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ABSTRACT Common block ciphers like AES specified by the NIST or KASUMI (A5/3) of GSM are
extensively utilized by billions of individuals globally to protect their privacy and maintain confidentiality in
daily communications. However, these ciphers lack comprehensive security proofs against the vast majority
of known attacks. Currently, security proofs are limited to differential and linear attacks for both AES and
KASUMI. For instance, the consensus on the security of AES is not based on formal mathematical proofs
but on intensive cryptanalysis over its reduced rounds spanning several decades. In this work, we introduce
new security proofs for AES against another attack method: impossible differential (ID) attacks. We classify
ID attacks as reciprocal and nonreciprocal ID attacks. We show that sharp and generic lower bounds can be
imposed on the data complexities of reciprocal ID attacks on substitution permutation networks. We prove
that the minimum data required for a reciprocal ID attack on AES using a conventional ID characteristic
is 266 chosen plaintexts whereas a nonreciprocal ID attack involves at least 288 computational steps. We
mount a nonreciprocal ID attack on 6-round AES for 192-bit and 256-bit keys, which requires only 218

chosen plaintexts and outperforms the data complexity of any attack. Given its marginal time complexity,
this attack does not pose a substantial threat to the security of AES. However, we have made enhancements to
the integral attack on 6-round AES, thereby surpassing the longstanding record for the most efficient attack
after a period of 23 years.

INDEX TERMS Advanced Encryption Standard (AES), block cipher, confidentiality, cryptanalysis, impos-
sible differential attack, integral attack, reciprocal attack, Substitution Permutation Network (SPN)

I. INTRODUCTION
Substitution permutation network (SPN) ciphers constitute a
fundamental category of block ciphers that are widely used
in modern cryptography. The Advanced Encryption Standard
(AES) specified by the National Institute of Standards and
Technology (NIST) [1] is an example of an SPN cipher that
is extensively employed to provide confidentiality in various
cryptographic protocols, such as Transport Layer Security
(TLS),WiFi ProtectedAccess (WPA), and the Signal protocol
utilized in applications like WhatsApp. In this context, the
cryptanalysis of SPN ciphers in generic settings plays a cru-
cial role in comprehending the security of commonly utilized
ciphers, and in evaluating their resilience against potential
attacks.

In contrast to the majority of previous research on crypt-
analysis, which has largely focused on specific ciphers, this
study adopts a more abstract and theoretical approach by ex-

amining the data complexity of reciprocal impossible differ-
ential (ID) attacks and the time complexity of nonreciprocal
ID attacks on SPN ciphers in generic settings. Reciprocal
attacks are those that require the same amount of data com-
plexity to prepare the necessary data for the attack, regardless
of whether the attacker has access to the encryption oracle
or the decryption oracle. To provide a precise description of
reciprocal attacks, we present Definition 1, and we establish
various results regarding the minimum data requirements for
reciprocal ID attacks on generic SPN ciphers.

The data requirement of an attack can be considered the
most vital and critical complexity among time and memory
complexities. This is due to the fact that data collection may
not always be feasible, and the attacker has no control over the
throughput of the oracle producing the data. Conversely, ad-
vancements in time and memory complexities are achievable
through the efficient utilization of high-speed, parallel super-
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computer platforms. Therefore, low-data complexity attacks
stand out as particularly noteworthy. For instance, Bouillaguet
et al. explore the possibility of attacking AES with only one
or two plaintext/ciphertext pairs [2]. Hence, in this work, we
investigate the minimum data requirement of reciprocal ID
attacks on AES.

We focus on establishing lower bounds for data and time
complexities related to reciprocal and nonreciprocal ID at-
tacks on AES respectively. Despite AES being a subject of
extensive research, comprehensive security proofs are notably
lacking for various attack methods. The designers of AES
have provided security proofs against differential and linear
attacks [3]. Subsequent efforts have aimed at refining and
enhancing these security bounds [4]. However, it is important
to emphasize the existing gap in security proofs against other
potential attack methods. We address this gap specifically in
the context of ID attacks in this work.

Cryptanalysis techniques on SPN ciphers, particularly
AES, have made significant progress. One example is the
class of impossible differential (ID) attacks which were in-
troduced by Biham et al. [5] and Knudsen [6] independently.
The distinguisher in an ID attack utilizes an input-output
difference of an encryption function that is not generated
by any key. We classify ID attacks on SPN ciphers into
reciprocal and nonreciprocal attacks. Reciprocal ID attacks
are identified as those that can be executed with the same
data complexity in the chosen ciphertext (CC) scenario as in
the chosen plaintext (CP) scenario. It is apparent that almost
all ID attacks on well-known SPN ciphers are reciprocal, and
as yet there is no nonreciprocal ID attack on AES. While it
seems that reciprocal ID attacks are generally more efficient
and faster than nonreciprocal ones, this study reveals that
reciprocal ID attacks on SPN ciphers require a considerable
amount of data.

A. RELATED WORK
The prevalent approach in security of AES often involves
an ad-hoc paradigm, and intensively mounting attacks on
reduced rounds as a heuristic measure. These attacks include
Meet-in-The-Middle (MiTM) attacks (such as those proposed
by Demirci and Selçuk [7], Dunkelman et al. [8], [9], Wang
and Zhu, [10], Derbez et al. [11], Li et al. [12], Gilbert
and Minier [13]), square attacks (such as those proposed by
Ferguson et al. [14]), biclique attacks (such as those proposed
by Bogdanov et al. [15], Tao and Wang [16]), yoyo attacks
(such as those proposed by Saha et al. [17] and Rahman et al.
[18]), truncated boomerang attacks (such as those proposed
by Bariant and Leurent [19]), zero difference attacks (such
as those proposed by Bardeh and Rijmen [20]), algebraic
attacks (such as those proposed by Zhao et al. [21]), mixture
differential attacks (such as those proposed by Grassi [22]),
mixture integral attack (such as those proposed by Grassi and
Schofnegger [23]) and the ID attacks. Even, its key schedule
is cryptanalyzed intensively [9], [24].

Several ID attacks have been proposed for AES, all of
which rely on exploiting the 4-round conventional ID char-

acteristics as described in [25]. To date, no other ID charac-
teristics for AES have been identified. In fact, Sun et al. have
demonstrated that AES has no 5-round ID unless the specifics
of the S-Box are disregarded [26]. Wang and Jin [27] have
also verified this claim through the "dependent tree" method,
although their conclusion is based on the assumption that all
the round keys are independent and uniformly random. In
addition, Boura and Coggia [28] have demonstrated that no
5-round ID with two active bytes exists for AES, using MILP
solvers.
The distinguishing feature of ID attacks on AES is that they

are all reciprocal and require extensive data. These attacks
rely on an outrageous number of chosen plaintexts to identify
all the incorrect keys in the initial and final rounds. Boura
et al. have introduced bounds on data, time, and memory
complexities for various generic types of block ciphers [29].
However, the bound for data complexity is notably loose.
Several ID attacks on AES have different data requirements,
ranging from 2117.5 CP in [30] to 275.5 CP in [31], and 292 CP
in [32] and [33] when 4-round conventional ID characteristics
are enclosed by initial and final rounds. Remark that the 6-
round attack in [31] has the lowest data requirements among
all the ID attacks on AES.
The category of practical attacks or attacks with low data

on few rounds of AES, has gained popularity in the crypt-
analysis of AES for understanding its security [2], [3], [17],
[34]–[38]. The critical lower bound of the number of rounds
for a dramatic jump in the required data complexity can be
considered as six. This is supported by findings that while
there exist attacks on 5-round AES that require only 8 CP
[39], attacks on 6-round AES require at least 226 CP [34].
The square attack introduced by Daemen et al. on 6-round

AES in [40] held the record formore than two decades, requir-
ing 232 chosen plaintexts. Although some improved versions
of the square attack, such as the partial sum technique [36] and
improved meet-in-the-middle attacks [10], [11], have better
time complexities, their data complexities could not surpass
232 chosen plaintexts. Bar-On et al. improved the record to
227.5 chosen plaintexts with the mixture meet-in-the-middle
technique [35]. They further enhanced their analysis and
achieved a data complexity of 226 chosen plaintexts in [34].

Table 1. Attacks a 6- round AES with minimal data. Memory is in Byte.
Data is CP. *: We make a minor amendment to rectify the complexity
computation in [36]. See Section VIII

.

Variant Data Time Memory Source
All 227.5 281 227.5 [35]
All 226 280 235 [34]
All 6 · 232 246 * 6 · 236 [36]
All 232 272 236 [3]
AES-128 238 283 233 [41]
All 233 244 237 Section VIII
AES-128 232 243 3 · 236 Section VIII
AES-192 218 2180 278 Section VII
AES-256 218 2186 243 Section VII

2 VOLUME 11, 2023



O.Kara: New Security Proofs and Complexity Records for AES

B. OUR CONTRIBUTIONS
We present a set of parameters that can be used to identify
an ID attack, and we investigate the data complexity of re-
ciprocal ID attacks on SPN ciphers in a generic setting, using
these parameters. Our analysis yields several theoretical and
generic results concerning the minimum data requirement
of such attacks. These results are presented in Theorem 2,
Theorem 4, and Theorem 5. By offering a more extensive and
rigorous comprehension of the minimum data requirements
of reciprocal ID attacks, our results serve to augment the
current understanding of this class of attacks.

Based on the parameters of the ID characteristic, we pro-
pose a generic formula for estimating the minimum data
complexity of a reciprocal ID attack on an SPN cipher in The-
orem 5. This formula is independent of the sieving method
employed in the attack. Specifically, we demonstrate that
a reciprocal ID attack that exploits at least one structure
in the encryption and decryption directions necessitates at
least the cube root of 2n+1/p data by Theorem 3, where n
represents the block length of the SPN cipher and p denotes
the probability that an input/output difference pair leads to
the ID characteristic. To illustrate, we find that the minimum
amount of data required for such an attack is 243 CP for a
128-bit block length.

In order to investigate if there are reciprocal ID attacks that
attain the lower bound established by Theorem 5 with respect
to data complexity, we propose Definition 2. These attacks
are denoted as "reciprocal ID attacks with optimal data". It
is worth noting that the most efficient ID attacks currently
known do not fall under this category. Furthermore, there is
a lack of literature on reported reciprocal ID attacks on AES
with optimal data, leading to an open question regarding the
precision of the lower bound presented in Theorem 5.

