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Abstract. A proof of sequential work (PoSW) scheme allows the prover
to convince a verifier that it computed a certain number of computational
steps sequentially. Very recently, graph-labeling PoSW schemes, found
applications in light-client blockchain protocols, most notably bootstrap-
ping. A bootstrapping protocol allows a light client, with minimal infor-
mation about the blockchain, to hold a commitment to its stable prefix.
An incremental PoSW (iPoSW) scheme allows the prover to non-trivially
increment proofs: given χ, π1 and integers N1, N2 such that π1 is a valid
proof for N1, it generates a valid proof π for N1 +N2.
In this work, we construct an iPoSW scheme based on the skiplist-based
PoSW scheme of Abusalah et al. and prove its security in the random
oracle model by employing the powerful on-the-fly sampling technique
of Döttling et al. Moreover, unlike the iPoSW scheme of Döttling et al.,
ours is the first iPoSW scheme which is suitable for constructing incre-
mental non-interactive arguments of chain knowledge (SNACK) schemes,
which are at the heart of space and time efficient blockchain light-client
protocols. In particular, our scheme works for general weight distribu-
tions, which we characterize as incrementally sampleable distributions.
Our general treatment recovers the distribution underlying the scheme
of Döttling et al. as well as the distribution underlying SNACK-enabled
bootstrapping application as special cases. In realizing our general con-
struction, we develop a new on-the-fly sampling technique.

1 Introduction

Proofs of Work (PoW) were introduced by Dwork and Naor [8], and in the
past years have become very popular in the context of cryptocurrencies. A PoW
scheme allows a prover to convince a verifier that a certain amount of computa-
tion was performed. However, this says nothing about whether the computation
was done sequentially or in parallel.

A Proof of Sequential Work [12] (PoSW) is an (interactive) proof system in
which the prover, on common inputs an integer parameter N and a statement
χ, computes a proof that convinces the verifier that N sequential computational
steps have been performed since χ was received.

A simple PoSW scheme based on a random oracle τ : {0, 1}∗ → {0, 1}λ is a
hash chain: the prover computes yi := τ(χ, yi−1) for i ∈ [N ] := {1, . . . , N} and



y0 := τ(χ) and defines its proof π := yN . The verifier verifies π by recomputa-
tion. From basic properties of random oracles, any accepting proof must have
been computed, with overwhelming probability, in N sequential steps even by a
massively parallel adversarial prover. From the prover’s perspective, this scheme
is optimal: the prover does exactly N sequential steps and keeps constant size (λ
bits) memory during its computation. However, the verifier needs to recompute
the proof, and hence, spend as much resources as the honest prover. Therefore,
for the applicability of PoSW schemes, one also requires succinctness, beyond
completeness and soundness. Succinctness requires that the proof size as well as
the verifier’s running time are poly-logarithmic in N .

Beyond classical applications of PoSW schemes for time stamping, where a
prover wants prove to future verifiers that it stamped a certain message some
time in the past, we have now more applications in the blockchain arena. The
first such application uses a special form of a PoSW scheme which has unique
proofs. Chia [6], in an effort to designing sustainable blockchains, combines in its
mining process proofs of space [9, 1] and verifiable delay functions [4], which are
a subclass of PoSW with unique proofs. While generating these proofs requires
large space and sequential time resources, they must be efficiently and publicly
verifiable.

Recently, Graph-Labeling PoSW (GL-PoSW) schemes found applications in
light-client blockchain protocols, most notably bootstrapping [2]. A light-client,
which has minimal information about the blockchain in question, say its genesis
block, is said to have securely bootstrapped if it ends up, after potentially talking
to multiple provers, holding a commitment to the honest stable-prefix of the
blockchain. The light client must be efficient in the sense that its verification
time is at most poly-logarithmic in the length of the blockchain.

In the above applications, different classes of PoSW schemes are assumed.
When the sequential computation is used in mining as in Chia, the PoSW is
required to have unique proofs. This subclass of PoSW schemes is called verifi-
able delay functions VDFs [4, 13, 14, 10]. The subclass used for bootstrapping
application is called graph-labeling PoSW (GL-PoSW) schemes [12, 5, 7, 3, 2].
It is not known how to use VDFs to solve the bootstrapping problem, nor how
to use graph-labeling PoSW in the mining application [6].

In this work, we focus on the class of GL-PoSW schemes, however, the same
question that we address here in terms of incrementality is relevant for VDFs;
in fact these are called continuous VDFs [10]. One main motivation of making
this choice is that GL-PoSW schemes can be used to provide efficient solutions
to blockchain light-client bootstrapping [2].

1.1 Graph-Labeling PoSW Schemes

A Graph-Labeling PoSW (GL-PoSW) scheme is a PoSW scheme for a weighted
graph family Γ = ((GN , ΩN ))N≥0, where GN = ([N ]0, EG) is a DAG on [N ]0 :=

{0, . . . , N} and ΩN : [N ] → [0, 1] is a weigh function, i.e.,
∑N
i=1ΩN (i) = 1.

We refer to weight functions as probability distributions when convenient. All
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existing GL-PoSW schemes [12, 5, 7, 3, 2] are in the random oracle model. The
prover, upon receiving a statement χ from the verifier, uses χ to refresh a random
oracle τ : {0, 1}∗ → {0, 1}λ to compute a labeling L : [N ]0 → {0, 1}λ of GN ,
where the label of i ∈ [N ]0 is simply defined as L(i) := τ(χ, i, L(Parents(i))),
where Parents(i) denotes the (ordered) set of nodes with outgoing edges directed
towards i. The prover then sends to the verifier a (vector) commitment φ to
the labeling L. The verifier then engages with the prover in a challenge response
protocol in which for each challenge i ∈ [N ] drawn by the verifier according to the
distribution induced by ΩN , the prover responds with protocol- and challenge-
specific labels and openings from L, which the verifier then checks for consistency.
(A part of the prover’s response to challenge i is a φ-opening at position i.)

Completeness, (α, ε)-soundness, and succinctness are required. Completeness
stipulates that the verifier always accepts honest proofs, and succinctness re-
quires that for any honestly generated proof π, it holds that |π| ∈ poly(λ, logN),
and the running time of the verifier is upper-bonded by poly(λ, logN), where λ
is a security parameter. Now (α, ε)-soundness guarantees that except with prob-
ability ε, the verifier rejects any proof generated by a prover which made less
that αN sequential queries to τ(·).

Such an interactive protocol is then made non-interactive in the ROM by
applying the Fiat-Shamir [11] transform. The GL-PoSW scheme of [7] is defined
and constructed non-interactively, but otherwise it follows the above design tem-
plate.

The first PoSW scheme [12] is a GL-PoSW whose underlying graph GN is
depth robust, has the disadvantage of large space requirement ≈ λN bits during
the prover’s computation.

The high space requirement was addressed in [5], where they design a simple
tree-based DAG GN , which when used in the above design template, allows for a
practically efficient GL-PoSW, where the prover requires much less space� λN
bits. Moreover, they show general space-time tradeoffs of the prover strategy,
that we will discuss shortly.

In [3], another practically efficient GL-PoSW scheme that uses a skiplist DAG
as its underlying graph is proposed. The scheme uses a slightly different, but es-
sentially the same labeling strategy: instead of defining L(i) := τ(χ, i, L(Parents(i))),
it is computed using a permutation whose input is selected among L(Parents(i)).
The permutation-based labeling gives the PoSW the additional feature of re-
versibility : given L(i) of any i ∈ [N ], one can efficiently compute L(i − 1).
Reversibility comes at the cost of having labels of larger size: for parameter N ,
it holds that |L(i)| = λ · logN .

Motivated by applications of GL-PoSW schemes in designing light-client
blockchain applications, a variant of the skiplist PoSW scheme is proposed in [2].
This scheme is identical to the original skiplist construction, except that labels
are defined as L(i) := τ(χ, i, L(Parents(i))) for a random oracle τ . The result-
ing scheme is no longer reversible as in [3] . However, it has the advantage of
smaller labels |L(i)| = λ. Having constant size labels is important in the design
of blockchains which allow for light-client protocols, where in the ith block of the
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respective blockchain, a GL-PoSW label L(i) is stored, and having a constant
size label for an ever-growing blockchain saves a lot of otherwise wasted storage.
(For more details on such augmented blockchains, see [2].)

For simplicity, we refer to the scheme from [5] as the tree construction TC,
and both schemes from [3, 2] as the skiplist construction SC.

Space-Efficient Provers. In all these schemes, a prover sequentially computing
the labeling L of the PoSW underlying graph GN , which would take N sequential
invocations to its random oracle τ , and storing all labels L, would be able to
compile a convincing proof π out of L. However, if the prover does actually
spend N sequential computations in computing L but stored nothing beyond
L(N), then it may need to spend another N sequential queries to be able to
compile a convincing proof π. This issue can be seen as either a space-efficiency
or soundness slack issue: while honest provers with essentially no storage need
to spend 2N steps, soundness is quantified over malicious provers doing < αN
sequential computation for α ∈ (0, 1].

This space issue was raised in both [12] and [5], where in the former it is left
open, and in the latter, a general space-time tradeoff of the prover’s strategy is
given. Roughly speaking, for space ≈

√
N an honest prover can spend ≈ N+

√
N

and convince the verifier that it did N sequential steps.

1.2 Incremental PoSW

This gap between the number of sequential steps of the honest and malicious
provers, was essentially closed by Döttling, Lai and Malavolta [7], who give
a variant of the TC scheme, call it ITC, in which the prover uses space up to
poly(λ, logN) and spendsN sequential steps to convince the verifier that it didN
sequential steps. In doing so, they introduce the notion of an incremental PoSW.
This is a non-interactive GL-PoSW scheme (P,V, Inc), in which, in addition to
the prover/verifier algorithms, there is an additional Inc algorithm that given
χ, π1 and integers N1, N2 such that π1 is a valid proof for N1, it generates a valid
proof π for N1 +N2. To avoid trivialities, one requires that π is asymptotically
succinct, even if the incrementation is applied arbitrarily many times, and that
the running time of Inc is essentially independent3 of N1. This condition avoids
the trivial solution, in which either Inc computes a proof π2 from π1 onwards
and defines π := (π1, π2), or simply ignores π1 and computes π from scratch for
N1 +N2.

