvk,msk, vk, sk) → (cvk, csk): The combina-

tion algorithm receives both master and regular key pairs

into a new combined key pair;

• TestKey(vk, sk) → {0, 1}: The test algorithm verifies if both

keys are a regular key pair;

• SignCS(m, csk) → σ : The algorithm works as a regular

signature generation algorithm which receives as input the

message and the combined verification key;

• VerifyCS(σ ,m, cvk) → {0, 1}: The algorithm works as a

regular verification signature algorithm which receives sig-

nature, message and the combined verification key.

Later in Section 2.4, instances of these signature schemes are

used in the payment-channel state and payment. Each participant

of our protocol keeps one instance of the regular digital signature

and three instances of IBS (for payment, delay payment and HTLC)

and one CS (for revocation of the payment channel state). More-

over, it keeps track of the verification keys of the instances of the

counterpart.

2.3 The UTXO Model
Transactions in the Unspent Transactions Output (UTXO) Model

are composed by two parts: the set of Inputs I, and the (ordered)

list of outputs O. A single output o ∈ O contains (1) the value of the

output and (2) the condition to redeem that value, e.g., [k : v, vk]
for which k is the index number of the output the value v, and the

witness for public key vk, meaning it requires the signature σ cor-

responding to vk. The condition could also include time constraints

with respect the the height of the latest block in the blockchain

or the preimage of a hash value as in the HTLC. Furthermore, an

input references existing output by pointing its index number in a

transaction, that is Tx.O[1] refers to the first output of transaction

Tx. This mechanism of numbering the outputs is useful because

I contains references of individual outputs in previous (settled)

transactions. Settled transactions can be straightforwardly found in

the distributed ledger, along with the witness (typically, a signature

issued by the correct secret key) that allows a party to redeem the

value of the original input.

Transaction Notation. Assume a participant A has the pair

of public and secret key (vk, sk), if the pair controls a set of out-
puts (o1,o2,o3, . . .), respectively in Tx1, Tx2 and Tx3, then it is

said that the state of A contains the mentioned outputs, i.e., ΣA =

(o1,o2,o3, . . .). Thus, for example, a transaction Txtransf er redeem-

ing o2, therefore transferring v/2 to participant B and v/2 to C is

given by

Txtransf er ← Tx{I : (Tx2.o2);O : [1 : v/2, vkB], [2 : v/2, vkC]}

and it requires, in order to be redeemed, the signature σA, as it
contains Tx2.o2 in its input set I. Figure 1 illustrates this example.

Figure 1: In order to publish Txtransf er and therefore redeem
the output from Tx2 and transfer values to B and C, A needs
to provide a signature σA. In themultisig setting, it may also
be possible that two signatures are necessary to redeem the
output. Lightning Networks (later) relies on such a setting.

2.4 The Lighting Network
The Lightning Network (LN) [20] takes full advantage of the above

model to move transactions outside of the ledger into the so-called

Layer-2. Moreover LNwas thoroughly described in [15], which shed

light on some of the inner workings of the deployed protocol. In par-

ticular, it investigated the interplay between the different signature

schemes and the HTLC hash value when funds are exchanged be-

tween more than two participants, i.e., a payment network. Briefly,

in order to illustrate it, consider the existing channel between two

players A and B. Without loss of generality, assume that only A
has transferred some funds cA to the channel AB. Assume also that

another channel, say BC , exists between B andC , and similarly only

B has funded it with cB .
The main goal of the construction is to offer a way to transfer

values from A to C without the creation of the channel AC . For
that purpose, C picks a random value x and sends its hash value

y = H (x) directly to A. The protocol initiates by A triggering B
in order to send the amount v to C , and the overall dynamics is

inverted. That is, B, after being triggered by A, pays C the same

amount to be transferred, i.e., v, and receives x in exchange. At

this point, B is in deficit, because it did not received v yet. Then B
exchanges x for v with A which can verify the equality y = H (x).

Remark 1. In comparison to [15, 20] our design has only two players:

the Merchant and the Risk Buyer. The latter picks the HTLC pre-

image x , keeps it secret while disclosing y = H (x) to the Merchant.

This design contrasts with [15, 20] because in our case the provider

of y, i.e., Risk Buyer, is also the one receiving the payment. Later, in

our construction, it is shown that the HTLC value x is used to both

the delayed release of the payment, when Risk Buyer discloses x
to the Merchant, and receiving the funds via the blockchain when

publishing the transaction in the ledger.

4

Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality

Initial Setting. The above outlined protocol is a simplification,

given that the actual implementation of a payment-channel proto-

col is involved and requires a careful change of states between all

the participants. In fact, the creation procedure of each pairwise

channel, e.g., between A and B, requires each participant to issue

(1) a single Funding transaction TxF and (2) a pair of Commit trans-
actions Txcommit ; one denoted local and the other remote. They
differ for the signature used, A’s or B’s, to redeem the funding

transactions.

Each participant keeps its key pairs: the regular signature key

pair (vk, sk), the IBS key pairs (vkdpay , skdpay), (vkpay , skpay),
and (vkhtlc , skhtlc) for the HTLC, and the CS (vkr ev , skr ev) as
outlined in Section 2.2. It also keeps track of the counterpart’s IBS

verification keys vkdpay , vkpay and vkhtlc . Series of payments are

performed as series of Commit transaction exchanges between the

two participants (with the first Commit transaction pair being n = 1

for a n-long sequence). On every new payment, new transactions

along with fresh generated key pairs are generated and old com-

mitted transactions are revoked (by sharing the revocation keys

with the counterpart). For a full specification of the mechanism we

refer the reader to [15]. For now, it is enough to look into the two

types of transaction pairs. They are

• Funding: The transaction TxF contains an output o = [1 :

cA, vkA], therefore TxF .O[1] = (cA, vkA ∧ vkB), and it will

be available on the ledger after the next transactions are

signed;

• Commit: The first Commit transaction redeems their out-

puts (if published), requiring only the signatures on their

inputs as witness. However both transactions are kept lo-

cally when the channel is active. Concretely, A keeps the

following transactions (analogously for B),

TxAlocal ← Tx{I : (TxFA .O[1]);

O : [1 : cA, vk
B
rev ,n=1 ∨ (vk

A
dpay,n=1,∆B)],

[2 : cB , vk
B
pay,n=1]};

and

TxAremote ← Tx{I : (TxFB .O[1]);

O : [1 : cA, vk
A
pay,n=1],

[2 : cB , vk
A
rev ,n=1 ∨ (vk

B
dpay,n=1,∆A)]},

along with signatures σA and σB with respect to vkA and

vkB respectively.