We provide comprehensive lower bounds on either data
or time complexities for all types of ID attacks on AES.
We prove that any reciprocal ID attack on AES exploiting
a 4-round conventional ID characteristic and containing at
least one initial and one final round uses at least 266 chosen
plaintexts (CP) in Theorem 7. We observe that all the ID
attacks on AES utilize 4 active bytes either in the first or in the
last round yielding only one active byte after theMC orMC−1

operations. We prove that the data complexity is bounded
by 262 for these attacks in Theorem 8 whatsoever the ID
characteristic is. Moreover, we prove that any nonreciprocal
ID attack on AES, which exploits a conventional ID charac-
teristic, has a time complexity of at least 288 computational
steps in Theorem 9. Consequently, we introduce security
bounds against a different type of attack for the first time since
introducing the security bounds against differential and linear
attacks for AES.

To assess the degree of sharpness of the bounds established
in Theorem 7 and Theorem 2, we conduct a 6-round recipro-
cal ID attack with 266 chosen plaintexts. While not the most
effective attack, we present this attack to demonstrate that
it reaches the bound described in Theorem 2 and represents
the first instance of a reciprocal ID attack with optimal data.

This means that it attains the bound in Theorem 5 as well,
establishing the sharpness of these theorems.
We have successfully mounted a couple of nonreciprocal

ID attacks on 6-round AES with a record low data require-
ment of only 218 CP, to illustrate that ID attacks do not
necessarily require a lot of data. This result is particularly
surprising as ID attacks are known to typically require signif-
icantly larger amounts of data. The theoretical infrastructures
we have developed for the data requirements of reciprocal ID
attacks in this work have enabled us to establish the frame-
works for our nonreciprocal attacks with minimal data. While
our attacks may not be the most optimal with their marginal
time complexities, it is notable for their remarkable efficiency
in terms of data usage. To compensate it for having a practical
application, we improve the integral attack through the partial
sum technique in [36]. Our attack is the fastest attack on 6-
round AES, surpassing the prior record established over a
span of 23 years. A summary of low-data complexity attacks
on 6-round AES is presented in Table 1.
Consequently, we contribute to the theoretical character-

ization of the data requirements of reciprocal ID attacks in
this work. Our other crucial contribution is to provide security
bounds of certain levels for AES against both reciprocal and
nonreciprocal ID attacks by utilizing our generic statements
on SPN ciphers. Moreover, we mount an attack of the min-
imum data on 6-round AES-192 and AES-256; and another
attack of the best complexity on 6-round AES.

C. ORGANIZATION
The paper is structured as follows. In Section II, we provide a
concise overview of SPN ciphers and AES. Subsequently, we
present the framework of our work and investigate the data
complexities of the reciprocal ID attacks on SPN ciphers in
Section III. We establish a lower bound on the data of the
reciprocal ID attacks and a lower bound on the time com-
plexities of nonreciprocal ID attacks on AES in Section IV.
Our reciprocal ID attack with optimal data and nonreciprocal
ID attack on AES are detailed in Section V and Section VI,
respectively. Section VII outlines our attack with minimum
data. We introduce our improvement of the integral attack in
Section VIII. Finally, we conclude the paper in Section IX
with a conjecture.

II. PRELIMINARIES
We give a brief decryption of SPN (Substitution permutation
network) ciphers and AES (Advanced Encryption Standard)
along with the notation we comply with in this section.

A. SUBSTITUTION PERMUTATION NETWORKS
A substitution permutation network is a block cipher EK :
GF(2)n → GF(2)n. For a fixed k-bit key K , EK is an n-
bit permutation. Its inverse, DK , is the decryption function
such that DKEK (P) = EKDK (P) = P ∀P ∈ GF(2)n. EK is
supposed to behave like a random permutation to be a secure
cipher.
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The round function of an SPN cipher consists of key addi-
tion, an S-box layer, and a linear transformation. The input is
added to the round key. Then, each block is divided into n/s
subblocks of s-bit in an SPN cipher. We call each subblock
a word. Subsequently, S-boxes are executed to n/s words
simultaneously. That is, each S-box is a nonlinear permutation
from GF(2)s into GF(2)s. The last operation of the round
function is the linear transformation. It is a multiplication by
an invertible matrix in the n× n general linear group over the
field GF(2). There is an extra round key addition at the end
of the last round.

B. ADVANCED ENCRYPTION STANDARD
Advanced Encryption Standard (AES), is the most prominent
SPN cipher, as being the FIPS 197 standard [1]. Its block
length is 128-bit. The key lengths are k = 128, 192 or
k = 256 bits, corresponding to r = 10 round, r = 12
round, or r = 14 round encryptions respectively. We give a
brief description of AES. One can refer to [1], [3] for detailed
information. It is convenient to demonstrate a round state of
AES by a 4×4matrix. There are four round functions of AES
which are given as follows. These functions are depicted in
Figure 1.

a: SubBytes (SB):
It is the layer of S-box operations. s = 8 for AES andwe call a
single S-box operation an AES S-box. It substitutes each byte
by another byte according to the look-up table of the AES
S-box bijectively without changing the byte position in the
matrix. There are 16 identical S-boxes.

b: ShiftRows (SR):
Rotates the i-th row i− 1 byte to the left for 2 ≤ i ≤ 4.

c: MixColumns (MC):
Multiplies each column of the input state by a fixed 4 × 4
MDS matrix.

d: AddRoundKey (ARK):
XORs the output state of the ith round with the i-th subkey.
At first, there is a whitening key addition with the plaintext.

TheMC operation is omitted in the last round. We call single
matrix multiplication of one column as MC also for the sake
of simplicity.
SB−1, SR−1 and MC−1 are inverses of SB, SR and MC

respectively. Let the i-th subkey be RKi and let us denote the
j-th column of RKi by RKi{j} = RK{j+ 4i}. Let N = 6 and
N = 8 for the key length to be 192 and 256-bit respectively.
Any column RK{j} of a subkey is computed as

RK{j− N} ⊕ f (RK{j− 1}), if jmod N = 0,
RK{j− 8} ⊕ g(RK{j− 1}), if jmod 8 = 4 and N = 8,
RK{j− N} ⊕ RK{j− 1}, else;

where f and g are functions on columns that consist of S-box,
cyclic shift, and round constant addition operations.

C. NOTATION
The symbols P, C , and K denote a plaintext, ciphertext, and
main key, respectively, in the context of AES (Advanced
Encryption Standard). The notation∆X represents the differ-
ence between a pair of elementsX , where∆P and∆C refer to
the plaintext and ciphertext differences, respectively. To spec-
ify both the output of an AES function and the round number
for an arbitrary output, subscripts are employed. Specifically,
SBi and MCi indicate the output of the data in the i-th round
of the SubBytes and MixColumns operations, respectively.
Likewise, ∆SBi and ∆MCi refer to the output difference of
a pair of data in the i-th round of the SubBytes and Mix-
Columns operations, respectively. Equivalent notations are
employed for the inverse operations, SB−1

i , MC−1
i , ∆SB−1

i ,
and ∆MC−1

i . If it is necessary to specify a particular input
or output of these functions, the standard notation MCi(X),
SBi(X), or MC−1

i (X) is used.
The bytes of a state are denoted by [·] notation. Specifically,

X [i1, i2, . . . , ir ] denotes the (i1 + 1), (i2 + 1), . . . , (ir + 1)-
th bytes of the state X . For example, ∆SB−1

4 [0, 2] denotes
the first and third bytes of an input difference for the SB
operation in the fourth round. The index numbers of words
in the 4× 4 matrix are arranged as depicted in Figure 2. This
matrix arranges words with indices 0, 1, 2, 3 in the first row;
words with indices 4, 5, 6, 7 in the second row; words with
indices 8, 9, 10, 11 in the third row; and words with indices
12, 13, 14, 15 in the last row.

III. RECIPROCAL ID ATTACKS ON SPN CIPHERS
Any attack on a block cipherEK is an algorithmwhose input is
a particular set of plaintext/ciphertext pairs. The output is the
secret key. In general, EK is used as an oracle to produce the
data that the attack makes use of. Alternatively, it is possible
to produce the data through DK . Yet, the number of calls
generally changes. We introduce Definition 1 for a reciprocal
attack if the attack has the same data complexity when it is
mounted on DK as when it is mounted on EK .

Definition 1 Let the data required in a non-adaptive attack
algorithmA on a block cipher be produced by either αe calls
of the encryption oracle EK or αd calls of the decryption
oracle DK . If O(αe) = O(αd) thenA is said to be a reciprocal
attack, where O is the big-O notation. Otherwise, it is a
nonreciprocal attack.

KP (known plaintext) attacks are clearly reciprocal. Because
the same amount of data necessary for a known plaintext
attack can be collected through the decryption oracle. Some
of the CP (Chosen Plaintext) attacks are reciprocal. We show
that ID attacks need not be reciprocal even though any ID
characteristic is valid for the decryption function. To the best
of our knowledge, all the prominent ID attacks on AES in the
literature are reciprocal attacks. Therefore, these attacks can
be mounted as CC (Chosen Ciphertext) attacks with the same
complexities.
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Figure 1. AES round functions
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Figure 2. Word indices in a state.

The literature shows that the most efficient and fastest ID
attacks are reciprocal ID attacks. However, we prove that
reciprocal ID attacks require too much data. We introduce a
lower bound for the data complexity of reciprocal ID attacks
on SPN ciphers. For this, we use the following notation.

• ki/kf : # of independent key bits in the initial/final rounds
involved in producing the input/output differences of the
ID characteristic respectively.

• ni/nf : # of active input/output words in the plain-
text/ciphertext differences respectively.

• Pi/Pf : The probability that a subkey in the initial/final
rounds produces the input/output difference of the ID
characteristic for a given input/output pair respectively.

• Du: The average number of pairs used in the attack.
• Ui/Uf : # of structures in plaintexts/ciphertexts respec-

tively.

a: Typical ID attack:
A typical ID attack on an n-bit SPN cipher is a successful
ID attack (faster than exhaustive search) that exploits one
truncated ID characteristic in the middle rounds. Some few
rounds are added in the beginningwhichwe call initial rounds
and some few rounds are added at the end we call final
rounds. Then, the attack searches for all the necessary subkey
bits in the initial and final rounds in order to check if a
given plaintext pair produces the input difference of the ID
characteristic and its corresponding ciphertext pair produces
the output difference of the ID characteristic as truncated
differences. We call these subkey bits the involved bits. We
assume these bits are independent. If some of them can be

computed by means of the key schedule, we skip searching
for them. We use enough data to sieve all the involved subkey
bits in a typical ID attack. We adopt the big-O notation for
data complexities in our statements but we ignore the use of
the notation O(·) for the sake of simplicity.
Shakiba et al. introduce the definition of an ideal ID attack

in terms of its complexity in [42]. They categorize an ID
attack as an ideal ID attack if the dominant part of its time
complexity is the number of memory accesses for sieving
out the stored subkeys that are involved in producing the
input/output differences of the ID characteristic. We also
assume a typical ID attack is ideal.
Let an ID attack make use of the pairs (∆P,∆C) where

specific ni words of ∆P and nf words of ∆C are active.
That is, we have nonzero differences only on these words.
A structure for the inputs is a set of plaintexts whose ni words
take all the values and other words are constant. Similarly,
a structure for the outputs is a set of ciphertexts whose nf
words take all the values and other words are constant. There
are around 2sni−1(2sni − 1) pairs in a structure of plaintexts.
But we assume there are 22sni−1 pairs for ni > 1. This does
not change the complexities in big-O notation. Similarly, we
assume a structure for ciphertexts contains 22snf−1 pairs.
For a CP attack, we construct Ui structures and check the

ciphertext pair∆C of each plaintext pair∆P in a structure if
∆C has exactly nf active words only on the specific positions.
Then, this (∆P,∆C) is used in the attack. If a subkey guess
leads to the ID characteristic in the middle rounds from
(∆P,∆C), this subkey is eliminated.
A typical ID attack has the following parameters in CP

scenario:
(Ui,Du, ni, nf , ki, kf ,Pi,Pf ).