The starting point for ITC is TC. Recall that TC is an interactive GL-PoSW
whose underlying weighted DAG is (GN = ([N ]0, EG), ΩM ), where GN is a tree-
like DAG with a single sink N and ΩM is such that ΩM (i) := 1/M for every
i ∈ [M ] leaf node among [N ]. The prover P computes, using a random oracle
τ(·), the labeling L of GN and sends φL := L(N) to V, which in return selects t
challenges i1, . . . , it according the distribution induced by ΩM , which is in this
case the uniform distribution over [M ], and sends them to P, which responds by

3 By essentially independent we mean that the dependency is at most poly-logarithmic.
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openings to these challenges. Finally V accepts if and only if the openings are
consistent with φL, which serves as a commitment to L.

This construction is then made non-interactive using the Fiat-Shamir trans-
form: P computes challenges by using enough random bits from applying the
random oracle τ(χ, φL, ·) appropriately many times, say on inputs 1, 2, . . ., and
then uses these random bits to deterministically generate t challenges. How-
ever, inherent to this approach, is that P only learns its challenges at the end
of the computation, and by then, it either must have stored all L and can then
open the challenges efficiently, or it recomputes the missing labels among L that
are needed to answer the challenges. In between these two extremes, there are
general space-time tradeoffs that the prover can employ as we discussed above.

ITC is an alternative approach towards making TC non-interactive and incre-
mental at the same time. ITC employs the clever on-the-fly sampling technique:
as P is labeling GN , in topological order, it learns some potential challenges from
its already computed labels, and it learns with certainty what labels it already
computed will not be part of its final challenges. This allows P to discard the
labels of such useless nodes, and hence keep only the essential labels in memory.
By the time P computes L(N), it learns its final t challenges, for which it already
stored their respective openings.

1.3 Incremental PoSWs for Incremental SNACKs

On light-client blockchain protocols. Recently, [2] show how GL-PoSW
schemes can be generically used to augment blockchains such that they would
then allow for efficient light-client secure bootstrapping. In their terminology,
a full miner holding the entirety of a PoSW-augmented blockchain provides
the light client with a succinct non-interactive argument of chain knowledge
(SNACK) proof. The SNACK proof, in addition to some blockchain suffix blocks,
allows the light client to hold a commitment to a stable prefix of the blockchain.
For this application, a standalone GL-PoSW suffices: in the SNACK construction
of [2], any GL-PoSW is used generically to augment a blockchain such that the
augmented blockchain becomes SNACK-friendly, i.e., one can generate SNACK
proofs for the augmented blockchain efficiently.

However, if the PoSW is incremental in the construction of [2], then the full
node miner, having produced or obtained a valid SNACK proof for an augmented
blockchain of length N , will be able to increment its SNACK proof for the
blockchain when it grows into any length N ′ > N , and hence allows the full
node to bootstrap light clients without storing the first N blocks of the N ′-long
blockchain. (The genesis block is always assumed to be stored by all parties.)
This allows full nodes to become space-efficient, which is a great advantage given
the massive sizes of the ever-growing blockchains.

The ITC scheme and light-client blockchain protocols. In [2], it is shown
how to build a SNACK system from any GL-PoSW scheme. Furthermore, if
the underlying GL-PoSW is incremental, then so is the overlying SNACK. The
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standalone (non-incremental) SNACK can be used to provide efficient solutions
to the blockchain light-client bootstrapping problem. Additionally, if the SNACK
is incremental, it is suggested in [2] that such an incremental SNACK would make
the prover of these light-client protocols even more efficient; the prover becomes
space-efficient.

SNACKs are defined with respect to a family of weighted DAG (GN =
([N ]0, EG), ΩN )N≥0. The underlying weighted DAG of the SNACK is inher-
ited from the underlying GL-PoSW. For the SNACK application of light-client
bootstrapping, ΩN : [N ] → [0, 1] doesn’t induce the uniform distribution over
[N ]. Roughly speaking, ΩN (i) ∼ 1/(N − i), which is far from uniform over
[N ]. This motivates designing incremental PoSW schemes with general weight
distributions.

On defining incremental PoSWs. For the light-client blockchain application,
an honest prover that increments any valid SNACK proof should make the
verifier accept, regardless of how the SNACK proof it incremented was generated.
This means that we need the same guarantees from the underlying iPoSW: any
valid PoSW proof that is honestly incremented will make the verifier accept.
This is also a natural requirement on incrementality, when the iPoSW is used in
a distributed fashion: there are multiple parties that compute and increment; one
party may increment another’s computation and if the incrementation was done
honestly on a valid proof, then the resulting proof must also verify regardless of
how the proof of the previous party was generated.

1.4 Our Contributions

Motivated by the recent connection between light-client blockchain applications
and GL-PoSW schemes [2], we advance the current understanding by

– strengthening the definition of iPoSW of [7] such that it becomes useful for
light-client blockchain applications. The iPoSW definition of [7] only requires
that honestly incrementing an honestly generated proof, rather than any valid
proof, makes the verifier accept. For the usability of iPoSW in distributed
applications, like incremental SNACKs and blockchains, we strengthen their
definition as highlighted above. We also observe that their construction, ITC,
achieves our stronger definition.

– constructing an iPoSW scheme whose underlying weighted graph family
(GN , ΩN )N≥0 is such that GN is the simple skiplist GN = ([N ]0), EN ) and
whose distribution ΩN is any arbitrary t-incrementally sampleable distribu-
tion. In particular, both the uniform and the SNACK distributions are t-
incrementally sampleable distribution. Therefore, our iPoSW is the first and
only iPoSW that can be used to construct an incremental SNACK, which in
turn, can be used to construct the first space-efficient prover in blockchain
light-client bootstrapping [2]. Along the way, we give a simple characteriza-
tion of t-incrementally sampleable distributions. Technically, we also devise
a new on-the-fly-sampling technique that works for all such distributions.
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In a bit more detail. We first give a standalone iPoSW scheme based on the
skiplist graph (Sect. 5). The scheme uses the same distribution ΩN as in [7]
and can be thought of as a general-purpose iPoSW. To prove security, we use
and adapt the same on-the-fly-sampling strategy of [7]. Informally speaking, and
on a very high level, the on-the-fly sampling works by randomly and without
replacement sampling a set S of t elements from two sets S0 and S1, each con-
tains t elements and a certain fraction of which is inconsistent. One then uses
a Hoeffding bound to reason about the fraction of inconsistent elements in S in
relation to the corresponding fractions of the original sets S0, S1. Fortunately,
the same Hoeffding bound can be used when sampling randomly with or without
replacement.

When moving to general probability distributions, one can still apply a gen-
eral Hoeffding bound when sampling with replacement from a general probabil-
ity distribution, i.e., when the random variables of the samples are independent.
However, when sampling is done without replacement, then we are not aware of
appropriate Hoeffding-like bounds that one can apply generically.

Therefore, we devise a new sampling strategy. Our sampling follows the Pois-
son binomial distribution, and informally, given S0 and S1 whose elements are
sampled from Ωt, we sample S such that each si ∈ S0 ∪ S1 is added to S with
probability pi that is proportional to Ω2t(si). Instead of having |S| exactly t, we
have that |S| is on expectation t. We show that this sampling strategy works for
all t-incrementally sampleable distributions.

In Sect. 6, we use this new on-the-fly sampling technique to construct an
iPoSW which works for any t-incrementally sampleable distribution. When ap-
plying the new technique, new challenges arise: the verifier no longer can verify
the consistency of the on-the-fly sampled elements. We solve this problem by
making the prover commit to, and give away, as part of its proof, extra sets that
allow the verifier to check the consistency of the sampled challenges. This change
increases the proof size slightly.

1.5 A High-Level Technical Overview.

In this section, we only give the high-level overview of our skiplist-based iPoSW
(Sect. 5) when ΩN is the uniform distribution and we sample without replace-
ment. The general case when ΩN is any t-incrementally sampleable distribution
and our on-the-fly sampling follows the Poisson binomial distribution is given in
Sect. 6.2.

Let’s first review the interactive SC construction. Fig. 1 shows the skiplist
graph GN = ([N ], EG) for N = 16. We only show how P, which has the labeling
L of G16, answers its challenges. For example, let v ∈ [16] be a challenge, then
P locates the unique shortest path from the source 0 to the sink 16 which passes
through v. Then it answers with the labels on this path and the labels of the
parents of the nodes on the path. V simply checks the consistency of the labels
on the path. As the path is of length O(logN) and each node has O(logN)
parents, the opening for a single challenge is of size O(λ log2N). In contrast, the
opening for a path in TC is O(λ logN).
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Our incremental (non-interactive) PoSW ISC is then obtained by employ-
ing the on-the-fly sampling technique of [7]. For simplicity of exposition, we
show how the challenges are on-the-fly sampled, however, without showing the
corresponding openings of these challenges. In Section 5, we give a more compre-
hensive overview of the construction, including how to incrementally re/combine
partial openings to full openings of the final challenges.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L2,0 L4,0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L4,1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,2 L12,1 L14,0 L16,0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,2 L12,1 L16,1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L8,2 L16,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L16,3

E
xe
cu
ti
on

of
P

Fig. 1. Evolution of the stored challenges during the protocol. The elements of the list
Lv,i are actually full openings of challenges. To ease readability, we have only drawn
the corresponding challenge nodes. An example for G16, t = 2.