Furthermore they also depend on the IBS keys, where vkBrev ,n=1,

vkBpay,n=1, vk
B
dpay,n=1 are the counterpart’s verification keys, and

vkApay,n=1, vk
A
rev ,n=1, vk

A
dpay,n=1 are the participant’s own veri-

fication keys, along with the agreed delay ∆A and ∆B which are

arbitrarily chosen by each participant and exchanged prior to the

creation of the Funding transactions.

Payment and State Revocation. Payments are performed by

altering the balance, i.e., cA and cB , via the exchange of new pairs

of transactions from the initial state,i.e., Txr emote ,1 and Txlocal ,1.
The initial state n = 1 progresses to the new state n = 2, i.e.,
Txr emote ,2 Txlocal ,2 via exchange of signatures and new derived

keys. Crucially, older states need to be “revoked”which is performed

by the computation of the secret revocation key vhr ev ,n=1 of the
old state. The main idea is that a participant is not financially

incentivized to publish a transaction from an old state, because

the counterpart can use its newly computed revocation key to

redeem the funds. Briefly, if a participant publishes an old state, the

counterpart can take all the funds of the channel. It is important to

remark that the secret revocation key is only computed when the

state is agreed to be "old", which prevents any party to misuse it.

During the HTLC, there is an intermediate state create by a

pair of transaction txA,htlc and txB,htlc , under locally derived

HTLC keys (vhhtlc , vthtlc), which redeems the outputs of the state

transactions Txr emote ,n and Txlocal ,n for the state n. A thorough

discussion of revocation and the HTLC mechanism can be found

in [15].

3 DESIDERATA
Herewe overview themain requirements/characteristics, i.e., desider-
ata for a protocol to trade risk, for each of the three classes of par-

ticipants, namely Customer, Merchant and Risk-Buyer. We denote

them respectively by C,M and R.
Let us start with the requirements/characteristics from C’s point

of view:

• Instantaneous Finality: The transaction performed be-

tween C and M should be instantaneous. That is, no confir-

mation time is required. Similarly to a physical transaction

with physical goods;

• Ad Hoc Availability: The participant C should not be re-

quired to knowM in advance. In the sense that any sort of

interaction or preparation must not be required between M
and C;
• Background Availability: The participant C may know R,
and may interact with it via a direct communication channel

prior to be in direct contact with M (it is the same for R
later);

• Trustless Trade: There is no trust assumed between C and

M.

From now we list the requirements/characteristics forM:

• Instantaneous Settlement: The merchant M should be in

contact with R which allow instantaneous payment which

can be created prior to any transaction between C andM;

• Direct Interaction: All transactions are exchanged via the

direct (not necessarily secure) communication channel be-

tween C andM, andM and R;
• Risk Trade Security: For each accepted transaction, with

an arbitrary value, M receives from R the same value minus

a discount, via the already established payment channel

(analogous for R);
• Trustless Risk Buyer: There is no trust assumed between

M and R (analogous for R).

Lastly we list the requirements/characteristics for R:

• Allowed Pre-processing: Prior to any performed transac-

tion between C andM, a “pre-processing” phase is allowed
(not necessarily related to a payment channel) to implement

5

Mario Larangeira and Maxim Jourenko

a instantaneous payment method between M and R with

enough payment capacity;

• Background Availability: The participant R can poten-

tially keep a list of (ledger) addresses for multiple customers

Ci (for accessing the risk of buying C’s risk, for example,

and it is identical to C’s case);
• Risk Trade Security: For every transaction accepted byM,

R should receive the equal value (after the confirmation time)

by publishing a regular transaction (e.g., issued by C) in the

ledger (analogous forM).

• Trustless Merchant: There is no trust assumed between R
andM (analogous for M).

We remark that C and R do not necessarily interact directly, unless

they prior to the execution of the protocol. For example, in order

to share “background” as in the Background Availability. Therefore,
we let it out of the desiderata. However, in the general case they do

not necessarily trust each other.

For clarification, our protocol handles two types of transactions

which we denote by payment channel transaction and regular trans-
action. Whereas the former is the transaction between M and R
over the payment channel, the later is the one that relies on the

blockchain confirmation time, and issued by C to be redeemed by R.
Technically, there are only small differences between the two types

which become clear later, however we highlight this terminology

to avoid ambiguities and improve readability.

4 OUTLINE OF THE CONSTRUCTION
The main phases of our protocol are Protocol Set up, Issuing Trans-
action Proposal, Risk Buying, and Settlement performed by M, C
and R all with access to their respective states Σi for i ∈ {M,C,R}
via the ledger. Furthermore, we assume they have a pairwise di-

rect communication channel. Their interaction happens through

direct exchange of transactions: (1) TxC a regular transaction to be

redeemed by R via ledger, and (2) the payment channel transaction

TxR to be issued by R and assigned to M. Both transactions require

the reveal of the HTLC preimage x picked by R. In addition to the

value x , the payment channel transaction TxR requires signatures

from R andM as it is standard in [20].

Our model starts with the instantiation of the payment channel

in the beginning of a trading day as a “pre-processing” phase.

Protocol Set Up. Initially, each participant generates locally the

verification and secret key pair (vki , ski) for i ∈ {M,C,R}. On
the beginning of each trading day, R initiates a payment channel

withM. Note that before accepting any transactions (from C),M
and R are required to wait until the confirmation of the channel

initialization as given by the consensus layer. This waiting time

assures both players that the channel can be safely used.

Transaction Proposal. After the earlier described initial set-

ting, assume a merchant M receives a transaction proposal Tp =
(v, vkC) from C, for a value v. The Merchant M directly contacts

R through a separated (and independent) communication channel,

and offers Tp for trade.

RiskBuying. In the caseR accepts Tp, then it hands back (d, vkR,
y) to M where y is the image for the HTLC, d is the discount of

the value v, vkR is its own public key where the payment should

be directed, i.e., regular transaction. At this point,M (1) signals C
that the deal can continue by handing y to C, and (2) requests R the

payment, which will be done via the payment channel. It follows

that C generates (TxC,σC), where σC is the signature of TxC with

respect to vkC, and returns (TxC,σC) toM, while R andM perform

the payment in the channel, i.e., progress the channel from, say,

state n to n + 1. At this point the intermediate state, for the HTLC,

is created and bothM and R revoke the previous ones.

Settlement. At this point, M has (TxC,σC) and submits it to R
which receives in exchange of the HTLC pre-image x such that y =
h(x). SinceM and R have both signatures for TxR and the value x for

the HTLC hash value, the payment over the channel is performed

for the value of v − d to M, and R has (TxC,σC) which can be

redeemed with its publication in the ledger. At this point,M already

assured its payment in the channel, whereas R has to wait the

confirmation time to settle its payment via the consensus protocol.