The parameters of this attack will be

(Uf ,Du, ni, nf , ki, kf ,Pi,Pf )

in CC scenario. Let us note that we do not consider multiple
ID attacks or an ID attack exploiting multiple ID character-
istics simultaneously in a typical ID attack. A trivial lower
bound for the time complexity is max{2sni , 2snf }.
The numbers of structures are integers in general in prac-

tice. But, we do not impose Ui or Uj to be integers. If the
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number of structures is not an integer, then not all of the
elements in one of the structures are used. Let Ui = qi + ϵi
with 0 ≤ ϵi < 1, qi ∈ Z, qi ≥ 0, and Uf = qf + ϵf with
0 ≤ ϵf < 1, qf ∈ Z, qf ≥ 0.

Remark 1 We assume O((qi + ϵi)2
sni) ̸= O(qi2sni) and

O((qf + ϵf )2
snf ) ̸= O(qf 2snf ) for nonzero ϵi and nonzero ϵf

throughout the paper. Therefore, we simply assume ϵi = ϵf =
0 for qi ≥ 4 and qf ≥ 4.

We need Du pairs to eliminate all the wrong subkeys in-
volved in either a CP attack or a CC attack. However, the
number of calls of the oracle to get Du pairs may change.
We assume that enough number of pairs are used to eliminate
all the wrong subkeys. We also assume that each subkey
candidate (Ki,Kf ) from the initial subkey Ki and the final
subkey Kf is eliminated by the probability of PiPf through an
input/output pair and hence it survives with the probability of
(1−PiPf )Du in all Du pairs. Therefore, the minimum number
of pairs in order to eliminate all the subkeys is

Du ≥
ki + kf

log2(e)PiPf

for a typical ID attack on an SPN cipher with parameters
(Ui,Du, ni, nf , ki, kf ,Pi,Pf ) where e is the Euler’s number.
The elimination process may utilize several techniques

such as guess and determine methods, hash tables, and early
abort techniques to enhance the time complexity as proposed
in [33], [43]. However, we study the reciprocal ID attacks in
a generic setting. So, it is not possible to introduce statements
about time complexities since they depend on the attack
algorithms. Therefore, we do not consider time or memory
complexities. But, we can introduce the trivial lower bound
as 2ki+kf memory accesses to eliminate all the wrong keys. In
this work, we focus on data complexities.

Proposition 1 Let a typical ID attack on an SPN cipher have
the number of the structures, Ui = qi + ϵi and Uf = qf + ϵf .
Then, this ID attack is reciprocal if and only if

2sni(ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ).

Proof A typical ID attack is reciprocal if and only if its
data complexities are equal in both CP and CC scenarios by
Definition 1. We use all the elements in qi structures. So, we
have qi22sni−1 pairs of the plaintexts. On the other hand, we
use ϵi2sni plaintexts of the last structure. So, we can produce
ϵ2i 2

2sni−1 pairs from this structure. Together we have

qi22sni−1 + ϵ2i 2
2sni−1

pairs. We check if their ciphertext pairs have exactly nf active
words in the specific positions. So, the number of pairs used
in the attack is

qi22sni−1 + ϵ2i 2
2sni−1

2n−snf
(1)

which is also equal to

qf 22snf−1 + ϵ2f 2
2snf−1

2n−sni
(2)

since the same data pairs are used in both CP and CC scenar-
ios. Organizing Equation 1 and Equation 2, we have

qi2sni + ϵ2i 2
sni = qf 2snf + ϵ2f 2

snf . (3)

On the other hand, the data complexity is qi2sni + ϵi2
sni in CP

scenario and qf 2snf + ϵf 2
snf in CC scenario. We need them to

be equal for the attack to be reciprocal. Substituting qi2sni −
qf 2snf with ϵf 2

snf − ϵi2
sni in Equation 3, we obtain

−ϵi2
sni + ϵ2i 2

sni = −ϵf 2
snf + ϵ2f 2

snf

which simply gives the equality

2sni(ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ).

Conversely if 2sni(ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ) then 2sniϵ2i −
2snf ϵ2f = 2sniϵi − 2snf ϵf . Then, substituting in Equation 3, we
have

qi2sni + ϵi2
sni = qf 2snf + ϵf 2

snf (4)

which means that data complexities are equal in both CP and
CC scenarios. Note that Equation 3 is always valid in any ID
attack. 2

Corollary 1 In a typical reciprocal ID attack, ϵi = 0 if and
only if ϵf = 0.

Proof If an ID attack with the numbers of structures Ui =
qi+ϵi in the encryption direction andUf = qf +ϵf is recipro-
cal, then we have 2sni(ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ) by Proposition
1. If ϵi = 0 then 2snf (ϵ2f − ϵf ) = 0. 2snf ̸= 0 and hence ϵf = 0
since it cannot be 1. Similarly ϵf = 0 =⇒ ϵi = 0. 2

Corollary 2 below can be considered as a useful character-
ization of reciprocal ID attacks which can be used in practice
to identify that the ID attacks on SPN ciphers in the literature
are mostly reciprocal attacks.

Corollary 2 If both Ui and Uf are integers in a typical ID
attack then the attack is reciprocal.

Proof Let the numbers of structures of a typical ID attack
be integers in both CP and CC scenarios. Then ϵi = ϵf = 0.
Hence, we have 2sni(ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ). This simply
implies that the attack is reciprocal by Proposition 1. 2

It is crucial to note that any attack with Ui ≥ 4 and Uf ≥ 4
is reciprocal by Corollary 2. For example, the numbers of
structures used in all the well-known ID attacks on AES
are much higher than 4 and are all integers [30]–[33], [43]–
[49]. So, all the known ID attacks on AES are reciprocal by
Corollary 2. We observe that the reciprocal attacks achieve
good performance in terms of time complexity. However,
they require a lot of data. We can give lower bounds for the
data complexities of such attacks through our statements in
Section IV.

6 VOLUME 11, 2023



O.Kara: New Security Proofs and Complexity Records for AES

The following theorem characterizes the reciprocal attacks
when the numbers of structures are not integers.

Theorem 1 Let a typical ID attack have Ui = qi + ϵi and
Uf = qf + ϵf with ϵi ̸= 0 and ϵf ̸= 0. Then, the attack is
reciprocal if and only if ni = nf , qi = qf , and ϵi = ϵf .

Proof If we have ni = nf and ϵi = ϵf then it is clear that
2sni(ϵ2i − ϵi) = 2snf (ϵ2f − ϵf ) and hence the attack is reciprocal
by Proposition 1. On the other hand, assume that the attack is
reciprocal. If ni = nf then qi+ϵi = qf+ϵf since 2sni(qi+ϵi) =
2snf (qf + ϵf ). This implies that qi = qf and ϵi = ϵf . Because
qi and qf are integers and 0 ≤ ϵi < 1, 0 ≤ ϵf < 1. Assume
on the contrary that ni ̸= nf . Let ni < nf . If qi ̸= 0. We have
qi + ϵi = 2s(nf−ni)(qf + ϵf ) and qi + ϵ2i = 2s(nf−ni)(qf + ϵ2f ).
But there is no nonzero solution for ϵf for these two equations
since both ϵf ≈ qi2s(ni−nf ) − qf and ϵ2f ≈ qi2s(ni−nf ) − qf . If
qi = 0 then qf must be zero. Otherwise ϵi > 1. When qf = 0
also, we have no nonzero solutions of ϵf and ϵi again since
2s(nf−ni) ̸= 1. In summary, if ni ̸= nf then the attack cannot
be reciprocal for nonzero ϵi and ϵf . 2

We construct our lower bounds for the data complexities
of typical ID attacks in general in Theorem 2. We introduce
a precise lower bound for the data complexities of reciprocal
ID attacks.

Theorem 2 A typical reciprocal ID attack on an SPN cipher
with its parameters (Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) requires
at least(

2n+1(ki + kf )
log2(e)PiPf

)1/3
(

U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

chosen plaintexts (or, equally, chosen ciphertexts) where Ui =
qi+ ϵi and Uf = qf + ϵf ; 0 ≤ ϵi < 1; 0 ≤ ϵf < 1, qi, qf ∈ Z,
qi ≥ 0, qf ≥ 0.

Proof The data complexity is Ui2
sni which is Uf 2

snf at the
same time since the attack is reciprocal. We have

Du = (qi + ϵ2i )2
2sni−1+snf−n ≥

ki + kf
log2(e)PiPf

.

Taking the logarithm,

2sni+snf ≥ log2

(
ki + kf

log2(e)PiPf

)
+n+1−log2(qi+ϵ2i ) (5)

and similarly for the CC scenario

2snf + sni ≥ log2

(
ki + kf

log2(e)PiPf

)
+ n+ 1− log2(qf + ϵ2f ).

(6)
Summing Inequality 5 and Inequality 6 and then dividing by
3, we obtain a lower bound for snf + sni:

log2

(
ki + kf

log2(e)PiPf

)2/3

+
2(n+ 1)

3
−
log2(qi + ϵ2i )(qf + ϵ2f )

3
.

(7)

On the other hand, we have Ui2
sni = Uf 2

snf since the attack
is reciprocal and hence

sni − snf = log2(Uf )− log2(Ui). (8)

Adding Inequality 7 to Equation 8 and dividing by 2, we get
a lower bound for sni:

log2

(
ki + kf

log2(e)PiPf

)1/3

+
n+ 1

3
+

log2(Uf )− log2(Ui)

2

−
log2(qi + ϵ2i ) + log2(qf + ϵ2f )

6
.

(9)

Therefore, the logarithm of the data complexity is bounded
by

log2(Ui2
sni) ≥ log2

(
ki + kf

log2(e)PiPf

)1/3

+
n+ 1

3

−
log2(qi + ϵ2i ) + log2(qf + ϵ2f )

6
+

log2(Uf ) + log2(Ui)

2
.