The on-the-fly sampling is illustrated in Fig. 1 for an example graph G16 and
t = 2. In general, the technique works as follow: let t = 2c for some integer c
be the number of challenge nodes/openings to be produced by the end of the
protocol. For every v ∈ [N ] that is a multiple of t, we will construct a list
Lv,0 which contains all the nodes w ∈ [v − t + 1 : v]. This list consists of all
potential challenges defined by v at “level” 0. If v ∈ [N ] is also a multiple of
2t, the sets Lv−t,0 and Lv,0 are merged into a unique set, denoted by Lv,1, with
t elements, in the following way: L(v) is used as input to a random oracle to
obtain random coins rv,1. Using these random coins, we sample at random (and
without replacement) a subset of size t from the set Lv−t,0∪Lv,0. Such randomly
sampled subset of size t will be stored as Lv,1, and the sets Lv−t,0 and Lv,0 can
be erased from memory. The set Lv,1 will consist of t challenge nodes assigned
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to v at “level” 2. In a similar way, whenever v is a multiple of 2it for integer i,
random coins rv,i are produced from L(v) to obtain a random subset Lv,i of size t
from the set Lv−2i−1t,i−1∪Lv,i−1. After obtaining Lv,i, the sets Lv−2i−1t,i−1, and
Lv,i−1 are erased from memory. In the last step of the algorithm, the set LN,n−c
will be produced, where N = 2n. This, together with φL := L(N), constitutes
the proof to be verified.

Extra care is needed when proving soundness of the resulting ISC scheme,
in which the prover learns partial information about its challenges, even before
sending the commitment φL. The overall proof strategy is similar to proof of
ITC from [7]. The intuition of why the on-the-fly sampling is sound comes from
the observation that at each resampling node v, the samples are derived from
randomness that depends on L(v), and L(v) serves as a commitment to all
potential nodes from which the resampling takes place. The security proof then
goes through a series of hybrid games, in which two consecutive games differ
by a resampling-related bad event, which happens with a negligible probability.
The analysis of the last hybrid game boils down to the original analysis of the
SC scheme.

As mentioned before, when moving to general weight distributions, our on-
the-fly sampling procedure follows the Poisson binomial distribution. This change
introduces a novel issue: the number of final challenges (and thus their total
weight) is not fixed in advanced as before, and more critically, the intermedi-
ate sets used in the sampling procedures are not implicitly defined. On the one
hand, it can be shown using Hoeffding-like bounds, that the number of chal-
lenges (and their total weight) must be concentrated around the expected value
with overwhelming probability. By modifying the verifier so that it additionally
checks such constraints, it is possible to rule out such malicious behavior, and
fix the first issue. On the other hand, by having the prover commit to the inter-
mediate sets, and give, as part of its proof, the opening of the intermediate sets
used in sampling the final challenge set, the verifier can check the correctness of
the on-the-fly sampled challenges, and thus fix the second issue as well. A more
elaborate overview is given in Sect. 6.

2 Preliminaries

2.1 Notations

For integers m,n > 0, define [n] := {1, . . . , n}, [n]0 := [n] ∪ {0}, and [m : n] :=
{m,m + 1, . . . , n}. For a DAG G = (V,E) and v ∈ V , we let Parents(v) :=
(v1, . . . , vk) be the parents of v given in reverse topological ordering.4

For a distribution D, we denote by d
$← D sampling d according to D (in

case D is a set, the uniform distribution is implied).
We define the notion of (oracle-based) graph labeling which appeared in

previous work on GL-PoSW schemes, say [12, 5].

4 Although any fixed ordering suffices, it would be convenient for our construction to
consider the reverse topological ordering.
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2.2 Graph Labeling

Definition 1 (Oracle-based graph labeling). Let GN = ([N ]0, EN ) be a
DAG and τ : {0, 1}∗ → {0, 1}λ an oracle. We define the τ -labeling Lτ : [N ]0 →
{0, 1}λ of GN recursively as

Lτ (i) :=

{
τ(i) if Parents(i) = ∅
τ
(
i, Lτ (i1), . . . , Lτ (ik)

)
else, i.e., Parents(i) = (i1, . . . , ik)

(1)

When τ is clear from the context, we simply write L.

To formalize consistency of labels in this context, [2] define the notion of
consistent strings, which is stronger than prior definitions in the literature [12,
5, 3]. Intuitively, to each vertex i a value yi is associated, which represents the
concatenation of the labels of the parents of i. In order to reason about the label
of the last node as well, a dummy vertex is introduced for it, that is, we add
vertex N + 1 and an edge (N,N + 1).

Definition 2 (Consistent strings [2]). Let τ : {0, 1}∗ → {0, 1}λ be an oracle.
For a DAG GN = ([N ]0, EN ), let G+

N = ([N + 1]0, E
+
N ) with E+

N = EN ∪
{(N,N + 1)}. Furthermore, ∀i ∈ [N + 1]0, let pi be the number of parents of i in
G+
N and yi := (i, yi[1], . . . , yi[pi]) ∈ ([N ]0 × ({0, 1}λ)pi). We say yi is consistent

with yi′ w.r.t. GN , and denote it by yi ≺ yi′ if (i, i′) ∈ E+
N and if i is the j-

th parent of i′ in G+
N (in reverse topological order), then the j-th block in the

decomposition of yi′ is equal to τ(yi), i.e., yi′ [j] = τ(yi).

3 The Skiplist PoSW Scheme

3.1 Construction

In this section, we review the interactive GL-PoSW scheme of [2]. The scheme is
reminiscent to the PoSW scheme from [3]. The scheme follows the same design
template introduced earlier and we give a formal definition only for the non-
interactive incremental GL-PoSW schemes later in Sect. 4.

Definition 3 (The Skiplist graph [3, 2]). Let GN = ([N ]0, EN ) be a DAG
with

En =
{

(i, j) ∈ ([N ]0)2 : ∃k ≥ 0 s.t. (j − i) = 2k ∧ 2k|i
}
.

Definition 4 (Labeled Paths). Let GN = ([N ]0, EN ) be a skiplist graph as
in Def. 3 and Lτ a labeling over its vertices for an oracle τ : {0, 1} → {0, 1}λ.
For integers i1, . . . , ij s.t. 0 ≤ i1 < · · · < ij ≤ N , define Path(i1, . . . , ij) as the
unique shortest path from i1 to ij passing through i1, . . . , ij. Furthermore, define

Path+(i1, . . . , ij) := (Parents(v))v∈Path(i1,...,ij)

Path∗(i1, . . . , ij) := (v, L(Parents(v)))v∈Path(i1,...,ij)

and a predicate Consistent over labeled paths as follow:
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Consistent (Path∗(i1, . . . , ij)) ∈ {0, 1}: output 1 iff
∀yi := (vi, ·), yi′ := (vi′ , ·) ∈ Path∗(i1, . . . , ij) s.t. (vi, vi′) ∈ EN :

yi ≺ yi′ where ≺ is as in Def. 2.

To illustrate, consider G8, then

Path(0, 3, 8) = (0, 2, 3, 4, 8)

Path+(0, 3, 8) = ((), (1, 0), (2), (3, 2, 0), (7, 6, 4, 0))

Path∗(0, 3, 8) = ((0), (2, L(1), L(0)), (3, L(2)), (4, L(3), L(2), L(0)),

(8, L(7), L(6), L(4), L(0))).

Furthermore, Consistent(Path∗(0, 3, 8)) = 1 as

y0 ≺ y2, y0 ≺ y4, y0 ≺ y8, y2 ≺ y3, y2 ≺ y4, y3 ≺ y4, y4 ≺ y8.

Note that Path∗ contains redundant labels. This results in an increase in the
proof size in the skiplist-based PoSW scheme. However, we keep it as is for the
simplicity of exposition. In practical realizations, it is straightforward to remove
the redundancy and modify the verification algorithm accordingly.

Now we describe the PoSW scheme from [2] in Fig. 2. Formally the PoSW
is defined for a graph family (ΓN := (GN , ΩN ))N∈N where GN is a skiplist as
in Def. 3 and a weight function ΩN : [N ] → [0, 1] where

∑
i∈[N ]ΩN (i) = 1.

Besides, the PoSW scheme is parameterized by a security parameter t ∈ N that
determines the number of challenges the verifier samples from ΩN .

In [2], interactive GL-PoSW schemes were defined. Their definition general-
izes existing definitions of PoSW in a few directions. First, the protocol’s under-
lying graph is a weighted DAG Γn := (GN , ΩN ) where GN is a DAG on [N ]0
vertices, and the the verifier’s challenges are drawn according to a weigh func-
tion ΩN : [N ]0 → [0, 1] where

∑
i∈[N ]0

ΩN (i) = 1. Second, they define knowledge
soundness in addition to the classical notion of soundness. In Theorem 1, we re-
state their main theorem about the classical, rather than knowledge, soundness
guarantees of the PoSW construction depicted in Fig. 2.

Towards generalizing PoSW to arbitrary weight functions, the weight of a se-
quence of parallel oracle queries to τ(·) is defined. A parallel query is a sequence
of simultaneous queries to τ , i.e. a sequence ((x1, i1), . . . , (xm, im)) which is an-
swered by (τ(i1, x1), . . . , τ(im, xm)). Intuitively, the weight of such a sequence is
the sum of the respective “heaviest” nodes in each parallel query.

Definition 5 (Sequential weight [2]). Let Q = (Q1, . . . , Q`) be a sequence of
parallel queries to an oracle τ . We define the sequential weight of Q with respect
to a weight function ΩN : [N ]→ [0, 1] where

∑
i∈[N ]ΩN (i) = 1 as

Ωseq(Q) :=
∑̀
i=1

max{ΩN (j) : Qi contains a query to τ(j, ·)} .
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Prover P = (P0,P1) :

Stage P0: On input (1λ, 1N ) and
χ:

1. Compute the τ -labeling L of
GN using oracle τ(χ, ·)

2. φL := L(N)
3. send φL to V1

Stage P1:

1. ∀i ∈ [t], yi := Path∗(0, ιi, N)
where Path∗ is as in Def. 4.