As far as M is concerned the procedure is over therefore it can

initiate another transaction with another customer any time. The

properties of the channel assure M that its payment is guaranteed

and available by the time of the closure of the channel. By the end

of the trading day, both R andM jointly decide to close the channel,

which frees the payments for M. This procedure is a regular one

from any payment channel protocol.

Remark 2. The overall actions rely on the procedures of a payment

channel protocol like [15]. However our protocol uses the HTLC

technique in a different way. That is, by adding the hash value into

both TxC and TxR, by the time of the settlement of the transaction

TxR on the chain the preimage is publicly disclosed, thus M can

redeem the value received within the channel.

Remark 3. The early description briefly outlines the actions per-

formed, however it is critical to note that the transaction via a

payment channel is done by synchronized changes in the channel

status of the participants. In particular, the preimage revealing is

not performed by an exchange of TxR. In fact, the “transfer of TxR”
is an interactive process that both players instantiate the new state

and revoke the previous one (as it is standard in payment channels).

Next section concretely describes the early outlined phases.

5 OUR PROTOCOL: MARAVEDÍ
Here we thoroughly describe our construction for the model in

Section 4. We start by providing a general intuition of the protocol.

5.1 Intuition
Our protocol relies on the channel between M and R and it is an

adaptation from LN as it is described in [15]. Here we skip the full

specification of the payment channel, we refer the reader to [15]

for a thorough description. For our purposes it suffices to describe

the final configuration between the two parties by the end of the

setup of the channel. Then we concretely describe our protocol and

our adaptation to the use of the HTLC technique.

After exchanging of initial keys, the established requested delay

time, i.e., ∆R and∆M, the participants perform the signing and publi-

cation of, respectively, the initial Commit Transactions, i.e., Txlocal
and Txr emote , and the Funding Transaction TxFR . Each payment

received by the Merchant M from the Customer C is processed via

6

Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality

the payment channel transaction (instantaneous payment) and a

regular transaction (slow payment, performed in the ledger). There-

fore the execution of the protocol starts from an initial set up, with

n = 1 with the initial Commit Transaction. At a later moment,

upon receiving a customer transaction, with the last signed Com-

mit Transaction with index n, the protocol progresses to a new

(intermediate) state for HTLC, i.e., n = n + 1, and then to the final

balance with (valid) state n = n + 2. Figure 2 illustrates the progress
through the three states. Namely, it outlines the inclusion, and

the removal, of the outputs into the locally kept pairs of Commit

Transactions.

The closing of the channel works like a regular LN channel,

i.e., as described in [15]. Our protocol leverages on the original

HTLC technique by atomically conditioning the payment channel

transaction and the regular transaction, by adding the HTLC value

to the latter and the former.With this setting, by the timeR cashes in

the payment via the ledger, it reveals the HTLC preimage allowing

M to also redeem its own payment within the channel, even if R did

not reveal the value previously. Note that, as in the regular payment

channel, it is required that both participants of the protocol are

online during the execution of the protocol.

5.2 Concrete Construction
Maravedí progresses from the initial setting, the “pre-processing”

phase, which is the creation of a regular LN channel. Thus it pro-

gresses as the phases outlined in Section 4. Hence we start from

the initial state and by quickly reviewing the initial key generation.

We remark that the initial phase is a regular creation of the LN

channel, therefore we only briefly recall it. We refer the reader to a

full discussion in [15].

Protocol Setup Up. As a regular LN channel construction, R
andM generate private information and exchange cryptography

keys. They are

• Randomnesses: seedi for i ∈ {R,M} which is used with the

PRF in order to generate new randomness for the keys to be

derived on each state of the channel;

• IBSMaster keys: These keys, as pointed in [15], are necessary

to optimize the exchange of keys. They are Setup(1λ) →

(mvkidpay ,mskidpay), (mvkipay ,mskipay), (mvkihtlc ,mskihtlc),

(vkicom, sk
i
com) for i ∈ {R,M}, and they are used to derive

new keys for the each new state;

• CS Master keys: This key pair is also used to optimize the

key exchange. Furthermore it is used to generate the revoca-

tion key which allows the participant to revoke an old state

of the channel. The key pairs are MasterKeyGen(1λ) →

(mvkir ev ,mskir ev) for i ∈ {R,M}.

These initial keys are used to generate and derive new keys for each

state. Concretely, R has vkR, skR to create the channel, and starts by

generating, for the first state, (vkRcom,1, sk
R
com,1), vk

R
pay,1, vk

R
r ev ,1,

vkRdpay,1 vk
R
htlc ,2 (and its respective secret keys), and keeps track

of vkMr ev ,1, vk
M
pay,1, vk

M
dpay,1, vk

M
htlc ,2 which are M public keys.

Vice-versa for M which also keeps track of R’s verification keys.

Note that both parties also have their respective keys regarding the

Funding Transaction vkR and vkM.

Later, R accesses its state ΣR in the ledger to issue the Funding

Transaction, and exchanges it (after the local Commit Transactions

are securely signed and exchanged). In the end of the process, R
keeps the following two Commit Transactions

TxRlocal ← Tx{I : (TxFR .O[1]);

O : [1 : c, vkMr ev ,1 ∨ (vk
R
dpay,1,∆M)], [2 : 0, vk

M
pay,1]}, and

TxRr emote ← Tx{I : (TxFR .O[1]);

O : [1 : c, vkRpay,1], [2 : 0, vk
R
r ev ,1 ∨ (vk

M
dpay,1,∆R)]},

while M keeps

TxMlocal ← Tx{I : (TxFR .O[1]);

O : [1 : c, vkRpay,1], [2 : 0, vk
R
r ev ,1 ∨ (vk

M
dpay,1,∆R)]}, and

TxMr emote ← Tx{I : (TxFR .O[1]);

O : [1 : c, vkMr ev ,1 ∨ (vk
R
dpay,1,∆M)], [1 : 0, vk

M
pay,1]},

with both participants having either the signature σR or σM for

each of the locally kept transactions. Note that both transactions

rely on the original funds c provided by R in the Funding Transac-

tion TxFR . Although M can also add funds to the channel, as in a

regular payment channel, in our construction, it just receives them

from R, therefore a single source of funds suffices for our protocol.

Each participant keeps track of the last n committed transac-

tions, starting from n = 1, such that Txr emote = Txr emote ,1 and

Txlocal = Txlocal ,1. Moreover, the channel is assigned with a flag

Channel to monitor the channel with a pair of values (id,note)
initially set empty, i.e., Channel → ⊥, such that note is a string

which identifies the state of the channel, and id is an identifier for

the payment to be performed.