(10)

Taking the powers of the both sides of Inequality 10, we get

D ≥
(
2n+1(ki + kf )
log2(e)PiPf

)1/3
(

U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

. (11)

2

One straightforward conclusion of Theorem 2 is introduc-
ing the following lower bound for reciprocal ID attacks. Even
though it is the most generic bound, it is a loose bound.

Corollary 3 A typical reciprocal ID attack on an SPN cipher
with Ui ≥ 1 has the data complexity of at least 2(n+1)/3

chosen plaintexts.

Proof The data complexity is bounded below by(
2n+1(ki + kf )
log2(e)PiPf

)1/3
(

U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

(12)

by Theorem 2.Ui ≥ 1 ⇒ Uf ≥ 1 by Theorem 1. On the other
hand (

U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

≥ 1

since Ui ≥ 1, Uf ≥ 1. Meanwhile, (ki + kf ) ≥ 2 and

PiPf < 1. Hence,
(

ki+kf
log2(e)PiPf

)1/3
≥ 1 which simply implies

the result. 2

We can directly use Corollary 3 for AES with n = 128.

Corollary 4 Any typical reciprocal ID attack on AES with
Ui ≥ 1 has the data complexity of at least 243 chosen
plaintexts.

The most dominant parameters in data complexity are Pi
and Pf . So, we can simplify the lower bound as follows.
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Theorem 3 A typical reciprocal ID attack on an SPN ci-
pher with Ui ≥ 1 has the data complexity of at least
(2n+1(PiPf )−1)1/3 chosen plaintexts.

The probability p = PiPf is 2−68 in [47]; 2−52 in [32] and
[33] ; 2−74 in [30] and [31] (7-round attack); and 2−36 in [31]
for the 6-round attack. So the data complexities are bounded
by 265.7, 260.3, 267.7 and 255 respectively. The following
bound is a sharp bound but specific to the parameters of an
attack as in Theorem 2. But Theorem 4 is more simple than
Theorem 2.

Theorem 4 A typical reciprocal ID attack on an SPN ci-
pher with (ni, nf ,Ui,Uf ) has the data complexity of at least√
2sni+snfUiUf chosen plaintexts (or, equally, chosen cipher-

texts).

Proof The data complexity is at least(
2n+1(ki + kf )
log2(e)PiPf

)1/3
(

U3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

chosen plaintexts (or, equally, chosen ciphertexts) by Theo-
rem 2. We can write this bound as(

22sni+snf 22snf+sni(qi + ϵ2i )(qf + ϵ2f )U
3
i U

3
f

(qi + ϵ2i )(qf + ϵ2f )

)1/6

which is equal to
√
2sni+snfUiUf . 2

Let us note that the bound in Theorem 4 is the geometric
mean of the data complexities in CP and CC scenarios. So,
if they are equal, they also equal their geometric mean. So,
we have precise equality. In general, it is possible to bound
the data complexity by using the number of active words in
Lemma 1. This well-known result is valid for an arbitrary ID
attack.

Lemma 1 ( [29]) A typical ID attack on an SPN cipher with
the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) requires at least

2n+1−s(ni+nf )(ki + kf )
log2(e)PiPf

data in both the chosen plaintexts and the chosen ciphertext
scenarios.

Indeed, the data attains the bound if the numbers of struc-
tures are integers. That is, we have D = Du2

n+1−sni−snf

in CP if O(Ui2
sni) = O(qi2sni) and D = Du2

n+1−sni−snf

in CC if O(Uf 2
snf ) = O(qf 2snf ). We have seen that D =

Du2
n+1−sni−snf in almost all the ID attacks (e.g. [30]–[33],

[47]) since the attacks make use of plenty of structures to
optimize the overall complexity in both directions. As one
exceptional example, the parameters of the attack onCamellia
in [50] are sni = 128, snf = 56 and Du = 2168. So,
Ui = 2−7.5 and Uf = 257. Then, the attack requires
Du2

129−128−56 = 257256 = 2113 CC in the decryption
oracle, but 2121.5 CP in the encryption oracle.

The bound in Lemma 1 might be insufficient for a recipro-
cal attack if the quantity of the difference, |ni − nf |, is large
enough or the number of structures is less than one in one
direction. We treat all the cases to have complete security
proofs of SPN ciphers in terms of data requirements of re-
ciprocal ID attacks. It is possible to eliminate the pairs from
the cancellations either in the ciphertexts or in the plaintexts.
Therefore, if one of ni or nf is too small, the corresponding
reciprocal attack requires so much data.

Theorem 5 The data complexity of a typical recipro-
cal ID attack on an SPN cipher having the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) is bounded below by√

2n+1−s·min{ni,nf }(ki + kf )
log2(e)PiPf

. (13)

Proof We have

D = (qi + ϵi)2
sni ≥

√
qi + ϵ2i 2

sni =
√
2Du2n−snf

≥

√
2n+1−snf (ki + kf )

log2(e)PiPf

in CP scenario. Similarly,

D = (qf + ϵf )2
snf ≥

√
qf + ϵ2f 2

snf =
√
2Du2n−sni

≥

√
2n+1−sni(ki + kf )

log2(e)PiPf

in CC scenario. Hence, the data complexity is bounded below
by √

2n+1−s·min{ni,nf }(ki + kf )
log2(e)PiPf

which concludes the proof. 2

Theorem 5 introduces an efficient bound. In fact,
min{ni, nf } = 4 in almost all the reciprocal attacks on AES,
and the data complexities of some of them are depicted in
Table 2 along with the lower bounds deduced through Theo-
rem 5. The question is if the bound in Theorem 5 is sharp. We
claim that it is a sharp bound and define the reciprocal attacks
attaining this bound as the attacks with optimal data.

Remark 2 Theorem 2may be seen similar to the bound given
in [29], which is stated as√

2n+1−s·max{ni,nf }(ki + kf )
log2(e)PiPf

(14)

It is plain that the maximum of ni, nf is taken in [29] and
the bound in Theorem 2 is superior to the bound in Equa-
tion 14 which simply improves the lower bound significantly.
The bound in Lemma 1 dominates the data if the number
of structures is not small (more than four according to our
assumption) in both directions and simply determines the data
complexity in most of the attacks. However, we must develop
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a generic bound valid for any reciprocal ID attack. We use
Theorem 5 to provide minimum data required for an arbitrary
reciprocal ID attack. For example, we prove Theorem 7,
Theorem 8 and Theorem 9 by using Inequality 13 in Theorem
5 for the security of AES.

Definition 2 We call a reciprocal ID attack with data com-
plexity D as a reciprocal ID attack with optimal data if its data
complexity is not more than twice the bound given in Theorem
5. That is,⌊

log2D− log2

(√
2n+1−s·min{ni,nf }(ki + kf )

log2(e)PiPf

)⌋
= 0

where ⌊·⌋ is the flooring function.

There is no reciprocal ID attack onAESwith optimal data yet.
For the first time, we introduce it in Section V. This example
proves that the bound in Theorem 5 is a sharp bound.

Table 2. Some examples of reciprocal ID attacks on 7-round AES with
min{ni , nf } = 4. The data is given in CP. The lower bound in the last
column is by Theorem 5.

Attack (ki, kf ,Pi,Pf ) Data Bound
Phan [32],Lu et al. [33] (32, 104, 2−22, 2−30) 291 278

Bahrak and Aref [30] (32, 80, 2−22, 2−52) 2115 289

Jiang et al. [45] (88, 32, 2−46, 2−22) 2106 286

Zhang et al. [31] (32, 64, 2−22, 2−54) 2115 290

Mala et al. [47] (80, 32, 2−32, 2−22) 2106 280

We characterize the reciprocal ID attacks with data attain-
ing the bound in Theorem 5 in the following statement.

Theorem 6 Assume ni ≤ nf . The data complexity D of a
typical reciprocal ID attack on an SPN cipher having the
parameters (Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ) attains the bound
in Inequality 13 if and only if D ≤ 2snf , and if D < 2snf then
ni = nf .

Proof Let ni ≤ nf and Du =
ki+kf

log ePiPf
. Assume D ≤ 2snf .

That is, D = ϵ2snf where ϵ ≤ 1. Then Du = ϵ222snf+sni−n−1

in terms of the CC attack. So,D = ϵ2snf =
√
2n+1−sniDu which

is simply equal to√
2n+1−s·min{ni,nf }(ki + kf )

log2(e)PiPf
.

For the other direction, assume D is equal to the bound
in Inequality 13. The number of the structures is at least

Du

22sni+snf−n−1
and then

2sni · Du

22sni+snf−n−1
≤ D =

√
2n+1−sni · Du .

Solving the inequality with respect to Du, we have Du ≤
22snf+sni−n−1. But, this is the number of the pairs in the CC
scenario with only one structure or its subset. So, D = ϵ2snf .
If ϵ < 1 then ni = nf by Theorem 1 since the attack is
reciprocal. 2

Corollary 5 Assume D ≤ 2max{sni,snf } of a typical recip-
rocal ID attack on an SPN cipher having the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ). Then,

Du ≤ 2min{sni,snf }+2max{sni,snf }−n−1

and n+ 1 ≤ min{sni, snf }+ 2max{sni, snf }.

Proof Assume D ≤ 2snf and ni ≤ nf . Then
√
2n+1−sniDu ≥

2n+1−sni−snfDu by Theorem 6. So, Du ≤ 2sni+2snf−n−1. On
the other hand, 1 ≤ Du. So, n+ 1 ≤ sni + 2snf . 2

Corollary 5 can be utilized in developing a design criterion
for an SPN cipher to provide security against ID attacks. The
diffusion layer of a block cipher is supposed to satisfy the
bound

PiPf ≤ 2n+1−min{sni,snf }−2max{sni,snf }

for any initial and final rounds and for any ID characteristic.
The straightforward conclusion of Corollary 5 is that if the

number of structures is less than one, then the number of
active words in both input and output cannot be arbitrarily
small.

Corollary 6 Assume Ui < 1 for a typical recipro-
cal ID attack on an SPN cipher having the parameters
(Ui,Uf ,Du, ni, nf , ki, kf ,Pi,Pf ). Then, n+1

3s ≤ ni = nf

IV. PROVABLE SECURITY OF AES AGAINST ID ATTACKS
Any ID attack on AES makes use of 4-round ID characteris-
tics and all these characteristics are identified by Grassi et al.
in [25]. We introduce the result of the minimum number of
data used in a typical reciprocal ID attack on AES exploiting
one of these characteristics.

Lemma 2 ( [25]) If the total numbers of the active input
diagonal and the output inverse diagonal columns in any
4-round characteristic of AES is less than four then this
characteristic is an ID characteristic.