2. send y := (y1, . . . , yt) to V2

Verifier V = (V0,V1,V2):

Stage V0: On input (1λ, N):

1. χ← {0, 1}λ
2. send χ to P0

Stage V1: On input φL:

1. ∀i ∈ [t] do ιi
$← ΩN

2. send ι = (ιi)
t
i=1 to P1

Stage V2: On input y = (yi)
t
i=1:

1. ∀i ∈ [t] do
(a) parse yi = (yi1 , . . . , yik ) where

(i1, . . . , ik) := Path(0, ιi, N)
(b) bi := 1 iff

i. τ(yik ) = φL and
ii. Consistent(yi) = 1

where Consistent is as in Def. 4.
2. output

∧t
i=1 bi

Fig. 2. t ∈ N is a parameter of the scheme, and (GN , ΩN ) is s.t. GN is a skiplist DAG as
in Def. 3 and ΩN : [N ]→ [0, 1] is a weight function, i.e., it satisfies

∑
i∈[N ]ΩN (i) = 1.

The honest P in Fig. 2 defines a sequence Q = (Q1, . . . , QN ) of queries with
Qi := {(i, L(Parents(i)))} and it therefore holds that Ωseq(Q) = 1. To capture
the sequential work of malicious provers, the notion of τ -sequence is defined.

Sequentiality of random oracles is formulated in terms of RO-sequences,
which appeared in slightly different formulations and bounds in [12, 5, 3, 2].
Below we adopt the formulation from [2].

Definition 6 (τ-sequences [2]). Let GN = ([N ]0, EN ) be a DAG and τ :
{0, 1}∗ → {0, 1}λ be a random oracle. We call a sequence of strings s :=
(yi1 , . . . , yi`+1

) with yi`+1
∈ {0, 1}λ and yij ∈ ([N ]0 × ({0, 1}λ)|Parents(ij)|) a τ -

sequence of length ` if ∀j ∈ [`], yij ≺ yij+1
w.r.t. GN .(≺ is as in Def. 2.)

For a weight function ΩN : [N ] → [0, 1], the weight of a τ -sequence s =

(yi1 , . . . , yi`+1
) is defined as ΩN (s) :=

∑`
j=1Ω(ij).

Note the honest Q above can be made into a τ -sequence s := (y0, . . . , yN , yN+1)
where ∀i ∈ [N ]0, yi := (i, L(Parents(i))) and yN+1 := τ(yN ). Note the weight of

s is defined to ignore the last index N+1 and hence is equal
∑N
i=1Ω(i) = 1. Fur-

thermore, note if Path∗(0, i, N) is such that Consistent(Path∗(0, i, N)) = 1, then
by definition (Path∗(0, i, N), φL) constitutes a τ -sequence. Lemma 1 shows that,
except with negligible probability, no malicious prover which makes a sequence
of parallel queries Q with Ωseq(Q) < α can produce a τ -sequence of weight α.

Lemma 1 (Sequentiality of τ [2]). Let ΓN = (GN , ΩN ) be a weighted DAG
and τ : {0, 1}∗ → {0, 1}λ a random oracle. Let P̃τ(·) be a malicious prover that
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makes (parallel) queries to τ(·) of sequential weight < α and makes q oracle
queries in total. Then the probability that P̃τ(·) outputs a τ -sequence of weight α
can be bounded by

Pr
[
s← P̃τ(·) : s is a τ -sequence ∧ ΩN (s) = α

]
≤ 1

2λ
+
q2

2λ
=
q2 + 1

2λ
.

Now we state the theorem that shows the PoSW scheme in Fig. 2 is secure.

Theorem 1 ([2]). Consider a malicious prover P̃ against V from Fig. 2. If P̃
makes a sequence Q of parallel queries to τ of sequential weight Ωseq(Q) < α ∈
(0, 1] and a total number of queries q, then P̃ can make V accept with probability
at most ε := αt + 3 · q2/2λ.

3.2 Prover Efficiency and Space-Time Tradeoffs

In this section, we give general space-time tradeoffs on the prover’s strategy in
the interactive PoSW from [2]. These tradeoffs pave the way to the incremental
non-interactive PoSW scheme we give in Sect. 5. For space constraints, we give
the proofs of the lemmas of this section in the full version of the paper.

The following lemma shows that the prover can label the skiplist graph in
small space complexity.

Lemma 2. Let GN be the skiplist graph from Def. 3 and τ : {0, 1}∗ → {0, 1}λ
an oracle. Then GN for N = 2n can be τ -labeled in topological order using at
most (n+ 1)λ bits of memory

Let N = 2n and the level of a node denote its in-degree. In GN , we have only the
source node 0 with level 0, only the sink node N with level n+ 1, and for every
i ∈ [n], we have 2n−i nodes with level i. For simplicity of exposition, we treat the
source node differently and assume that its label is always known. When storing
labels of nodes of level m and greater, the prover needs to store the labels of∑n
i=m 2n−i + 1 = 2n−m+1 nodes. Recomputing the labels of the remaining

nodes can be done by making 2m−1 − 1 queries sequentially; this can be done
assuming 2n−m+1 parallel processors by partitioning 2n into intervals of length
2m−1. To compute how many (sequential) queries are required to compute all
the labels necessary to correctly reply to some challenge i ∈ [N ], we need to first
analyze how many nodes’ labels will be needed in answering that challenge.

Lemma 3. Le GN be the graph from Def. 3 with N = 2n, and let k ∈ [n + 1].
If a challenge hits a k-level node, then the prover can convince the verifier by
providing the labels of φn(k) := 2 + 1

2 (n− k + 2)(n+ k − 1) vertices.

The following lemma says that, when storing labels of all nodes of level
greater than or equal to m, given ρ(n,m, k) parallel processors, it is possible to
reply to the challenge query making only 2m−1 − 1 sequential hash queries.
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Lemma 4. If a challenge hits a k-level node, k ∈ [n+ 1], of a graph with N =
2n + 1 nodes, where n ≥ 2, then a prover storing the labels of all nodes of level
greater than or equal to m, for m ∈ [n+1], will have to make ρ(n,m, k)·(2m−1−1)
many queries, where

ρ(n,m, k) :=


0 if m = 0,

n− k + 2 if m < k,

n−m+ 2 otherwise.

4 Incremental Proofs of Sequential Work

We provide a definition of incremental proofs of sequential work that is stronger
than the definition given by [7]. In fact, their construction as well as ours achieve
the stronger definition. Our definition is stronger in the sense that it guarantees
that honestly incrementing any valid proof, regardless of how it is generated,
makes the verifier accept.

This issue is particularly important in the context of graph-labeling proofs
of sequential work schemes as these are not proofs of correctness of the sequen-
tial computation, but rather are proofs of sequential computation. Consider any
graph-labeling PoSW with underlying graph GN and a prover that follows the
honest prover strategy except for a randomly chosen i ← [N ], it sets L(i) = 0λ

and continues the computation correctly. Such a prover has an overwhelming
probability of convincing the verifier, although the proof was not honestly gen-
erated, and with overwhelming probability the proof will be different from the
honestly generated proof. However, this is not a problem of the concept of a
PoSW, as still the malicious prover did N − 1 computational steps sequentially.

Definition 7 (Incremental PoSW). Let Γ = (ΓN = (GN , ΩN ))N∈N be a
family of weighted DAGs such that for all N , GN has a unique sink N . A tuple

of oracle aided PPT algorithms (Pτ(·), Incτ(·),Vτ(·) := (V
τ(·)
0 ,V

τ(·)
1 )) for an oracle

τ : {0, 1}∗ → {0, 1}λ is an incremental (non-interactive) proof of sequential work
w.r.t. τ if the following properties hold:

Completeness: For every λ,N ∈ N, every (χ,N, state)← V
τ(·)
0 (1λ, N) and

– honestly generated π ← Pτ(·)(1λ, 1N , χ) or

– honestly incremented π ← Incτ(·)(1λ, 1N
′′
, χ,N ′, π′) for integers N ′, N ′′

s.t. N = N ′ + N ′′ and π′ is accepting5 proof for parameter N ′, i.e.,

V
τ(·)
1 (state, χ,N ′, π′) = 1,

it holds that Pr
[
V
τ(·)
1 (state, χ,N, π) = 1

]
≥ 1− negl(λ).

(α, ε)-Soundness: For every λ,N ∈ N and every PPT adversary P̃τ(·) which
makes a sequence Q of parallel queries to τ of sequential weight Ωseq(Q) < α:

5 We consider Incτ(·) to be honest regardless of how π′ was generated. In contrast, [7]
defines honest Incτ(·) only over honestly generated π′.
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Pr

[
(χ,N, state)← V

τ(·)
0 (1λ, N);

π ← P̃τ(·)(1λ, 1N , χ)
: V

τ(·)
1 (state, χ,N, π) = 1

]
≤ ε(λ).

Succinctness: For every λ,N ∈ N and every honestly generated proof π for pa-
rameter N , we have |π| ≤ poly(λ, logN) and Vτ(·) runs in time poly(λ, logN).

Remark 1. For Incτ(·) to be non-trivial, note that Incτ(·) runs in time that is
essentially independent of N ′; it gets N ′ in binary.

Remark 2. For some applications, standard (α, ε)-soundness might not be enough,
and knowledge soundness might be required. It is straightforward to define knowl-
edge soundness for Def. 7 exactly the same way knowledge soundness of GL-
PoSW from [2] is defined.

5 A Skiplist-Based Incremental PoSW Scheme

In this section, we construct an incremental GL-PoSW scheme based on the
skiplist graph GN , ΩN where ΩN is defined as ∀i ∈ [N ] : ΩN (i) = 1/N . A
construction of an iPoSW for more general families of weight distributions ΩN
is given in Sect. 6.

In Section 5.2, we will give a high-level overview of our construction, using
some concrete example to better explain our design. A formal description of the
algorithms can be found in Section 5.3. The security proof is in Section 5.5.

5.1 Parameters

Our iPoSW scheme depends on the following parameters and objects.