Transaction Proposal. According to the early described model,

C submits a transaction proposal Tp = (v, vkC), for an amount v
and C’s verification key, to M which performs the following

• Picks a uniformly random unique identifier payid
• Sets ChannelM ← (payid, ·)
• Checks if there is a payment channel with R with capacity

greater than v
• Adds to the list pendingGetPay the tuple (vkC, v,payid, ·,
“Waiting update")

• Submits (vkC, v,payid) to R via a direct communication chan-

nel.

The lists pendingPay and pendingGetPay are used to keep track
of the payments and their current status on either participants.

Risk Buying/Preparation. Given a hash function H , R picks

the value of the HTLC preimage, and, jointly with M, prepares

its pair of local transactions, i.e., Txlocal and Txr emote . That is, R
performs as follows upon receiving (vkC, v,payid) :
• Verifies if ∄(vkC,α, β, θ ,γ ,payid, ·) in pendingPay for any

α ,β ,θ and γ . Otherwise, close the channel
• Picks a random value x in the domain of H
• Sets ChannelR ← (payid, ·)
• Sets (vkC, vkM,H (x), x, v,payid, “Waiting update”) to

pendingPay

7

Mario Larangeira and Maxim Jourenko

Figure 2: This sequence of states illustrates the transferring of amount , and it depicts as the pairs of Commit Transactions kept
locally by the merchant M. Note that in the intermediate state n+1, in order to redeem the outputs, it is necessary to disclose
the preimage of the HTLC value or wait for the delay ∆htlc . Moreover the final state n+2 the amount is transferred to the final
outputs and conditioned to the revealing of the HTLC value. We highlight the update in the transactions in the intermediate
state in blue, and the adaption of our protocol atomically payment betweenM and R in red.

• Picks ∆htlc , for delay period, and sends (payid,H (x),∆htlc)
toM

Upon receiving the message (payid,y,∆htlc) from R,M prepares

its local transactions accordingly, which concretely means to add

new outputs into the local kept transactions Txlocal and Txr emote .

The new outputs are related to the value of the received hash valuey.
In other words,M proceeds to perform the following upon receiving

(payid,y,∆htlc):

• If (vkC, v,payid, ·, “Waiting update") = pendingGetPay, then
– Removes “Waiting update" from the entry, and adds y to

the entry, i.e., (vkC, v,payid,y, ·) ∈ pendingGetPay
• Update its locally kept transactions by adding the third out-

put (in blue) with respect to the HTLC state on each trans-

action:

TxMlocal ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
R
pay,n],

[2 : cM, vk
R
r ev ,n ∨ (vk

M
dpay,n,∆R)],

[3 : v − d, vkRr ev ,n+1 ∨ (vk
R
htlc ,n+1 ∧ (vk

M
htlc ,n+1,y))

∨(vkRhtlc ,n+1,∆htlc)]}, and

TxMr emote ← Tx{I : (TxFR .O[1]);O :

[1 : cR−(v − d), vk
M
r ev ,n ∨ (vk

R
dpay,n,∆M)],

[2 : cM, vk
M
pay,n],

[3 : v − d, vkMr ev ,n+1 ∨ (vk
M
htlc ,n+1,y)

∨(vkMhtlc ,n+1 ∧ vk
R
htlc ,n+1)]},

where cR and cM are the current balances, and the public

keys derived from the initial state, in the channel for the

n−th payment

• Forward (v, vkR,y) to C, which replies with (TxC,σC) such
that

TxC ← Tx{I : o ∈ ΣC;O : [1 : v, vkR ∧ y]}

which pays directly to R (redeeming C’s outputs in ΣC) con-
ditionally to the disclosure of the preimage of y. Hence M
submits (UpdateADDHTLC, payid) message to R, meaning

R can update its locally kept transactions.

At this point, onlyM has prepared its internally kept transactions.

Thus it is R’s turn to similarly set its transaction variables.

• Verifies if ∃(vkC,α, β, θ,γ ,payid,note) in pendingPay for

any α ,β ,θ and γ , and note = “Waiting update”. Otherwise,

close the channel

• Upon receiving the message (UpdateADDHTLC,payid), R
updates (in blue) its local transactions as follows:

TxRlocal ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
M
r ev ,n ∨ (vk

R
dpay,n,∆M)],

[2 : cM, vk
M
pay,n],

[3 : v − d, vkMr ev ,n+1 ∨ (vk
M
htlc ,n+1,y)

∨(vkMhtlc ,n+1 ∧ vk
R
htlc ,n+1)]};

TxRr emote ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
R
pay,n],

[2 : cM, vk
R
r ev ,n ∨ (vk

M
dpay,n,∆R)],

[3 : v − d, vkRr ev ,n+1 ∨ (vk
R
htlc ,n+1 ∧ (vk

M
htlc ,n+1,y))

∨(vkRhtlc ,n+1,∆htlc)]}.

• Rmoves (vkC, vkM,H (x), x, v,payid,note) from pendingPay
to paid, and sets pendingPay = ⊥
• Sets (payid, x) → pendingFulfill

8

Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality

Risk Buying/Agreement-R Side. At this point, M and R pro-

ceed to create new HTLC Commitment transactions which redeems

the previously updated transactions, redeeming the HTLC outputs.

First, R performs the following, assuming, as before, TxRr emote ,n is

the last signed transaction:

• Verifies if TxRr emote , TxRr emote ,n . Otherwise stop

• Verifies (payid,note) = ChannelR, such thatnote , “waiting

for RevokeAndAck"

• Sets TxRr emote ,n+1 ← TxRr emote
• Sets σr emote ,n+1,R ← SignDS(TxRr emote ,n+1, skR)
• Issue an unsigned Remote HTLC transaction

TxRr emHTLC ,n+1 ← Tx{I : (TxRr emote ,n+1.O[3]);

O : [1 : v − d, vkRr ev ,n+1 ∨ (vk
M
dpay,n+1,∆R)]}

• Set σhtlc ,n+1,M ← SignIBS(TxRr emHTLC ,n+1, sk
R
htlc ,n+1)

• Set note ← “waiting for RevokeAndAck", and

ChannelR ← (payid,note)
• SendM the tuple (payid,σr emote ,n+1,R,σhtlc ,n+1,R)

At this point R started to create a new status by sending the

necessary signatures toM (and revoking the previous state), which

verifies its secret key shR for the (n+1)-th Commit Transaction, and

transaction that redeems the newly added output (which sets the

funds in a special state due to the HTLC technique). ThereforeM
performs the following upon receiving (payid,ComSiд,HTLCSiд)
containing the signatures, respectively for the Commit and HTLC

transactions:

• Verifies (payid,note) = ChannelM, such thatnote , “waiting

for RevokeAndAck", otherwise stop

• Let TxMlocal ,n be the last signed transaction, then it verifies

if TxMlocal , TxMlocal ,n . Otherwise stop

• If VerDS(ComSiд, TxMlocal , vkR) = 0, then close the channel

• Sets

TxMlocalHT LC ,n+1 ← Tx{I : TxMlocal .O[3];

O : [1 : v − d, vkRr ev ,n+1 ∨ (vk
M
dpay,n+1,∆R)]}

• If VerifyIBS(HTLCSiд, TxMlocalHT LC ,n+1, vk
R
htlc ,n+1) = 0,

then close the channel

• Sets note ← “ irrevocably committed” and adds (TxMlocal ,

note) to the list pendingLocalComM

• Sets prandMn+2 ← PRF(seedM,n + 2)
• Sets (vkMcom,n+2, sk

M
com,n+2) ← KeyShareGen(1λ, prandMn+2)

• Send (payid, skMcom,n, vk
M
com,n+2) to R

We remark that disclosing the previous key skMcom,n is part of the

revocation process to invalidate the previous state of the channel.