Definition 3 We call any 4-round ID characteristic de-
scribed in Lemma 2 as a 4-round conventional ID charac-
teristic of AES.

All the known ID attacks on AES are reciprocal ID attacks
since their number of structures are integers in both encryp-
tion and decryption directions. Moreover, they all exploit 4-
round conventional ID characteristics. Indeed, there are no
known ID characteristics of AES other than conventional
ones. We give a lower bound for the data complexity of a
reciprocal ID attack on AES exploiting one of the 4-round
conventional ID characteristics.
We introduce the following conjecture in Claim 1. Then,

Theorem 7 below can be extended to all the ID attacks on
AES when the conjecture is proven.

Claim 1 All the truncated ID characteristics of r-round AES
where r ≥ 4 are conventional 4-round ID characteristics.
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There are powerful indicators in the literature about the cor-
rectness of Claim 1. Sun et al. reduce the problem of the
existence of an ID for a given SPN (Substitution Permutation
Network) to the problem of the existence of an IDwhose input
and output Hamming weights are both one. They conclude
that AES has no 5-round ID unless the details of the S-Box are
not taken into consideration [26]. Another proof is provided
by Wang and Jin in [27], exploiting the properties of AES
S-box by using the ‘‘dependent tree" method. However, their
result is given under the assumption that all the round keys are
uniformly random and independent. Boura and Coggia show
that AES has no 5-round ID by using MILP solvers if the
details of both the S-box and the key schedule are taken into
account. Moreover, their result is valid only if the first and the
last rounds of the characteristic contain two active S-boxes in
total [28].

Theorem 7 gives a powerful lower bound for the data
complexities of all the known reciprocal ID attacks on AES.

Theorem 7 A typical reciprocal ID attack on AES exploiting
a 4-round conventional ID characteristic has the data com-
plexity of at least 266 chosen plaintexts.

Proof The number of active MC operations (whose input
difference is nonzero) before and after any conventional ID
characteristic is at least two (one in the initial rounds and one
in the final rounds). The total number of passive bytes in one
column of the input and in one column of the output of a 4-
round conventional ID characteristic is at least 4 by Lemma 2.
So, PiPf ≤

(
4
2

)2
2−32. The number of the key bits involved is

at least 48. Hence, we have ki+kf
log2(e)PiPf

≥ 231. If ni + nf < 12

then the data D ≥ 270 by Lemma 1. Let ni + nf = 12.
Then, we have at least three activeMC operations. If there are
exactly 3 active MC operations then there is only one active
MC operation either in the input or in the output. So, ni ≤ 4
or nf ≤ 4 and hence 2129−8·min{ni,nf } ≥ 297. On the other
hand, PiPf ≤ 2−24 · 42 · 2−16 = 2−36 and ki + kf ≥ 64.
Hence, D ≥ 269 by Theorem 5. We need more data if ni ≤ 4
or nf ≤ 4 and there are more than 3 active MC operations,
again by Theorem 5. So, assume ni > 4 and ni > 4 and hence
there are at least two activeMC operations in each direction.
Then PiPf ≤

(
4
2

)2
2−64 ≤ 2−58. We have ki + kf ≥ 96.

So, ki+kf
log2(e)PiPf

≥ 264. Then, we have 2129−8·min{ni,nf } ≥ 281

since min{ni, nf } ≤ 6. Therefore, D ≥ 271 by Theorem
5. So, let ni + nf > 12. In this case, the number of active
MC operations is at least 4. Let the number of the active
MC operations in the initial and final rounds be mi and mf

respectively. If (mi,mf ) = (1, 3) then PiPf ≤ 2−222−22 =
2−44 and ki + kf ≥ 80. Hence, Du ≥ 249. On the other
hand, ni ≤ 4. So, D ≥ 2(49+96+1)/2 = 271 in the CC
scenario. The case (mi,mf ) = (3, 1) is similar. One can
mount the attack in the CP scenario in this case. We need
more data for (mi,mf ) = (1,≥ 3) since PiPf is getting
less and ki + kf increases and hence Du increases. Assume
(mi,mf ) = (2, 2). Then, PiPf ≤

(
4
2

)2
2−64 and ki + kf ≥ 104

for the minimum data. Hence, Du ≥ 265. So, we need at
least 2129 pairs. One structure contains at most 2127 pairs and
at least 2−64 of them will be discarded. That is, we need at
least 22 structures and so D ≥ 266 both in CP and in CC
scenario. The (mi,mf ) = (2,≥ 2) case require more data in
CC scenario and (mi,mf ) = (≥ 2, 2) case require more data
in CP scenario. When (mi,mf ) = (3, 3), PiPf ≤

(
4
2

)2
2−96

and ki + kf ≥ 128 since 128 is the minimum key length of
AES. So, Du ≥ 297. If ni = nf = 12 then the attack is slower
than the exhaustive search for any key length. If nf ≤ 11
than we need at least 297+40 = 2137 pairs which require
at least D ≥ 269 CP. Similarly, D ≥ 269 CC if ni ≤ 11.
The cases (mi,mf ) = (3,≥ 3) or (mi,mf ) = (≥ 3, 3)
require more data. For the last case, let (mi,mf ) = (4, 4).
Then, PiPf ≤

(
4
2

)2
2−128 and ki + kf ≥ 128 since 128 is the

minimum key length of AES. So, Du ≥ 2129. Again we need
more than 266 data for a successful attack. 2

We prove in Theorem 7 that any reciprocal ID attack on
AES exploiting a conventional 4-round ID characteristic re-
quires at least 266 data whatsoever its steps are. The question
is if there are reciprocal ID attacks on AES with roughly this
data complexity. We introduce an example in Section V. This
attack is both a reciprocal ID attack with optimal data and its
data complexity attains the bound in Theorem 7.
Almost all the ID attacks on AES in the literature make use

of four active bytes in either the first or the last round which
produces only one byte active after the MDS multiplication.
Then, we can prove the following statement for these attacks
even though they do not exploit conventional ID characteris-
tics.

Theorem 8 Let a reciprocal ID attack make use of only four
active bytes in the plaintext pairs and the MC operation in the
first round produces only one active byte. Then the minimum
data to eliminate all the subkeys involved is bounded below
by 262.

Proof We have ni = 4, ki = 32 and Pi = 2−22. Assume
nf ≥ 4. Then Kf ≥ 32. Hence, min{ni, nf } = 4 and then

D ≥
√

2129−32(32+32)
log2(e)2−22 ≥ 262 by Theorem 5. If nf < 4

then min{ni, nf } ≤ 3 and hence D ≥
√

2129−24·32
log2(e)2−22 > 262.

Therefore the minimum data to eliminate all the subkeys
involved is bounded below by 262. 2

All the well-known ID attacks on AES in [30]–[33], [47]
make use of one active column of theMC operation in the first
round. This column results in only one active byte. Hence all
these attacks require at least 262 CP according to Theorem 8.
It seems it is not possible to introduce an eligible lower

bound for the data complexity of a typical nonreciprocal ID
attack on AES. But we can give a lower bound for the time
complexity.

Theorem 9 Any typical nonreciprocal ID attack on AES ex-
ploiting one of the 4-round conventional ID characteristics
has the time complexity of at least 288 trials.
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Figure 3. 6-Round reciprocal ID Attack on AES with optimal data

Proof Let us show that ni or nf of a nonreciprocal attack
on AES is greater than 10. Assume ni ≤ 9. If ni = 9 then
one structure can produce 2143 pairs and there are at least
3 active MC operations in the first round. If there is only
one active MC operation in the last round then at most 247

of the pairs remain and PiPf ≤ 422−242−24 = 2−44 with
Du ≥ 250. So, we need at least 8 structures in CP attack
and many more structures in CC attack. So, the attack will
be reciprocal. Assume there are two active MC operations in
the last round. Then, PiPf ≤ 622−482−32 and Du ≥ 283.
Again, the number of remaining pairs in a structure is at most
279. Hence we need at least 16 structures in CP attack and
many more in CC attack. So, the attack cannot be reciprocal.
Assume there are three activeMC operations in the last round.
Then, assume nf ≤ 10. This implies that PiPf ≤ 622−482−48

andDu ≥ 291. So, again, there are at least 24 structures in both
directions. Similarly, if all the MC operations are active and
nf ≤ 10 then there is only one case: nf = 10. The number of
active bytes in the ciphertext pairs in eachMC operation must
be 2-2-3-3 or 2-2-2-4. So,PiPf ≤ 422−722−32 andDu ≥ 2115

and the attack will be obviously reciprocal. In conclusion, if
ni = 9 then nf ≥ 11. Similarly, if ni < 9 then nf ≥ 11. So,
there are at least 11 active bytes in the plaintext pairs or in the
ciphertext pairs. That is, we need at least 288 trials. 2

Notice that Theorem 9 is valid for any key schedule. That
is, if AES had no key schedule and all the round keys were
equal then again any nonreciprocal ID attack would require at
least 288 trials. Each trial is almost one encryption or partial
encryption, depending on the characteristic of the special
attack.

V. A RECIPROCAL ID ATTACK WITH OPTIMAL DATA
We introduce an example of a 6-round reciprocal ID attack as
depicted in Figure 3 on AES to show that our lower bound is
almost sharp. In this attack ni = nf = 8,Pi = Pf = 6·2−32 ≈
2−29.5, ki = kf = 64. Hence Du ≥ (25927)/ log2(e) ≈ 265.3.
So, take Ui = 5 ≈ 22.5. Then, the data complexity is

D = 26422.5 = 266.5. Each pair among Du pairs suggests
around (6 · 232)2 ≈ 269 subkeys and we can determine all
these keys by guessing four bytes from RK0 and four bytes
from RK6. Then, we detect the wrong keys to be eliminated
for each guess and for each pair. So, the time complexity
is around 265.5269 = 2134.5 memory accesses which is
roughly 2131 encryptions. We can recover 64 bits of RK6

which are RK6[0, 1, 4, 7, 10, 11, 13, 14]. Then, we can recover
the remaining 16 bytes of RK6 and RK5 by exhaustive search
for AES-192 or we mount the attack with the same data, this
time to recover the other round key bytes of RK6 by switching
the active and passive bytes in the ciphertext pairs. Therefore,
this attack works on AES-192 and AES-256.