– A time parameter N of the form N = 2n, for some integer n ∈ N.
– A computational security parameter λ.
– A statistical security parameter t.
– Let τ : {0, 1}∗ → {0, 1}λ be a random oracle, we define two oracles, τ`, τr as

τ`(·) := τ(0, χ, ·) τr(·) := τ(1, χ, ·) (2)

– (i1, . . . , it) := Sample(r): on input random coins r, uniformly sample (i1, . . . , it)
from all possible such sequences

(
2t
t

)
. Since

(
2t
t

)
< ( 2t·e

t )t = (2e)t, where
log2(2e) ≈ 2.44, random coins of size 3t are sufficient to sample statistically
close to a uniform subset.

Remark 3. Suppose that we have two sets S1, S2 with t elements each, where in
S1 the elements are indexed from 1 to t, and in S2 from t + 1 to 2t. Moreover,
suppose that there are M1 elements having a specific feature in S1 and M2

having the same feature in S2. Then, using Sample, one can sample a subset
from S1 ∪S2 of size t, where the distribution of the cardinality of elements with
this same specific feature is described by a random variable X distributed as
Hypergeometric(2t,M1 +M2, t).

For simplicity of exposition, we assume that t = 2c for some c ∈ N. Our con-
struction can be easily adapted to the more general case where t is arbitrary.
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5.2 A High-Level Overview

Before formally describing the algorithms defining the iPoSW scheme, we give
an intuition of how they work.

We start by describing the PoSW scheme upon which we build. The scheme is
described in Fig. 2. In such interactive protocol, the first step is performed by the
verifier V, which samples a random statement χ with enough min entropy and
sends it to the prover P, which in turn uses χ to refresh the common random
oracle τ(·) as τ`(·) := τ(0, χ, ·) and computes a τ`-labeling L of GN . Then P
sends φL := L(N) to V. As shown in [2], φL constitutes a (position-binding)
commitment to L.6 After receiving φL, V samples t challenge nodes and sends
them to P, which in turn sends to V valid openings for all the received challenges.
In the last step of the interaction, V checks the consistency of the openings and
accepts or rejects accordingly.

This protocol can be made non-interactive using the Fiat-Shamir heuristic:
the challenges chosen by V are now produced by P itself by querying a ran-
dom oracle τr(·) := τ(χ, 1, ·) on (φL, 1), . . . , (φL, t). Now V, besides verifying
the consistency of the openings, must also verify the correctness of the received
challenges, by recomputing them based on φL and τr(·).

Using this protocol, in order to compute a proof, the prover has to either
remember the N labels for the entire GN graph, or recompute the labels required
in the proof, once the challenge nodes are fixed, which may require up to N
sequential invocations to τ`. Alternatively, it is possible to have general space-
time trade-offs, as shown in Lemma 4: the prover upon spending N sequential
invocation to τr, could store ≈ 2n−m labels from L, and perform an additional
≈ 2m−1 sequential computation using ρ(n,m, k) ≤ n−m+2 parallel processors,
for any m ∈ [n + 1]. For example, taking m = n/2, yields a protocol where
the prover uses ≈

√
N memory, and ≈ N +

√
N/2 sequential work, while using

≈ (logN)/2 processors.

Still, there is a concrete substantial gap between, on the one hand, the se-
quential work the honest prover has to actually perform and, on the other hand,
the sequential work it is able to convince the verifier of. For example, a memory-
efficient prover, i.e., one where m = n, has to perform 2N sequential queries to
τr in order to show it did N sequential queries. For large values of N , this gap
becomes considerable; say N steps would take approximately a year to compute,
then to generate a proof of that, one would need another year.

As first observed by Döttling, Lai and Malavolta in [7], at the core of this
slack is the fact that the challenge nodes are determined solely by φL. Therefore,
the prover has to label the entire graph before knowing which labels it has to
recompute and include in the proof.

The problem was first tackled by [7], who introduced the idea of letting the
prover choose the challenge nodes on the fly : the prover chooses the random chal-
lenges as it labels the graph, and eventually discards some of them as the graph

6 This is reminiscent to the fact that a Merkle tree’s root commits to its leaves (and
internal nodes).
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gets labeled. This allows the prover to compute a valid proof using a single pass
over the graph. However, since now the prover knows partial information about
the possible challenges while labeling the graph, soundness of the so obtained
protocol has to be carefully studied.

We adapt the on-the-fly sampling technique of [7] to the skiplist-based PoSW
scheme. Let t be the number of challenge nodes/openings to be produced by the
end of the protocol (for ease of notation we will consider t = 2c to be a power
of 2). For each node v in [N ] which is a multiple of t, we will construct a list
Lv,0 which contains all the nodes w ∈ [v − t + 1, v]. This list will represent the
challenge node assigned to v at “level” 0.

When v is also a multiple of 2t, the sets Lv−t,0 and Lv,0 are merged into a
unique set, denoted by Lv,1, with t elements, in the following way: L(v) is used as
input to the random oracle τr to obtain random coins rv,1. Using these random
coins, we sample a subset Lv,1 of size t uniformly at random from Lv−t,0 ∪Lv,0.
Once Lv,1 is stored, Lv−t,0 and Lv,0 are erased from memory. The set Lv,1
consists of t challenge nodes assigned to v at “level” 2. In a similar way, whenever
v is a multiple of 2it, random coins rv,i are produced from the labeling of v, to
obtain a random subset Lv,i of size t from the set Lv−2i−1t,i−1 ∪ Lv,i−1. After
obtaining Lv,i, the sets Lv−2i−1t,i−1, and Lv,i−1 are erased from memory.

In the last step of the algorithm, the set LN,n−c will be produced. This,
together with φL = L(N), constitute the proof to be verified.

We depict the sampling process pictorially for graph G16 and parameter
t = 2, i.e., n = 4, and c = 1, in Fig. 1. The prover algorithm P labels all nodes
of the graph in topological order. Once it has labeled the first 2 nodes, it creates
the set L2,0, which contains the nodes 1 and 2 as possible challenges. It then
continues to label the graph. When it reaches node 4, it first creates the set
L4,0, which contains the nodes 3 and 4 as possible challenges. From the union of
these two sets, a random subset of 2 elements is chosen to obtain the set L4,1.
In the last step of the protocol, lists L16,0, L14,0, L12,1, and L8,2 are merged in
succession to finally obtain L16,3.

As already anticipated, in the actual protocol the lists Lw,j , for nodes w ∈ [N ]
and j ∈ [n− c] contain more than simple challenge nodes. Each element in Lw,j
is an opening (a labeled path) for a challenge node in [w − 2jt + 1 : w] with
respect to GN |[w−2jt:w], where G|V ′ , with V ′ ⊂ V , denotes the subgraph of G
induced by the vertex set V ′, i.e., the graph G′ with vertex set V ′ and edge set
consisting of those edges both of whose endpoints are in V ′.

Given Lv−2i−1t,i−1 and Lv,i−1 with openings (labeled paths), rather than
challenges, we show how to construct Lv,i. As before, using L(v) we extract
randomness to sample a random subset of size t from Lv−2i−1t,i−1 ∪ Lv,i−1.
Moreover, suppose that the first element sampled in this way is Lv,i−1[b], for some
b ∈ [t]. Now Lv,i−1[b] is an opening of some challenge node in [v − 2i−1t+ 1 : v]
with respect to GN |[v−2i−1t:v]. Since elements in Lv,i have to be valid openings of
some challenge node in [v−2it+1 : v] with respect to GN |[v−2it:v], simply adding
Lv,i−1[b] to Lv,i won’t work. Instead, we extend Lv,i−1[b] to a valid opening over
the whole subgraph GN |[v−2it:v]. This can be done, using the structure of the
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skiplist graph and the definition of shortest path, by simply pre-appending the
missing labeled edge (v − 2i−1t, L(Parents(v − 2i−1t))) to Lv,i−1[b]. Similarly,
any element in Lv−2i−1t,i−1 can be extended to a valid opening in GN |[v−2it:v] by
appending (v, L(Parents(v)) to it. This step of the algorithm is formally described
by (4) in the scheme description.

The prover’s final proof is π = (φL,LN,n−c, IN,n−c). For each b ∈ [t], the
verifier checks that (1) LN,n−c[b] is consistent with φL (2) that LN,n−c[b] is in-
ternally consistent, and (3) that the challenge in LN,n−c[b] is consistent with the
on-the-fly-sampling. The first two checks are similar to the base PoSW scheme.
To check (3), algorithm Check of Fig. 3 is run: on input Lv,i[b] and Iv,i[b], it re-
computes the randomness rv,i used to sample elements from Lv−2i−1t,i−1[b] and
Lv,i−1[b], checks if this is consistent with what is stored in Iv,i[b], and determines
whether Lv,i[b] was selected from Lv−2i−1t,i−1[b] or from Lv,i−1[b]. If Lv,i[b] was
obtained by extending some element of Lv−2i−1t,i−1[b] to GN |[v−2it,v], then it
must be the case that the last two nodes are exactly v − 2i−1t and v. If this is
not the case, the algorithm returns immediately 0. Otherwise, (v, L(Parents(v)),
gets removed from it, and Check is run recursively on the so obtained opening.

5.3 Scheme Description

Pτ(·)(1λ, 1N , N):

1. Traverse the graph Gn = (V = [N ]0, E) in topological order, starting from
0. At every node v ∈ [N ]0 which is traversed, do the following:
(a) Compute L(v) according to (1).
(b) If t | v and v ∈ [N ], write v = 2k ·h · t, with h odd and k ∈ N0. For j ∈ [t]:

Lv,0[j] := Path∗(v − t, v − t+ j, v), Iv,0[j] := j. (3)

If k ≥ 1, do the following for i ∈ [k]:
i. Compute rv,i := τr(v, i, L(v)).

ii. Choose a random t-subset Sv,i of [2t] via Sv,i := Sample(rv,i).
iii. Set u := v − 2i−1 · t.
iv. For j ∈ [t], write Sv,i[j] = at+ b with a ∈ {0, 1} and b ∈ [t], and set

Lv,i[j] :=

{
(Lu,i−1[b], (v, L(Parents(v)))) if a = 0

((u, L(Parents(u))),Lv,i−1[b]) if a = 1
(4)

Iv,i[j] :=

{
Iu,i−1[b], j if a = 0

Iv,i−1[b], j if a = 1

v. Store Lv,i and Iv,i in memory. Note that by design, Lv,i[j] satisfies

Consistent(Lv,i[j]) = 1. (5)

vi. Erase Lu,i−1, Lv,i−1, Iu,i−1, and Iv,i−1 from memory.
2. Terminate and output π := (φL := L(N),LN,n−c, IN,n−c).
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Incτ(·)(1λ, 1N
′
, N, π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c).
2. Compute N +N ′ = N ′′ and check that N ′′ = 2n

′′
for some n′′ ∈ N,

3. Execute the algorithm Pτ(·)(1λ, 1N
′′
χ) starting from step 1.(a) with a slight

change: traverse the graph G2n′′ starting from N + 1.