Such a mechanism allows R to combine the keys (property of the

Combined Signature Scheme as outlined in Section 2), and to obtain

the secret revocation key skRr ev ,n .
From now, on R’s side, it starts the final step of this phase: verifies

whether the received keys from M are correct, derive new ones

and update the flags. Concretely, upon receiving (payid, skMcom,n,

vkMcom,n+2), R proceeds as follows:

• Retrieve note from ChannelR, and verify if note = “waiting

for RevokeAndAck". Otherwise close the channel

• If TestKey(vkMcom,n, sk
M
com,n) = 0, then close the channel

• Set note ← “irrevocably committed”, and add to the list

pendingRemoteComR the tuple (TxRr emote ,note)
• Derive new keys by setting

– skRr ev ,n ← CombineKey(mskRr ev , mskRr ev , vk
M
com,n,

skMcom,n)

– vkRr ev ,n+2 ← CombinePubKey(mskRr ev , vk
M
com,n+2)

– vkMr ev ,n+2 ← CombinePubKey(mskRr ev , vk
R
com,n+2)

– (vkRdpay,n+2, sk
R
dpay,n+2) ← KeyDer(mvkRdpay ,mskRdpay ,

vkRcom,n+2)

– vkMdpay,n+2 ← PubKeyDer(mvkMdpay , vk
M
com,n+2)

– (vkRpay,n+2, sk
R
pay,n+2) ← KeyDer(mvkRpay , mskR,

vkRcom,n+2)

– vkMpay,n+2 ← PubKeyDer(mvkMpay , vk
M
com,n+2)

– (vkRhtlc ,n+2, sk
R
htlc ,n+2) ← KeyDer(mvkRhtlc , mskRhtlc ,

vkRcom,n+2)

– vkMhtlc ,n+2 ← PubKeyDer(mvkMhtlc , vk
M
com,n+2)

• Set note ← “·”, and update ChannelR

At this point R computed the skRr ev ,n meaning that the n-th state
is “irrevocably revoked” because if the counterpart M tries to pub-

lish this state R can use it to redeem all the contents of the channel

via the second output of TxMlocal . Furthermore, an intermediate state

is partially created by TxRr emote where the funds (v− d) are carried.
In order to fully create the intermediate state, it is necessary that

M performs its side of the procedure.

Risk Buying/Agreement-M Side. The case is analogous to the

R, which means that both states, forM and R, are committed. Briefly

M generates σr emote ,n+1,M ← SignDS(TxMr emote ,n+1, skM), for

TxMr emote ,n+1 ← TxMr emote , and issues a unsigned remote HTLC

transaction

TxMr emHTLC ,n+1 ← Tx{I : (TxMr emote ,n .O[3]);

O : [1 : v − d, vkMr ev ,n+1 ∨ (vk
R
dpay,n+1,∆M)]},

and sets

σhtlc ,n+1,M ← SignIBS(TxMr emHTLC ,n+1, sk
M
htlc ,n+1),

and submits toRwhich verifies bothσr emote ,n+1,M andσhtlc ,n+1,M
(which R verifies with its locally kept TxRlocalHT LC ,n+1). Moreover

M derives the new keys, namely, vkMr ev ,n+2, vk
R
r ev ,n+2, (vk

M
dpay,n+2,

skMdpay,n+2), vkRdpay,n+2, (vkMpay,n+2, sk
M
pay,n+2), vkRpay,n+2,

(vkMhtlc ,n+2, sk
M
htlc ,n+2), vk

R
htlc ,n+2. In particular,M also computes

the revocation key skMr ev ,n (in a similar fashion as R did).

Crucially, the participants keep the state lists pendingLocalComi

and pendingRemoteComi for i ∈ {M,R} in order to keep track of

the committed transactions. That design guarantees a new state is

revoked only when the next one is signed on both sides.

9

Mario Larangeira and Maxim Jourenko

Settlement. Here, the previous state n is successfully revoked on

both sides, however the funds are in the intermediated HTLC state

n+ 1. For now it remains (1) to move to the final value to state n+ 2
(whenM receives the funds); (2) R to reveal the preimage x toM;

and (3) M to submit (Txbuy ,σbuy) to R. This final step allows R to

cash the value later via the ledger when it publishes the transaction.

However it is first necessary to finalize the payment within the

channel, which means to revoke the state n+ 1. Therefore R verifies

whetherM has not submitted its transaction to the ledger as follows

• Reads the ledger to update the outputs in the state ΣR
• R checks if M has not submitted transaction to the ledger.

That is, if TxRr emote .O < ΣR, then
– Send message (Settlement,payid) toM
Otherwise

– if ∃(α, β,γ ,H (x), x,payid,note) = paid, then remove the

entry

– Set

TxRpay ← Tx{I : TxRr emote ,com .O[3];

O : [1 : v − d, vkRhtlc ,n]}

– Set σpay ← SignIBS(Txpay , skRhtlc ,n)
– Submit (Txpay ,σpay) to ledger

In caseM has not submitted the transaction to the ledger, then

it receives (Settlement,payid), and it performs

• Verifies (payid,note) = ChannelM, such thatnote , “waiting

for RevokeAndAck", otherwise stop

• M removes the outputs (added in the preparation phase) of

its locally kept remote and local transactions, and update the

balance. That is, it sets

TxMlocal ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
R
pay,n+2],

[2 : cM+(v − d), vk
R
r ev ,n+2 ∨ ((vk

M
dpay,n+2,∆R)∧y)]},

and

TxMr emote ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
M
r ev ,n+2 ∨ (vk

R
dpay,n+2,∆M)],

[2 : cM+(v − d), vk
M
pay,n+2∧y]}.