If we have only 266 CP, then the number of pairs
Du will be 265. We have around 235.5 pairs which sug-
gest the output of the 4-round ID characteristic for a
fixed value of RK6[0, 1, 4, 7, 10, 11, 13, 14]. Then, the prob-
ability that a candidate for the 64-bit whitening key
bytes RK0[0, 1, 5, 6, 10, 11, 12, 15] is not eliminated is (1 −
2−29.5)2

35.5 ≈ e−64 ≈ 2−92.3. Hence the probability that all
the 64-bit whitening keys are eliminated is (1−2−92.3)2

64

>
1 − 2−28. That is, we expect more than (264 − 236) of the
candidates for the round key RK6[0, 1, 4, 7, 10, 11, 13, 14] to
be eliminated. That is, we get its 28-bit information about
RK6 and the attack with 266 CP data will be faster than the
exhaustive search. Therefore our attack is an ID attack with
optimal data by Definition 2.

VI. A NONRECIPROCAL ID ATTACK ON AES
We show that the reciprocal ID attacks require many data.
Particularly, any reciprocal ID attack on AES exploiting a
4-round conventional ID characteristic requires at least 266

data by Theorem 7. We examine if a high data complexity
requirement is necessary for any ID attack in this section.
So, we introduce a nonreciprocal ID attack on AES which
requires only 230 CP to show that Theorem 7 is not true
for nonreciprocal ID attacks even though the characteristic
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Figure 4. 6-Round nonreciprocal ID Attack on AES exploiting Biham-Keller characteristic

exploited is a 4-round conventional ID characteristic given in
Lemma 2.

For the illustration of how to mount an ID attack on
AES with small data complexity, we exploit the well-known
ID characteristic introduced by Biham and Keller [43]. The
Biham-Keller characteristic is exploited in several ID attacks
such as [31]–[33], [43]. We use this characteristic to mount
a typical ID attack on 6-round AES which is depicted in
Figure 4. The parameters of the attack are as follows: ni =
4, ki = 32,Ui = 2−2,Pi = 2−22; nf = 16, kf = 128,Uf =
2−50,Pf = 2−30. Then, the data complexity for the CP attack
isUi2

8ni = 2−2232 = 230 whereas it isUf 2
8nf = 2−502128 =

278 chosen ciphertexts. Clearly, it is not reciprocal. Indeed,
232(2−4−2−2) ̸= 2128(2−100−2−50) and hence the attack is
nonreciprocal by Proposition 1. As easily observed, Theorem
2, Theorem 4, and Theorem 5 do not work for this attack
since it is a nonreciprocal attack. Indeed, the lower bounds
are 2136/3, 254, and 246 respectively, which are even higher
than D = 230.

VII. A NEW ATTACK WITH MINIMUM DATA
We introduce a nonreciprocal ID attack on 6-round AES
which requires only 218 CP. This is a record in terms of the
minimum data complexity.

We derive a 3-round Impossible Differential (ID) charac-
teristic by loosening the Biham-Keller ID characteristic. This
expansion entails the activeness of all bytes in the output
difference (see Figure 5). We can exploit it by utilizing the
property that all the bytes after the SR operation in the third
round of the ID characteristic are active. So, if we add one
round at the beginning and one more round at the end, we
expect all the bytes of an input pair ofMC in the fourth round
to be active for a whiting key producing only one active byte
at the end of the first round, as depicted in Figure 5. We
exploit this property as our distinguisher for our ID attack.
We can examine the distinguisher since the whole round key
is searched in the last round.

Wemount our ID attack on 6-roundAES-192 andAES-256

and we exploit their key schedules to use the minimum data
in our attack on 6-round AES. First of all, we extend the idea
of the key bridge of the key schedule of AES-256 introduced
by Dunkelman et al. [9].

Proposition 2 RK0[15] can be computed through RK6 for
AES-256.

Proof Let us assume the last round key RK6 is known. The
key schedule of AES-256 gives us

RK0[15] = RK2[14]⊕ RK2[15] = RK4[13]⊕ RK4[15]

which equals

RK6[12]⊕ RK6[13]⊕ RK6[14]⊕ RK6[15].

2

a: AES-256 Case:
Let us take 218 chosen plaintexts which give us 235 pairs.
Guess 128-bit RK6. Then, we can compute RK0[15] through
the key schedule by Proposition 2 for AES-256 and determine
the remaining 24 bits, RK0[0, 5, 10] for each pair through the
linear equations ∆MC1[4, 8, 12] = 0, ∆MC1[0, 8, 12] = 0,
∆MC1[0, 4, 12] = 0, and ∆MC1[0, 4, 8] = 0. Obtain the
ciphertexts of around 213 pairs which produce only one active
byte at the end of the first round for a fixed 32-bit RK0 in the
four active input bytes, since the probability of producing one
active byte through MC1 is 2−22.

Let us consider the equivalent key MC−1(RK5) which is
executed before the MC operation and choose one of its
inverse diagonals to eliminate. Each inverse diagonal enables
us to compute the corresponding column of the output of the
fourth round. If we consider the first inverse diagonal then we
can eliminate the round key bytes MC−1(RK5)[0, 7, 10, 13]
by computing the first row of the output difference of the
fourth round and checking if MC−1

4 produces less than four
active bytes in the first column. This will give us a contradic-
tion since we expect all the bytes of an input pair of MC to
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Figure 5. 6-Round nonreciprocal ID Attack on AES with minimum data

be active in the fourth round. The probability of this contra-
diction is slightly larger than 2−6. Therefore, the probability
of eliminating each candidate for MC−1(RK5)[0, 7, 10, 13]
is (1 − 2−6)2

13 ≈ e−128 ≈ 2−184.5. Hence we expect
all the guessed keys to be eliminated. If there are some key
candidates left, we repeat the attack for the second, third, and
last columns of MC−1

4 to eliminate the keys left.
We guess 128 bits of RK6 and determine 8 bits of RK0

through the key schedule and 24 bits of RK0 from data. So, we
have 152 bits and each guess is eliminated by about 211 pairs
on average. Hence the time complexity is 2152211226 = 2189

memory accesses which is around 2186 encryptions. The
memory complexity is 224213 = 237 units which is roughly
243 bytes. The data complexity is 218 CP.

b: AES-192 Case:
We need a hash table for RK0[0, 5, 10, 15] which can be pre-
pared during offline (see [43]). The table contains about 210

keys for each plaintext pair (P[0, 5, 10, 15],P′[0, 5, 10, 15]
leading to only one active byte after MC1, and is sorted with
respect to the plaintext pairs.

First, let us guess RK6. Then, computeMC−1(RK5)[0, 13]
through the key schedule for AES-192 since we can com-
pute the first two columns of RK5 from RK6. Furthermore,
guess one byte from MC−1(RK5)[10, 7] and determine the
other byte through each ciphertext pair. Then, for each 144-
bit secret information, determine the ciphertext pairs among
235 pairs leading to the impossible differential in the output.
That is, check if ∆MC−1

4 [0, 4, 8, 12] has at least one pas-
sive byte. The probability is about 2−6. So, there will be
around 229 ciphertext pairs for each 144-bit guess of RK6

andMC−1(RK5)[10, 7], which is loaded in a memory for key.
This memory can be reused for different 144-bit guesses.

Each 144-bit candidate is tested with the plaintext pairs
of the corresponding ciphertext pairs. We have around 229

plaintext pairs and each pair eliminates around 210 keys
RK0[0, 5, 10, 15] from the hash table. If all the candidates
for RK0[0, 5, 10, 15] are eliminated, then the 144-bit guess
is eliminated. So, the time complexity is 2144229210 = 2183

memory accesses which is around 2180 encryptions for AES-
192. The memory complexity is 12 · 232232210 ≈ 278 bytes.
The data complexity is 218 CP.

VIII. ENHANCING INTEGRAL ATTACK
We have introduced an attack on 6-round AES with the
minimum data in the previous section. Its time complexity
is marginal. In this section, we study the improvements over
the best attack on 6-round AES in terms of data, time, and
memory complexities.

The integral attack using the partial sum technique in [36]
has been the best attack on 6-round AES with respect to the
total complexity given in [36] as 244 encryptions since 2000.
In this section, we examine the practical security of 6-round
AES and improve the best attack further. We utilize the partial
sum technique but we refrain from an extensive elaboration on
this technique. One can see [36] for the details. In summary,
we prove better complexities in data, time, and memory.

First of all, we introduce here a small correction in the
attack in [36]. It is given only for recovering the four bytes
of one of the reverse diagonals of the round key RK6 in the
sixth round with a complexity of 244 encryptions. However,
the attack should be repeated four times to recover the whole
round key in the last round. The fifth round key can be
recovered much faster in the cases of 192-bit and 256-bit key
lengths. So, the overall complexity should be 246 rather than
244. We correct this minor fault and amend the complexity in

VOLUME 11, 2023 13



O.Kara: New Security Proofs and Complexity Records for AES

Table 1 accordingly.
The attack uses 6 · 232 CP in [36]. In this section, we

improve the attack by using only 232 CP for AES-128 and
it is 8 times faster. The attack is 4 times faster for the other
key lengths and utilizes 233 CP.

Let an oracle encrypt 232 CP where the first diagonal
(P[0, 5, 10, 15]) takes all the values and the other bytes are
constant, and it publishes the corresponding ciphertexts.

We evaluate the S-box operations as 8× 32-bit given as

S(x) = 0e·SB−1(x)||0b·SB−1(x)||0d ·SB−1(x)||09·SB−1(x)

to deal with theGalois fieldmultiplication, and obtain the four
bytes of the inverse MixColumn operation in one S-Box call,
where || is the concatenation.

For each inverse diagonal, guess the 32-bit key in the sixth
round and one byte of MC−1(RK5) from the column where
this 32-bit key affects after the SR−1 operation. So, we can
compute the corresponding byte at the end of the fourth round
and then check if the sum is zero for all the 232 ciphertexts.

We exploit the zero-sum distinguisher as in [36] by using
the partial sum technique. As one improvement, we utilize
the zero-sum property not for only one byte in each column
in MC4, but for all the bytes since all the 16 bytes of MC4

are balanced. Hence, our distinguisher has the false alarm
probability of 2−128 instead of 2−32 for each structure, which
enables us to reduce the data up to a factor of six for AES-128.

Guessing one key for the reverse diagonalRK6[0, 7, 10, 13],
around one candidate for MC−1(RK5)[0] will pass the zero-
sum test given as

232−1⊕
i=0

MC4[0] = 0.

Similarly, one candidate for MC−1(RK5)[4] passes the zero-
sum test given as

232−1⊕
i=0

MC4[4] = 0;

one candidate for MC−1(RK5)[8] passes the zero-sum test
given as

232−1⊕
i=0

MC4[8] = 0;

and one candidate for MC−1(RK5)[12] passes the zero-sum
test given as

232−1⊕
i=0

MC4[12] = 0.