Vτ(·)(1λ, 1N , π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c).
2. For all i ∈ [t] :

(a) parse LN,n−c[i] as yi = (yi1 , . . . , yik), for some k ∈ N.
(b) bi := 1 iff the following hold

i. τ`(yik) = φL and
ii. Consistent(yi) = 1 where Consistent is as in Def. 4.

iii. Check(LN,n−c[i], IN,n−c[i], 0, N, n−c) = 1, where the algorithm GCheck
is described in Fig. 3.

3. Return
∧t
i=1 bi

Algorithm Check

On input a path Path, a list of indices ind, a starting node s, an ending node e, and a
recursion index d:

1. Parse Path := (y1, . . . , yk) and ind := (i0, . . . , id) ∈ [t]d+1

2. Compute re,d := τr(e, d, τ`(yk)) and Se,d := Sample(re,d)
3. Write Se,d[id] = at+ b with a ∈ {0, 1} and b ∈ [t]
4. Define m := (e− s)/2
5. If d = 0, do the following:
– Compute the challenge c corresponding to Path
– If a = 0, return 1 iff s + b = c
– If a = 1, return 1 iff s + m + b = c
6. If d ≥ 1, do the following
– If a = 0 and id−1 = b, Check((y1, . . . , yk−1), (i1, . . . , id−1), s, s + m, d− 1)
– If a = 1 and id−1 = b, Check((y2, . . . , yk), (i1, . . . , id−1), s + m, e, d− 1)
– Return 0

Fig. 3. Description of the Check algorithm.

5.4 Efficiency Analysis

We now discuss the efficiency of our scheme in terms of proof size, computation,
and communication.

Proof Size. The proof consists of the sink-label φL and two lists, LN,n−c and
IN,n−c, with t elements each. Each entry in LN,n−c is a path of the form
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Path∗(0, i, N) for some i ∈ [N ]. By Lemma 3, it therefore consists of at most

2 + n(n+1)
2 = O(n2) labels and n+ 1 = O(n) indices. Each entry in IN,n−c is a

tuple of n − c indices in [t], which can therefore be represented using log t bits
each. Since each label can be stored using λ bits, we get that the entire proof
has size at most O(t · (λ · n2 + n)) = O(t · λ · n2).

Prover Efficiency. The prover traverses the N nodes of the skiplist graph GN
in topological order. By the same argument used in [7], the challenges τr(·) can
be evaluated in parallel by computing rv,i := τr(v, i, L(Parents(v))), instead of
rv,i := τr(v, i, L(v)), This is possible as both τ` and τr are random oracles. With
such modification, τ` and τr can be evaluated in parallel, thus the parallel com-
plexity is not increased by the evaluation of τr. Therefore, the parallel complexity
of the prover is bounded by the time needed for O(N) sequential calls to the
random oracle.

As far as the memory complexity of the prover is concerned, by Lemma 2 we
know that the labeling of the skiplist graph GN can be computed using (n+ 1)λ
bits of memory. In our construction, the prover algorithm is moreover storing
at most n + 1 lists Lv,i, where at most 2 of them at any point share the same
“level” i. Using Lemma 3 to compute the memory required to store all such lists,
one obtains that the memory complexity of the prover is bounded by O(t ·λ ·n3).

Verifier Efficiency. The verifier need to check, for each opening of a challenge
node that i) the opening is consistent with φL, ii) that the labels of the opening
are consistent, and that iii) the opening is consistent with the randomness used
while generating the proof. Each opening can be checked in parallel. Checking
consistency of each label in a given opening can also be done in parallel. The
runtime of the verifier is dominated by the runtime of the Check algorithm, which
uses O(n) time to verify that the opening is consistent with the randomness used
in the proof. Therefore, the parallel time needed overall is O(n log t).

5.5 The Security Proof

Theorem 2. Let Π := (Pτ(·),Vτ(·), Incτ(·)) be as in Sect. 5.3 and q be an upper
bound on the total number of queries to τ(·), then Π is an (α, ε)-soundness
incremental PoSW scheme, as per Def. 7, with any α ∈ (0, 1] and

ε =
1 + q2

2λ
+
q(q − 1)

2λ+1
+ q · e−2t·(

1−α
n )

2

.

We remark that the weighted skiplist DAG (GN , ΩN ) over which Π works is
such that ΩN is defined as ∀i ∈ [N ] : ΩN (i) = 1/N . This induces the uniform
distribution over the [N ] challenges.

Proof. (of Theorem 2) Completeness and succinctness are clear from the dis-
cussion in Sect. 5.4. We analyze soundness. The soundness guarantees of our
construction rely on the soundness guarantees of the original interactive PoSW
construction from Sect 5.3 modulo a number of hybrids that reflect the more
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power the adversary P̃ has in the security experiment of the incremental PoSW
scheme. This power comes from the fact that P̃ gets to know some of its possible
challenges early on during its computation. More precisely, before computing
the label of the sink node which defines the set of challenges, P̃ gets to know
that some nodes would not belong to its challenges. We will show that this extra
power gives P̃ only a negligible advantage over the interactive counterpart PoSW.
We start by describing the hybrid games, the last of which, almost corresponds
to the security experiment in the interactive PoSW scheme.

Exp
τ(·)
P̃,0

(1λ, 1N ) ∈ {0, 1}: Sample χ ← {0, 1}λ, run π ← P̃τ(·)(1λ, 1N , χ), and

observe its queries Qτ` ∪ Qτr where Qτ` := {(x, y) : y = τ`(x)} and Qτr :=
{(x, y) : y = τr(x)} and τ`, τr are as in (2). Use Qτ` to build the query graph
QG := (V,E).

The query graph has as vertices the queries in Qτ` and an edge is added
between two vertices if and only if these two vertices have a corresponding edge
in the skiplist graph GN := ([N ]0, EN ) and that the queries are consistent on
that edge. Formally, let V,E := ∅, then we populate them as follows:

For every vi := (xi, yi), vj := (xj , yj) ∈ Qτ` ,

add vi, vj to V and the edge (vi, vj) to E iff xi ≺ xj w.r.t. the skiplist graph
GN and the operator ≺ as in Def. 2. If (xj = (N, x′j), yj) ∈ V for some x′j , then
check whether yj = φL and if not, remove vj from V and all its incoming edges;
note that yj = φL implies that xj ≺ φL.

If π is invalid output 0, otherwise let π := (φL,LN,n−c, IN,n−c) be a valid
proof: ∀i ∈ [t], parse LN,n−c[i] as zi = (zi1 , . . . , zik) for some k ∈ N. As π is a
valid proof, it holds that Consistent(zi) = 1 and that τ`(zik) = φL. By definition
of Consistent, this means that

si := (zi1 , . . . , zik , φL) , (6)

forms a τ`-sequence according to Def. 6.
Finally define the output of the experiment to be 1 if and only if π is valid and

∀i ∈ [t], si is extractable from QG. Formally, we say that si := (zi1 , . . . , zik , φL)
is extractable from QG if

∀j ∈ [k − 1], (zij , yij ) ∈ V and that (zik , φL) ∈ V . (7)

Exp
τ(·)
P̃,1

(1λ, 1N ) ∈ {0, 1}: This experiment is identical to Exp
τ(·)
P̃,0

(1λ, 1N ) except

that Exp
τ(·)
P̃,1

(1λ, 1N ) doesn’t check the winning condition above that requires that

∀i ∈ [t], si is extractable from QG, i.e., Exp
τ(·)
P̃,1

(1λ, 1N ) = 1 iff π is valid.

Proposition 1. Let q upper-bounds the total number of queries P̃τ(·) makes to
τ : {0, 1} → {0, 1}λ, then∣∣∣Pr

[
Exp

τ(·)
P̃,0

(1λ, 1N ) = 1
]
− Pr

[
Exp

τ(·)
P̃,1

(1λ, 1N ) = 1
]∣∣∣ ≤ 1

2λ
+
q(q − 1)

2λ+1
. (8)
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The proof of Proposition 1 boils down to either finding a collision under τ` from
at most q queries, or that P̃ can guess the output of τ`. The latter happens with
probability 1/2λ and the former with probability q(q−1)/2λ+1. The formal proof
is given in the full version of the paper.

Recall that t = 2c for some integer c and N = 2n and that t | N . We define
the challenge sampling set D and the challenge re-sampling set C as follow. These
two sets will define a series of games that the security proof will go through.

D := {(v, 0) : ∀v ∈ [N ] s.t. t | v}
C := {(v, 1), . . . , (v, k) : ∀v ∈ [N ] s.t. v = 2k · h · t for odd h and k ≥ 1}

Examples of such (ordered) sets would be

D = {(t, 0), (2t, 0), (3t, 0), (4t, 0), (5t, 0), . . .}
C = {(2t, 1), (4t, 1), (4t, 2), (6t, 1), . . . , (N, 1), . . . , (N,n− c− 1), (N,n− c)}

For β := (v, i) ∈ D∪C, the prover algorithm from Sect. 5.3 implicitly defines
a set of associated t challenges, call it chal(β), and computes for each such set,
the corresponding set of labeled paths, denoted as Lβ . This is formally described
in (3) and (4), however, for readability’s sake, we elaborate upon it below. For
β := (v, 0) ∈ C, the prover algorithm defines chal(β) := {v, v − 1, . . . , v − t+ 1}
and no resampling is needed. However, for β := (v, i) ∈ C, i.e., i ≥ 1, chal(β) is
resampled from chal(β0) and chal(β1) where by construction 7 β0 := (v, i−1) and
β1 := (u, i− 1). The resampling is according to the hypergeometric distribution
as done by Sample.