• Sets σr emote ,n+2,M ← SignDS(TxMr emote , skM)
• Sets note ← “waiting for RevokeAndAck", and ChannelM

← (payid,note)
• Sends R the tuple (payid,σr emote ,n+2,M)

Note that the preimage of y (in red) is necessary to redeem

the output, and it will only be available after R discloses it, upon

receiving the transaction issued by C.
From this point, in case R verifies M’s signature on its local

version of the transaction it can revoke its old state n + 1. Thus R
starts by creating the locally kept Commit Transactions for state

n + 2. Upon receiving (payid,ComSiд), R does as follows:

• Analogous to the procedure performed byM, R updates its

new state by removing the HTLC outputs and adjusting the

balance:

TxRlocal ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
M
r ev ,n+2 ∨ (vk

R
dpay,n+2,∆M)],

[2 : cM+(v − d), vk
M
pay,n+2∧y]};and

TxRr emote ← Tx{I : (TxFR .O[1]);

O : [1 : cR−(v − d), vk
R
pay,n+2],

[2 : cM+(v − d), vk
R
r ev ,n+2 ∨ ((vk

M
dpay,n+2,∆R)∧y)]}.

• If VerDS(ComSiд, TxRlocal , vkM) = 0, then close the channel

• Verifies (payid,note) = Channel, such that note , “waiting

for RevokeAndAck"

• Setsnote ← “ irrevocably committed” and pendingLocalComR

← (TxRlocal ,note)

• Sets prandRn+3 ← PRF(seedR,n + 3)
• Sets (vkRcom,n+3, sk

R
com,n+3) ← KeyShareGen(1λ, prandRn+3)

• Sends (payid, skRcom,n+1, vk
R
com,n+3) toM

As before, the disclosing of skRcom,n+1 allows M to compute the

revocation key and therefore R has revoked the n + 1 state of the
channel on its side. From this point,M can also revoke its state, and

derive a whole new set of keys for the next state. The derivation

on M’s side is similar as before

• skMr ev ,n+1 ← CombineKey(mskMr ev , mskMr ev , vk
R
com,n+1,

skRcom,n+1)

• vkMr ev ,n+3 ← CombinePubKey(mskMr ev , vk
R
com,n+3)

• vkRr ev ,n+3 ← CombinePubKey(mskMr ev , vk
M
com,n+3)

• (vkMdpay,n+3, sk
M
dpay,n+3) ← KeyDer(mvkMdpay , mskMdpay ,

vkMcom,n+3)

• vkRdpay,n+3 ← PubKeyDer(mvkRdpay , vk
R
com,n+3)

• (vkMpay,n+3, sk
M
pay,n+3) ← KeyDer(mvkMpay , mskM,

vkMcom,n+3)

• vkRpay,n+3 ← PubKeyDer(mvkRpay , vk
R
com,n+3)

• (vkMhtlc ,n+3, sk
M
htlc ,n+3) ← KeyDer(mvkMhtlc , mskMhtlc ,

vkMcom,n+3)

• vkRhtlc ,n+3 ← PubKeyDer(mvkRhtlc , vk
R
com,n+3)

• Set note ← “·”, and update ChannelM

Analogously,M revokes its state channel when verifying the sig-

nature of R with its locally kept transaction. Therefore R performs

as follows

• Sets σr emote ,n+2,R ← SignDS(TxRr emote , skR)
• Setsnote ← “waiting for RevokeAndAck", and ChannelR ←
(payid,note)
• SendsM the tuple (payid,σr emote ,n+2,R)

Upon receiving (payid,Comsiд), If VerDS(ComSiд, TxMlocal , vkR) =
0, then close the channel. OtherwiseM does the following:

• Verifies (payid,note) = ChannelM, such thatnote , “waiting

for RevokeAndAck"

• Setsnote ← “irrevocably committed” and pendingLocalComM

← (TxRlocal ,note)

10

Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality

• Sets prandMn+3 ← PRF(seedM,n + 3)
• Sets (vkMcom,n+3, sk

M
com,n+3) ← KeyShareGen(1λ, prandMn+3)

• Sends (payid, skMcom,n+1, vk
M
com,n+3) to R

The secret key skMcom,n+1 is disclosed byM, triggering the key

derivation phase and, therefore, the revocation of the old state. As

before, R derives the new set of keys. For completeness, the keys

are vkRr ev ,n+3, vk
M
r ev ,n+3, (vk

R
dpay,n+3, sk

R
dpay,n+3), vk

M
dpay,n+3,

(vkRpay,n+3, sk
R
pay,n+3), (vk

R
htlc ,n+3, sk

R
htlc ,n+3), vk

M
pay,n+3,

vkMhtlc ,n+3. In particular, R computes the revocation key skRr ev ,n+1.
At this point, the only valid (not revoked) state is n + 2, and the

balance for R is cR − (v − d), whereas for M, it is cM + (v − d) (and
initial amounts of, respectively, cR and cM before the payment).

Note that the last signed transaction requires the preimage of y.
Therefore both participants perform as follows

• M submits to R the tuple (TxC,σC) received from C
• M sets ChannelM and pendingGetPay to ⊥
• R removes (payid, x) from pendingFulfill, sets both
pendingFulfill and paid to ⊥, and submits x toM
• R submits (TxC,σC, x) to ledger, and sets ChannelR ← ⊥

We remark that in order to cash in the whole amount (without

the discount d, R publishes (TxC,σC, x) which even without com-

municating directly toM the value x , it can obtain the value and

therefore can redeem the payment within the channel.

Remark 4. We emphasize that closing the channel, cooperatively

or not, in our construction is done with the same procedure of

a regular LN channel. Thus we refer the reader to [15] for a full

discussion on the matter.

6 SECURITY ANALYSIS
Here we discuss two complementary security features of our con-

struction: the (1) payment channel based security, and the (2) risk

trade security. While the former is based on the security of LN and

its financial punishment mechanism, the latter formally proves the

novel property of our construction, i.e., the guaranteed payment

between the Merchant M and the Risk Buyer R. Finally we discuss

our construction in the light of the identified desiderata in Section 3.

6.1 Online Security
The first key observation, and also a downside of our construction,

is that both M and R need to be online during the execution of the

protocol. That is a direct feature of the payment channel design we

rely on for the instantaneous payment property of our approach.

However, we remark that solutions like watchtowers [1, 2] can be

used along with our construction which minimizes the online time.

The online period is necessary because either one of the par-

ticipants can maliciously claim an old state (possibly with higher

balance) of the channel. In such an attack the claimer publishes

an old (already revoked) Commit Transaction. A closer look at the

locally kept transactions tells us that the outputs of such transac-

tions require a delay period in order to be redeemed (which could

be either ∆M or ∆R) as concretely described in Section 5.2. Given

the design of the state (in particular the locally kept transactions),

another output can be redeemed instead with the revocation public

key during this period (which could be either vkMr ev ,n or vkRr ev ,n).

In conclusion, with such a transaction published, the revocation

key can be used by the attacked participant to take the funds of the

channel.