After determining MC−1(RK5)[0, 4, 8, 12] for each guess
of the reverse diagonal RK6[0, 7, 10, 13], we can compute
RK5[0, 4, 8, 12] by applyingMC . We have four zero-sum tests
in one column and the probability that all the tests produce
nonempty solution sets for a 32-bit guess for RK6[0, 7, 10, 13]

is (1 − 255
256

256
)4 ≈ 2−2.6. So, we expect less than 230

candidates for RK6[0, 7, 10, 13], and around 232 candidates
for (RK6[0, 7, 10, 13],RK5[0, 4, 8, 12]).
Let us store them in a memory, sayA1. Similarly, compute

and store the candidates for

(RK6[1, 4, 11, 14],RK5[1, 5, 9, 13]), (15)

(RK6[2, 5, 8, 15],RK5[2, 6, 10, 14]), (16)

(RK6[3, 6, 9, 12],RK5[3, 7, 11, 15]) (17)

in A2, A3, and A4 respectively. If we repeat the attack for
the elements in the sets Ai, i = 1, . . . , 4, by using another
structure of 232 CP, we have around one element in each set.
So, we recover RK5 and RK6 by using two structures, without
exploiting the key schedule.

The attack utilizes 233 CP instead of 6 · 232 CP. Preparing
each set Ai, i = 1, 2, 3, 4, costs around 249 S-box operations
through the partial sum. We have 232 vectors for each reverse
diagonal. Remove the vectors that appeared an even number
of times and hence around 231 will be left. The first step of
the partial sum costs 231216 ·2 = 248 S-box operations where
we search only 2 bytes of the last round key in any reverse
diagonal with 2 S-box operations. Then, there are around 223

vectors left. The second step costs 223224 · 1 = 247 S-box
operations and the number of vectors left is around 215. The
third step costs 215232 · 1 = 247 S-box operations again. The
last step is run with only 27 vectors and hence it costs also
27240 ·1 = 247 S-box operations.We use directly SB−1 in this
last step. Thenwe can check the zero-sum condition. The total
complexity is around 248 + 3 · 247 ≈ 249 S-box operations.
We repeat this partial sum technique for 3 other reverse

diagonals. So, the overall complexity is around 251 S-box
operations which is around 243 encryptions if we assume 28

S-box operations is roughly one encryption, as in [36]. We
mount the attack oncemore for the other structure to eliminate
almost all the elements in the sets. Hence, the time complexity
is 244 encryptions. The memory complexity is 23232 = 235

bytes for loading one set among Ai, i = 1, 2, 3, 4; and 237

bytes for loading the ciphertexts. So, we need around 237

bytes. Note that the memory for each set Ai can be reused if
we construct one set and then eliminate its elements by utiliz-
ing the ciphertexts of the second structure before constructing
the other sets.

We can further improve the attack for AES-128 by exploit-
ing the key schedule. Only one structure is enough for this
case. SortA1 by RK5[12],RK6[7],RK5[0]⊕RK6[0]. Because
we can deduce these values fromA4 through the key schedule
for AES-128.

RK5[12] = SB(RK5[3])⊕ RK6[12], (18)

RK6[7] = RK6[6]⊕ RK5[7], (19)

RK5[0]⊕ RK6[0] = SB(RK5[7]). (20)

Note that we ignore the round constants in the key schedule.
The parameters on the left of the equations are unknown and
the parameters on the right of the equations are known. So,
if we choose one element from A4 then we can determine
RK5[12],RK6[7],RK5[0] ⊕ RK6[0] through the key schedule
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and hence there will be around 28 elements in A1. Simi-
larly, sortA3 by RK6[8],RK5[10],RK6[2],RK6[15],RK5[6]⊕
RK6[5] since we have

RK6[8] = SB(RK5[12])⊕ RK5[8], (21)

RK5[10] = RK6[10]⊕ RK6[9], (22)

RK6[2] = RK5[3]⊕ RK6[3], (23)

RK5[6]⊕ RK6[5] = RK6[6]. (24)

Then, we have only one element in A3 on average for each
element inA1 and inA4. Hence, there are around 28 elements
left in A1 and A3 for one chosen element in A4.
Similarly, we have nine byte equations for A2 with a

condition of 2−72. We can use four equations for sorting
and 5 equations for checking. For instance, sort A2 by
(RK6[1],RK6[4],RK6[11],RK6[14]) and for each candidate
compute

RK6[1] = RK6[2]⊕ RK5[2], (25)

RK6[4] = SB(RK5[11])⊕ RK5[4], (26)

RK6[11] = RK5[11]⊕ RK6[10], (27)

RK6[14] = RK5[15]⊕ RK6[15]. (28)

These equations give one element on average for each ele-
ment in A1, in A3, and in A4. Then, it is possible to check
the candidate with the following 5 equations.

RK5[9] = RK6[8]⊕ RK6[9], (29)

RK5[13] = RK6[12]⊕ RK6[13], (30)

RK6[4]⊕ RK5[5] = RK6[5], (31)

RK6[1]⊕ RK5[1] = RK6[0], (32)

RK6[14] = RK6[13]⊕ RK5[14]. (33)

with a probability of 2−40. We have 28 candidates for each
element in A4 in the other sets. So, all together, we expect
only one element to be left in the last five equations since we
have 240 candidates in all the sets and the probability that one
candidate satisfies the five equations is 2−40. That is, there are
around two candidates passing both the zero-sum check and
the equations of the key schedule. One of them is the correct
key and it can be deduced by a quick search.

The complexity of constructing the sets Ai is around 251

S-box operations which is around 243 encryptions. The key
schedule utilization phase is much faster. Because we test five
equations in Ai for each of 240 candidates. However, most
of them are eliminated in Equation 29. So, the key sched-
ule utilization phase consists of 240 tests of equations like
Equation 29, which is around 240 byte-wise XOR operations.
Similarly, eliminating vectors costs 233 S-box and 3·232 XOR
operations, 240 S-box and 242 XOR operations, and 240 S-box
and 242 XOR operations inA1,A3, andA2 respectively. It is
clear that the key schedule utilization phase is much less than
240 encryptions.
The memory complexity is 4 · 23232 = 237 bytes for

loading the sets Ai, i = 1, 2, 3, 4; and 236 bytes for loading
the ciphertexts.

In total, we improve the best attack on 6-round AES-128 by
a factor of 6 in data usage, by a factor of 8 in time complexity,
and by a factor of 2 in memory complexity.

IX. CONCLUSION AND DISCUSSION

Our study has taken a distinct and generic approach to the
security analysis of SPN ciphers against ID attacks compared
to typical cryptanalysis works, which simply aim to find the
best attack on a specific cipher. We have categorized ID
attacks on SPN ciphers into two distinct types: reciprocal
ID attacks and nonreciprocal ID attacks. Moreover, we have
proved lower bounds on the data complexity of a reciprocal ID
attack on an SPN cipher.We have introduced a vast theoretical
framework for a comprehensive understanding of the data
requirements of ID attacks on SPN ciphers.

As an illustrative application of our theoretical insights
on SPN ciphers, we have made use of our generic state-
ments to prove the security bounds for a widely recognized
cipher, namely AES, against ID attacks. Particularly, we have
shown that a reciprocal ID attack on AES exploiting a 4-
round conventional ID characteristic requires at minimum
266 CP. Our conjecture is that all 4-round ID characteristics
for AES are conventional, resulting in a requirement of 266

chosen plaintexts for any reciprocal ID attack on six or more
rounds of AES. We have introduced also a reciprocal ID
attack on 6-round AES with 266 data to show that the lower
bound is almost sharp. On the other hand, we have demon-
strated a counterexample that this security bound is not valid
for nonreciprocal ID attacks by mounting a nonreciprocal
ID attack on 6-round AES-192 and AES-256 that requires
only 218 chosen plaintexts. However, its time complexity is
marginal. Indeed, this is not a coincidence; we have proven
that any nonreciprocal ID attack on AES exploiting a 4-round
conventional ID characteristic has a time complexity of at
least 288 trials. Then, as a practical application, we improve
the integral attack through the partial sum technique in [36],
thereby enhancing the existing record after a duration of 23
years. Our attack is the fastest against 6-round AES. The time,
data, and memory complexities are improved by factors of 4,
3, and 3 times (or 8, 6, and 2 times for AES-128), respectively.

We think that applying the theoretical foundation estab-
lished in this study could lead to the discovery of several
new results regarding ID attacks on other SPN ciphers. So,
similar to proving the security bounds for AES, investigating
the minimal data required for reciprocal ID attacks on other
noteworthy SPN ciphers by utilizing Theorem 2, Theorem 4,
and Theorem 5 is a prospect for future research. Additionally,
similar findings can be obtained for Feistel networks.

ACKNOWLEDGMENT

We thank F. Karakoç, M.S. Kiraz, A.A. Selçuk, and B. Us-
taoğlu, for their invaluable comments. We utilized ChatGPT
for proofreading and rewording the abstract and the introduc-
tion.

VOLUME 11, 2023 15



O.Kara: New Security Proofs and Complexity Records for AES

References
[1] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence

Bassham, E. Roback, and James Dray. Advanced encryption standard
(AES), 2001-11-26 2001.

[2] Charles Bouillaguet, PatrickDerbez, Orr Dunkelman, Pierre-Alain Fouque,
Nathan Keller, and Vincent Rijmen. Low-data complexity attacks on AES.
IEEE Trans. Inf. Theory, 58(11):7002–7017, 2012.

[3] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[4] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and
linear probability for two-round advanced encryption standard. IET Inf.
Secur., 1(2):53–57, 2007.

[5] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials. J. Cryptol., 18(4):291–
311, 2005.

[6] Lars Knudsen. DEAL a 128-bit block cipher. Complexity, 258(2):216,
1998.

[7] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack
on 8-round AES. In Kaisa Nyberg, editor, Fast Software Encryption,
15th International Workshop, FSE 2008, Lausanne, Switzerland, February
10-13, 2008, Revised Selected Papers, volume 5086 of Lecture Notes in
Computer Science, pages 116–126. Springer, 2008.

[8] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key
attacks on 8-round AES-192 and AES-256. J. Cryptol., 28(3):397–422,
2015.

[9] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key
attacks on 8-round AES-192 and AES-256. In Masayuki Abe, editor, Ad-
vances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security,
Singapore, December 5-9, 2010. Proceedings, volume 6477 of Lecture
Notes in Computer Science, pages 158–176. Springer, 2010.

[10] Gaoli Wang and Chunbo Zhu. Single key recovery attacks on reduced
AES-192 and Kalyna-128/256. Sci. China Inf. Sci., 60(9):99101, 2017.

[11] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key
recovery attacks on reduced-round AES in the single-key setting. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-
30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 371–387. Springer, 2013.

[12] Leibo Li, Keting Jia, andXiaoyunWang. Improved single-key attacks on 9-
round AES-192/256. In Carlos Cid and Christian Rechberger, editors, Fast
Software Encryption - 21st International Workshop, FSE 2014, London,
UK, March 3-5, 2014. Revised Selected Papers, volume 8540 of Lecture
Notes in Computer Science, pages 127–146. Springer, 2014.