For β ∈ D∪C, we define functions δ, γ, η : D∪C → [0, 1], event badβ , security

experiment Exp
τ(·)
P̃,β

, and neighbor : D ∪ C → D ∪ C.

– γ(β): the fraction of inconsistent nodes among all possible nodes that could
have been included into chal(β). (Inconsistent in the sense that if vi ∈ chal(β)
and its corresponding path in Lβ is Path∗vi , then Consistent(Path∗vi) = 0.) For
example, for β = (N,n − c), it holds that γ(β) equals the number of all
inconsistent nodes among [N ] divided by N .

– δ(β): the faction of inconsistent nodes in chal(β). We will be interested in
analyzing how close δ(β) is to γ(β).

– For α from Theorem 2, define

η(β) :=
i

n− c
· (1− α) . (9)

– Event badβ is defined whenever a re/sampling takes place, i.e., when τr(β, ·)
is called

badβ := 1 ⇔ δ(β) < γ(β)− η(β) . (10)

– neighbor(β) := β′: Let C∗ ⊆ C be the (ordered) set on whose elements P̃
issued resampling queries, i.e., τr(β, ·) is a resampling query on β ∈ C∗. If β
is the first such element in C∗, then set β′ = 1, and otherwise β′ is defined
to be the previous element in C∗.

7 See Sect. 5.3 and/or Fig. 1.
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– Exp
τ(·)
P̃,β

(1λ, 1N ) ∈ {0, 1}: this is identical to its neighboring Exp
τ(·)
P̃,β′

(1λ, 1N )

except it outputs 0 if badβ = 1.

Proposition 2. For every β ∈ D∪C and β′ := neighbor(β), the following holds∣∣∣Pr
[
Exp

τ(·)
P̃,β

(1λ, 1N ) = 1
]
− Pr

[
Exp

τ(·)
P̃,β′

(1λ, 1N ) = 1
]∣∣∣ ≤ e−2t·( 1−α

n−c )
2

. (11)

Before proving Proposition 2, we make a few observations. For the first β ∈ C∗,
it holds that Exp

τ(·)
P̃,β′

= Exp
τ(·)
P̃,1

, and the last experiment corresponds to β =

(N,n − c) ∈ C. As the total number of such experiments is at most q, and the
distance between each neighboring experiments is bounded by Proposition 2, it
then holds by a simple union bound that∣∣∣Pr

[
Exp

τ(·)
P̃,1

(1λ, 1N ) = 1
]
− Pr

[
Exp

τ(·)
P̃,(N,n−c)(1

λ, 1N ) = 1
]∣∣∣ ≤ q · e−2t·( 1−α

n−c )
2

.

(12)
Observe that for the final game with β = (N,n− c) corresponds to the sink

vertex GN . If badβ = 0, then the soundness analysis is similar to the analysis
of the interactive PoSW given in [2], and recalled in Sect. 5.3. More concretely,
by definition it follows that η(β) = (1 − α). Now if P̃ made Qτ` queries of
sequential weight Ωseq(Qτ`) < α, then by Lemma 1, except with probability
ετ` := 1/2λ + q2/2λ, this must mean that γ(β) > (1 − α), which then implies
that δ(β) > 0, which implies, that V rejects the proof, as the proof will contain
at least one inconsistent path. Therefore,

Pr
[
Exp

τ(·)
P̃,(N,n−c)(1

λ, 1N ) = 1
]
≤ ετ` :=

1

2λ
+
q2

2λ
. (13)

Before bounding the final probability, we observe that in the probability ετ`
above, 1/2λ accounts for guessing the output of τ`. And as we accounted for
such event in analyzing Proposition 1, we conclude that the probability ε in
Theorem 2 can be upper bounded by summing the probability in (8), (11), (12),
(13) and subtracting 1/2λ. This concludes the proof. ut

Proof of Proposition 2. The proof makes use of the following lemma, which
is simply a restatement from [7].

Lemma 5. Let t be an integer, b ∈ {0, 1}, δb ∈ [0, 1], and sets Ub s.t. |Ub| = t,
U0 ∩U1 = ∅ and Ub contains elements that are either consistent or inconsistent
with δb being the fraction of inconsistent elements in Ub, and

δb ≥ γb − ηb , (14)

for some global values γb, ηb ∈ [0, 1].
We sample from U0∪U1 without replacement in t draws a set U , with |U | = t,

and let X be the random variable indicating the number of inconsistent elements
in U . Then an arbitrary η ∈ [0, 1], we have

Pr

[
X ≤ t ·

(
γ0 + γ1

2
− η
)]
≤ e−2t·(η−

η0+η1
2 )

2

. (15)
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The proof of Lemma 5 uses a Hoeffding bound and is given in the full version
of the paper.

Proof (of Proposition 2). The proof amounts to bounding the probability of
badβ . We have two cases: If β = (v, 0) ∈ D, then by definition, badβ = 0 as
η(β) = 0 and δ(β) = γ(β). If β = (v, i) ∈ C, then we resample t elements
according to Sample from chal(β0) ∪ chal(β1) for some β0 = (v, i − 1) and β1 =
(u, i − 1) for which badβ0

= badβ1
= 0, for otherwise we would not be in this

game. Then we have that γb := γ(βb), δb := δ(βb), ηb := η(βb) satisfy

δb ≥ γb − ηb = γb −
i− 1

n− c
· (1− α) . (16)

Now applying Lemma 5 on Ub := chal(βb), η := η(β) and noting that γ :=
γ(β) := (γ0 + γ1)/2, we get

Pr[badβ = 1] = Pr[t · δ(β) < t · (γ − η)] ≤ e−2t·(
i·(1−α)
n−c −

(i−1)·(1−α)
n−c )

2

= e−2t·(
1−α
n−c )

2

.

ut

6 Incremental PoSW for General Distributions

In this section, we give our skiplist-based iPoSW for general weight distributions.
We characterize these distributions as t-incrementally sampleable distributions.
The construction is similar to the construction of Sect. 5, except that, we de-
vise and use a new on-the-fly sampling technique, which samples according to
the Poisson Binomial distribution. The need for the new sampling technique is
motivated by applying Hoeffding-like tail bounds when sampling from general
distributions, rather than sampling without replacement uniformly at random
as is the case for the construction from Sect. 5 and that of [7]. The new sampling
technique introduces a small modification to the main construction: the prover
now needs to additionally give out, as part of its proof, subsets that are used for
the resampling algorithm. These are needed for the verifier to validate the consis-
tency of the resampling. Moreover, the verifier will have to check that number of
nodes (and their weight) of such subsets is within appropriate intervals centered
around their expectation.

Our on-the-fly sampling technique. Let Ω := {Ω2i·t : [2i · t] → [0, 1]}i≥0 be
a family of (weight) distributions, U0 ⊆ [2i · t] and U1 ⊆ [2i · t + 1 : 2i+1 · t]
sets sampled according to t · Ω2i·t.(Technically, as the domains of Ω2i·t and U1

mismatch, we think of the 2i · t-shifted U1 as being sampled from t ·Ω2i·t.)
The goal of the on-the-fly sampling is to sample W from U := U0 ∪ U1 such

that W is distributed according to t·Ω2i+1·t. That is, instead of directly sampling
W from [2i+1 · t] according to t · Ω2i+1·t, the on-the-fly sampling allows one to
first sample each U0 and U1 individually according to t ·Ω2i·t, and then sample
W from U . For the sampling of W from U to be possible, it necessary that every
u ∈ U is at least as probable in Ω2i·t as in Ω2i+1·t. This is reflected in conditions
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2 and 3 in Def. 8. Furthermore, technically, it must be that t ·Ω2i·t ≤ 1 for every
i. This is implied by conditions 1, 2 and 3 in Def. 8.

The t factor in the sampling process above is stipulated by the security of
iPoSW schemes, which requires the prover to open t challenges. This corresponds
to requiring that W has t samples. Our technique ensures this on expectation.

GSample (Fig. 4) formalizes how W is sampled from U . Note in Fig. 4, W
consists of indices of elements from U , rather than the actual elements.

6.1 Incrementally Sampleable Distributions

We characterize weight distributions that can be on-the-fly sampled. These are
t-incrementally sampleable (weight) distributions.

Definition 8. For t ∈ N+ and a family of weight functions Ω := {Ω2i·t : [2i ·
t]→ [0, 1]}i≥0, we say Ω is t-incrementally sampleable if the following hold:

1. ∀j ∈ [t] : t ·Ωt(j) ≤ 1
2. ∀i ≥ 0,∀j ∈ [2i · t] : Ω2i+1·t(j) ≤ Ω2i·t(j)
3. ∀i ≥ 0,∀j ∈ [2i · t+ 1 : 2i+1 · t] : Ω2i+1·t(j) ≤ Ω2i·t(j − 2i · t)

It is immediate to see that the uniform distribution on [N ] is t-incrementally
sampleable for any t ≤ N . Another distribution that is of particular interest to
the application of our incremental PoSW to incremental SNACKs is the SNACK
distribution of [2]. For a fixed positive integer ` and every positive integer m,
the SNACK distribution Ωm : [m]→ [0, 1] is defined as

Ωm(j) = Sm ·
1

m+ `− j
where Sm :=

 m∑
j=1

1

m+ `− j

−1 . (17)

Lemma 6. The SNACK distribution Ω := {Ω2i·t}i≥0 where Ω2i·t is as in (17)
is t-incrementally sampleable for ` ≥ t · St.

The proof is elementary and is given in the full version of the paper.