We recall that the progression of the protocol, from state n and

n + 1 as shown in Section 5.2 (state n + 2 is not revoked), follows
the order that (1) first the participant receives from the counterpart

the signature to the next state, then (2) it releases the necessary

private information for the computation of the revocation secret

key (again, it could be either skMr ev ,n or skRr ev ,n , depending on who

is performing the attack). This strict step order guarantees that

both participants are always committed to a transaction, which can

be used to financially disincentivize the early described old state

attack.

Lastly, it is not hard to see, but we remark for completeness that

the direct communication channels between the participants can be

plain, i.e., not needed to be secure, since the transactions/messages

are signed. In particular, we remark that the transaction which

carries the payment to R will be widely known for the verification

of its validity in the ledger.

6.2 Risk Trade Security
Our design prevents that M, or R, receives the payment and pre-

vents its respective counterpart to receive it too. Recall that our

protocol deals with two types of transaction (1) regular transaction

to be redeemed in the ledger (important to R), and (2) the payment

transactions (important toM). The disclosing of the HTLC value

x happens only in the final steps during the Settlement Phase
which enforces the atomicity (in the sense of unlocking funds) of

the transactions (1) and (2), despite of being in two different layers.

We concretely prove the early discussion in the following theo-

rem.

Theorem 6.1. Given that the protocol in Section 5.2 is jointly
executed by C, M and R such that C issues (TxC,σC), if R redeems
TxC, thenM redeems the funds received from R.

Proof. Note that up to the Settlement Phase, M has received

(TxC,σC), however it has not handed it to R. Likewise, R has picked

the HTLC value y, such that, y = H (x) for the used hash function

H . Furthermore, up to this phase the protocol has performed like

a payment channel. In particular, it performs until the only valid

(not revoked) state is n + 2.
Now assume, a malicious Risk Buyer R∗ which receives (TxC,σC)

fromM, then aborts the protocol without disclosing x toM. Note

that by aborting the protocol, M can also close the channel by

signing the locally kept transaction

TxR
∗

local ← Tx{I : (TxFR∗ .O[1]);

O : [1 : cR∗ − (v − d), vk
M
r ev ,n+2 ∨ (vk

R∗
dpay,n+2,∆M)],

[2 : cM + (v − d), vk
M
pay,n+2 ∧ y]};

and publishing (TxR
∗

local ,σR,σM), for the priorly received σR from R
(when the state was created). The transaction redeems the outputs

from the Funding Transaction TxFR∗ but cannot be further redeemed

by M as it did not receive the HTLC preimage x .
Now assume that R∗ redeems its received transaction TxC, such

that TxC ← Tx{I : o ∈ ΣC;O : [1 : v, vkR∗ ∧ y]}, meaning it has

11

Mario Larangeira and Maxim Jourenko

publicly disclosed σR and x , such that y = H (x). Consequently,M
can now issue a transaction, say Txr edeem , such that Txr edeem ←

Tx{I : (TxR
∗

local .O[1]);O : [1 : cM − (v − d), vkM]}, signs it and
publishes the tuple (Txr edeem,σM, x) in order to transfer cM−(v−d)
to its known key vkM, thereby giving the theorem. □

Remark 5 (A Note on Collusion). Note that the earlier theorem

is enough to show the security of our protocol even regarding

collusion of any two of the participants. Briefly, since C only issues

a regular transaction (for a physical or digital good), a meaningful

attack would pair C with either (1) M or (2) R. In both cases, it

is covered by the security of the channel construction, i.e., the
colluding C is in one side or the other of the channel. In case of (1),

R cannot verify the received (regular) transaction, therefore it aborts

the protocol without disclosing the HTLC value. Thus preventing

any loss of funds. On the other hand, in case of (2), all the funds to

be used for payment would be in control of the colluding parties, i.e.,
C and R, except for the payments already performed toM, which

are protected by the past states of the channel.

6.3 Desiderata
We start by observing that our hybrid approach of relying on the

LN protocol design in order to “buy the risk” already provides us

with the Instantaneous Finality and Instantaneous Settlement prop-
erties from Section 3. It also easily allows the requirement of Direct
Interaction, since transactions are exchanged directly between the

participants in such a protocol. Our design also puts forth a Allowed
Pre-processing phase which in our case is the creation of the channel
itself.

The creation of the LN channel does not require trust between

the participants, therefore our construction also supports Trustless
Merchant and Trustless Risk Buyer. Furthermore the interaction

between the Customer and the Merchant does not require any trust,

and can be readily available since it just requires the direct exchange

of transactions. Therefore we also have Ad Hoc Availability.
In the case of Trustless Trade, our protocol does not address

the situation of a malicious Merchant which may deny receiving

the initial transaction. We highlight that although it may abort

the protocol, it is not financially incentivized to do so, since it is

expected to receive funds from the Risk Buyer.

It is important to notice that our protocol is general enough to

support Background Availability both for the Customer and the Risk

Buyer, although we did not explore more this property in this work.

One example is that the Customer, prior to the interaction of the

Merchant, may have received a list of addresses of the Risk Buyer,

therefore it would only issue transactions to the addresses in the

list, leaving no room for the Merchant to try to deviate the funds.

Finally, Section 6.2 showed a formal proof that our protocol

provides Risk Trade Security for both the Merchant and the Risk

Buyer in the sense that both are guaranteed to not lose funds.

7 FINAL REMARKS
This work presented the Maravedí Protocol which introduces a

novel technique to implement instantaneous finality for transac-

tions. Instead of previous works, which focus on techniques to pro-

vide faster finality of blocks in a consensus protocol, our technique

relaxes that criteria by addressing the finality for a single transac-

tion for a single participant, the Merchant. The main intuition is

that the receiver of the transaction relies on a third party which

covers the risk of the transaction not be fulfilled in the consensus

layer.

We investigated the early mentioned risk trade approach and

discussed the main ideas for the “risk trade” in a 3-player model

of Customer-Merchant-Risk Buyer, outlining its desiderata. We

have emphasized that relying on TPS ration to discuss efficiency

with decentralized ledger protocols, and in particular to compare

it with credit card companies network, may be misleading. The

main reason is that blockchain based systems rely on 2-party, i.e.,
payer and payee, while ours allows the relaxation of the definition

of finality and the risk trade.

As mentioned earlier, our protocol guarantees that the Merchant

will receive the funds while performing a transaction. The guar-

antee is instantaneous, hence instantaneous finality. We devised a

hybrid technique which uses a consensus based transaction (slow

settlement) and a payment channel transaction (instantaneous set-

tlement). The Maravedí Protocol is based on the Lightning Network,

however we proposed an adaption to assure that both the Merchant

and the Risk Buyer receive the funds correctly.