[13] Henri Gilbert and Marine Minier. A collision attack on 7 rounds of Rijn-
dael. In The Third Advanced Encryption Standard Candidate Conference,
April 13-14, 2000, New York, New York, USA, pages 230–241. National
Institute of Standards and Technology,, 2000.

[14] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and DougWhiting. Improved cryptanalysis of Rijndael.
In Bruce Schneier, editor, Fast Software Encryption, 7th International
Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings,
volume 1978 of Lecture Notes in Computer Science, pages 213–230.
Springer, 2000.

[15] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Bi-
clique cryptanalysis of the full AES. InDongHoonLee andXiaoyunWang,
editors, Advances in Cryptology - ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 344–371. Springer,
2011.

[16] Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis of
AES. In Ernest Foo and Douglas Stebila, editors, Information Security
and Privacy - 20th Australasian Conference, ACISP 2015, Brisbane, QLD,
Australia, June 29 - July 1, 2015, Proceedings, volume 9144 of Lecture
Notes in Computer Science, pages 39–56. Springer, 2015.

[17] Dhiman Saha, Mostafizar Rahman, and Goutam Paul. New yoyo
tricks with AES-based permutations. IACR Trans. Symmetric Cryptol.,
2018(4):102–127, 2018.

[18] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. Boomeyong: Em-
bedding yoyo within boomerang and its applications to key recovery at-

tacks on AES and pholkos. IACR Trans. Symmetric Cryptol., 2021(3):137–
169, 2021.

[19] Augustin Bariant and Gaëtan Leurent. Truncated boomerang attacks and
application to AES-based ciphers. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part IV, volume
14007 of Lecture Notes in Computer Science, pages 3–35. Springer, 2023.

[20] Navid Ghaedi Bardeh and Vincent Rijmen. New key-recovery attack on
reduced-round AES. IACR Trans. Symmetric Cryptol., 2022(2):43–62,
2022.

[21] Kaixin Zhao, Jie Cui, and Zhiqiang Xie. Algebraic cryptanalysis scheme of
AES-256 using Gröbner basis. J. Electr. Comput. Eng., 2017:9828967:1–
9828967:9, 2017.

[22] Lorenzo Grassi. Probabilistic mixture differential cryptanalysis on round-
reduced AES. In Kenneth G. Paterson and Douglas Stebila, editors,
Selected Areas in Cryptography - SAC 2019 - 26th International Con-
ference, Waterloo, ON, Canada, August 12-16, 2019, Revised Selected
Papers, volume 11959 of Lecture Notes in Computer Science, pages 53–84.
Springer, 2019.

[23] Lorenzo Grassi and Markus Schofnegger. Mixture integral attacks on
reduced-round AESwith a known/secret s-box. In Karthikeyan Bhargavan,
Elisabeth Oswald, andManoj Prabhakaran, editors, Progress in Cryptology
- INDOCRYPT 2020 - 21st International Conference on Cryptology in
India, Bangalore, India, December 13-16, 2020, Proceedings, volume
12578 of Lecture Notes in Computer Science, pages 312–331. Springer,
2020.

[24] Gaëtan Leurent and Clara Pernot. New representations of the AES key
schedule. In Anne Canteaut and François-Xavier Standaert, editors, Ad-
vances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696
of Lecture Notes in Computer Science, pages 54–84. Springer, 2021.

[25] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace trail
cryptanalysis and its applications toAES. IACRTransactions on Symmetric
Cryptology, 2016(2):192–225, Feb. 2017.

[26] Bing Sun, Meicheng Liu, Jian Guo, Vincent Rijmen, and Ruilin Li. Prov-
able security evaluation of structures against impossible differential and
zero correlation linear cryptanalysis. In Marc Fischlin and Jean-Sébastien
Coron, editors,Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume
9665 of Lecture Notes in Computer Science, pages 196–213. Springer,
2016.

[27] QianWang and Chenhui Jin. More accurate results on the provable security
of AES against impossible differential cryptanalysis.Des. Codes Cryptogr.,
87(12):3001–3018, 2019.

[28] Christina Boura and Daniel Coggia. Efficient MILP modelings for Sboxes
and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol.,
2020(3):327–361, 2020.

[29] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutiniz-
ing and improving impossible differential attacks: Applications to clefia,
camellia, lblock and simon. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology - ASIACRYPT 2014 - 20th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, volume 8873 of Lecture Notes in Computer Science, pages 179–199.
Springer, 2014.

[30] Behnam Bahrak and Mohammad Reza Aref. Impossible differential attack
on seven-round AES-128. IET Inf. Secur., 2(2):28–32, 2008.

[31] Wentao Zhang, Wenling Wu, and Dengguo Feng. New results on impos-
sible differential cryptanalysis of reduced AES. In Kil-Hyun Nam and
Gwangsoo Rhee, editors, Information Security and Cryptology - ICISC
2007, 10th International Conference, Seoul, Korea, November 29-30, 2007,
Proceedings, volume 4817 of Lecture Notes in Computer Science, pages
239–250. Springer, 2007.

[32] Raphael Chung-Wei Phan. Impossible differential cryptanalysis of 7-round
Advanced Encryption Standard (AES). Inf. Process. Lett., 91(1):33–38,
2004.

[33] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New
impossible differential attacks on AES. In Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology - IN-
DOCRYPT 2008, 9th International Conference on Cryptology in India,

16 VOLUME 11, 2023



O.Kara: New Security Proofs and Complexity Records for AES

Kharagpur, India, December 14-17, 2008. Proceedings, volume 5365 of
Lecture Notes in Computer Science, pages 279–293. Springer, 2008.

[34] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi
Shamir. Improved key recovery attacks on reduced-round AES with
practical data and memory complexities. J. Cryptol., 33(3):1003–1043,
2020.

[35] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi
Shamir. Improved key recovery attacks on reduced-round AES with
practical data andmemory complexities. In Hovav Shacham andAlexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 185–212. Springer, 2018.

[36] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and DougWhiting. Improved cryptanalysis of Rijndael.
In Bruce Schneier, editor, Fast Software Encryption, 7th International
Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings,
volume 1978 of Lecture Notes in Computer Science, pages 213–230.
Springer, 2000.

[37] Navid Ghaedi Bardeh and Sondre Rønjom. Practical attacks on reduced-
roundAES. In Johannes Buchmann, AbderrahmaneNitaj, and Tajje-eddine
Rachidi, editors, Progress in Cryptology - AFRICACRYPT 2019 - 11th
International Conference on Cryptology in Africa, Rabat, Morocco, July
9-11, 2019, Proceedings, volume 11627 of Lecture Notes in Computer
Science, pages 297–310. Springer, 2019.

[38] Debranjan Pal, Md Rasid Ali, Abhijit Das, and Dipanwita Roy Chowdhury.
A cluster-based practical key recovery attack on reduced-round AES using
impossible-differential cryptanalysis. J. Supercomput., 79(6):6252–6289,
2023.

[39] Patrick Derbez. Meet-in-the-Middle Attacks on AES. Theses, Ecole
Normale Supérieure de Paris - ENS Paris, December 2013.

[40] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In Eli Biham, editor, Fast Software Encryption, 4th International
Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997, Proceedings, vol-
ume 1267 of Lecture Notes in Computer Science, pages 149–165. Springer,
1997.

[41] Kexin Qiao, Junjie Cheng, and Changhai Ou. A new mixture differential
cryptanalysis on round-reduced AES. Mathematics, 10(24):4736, 2022.

[42] Mohsen Shakiba, Mohammad Dakhilalian, and Hamid Mala. On compu-
tational complexity of impossible differential cryptanalysis. Inf. Process.
Lett., 114(5):252–255, 2014.

[43] Eli Biham and Nathan Keller. Cryptanalysis of reduced variants of Rijn-
dael. unpublished manuscript, 1999, 1999.

[44] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin
Suder. Making the impossible possible. J. Cryptol., 31(1):101–133, 2018.

[45] Zilong Jiang, Chenhui Jin, and Zebin Wang. Multiple impossible differen-
tials attack on AES-192. IEEE Access, 7:138011–138017, 2019.

[46] Yiyuan Luo and Xuejia Lai. Improvements for finding impossible
differentials of block cipher structures. Secur. Commun. Networks,
2017:5980251:1–5980251:9, 2017.

[47] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved impossible differential cryptanalysis of
7-round AES-128. In Guang Gong and Kishan Chand Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010 - 11th International Confer-
ence on Cryptology in India, Hyderabad, India, December 12-15, 2010.
Proceedings, volume 6498 of Lecture Notes in Computer Science, pages
282–291. Springer, 2010.

[48] Meiling Zhang, Weiguo Zhang, Jingmei Liu, and Xinmei Wang. General
impossible differential attack on 7-round AES. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 93-A(1):327–330, 2010.

[49] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new
structural-differential property of 5-round AES. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, volume 10211 of Lecture Notes in Computer Science,
pages 289–317, 2017.

[50] Hamid Mala, Mohsen Shakiba, Mohammad Dakhilalian, and Ghadamali
Bagherikaram. New results on impossible differential cryptanalysis of
reduced-round camellia-128. In Michael J. Jacobson Jr., Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, 16th
Annual International Workshop, SAC 2009, Calgary, Alberta, Canada,
August 13-14, 2009, Revised Selected Papers, volume 5867 of Lecture
Notes in Computer Science, pages 281–294. Springer, 2009.

ORHUN KARA received the M.S. and the Ph.D.
degrees in Mathematics from Bilkent University
Ankara in 1998 and 2003 respectively. His thesis
is about code construction on modular curves. His
research interests include the design and analysis
of symmetric ciphers.

He was a Visiting Researcher with the CNRS
(Centre National de la Recherche Scientifique) in
Luminy/Marseille, France from 2001 to 20002 and
was a Researcher with the National Research Insti-

tute of Electronics and Cryptology (UEKAE) of TÜBİTAK BİLGEM from
2002 to 2020. He has been an Associative Professor with the Department
of Mathematics in Izmir Institute of Technology (IZTECH) since 2020. In
addition, he maintains an affiliation with TÜBİTAK BİLGEM UEKAE.

VOLUME 11, 2023 17


	Introduction
	Related Work
	Our Contributions
	Organization

	Preliminaries
	Substitution Permutation Networks
	Advanced Encryption Standard
	Notation

	Reciprocal ID attacks on SPN ciphers
	Provable security of AES against ID attacks
	A reciprocal ID attack with optimal data
	A nonreciprocal ID attack on AES
	A new attack with minimum data
	Enhancing Integral Attack
	Conclusion and Discussion
	References
	Orhun Kara