6.2 Scheme Description

Our iPoSW scheme for t-sampleable distributions is in spirit similar to the
iPoSW scheme from Sect.5. The main difference is that we employ our new
on-the-fly sampling technique. This has correctness and security consequences
that we address.

Recall that the on-the-fly sampling technique from Sect. 5 always produces
W of size exactly t from intermediate sets U0 and U1 which are implicitly defined.
This allows the verifier V to check the correctness of W . In contrast, our on-the-
fly sampling produces W whose size is t on expectation, and more critically, the
intermediate sets U0 and U1 are not implicitly defined, and hence, the prover P
has to give U0 and U1 for V to verify the correctness of W . This results in an
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increase in the proof size: for each challenge v, P gives logN pairs of sets with
total expected size 2 · t · log2N . The increased proof size is still succinct though.

This could potentially allow a malicious prover P̃ to manipulate the sets U0

and U1 such that the challenges in W don’t include challenges in U0 ∪ U1 that
the adversary can’t correctly answer. To get around this issue, P commits to
the sampling sets across the execution of the protocol. This ensures that the
sets in different challenges are fixed and consistent with each other. However,
this doesn’t rule out that P̃ would not gain any advantage by committing to
manipulated sets. We address this issue in the security proof by showing that
except with a negligible probability, P̃ gains no advantage in cheating on the
sampling sets.

We give the formal construction with similar parameters as in Sect. 5.1 and
the following additional parameters: tmin := (1− ζ) · t and tmax := (1 + ζ) · t for
ζ ∈ (0, 1) , ωmin,d,Ω ∈ (0, 1) and ωmax,d,Ω ∈ (0, 1) for d ∈ N.

Pτ(·)(1λ, 1N , N,Ω):

1. Traverse the graph Gn = (V = [N ]0, E) in topological order, starting from
0. At every node v ∈ [N ]0 which is traversed, do the following:
(a) Compute L(v) according to (1).
(b) If t | v and v ∈ [N ], write v = 2k ·h · t, with h odd and k ∈ N0. For j ∈ [t]:

Lv,0[j] := Path∗(v − t, v − t+ j, v), Iv,0[j] := j (18)

Uv,0[j] := v − t+ j, Uv,0[j] := ⊥

If k ≥ 1, do the following for i ∈ [k]:
i. Compute u := v − 2i−1 · t
ii. Compute h0 := |Uu,i−1|, h1 := |Uv,i−1|

iii. Compute rv,i := τr(v, i, L(v), Uu,i−1, Uv,i−1).
iv. Choose a subset Sv,i from [h0 + h1] as

Sv,i := GSample(i, Ω, t, Uu,i−1, Uv,i−1; rv,i) with GSample in Fig. 4.
v. For j ∈ [|Sv,i|], do the following

a :=

{
0 if Sv,i[j] ≤ h0
1 if Sv,i[j] > h0

and b := Sv,i[j]− h0 · a

Lv,i[j] :=

{
(Lu,i−1[b], (v, L(Parents(v)))) if a = 0

((u, L(Parents(u))),Lv,i−1[b]) if a = 1
(19)

Iv,i[j] :=

{
Iu,i−1[b], j if a = 0

Iv,i−1[b], j if a = 1

Uv,i[j] :=

{
Uu,i−1[b], Uu,i−1, Uv,i−1 if a = 0

Uv,i−1[b], Uu,i−1, Uv,i−1 if a = 1

Uv,i[j] :=

{
Uu,i−1[b] if a = 0

Uv,i−1[b] if a = 1
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vi. Store Lv,i, Iv,i, Uv,i, and Uv,i in memory. Note that by design, Lv,i[j]
satisfies Consistent(Lv,i[j]) = 1.

vii. For x ∈ {u, v}, erase from memory Lx,i−1, Ix,i−1, Ux,i−1, and Ux,i−1.
2. Terminate and output π := (φL := L(N),LN,n−c, IN,n−c,UN,n−c, UN,n−c).

Incτ(·)(1λ, 1N
′
, N, π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c,UN,n−c, UN,n−c).
2. Compute N +N ′ = N ′′ and check that N ′′ = 2n

′′
for some n′′ ∈ N,

3. Execute the algorithm Pτ(·)(1λ, 1N
′′
χ) starting from step 2 with a slight

change: traverse the graph G2n′′ starting from N + 1.

Vτ(·)(1λ, 1N , π, χ):

1. Parse π as (φL,LN,n−c, IN,n−c,UN,n−c, UN,n−c).
2. If |LN,n−c| 6= |UN,n−c|, return 0.
3. Let s := |LN,n−c|. For all i ∈ [s] :

(a) Parse LN,n−c[i] as yi = (yi1 , . . . , yik), for some k ∈ N.
(b) bi := 1 iff the following hold

i. τ`(yik) = φL
ii. Consistent(yi) = 1 where Consistent is as in Def. 4,

iii. GCheck(LN,n−c[i], IN,n−c[i],UN,n−c[i], UN,n−c, 0, N, n−c) = 1, where
the algorithm GCheck is described in Fig. 5, and

4. Return
∧s
i=1 bi

Algorithm GSample: On input (i, Ω, t, U0, U1; r)
1. Define a normalization factor:

ψ(i, j) :=


1/t if i = 1

Ω2i−1·t(j) if i > 1 and j ∈ [2i−1 · t]
Ω2i−1·t(j − 2i−1 · t) if i > 1 and j ∈ [2i−1 · t+ 1 : 2i · t]

(20)

2. Initialize S := ∅ and ∀j ∈ [|U0|+ |U1|], do:
(a) If j ≤ |U0|, let v := U0[j], else v := U1[j]
(b) Use r to toss a biased coin that returns 1 w.p. p := Ω2i·t(v)/ψ(i, v) and 0 w.p.

1− p.
(c) S := S ∪ {j} iff the coin outcome is 1

3. Return S

Fig. 4. Algorithm GSample

6.3 Theorem Statement and Proof Outline

The main difference in the constructions of Sect. 5 and 6 is that we apply the
new on-the-fly sampling technique as employed in GSample in Fig. 4 to two sets
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Algorithm GCheck

On input a path Path, a list of indices ind, a list of lists of nodes U , a list of nodes
U , a starting node s, an ending node e, and a recursion index d:
1. Parse Path := (y1, . . . , yk) and ind := (i0, i1, . . . , id) ∈ Nd+1

2. Parse U := (U0,0, U1,0, U0,1, U1,1, . . . , U0,d−1, U1,d−1)
3. Compute re,d := τr(e, d, τ`(yk), U0,d−1, U1,d−1) and

Se,d := GSample(d,Ω, t, U0,d−1, U1,d−1; re,d)
4. Let h0 = |U0,d−1| and h1 = |U1,d−1|
5. Let w0 = Ω2d−1·t(U0,d−1) and w1 = Ω2d−1·t(U1,d−1)
6. Let U0,d−1||U1,d−1 be the list of nodes obtained by concatenating lists U0,d−1

and U1,d−1. Let U∗ := {(U0,d−1||U1,d−1)[s] : s ∈ Se,d}. If U 6= U∗, return 0
7. Write

a :=

{
0 if Se,d[id] ≤ h0

1 if Se,d[id] > h0

and b := Se,d[id]− h0 · a.

8. Define m := (e− s)/2
9. If d = 1, do the following:
– Compute the challenge c corresponding to Path
– Compute j such that c ∈ [j · t+ 1 : (j + 1) · t]
– If a = 0, return 1 iff s + b = c and
U0,0 = [j · t+ 1 : (j + 1) · t] and U1,0 = [(j + 1) · t+ 1 : (j + 2) · t]

– If a = 1, return 1 iff s + m + b = c and
U0,0 = [(j − 1) · t+ 1 : j · t] and U1,0 = [j · t+ 1 : (j + 1) · t]

10. If d > 1, do the following
– If a = 0, Se,d[id] = id−1,

(1− ζ) · t ≤ h0, h1 ≤ (1 + ζ) · t and ωmin,d−1,Ω ≤ w0, w1 ≤ ωmax,d−1,Ω

GCheck((y1, . . . , yk−1), (i1, . . . , id−1), (U0,0, U1,0, . . . , U0,d−2, U1,d−2), U0,d−1, s, s+
m, d− 1)

– If a = 1, Se,d[id] = h0 + id−1,
(1− ζ) · t ≤ h0, h1 ≤ (1 + ζ) · t and ωmin,d−1,Ω ≤ w0, w1 ≤ ωmax,d−1,Ω

GCheck((y2, . . . , yk), (i1, . . . , id−1), (U0,0, U1,0, . . . , U0,d−2, U1,d−2), U1,d−1, s, s +
m, d− 1)

– Return 0

Fig. 5. Description of the GCheck algorithm.

U0 and U1 to obtain W . A second difference is that, while in Sect. 5, the sam-
pling sets U0, U1 are implicitly defined, and hence are assumed to be given to
the verifier V, they are explicitly provided by the prover P in the main construc-
tion. Modulo these differences, the two constructions are essentially identical. In
Theorem 3 below, the bound q ·ε0 comes from analyzing our on-the-fly sampling,
and the bound q · ε1 comes form the analysis of a new scenario where a malicious
prover commits to sampling sets that are maliciously chosen.

Theorem 3. Let Π := (Pτ(·),Vτ(·), Incτ(·)) be as in Sect. 6 and q be an upper
bound on the total number of queries to τ(·), then Π is an (α, ε)-soundness
incremental PoSW scheme, as per Def. 7, with any α ∈ (0, 1] and

ε =
1 + q2

2λ
+
q(q − 1)

2λ+1
+ q · (ε0 + ε1) (21)
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where ε0, ε1 ∈ (0, 1) depend on the underlying t-incrementally sampleable weight
distribution Ω. For uniform Ω, we have

ε0 ≤ e
− t·(1−α)2·ζ2(n−c)+4

(n−c)2·(2−ζ)2(n−c)+3 and ε1 ≤ 2−ζ·t .

In the full version, we give concrete ε0, ε1 for any t-incrementally sampleable
Ω, as well as concrete upper bounds for the SNACK distribution.
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