Our novel design allows the Risk Buyer to profit on every trans-

action. It may seem that the game theoretical dynamics of such

design may inspire new businesses. We leave the study of these

properties for future work.

REFERENCES
[1] Georgia Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Wattenhofer.

2019. Cerberus Channels: Incentivizing Watchtowers for Bitcoin. Cryptology

ePrint Archive, Report 2019/1092. https://eprint.iacr.org/2019/1092.

[2] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Wattenhofer. 2020.

Cerberus Channels: Incentivizing Watchtowers for Bitcoin. In FC 2020: 24th
International Conference on Financial Cryptography and Data Security (Lecture
Notes in Computer Science, Vol. 12059), Joseph Bonneau and Nadia Heninger

(Eds.). Springer, Heidelberg, Germany, Kota Kinabalu, Malaysia, 346–366. https:

//doi.org/10.1007/978-3-030-51280-4_19

[3] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. ,

14 pages.

[4] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In Advances in Cryptology – EUROCRYPT 2018, Part II (Lecture
Notes in Computer Science, Vol. 10821), Jesper Buus Nielsen and Vincent Ri-

jmen (Eds.). Springer, Heidelberg, Germany, Tel Aviv, Israel, 66–98. https:

//doi.org/10.1007/978-3-319-78375-8_3

[5] Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen,

and Daniel Tschudi. 2020. Afgjort: A Partially Synchronous Finality Layer for

Blockchains. In SCN 20: 12th International Conference on Security in Communica-
tion Networks (Lecture Notes in Computer Science, Vol. 12238), Clemente Galdi and

Vladimir Kolesnikov (Eds.). Springer, Heidelberg, Germany, Amalfi, Italy, 24–44.

https://doi.org/10.1007/978-3-030-57990-6_2

[6] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2019.

Perun: Virtual Payment Hubs over Cryptocurrencies. In 2019 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA,

106–123. https://doi.org/10.1109/SP.2019.00020

[7] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

State Channel Networks. In ACM CCS 2018: 25th Conference on Computer and
Communications Security, David Lie, Mohammad Mannan, Michael Backes, and

XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 949–966. https://doi.

org/10.1145/3243734.3243856

[8] Cardano Stack Exchange. 2022. Confusion about the time until true immutabil-

ity. https://cardano.stackexchange.com/questions/8943/confusion-about-the-

time-until-true-immutability. [Online; accessed 12-September-2022].

[9] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In

Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). ACM, New York, NY, USA, 51–68. https://doi.org/10.1145/

12

https://eprint.iacr.org/2019/1092
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-57990-6_2
https://doi.org/10.1109/SP.2019.00020
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856
https://cardano.stackexchange.com/questions/8943/confusion-about-the-time-until-true-immutability
https://cardano.stackexchange.com/questions/8943/confusion-about-the-time-until-true-immutability
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757

Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality

3132747.3132757

[10] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1984. A “Paradoxical”

Solution to the Signature Problem (Abstract) (Impromptu Talk). In Advances
in Cryptology – CRYPTO’84 (Lecture Notes in Computer Science, Vol. 196), G. R.
Blakley and David Chaum (Eds.). Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 467.

[11] Pay Hub. [n.d.]. Payments Hub. https://paymentshub.io. [Online; accessed

February-2023].

[12] Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. 2019.

SoK: A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies.

Cryptology ePrint Archive, Report 2019/352. https://eprint.iacr.org/2019/352.

[13] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. 2020. Lightweight Vir-

tual Payment Channels. In CANS 20: 19th International Conference on Cryptology
and Network Security (Lecture Notes in Computer Science, Vol. 12579), Stephan
Krenn, Haya Shulman, and Serge Vaudenay (Eds.). Springer, Heidelberg, Germany,

Vienna, Austria, 365–384. https://doi.org/10.1007/978-3-030-65411-5_18

[14] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and

Arthur Gervais. 2018. Commit-Chains: Secure, Scalable Off-Chain Payments.

Cryptology ePrint Archive, Paper 2018/642. https://eprint.iacr.org/2018/642

https://eprint.iacr.org/2018/642.

[15] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. 2019. A Composable

Security Treatment of the Lightning Network. Cryptology ePrint Archive, Report

2019/778. https://eprint.iacr.org/2019/778.

[16] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

vatsan Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks.

In ACM CCS 2017: 24th Conference on Computer and Communications Security,

Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM Press, Dallas, TX, USA, 455–471. https://doi.org/10.1145/3133956.3134096

[17] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

[18] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with Optimistic

Instant Confirmation. In Advances in Cryptology – EUROCRYPT 2018, Part II
(Lecture Notes in Computer Science, Vol. 10821), Jesper Buus Nielsen and Vincent

Rijmen (Eds.). Springer, Heidelberg, Germany, Tel Aviv, Israel, 3–33. https:

//doi.org/10.1007/978-3-319-78375-8_1

[19] Kenneth G. Paterson and Jacob C. N. Schuldt. 2006. Efficient Identity-Based Sig-

natures Secure in the Standard Model. In ACISP 06: 11th Australasian Conference
on Information Security and Privacy (Lecture Notes in Computer Science, Vol. 4058),
Lynn Margaret Batten and Reihaneh Safavi-Naini (Eds.). Springer, Heidelberg,

Germany, Melbourne, Australia, 207–222.

[20] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments. See https://lightning. network/lightning-network-paper.
pdf (2016).

[21] Kai Sedgwick. 2018. No, Visa Doesn’t Handle 24,000 TPS and Neither Does Your

Pet Blockchain. https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-and-

neither-does-your-pet-blockchain/. [Online; accessed 12-September-2022].

[22] Adi Shamir. 1984. Identity-Based Cryptosystems and Signature Schemes. In

Advances in Cryptology – CRYPTO’84 (Lecture Notes in Computer Science, Vol. 196),
G. R. Blakley and David Chaum (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 47–53.

[23] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151 (2014), 1–32.

13

https://doi.org/10.1145/3132747.3132757
https://paymentshub.io
https://eprint.iacr.org/2019/352
https://doi.org/10.1007/978-3-030-65411-5_18
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2019/778
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-319-78375-8_1
https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-and-neither-does-your-pet-blockchain/
https://news.bitcoin.com/no-visa-doesnt-handle-24000-tps-and-neither-does-your-pet-blockchain/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Pseudorandom Function
	2.2 Digital Signature Schemes
	2.3 The UTXO Model
	2.4 The Lighting Network

	3 Desiderata
	4 Outline of the Construction
	5 Our Protocol: Maravedí
	5.1 Intuition
	5.2 Concrete Construction

	6 Security Analysis
	6.1 Online Security
	6.2 Risk Trade Security
	6.3 Desiderata

	7 Final Remarks
	References

